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Abstract 

The m-rater scoring engine has been used successfully for the past several years to score 

CBAL™ mathematics tasks, for the most part without the need for human scoring. During this 

time, various improvements to m-rater and its scoring keys have been implemented in response 

to specific CBAL needs. In 2012, with the general move toward creating innovative tasks for the 

Common Core assessment initiatives, in traditional testing programs, and with potential outside 

clients, and to further support CBAL, m-rater was enhanced in ways that move ETS’s automated 

scoring capabilities forward and that provide needed functionality for CBAL: (a) the numeric 

equivalence scoring engine was augmented with an open-source computer algebra system; (b) a 

design flaw in the graph editor, affecting the way the editor graphs smooth functions, was 

corrected; (c) the graph editor was modified to give assessment specialists the option of requiring 

examinees to set the viewing window; and (d) m-rater advisories were implemented in situations 

in which m-rater either cannot score a response or may provide the wrong score. In addition, 2 

m-rater scoring models were built that presented some new challenges. 

Key words: automated scoring, graph response, mathematics test item, equation editor, MathML, 

local extremum, cubic spline, computer algebra system 
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An automated scoring engine for scoring mathematics responses to constructed-response 

tasks was developed at ETS in the mid-1990s (Bennett, Morley, & Quardt, 2000; Bennett, 

Steffen, Singley, Morley, & Jacquemin, 1997). Now called m-rater, this scoring engine has been 

used successfully for the past several years to score mathematics tasks in the Cognitively Based 

Assessment of, for, and as Learning (CBAL™) assessment, for the most part without the need for 

human scoring (Breyer, Williams, Fife, & Lewis, 2012; Fife, 2011). The goal of the CBAL 

project is to develop a research-based assessment system that provides accountability testing 

(assessment of learning) and formative testing (assessment for learning) in an environment that is 

a worthwhile learning experience in and of itself (assessment as learning; Bennett, 2010; Bennett 

& Gitomer, 2009). Assessments are being developed in mathematics, reading, writing, and 

science. One feature of the project is that accountability assessments will be administered 

periodically during the course of the year instead of all at once, at the end of the year; these 

assessments are called periodic accountability assessments (PAAs). An important feature of 

these assessments is that they are computer-delivered, with as many of the tasks as possible 

scored automatically, the mathematics responses being scored by m-rater.  

The mathematics component of CBAL is based on relevant research in cognitive science 

and mathematics education, as described in Graf (2009). Some of the early work in CBAL 

mathematics task development is described in Graf, Harris, Marquez, Fife, and Redman (2009, 

2010). Further work is discussed in Fife, Graf, and Ohls (2011) and Cayton-Hodges et al. (2012).  

During the time that m-rater has been used to score CBAL mathematics tasks, various 

improvements to m-rater and its scoring keys have been implemented in response to specific 

CBAL needs (Fife, 2011). In 2012, with the general move toward creating innovative tasks for 

the Common Core assessment initiatives, in traditional testing programs, and with potential 

outside clients, and to further support CBAL, m-rater was enhanced in ways that move ETS’s 

automated scoring capabilities forward. In addition, two m-rater scoring models were built that 

presented some new challenges.  

In 2012, m-rater was enhanced in four areas: 

1.   The numeric equivalence scoring engine was augmented with an open-source 

computer algebra system. 

2.   A design flaw in the graph editor, affecting the way the editor graphs smooth 

functions, was corrected. 
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3.   The graph editor was modified to give assessment specialists the option of requiring 

examinees to set the viewing window. 

4.   M-rater advisories were implemented in situations in which m-rater either cannot 

score a response or may provide the wrong score. 

Each of these enhancements will be described in turn, followed by a discussion of the two 

scoring models that were built and the particular challenges that they presented. The paper will 

conclude with a discussion of some areas of possible further research and development. 

Computer-Algebra Systems 

The m-rater engine scores two types of responses to constructed-response (CR) tasks: 

mathematical expressions (or equations) and graphs. (M-rater also scores numeric responses, but, 

for the purposes of this discussion, one can think of numeric responses as simple expressions.) 

When the response to a CR task is an expression, m-rater determines if the examinee’s response 

is mathematically equivalent to the correct expression. There are basically two automated 

methods for determining if two expressions are equivalent—a computer algebra system (CAS) 

can be used to determine symbolically if the two expressions are equivalent, or the two 

expressions can be numerically evaluated at sufficiently many points so that one can be 

reasonably confident that the expressions are equivalent. ETS’s first scoring engine for what 

were then called Mathematical Expression items used a rudimentary CAS developed from open-

source code (Bennett et al., 1997). It was determined, however, that computer algebra systems 

were too slow for immediate scoring, as is required for computer adaptive tests, so the code was 

rewritten to use numerical evaluation (Bennett et al., 2000).  

Since then, hardware and software have improved quite a bit; there has also been 

extensive research on the use of computer algebra systems in mathematics education (Drijvers, 

2003; Kramarksi & Hirsch, 2003; Pointon & Sangwin, 2003) and assessment (Sangwin, 2002, 

2003). In particular, Sangwin (2003) has stated that he believes that “in the near future all 

computer aided assessment systems will link computer algebra and assessment to perform … 

automatic … marking of mathematics …” (p. 2) [emphasis in the original]. In the same paper, he 

remarked that “Some current commercial testing products compare answers by substituting a 

number of random values which is clearly more limited” (p. 4) [emphasis added]. In Sangwin 
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(2002) he remarked that he believes that “all reputable computer aided assessment systems in the 

near future will contain … marking systems [that use a CAS]” (p. 1) [emphasis added].  

As CBAL assessment specialists began to develop more complicated CR tasks and as 

ETS Research made plans to extend the level of mathematics tasks scorable by m-rater pursuant 

to the Common Core assessment initiatives, the consensus developed that higher mathematics 

items would be easier to score using a CAS. At the level of mathematics at which numerical 

evaluation has been used by m-rater (Algebra I, mostly), the method has roughly the same level 

of accuracy as symbolic manipulation (Bennett et al., 2000). But for higher levels of 

mathematics, numerical evaluation is limited. For example, it would be extremely difficult to 

determine the accuracy of the equation ( )3 23d x dx x=  or the equation 
1 3 1

40
x dx =∫  using 

numerical evaluation. By switching to a CAS, the full power of the CAS is available to score 

mathematics equations at any level. 

Using a CAS has other advantages, as well: 

• If the correct response to an item is an equation that is not a function (for example, 

the equation of the sphere 2 2 2 1x y z+ + = ), the author of a numeric evaluation 

scoring key may need to parameterize the equation to ensure that proper points are 

chosen for evaluation. Even for curves (two-dimensional equations), finding a 

parameterization can be difficult. For example, if 2n > , there is no rational 

parameterization of the equation 1n nx y+ = ; this is a consequence of Fermat’s Last 

Theorem. This need for parameterization limits the nature of items that numeric 

evaluation scoring engines can score; depending on the level of mathematics 

involved, this limitation could be severe. With a CAS, parameterizations are not 

needed, and such responses are easy to score. 

• It is theoretically possible for a numeric evaluation scoring engine to score a response 

incorrectly. For example, suppose the correct response to an item is the equation 

1y x= +  and an examinee responds ( ) ( )2 1 1y x x= − − . The second equation is not 

equivalent to the first, and therefore should be scored as incorrect. But the second 

equation differs from the first only at the point 1x = . Therefore, unless 1x =  happens 

to be one of the points selected by the scoring key for evaluation, a numeric 

evaluation scoring engine will score the second equation as correct. 
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For these reasons, a computer algebra system was added to m-rater, augmenting the 

numeric-evaluation scoring engine. There are several third-party proprietary computer algebra 

systems available (e.g., Mathematica, Maple), but the mathematics community seems to have 

adopted the open-source software package known as Sage as the default CAS for use in research 

(Denny, 2013). Sage is a Python-based package that incorporates several existing open-source 

software packages to accomplish some of its functions. In particular, functionalities required by 

m-rater use a specific CAS called SymPy (Galochkin, 2011). Dmitry Galochkin, a software 

developer at ETS, wrote a new key for scoring equations using the Python-based SymPy library 

(www.sympy.org). Galochkin called the new key SYMPY and modeled it after the existing 

numeric-evaluation keys, but, in fact, it functions quite differently. Unlike the existing m-rater 

keys, which are written in C++, the SYMPY key uses a Java-based version of Python called 

Jython to run Python scripts, which are precompiled into Java classes (Galochkin, 2011). Model 

sentences in SYMPY are written in SymPy syntax, but because SymPy syntax can be somewhat 

formidable, Galochkin also wrote what are called wrapper functions that take as arguments the 

entries in the response fields and encode the SymPy syntax. Using Galochkin (2011), the 

Alchemist1 user’s manual was revised (Fife, 2012) to include a section on writing scoring models 

using the new SYMPY key.  

Because the old numeric-evaluation keys have been retained, m-rater can still be used 

with legacy scoring models, and new models can even be written using the legacy keys if that is 

desired. 

Graphs of Smooth Functions 

Besides expressions, the other major class of responses that m-rater can score are graphs. 

As with expressions, examinees must be given an editor in which to enter their responses. 

Because the automated scoring of free-hand graphs is difficult (Lukoff, 2010), the ETS graph 

editor was designed so that an examinee only needs to click points on a coordinate grid. As the 

points are clicked, they are automatically connected with a curve, with the examinee having 

previously clicked a button to indicate what type of curve should connect the points. Four types 

of curves are currently supported—straight lines, smooth curves, piecewise-linear curves, and no 

connecting curve at all (that is, the points plotted by the examinee are left as points). To plot a 

line, the examinee clicks two points; the editor draws the line containing the two points. To plot 

a piecewise-linear curve, the examinee clicks the singular points; the editor draws line segments 

http://www.sympy.org/
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between each pair of adjacent points. To plot a smooth curve, the examinee clicks as many points 

as are required to generate the desired curve; the editor connects the plotted points with a smooth 

curve. 

For example, Figure 1 shows a CBAL item in which the examinee is asked to draw the 

graph of a line. The examinee clicks the button labeled Line and then clicks any two points on 

the line, say the points ( )4,22  and ( )6,18 ; the editor then draws the line containing the two 

points (see Figure 2). 

 

Figure 1. A CBAL mathematics item with the graph editor. 
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Figure 2. The item in Figure 1 with a response. 

Drawing a line containing two points is a straightforward task to program into the editor; 

drawing a smooth curve generated by a collection of points is more complicated. The general 

problem of fitting a smooth curve to discrete data points has been studied extensively in the 

literature. Most approaches involve defining the curve piecewise; that is, using different formulas 

for the curve between each pair of consecutive points in such a way that the pieces of the curve 

fit together to form a single smooth curve. More precisely, if ( )0 0,x y , ( )1 1,x y , …, ( ),n nx y  are 

the data points, with 0 1 nx x x< < < , then for each 1, ,i n=  , let  [ ]1: ,i i if x x− → R  be a 

continuous function such that ( )1 1i i if x y− −=  and ( )i i if x y= . The function f defined by 

( ) ( )if x f x=  for 1i ix x x− ≤ ≤  passes through each of the given data points and is continuous. If 

in addition each if  is differentiable and ( ) ( )1i i i if x f x+′ ′=  for 1, , 1i n= − , then f is 

differentiable also. Such a function is called a spline.  

In applications, the various functions if  are frequently defined to be cubic polynomials. 

Because cubic polynomials have four coefficients, these provide enough parameters so that 
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equality of the second derivatives ( ) ( )1i i i if x f x+′′ ′′=  can also be required. In this case, the spline f 

will be twice differentiable (and its second derivative will be continuous). 

Because twice-differentiable cubic splines have this additional degree of smoothness 

provided by the continuity of the second derivative, they are a particularly appealing way to fit a 

smooth curve to discrete data points when the extra smoothness of the curve is a desirable feature 

(see Figure 3). But ETS’s goal in designing the graph editor was somewhat different; the goal 

when graphing smooth curves in the editor was to duplicate, as closely as possible, the procedure 

students use when graphing functions on paper. On paper, students plot some points, likely 

including the local extrema, and then connect the points with a smooth curve, making certain that 

the curve has extreme points at the desired locations. So, for example, if an examinee plotted the 

points in Figure 3 in the graph editor, one would want the curve drawn by the editor to have local 

maxima at x = 1 and x = 4, and local minima at x = 2 and x = 8. A necessary condition for these 

points to be local extrema is that the derivatives at these points equal 0. Therefore, to guarantee 

that our cubic spline has local extrema at the desired points, it is not enough to require that the 

derivatives of the if ’s be equal at the data points; one must be able to specify the values of these 

derivatives at the data points. This will be in lieu of requiring continuity of the second 

derivatives. A cubic spline obtained in this way is called a Hermite cubic spline. 

 

Figure 3. A twice-differentiable cubic spline through a given set of data points. 
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So, as before, let ( )0 0,x y , ( )1 1,x y , …, ( ),n nx y  be the data points, with 0 1 nx x x< < < , 

and let 1 1, , nm m − ∈R  be real numbers. For each 1, ,i n=  , let [ ]1: ,i i if x x− → R  be the cubic 

polynomial ( ) ( ) ( ) ( )2 3
1 1 1i i i i i i i if x a b x x c x x d x x− − −= + − + − + −  with the properties that 

( )1 1i i if x y− −=  and ( )i i if x y=  for 1, ,i n=   and ( )1 1i i if x m− −′ =  and ( )i i if x m′ =  for 

2, , 1i n= − . There are several ways of handling the functions 1f  and nf ; for our purposes, it is 

sufficient to let these functions be quadratic polynomials such that ( )1 1 1f x m′ =  and 

( )1 1n n nf x m− −′ = .  

Under these conditions, a straightforward calculation shows that the coefficients ia , ib , 

ic , and id  are defined as follows: for each 1, ,i n=  , let 1i i ih x x −= − , 1i i ik y y −= − , and 

i i is k h= , and let ( )0 1 0m f x′=  and ( )n n nm f x′= . Then 1i ia y −= , 1i ib m −= , 

( )13 2i i i i ic s m m h−= − − , and ( ) 2
1 2i i i i id m m s h−= + − ; see, for example, Dougherty, Edelman, 

and Hyman (1989); Fritsch and Carlson (1980); and Hyman (1983). Because 1f  and nf  are 

quadratic polynomials, it follows that 1 0nd d= = , and hence 0 1 12m s m= −  and 12n n nm s m −= − . 

It remains to determine, for our purposes, the appropriate values of the derivatives im . 

For 1, , 1i n= − , we want f to have a local maximum at ix  if 1i iy y −>  and 1i iy y +> , and we 

want f to have a local minimum at ix  if 1i iy y −<  and 1i iy y +< . Equivalently, we want f to have a 

local maximum at ix  if 0is >  and 1 0is + < , and we want f to have a local minimum at ix  if 

0is <  and 1 0is + > . In other words, we want f to have a local extremum at ix  if is  and 1is +  have 

opposite signs; that is, if 1 0i is s + < . Because a necessary condition for f to have a local extremum 

at ix  is that ( ) 0if x′ = , we will set 0im =  if 1 0i is s + < .  

Additionally, we want f to be constant on the interval [ ]1,i ix x−  if 1i iy y −= ; that is, if 

0is = . Thus, we want both 0im =  and 1 0im − =  if 0is = , or, equivalently, we want 0im =  if 

either 0is =  or 1 0is + = ; that is, if 1 0i is s + = . Thus, we set 0im =  if 1 0i is s + ≤ .  
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If 1 0i is s + > , then im  should be a number between is  and 1is + . In the original design of the 

graph editor, im  was defined to be the arithmetic mean of is  and 1is +  when 1 0i is s + > . Thus, in 

the original design of the graph editor, im  was defined by 

1
1

1

if 0
2
0 if 0

i i
i i

i

i i

s s s s
m

s s

+
+

+

+ >= 
 ≤

 (1) 

for 1, , 1i n= − . Figure 4 shows the Hermite cubic spline through the same points as the twice-

differentiable spline in Figure 3 but defined as described above, using the arithmetic mean. 

 

Figure 4. A Hermite cubic spline defined using the arithmetic mean. 

While a zero derivative is necessary for a function to have a local extremum, it is not 

sufficient, and it turns out that Hermite cubic splines defined according to Equation 1 may not 

always have local extrema at points where 0im = . For example, Figure 5 shows a Hermite cubic 

spline, defined using the arithmetic mean, for which 4 3y y>  and 4 5y y> , and hence 4 0m = , but 

the spline does not have a local extremum at 4x . It appears that the spline is so steep from x = 2  

to x = 3 that the curve overshoots the expected local extremum at x = 4. It turns out that this is 

much the case; in fact, we have the following theorem: 
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Figure 5. A cubic spline defined using the arithmetic mean with no local maximum at x = 4. 

Theorem 1. Let f be a Hermite cubic spline through the 1n +  points ( )0 0,x y , ( )1 1,x y ,…, 

( ),n nx y , with 0 1 nx x x< < < , where im  is defined as in Equation 1 for 1, , 1i n= − . Let 

1, , 1k n= −  be such that 1k ky y −>  and 1k ky y +> . 

(a) If 1k >  and 1 5k ks s− > , the spline f does not have a local maximum at kx . The spline 

has a local maximum at a point ku x< . 

(b) If 1k n< −  and 2 15k ks s+ +< , the spline f does not have a local maximum at kx . The 

spline has a local maximum at a point ku x> . 

(c) If 1 1k n< < − , 1 5k ks s− ≤ , and 2 15k ks s+ +≥ , or if 1k =  and 3 25s s≥ , or if 1k n= −  and 

2 15n ns s− −≤ , the spline f has a local maximum at kx . The spline has no other local maximum in 

the interval ( )1 1,k kx x− + . 

For example, in Figure 5, 3 10s =  and 4 1s = . Because 3 45s s> , the spline f does not have 

a local maximum at 4 4x = , in spite of the fact that 4 3y y>  and 4 5y y> . 

This theorem is proved in the appendix. A similar theorem holds for local minima.  

It turns out that the trick to finding a Hermite cubic spline with the desired properties lies 

in how im  is defined at those points where 0im ≠ . In particular, Butland (1980) has shown that if 
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im  is defined to be the harmonic mean of is  and 1is +  when 1 0i is s + > , then the Hermite cubic 

spline will always have the desired properties: 

Theorem 2 (Butland). Let f be a Hermite cubic spline through the 1n +  points ( )0 0,x y ,  

( )1 1,x y ,…, ( ),n nx y , with 0 1 nx x x< < < , where im  is defined by 

 
1

1
1

1

2 if 0

0 if 0

i i
i i

i ii

i i

s s s s
s sm

s s

+
+

+

+

 > += 
 ≤

 

for 1, , 1i n= − . 

(a) If 1, 1k n= −  is such that 1k ky y −>  and 1k ky y +> , the spline f has a local maximum 

at kx . The spline has no other local maximum on the interval ( )1 1,k kx x− + .  

(b) If 1, , 1k n= −  is such that 1k ky y −<  and 1k ky y +< , the spline f has a local minimum 

at kx . The spline has no other local minimum on the interval ( )1 1,k kx x− + .  

Figure 6 shows the Hermite cubic spline through the same points as the spline in Figure 5 

but defined using the harmonic mean instead of the arithmetic mean. 

Theorem 2 is also proved in the appendix. 

 

Figure 6. A Hermite cubic spline defined using the harmonic mean. 
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The ETS graph editor was originally designed with the derivatives im  defined using the 

arithmetic mean, as in Theorem 1. As a result, the editor would generate the curve in Figure 5. 

The code has now been changed so that the derivatives are defined using the harmonic mean, as 

in Theorem 2; it follows from Theorem 2 that the curve will always have the desired properties 

regarding local extrema, as in Figure 6. 

Setting the Viewing Window in the Graph Editor 

The viewing window in the graph editor is the portion of the xy-plane that is visible in the 

editor. The viewing window is the space in which the examinee draws his or her graph; it 

determines the portion of the graph that can be shown. If the viewing window is too small, 

interesting features of the graph will be missed; if the viewing window is too large, the resulting 

small scale may obscure some features. For the graph editor in Figure 1, the viewing window is 

defined by the inequalities 0 20x≤ ≤  and 0 35y≤ ≤ , with gridlines every 1 unit. This viewing 

window was selected and fixed during the item authoring stage. However, selecting the 

appropriate viewing window is an important skill that students need to have mastered (Ball & 

Stacey, 2001; Pierce & Stacey, 2002). Certainly, in a paper-and-pencil setting, if the examinee 

were asked to draw a graph on a blank sheet of paper, the examinee would need to select a range 

for the x- and y-axes. Even when students are using a graphing calculator to graph a function, 

they still need to be able to select an appropriate viewing window (Doerr & Zangor, 2000; 

Drijvers & Trouche, 2008; Stacey, 2005; Stacey, McCrae, Chick, Asp, & Leigh-Lancaster, 

2000). According to Stacey (2005), “developing a strong concept of the viewing window (which 

involves ideas of domain and range, scale and zooming) [is] critical to good use of graphing 

functionality.” Consequently, it is desirable to be able to require examinees to set the viewing 

window of the graph editor in an item. Additionally, because the testing program might want to 

assess the examinee’s choice of viewing window, it is desirable that the parameters selected by 

the examinee, which define the viewing window, be scorable elements.  

Another aspect of the graph in Figure 1 that was fixed during the item authoring stage is 

the axis labels—Time (seconds) for the x-axis and Distance of Rider B from the gate for the y-

axis. But, again, the ability to select or determine the correct axis labels is an important part of 

the construct being measured, and the capability to require examinees to enter these labels for 

themselves, and to score their entries, is a desirable feature. 
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Based on these considerations, the graph editor has been modified so that item authors 

and content specialists have the option, for each item, of requiring examinees to specify the 

viewing window and the axis labels before the graphing window will be displayed in that item. 

When this option is chosen, fields for the examinee to enter minimum and maximum values for x 

and for y and the labels for the x- and y-axes appear in the space where the graphing window 

would normally be displayed. (There is a check to prevent the examinee from entering a 

maximum value that is less than the minimum value.) The examinee clicks a button, and the 

graphing window appears with the examinee’s choice of viewing window and axis labels. See 

Figures 7 and 8. 

Because examinees cannot be expected to select grid points that correspond to correct 

responses, it is necessary, for items in which examinees set the viewing window, that snap-to-

grid be disabled. This means that the scoring rubrics for these items must specify a level of 

precision in the responses; this level of precision depends on the grid width in the examinee’s 

graph. It follows that if two different examinees have different grid widths, their responses will 

not be comparable, even if they have the same minimum and maximum values for x and y.  

Similarly, if an examinee selects gridlines that are inappropriate (see, for example, the 

discussion of the Smart Phones item below), the inappropriate selection of gridlines could make 

the item more difficult. Either of these situations can interfere with what the item is supposed to 

measure and can make analysis of student responses problematic. For this reason, examinees are 

not required (or allowed) to set the grid width or the gridlines when setting the viewing window. 

The approximate number of gridlines is established by the item author and/or content staff and is 

the same for all examinees. For each examinee’s graph, the editor calculates a reasonable grid 

width and appropriate gridlines, based on the examinee’s minimum and maximum values of x 

and y and the approximate number of gridlines established for that item. Here, reasonable means 

that the grid width equals 1, 2, or 5 times a (positive or negative) power of 10. As a result, 

gridlines such as those in the Smart Phones item below will never be generated. So that it all 

works out, it may be necessary to adjust the minimum and maximum values of x and y, as well. 

In Figures 7 and 8, the approximate number of gridlines is set at 20 for both axes. 
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Figure 7. The CBAL item in Figure 1 with a configuration screen. 

 

Figure 8. The CBAL item in Figure 1 with the examinee-produced viewing window. 
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Here are the formulas used to determine the grid width and the actual minimum and 

maximum values of x and y. Let the examinee’s minimum and maximum values for x be minx  

and maxx , and let n be the approximate number of gridlines as set by the item authors and 

reviewers. (Similar calculations hold for the y-axis.) Let max minr x x= − . The grid width g is the 

smallest integer greater than or equal to r n  that equals 1, 2, or 5 times a power of 10. The grid 

width g and the actual minimum and maximum values of x are determined by the following 

equations: 
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 =  × 
   − − = + + +       − −    
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 
= × 
 
 

= × 
   

Gridlines will occur at integer multiples of g.   

Note: In these formulas, x    means the greatest integer less than or equal to x, and x    

means the least integer greater than or equal to x. So, for example, 2.5 2=    and 2.5 3− = −   . 

Also, x  means the absolute value of x and log means the base-10 logarithm. 

The parameters that set the viewing window are already reported to m-rater as part of the 

response; the graph key in m-rater will be modified to score these fields. Item authors and 

reviewers can require the examinee to enter axis labels or not, as they wish, on an item-by-item 

basis. Examinees can be provided with a drop-down list from which to select a label, or they can 

be provided with a text box in which to enter the label as free text. Either way, the student’s 

entry can be scored; a free-text entry would be scored by ETS’s c-rater short-answer scoring 

engine and, thus, must satisfy c-rater’s requirements.  
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M-rater Scoring Advisories 

Breyer et al. (2012) investigated issues related to human/m-rater agreement. In particular, 

they examined situations in which humans and m-rater disagree. While the overall human/m-rater 

agreement was very high (as would be expected), there were some responses for which the 

humans agreed with each other but disagreed with m-rater. As reported in Breyer et al., there are 

five general reasons why humans and m-rater sometimes disagreed: 

• Sometimes the humans made a mistake. 

• Sometimes the humans did not understand complicated rubrics. 

• Humans are more forgiving of typographical errors and other nonconstruct-related 

errors than is m-rater (which is not forgiving at all). 

• Sometimes the equation editor that was being used was unable to generate content 

Mathematical Markup Language (MathML), which is necessary for m-rater scoring.2 

• Sometimes the equation editor generated incorrect content MathML. 

The first two of these bullets represent instances in which the m-rater score is clearly correct and 

the human score is wrong. The third bullet, however, represents instances in which the human 

score, while technically incorrect, may be a better measure of the examinee’s proficiency than 

the m-rater score (which is likely to be 0), and the last two bullets represent instances in which, 

due to MathML conversion problems, the m-rater score could be incorrect.  

Regarding the third bullet, three distinct types of nonconstruct-related errors are common: 

• Keystroke errors—For example, an examinee types an extra decimal point  

( .0.2 0.8p m= +  instead of 0.2 0.8p m= + ). Usually, such a response will be 

syntactically incorrect, and m-rater will be unable to score it. 

• Incorrect variables—For example, an examinee might give an equation in x and y 

even though the item asked for an equation in s and t. If the equation is otherwise 

correct, human scorers may choose to give partial credit or perhaps even full credit. 

• Text entered into equations—A common error is for examinees to attempt to include 

text when entering equations. The text is usually interpreted as additional variables, 

which renders the equation incorrect. 

One approach that would eliminate both problems with incorrect variables and problems 

with text in equations would be to restrict the characters that examinees can enter in the equation 
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editor, so that, for example, examinees could not enter letters that were not appropriate variables 

for the item. Unfortunately, this does not seem possible with the equation editor that CBAL is 

currently using; however, another equation editor, for which this input restriction is possible, is 

being investigated for implementation. If this investigation is successful and CBAL is able to 

implement the new editor, then these types of errors will be eliminated; examinees will only be 

allowed to enter letters that are relevant variables to the item. Note that relevant variables are not 

necessarily the same as correct variables. One might want to allow students to enter certain 

incorrect variables if that error is relevant to the construct being measured (Fife, Graf, Ohls, & 

Marquez, 2008). 

Because m-rater scores the content MathML output of the equation editor, m-rater will 

not be able to score a response if the editor cannot generate content MathML. Breyer et al. 

(2012) found several responses for which content MathML could not be generated but for which 

the human scorers awarded at least some credit for the response. One example occurred with 

responses to an item with the prompt, “Write an expression for the number of minutes it takes to 

make b big greeting cards.” The correct response is the expression 12b, but several students 

attempted to enter “12b min” into the equation editor. The editor interpreted min to be the 

function that returns the minimum of its arguments; because in the expression 12b min there are 

no numbers or variables that can be the arguments of the minimum function, the response cannot 

be encoded into content MathML. 

Finally, as mentioned earlier, incorrect content MathML is sometimes generated. This 

occurs when a mathematical expression can have more than one mathematical meaning. The 

editor must decide which meaning to give the expression, and it did not always choose the 

meaning that CBAL students intended. For example, for one item, the correct response was 6s. 

In one administration of the item, several students responded s(6); the editor interpreted this 

entry to mean that s was a function and s(6) was the value of the function at the argument 6. 

M-rater advisories have now been implemented for responses for which m-rater would 

otherwise give a score of 0 but for which, based on the research described above, it is thought that 

humans might give at least partial credit. These advisories are being issued in the following cases: 

• M-rater cannot parse the response. 

• Content MathML cannot be generated. 

• Unexpected (incorrect) variables are present. 
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• The editor may have generated incorrect content MathML. 

• The presentation MathML contains a line break. 

It is expected that the first bullet will target most responses in which the examinee has made a 

keystroke error. The third bullet will target responses with incorrect variables and also responses 

in which the examinee has attempted to enter text.  

The fourth bullet is based on known examples of incorrect content MathML. The 

incorrect content MathML found in the Breyer et al. study occurred in two types of situations. 

One was the s(6) problem above. The other situation occurred when the examinee used a comma 

as a separator in a large number. In these responses, the editor interpreted the comma as a serial 

comma, indicating the presence of two separate expressions. For example, the linear equation 

20,000m p=  would be interpreted as the two expressions 20m =  and 000 p .  

For each of these situations, it was possible to identify features of the content MathML 

that indicated that the content MathML might be incorrect. To see how this works, here is an 

example of a correct response from the equation editor for the examinee response 6x s+ : 
<eqeditor> 

<math> 
<mrow> 

<mn>6</mn> 
<mi>s</mi> 
<mo>+</mo> 
<mi>x</mi> 

</mrow> 
</math> 
<math> 

<apply> 
<plus/> 
<apply> 

<times/> 
<cn>6</cn> 
<ci>s</ci> 

</apply> 
<ci>x</ci> 

</apply> 
</math> 

</eqeditor> 
The <eqeditor> tag indicates a response from the equation editor CBAL uses. Inside the 

<eqeditor> tag are two <math> tags; the first encloses the presentation MathML, and the 

second encloses the content MathML. The presentation MathML is a straightforward 

representation of the expression as entered by the examinee, but the content MathML represents 



 

19 

the actual mathematics encoded in the expression. There are several things to note. The first is 

that the second <math> tag has only one child, an <apply> tag. This <apply> tag means that 

the expression performs an operation on some number of arguments. The first child tag of the 

<apply> tag specifies the operation, and the remaining child tags are the arguments of the 

operation. In this case, the first child tag is the <plus/> tag, indicating that the operation of 

addition is involved; the two additional child tags indicate that the addition operation is being 

applied to two quantities. The first of these quantities is itself a product, so the corresponding tag 

is another <apply> tag. This <apply> tag also has three child tags; the first indicates that the 

operation is multiplication, and the second and third indicate the quantities being multiplied. 

Note that each <apply> tag has at least three child tags—the first specifies the 

operation, and the remaining specify the quantities the operation is applied to. Now consider the 

response from the equation editor for the examinee response s(6): 
<eqeditor> 

<math> 
<mrow> 

<mi>s</mi> 
<mo>(</mo> 
<mn>6</mn> 
<mo>)</mo> 

</mrow> 
</math> 
<math> 

<apply> 
<ci>s</ci> 
<cn>6</cn> 

</apply> 
</math> 
</eqeditor> 

Again, the presentation MathML represents the expression as it was entered by the examinee. 

But, in the content MathML, the <apply> tag should have three child tags, the first specifying 

the multiplicative operation, and the others specifying the terms being multiplied; the content 

MathML should look like this: 

 <math> 
  <apply> 
   <times/> 
   <ci>s</ci> 
   <cn>6</cn> 
  </apply> 
 </math> 
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Instead the <apply> tag has only two child tags. The first tag specifies an operation that only 

has one argument; that is, s is being treated as a function of one variable. 

It follows that what we have called the s(6) problem produces content MathML 

containing an <apply> tag with only two child tags. Thus, the presence of an <apply> tag in 

content MathML with only two child tags indicates that the content MathML may be incorrect; 

this condition triggers one of the m-rater advisories. 

Of course, an <apply> tag with only two child tags could arise in a perfectly legitimate 

way if the examinee has entered an expression involving a function of one variable, such as the 

square root function or, in more advanced assessments, a trigonometric or logarithmic function. 

Currently there are no CBAL items whose responses require such expressions; however, in the 

future, it will be necessary to revise the code so that standard functions of one variable do not 

trigger the advisory. 

As stated above, the other situation leading to incorrect content MathML is a response 

containing a separator comma. For example, consider the response from the equation editor for 

the examinee response 20,000m p= : 

<eqeditor> 
<math> 

<mrow> 
<mi>m</mi> 
<mo>=</mo> 
<mn>20</mn> 
<mo>,</mo> 
<mn>000</mn> 
<mi>p</mi> 

</mrow> 
</math> 
<math> 

<apply> 
<eq/> 
<ci>m</ci> 
<cn>20</cn> 

</apply> 
<apply> 

<times/> 
<cn>000</cn> 
<ci>p</ci> 

</apply> 
</math> 

</eqeditor> 
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In this example, even the presentation MathML does not get the expression entirely correct, in 

that it fails to treat 20,000 as a single number. More serious, though, is the fact that in the content 

MathML, the <math> tag has two <apply> tags, one for the equation 20m =  and the other 

for the product 000 p . A <math> tag with more than one <apply> tag indicates a response 

that has been interpreted as a series of expressions, and, therefore, this condition indicates 

content MathML that may be incorrect. Thus, a <math> tag with more than one <apply> tag 

also triggers an m-rater advisory. 

In this case, we do not have a concern that the advisory could be triggered by a legitimate 

response. Because m-rater cannot score a response containing multiple expressions or equations, 

a legitimate response to an item intended for m-rater scoring will never contain more than one 

expression. 

Note that there is no way to preprocess a response to remove the commas. Examinees 

enter their responses directly in the equation editor, which records the responses in presentation 

MathML, converts the presentation MathML to content MathML, and returns the presentation 

and content MathML. The content MathML is then processed for m-rater scoring. By the time 

m-rater receives the response (in the form of content MathML), the damage has already been 

done. 

Note also that if we are able to implement a new equation editor that allows us to prevent 

examinees from entering certain characters, we will be able to prevent examinees from entering 

commas altogether, and this particular problem will no longer occur. 

Finally, in the course of implementing advisories related to the first four bullets noted 

above, it was discovered that if the examinee has entered a line break in the response, the content 

MathML that is generated will not encode the line break; instead, it will juxtapose the two lines. 

Thus, if the examinee enters  

2
3

x
y
=
=  

the equation editor will generate content MathML for the expression 2 3x y= = . A later version 

of the editor may have corrected this problem (and the problem may not afflict other editors), but 

that does not matter because m-rater cannot score multiline responses, anyway. 
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Whenever a response falls into one of these categories, m-rater will now issue an 

advisory suggesting that the response should be human scored.  

M-rater Scoring Models 

Several items in the 2012 CBAL mathematics multistate pilot data were scored by m-rater, 

but most of these items had been previously administered and scored using m-rater; hence, 

existing models could be used for scoring. Two items, however, required new scoring models. 

These two items were Smart Phones Part 2 Item 2 and Heights and Growth Part 2 Item 4. Both of 

these scoring models had some interesting features that are worth noting. 

Smart Phones Part 2 Item 2 

The item is shown in Figure 9. This is a graphing item in which the examinee is asked to 

plot four points. The interesting feature here is that the snap-to-grid feature of the graph editor was 

disabled. When the snap-to-grid feature is enabled, the examinee can only click grid points; when 

the examinee clicks somewhere inside the grid, the point snaps to the nearest grid point. For 

example, in the item in Figure 1, if the examinee wants to click the two points (4, 22) and (6, 18), 

the examinee can click anywhere on the graph close to (4, 22), and the point (4, 22) will be 

recorded. The examinee does not need to click (4, 22) exactly. As a result, examinee responses are 

precise, and scoring models can be written with the assumption that the examinee will provide 

precise responses. 

The downside to snap-to-grid, however, is that when snap-to-grid is enabled, the item can 

only ask that grid points be plotted. As a result, items that use real data are problematic; they are 

frequently impossible to configure in a way that meets the grid-point constraint. An example is 

the Smart Phones item in Figure 9. If the graph editor were configured so that the four points to 

be plotted are grid points, then there would need to be a gridline at every unit along the y-axis; 

hence, there would need to be 1,500 horizontal gridlines. Clearly, this would make the graph 

unreadable. So, for this task, snap-to-grid was disabled. As a result, however, examinees cannot 

be expected to plot points with precision. To plot the point (12, 168), for example, the examinee 

must estimate where 168 is along the y-axis; as a result, an examinee may, for example, plot the 

point (12, 165) or (12, 171) instead of (12, 168).3 
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Figure 9. Smart Phones Part 2 Item 2. 

Actually, this task was made more difficult by the poor choice of horizontal gridlines. 

With the graph in its current configuration, the student must estimate where along the line, from 

0 to 375, the number 168 falls—an interesting mathematical problem but not the skill that the 

item is intended to measure. A better choice of horizontal gridlines would have been to have a 

gridline every 100 units; see Figure 10. As a result of the current configuration, the level of 

precision in the student responses was quite low. For example, let ( )1 1,x y  be the point a 

particular examinee plots for (12, 168). Figure 11 shows the distribution of the values of 1x  and 

1y  in the examinee responses collected in the pilot.4 As one can see, the values for both 1x  and 

1y  have a fairly large range, though most of the values cluster around 12 and 168. More detailed 

views, however, show that, while almost all of the 1x  values fall between 11.8 and 12.2, the 1y  

values are more spread out, with more values falling between 140 and 150 and between 190 and 

200 than between 160 and 170; see Figure 12 and Figure 13. 
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Figure 10. The Smart Phones item with a better choice of horizontal gridlines. 

  

Figure 11. The distribution of x1 and y1 values in examinee responses, with x1 ranging from 

0 to 24 in increments of 2 and y1 ranging from 0 to 1200 in increments of 100. 
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Figure 12. The distribution of x1 and y1 values in examinee responses, with x1 ranging from 

11.0 to 13.0 in increments of 0.2 and y1 ranging from 100 to 300 in increments of 20. 

  

Figure 13. The distribution of x1 and y1 values in examinee responses, with x1 ranging from 

11.0 to 13.0 in increments of 0.1 and y1 ranging from 100 to 300 in increments of 10. 

Writing the scoring rubrics. In any event, the fact that, even in the best of circumstances, 

examinees could not be expected to plot the points with precision meant that the scoring model for 

this item needed to establish a tolerance for each point, within which responses would be 

considered correct. For example, any point ( ),x y  for which 12x δ− ≤  and 168y ε− ≤  for 
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suitable δ and ε would be considered as being a correct plotting of the point (12, 168). When we 

had collected about 400 responses, histograms were prepared, similar to the ones here, showing the 

distribution of the x and y values corresponding to the four points to be plotted. From these 

histograms, members of the CBAL mathematics team established the tolerances for each point. 

Writing scoring rubrics presented other challenges, as well. What if an examinee plotted 

more than four points? An examinee could plot as many as 15 points. One early version of the 

rubrics would have given full credit to a response containing four correct points and 11 incorrect 

points. Or, what if an examinee tried to plot the same point more than once? Although the graph 

editor does not allow an examinee to plot exactly the same point more than once, the tolerances 

established in the scoring rubrics create a rectangle around each of the target points, so that any 

point plotted inside that rectangle counted as a correct point. Thus, a scoring rubric that says, 

“Four points are plotted and they are all correct” would give full credit to a response that 

effectively tries to plot the same point as four different instances within the target rectangle. 

The mathematics team finally agreed on the following rubrics: 

• 2 points if each of the four points is plotted correctly, with no additional points 

• 1 point if three of the four points are plotted correctly, with no additional points 

• 0 points otherwise 

Implementing the scoring rubrics. To implement these rubrics, they were translated 

into concepts and scoring rules (Fife, 2012). A concept is a feature of the response whose 

presence justifies awarding the response full or partial credit. For example, one concept might be 

the correct equation, numeric response, or graph; another could be a response that is to be 

awarded partial credit. A scoring rule is a rule of the form 

Any n of Concepts x, …, z is worth m points. 

For example, a scoring rule might say, “Any 2 of Concepts 1, 2, and 3 is worth 1 point.” This 

framework of concepts and scoring rules was originally developed for c-rater (Sukkarieh & 

Blackmore, 2009) and adapted for m-rater when m-rater was integrated with c-rater (Fife, 2011).  
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For the Smart Phones item, the scoring rubrics were translated into these concepts and 

scoring rules: 

Concepts 

1.   Point 1 plotted within tolerance 

2.   Point 2 plotted within tolerance 

3.   Point 3 plotted within tolerance 

4.   Point 4 plotted within tolerance 

5.   More than 4 points plotted 

Scoring rules 

1.   Any 1 of {5} is worth 0 points. 

2.   Any 4 of {1-4} is worth 2 points. 

3.   Any 3 of {1-4} is worth 1 point. 

Heights and Growth Part 2 Item 4 

This item is shown in Figure 14. The examinee is shown a scatter plot and is asked to 

draw a “line of best fit” for the data. The examinee is not expected to calculate the actual least-

squares regression line; rather, he or she is expected to plot a line that visually seems to fit the 

data reasonably well.  

We have had mixed experience with both the human scoring and the automated scoring 

of such items. We administered a similar task in 2008 as part of the extended task Dams and 

Drought. The responses were double human scored on a 3-point scale (0–2). But, the scoring 

rubrics were not clear as to what would constitute a 2-point response and what would constitute a 

1-point response. As a result, the human-human agreement was poor; the proportion of exact 

agreement was 0.66A = , Cohen’s kappa was 0.56κ = , and the quadratic-weighted kappa was 

QWK = 0.56 (n = 32).  
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Figure 14. Heights and Growth Part 2 Item 4. 

Because the score awarded to a response depends on how close the response line is to the 

actual line of best fit, a precise measure of closeness is required to score the responses with m-

rater. Because m-rater calculates the slope m and the y-intercept b of each response, establishing 

independent tolerances on m and b for each score point and scoring the responses based on these 

tolerances might seem like a reasonable approach. This approach, however, could lead to 

inappropriate scores. For example, the line of best fit for the data in the Dams and Drought item 

is the line 10.4173 329.3009y x= − + ; Figure 15 shows the data and the line of best fit. Figure 16 

shows the data and two other lines: 12 350y x= − +  and 9 310y x= − + . Both of these responses 

were assigned a score of 2 by content experts. Hence, if scores were based on tolerances for m 

and b, then −9 and −12 would be within the tolerance for m, and 310 and 350 would be within 

the tolerance for b. It follows that the response 12 310y x= − +  would be assigned a score of 2. 

But, see Figure 17; not surprisingly, content experts assigned a score of 0 to this response. 
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Figure 15. Dams and Drought—The data and the line of best fit y = −10.4173x + 329.3009. 

 

Figure 16. Dams and Drought—The data and the lines y = −12x + 350 and y = −9x + 310. 
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Figure 17. Dams and Drought—The data with the line y = −12x + 310. 

An alternative approach might be to create an m-rater scoring model based on the relative 

difference between the root mean square deviation (RMSD) of the examinee’s line and the 

RMSD of the actual line of best fit. Let n denote the number of data points on the scatter plot and 

let ( ),i ix y  denote the ith data point. If the examinee’s response is the line y mx b= + , then the 
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A large collection of simulated responses was generated and d calculated for each 

response. Members of the CBAL mathematics team then established cut points for each of the 

score levels. It was decided to score on a 4-point scale (0–3), so three cut points were selected; 

see Table 1. Thus, a response would receive a score of 3 if 0.36d < , a score of 2 if 

0.36 0.6012d≤ < , and so on. Because the human/human agreement for this rubric was poor, and 

because the human scoring and the m-rater scoring were on different scales, no attempt was 

made to determine human/m-rater agreement. 

Table 1  

Cut Points for Dams and Drought Item 

Score point Cut point 
3 0.36 
2 0.6012 
1 1.096 

A similar item was administered in December 2009 as part of the Bigfoot task. Again, the 

responses were double human scored on a 3-point scale (0–2), and they were scored by an m-rater 

model based on cut points in the d-metric established by members of the CBAL mathematics team, 

using simulated response. This time, the human/human agreement was quite good (A = 0.94,  

κ = 0.88, QWK = 0.91; n = 110), but the human/m-rater agreement was poor (see Table 2). 

Clearly, the cut points based on simulated responses did not align with human scoring. However, 

when the human scores of the actual student responses were used to establish cut points in the  

d-metric, it was possible to simulate m-rater scores that yielded human/m-rater agreements in line 

with the human/human agreement (see Table 3). 

Table 2  

Human/M-rater Agreement Using Simulated Responses to Set Cut Points 

 Human 1/m-rater Human 2/m-rater 
Exact agreement 0.41 0.42 
Cohen’s kappa 0.29 0.29 
Quadratic-weighted kappa 0.60 0.59 
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Table 3  

Human/M-rater Agreement Using Actual Student Responses to Set Cut Points 

 Human 1/m-rater Human 2/m-rater 
Exact agreement 0.97 0.93 
Cohen’s kappa 0.95 0.86 
Quadratic-weighted kappa 0.96 0.89 

The next time a line-of-best-fit item was administered was in December 2010. Heights 

and Growth Part 2 Item 4 was administered to 125 examinees. The responses were double human 

scored on a dichotomous scale; no m-rater scoring model was written at that time. When the 

Heights and Growth task was included in the 2012 mathematics multistate pilot, it was decided to 

write a scoring model using the d-metric based on the human scores from December 2010. 

Unfortunately, the human/human agreement this time was not good. Rater 1 was a good bit more 

generous than Rater 2; of the 125 responses, there were 22 for which Rater 1 gave a score of 1 

and Rater 2 gave a score of 0. (There were no responses for which Rater 2 gave a score of 1 and 

Rater 1 gave a score of 0.)5 While the proportion of agreement was not bad (A = 0.82), Cohen’s 

kappa was quite low (κ = 0.56). A third human rater has scored the responses on which the first 

two raters disagreed; in effect, the final human score was H1 when H1 and H2 agreed and H3 

when H1 and H2 did not agree. When the final human scores were used to establish the d-metric 

cut point, it was possible to produce simulated m-rater scores that yielded a human/m-rater 

agreement of A = 0.93 and κ = 0.75.  

However, the final human scores were not consistent; there were five identical responses 

of which three had a final human score of 1 and two had a final human score of 0. The 

inconsistency was both internal with Rater 1 and external between Rater 2 and Rater 3. Rater 2 

gave all five responses a score of 0. Rater 3 scored the three responses for which Rater 1 gave a 

score of 1 and agreed with Rater 1 (disagreeing with Rater 2) on all three scores. If the two 

scores of 0 were changed to 1, the human/m-rater agreement increased to A = 0.94 and κ = 0.80. 

At this point, a member of the CBAL mathematics team wrote analytic rubrics for this 

item based on the y-coordinates of the left and right endpoints of the line segment plotted—that 

is, the y-coordinates of the points on the line whose x-coordinates are 30.5 and 36.0 (see Figure 

18). If Ly  and Ry  denote the y-coordinates of the left and right endpoints, respectively, then, 

according to these analytic rubrics, a response is scored as correct if 60 61Ly≤ ≤  and 
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67 68Ry≤ ≤  or if 61 62Ly≤ ≤  and 66 67Ry≤ ≤ . (The response in Figure 18 satisfies the first 

of these two conditions and, hence, would be scored as correct.) These scoring rubrics can be 

easily encoded in an m-rater model, so it was decided to base the scoring model on these rubrics 

rather than on the d-metric and human scores.  

 

Figure 18. A sample response to Heights and Growth Part 2 Item 4. 

One final note regarding this item: although it is not visible, the graph editor was 

configured incorrectly when the item was authored on-screen. As can be seen from Figure 14 and 

Figure 18, the viewing window is defined by the inequalities 30.5 36.0x≤ ≤ , with gridlines 

every 0.5 unit, and 59 68y≤ ≤ , with gridlines every 1 unit. But, in the underlying code in the 

graph editor, the parameters were set so that x ranged from 0 to 11 with gridlines every 1 unit, 

and y ranged from 0 to 234 with gridlines every 26 units. Responses were reported to m-rater 

based on the configuration hidden in the code and not the configuration that was visible on the 

screen; thus, a transformation had to be applied to the response data before those data could be 

scored. Applying this transformation was not difficult, but it did increase the chance of error. For 

a subsequent administration, the item was reauthored with the correct configuration in the 

underlying code. 
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Implications for Further Research 

The work described in this paper has several implications regarding further research: 

Examinee Performance When Examinees Must Select the Viewing Window 

How well will examinees perform when they must select the viewing window in a graph 

item? What will be the effect on the examinee scores? Will items requiring that the viewing 

window be set be as informative as items with a fixed viewing window? Care must be taken the 

first time this feature is used. It might be useful to create parallel versions of tasks, with one 

version requiring that the examinee set the viewing window and the other version not. 

How to Score Curves? 

The graph editor allows examinees to enter curves by plotting selected points; the editor 

then connects the points with a smooth curve. But, the graphing key does not score general 

curves; it only scores graphs of quadratic functions. This graphing key was based on a key 

developed for a previous state assessment program, which only asked for the plotting of points, 

lines, graphs of piecewise-linear functions, and graphs of quadratic functions. How should 

general curves be scored? What features of the curve do we want to score? Do we need the 

capability of graphing curves that have cusps? We need to answer these questions in the context 

of specific design considerations and specific items. We may soon have an opportunity to look at 

these questions in CBAL as the mathematics component expands its efforts from middle school 

to high school algebra. 

How to Score Line-of-Best-Fit Questions? 

What is the best way to do this scoring? If the item has analytic rubrics, then those rubrics 

can be encoded in an m-rater scoring model. If the item has holistic rubrics, it may be possible to 

use the human scores to set cut points on the d-metric, but the reliability of human scores appears 

to vary widely for this type of item. 

M-rater Advisories: Too Many False Positives? 

M-rater advisories can now be issued for certain categories of responses which m-rater 

either cannot score or would always score as 0. These categories include responses that m-rater 

cannot parse, responses for which the equation editor cannot produce content MathML, and 

responses for which the equation editor is likely to produce incorrect content MathML. Human 



 

35 

scoring will be recommended on the assumption that humans will often choose to give the 

response some credit.  

What Is the Best Interface for Entering Equations? 

Many of the problems leading to advisories are due to problems with the equation editor 

that CBAL currently uses. Are there better choices for an interface in which examinees can enter 

their responses? As stated earlier, a different equation editor is being investigated for use with 

CBAL; this editor can be configured to restrict examinee input. Additionally, the advent of tablet 

computers and of handwriting-recognition software suggests other possibilities. 

Does Entering Mathematics Questions Online Change the Construct Being Tested? 

When the response to a task requires writing an equation, how does asking examinees to 

enter the equation on a computer instead of writing it on paper change what is being measured? 

Gallagher, Bennett, Cahalan, and Rock (2002) found no evidence that the use of an equation 

editor negatively affected student performance, but the students in their study were prospective 

graduate students in quantitative fields. So far, there seems to have been little attention paid to 

the issue of how middle school students relate to equation editors. 

Conclusion 

Several important enhancements were made to m-rater in 2012—the scoring engine was 

enhanced with the addition of a computer algebra system, enhancements were made to the graph 

editor to correct a problem with the graphing of smooth functions and to allow assessment 

specialists to require examinees to determine the viewing window before responding to an item, 

and advisories are now issued when m-rater either cannot score a response or is likely to produce 

an incorrect score due to MathML conversion problems.  

When examinees determine the viewing window in the graph editor, snap-to-grid must be 

disabled because examinees cannot be expected to necessarily select a viewing window for 

which the points to be plotted are always grid points. In 2012, the CBAL initiative administered 

for the first time a graphing item with snap-to-grid disabled. The scoring rubrics needed to 

specify tolerances for each point to be plotted (an x-tolerance and a y-tolerance). These 

tolerances were selected by test developers based on the distribution of responses for a sample of 

examinees. 
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Line-of-best-fit items are another class of questions whose automated scoring requires the 

examination of a sample of responses. Over the past several years, we have tried various 

methods of scoring these items. The items are easy to score if there are analytic rubrics that give 

determinative scores for each response. In the absence of such rubrics, the best method may be to 

use human scores to establish cut points on the d-metric, although the reliability of this method 

depends on the reliability of the human scoring. 

As CBAL expands its focus to include high school algebra, and as Common Core 

assessments are developed, new task types with their own challenges will emerge. One of these 

challenges will be to develop the specifications for scoring graphs of smooth functions. Another 

challenge, both for new task types and for old task types, is the proper use of m-rater advisories. 

Finally, the search continues for the best interface for capturing student responses when the 

response is an equation and for a better understanding of the measurement implications of asking 

examinees to respond on a computer instead of on paper. 
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Notes 
1 Alchemist is ETS’s online software tool for writing m-rater scoring models. 

2 MathML is a markup language, similar to XML or HTML, that can capture the presentation 

and the content of a mathematical expression. There are actually two versions of MathML. 

Presentation MathML captures how an expression is displayed without regard to its 

mathematical content; content MathML captures the mathematical meaning of an expression 

without regard to its display. CBAL uses a third-party equation editor in which examinees 

enter their responses. The editor records the response in presentation MathML, converts the 

presentation MathML into content MathML, and then returns both the presentation and the 

content MathML. For scoring, the content MathML is converted into a form that m-rater can 

score. 

3 As explained earlier, snap-to-grid will need to be disabled whenever the viewing window is to 

be determined by the examinee, because, depending on how the examinee selects the 

gridlines, the correct responses (the responses that the examinee needs to plot) may not 

correspond to grid points. 

4 The graph editor was configured so that the students could plot the points in any order, and the 

points are not labeled to indicate which point goes with which point. As a result, the first point 

plotted by an examinee was not necessarily intended to be the point ( )12,168 . Furthermore, 

examinees could plot more than four points, and some did plot more than four points. For the 

purposes of this analysis, I only looked at the first four points each examinee plotted, and I 

assumed that the point whose x-coordinate was closest to 12 was the intended ( )12,168 . 

5 Rater 1 and Rater 2 were the same two individuals for all responses.  
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Appendix 

Proofs of Theorems 1 and 2 

Theorems 1 and 2 follow from the following theorem: 

Theorem 0. Let ( )0 0,x y , ( )1 1,x y , …, ( ),n nx y  be 1n +  points in the plane, with  

0 1 nx x x< < < . Let f be a Hermite cubic spline through the points such that 0im =  if 1 0i is s + ≤  

for 1, , 1i n= − . (If 1 0i is s + > , then im  can be any number between is  and 1is + .) Let 

1, . 1k n= −  be such that 1k ky y −>  and 1k ky y +> . 

(a) If 3k km s> , the cubic polynomial kf  defined on the interval [ ]1,k kx x−  has a local 

minimum at kx . 

(b) If 3k km s≤ , the cubic polynomial kf  defined on the interval [ ]1,k kx x−  has a local 

maximum at kx . 

(c) If 1 13k km s+ +< , the cubic polynomial 1kf +  defined on the interval [ ]1,k kx x +  has a local 

minimum at kx . 

(d) If 1 13k km s+ +≥ , the cubic polynomial 1kf +  defined on the interval [ ]1,k kx x +  has a local 

maximum at kx . 

Before proving Theorem 0, I mention the following lemma and its corollary: 

Lemma. If a quadratic polynomial f has two roots, x r=  and x s= , then ( )( )2 0f r s′ + = . 

Corollary. If a cubic polynomial has two critical points, x r=  and x s= , then  

( )( )2 0f r s′′ + = .  

Proof of Theorem 0. Because 1k ky y −>  and 1k ky y +> , it follows that 0ks >  and 1 0ks + < . Hence, 

1 0k ks s + <  and, therefore, ( ) ( )1 0k k k k kf x f x m+′ ′= = = . Because ( ) ( )2 6i i i if x c d x x′′ = + − , it 

follows that ( ) 2 6k k k k kf x c d h′′ = +  and ( )1 12k k kf x c+ +′′ = . Because 0km = , it follows from the 

formulas for ic and id  given previously that ( )13 2k k k kc s m h−= − , ( )1 1 1 13k k k kc s m h+ + + += − , and 

( ) 2
1 2k k k kd m s h−= − . Therefore,  
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1
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h h
− + +

+
+

− −′′ ′′= = . 

If 1 3k km s− > , it follows that ( ) 0k kf x′′ > . Because ( ) 0k kf x′ =  and ( ) 0k kf x′′ > , it follows 

from the second derivative test that kf  has a local minimum at kx . This proves part (a). 

If 1 3k km s− < , it follows that ( ) 0k kf x′′ < . Because ( ) 0k kf x′ =  and ( ) 0k kf x′′ < , it follows 

from the second derivative test, again, that kf  has a local minimum at kx .  

If 1 3k km s− = , then ( ) 0k kf x′′ =  and the second derivative test does not apply, but I can still 

show that, restricted to the interval [ ]1,k kx x− , the cubic polynomial kf  has a local maximum at 

kx . I shall show this by contradiction; suppose that it does not. The polynomial kf  attains its 

maximum on the interval [ ]1,k kx x−  at a point [ ]1,k ku x x−∈ . If ku x= , then kf  would have a local 

maximum at kx . Because I am assuming it does not, it follows that ku x≠ . Because 

( ) ( )1 1k k k k k kf x y y f x− −= < = , the polynomial cannot attain its maximum at 1kx − , either, and 

hence 1ku x −≠ . Therefore, 1k kx u x− < < . Hence, ( ) 0kf u′ = . Because ( )k kf x′  = 0, it follows from 

the corollary to the lemma that ( )( )2 0kf u x′′ + = . Because ( ) 0k kf x′′ =  and ( ) 2k ku x x+ ≠ , this 

implies that the linear polynomial kf ′′  has two roots, which is not possible. Thus, restricted to the 

interval [ ]1,k kx x− , the polynomial kf  has a local maximum at kx . This completes the proof of 

part (b). 

The proofs of parts (c) and (d) are similar.  ■ 

There is also a version of Theorem 0 that applies when 1k ky y −<  and 1k ky y +< . Its 

statement and proof are left to the reader. 

Proof of Theorem 1. To prove part (a), suppose 1k >  and 1 5k ks s− > . Because 1k ky y −> , it 

follows that 0ks > ; hence, 1 5 0k ks s− > > . Thus, 1 0k ks s− >  and, therefore,  

 1
1

5 3
2 2

k k k k
k k

s s s sm s−
−

+ +
= > = . 

Therefore, by part (a) of Theorem 0, the cubic polynomial kf , defined on the interval [ ]1,k kx x− , 

has a local minimum at kx . It follows that the spline cannot have a local maximum at kx . 
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The polynomial kf  attains a maximum on the interval [ ]1,k kx x−  at a point [ ]1,k ku x x−∈ . 

Because kf  has a local minimum at kx , and because 1k ky y− < , it follows that 1k kx u x− < < . 

Thus, the spline has a local maximum at a point ku x< . This proves part (a). 

The proof of part (b) is similar, using part (c) of Theorem 0. 

To prove part (c), first suppose 1 1k n< < − , 1 5k ks s− ≤ , and 2 15k ks s+ +≥ . As in part (a), 

0ks > . If 2 1k ky y− −≥ , then 1 0ks − ≤  and, hence, 1 0 3k km s− = < . Otherwise, 2 1k ky y− −< . In this 

case, 1 0ks − >  and an argument similar to that in the proof of part (a) shows that 1 3k km s− ≤ . 

Therefore, by part (b) of Theorem 0, the cubic polynomial kf , defined on the interval [ ]1,k kx x− , 

has a local maximum at kx .  

Similarly, because 2 15k ks s+ +≥ , it follows that 1 13k km s+ +≥ , and, hence, by part (d) of 

Theorem 0, the cubic polynomial 1kf + , defined on the interval [ ]1,k kx x + , has a local maximum at 

kx . Therefore, the spline f has a local maximum at kx . 

Now, suppose 1k =  and 3 25s s≥ . Because 0 1 12m s m= − , 1 0m = , and 1 0s > , it follows 

that 0 1 12 3m s s= < . Thus, 1f , defined on the interval [ ]0 1,x x , has a local maximum at 1x . 

Because 3 25s s≥ , it follows as above that the cubic polynomial 2f  has a local maximum at 1x . 

Therefore, the spline f has a local maximum at 1x .  

The case 1k n= −  and 1 15n ns s− −≤  is similar. 

Finally, suppose the spline f has another local maximum at a point ( )1 1,k ku x x− +∈ , where 

ku x≠ . We may assume without loss of generality that ku x< . Then 1k kx u x− < < , and, therefore, 

( ) 0kf u′ = . The cubic polynomial kf  attains a minimum on the interval [ ], ku x  at some point 

[ ], kv u x∈ . Because kf  has local maxima at u and kx , it follows that ku v x< < , and, therefore, 

( ) 0kf v′ = . But this means that the quadratic polynomial kf ′  has three roots, u, v, and kx , which 

is not possible. Therefore, the spline f cannot have another local maximum on the interval 

( )1 1,k kx x− + . 

This completes the proof of part (c), and, with it, the proof of Theorem 1.  ■ 
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Proof of Theorem 2. To prove part (a), suppose that 1k ky y −>  and 1k ky y +> . Because 1k ky y −> , 

it follows that 0ks > . If 1k >  and 2 1k ky y− −≥ , then, as in the proof of Theorem 1(c), 1 3k km s− < . 

On the other hand, if 2 1k ky y− −< , then 1 0ks − >  and, therefore, 

 
( )11

1
1 1

22 2 3k k kk k
k k k

k k k k

s s ss sm s s
s s s s

−−
−

− −

+
= < = <

+ +
. 

Finally, if 1k = , then 0 1 12 3m s s= <  as before, because 1 0m = . So, in all cases 1 3k km s− < , and, 

therefore, by Theorem 0, the cubic polynomial kf , defined on the interval [ ]1,k kx x− , has a local 

maximum at kx . 

Similarly, the cubic polynomial 1kf + , defined on the interval [ ]1,k kx x + , has a local 

maximum at kx , It follows that the spline f has a local maximum at kx . 

The proof that f does not have another local maximum in the interval ( )1 1,k kx x− +  is 

identical to the corresponding proof in Theorem 1(c). This completes the proof of part (a). 

The proof of part (b) is similar, using the version of Theorem 0 that is applicable when 

1k ky y −<  and 1k ky y +> . This completes the proof of Theorem 2.  ■ 
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