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Abstract 

Several factors could cause variability in item response theory (IRT) linking and equating 

procedures, such as the variability across examinee samples and/or test items, seasonality, 

regional differences, native language diversity, gender, and other demographic variables. Hence, 

the following question arises: Is it possible to select optimal samples of examinees so that the 

IRT linking and equating can be more precise at an administration level as well as over a large 

number of administrations? This is a question of optimal sampling design in linking and 

equating. To obtain an improved sampling design for invariant linking and equating across 

testing administrations, we applied weighting techniques to yield a weighted sample distribution 

that is consistent with the target population distribution. The goal is to obtain a stable Stocking-

Lord test characteristic curve (TCC) linking and a true-score equating that is invariant across 

administrations. To study the weighting effects on linking, we first selected multiple subsamples 

from a data set. We then compared the linking parameters from subsamples with those from the 

data and examined whether the linking parameters from the weighted sample yielded smaller 

mean square errors (MSE) than those from the unweighted subsample. To study the weighting 

effects on true-score equating, we also compared the distributions of the equated scores. 

Generally, the findings were that the weighting produced good results. 

Key words: sampling design, target population, subsample, poststratification, raking, complete 

grouped jackknifing  
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Overview 

For an assessment with multiple test forms and heterogeneous groups of test takers, 

measurement precision and invariance in linking and equating are always a concern to test 

investigators (Holland, 2007; Dorans & Holland, 2000; Kolen & Brennan, 2004; von Davier & 

Wilson, 2008). In this paper, we use the term linking to describe a linear transformation of item 

response theory (IRT) parameters from two or more test forms to establish a common IRT scale. 

Although the same specifications are used to construct forms for multiple test administrations, 

equating and linking procedures could still be unstable because of heterogeneity of samples 

across multiple administrations. Many factors could cause this heterogeneity, such as seasonal 

effects, native language diversity, regional differences, gender, and other demographic features. 

These factors of the samples across administrations often lead to the heterogeneity of parameter 

estimates of a linking and equating model.  

Many assessments are featured with multiple forms, such as the SAT®, GRE® and 

TOEFL® tests. Moreover, many large-scale assessments with multiple survey samples are 

designed to provide measurement trends in achievement of certain grade levels in a target 

population; these assessments include the National Assessment of Educational Progress (NAEP; 

Allen, Donoghue, & Schoeps, 2001), the Programme for International Student Assessment 

(PISA), and the Trends in International Mathematics and Science Study (TIMSS; Neidorf, 

Binkley, Gattis, & Nohara, 2006; Nohara, 2001; Turner & Adams, 2007). In the section of 

context and literature review below, we will introduce the issues and research on seasonality and 

heterogeneity of samples for assessments with multiple administrations.  

In this study, we proposed an improved sampling design for the IRT linking procedure. 

Our goal is to stabilize the estimates of the measurement model parameters, of IRT linking 

parameters, and of the means and variances of the equated scores across numerous 

administrations. Empirical data analysis results show that the proposed weighting method had an 

improved efficiency compared with the unweighted method. 

Specifically, weighting techniques are applied to yield a weighted sample distribution 

that is consistent with a target distribution (the distribution of the target population, which is 

defined as an aggregate of all qualified examinees). Such weighting techniques would reduce the 

disparity in linking sample distributions across administrations (Qian, von Davier, & Jiang, 

2013). The design employed in this study aligns the proportions of the examinee groups of 
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interest in the sample to those of the target population. The objective of the study is to achieve a 

stable scale for an assessment with multiple forms and to explore an effective paradigm to 

evaluate the procedure. A future research direction is to explore a formal optimal sampling 

design for weighted linking and equating of multiple test forms over many administrations 

(Berger, 1991, 1997; Berger & van der Linden, 1992; Buyske, 2005; Lord & Wingersky, 1985; 

Stocking, 1990; van der Linden & Luecht, 1998).  

Context and Literature Review 

The context of this research is provided by the work on (a) measurement invariance and 

linking and equating invariance, (b) trends in assessments with multiple administrations, (c) 

validity of test results for heterogeneous target population, and (d) test sampling design for 

linking based on weighted examinee samples. These four aspects are discussed next.1 

Measurement Invariance 

Previous studies on population invariance in equating have focused on investigating 

whether linking and equating functions remain invariant across examinee subgroups within an 

administration. The root mean square difference (RMSD) is often used to quantify group 

invariance in random group equating (Dorans & Holland, 2000; Yang & Gao, 2008; Yi, Harris, 

& Gao, 2008). Based on RMSD using half a point as the criterion (Dorans & Holland, 2000), 

most of the linking and equating functions in these studies are measurement invariant (Moses, 

2011). However, Huggins (2011) did identify tests that failed to possess either measurement 

invariance or population invariance properties. As pointed out by Kolen (2004), most of these 

studies are sample relevant because linkings and equatings are data dependent. In some studies, 

the equating sample was matched to a target population (Duong & von Davier, 2012; 9TQian, 209T129T

; 

9Tvon Davier, Holland, & Thayer, 2004). Our approach of weighting has similarities to the 

methods described in the equating literature. For example, poststratification, one of the methods 

that we use here, has also been employed in observed-score equating for the nonequivalent 

groups with anchor test (NEAT) design (Braun & Holland, 1982; Livingston, 2004; Sinharay, 

Holland, & von Davier, 2011). Although some linking and equating studies have used 

poststratification to align the proportions of demographic groups in the equating sample to those 

in the reference sample (Livingston, 2007), no study has been based on total linking errors, and 
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none has demonstrated that weighting samples effectively reduces linking errors due to sample 

variability.  

Trends in Assessments With Multiple Administrations 

Recently, research has been conducted on assessments with multiple administrations. 

Studies show that some of these tests have observed effects of seasonality and high variability in 

test scores across administrations. For the effects of seasonality, time series models can be 

applied to detect trends in assessments and to adjust estimation (Guo, Liu, Haberman, & Dorans, 

2008; Lee & von Davier, 2013; Li, Li, & von Davier, 2011).  

Validity of Test Results for a Heterogeneous Target Population 

The issue of defining a target population in complex assessments, especially in equating, 

should be connected to the comprehensive issue of measurement validity. The Draper-Lindley-de 

Finetti (DLD) measurement validity framework (Zumbo, 2007) focuses on the exchangeability 

of sampled and nonsampled test takers. For example, in analyzing a test with multiple forms, the 

measurement invariance found in one administration may not be a valid presumption for another 

administration. Or in case that the analysis of state assessments has to use partial data that are 

sometimes gathered with selection bias, linking decisions based on partial data could differ from 

those based on the complete data. So the results could be confined to specific data, and the 

quality of reporting could be compromised by the sample characteristics and heterogeneity.  

By specifying a linking based on weighted samples in the way proposed in this paper, the 

purpose of this study is to achieve what Zumbo (2007) called “sampling exchangeability” (p. 

58). Therefore, the equating results obtained from our approach move beyond “initial calibrative 

inference” and “specific domain inference” to the strongest inference, called “general 

measurement inference” by Zumbo (2007, pp. 56–63). This approach results in more pronounced 

validity of the equating results.  

Test Sampling Design for Linking Based on Weighting Examinee Samples 

As mentioned previously, this study focuses on the stability and accuracy of linking and 

equating over time and is conceptually similar to what is in optimal sampling design research. 

For example, the main research question in formal (test and) sampling design is how to select the 

samples so that the estimates of the model parameters have the highest accuracy. In this paper, 
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the main research question is how to select the samples (through assigning weights to the 

examinees in the samples) so that the estimates of the model parameters are stable or have less 

variability over many administrations. Our hypothesis is that the MSE of model parameter 

estimates can be reduced by our proposed weighting method. In optimal test design, D-

optimality is a common criterion for item selection that is focused on gaining efficiency in item 

calibration by maximizing the determinant of the information matrix on item parameters of IRT 

models (Berger, King, & Wong, 2000; Jones & Jin, 1994). While in formal optimal sampling 

design (Berger, 1997), the focus is on estimating weights corresponding to the ability values to 

obtain an optimal sample for calibration. However, in this study, we only use weighting 

techniques to match the distributions of some variables in a sample to those in the target 

population. The variables used could be those that have inherent structure of sampling frame, 

such as test center and demographical variables, and those that are correlated with examinee 

performance, such as age and time of language study. Our evaluation criteria, which include 

measures of the departure from the target population, are described in the methodology section.  

In this study, the theoretical target population is the aggregate of all probable examinees 

of an assessment. The observed target population is defined as the union of all sets of examinees 

from a particular testing window. The design proposed here regards each set of test data as a 

sample drawn from the target population. The characteristics of the sample, particularly the 

weighted sample, represent those of the target population. Thus, the samples across numerous 

administrations will yield stable estimates representing those from the target population. The 

perception is analogous to that of educational assessment surveys, first selecting a sample from 

the population, then creating weights based on sampling design, and finally making unbiased 

inferences from the sample to its target population. The large-scale assessments such as NAEP, 

PISA, and TIMSS are all well-known educational surveys.  

The next section introduces the methodology of the study, including study design, 

weighting techniques, and the statistical tools employed for the evaluation of the proposed 

method. The penultimate section describes the data resources and documents the effects of 

weighting of examinee samples on linking and equating results. The final section offers a 

summary and conclusions.  
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Methodology 

This section describes the study design and the statistical tools applied in the analysis. 

The statistical methods are the Stocking-Lord test characteristic curve (S-L TCC) linking 

procedure, IRT true-score equating, the weighting techniques (including poststratification and 

raking), and grouped jackknife variance estimation.  

Study Design and the Stocking-Lord IRT Linking 

Study design. As stated above, the proposed procedure is intended to yield a weighted 

distribution of certain variables (such as test center, native language, and age) in a sample to be 

the same as that in the target population. In this study, we discuss two types of distributions, the 

distribution of one categorical variable and the joint distribution of a couple of categorical 

variables. The distribution of a variable in one sample is considered consistent with the 

distribution of the same variable in the target population if the proportion of each category of the 

variable in the sample matches that in the target population. If the sample is not representative of 

the target population, the two distributions are not consistent. When estimating the distribution of 

a categorical variable from an unweighted sample, each examinee in the sample is counted once 

as one unit, that is, all of the examinees being assigned a benign weight that equals one, whereas, 

when estimating from a weighted sample, an examinee may not be counted as one unit, that is, 

the weight assigned to the examinee can be a number other than one. In this study, the weighting 

techniques, poststratification and raking, are employed to adjust the examinee weights in a 

sample such that the distribution of a variable in the sample is the same as that in the target 

population. In theory, the evaluation of the weighting effects on linking is based on a comparison 

of the weighted results with the unweighted results using the results of the target population as 

the evaluation criteria. However, in practice, it is impossible to test all the qualified examinees in 

a target population, especially when examinees are scattered around the world. Therefore, the 

evaluation becomes challenging, due to lack of a baseline for comparison.  

To counter this issue, we treat each of the eight original data as a relative pseudo target 

population and treat a selected subsample from the original data as a relative sample. Figure 1 

illustrates the linking design of pseudo target population and subsamples (weighted and 

unweighted) to an item pool with base scale. In making comparisons, the results from the pseudo 

target population were treated as the baseline. Therefore, the two sets of subsample results 

(weighted and unweighted) can be compared with the results from the original sample. If the 
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results from the weighted subsample are closer to the results yielded by the original sample than 

those from the unweighted subsample, then the weighted linking process is better. The square 

root of MSE (RMSE) was used as the evaluation criterion. Figure 2 presents the hypothesis of 

study and the comparisons of the effects of linking based on weighted sample versus unweighted 

sample.  

 

Figure 1. Study design of the three samples employed in comparisons and the IRT linking 

to a reference form in a calibrated item pool. 

Note. Three data sets are original sample (T, the pseudo target population) and two subsamples 

(Sw and Suw). The distribution of the weighted subsample is consistent with the distribution of the 

original sample. Equating to a pool design: three samples (T, Sw, and Suw) with same test form 

with an external and/or internal set of common items are linked to the reference form in a 

calibrated item pool. The effects of weighting a test sample in IRT linking are measured by the 

RMSE. The hypothesis is that, on average, the RMSEs of the parameters yielded by a linking 

based on a weighted sample is smaller than those based on an unweighted sample. 
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Figure 2. Evaluation criterion (RMSE) and the hypothesis of study. 

Note. Three data sets arethe original sample (T, the pseudo target population) and the two 

subsamples (Sw and Suw).The distribution of the weighted subsample is consistent with the 

distribution of the original sample. Equating to a pool design: three samples (T, Sw, and Suw) with 

same test form with an external and/or internal set of common items are linked to the reference 

form in a calibrated item pool. The effects of weighting a test sample in IRT linking are 

measured by the RMSE. The hypothesis of study is that, on average, the RMSEs of the 

parameters yielded by a linking based on a weighted sample is smaller than those based on an 

unweighted sample. 

In selecting subsamples from the eight original data sets, two sampling rates, 60% and 

40%, were applied.  Letℜ refers to an original data set (i.e., the pseudo target population), and R

refers to the sample selected from ℜwith a rate of either 60% or 40%.  

Linking and equating in an IRT framework. In this study, we used IRT true-score 

equating with separate calibrations to match the operational procedures. The equating process 

consisted of three steps: IRT calibration, item parameter transformation through S-L TCC 

linking, and IRT true-score equating. For IRT calibration (Allen et al., 2001), the two-parameter 

logistic regression (2PL) IRT model and/or the generalized partial credit model (GPCM) were 

chosen for item calibration using PARSCALE (Lord, 1980; Muraki & Bock, 2002). These IRT 

models were chosen in order to match the operational practice of this testing program. The same 

calibration procedure was carried out for each data set and for each weighting method. Similar to 

the operational practice, S-L TCC methods were used to transform item parameter and ability 
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estimates of the new form to the scale of the reference forms or existing item pool based on 

common items. The common items on the reference form are usually assembled from an item 

pool already on the base scale.  

Let A and B be the slope and intercept of the linear transformation function for the S-L 

TCC linking method. Let θN  be the ability score on the new form scale and θT
N be the 

transformed ability score on the reference form scale. For item t, let ˆNta and ˆ
Ntb  be the a and b 

parameter estimates on the new form scale, and let ˆT
Nta  and ˆT

Ntb be the transformed item parameter 

estimates on the reference form scale. Then the transformed estimates of examinee ability and 

2PL item parameters are computed as follows:  

ˆ ˆθ θT
N NA B= ⋅ + , (1) 

ˆ ˆT
Nt Ntb A b B= ⋅ + , (2) 

and 

ˆ ˆ /T
Nt Nta a A= ; (3) 

for the GPCM for polytomous items, the transformed estimates also include the d parameters 

ˆ ˆT
Nt Ntd A dν ν= ⋅  (ν =1, 2, …, nν -1) and nν is the number of categories for item t (Robin, Holland, & 

Hemat, 2006; 9TStocking9T 9T& Lord, 19839T).  

The constants A and B can be obtained by minimizing the squared difference between the 

two test characteristic curves for common items between the new and reference forms. Let 

( )tkP θ be the predicted probability of an examinee with ability θ at score k for item t, either 

dichotomous or polytomous. Let tcn be the number of categories for common item t and cn be the 

number of common items. Then the expected score for item t given θ is 
0

( ) ( )tcn
t tkk

P kPθ θ
=

=∑  and 

the true-score on the reference form is defined as 
1

( ) ( )cn
R tt

Pξ θ θ
=

=∑ . Similarly, define ( )T
tkP θ  

and ( )T
tP θ  based on the transformed item parameters. Then, 

1
( ) ( )cnT T

N tt
Pξ θ θ

=
=∑  is the true-

score on the new form. A function of differences between ( )Rξ θ  and ( )T
Nξ θ  can be defined as 
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( )2

1

1 ( ) ( ) ( )qN T
R q N q qq

q

f
N

ξ θ ξ θ θ
=

= −∑
 

where ( )qf θ  is the frequency for the ability group q and qN is the number of ability groups. 

Fletcher-Powell numerical procedure can be used to find the transformation parameters A and B 

that minimize the function  (Stocking & Lord, 1983).  

The step after S-L TCC linking is IRT true-score equating (i.e., obtaining the equated 

scores based on the conversion table). In this study, we used ICEDOG software (Robin, Holland, 

& Hemat, 2006) to conduct IRT true-score equating. See Kolen and Brennan (2004) for a 

detailed description of the procedure.  

Weighting Techniques  

Weighting techniques for calibration samples. The objective of creating weights in this 

study was to make the weighted distribution of a subsample (a calibration and equating sample) 

to be consistent with the distribution of the original data (the reference population). The 

weighting process consisted of three steps: computing base weights for cases (examinees) that 

have participated in the assessment, conducting poststratification or raking, and performing 

weight trimming (Kish, 1990).  

Creation of base weights. Let gN  be the sample size of test center g in the total sample 

and gn  be the sample size of test center g in a subsample. The variable test center was used 

because it reflected the mechanism of data collection. Other demographic variables may also be 

used, such as region, country, and native language. Let gr  = /g gn N  be the ratio of sample sizes 

for test center g. Then the base weight for any examinee i in test center g in the subsample equals  

1
,

−=i g gw r . (4) 

Poststratification and raking. After applying base weights, some demographic variables 

showed considerable gaps in distributions between a weighted subsample and its corresponding 

original sample. Such gaps were revealed in corresponding cells that were cross-classified by 

variables. These variations were mainly due to the inconsistency between the subsample and its 

original sample. Poststratification and raking can be used to correct these known gaps. 
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Consequently, the linking based on the weighted sample will have improved precision such as 

reduced mean squared error.  

Poststratification adjustment matches the weighted sample cell counts to the population 

cell counts by applying a proportional adjustment to the weights in each cell across the 

contingency table (Cochran, 1977; Kish, 1965). Sometimes though, the sample can be spread too 

thinly across the cells in the table, whereby poststratification would produce extreme weights in 

cells with few cases and cause large design effects of weighting (Kish, 1965). To avoid such 

flaws, raking is used to control marginal distributions for the variables of interest.  

A raking procedure iteratively adjusts the case weights in the sample to make the 

weighted marginal distribution of the sample agree with the marginal distribution of the 

population on specified demographic variables (Deming, 1943). The algorithm used in raking is 

called the Deming-Stephan algorithm (Deming & Stephan, 1940; Haberman, 1979). Again, 

raking is conceptually similar to estimating the weights assigned to examinees or parameters 

with a specified distribution of characteristics in an optimal sampling design, as described in 

Berger (1997, pp. 73–75).  

For example, consider a table with two margins. Let ,i uvw  be the base weight for 

examinee i, where u and v indicate two variables involved in raking, such as gender and race. Let 

u=1, 2, …, U and v=1, 2, …, V represent the categories for the first and second variables, u and v 

respectively. Let uf (u = 1, 2, …, U) be an adjustment factor for category u in the first variable. 

Let the initial value of base weight be ( )0
, ,=i uv i uvw w . The initial adjustment factor is ( )0 (0)

,/u u w uf N n= , 

where (0)
,w un equals the sum of the initial base weights in category u and uN  equals the total 

number of examinees in category u based on the known population distribution. Thus, for the 

k+1th iterative adjustment,  

( ) ( ) ( )1
, ,
k k k

i uv i uv uw w f+ = ⋅ , (5) 

where k = 0, 1… and u = 1,…, U; the adjustment factor ( ) ( )
,/k k

u u w uf N n=  and ( )
,
k

w un  equals the sum 

of the weights in category u after kth iterative adjustment. After Equation 5 is completed, the 

adjustment for the second variable can be carried out using the following iterative algorithm:  
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( ) ( ) ( )2 1 1
, ,
k k k

i uv i uv vw w f+ + += ⋅ , (6) 

where ( )1+k
vf  (v = 1,…, V) is the adjustment factor for the second variable defined as 

( ) ( )1 1
,/+ +=k k

v v w vf N n  where vN  equals the total number of examinees in category v based on the 

known population distribution and ( )1
,
+k

w vn  equals the sum of base weights in category v after step k 

+ 1 (k = 0, 1,…). The iterative procedure repeats the adjustment steps in Equations 5 and 6 until 

the discrepancies between the weighted distribution and the population distribution meet the 

predetermined criteria (i.e., considered as being converged) for each raking variable involved; 

for example, repeating Equations 5 and 6 until step pk , such that ( )
,any

max 0.01− ≤pk
u w uu

N n  and 

( )
,any

max 0.01− ≤pk
v w vv

N n . These are the optimality criteria of creating the weight for calibration 

samples in this study. The raking algorithm normally converges, although the convergence speed 

may be slow. Recently, log-linear models have been employed to implement the raking 

adjustment because the main effects of log-linear models correspond to the given margins of the 

contingency table. Thus, raking can be treated as fitting a main effects model (Haberman, 1979).  

In this study, four demographic variables were used in the Deming-Stephan raking: 

gender, age, time of language study, and reason for language study. As mentioned earlier, a total 

of eight weights were formed by different raking schemes. The list of different sets of weights 

used in this study is shown in the appendix.  

Weight trimming. To reduce the design effects of weighting, the weight adjustment 

process usually includes a weight trimming step (Liu, Ferraro, Wilson, & Brick, 2004). The 

trimming process truncates extreme weights caused by unequal probability sampling or by raking 

and poststratification adjustment. It reduces variation caused by extremely large weights but, at 

the same time, may introduce some bias in estimation. Thus, the criterion of minimum mean 

squared error is often employed in the trimming process (Potter, 1990). To investigate the effects 

of different trimming criteria, though not optimal, we implemented three different criteria for 

trimming the 60% subsamples and 10 criteria for the 40% subsamples. These trimming criteria 

are given in the appendix.  

Applying weights in calibration, linking, and equating. In the calibration step, weights 

are applied to calibrate all the item responses based on 2PL IRT models using the PARSCALE. 
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Then, in the linking and scaling step, IRT linking is conducted based on the calibration output 

using ICEDOG software. Finally, the conversion tables from the output of ICEDOG are used to 

obtain equated true scores based on examinees’ observed scores.  

Evaluation Criterion and Complete Grouped Jackknifing 

In this study, we used both bias and the RMSE of linking parameters and equated scores 

as the criteria to evaluate the effects of different weighting approaches. Bias measures the error 

due to selection bias, and RMSE measures the overall variability due to both sampling and 

selection bias. In general, RMSE is preferred to standard error or bias in evaluating the effects of 

linking (van der Linden, 2010). In computing the RMSE, the original samples from the eight 

administrations played the role of pseudo target populations, and the transformation parameters 

yielded from the original samples were treated as the true values. A subsample was then 

randomly selected from each original sample. Thus, it is viable to compare the RMSEs of the 

parameter estimates from the weighted subsamples against those from the unweighted 

subsamples. If the RMSEs of the linking parameter estimates for a weighted data set are smaller 

than those for its unweighted counterpart, we can conclude that the weighted sample is closer to 

its (pseudo) target population than the unweighted sample. Moreover, we also evaluated the 

weighting effects on linking and equating by comparing the distributions of equated scores from 

the weighted and unweighted subsamples against the distributions from the original sample (i.e., 

the pseudo target population). If the number of examinees with changes of scores from the 

weighted subsample were found to be smaller than those from the unweighted subsample, then 

the weighted linking process paid off. We expected that the linking results yielded from the 

weighted samples would have smaller RMSEs and smaller seasonal effects than those from 

unweighted samples.  

To measure the errors of equating and linking procedures, both analytical and sampling 

procedures have been proposed in the past (Braun & Holland, 1982; Kolen & Brennan, 2004; 

Lord, 1982). In this study, resampling approaches, such as the jackknife repeated replication 

(JRR) method (Quenouille, 1956; Tukey, 1958; Wolter, 1985), were used to estimate the 

variances of the statistics of interest. The grouped jackknifing (GJRR) method is often used to 

estimate the standard errors of the statistics of interest. Miller (1964) introduced a GJRR method 

and derived its primary statistical theory. The JRR method was recently extended to evaluate the 

variability of the estimates obtained from different samples through the whole equating 
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procedures, such as IRT calibration and S-L TCC linking (Haberman, Lee, & Qian, 2009). This 

method, referred to as the complete grouped JRR (CGJRR) method, was applied in this study. 

Because every CGJRR process comprised repetitions of both IRT calibration and the S-L TCC 

linking procedure, the analysis conducted in this study was computationally intensive.  

For comparison, the RMSEs of the estimated linking parameters were used to evaluate 

the weighting effects on linking (i.e., checking whether a linking procedure was stable). A basic 

task was, for weighted and unweighted subsamples, to estimate the bias and RMSE of the S-L 

linking parameter estimates and score conversion at each raw score point. The estimation of 

RMSE depended on the variance estimation of the statistics.  

In this study, the CGJRR method was employed to estimate the standard errors of 

statistics of interest (Qian, 2005). The CGJRR is based on jackknife replicate samples that are 

formed by dropping a group of examinees from the whole sample R . Let J be the total number of 

groups formed; J = 120 in this study. Let R be the whole sample employed in the study. We first 

created 120 examinee groups with similar sizes by randomly assigning the examinees to these 

groups. Compared with other grouping methods, the random grouping method often yields 

appropriate results in CGJRR (Wang & Lee, 2012). In this study, none of the variables used to 

create the weights was used as the basis for grouping. Let ( )jR (j = 1, 2, …, J) be the jth jackknife 

replicate sample formed by dropping the jth group from the whole sample R ; hence, for this 

study, a total of 120 jackknife replicate samples were formed. Following this, the CGJRR 

procedure was used to estimate the variances of the statistics; through the entire process, the 

same data set, either R  or ( )jR , was used in the steps of both linking and estimation of the 

statistics of interest. Let iy  be the equated scale score for examinee i, which is transformed from 

its raw score. Let Ry  be the mean estimate from R . Let 
( )jRy be the jackknife pseudo mean from 

( )jR (j = 1, 2, …, J). The jackknifed variance of the mean estimate can be expressed as  

( )
( )( )2

*

1

1
j

J

R R R
j

Jv y y y
J =

−
= −∑

. (7) 

The statistic involved in JRR could be in a very general form, rather than the simple 

mean (e.g., a proportion, moments of different orders, and the transformation coefficients of the 
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S-L method). Let θ̂R  be an estimate yielded from the whole sample and 
( )

θ̂
jR  be the estimate 

from the jth replicate sample through the complete jackknife procedure. Therefore, we can obtain 

corresponding estimates of θ̂R such as the complete jackknifed variance, ( )θ̂Rv , and the mean 

squared error, ( )ˆMSE θR . 

For the linking based on a weighted sample wR , let θ̂
wR be the estimate from wR . The 

jackknifed variance of θ̂
wR  can be expressed as  

( ) ( )( )2

1

1ˆ ˆ ˆθ θ θ
w ww j

J

R R R
j

Jv
J =

−
= −∑

. (8) 

The MSE yielded by the results from the weighted subsample is 

( ) ( ) ( )2ˆ ˆ ˆ ˆMSE θ θ θ θ
w w wR R Rv ℜ= + −

. (9) 

The second term in Equation 9 is the estimate of squared bias. To evaluate the weighting effects 

on linking for the study design, the MSE obtained from the weighted subsample, ( )ˆMSE θ
wR  in 

Equation 9, was compared with the corresponding MSE from the unweighted subsample, 

( )ˆMSE θR . 

Because each jackknife replicate sample must go through the whole equating process, 

including the IRT calibration, the S-L TCC linking procedure and true-score equating, the 

analysis requires intensive computation. Except for unweighted runs, each data set employs eight 

raking schemes and 13 trimming criteria, and 120 JRR replications are carried out for each set of 

weights. For the schemes of raking and trimming, see the appendix. In total, the study involved 

more than 100,000 IRT equating linking processes. However, an application of weights to an 

operational linking procedure is not computationally intensive; it only needs one additional step 

of weight creation to the existing operations.  
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Results 

Data Resources 

In this study, we employed eight data sets from a large-scale international language 

assessment, four from the reading section and four from the listening section; these assessments 

were administered across different testing seasons. As described above, we created base weights 

for each data set and applied raking and trimming techniques to the base weights. We also used 

multiple data sets in this study in order to verify the effects of weighting on IRT linking. Table 1 

shows the summary of the eight data sets and their subsamples used in the study.  

Table 1 

Information About the Eight Samples and Their Subsamples 

 Data set 
Sample 

size 
Subsample 
size (60%) 

Subsample 
size (40%) 

Listening 1 10,433 6,260 4,173 
Listening 2 8,760 5,256 3,504 
Listening 3 9,566 5,740 3,826 
Listening 4 10,293 6,176 4,117 
Reading 1 10,313 6,188 4,125 
Reading 2 8,628 5,177 3,451 
Reading 3 9,454 5,672 3,782 
Reading 4 10,120 6,072 4,048 

For the reading test design, all of the examinees had responses to 42 operational items 

from two blocks having 14 and 28 items, respectively. The IRT linking was accomplished using 

both internal and external anchors. The anchor items were used to link the scale of a new test 

form to the scale of reference forms. For the listening test design, all of the examinees had 

responses to 34 operational items that were evenly distributed in two blocks. Similar to the 

reading design, the linking in listening was accomplished using both internal and external 

anchors. 

The Sample Effects on S-L TCC Linking 

Table 2 shows the bias and RMSE of the S-L TCC transformation parameters A and B in 

Equations 1 through 3 for 60% and 40% unweighted subsamples. The RMSEs of the linking 

parameters for subsamples measured the differences in the linking function between a whole 
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sample and its subsamples. Given that the theoretical value of B equals zero, the RMSEs of B 

were sizable in the table, particularly for the 40% subsamples where these errors were non-

negligible. Moreover, on average, of the eight samples, the RMSEs of A and B were 20% and 

41% larger, respectively, in the 40% subsamples than in the 60% subsamples. This evidence of 

the sample variation effects signaled a need to reduce the variability in linking. The goal here 

was to obtain a set of weights with RMSEs (for A and B or scale scores) that were smaller than 

those from the unweighted data, as shown in Table 2.  

Table 2 

Bias and RMSE of the Estimated A and B for Subsamples (Unweighted) 

 Data set 
 Whole 

sample size 
 Subsample 

size  
A B 

Bias RMSE Bias RMSE 
 60% subsample 
Listening 1 10,433 6,260 -0.0052 0.0155 0.0090 0.0177 
Listening 2 8,760 5,256 0.0109 0.0221 -0.0045 0.0201 
Listening 3 9,566 5,740 0.0188 0.0270 0.0101 0.0244 
Listening 4 10,293 6,176 0.0153 0.0248 -0.0023 0.0187 
Reading 1 10,313 6,188 -0.0018 0.0129 0.0213 0.0261 
Reading 2 8,628 5,177 0.0064 0.0172 0.0037 0.0170 
Reading 3 9,454 5,672 -0.0020 0.0186 0.0088 0.0227 
Reading 4 10,120 6,072 -0.0064 0.0184 -0.0039 0.0186 
 40% subsample 
Listening 1 10,433 4,125 -0.0018 0.0168 0.0196 0.0268 
Listening 2 8,760 3,451 0.0101 0.0254 0.0178 0.0304 
Listening 3 9,566 3,782 0.0104 0.0262 0.0129 0.0287 
Listening 4 10,293 4,048 -0.0033 0.0219 -0.0014 0.0235 
Reading 1 10,313 4,173 0.0145 0.0214 0.0335 0.0383 
Reading 2 8,628 3,504 -0.0224 0.0293 -0.0156 0.0250 
Reading 3 9,454 3,826 -0.0143 0.0274 -0.0217 0.0339 
Reading 4 10,120 4,117 -0.0020 0.0198 0.0123 0.0262 
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Characteristics of A and B Estimates Derived From Weighted Samples 

One basic interest in evaluating weighting effects was to examine the characteristics of 

transformation coefficients A and B of S-L TCC linking. Because the expected values of A and B 

are 1 and 0, respectively (Stocking & Lord, 1983), we examined which set of estimates of A and 

B, weighted or unweighted, deviated further from their expected values. Table 3 presents a 

summary of such comparisons. The analysis used 60% subsamples of eight data sets with base 

weights created based on test center size. The base weights of each subsample were further raked 

by some or all of the four variables listed in the appendix.  

Table 3 

Baseline Characteristics of Weighted A and B Estimates 

  

No. of the 
weighted B 

estimates closer 
to 0 than the 
unweighted 

(N = 32) 

No. of the 
weighted A 

estimates closer 
to 1 than the 
unweighted 

(N = 32) 

No. of the 
weighted B 

estimates closer 
to 0 than the 
unweighted 

(N = 32) 

No. of the 
weighted A 

estimates closer 
to 1 than the 
unweighted 

(N = 32) 
 60% subsample 40% subsample 
Listening 23 (71.9%) 27 (84.4%) 24 (75.0%) 25 (78.1%) 

Reading 26 (81.3%) 8 (25.0%) 22 (68.8%) 13 (40.6%) 

For the B transformation parameter for 60% subsamples, 71.9% of weighted B estimates 

(23 out of 32) for listening were closer to 0 than their corresponding unweighted B estimates, and 

81.3% of the weighted B estimates (26 out of 32) for reading were closer to 0 than their 

unweighted counterparts (see Table 3). Thus, these results were in favor of the weighted 

estimates, and this statement can be confirmed by a binomial test. The binomial test (Snedecor & 

Cochran, 1989) is the test of the null hypothesis that the observed binomial distribution of a 

variable with two distinct categories deviates from an expected binomial distribution. In this 

study, the binomial test was used to test our assumption that the weighted estimates were no 

better, by the criterion of MSE, than the unweighted counterparts. For listening in 23 out of 32 of 

weighted estimates, the p-value was 0.01for a one-side binomial significance test, and, therefore, 

the assumption was rejected. Similarly, for reading in 26 out of 32 weighted estimates, the 

assumption could be rejected with p-value of 0.003. Similarly, binomial significance tests could 

be used to confirm the conclusions drawn from other tables.  
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For the A transformation parameter for the 60% subsamples, 84.4% of weighted A 

estimates for listening were closer to 1 than corresponding unweighted ones. However, the 

weighted A estimates from the reading test did not show the same characteristics. We analyzed 

different A parameter estimates from the reading data and found that when the unweighted 

estimates from a subsample were closer to 1 than the estimates from the original sample, the 

weighted estimates from the subsample could actually be closer to the estimates from the original 

sample than 1. This is, in fact, consistent with weighting principles. Similar results are shown in 

the second part of Table 3 for the 40% subsample.  

Comparison of the A and B Estimates for Weighted and Unweighted Subsamples 

To evaluate weighting effects, we also compared the biases and RMSEs of A and B for 

the weighted and the unweighted subsamples (60% and 40%); Table 4 contains the results of the 

comparisons. The base weights were created based on test center sizes with raking. For each 

listening or reading subsample, all eight sets of weights listed in the appendix were used in the 

analysis. The results are shown in Table 4. 

Table 4 

Comparison of the Bias and RMSEs of the Weighted A and B Estimates With Those of the 

Unweighted Ones 

  

No. of the bias of 
weighted B 

smaller than the 
unweighted  

(N = 32)  

No. of the RMSE 
of weighted B 

smaller than the 
unweighted  

(N = 32) 

No. of the bias of 
weighted A 

smaller than the 
unweighted  

(N = 32) 

No. of the RMSE 
of weighted A 

smaller than the 
unweighted  

(N = 32)  
  60% subsample   
Listening 16 (50.0%) 16 (50.0%) 28 (87.5%) 16 (50.0%) 
Reading 22 (68.8%) 22 (68.8%) 20 (62.5%) 20 (62.5%) 

  40% subsample   

Listening 32 (100.0%) 32 (100.0%) 24 (75.0%) 32 (100.0%) 

Reading 32 (100.0%) 32 (100.0%) 28 (87.5%) 28 (87.5%) 

For the 60% reading subsamples, 68.8% of the biases and RMSEs of the B parameter 

estimates (22 out of 32) obtained from the weighted samples were smaller than those estimated 

from the unweighted samples. For A parameter estimates, 62.5% of their bias and RMSE 
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estimates (20 out of 32) obtained from weighted samples were smaller than those estimated from 

the unweighted samples.  

For the 60% listening subsamples, 87.5% of the bias estimates of the A parameter (28 out 

of 32) estimated from weighted samples were smaller than those estimated from unweighted 

samples. The other estimates from the weighted samples were not inferior to those estimated 

from the unweighted samples. 

Similarly, for the 40% reading and listening subsamples, all the biases and RMSEs of the 

B parameter estimates obtained from weighted samples were smaller than those estimated from 

unweighted samples. More than 75% of the weighted A estimates also had smaller biases and 

RMSEs than those unweighted estimates. Thus, these results were in favor of the weighted 

estimates. At the .01 significance of the one-side binomial test, all of the results for the 40% 

subsamples were in favor of weighted estimates. These results show that, compared with the 

estimates from the unweighted samples, those from the weighted samples had smaller biases and 

overall variabilities. It shows that the weighting effects on linking for parameter estimates for the 

40% subsamples are more pronounced than those for the 60% subsamples. This has verified that 

the linking procedure based on the weighted samples functions well for a sample that deviates 

greatly from its population, that is, the sampling rate is small and the selection bias is strong. 

Comparison of Mean Equated Scores for Weighted and Unweighted Subsamples 

To evaluate the weighting effects on linking, we compared the biases and RMSEs of the 

mean equated scores, the average reporting scores of all the examinees, between the weighted 

and unweighted subsamples. Table 5 contains the comparison results for both the 60% and 40% 

subsamples. The results for the 60% and 40% subsamples are presented in the first and second 

part of Table 5, respectively. 

For the 60% listening subsamples, all of the RMSEs of the mean equated scores from 

weighted data were smaller than those from unweighted data. For 24 different linking procedures 

for each listening data set, the average ratio between RMSEs of weighted and unweighted data of 

the mean equated scores ranged from .64 to .93. All of the RMSEs of the mean equated scores 

from the weighted data were smaller than those from the unweighted data. On average, the 

RMSEs of the weighted data were about 21% less than those from the unweighted dataAbout 

66% of the biases from weighted data were smaller than those from the unweighted data.  
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For the 60% reading subsamples, on average, 73% of the RMSEs of the mean equated 

scores from the weighted data were smaller than those from the unweighted data. For 24 linking 

procedures for each reading data set, the average ratio between RMSEs from the weighted data 

and RMSEs from the unweighted data ranged from .96 to 1.03. The RMSEs of the weighted data 

were (on average) 1% less than those of the unweighted ones. Similar to listening, about 66% of 

the biases for reading from the weighted data were smaller than the biases from the unweighted 

data. 

Table 5 

Comparison of Bias and RMSEs of Average Equated Scores Between Weighted and 

Unweighted Subsamples 

Data set No. of weighted 
sets used 

% wBias > 
unBias 

% wMSE > 
unMSE 

Ratio of  
wMSE/unMSE 

  60% subsample   
Listening 1 24 29.2 0 0.728 
Listening 2 24 8.3 0 0.879 
Listening 3 24 100 0 0.927 
Listening 4 24 0 0 0.644 
Total/mean 96 34.4 0 0.794 
Reading 1 24 0 0 0.962 
Reading 2 24 8.3 4.2 0.971 
Reading 3 24 91.7 91.7 1.028 
Reading 4 24 37.5 12.5 0.997 
 Total/mean 96 34.4 27.1 0.989 
  40% subsample   
Listening 1 80 100 10 0.902 
Listening 2 80 61.3 0 0.907 
Listening 3 80 27.5 2.5 0.836 
Listening 4 80 83.8 0 0.737 
Total/mean 320 68.1 3.1 0.846 
Reading 1 80 0 0 0.918 
Reading 2 80 77.5 25 0.989 
Reading 3 80 86.3 86.3 1.051 
Reading 4 80 7.5 12.5 0.93 
 Total/mean 320 42.8 30.9 0.972 
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For the 40% subsamples, data set for either listening or reading, 80 different sets of 

weights in linking were applied to each data set. For the listening data, 97% of the RMSEs from 

weighted data were smaller than those from unweighted data. For the 40% listening subsamples, 

on average, the RMSEs from weighted data were about 15% less than those from the unweighted 

data. About 32% of the biases from weighted data were smaller than those from unweighted 

data.  

For the 40% reading subsamples, 69% of the RMSEs of the mean equated scores from 

weighted data were smaller than those from unweighted data. The weighted RMSEs were (on 

average) 3% less than those from the unweighted data. About 57% of the biases from the 

weighted data were smaller than those from the unweighted data. Using a binomial test at the .01 

level, all of the results, except for reading data set 3, were significantly in favor of the weighted 

estimates.  

Comparison of the Distributions of Scores Between Weighted and Unweighted Subsamples 

Table 6 contains a comparison of the distributions of equated scores change of weighted 

and unweighted subsamples, for both 60% and 40% sampling rates. Using the original sample 

results as the criteria, the percentage of examinees whose equated scores changed under the 

weighted or unweighted subsample is shown in Table 6. Here, the magnitude of the changes in 

percentage measures the stability of linking. The smaller the percentage, the more stable a 

linking. Although several comparable raking schemes (see the appendix) were applied to each set 

of base weights, no differences were found in the distributions of equated scores across weights 

by different raking schemes. However, differences were found in the distributions of equated 

scores between weighted and unweighted subsamples. This indicates that the weighting 

techniques are reasonably robust in IRT true-score equating.  

For the 60% listening subsample, the percentage of examinees whose equated scores 

differed from the original data was 1.2% for the weighted data and 1.6% for the unweighted data. 

For the 60% reading subsample, the corresponding score change percentages (weighted vs. 

unweighted) were 1.4% and 2.9%, respectively. 

For the 40% listening subsample, the percentage of examinees who had their equated 

scores changed from the original data was 1.2% for the weighted data, as opposed to 2.7% for 

the unweighted data. For the 40% reading subsample, the corresponding score change 

percentages (weighted vs. unweighted) were 1.4% and 3.0%, respectively. On average, the 
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percentage of examinees having their scores changed in the unweighted sample is about twice 

that of examinees in the weighted sample. The strategy of weighting aligns the proportions of the 

examinee groups of interest in the sample to those in the target population. Linking through a 

weighted sample shows a higher likelihood for examinees with the same response pattern to be 

assigned the same equated scores as in the total sample. The results in Table 6 directly show the 

stability of the linking employing weighted samples.  

Table 6 

Comparison of Distributions of Equated Scores Between Weighted and Unweighted 

Subsamples 

Data set 
Weighted  Unweighted  

No. of cases 
changed score 

% changed 
score 

No. of cases 
changed score 

% changed 
score 

  60% subsample   
Listening 1 109 1.74 0 0 
Listening 2 0 0 98 1.86 
Listening 3 43 0.75 43 0.75 
Listening 4 138 2.23 237 3.84 
Mean 72.5 1.2 94.5 1.6 
Reading 1 75 1.21 233 3.77 
Reading 2 168 3.25 347 6.7 
Reading 3 72 1.27 72 1.27 
Reading 4 0 0 0 0 
Mean 78.8 1.4 163 2.9 
  40% subsample   
Listening 1 73 1.75 73 1.75 
Listening 2 0 0 59 1.68 
Listening 3 35 0.91 115 3.01 
Listening 4 94 2.28 182 4.42 
Mean 50.5 1.2 107.3 2.7 
Reading 1 50 1.21 62 1.5 
Reading 2 108 3.13 267 7.74 
Reading 3 51 1.35 51 1.35 
Reading 4 0 0 57 1.41 
 Mean 52.3 1.4 109.3 3.0 
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Discussion 

This study explored the use of weighting techniques to achieve a more stable calibration, 

linking and equating procedures across administrations. In the method proposed here, the 

weighted distributions of the administrations would be consistent as if all of them were randomly 

sampled from the target population. In this way, a sampling scheme over numerous 

administrations is designed. 

There are four major contributions of this study: (a) a discussion of the necessity of 

determining an improved sampling design over time for assessments with complex equating 

designs; (b) an introduction of weighting techniques to construct improved samples for 

calibration, linking, and equating; (c) an explicit way to evaluate the weighting effects on linking 

for the new design through the comparison of the results yielded by weighted subsamples with 

those by unweighted subsamples; and (d) a practically feasible and easy application to 

implement the weighting techniques in a large-scale testing program with numerous 

administrations per year. 

The results showed that the proposed paradigm in this paper was an effective method for 

evaluating the use of weighting techniques to increase the precision in linking procedures. 

Although this analysis involved reducing the variability across multiple samples, the evaluation 

methodology can certainly be employed to analyze weighting technique to investigate the 

precision of item calibration through item selection. Thus, we think, this procedure may also be 

used for constructing a better test design.  

Application has always been a focus of this study. The proposed weighting strategy can 

be employed in two scenarios. First, applying the strategy in an assessment with multiple forms, 

such as GRE and TOEFL, with variability and seasonality among multiple test samples. Second, 

applying the strategy in analyzing partial data. A typical example is analyzing the data from state 

assessments where the available data for making initial linking decisions are usually only about 

20% of the final data. Instead of using randomization, the initial data are often a convenient 

sample gathered from well-organized school districts. So applying weighting techniques could 

help psychometricians avoid biased results based on the initial equating analysis. Note that if the 

initial sample of a state assessment is randomized, the problem might be less significant. In 

general, the weighting procedure can be used to correct the disagreements between a sample and 

its population, such as under- or overrepresentation of certain subgroups for a given 
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administration. Moreover, applying weighting techniques, including creating weights and raking, 

is not very complex, although evaluating weighting efficiency as done in this study is 

computationally intensive.  

For future research, we may consider a different strategy, such as imposing selection bias 

in samples by deliberately oversampling certain demographic groups to evaluate the effects of 

optimized weighting on reducing selection bias. In another future research direction, we may 

conduct a comparison of the method that we proposed here to the formal optimal sampling 

design described by Berger (1997). The difficulty in following Berger’s approach consists of 

formally modeling the various aspects of the situation: the background information, the IRT 

model parameters for each administration, the IRT linking parameter for each pair of 

administrations, and all these aspects for multiple test forms/administrations. In this research 

direction, we might first focus on linking only two test forms/administrations, in a simple way, 

such as using a mean-mean IRT linking. The formal expression of the IRT linking expressed as a 

restriction function on the parameter space as given in von Davier and von Davier (2011) could 

be useful for writing the constraints formally. As in von Davier and von Davier (2011) and using 

the definition of an optimal sampling design (Berger, 1991, 1997), suppose two tests X and Y 

were taken by n examinees, for which we assume a distribution of ability θ and a multivariate 

distribution of relevant background variables. Corresponding to each value of θ, there is a weight 

w associated with the background variables. Then according to Berger (1997), a sampling design 

with pair (θ, w) is locally optimal if a specific optimality criterion (which is usually a function of 

the information matrix) is achieved. Writing the linking parameters as constraints as in von 

Davier and von Davier (2011) might aid with writing the constraints formally in the linear 

programming for estimating the weights that lead to a sample for which the linking parameters 

are estimated most efficiently.  
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Notes 
1 We have also been inspired by other lines of work. We will provide the references for these 

works accordingly in the text. Some of these are sampling procedures in survey assessment 

and poststratification equating. 
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Appendix 

Weights, Raking Variables, and Number of Trimming Criteria Applied in Analyses  

Weight 

Variable used 

for base weight 

Variables used 

for rakinga 

Criteria used for trimminga 

60% 

subsample 

40% 

subsample 

W0A Test center V1, V2, V3, V4 3 10 

W0B Test center V1, V2, V3  3 10 

W0C Test center V1, V2  3 10 

W0YY Test center V1, V3  3 10 

W0ZZ Test center V2, V3  3 10 

W0X Test center V1 3 10 

W0Y Test center V2  3 10 

W0Z Test center V3  3 10 

Note. V1 = gender, V2 = age, V3 = time of language study, V4 = reason for language study.  
a In trimming, the total of the weights was normalized to the size of each subsample. The default 

trimming criterion was set at 2. For the base weights based on test center, the criteria used for 

trimming of the 60% subsamples: 1.7, 1.85, and 2; the criteria for the 40% subsamples: ranged 

from 1.5 to 2.4 with an even interval of 0.1. The base weights based on native language only 

used the default trimming criterion.  
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