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Abstract 

Quantitative fairness procedures have been developed and modified by ETS staff over the past 

several decades. ETS has been a leader in fairness assessment, and its efforts are reviewed in this 

report. The first section deals with differential prediction and differential validity procedures that 

examine whether test scores predict a criterion, such as performance in college, across different 

subgroups in a similar manner. The bulk of this report focuses on item level fairness, or 

differential item functioning, which is addressed in the various subsections of the second section. 

In the third section, I consider research pertaining to whether tests built to the same set of 

specifications produce scores that are related in the same way across different gender and ethnic 

groups. Limitations with the approaches reviewed here are discussed in the final section. 

Key words: fairness, differential prediction, differential item functioning, score equity 

assessment, ETS, quantitative methods 
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Foreword 

Since its founding in 1947, ETS has conducted a significant and wide-ranging research program 

that has focused on, among other things, psychometric and statistical methodology; educational 

evaluation; performance assessment and scoring; large-scale assessment and evaluation; 

cognitive, developmental, personality, and social psychology; and education policy. This broad-

based research program has helped build the science and practice of educational measurement, as 

well as inform policy debates. 

In 2010, we began to synthesize these scientific and policy contributions, with the 

intention to release a series of reports sequentially over the course of the next few years. These 

reports constitute the ETS R&D Scientific and Policy Contributions Series. 

In the seventh report in the series, Neil Dorans looks at quantitative fairness assessment 

procedures developed and modified by ETS staff, which have helped to make ETS a leader in 

fairness assessment. Almost since the inception of the organization in 1947, ETS has been 

concerned with the issues of fairness. In the late 1940s and early 1950s, William Turnbull, who 

later became the second president of ETS, was an early advocate of fairness, recommending the 

comparison of prediction equations as a method for assessing test fairness. In the 1980s, interest 

in fairness in the assessment community shifted from scores to items, as evidenced in widespread 

studies of differential item functioning (DIF). ETS, under the direction of Gregory Anrig, the 

third ETS president, established the industry standard for fairness assessment at the item level, 

and ETS has been in the vanguard in conducting DIF analyses as a standard psychometric check 

of test quality for over a quarter of a century. 

Dorans is a distinguished presidential appointee at ETS. A major focus of his operational 

and research efforts during his career at ETS has been on the quantitative evaluation of fairness 

at the item and score levels. Since the early 1980s, he has been involved with most score 

equatings of the SAT® test. Equating is an essential to the process of producing fair scores. The 

architect for the recentered SAT scales, he has also performed score linking studies relating the 

SAT I to the ACT and the Prueba de Aptitud Academica (PAA™). Dorans co-edited a book on 

score linking and scale aligning, and co-authored a book on computer adaptive testing. He has 

written book chapters on DIF, context effects, item response theory, and score linking. He was 

awarded the ETS Measurement Statistician Award for, among other things, his work on 

recentering the SAT and the role he played in mentoring staff on score linking and fairness 
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issues. He received the National Council on Measurement in Education’s Career Contributions 

Award in recognition of his substantial and creative theoretical and technical developments and 

his innovative ideas that have significantly affected measurement practices.  

Future reports in the ETS R&D Scientific and Policy Contributions Series will focus on 

other major areas of research and education policy in which ETS has played a role. 

Ida Lawrence 

Senior Vice-President 

Research & Development Division 

ETS 
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ETS was founded in 1947 as a not-for-profit organization (Bennett, 2005). Fairness 

concerns have been an issue at ETS almost since its inception. William Turnbull (1949, 1951a, 

1951b), who in 1970 became the second president of ETS, addressed the Canadian Psychological 

Association on socioeconomic status and predictive test scores. He made a cogent argument for 

rejecting the notion that differences in subgroup performance on a test means that a test score is 

biased. He also advocated the comparison of prediction equations as a means of assessing test 

fairness. His article was followed by a number of articles by ETS staff on the issue of differential 

prediction. By the 1980s, under the direction of its third president, Gregory Anrig, ETS 

established the industry standard for fairness assessment at the item level (Holland & Wainer, 

1993; Zieky, 2011). This century, fairness analyses have begun to focus on relationships between 

tests that purport to measure the same thing in the same way across different subgroups (Dorans 

& Liu, 2009; Liu & Dorans, 2013).  

In this report, I review quantitative fairness procedures that have been developed and 

modified by ETS staff over the past decades. While some reference is made to events external to 

ETS, the focus is on ETS, which has been a leader in fairness assessment. In the first section, 

Fair Prediction of a Criterion, I consider differential prediction and differential validity, 

procedures that examine whether test scores predict a criterion, such as performance in college, 

across different subgroups in a similar manner. The bulk of this review is in the second section, 

Differential Item Functioning (DIF), which focuses on item-level fairness, or DIF. Then in the 

third section, Fair Linking of Test Scores, I consider research pertaining to whether tests built to 

the same set of specifications produce scores that are related in the same way across different 

gender and ethnic groups. In the final section, Limitations of Quantitative Fairness Assessment 

Procedures, limitations of these procedures are mentioned.  

Fair Prediction of a Criterion 

Turnbull (1951a) concluded his early ETS treatment of fairness with the following 

statement: “Fairness, like its amoral brother, validity, resides not in tests or test scores but in the 

relation to its uses” (p. 4–5). 

While several ETS authors had addressed the relative lower performance of minority 

groups on tests of cognitive ability and its relationship to grades (e.g., Campbell, 1964), Cleary 

(1968) conducted one of the first differential prediction studies. That study has been widely cited 

and critiqued. A few years after the Cleary article, the field was replete with differential validity 



2 

studies, which focus on comparing correlation coefficients, and differential prediction studies, 

which focus on comparing regression functions, in large part because of interest engendered by 

the Supreme Court decision Griggs v. Duke Power Co. in 1971. This decision included the terms 

business necessity and adverse impact, both of which affected employment testing. Adverse 

impact is a substantially different rate of selection in hiring, promotion, transfer, training, or 

other employment-related decisions for any race, sex, or ethnic group. Business necessity can be 

used by an employer as a justification for using a selection mechanism that appears to be neutral 

with respect to sex, race, national origin, or religious group even though it excludes members of 

one sex, race, national origin, or religious group at a substantially higher rate than members of 

other groups. The employer must prove that the selection requirement having the adverse impact 

is job related and consistent with business necessity. In other words, in addition to avoiding the 

use of race/ethnic/gender explicitly as part of the selection process, the selection instrument had 

to have demonstrated validity for its use. Ideally, this validity would be the same for all 

subpopulations.  

Linn (1972) considered the implications of the Griggs decision for test makers and users. 

A main implication was that there would be a need for empirical demonstrations that test scores 

predict criterion performance, such as how well one does on the job. (In an educational context, 

test scores may be used with other information to predict the criterion of average course grade). 

Reliability alone would not be an adequate justification for use of test scores. Linn also noted 

that for fair prediction to hold, the prediction model must include all the appropriate variables in 

the model. Otherwise misspecification of the model can give the appearance of statistical bias. 

The prediction model should include all the predictors needed to predict Y and the functional 

form used to combine the predictors should be the correct one. The reliabilities of the predictors 

also were noted to play a role. These limitations with differential validity and differential 

predictions studies were cogently summarized in four pages by Linn and Werts (1971). One of 

the quandaries faced by researchers that was not noted in this 1971 study is that some of the 

variables that contribute to prediction are variables over which a test taker has little control, such 

as gender, race, parent’s level of education and income, and even zip code. Use of variables such 

as zip code to predict grades in an attempt to eliminate differential prediction would be unfair.  

Linn (1975) later noted that differential prediction analyses should be preferred to 

differential validity studies because differences in predictor or criterion variability can produce 
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differential validity even when the prediction model is fair. Differential prediction analyses 

examine whether the same prediction models hold across different groups. Fair prediction or 

selection requires invariance of prediction equations across groups, 

( | , 1) ( | , 2) .... ( | , ),R Y G R Y G R Y G g= = = = = =X X X   

where R is the symbol for the function used to predict Y, the criterion score, from X, the 

predictor. G is a variable indicating subgroup membership.  

Petersen and Novick (1976) compared several models for assessing fair selection, 

including the regression model (Cleary, 1968), the constant ratio model (Thorndike, 1971), the 

conditional probability model (Cole, 1973), and the constant probability model (Linn, 1973) in 

the lead article in a special issue of the Journal of Educational Measurement dedicated to the 

topic of fair selection.1 They demonstrated that the regression, or Cleary, model, which is a 

differential prediction model, was a preferred model from a logical perspective in that it was 

consistent with its converse (i.e., fair selection of applicants was consistent with fair rejection of 

applicants). In essence, the Cleary model examines whether the regression of the criterion onto 

the predictor space is invariant across subpopulations.  

Linn (1976) in his discussion of the Petersen and Novick (1976) analyses noted that the 

quest to achieve fair prediction is hampered by the fact that the criterion in many studies may 

itself be unfairly measured. Even when the correct equation is correctly specified in the full 

population and the criterion is measured well, invariance may not hold in subpopulations because 

of selection effects. Linn (1983) described how predictive bias may be an artifact of selection 

procedures. Linn used a simple case to illustrate his point. He posited that a single predictor X 

and linear model were needed to predict Y in the full population P. To paraphrase his argument, 

assume that a very large sample is drawn from P based on a selection variable U that might 

depend on X in a linear way. Errors in the prediction of Y from X and U from X are thus also 

linearly related because of their mutual dependence on X. Linn showed that the sample 

regression for the selected sample, R (Y|X, G) equals the regression in the full unselected 

population if the correlation between X and U is zero, or if errors in prediction of Y from X and U 

from X are uncorrelated. In other words, the slope of the relationship for predicting U from X 

must be zero or Y and U must be linearly independent given X.  
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Myers (1975) criticized the regression model because regression effects can produce 

differences in intercepts when two groups differ on X and Y and the predictor is unreliable, a 

point noted by Linn and Werts (1971). Myers argued for a linking or scaling model for assessing 

fairness. He noted that his approach made sense when X and Y were measures of the same 

construct, but admitted that scaling test scores to grades or vice versa had issues. This brief 

report by Myers can be viewed as a remote harbinger of work on the population invariance of 

score linking functions done by Dorans and Holland (2000), Dorans (2004), Dorans and Liu 

(2009), and Liu and Dorans (2013). 

As can be inferred from the studies above, in particular Linn and Werts (1971) and Linn 

(1975, 1983), there are many ways in which a differential prediction study can go awry, and even 

more ways that differential validity studies can be problematic. 

Differential Item Functioning (DIF) 

During the 1980s, the focus in the profession shifted to DIF studies. Although interest in 

item bias studies began in the 1960s (Angoff, 1993), it was not until the 1980s that interest in fair 

assessment at the item level became widespread. During the 1980s, the measurement profession 

engaged in the development of item level models for a wide array of purposes. DIF procedures 

developed as part of that shift in attention from the score to the item.  

Moving the focus of attention to prediction of item scores, which is what DIF is about, 

represented a major change from focusing primarily on fairness in a domain, where so many 

factors could spoil the validity effort, to a domain where analyses could be conducted in a 

relatively simple, less confounded way. While factors such as multidimensionality can 

complicate a DIF analysis, as described by Shealy and Stout2 (1993), they are negligible 

compared to the many influences that can undermine a differential prediction study, as described 

in Linn and Werts (1971). In a DIF analysis, the item is evaluated against something designed to 

measure a particular construct and something that the test producer controls, namely a test score.  

Around 100 ETS research bulletins, memoranda, or reports have been produced on the 

topics of item fairness, DIF, or item bias. The vast majority of these studies were published in the 

late 1980s and early 1990s. The major emphases of these reports can be sorted into categories 

and are treated in subsections of this section: Differential Item Functioning Methods, Matching 

Variable Issues, Study Group Definitions, and Sample Size and Power Issues. The DIF methods 

section begins with some definitions followed by a review of procedures that were suggested 
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before the term DIF was introduced. Most of the section then describes the following procedures: 

Mantel-Haenszel (MH), standardization (STAND), item response theory (IRT), and SIBTEST. 

Differential Item Functioning (DIF) Methods 

Two reviews of DIF methods were conducted by ETS staff: Dorans and Potenza (1994), 

which was shortened and published as Potenza and Dorans (1995), and Mapuranga, Dorans, and 

Middleton (2008), which then superseded Potenza and Dorans. In the last of these studies, the 

criteria for classifying DIF methods were a) definition of null DIF, b) definition of the studied 

item score, c) definition of the matching variable, and d) the variable used to define groups. 

Null DIF is the absence of DIF. One definition of null DIF, observed score null DIF, is 

that all individuals with the same score on a test should have the same proportions answering the 

item correctly regardless of whether they are from the reference or focal group. The latent 

variable definition of null DIF can be used to compare the performance of focal and reference 

subgroups that are matched with respect to a latent variable. An observed difference in average 

item scores between two groups that may differ in their distributions of score on the matching 

variable is referred to as impact. With impact, we compare groups that may or may not be 

comparable with respect to the construct being measured by the item; using DIF, we compare 

groups that are comparable with respect to an estimate of their standing on that construct. 

The studied item score refers to the scoring rule used for the items being studied for DIF. 

Studied items can either be scored as correct/incorrect (i.e., binary) or scored using more than 

two response categories (i.e., polytomous). 

The matching variable is a variable used in the process of comparing the reference and 

focal groups (e.g., total test score or subscore) so that comparable groups are formed. In other 

words, matching is a way of establishing score equivalence between groups that are of interest in 

DIF analyses. The matching variable can either be an observed score or an unobserved latent 

variable consistent with a specific model for item performance, and can be either a univariate or 

multivariate variable.  

In most DIF analyses, a single focal group is compared to a single reference group where 

the subgroup-classification variable (gender, race, geographic location, etc.) is referred to as the 

grouping variable. This approach ignores potential interactions between types of subgroups, 

(e.g., male/female and ethnic/racial). Although it might be better to analyze all grouping 

variables for DIF simultaneously (for statistical and computational efficiency), most DIF 
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methods compare only two groups at a time. While convention is often the reason for examining 

two groups at a time, small sample size sometimes makes it a necessity. 

The remainder of this section describes briefly the methods that have been developed to 

assess what has become known as DIF. After reviewing some early work, I turn to the two 

methods that are still employed operationally here at ETS: the MH method and the STAND 

method. After briefly discussing IRT methods, I mention the SIBTEST method. Methods that do 

not fit into any of these categories are addressed in what seems to be the most relevant 

subsection.  

Early developments: The years before differential item functioning (DIF) was 

defined at ETS. While most of the focus in the 1960s and 1970s was on the differential 

prediction issue, several researchers turned their attention to item-level fairness issues. Angoff 

(1993) discussed several, but not all of these efforts. Cardall and Coffman (1964) and Cleary and 

Hilton (1966, 1968) defined item bias, the phrase that was commonly used before DIF was 

introduced, as an item-by-subgroup interaction. Analysis of variance was used by both studies of 

DIF. Identifying individual problem items was not the goal of either study.  

Angoff and Sharon (1974) also employed an analysis of variance (ANOVA) method, but 

by then the transformed item difficulty (TID) or delta-plot method had been adopted for item 

bias research. Angoff (1972) introduced this approach, which was rooted in Thurstone’s absolute 

scaling model. This method had been employed by Tucker (1951) in a study of academic ability 

on vocabulary items and by Gulliksen (1964) in a cross-national study of occupation prestige. 

This method uses an inverse normal transformation to convert item proportion-correct values for 

two groups to normal deviates that are expect to form an ellipse. Items that deviate from the 

ellipse exhibit the item difficulty by group interaction that is indicative of what was called item 

bias. Angoff and Ford (1971, 1973) are the standard references for this approach. 

The delta-plot method is akin to the Rasch (1960) model approach to assessing DIF. If 

items differ in their discriminatory power and the groups under study differ in terms of 

proficiency, then items will exhibit item-by-group interactions even when there are no 

differences in item functioning. This point was noted by several scholars including Lord (1977) 

and affirmed by Angoff (1993). As a consequence, the delta-plot method is rarely used for DIF 

assessment, except in cases where small samples are involved. 
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Two procedures may be viewed as precursors of the eventual move to condition directly 

on total score that was adopted by the STAND (Dorans & Kulick, 1983) and MH (Holland & 

Thayer, 1988) DIF approaches. Stricker (1982) recommended a procedure that looks for DIF by 

examining the partial correlation between group membership and item score with the effect of 

total test score removed. Scheuneman (1979) proposed a test statistic that was like a chi-square. 

This method was shown by Baker3 (1981) and others to be affected inappropriately by sample 

size and to possess no known sampling distribution. 

The late 1980s and the early 1990s were the halcyon days of DIF research and 

development at ETS and in the profession. Fairness was of paramount concern, and practical DIF 

procedures were developed and implemented (Dorans & Holland, 1993; Zieky, 1993). In 

October 1989, ETS and the Air Force Human Resources Laboratory sponsored a DIF conference 

that was held at ETS in October 1989. The papers presented at that conference, along with a few 

additions, were collected in the volume edited by Holland and Wainer (1993), known informally 

as the DIF book. It contains some of the major work conducted in this early DIF era, including 

several chapters about MH and STAND. The chapter by Dorans and Holland (1993) is the source 

of much of the material in the next two sections, which describe the MH and STAND procedures 

in some detail because they have been used operationally at ETS since that time. Dorans (1989) 

is another source that compares and contrasts these two DIF methods. 

Mantel-Haenszel (MH): Original implementation at ETS. In their seminal paper, 

Mantel and Haenszel4 (1959) introduced a new procedure for the study of matched groups. 

Holland and Thayer (1986, 1988) adapted the procedure for use in assessing DIF. This 

adaptation, the MH method, is used at ETS as the primary DIF detection device. The basic data 

used by the MH method are in the form of M 2-by-2 contingency tables or one large three 

dimensional 2-by-2-by-M table, where M is the number of levels of the matching variable. 

Under rights-scoring for the items in which responses are coded as either correct or 

incorrect (including omissions), proportions of rights and wrongs on each item in the target 

population can be arranged into a contingency table for each item being studied. There are two 

levels for group: the focal group (f) that is the focus of analysis, and the reference group (r) that 

serves as a basis for comparison for the focal group. There are also two levels for item response: 

right (R) or wrong (W), and there are M score levels on the matching variable, (e.g., total score). 

Finally, the item being analyzed is referred to as the studied item. The 2 (groups)-by-2 (item 
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scores)-by-M (score levels) contingency table (see Table 1) for each item can be viewed in 2-by-

2 slices. 

Table1 

2-by-2-by-M Contingency Table for an Item, Viewed in a 2-by-2 Slice 

Item score 
Group Right Wrong Total 

Focal group (f) Rfm Wfm Nfm 
Reference group (r) Rrm Wrm Nrm 
Total group (t) Rtm Wtm Ntm 

The null DIF hypothesis for the MH method can be expressed as 

H0: [Rrm/Wrm] = [Rfm/Wfm]  m = 1,...,M. 

In other words, the odds of getting the item correct at a given level of the matching 

variable is the same in both the focal group and the reference group portions of the population, 

and this equality holds across all M levels of the matching variable. 

In their original work, Mantel and Haenszel (1959) developed a chi-square test of the null 

hypothesis against a particular alternative hypothesis known as the constant odds ratio 

hypothesis, 

Ha: [Rrm/Wrm] = α [Rfm/Wfm]  m = 1,...,M and α ≠ 1. 

Note that when α = 1, the alternative hypothesis reduces to the null DIF hypothesis. The 

parameter α is called the common odds ratio in the M 2-by-2 tables because under Ha, the value 

of α is the odds ratio that is the same for all m. 

Holland and Thayer (1988) reported that the MH approach is the test possessing the most 

statistical power for detecting departures from the null DIF hypothesis that are consistent with 

the constant odds-ratio hypothesis. 

Mantel and Haenszel (1959) also provided an estimate of the constant odds -ratio that 

ranges from 0 to ∞, for which a value of 1 can be taken to indicate null DIF. This odds-ratio 

metric is not particularly meaningful to test developers who are used to working with numbers 
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on an item difficulty scale. In general, odds are converted to loge odds because the latter is 

symmetric around zero and easier to interpret. 

At ETS, test developers use item difficulty estimates in the delta metric, which has a 

mean of 13 and a standard deviation of 4. Large values of delta correspond to difficult items, 

while easy items have small values of delta. Holland and Thayer (1985) converted the estimate 

of the common odds ratio, αMH ,into a difference in deltas via: 

MH D-DIF = -2.35 ln[αMH]. 

Note that positive values of MH D-DIF favor the focal group, while negative values favor 

the reference group. A standard error for MH D-DIF was provided in Dorans and Holland 

(1993). 

Subsequent developments with the Mantel-Haenszel (MH) approach. Subsequent to 

the operational implementation of the MH approach to DIF detection by ETS in the late 1980s 

(Zieky, 1993, 2011), there was a substantial amount of DIF research conducted by ETS staff 

through the early 1990s. Some of this research was presented in Holland and Wainer (1993); 

other presentations appeared in journal articles and ETS Research Reports. This section contains 

a partial sampling of research conducted primarily on the MH approach.  

Donoghue, Holland, and Thayer (1993) varied six factors in an IRT-based simulation of 

DIF in an effort to better understand the properties of the MH and STAND (to be described in 

the next section) effect sizes and their standard errors. The six factors varied were level of the 

IRT discrimination parameter, the number of DIF items in the matching variable, the amount of 

DIF on the studied item, the difficulty of the studied item, whether the studied item was included 

in the matching variable, and the number of items in the matching variable. Donoghue et al. 

found that both the MH and STAND methods had problems detecting IRT DIF in items with 

nonzero lower asymptotes. Their two major findings were the need to have enough items in the 

matching variable to ensure reliable matching for either method and the need to include the 

studied item in the matching variable in MH analysis. This study thus provided support for the 

analytical argument for inclusion of the studied item that had been made by Holland and Thayer 

(1986). As will be seen later, Zwick, Donaghue, and Grima (1993), Zwick (1990), Lewis (1993), 

and Tan, Xiang, Dorans, and Qu (2010) also addressed the question of inclusion of the studied 

item.  
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Longford, Holland, and Thayer (1993) demonstrated how to use a random-effect or 

variance-component model to aggregate DIF results for groups of items. In particular they 

showed how to combine DIF estimates from several administrations to obtain variance 

components for administration differences for DIF within an item. In their examples, they 

demonstrated how to use their models to improve estimations within an administration, and how 

to combine evidence across items in randomized DIF studies. Subsequently, ETS researchers 

have employed Bayesian methods with the goal of pooling data across administrations to yield 

more stable DIF estimates within an administration. These approaches are discussed in the 

section on sample size and power issues. 

Allen and Holland (1993) used a missing data framework to address the missing data 

problem in DIF analyses where “no response” to the self-reported group identification question 

is large, a common problem in applied settings. They showed how MH and STAND statistics 

can be affected by different assumptions about nonresponses. 

Zwick and her colleagues examined DIF in the context of computer adaptive testing 

(CAT) in which tests are tailored to the individual test taker on the basis of his or her response to 

previous items. Zwick, Thayer, and Wingersky (1993) described in great detail a simulation 

study in which they examined the performance of MH and STAND procedures that had been 

modified for use with data collected adaptively. The modification to the DIF procedures involved 

replacing the standard number-right matching variable with a matching variable based on IRT, 

which was obtained by converting a maximum likelihood estimate of ability to an expected 

number-right true score on all items in the reference pool. Examinees whose expected true scores 

fell in the same one-unit intervals were considered to be matched. They found that DIF statistics 

computed in this way for CAT were similar to those obtained with the traditional matching 

variable of performance on the total test. In addition they found that pretest DIF statistics were 

generally well behaved, but the MH DIF statistics tended to have larger standard errors for the 

pretest items than for the CAT items.  

Zwick, Thayer, and Wingersky (1994) addressed the effect of using alternative matching 

methods for pretest items. Using a more elegant matching procedure did not lead to a reduction 

of the MH standard errors and produced DIF measures that were nearly identical to those from 

the earlier study. Further investigation showed that the MH standard errors tended to be larger 

when items were administered to examinees with a wide ability range, whereas the opposite was 
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true of the standard errors of the STAND DIF statistic. As reported in Zwick (1994), there may 

be a theoretical explanation for this phenomenon.  

CAT can be thought of as a very complex form of item sampling. The sampling 

procedure used by the National Assessment of Educational Progress (NAEP) is another form of 

complex sampling. Allen and Donoghue (1995) used a simulation study to examine the effect of 

complex sampling of items on the measurement of DIF using the MH DIF procedure. Data were 

generated using a three-parameter logistic (3PL) IRT model according to the balanced 

incomplete block design. The length of each block of items and the number of DIF items in the 

matching variable were varied, as was the difficulty, discrimination, and presence of DIF in the 

studied item. Block, booklet, pooled booklet, and other approaches to matching on more than the 

block, were compared to a complete data analysis using the transformed log-odds on the delta 

scale. The pooled booklet approach was recommended for use when items are selected for 

examinees according to a balanced incomplete block (BIB) data collection design.  

Zwick, Donoghue, and Grima (1993) noted that some forms of performance assessment 

may in fact be more likely to tap construct-irrelevant factors than multiple-choice items are. The 

assessment of DIF can be used to investigate the effect on subpopulations of the introduction of 

performance tasks. Two extensions of the MH procedure were explored: the test of conditional 

association proposed by Mantel (1963) and the generalized statistic proposed by Mantel and 

Haenszel (1959). Simulation results showed that, for both inferential procedures, the studied item 

should be included in the matching variable, as in the dichotomous case. Descriptive statistics 

that index the magnitude of DIF, including that proposed by Dorans and Schmitt (1991; 

described below) were also investigated. 

Standardization (STAND). Dorans (1982) reviewed item bias studies that had been 

conducted on data from the SAT® exam in the late 1970s, and concluded that these studies were 

flawed because either DIF was confounded with lack of model fit or it was contaminated by 

impact as a result of fat matching, the practice of grouping scores into broad categories of 

roughly comparable ability. A new method was needed. Dorans and Kulick (1983, 1986) 

developed the STAND approach after consultation with Holland. The formulas in the following 

section can be found in these articles and in Dorans and Holland (1993) and Dorans and Kulick 

(2006). 
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Standardization’s (STAND’s) definition of differential item functioning (DIF). An item 

exhibits DIF when the expected performance on an item differs for matched examinees from 

different groups. Expected performance can be estimated by nonparametric item-test regressions. 

Differences in empirical item-test regressions are indicative of DIF.  

The first step in the STAND analysis is to use all available data in the target population 

of interest to estimate nonparametric item-test regressions in the reference group and in the focal 

group. Let ( | )f Y Xε  define the empirical item-test regression for the focal group f, and let 

( | )r Y Xε  define the empirical item-test regression for the reference group r, where Y  is the 

item-score variable and X  is the matching variable. For STAND, the definition of null-DIF 

conditions on an observed score is ( | ) ( | )f rY X Y X=ε ε . Plots of difference in empirical item-

test regressions, focal minus reference, provide visual descriptions of DIF in fine detail for 

binary as well as polytomously scored items. For illustrations of nonparametric item-test 

regressions and differences for an actual SAT item that exhibits considerable DIF, see Dorans 

and Kulick (1986). 

Standardization’s (STAND’s) primary differential item functioning (DIF) index. While 

plots described DIF directly, there was a need for some numerical index that targets suspect 

items for close scrutiny while allowing acceptable items to pass swiftly through the screening 

process. For each score level, the focal group supplies specific weights that are used for each 

individual mD  before accumulating the weighted differences across score levels to arrive at a 

summary item-discrepancy index, STD EISDIF− , which is defined as: 

1 1

1 1

( | ) ( | )
M M

fm f fm r
m m

M M
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m m
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where 
1

/
M

fm fm
m

N N
=
∑  is the weighting factor at score level mX  supplied by the focal group to 

weight differences in expected item performance observed in the focal group ( | )fE Y X  and 

expected item performance observed in the reference group ( | )rE Y X .  
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In contrast to impact, in which each group has its relative frequency serve as a weight at 

each score level, STAND uses a standard or common weight on both ( | )f Y X m=ε  and 

( | )r Y X m=ε , namely 
1

/
M

fm fm
m

N N
=
∑ . The use of the same weight on both ( | )f Y X m=ε  and 

( | )r Y X m=ε  is the essence of the STAND approach. Use of fmN  means that EISDIF equals 

the difference between the observed performance of the focal group on the item and the 

predicted performance of selected reference group members who are matched in ability to the 

focal group members. This difference can be derived very simply; see Dorans and Holland 

(1993). 

Extensions to standardization (STAND). The generalization of the STAND 

methodology to all response options including omission and not reached is straightforward and is 

known as standardized distractor analysis (Dorans & Schmitt, 1993; Dorans, Schmitt, & 

Bleistein, 1988, 1992). It is as simple as replacing the keyed response with the option of interest 

in all calculations. For example, a standardized response-rate analysis on Option A would entail 

computing the proportions choosing A in both the focal and reference groups. The next step is to 

compute differences between these proportions at each score level. Then these individual score-

level differences are summarized across score levels by applying some standardized weighting 

function to these differences to obtain ( )STD DIF A− , the standardized difference in response 

rates to Option A. In a similar fashion one can compute standardized differences in response 

rates for Options B, C, D, and E, and for nonresponses as well. This procedure is used routinely 

at ETS. 

Application of the STAND methodology to counts of examinees at each level of the 

matching variable who did not reach the item results in a standardized not-reached difference. 

For items at the end of a separately timed section of a test, these standardized differences provide 

measurement of the differential speededness of a test. Differential speededness refers to the 

existence of differential response rates between focal group members and matched reference 

group members to items appearing at the end of a section. Schmitt, Holland, and Dorans (1993) 

reported that excluding examinees who do not reach an item from the calculation of the DIF 

statistic for that item partially compensates for the effects of item location on the DIF estimate.  
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Dorans and Schmitt (1991) proposed an extended version of STAND for ordered 

polytomous data. This extension has been used operationally with NAEP data since the early 

1990s. This approach, called standardized mean difference (SMD) by Zwick, Donoghue, and 

Grima (1993), provides an average DIF value for describing DIF on items with ordered 

categories. At each matching score level, there exist distributions of ordered item scores, I, for 

both the focal group (e.g., females) and the reference group (e.g., males). The expected item 

scores for each group at each matching score level can be computed by using the frequencies to 

obtain a weighted average of the score levels. The difference between these expected items 

scores for the focal and reference groups, STD EISDIF− , is the DIF statistic. Zwick and Thayer 

(1996) provide standard errors for SMD (or STD EISDIF− ). 

Item response theory (IRT). DIF procedures differ with respect to whether the matching 

variable is explicitly an observed score (Dorans & Holland, 1993) or implicitly a latent variable 

(Thissen, Steinberg, & Wainer, 1993). Observed score DIF and DIF procedures based on latent 

variables do not measure the same thing, and both are not likely to measure what they strive to 

measure, which is DIF with respect to the construct that the item purports to measure. The 

observed score procedures condition on an observed score, typically the score reported to a test 

taker, which contains measurement error and clearly differs from a pure measure of the construct 

of interest, especially for test scores of inadequate reliability. The latent variable approaches in 

essence condition on an unobservable that the test is purportedly measuring. As such they 

employ what Meredith and Millsap5 (1992) would call a measurement invariance definition of 

null DIF, while methods like MH and STAND employ a prediction invariance definition, which 

may be viewed as inferior to measurement invariance from a theoretical perspective. On the 

other hand, procedures that purport to assess measurement invariance employ a set of 

assumptions; in essence they are assessing measurement invariance under the constraint that the 

model they assume to be true is in fact true.  

The observed score methods deal with the fact that an unobservable is unknowable by 

replacing the null hypothesis of measurement invariance (i.e., the items measure the construct of 

interest in the same way in the focal and reference groups with a prediction invariance 

assumption and use the data directly to assess whether expected item score is a function of 

observed total score in the same way across groups). The latent variable approaches retain the 

measurement invariance hypothesis and use the data to estimate and compare functional forms of 
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the measurement model relating item score to a latent variable in the focal and reference groups. 

The assumptions embodied in these functional forms may or may not be correct, however, and 

model misfit might be misconstrued as a violation of measurement invariance, as noted by 

Dorans and Kulick (1983). For example applying the Rasch model to data fit by the two-

parameter logistic (2PL) model would flag items with lower IRT slopes as having DIF favoring 

the lower scoring group, while items with higher slopes would favor the higher scoring group.  

Lord (1977, 1980) described early efforts to assess DIF from a latent trait variable 

perspective. Lord recommended a statistical significance test on the joint difference between the 

IRT difficulty and discrimination parameters between the two groups under consideration. 

Thissen, Steinberg, and Wainer (1993) discussed Lord’s procedure and described the properties 

of four other procedures that used IRT. All these methods used statistical significance testing. 

They also demonstrated how the IRT methods can be used to assess differential distractor 

functioning. Thissen et al. remains a very informative introduction and review of IRT methods 

circa 1990.  

Pashley (1992) suggested a method for producing simultaneous confidence bands for the 

difference between item response curves. After these bands have been plotted, the size and 

regions of DIF can be easily identified. Wainer (1993) provided an IRT-based effect size of 

amount of DIF that is based on the STAND weighting system that allows one to weight 

difference in the item response functions (IRF) in a manner that is proportional to the density of 

the ability distribution. 

Zwick et al. (1994) and Zwick, Thayer, and Wingersky (1995) applied the Rasch model 

to data simulated according to the 3PL model. They found that the DIF statistics based on the 

Rasch model were highly correlated with the DIF values associated with the generated data, but 

that they tended to be smaller in magnitude. Hence the Rasch model did not detect DIF as well, 

which was attributed to degradation in the accuracy of matching. Expected true scores from the 

Rasch-based computer-adaptive test tended to be biased downward, particularly for lower-ability 

examinees. If the Rasch model had been used to generate the data, different results would 

probably have been obtained.  

Wainer, Sireci, and Thissen (1991) developed a procedure for examining DIF in 

collections of related items, such as those associated with a reading passage. They called this 
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DIF for a set of items a testlet DIF. This methodology paralleled the IRT-based likelihood 

procedures mentioned by Thissen et al. (1993). 

Zwick (1989, 1990) demonstrated that the null definition of DIF for the MH procedure 

(and hence STAND and other procedures employing observed scores as matching variables) and 

the null hypothesis based on IRT are different because the latter compares item response curves, 

which in essence condition on unobserved ability. She also demonstrated that the item being 

studied for DIF should be included in the matching variable if MH is being used to identify IRT 

DIF. 

SIBTEST. Shealy and Stout (1993) introduced a general model-based approach to 

assessing DIF and other forms of differential functioning. They cited the STAND approach as a 

progenitor. From a theoretical perspective, SIBTEST is elegant. It sets DIF within a general 

multidimensional model of item and test performance. Unlike most IRT approaches, which posit 

a specific form for the item response model (e.g., a 2PL model), SIBTEST does not specify a 

particular functional form. In this sense it is a nonparametric IRT model, in principle, in which 

the null definition of STAND is replaced by 

( | ) ( | )f x r xY T Y T=ε ε , 

where xT represents a true score for X . As such, SIBTEST employs a measurement invariance 

definition of null DIF, while STAND employs a prediction invariance definition (Meredith & 

Millsap, 1992). 

Chang, Mazzeo, and Roussos (1995, 1996) extended SIBTEST to handle polytomous 

items. Two simulation studies compared the modified SIBTEST procedure with the generalized 

Mantel (1963) and SMD or STAND procedures. The first study compared the procedures under 

conditions in which the generalized Mantel and SMD procedures had been shown to perform 

well (Zwick, Donoghue, & Grima, 1993). Results of Study 1 suggested that SIBTEST performed 

reasonably well, but that the generalized Mantel and SMD procedures performed slightly better. 

The second study used data simulated under conditions in which observed-score DIF methods 

for dichotomous items had not performed well (i.e., a short nonrepresentative matching test). The 

results of Study 2 indicated that, under these conditions, the modified SIBTEST procedure 
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provided better control of impact-induced Type I error inflation with respect to detecting DIF (as 

defined by SIBTEST) than the other procedures. 

Zwick, Thayer, and Mazzeo (1997) evaluated statistical procedures for assessing DIF in 

polytomous items. Three descriptive statistics—the SMD (Dorans & Schmitt, 1991) and two 

procedures based on SIBTEST (Shealy & Stout, 1993) were considered, along with five 

inferential procedures: two based on SMD, two based on SIBTEST, and one based on the Mantel 

(1963) method. The DIF procedures were evaluated through applications to simulated data, as 

well as to empirical data from ETS tests. The simulation included conditions in which the two 

groups of examinees had the same ability distribution and conditions in which the group means 

differed by one standard deviation. When the two groups had the same distribution, the 

descriptive index that performed best was the SMD. When the two groups had different 

distributions, a modified form of the SIBTEST DIF effect-size measure tended to perform best. 

The five inferential procedures performed almost indistinguishably when the two groups had 

identical distributions. When the two groups had different distributions and the studied item was 

highly discriminating, the SIBTEST procedures showed much better Type I error control than 

did the SMD and Mantel methods, particularly with short tests. The power ranking of the five 

procedures was inconsistent; it depended on the direction of DIF and other factors. The 

definition of DIF employed was the IRT definition, measurement invariance, not the observed 

score definition, prediction invariance. 
Dorans (2011) summarized differences between SIBTEST and its progenitor, STAND. 

STAND uses observed scores to assess whether the item-test regressions are the same across 

focal and reference groups. The SIBTEST DIF method appears to be more aligned with 

measurement models. This method assumes that examinee group differences influence DIF or 

test form difficulty differences more than can be observed in unreliable test scores. SIBTEST 

adjusts the observed data toward what is suggested to be appropriate by the measurement model. 

The degree to which this adjustment occurs depends on the extent that these data are unreliable. 

To compensate for unreliable data on the individual, SIBTEST regresses observed performance 

on the test to what would be expected for the focal or reference group on the basis of the ample 

data that show that race and gender are related to item performance. SIBTEST treats true score 

estimation as a prediction problem, introducing bias to reduce mean squared error. In essence, 

the SIBTEST method uses subgroup-specific true score estimates as a surrogate for the true score 
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that is defined in the classical test theory model. If SIBTEST regressed all test takers to the same 

mean it would not differ from STAND.  

Matching Variable Issues  

Dorans and Holland (1993) laid out an informal research agenda with respect to observed 

score DIF. The matching variable was one area that merited investigation. Inclusion of the 

studied item in the matching variable and refinement or purification of the criterion were 

mentioned. Dimensionality and DIF was, and remains, an important factor; DIF procedures 

presume that all items measure the same construct in the same way across all groups.  

Donoghue and Allen (1992, 1993) examined two strategies for forming the matching 

variable for the MH DIF procedure; “thin” matching on total test score was compared to forms of 

“thick” matching, pooling levels of the matching variable. Data were generated using a 3PL IRT 

model with a common guessing parameter. Number of subjects and test length were 

manipulated, as were the difficulty, discrimination, and presence/absence of DIF in the studied 

item. For short tests (5 or 10 items), thin matching yielded very poor results, with a tendency to 

falsely identify items as possessing DIF against the reference group. The best methods of thick 

matching yielded outcome measure values closer to the expected value for non-DIF items and a 

larger value than thin matching when the studied item possessed DIF. Intermediate-length tests 

yielded similar results for thin matching and the best methods of thick matching.  

The issue of whether or not to include the studied item in the matching variable was 

investigated by many researchers from the late 1980s to early 1990s. Holland and Thayer (1988) 

demonstrated mathematically that when the data were consistent with the Rasch model, it was 

necessary to include the studied item in a purified rights-scored matching criterion in order to 

avoid biased estimates of DIF (of the measurement invariance type) for that studied item. 

Inclusion of the studied item removes the dependence of the item response on group differences 

in ability distributions. Zwick (1990) and Lewis (1993) developed this idea further to illustrate 

the applicability of this finding to more general item response models. Both authors proved 

mathematically that the benefit in bias correction associated with including the studied item in 

the matching criterion held true for the binomial model, and they claimed that the advantage of 

including the studied item in the matching criterion would not be evident for any IRT model 

more complex than the Rasch model.  
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Donoghue et al. (1993) evaluated the effect of including/excluding the studied item under 

the 3PL IRT model. In their simulation, they fixed the discrimination parameters for all items in 

a simulated test in each studied condition and fixed the guessing parameter for all conditions, but 

varied the difficulty (b) parameters for different items for each studied condition. Although the 

3PL model was used to simulate data, only the b-parameter was allowed to vary. On the basis of 

their study, they recommended including the studied item in the matching variable when the MH 

procedure is used for DIF detection. They also recommended that short tests not be used for 

matching variables. 

Zwick, Donoghue, and Grima (1993) extended the scope of their DIF research to 

performance tasks. In their study, multiple-choice (MC) items and performance tasks were 

simulated using the 3PL model and the partial-credit model, respectively. The MC items were 

simulated to be free of DIF and were used as the matching criterion. The performance tasks were 

simulated to be the studied items with or without DIF. They found that the item should be 

included in the matching criterion. 

Zwick (1990) analytically examined item inclusion for models more complex than the 

Rasch. Her findings apply to monotone IRFs with local independence for the case where the 

IRFs on the matching items were assumed identical for the two groups. If the studied item is 

excluded from the matching variable, the MH null hypothesis will not hold in general even if the 

two groups had the same IRF for the studied item. It is assured to hold only if the groups have 

the same ability distribution. If the ability distributions are ordered, the MH will show DIF 

favoring the higher group (generalization of Holland & Thayer’s [1988] Rasch model findings). 

Even if the studied item is included, the MH null hypothesis will not hold in general. It is assured 

to hold only if the groups have the same ability distribution or if the Rasch model holds. Except 

in these special situations, the MH can produce a conclusion of DIF favoring either the focal or 

reference group. 

Tan et al. (2010) studied the impact of including/excluding the studied item in the 

matching variable on bias in DIF estimates under conditions where the assumptions of the Rasch 

model were violated.  Their simulation study varied different magnitudes of DIF and different 

group ability distributions, generating data from a 2PL IRT model and a multidimensional IRT 

model. Results from the study showed that including the studied item leads to less biased DIF 

estimates and more appropriate Type I error rate, especially when group ability distributions are 
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different. Systematic biased estimates in favor of the high ability group were consistently found 

across all simulated conditions when the studied item was excluded from the matching criterion. 

Zwick and Ercikan (1989) used bivariate matching to examine DIF on the NAEP history 

assessment, conditioning on number-right score and historical period studied. Contrary to 

expectation, the additional conditioning did not lead to a reduction in the number of DIF items.  

Pomplun, Baron, and McHale (1992) evaluated the use of bivariate matching to study 

DIF with formula-scored tests, where item inclusion cannot be implemented in a straightforward 

fashion. Using SAT Verbal data with large and small samples, both male-female and black-white 

group comparisons were investigated. MH D-DIF values and DIF category classifications based 

on bivariate matching on rights score and nonresponse were compared with MH D-DIF values 

and categories based on rights-scored and formula-scored matching criteria. When samples were 

large, MH D-DIF values based on the bivariate matching criterion were ordered very similarly to 

MH D-DIF values based on the other criteria. However, with small samples the MH D-DIF 

values based on the bivariate matching criterion displayed only moderate correlations with MH 

D-DIF values from the other criteria.  

Study Group Definition  

Another area mentioned by Dorans and Holland (1993) was the definition of the focal 

and reference groups. Research has continued in this area as well. 

Allen and Wainer (1989) noted that the accuracy of procedures that are used to compare 

the performance of different groups of examinees on test items obviously depends upon the 

correct classification of members in each examinee group. They argued that because the number 

of nonrespondents to questions of ethnicity is often of the same order of magnitude as the 

number of identified members of most minority groups, it is important to understand the effect of 

nonresponse on DIF results. They examined the effect of nonresponse to questions of ethnic 

identity on the measurement of DIF for SAT verbal items using the MH procedure. They 

demonstrated that efforts to obtain more complete ethnic identifications from the examinees 

would lead to more accurate DIF analyses. 

DIF analyses are performed on target populations. One of the requirements for inclusion 

in the analysis sample is that the test taker has sufficient skill in the language of the test. 

Sinharay, Dorans, and Liang (2009) examined how an increase in the proportion of examinees 

who report that English is not their first language would affect DIF results if they were included 
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in the DIF analysis sample of a large-scale assessment. The results varied by group. In some 

combinations of focal/reference groups, the magnitude of DIF was not appreciably affected by 

whether DIF was performed on examinees whose first language was not English. In other 

groups, first language status mattered. The results varied by type of test as well. In addition, the 

magnitude of DIF for some items was substantially affected by whether the DIF was performed 

on examinees whose first language was not English. 

Dorans and Holland (1993) pointed out that in traditional one-way DIF analysis, deleting 

items due to DIF can have unintended consequences on the focal group. DIF analysis performed 

on gender and on ethnicity/race alone ignores the potential interactions between the two main 

effects. Additionally, Dorans and Holland suggested applying a “melting-pot” DIF method 

wherein the total group would function as the reference group and each gender-by-ethnic 

subgroup would serve sequentially as a focal group. Zhang, Dorans, and Matthews-Lopez (2005) 

proposed a variation on the melting-pot approach called DIF dissection. They adapted the 

STAND methodology so that the reference group was defined to be the total group, while each 

of the subgroups independently acted as a focal group. They argued that using a combination of 

all groups as the reference group and each combination of gender and ethnicity as a focal group 

produces more accurate, though potentially less stable, findings than using a simple majority 

group approach. As they hypothesized, the deletion of a sizable DIF item had its greatest effect 

on the mean score of the focal group that had the most negative DIF according to the DIF 

dissection method. In addition, the study also found that the DIF values obtained by the DIF 

procedure reliably predicted changes in scaled scores after item deletion.  

Sample Size and Power Issues  

From its inaugural use as an operational procedure, DIF has had to grapple with sample 

size considerations (Zieky 1993). The conflict between performing as much DIF as possible and 

limiting the analysis to those cases where there is sufficient power to detect DIF remains as 

salient as ever. 

Lyu, Dorans, and Ramsay (1995) developed a smoothed version of STAND, which 

merged kernel smoothing with the traditional STAND DIF approach, to examine DIF for student 

produced response (SPR) items on the SAT I Math at both the item and testlet levels. Results 

from the smoothed item-level DIF analysis showed that regular multiple-choice items have more 

variability in DIF values than SPRs. 
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Bayesian methods are often resorted to when small sample sizes limit the potential power 

of a statistical procedure. Bayesian statistical methods can incorporate, in the form of a prior 

distribution, existing information on the inference problem at hand, leading to improved 

estimation, especially for small samples for which the posterior distribution is sensitive to the 

choice of prior distribution. Zwick, Thayer, and Lewis (1997, 1999) developed an empirical 

Bayes (EB) enhancement to MH DIF analysis in which they assumed that the MH statistics were 

normally distributed and that the prior distribution of underlying DIF parameters was also 

normal. They used the posterior distribution of DIF parameters to make inferences about the 

item’s true DIF status and the posterior predictive distribution to predict the item’s future 

observed status. DIF status was expressed in terms of the probabilities associated with each of 

the five DIF levels defined by the ETS classification system (Zieky, 1993). The EB method 

yielded more stable DIF estimates than did conventional methods, especially in small samples. 

The EB approach also conveyed information about DIF stability in a more useful way by 

representing the state of knowledge about an item’s DIF status as probabilistic. 

Zwick, Thayer, and Lewis (2000) investigated a DIF flagging method based on loss 

functions. The approach built on their earlier research that involved the development of an EB 

enhancement to MH DIF analysis. The posterior distribution of DIF parameters was estimated 

and used to obtain the posterior expected loss for the proposed approach and for competing 

classification rules. Under reasonable assumptions about the relative seriousness of Type I and 

Type II errors, the loss-function-based DIF detection rule was found to perform better than the 

commonly used ETS DIF classification system, especially in small samples. 

Zwick and Thayer (2002) used a simulation to investigate the applicability to 

computerized adaptive test data of an EB DIF analysis method developed by Zwick, Thayer, and 

Lewis (1997; Zwick et al., 1999) and showed that the performance of the EB DIF approach to be 

quite promising, even in extremely small samples. When combined with a loss-function-based 

decision rule, the EB method is better at detecting DIF than conventional approaches, but it has a 

higher Type I error rate. 

The EB method estimates the prior mean and variance from the current data and uses the 

same prior information for all the items. For most operational tests, however, a large volume of 

past data is available, and for any item appearing in a current test, a number of similar items are 

often found to have appeared in past operational administrations of the test. Conceptually, it 
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should be possible to incorporate that past information into a prior distribution in a Bayesian DIF 

analysis. Sinharay, Dorans, Grant, and Blew (2009) developed a full Bayesian (FB) DIF 

estimation method that used this type of past information. The FB Bayesian DIF analysis method 

was shown to be an improvement over existing methods in a simulation study. 

Zwick et al. (2000) proposed a Bayesian updating (BU) method that may avert the 

shrinkage associated with the EB and FB approaches. Zwick, Ye, and Isham (2012) implemented 

the BU approach and compared it to the EB and FB approaches in both simulated and empirical 

data. They maintained that the BU approach was a natural way to accumulate all known DIF 

information about an item while mitigating the tendency to shrink DIF toward zero that 

characterized the EB and FB approaches. 

Smoothing is another alternative used for dealing with small sample sizes. Yu, Moses, 

Puhan, and Dorans (2008) applied smoothing techniques to frequency distributions and 

investigated the impact of smoothed data on MH DIF detection in small samples. Eight sample-

size combinations were randomly drawn from a real data set were replicated 80 times to produce 

stable results. Loglinear smoothing was found to provide slight-to-moderate improvements in 

MH DIF estimation with small samples. 

Puhan, Moses, Yu, and Dorans (2007, 2009) examined the extent to which loglinear 

smoothing could improve the accuracy of SIBTEST DIF estimates in small samples of 

examinees. Examinee responses from a certification test were used. Separate DIF estimates for 

seven small-sample-size conditions were obtained using unsmoothed and smoothed score 

distributions. Results indicated that for most studied items smoothing the raw score distributions 

reduced random error and bias of the DIF estimates, especially in the small-sample-size 

conditions. 

Fair Linking of Test Scores 

Scores on different forms or editions of a test that are supposed to be used 

interchangeably should be related to each other in the same way across different subpopulations. 

Score equity assessment (SEA) uses subpopulation invariance of linking functions across 

important subpopulations to assess the degree of interchangeability of scores. 

Test score equating is a statistical process that produces scores considered comparable 

enough across test forms to be used interchangeably. Five requirements are often regarded as 

basic to all test equating (Dorans & Holland, 2000). One of the most basic requirements of score 
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equating is that equating functions should be subpopulation invariant (Dorans & Holland, 2000; 

Holland & Dorans, 2006). That is, they should not be strongly influenced by the subpopulation 

of examinees on which they are computed. The same construct and equal reliability requirements 

are prerequisites for subpopulation invariance. One way to demonstrate that two test forms are 

not equatable is to show that the equating functions used to link their scores are not invariant 

across different subpopulations of examinees. Lack of invariance in a linking function indicates 

that the differential difficulty of the two test forms is not consistent across different groups. The 

invariance can hold if the relative difficulty changes as a function of score level in the same way 

across subpopulations. If, however, the relative difficulty of the two test forms interacts with 

group membership or an interaction among score level, difficulty, and group is present, then 

invariance does not hold. SEA uses the subpopulation invariance of linking functions across 

important subgroups (e.g., gender groups and other groups, sample sizes permitting) to assess the 

degree of score exchangeability. 

In an early study, Angoff and Cowell (1985, 1986) examined the invariance of equating 

scores on alternate forms of the GRE® quantitative test for various populations, including gender, 

race, major, and ability. Angoff and Cowell conducted equatings for each of the populations and 

compared the resulting conversions to each other and to differences that would be expected given 

the standard errors of equating. Differences in the equatings were found to be within that 

expected given sampling error. Angoff and Cowell concluded that population invariance was 

supported.  

Dorans and Holland (2000) included several examples of linkings that are invariant (e.g., 

SAT Mathematics to SAT Mathematics and SAT Verbal to SAT Verbal, and SAT Mathematics 

to ACT Mathematics) as well as ones that are not (e.g., verbal to mathematics, and linkings 

between non-math ACT subscores and SAT Verbal). Equatability indexes are used to quantify 

the degree to which linkings are subpopulation invariant.  

Since 2000, several evaluations of population invariance have been performed. Yang 

(2004) examined whether the linking functions that relate multiple-choice scores to composite 

scores based on weighted sums of multiple choice and constructed response scores for selected 

Advanced Placement® (AP®) exams remain invariant over subgroups by geographical region. 

The study focused on two questions: (a) how invariant were cut-scores across regions and (b) 

whether the small sample size for some regional groups presented particular problems for 



25 

assessing linking invariance. In addition to using the subpopulation invariance indexes to 

evaluate linking functions, Yang also evaluated the invariance of the composite score thresholds 

for determining final AP grades. Dorans (2004) used the population sensitivity of linking 

functions to assess score equity for two AP exams.  

Dorans, Liu, and Hammond (2008) used population sensitivity indexes with SAT data to 

evaluate how consistent linear equating results were across males and females. Von Davier and 

Wilson (2008) examined the population invariance of IRT equating for an AP exam. Yang and 

Gao (2008) looked at invariance of linking computer-administered CLEP® data across gender 

groups.  

SEA has also been used as a tool to evaluate score interchangeability when a test is 

revised (Liu & Dorans, 2013). Liu, Cahn, and Dorans (2006) and Liu and Walker (2007) used 

SEA tools to examine the invariance of linkages across the old and new versions of the SAT 

using data from a major field trail conducted in 2003. This check was followed by SEA analyses 

conducted on operational data (see studies cited in Dorans & Liu, 2009).  

All these examples, as well as others such as Dorans, Holland, Thayer, and Tateneni 

(2003), are illustrations of using SEA to assess the fairness of a test score by examining the 

degree to which the linkage between scores is invariant across subpopulations. In some of these 

illustrations, such as one form of SAT Mathematics with another form of SAT Mathematics, the 

expectation of score interchangeability was very high since alternate forms of this test are 

designed to be parallel in both content and difficulty. There are cases, however, where invariance 

was expected but did not hold. Cook, Eignor, and Taft (1988), for example, found that the 

linking function between two biology exams depended on whether the equating was with 

students in a December administration, where most of the examinees were seniors who had not 

taken a biology course for some time, versus a June administration, where most of the examinees 

had just completed a biology course. This case, which has become an exemplar of lack of 

invariance where invariance would be expected, is discussed in detail by Cook (2007) and 

Petersen (2007). Invariance cannot be presumed to occur simply because tests are built to the 

same blueprint. The nature of the population can be critical, especially when diverse 

subpopulations are involved. For most testing programs, analysis that focuses on the invariance 

of equating functions should be conducted to confirm the fairness of the assembly process.  
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Limitations of Quantitative Fairness Assessment Procedures 

First, not all fairness considerations can be reduced to quantitative evaluation. Because 

this review was limited to quantitative fairness procedures, it was limited in scope. With this 

important caveat in mind, this section will discuss limitations with the classes of procedures that 

have been examined.  

Fair prediction is difficult to achieve. Differential prediction studies are difficult to 

complete effectively because there are so many threats to the subpopulation invariance of 

regression equations. Achieving subpopulation invariance of regressions is difficult because of 

selection effects, misspecification errors, predictor unreliability, and criterion issues. Any 

attempt to assess whether a prediction equation is invariant across subpopulations such as males 

and females must keep these confounding influences in mind. 

To complicate validity assessment even more, there are as many external criteria as there 

are uses of a score. Each use implies a criterion against which the test’s effectiveness can be 

assessed. The process of validation via prediction studies is an unending yet necessary task.  

DIF screening is and has been possible to do. But it could be done better. Zwick (2012) 

reviewed the status of ETS DIF analysis procedures, focusing on three aspects: (a) the nature and 

stringency of the statistical rules used to flag items, (b) the minimum sample size requirements 

that are currently in place for DIF analysis, and (c) the efficacy of criterion refinement. 

Recommendations were made with respect to improved flagging rules, minimum sample size 

requirements, and procedures for combining data across administrations. Zwick noted that 

refinement of the matching criterion improves detection rates when DIF is primarily in one 

direction but can depress detection rates when DIF is balanced.  

Most substantive DIF research studies that have tried to explain DIF have used 

observational data and the generation of post-hoc explanations for why items were flagged for 

DIF. The chapter by O’Neill and McPeek (1993) in the Holland and Wainer (1993) DIF book is 

a good example of this approach. As both those authors and Bond6 (1993) noted, this type of 

research with observed data is fraught with peril because of the highly selected nature of the data 

examined, namely items that have been flagged for DIF. In the same section of the DIF book, 

Schmitt et al. (1993) provided a rare exemplar on how to evaluate DIF hypotheses gleaned from 

observational data with experimental evaluations of the hypotheses via a carefully designed and 

executed experimental manipulation of item properties followed by a proper data analysis.  
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DIF can be criticized for several reasons. An item is an unreliable measure of the 

construct of interest. Performance on an item is susceptible to many influences that have little to 

do with the purpose of the item. An item, by itself, can be used to support a variety of 

speculations about DIF. It is difficult to figure out why DIF occurs. The absence of DIF is not a 

prerequisite for fair prediction. In addition, DIF analysis tells little about the effects of DIF on 

reported scores.  

SEA focuses on invariance at the reported score level where inferences are made about 

the examinee. SEA studies based on counterbalanced single-group designs are likely to give the 

cleanest results about the invariance of score linking functions because it is a data collection 

design that allows for the computation of correlations between tests across subpopulations.  

This report focused primarily on studies that focused on methodology and that were 

conducted by ETS staff members. As a result, many DIF and differential prediction studies that 

used these methods have been left out and need to be summarized elsewhere. As noted, 

qualitative and philosophical aspects of fairness have not been considered. 

In addition ETS has been the leader in conducting routine DIF analyses for over a quarter 

of century. This screening for DIF practice has made it difficult to find items that exhibit the high 

degree of DIF depicted on the cover of the Winter 2012 issue of Educational Measurement: 

Issues and Practices, an item that Dorans (2012) cited as a vintage example of DIF. Although 

item scores exhibit less DIF than they did before due diligence made DIF screening an 

operational practice, a clear need remains for continued research in fairness assessment. This 

includes improved methods for detecting evidence of unfairness and the use of strong data 

collection designs that allow researchers to arrive at a clearer understanding of sources of 

unfairness.  
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Notes 
1 Thorndike was never an ETS staff member. 
2 Neither Shealy nor Stout was an ETS staff member. 
3 Baker was never an ETS staff member. 
4 Neither Mantel nor Haenszel was an ETS staff member. 
5 Neither Meredith nor Millsap was an ETS staff member. 
6 Bond was never an ETS staff member. 
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