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Abstract 

To assess the value of individual students’ subscores on the Major Field Test in Business (MFT 

Business), I examined the test’s internal structure with factor analysis and structural equation 

model methods, and analyzed the subscore reliabilities using the augmented scores method. 

Analyses of the internal structure suggested that the MFT Business measures a unidimensional 

construct, which does not support reporting individual students’ subscores. Augmented score 

analyses revealed that the observed total score could approximate the true subscore more 

accurately than the observed subscores, which do not support reporting individuals’ subscores 

either. The results from these two approaches provided consistent evidence in support of the 

current practice of not reporting individuals’ subscores on the MFT Business. The relationship 

between the two approaches is discussed, followed by a recommendation of an alternate method 

for future research. 
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Background 

Scores on the subscales (or subdomains) of a test may provide students and test score 

users with more specific and detailed information on individuals’ performance than the total 

score alone provides. This type of score becomes more important when a test measures multiple 

content areas or multiple underlying constructs. For example, a college exit test for 

undergraduate business majors may contain items related to different aspects of business 

knowledge or skills, such as accounting, economics, management, quantitative and information 

systems, and so on. Students, teachers, and parents may be interested in knowing the competence 

levels reflected in each of these aspects, in addition to the total test scores. A score can be 

derived from a subset of items that cover a particular aspect of business knowledge (or a subset 

of items that measure a common subconstruct), which is often called a subscore (ETS, 2000; see 

also Ferrara & DeMauro, 2007).  

In recent years, there have been increasing demands for the reporting of subscores, 

especially individual students’ subscores. Goodman and Hambleton (2004) reviewed the 

standardized tests in 11 U.S. states and two Canadian provinces, as well as three U.S. testing 

companies, and found they all provided certain information at the subdomain level (i.e., 

individual students’ subscores). Haladyna and Kramer (2005) also found that subscores of 

different content areas, subdomains, and so on, are in great demand by stakeholders, regardless 

of the original purpose of the test when it was first developed. 

This trend of increasing interest in subscores leads to a series of questions regarding the 

value of subscores, for example, whether subscores should be reported and what type of evidence 

is needed to support such practices. These questions have resulted in a broad discussion among 

different stakeholders and different score users (Ferrara & DeMauro, 2007). On one hand, having 

the subscores available and reported would make the test more appealing in the market by 

satisfying the strong demand from teachers, parents, and students. On the other hand, test 

developers and psychometricians may insist that subscores be prepared and examined carefully 

(as are the total scores) before being reported or being used in a particular context. From this 

perspective, empirical and theoretical evidence may be deemed necessary in support of subscore 

reporting practices. 

Several steps would be required during the test development procedure to facilitate the 

reporting of individual students’ subscores (ETS, 2000; Ferrara & DeMauro, 2007). For 
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example, it is necessary to ensure that each content or domain area, if it is intended to report its 

subscore, is well represented with equal or comparable numbers of items and sound 

psychometric properties (e.g., acceptable reliability; ETS, 2000). 

When a test is not originally designed to report individual students’ subscores, a post hoc 

evaluation is necessary if it is later decided to report subscores. Different methods and 

perspectives may be considered in these cases. As it is for the total score, high reliability is 

always required for a subscore. For example, Ferrara and DeMauro (2007) recommended that a 

subscore be reported if it has a high reliability (i.e., an internal consistency reliability estimate of 

.85 or higher) and does not correlate highly with other subscores; a subscore with a low 

reliability should not be reported. 

However, as reliability is a statistic sensitive to test length (number of items; see 

Nunnally & Bernstein, 1994), the reliability of an observed subscore is often lower than that of 

the total test. Researchers have developed several methods to improve subscore reliability using 

statistical models. For example, Yen (1987) suggested an objective performance index (OPI) to 

combine information from all items in the test to estimate the true score on a subset of items 

from the same objective (subject, content, or domain). Wainer et al. (2001) developed a similar 

method, called the augmented scores method, which borrows information from all subscores to 

estimate the true score of a given subscale. The main difference between these two methods is 

that the OPI is based on the proportion of correct scores, while the augmented scores method is 

based on the observed number of correct scores. 

The test’s internal structure needs to be considered in addition to subscores’ reliabilities. 

As Messick (1989, p. 43) pointed out, reported scores should be reasonably consistent with what 

is known about the structural relations of the construct in question (see also Loevinger, 1957). 

The inter-item relationship structure should reflect the nature and dimensions of the construct or 

domain, which should also be captured at the level of test scores and their interpretations 

(Messick, 1989, p. 43). The internal structure of the test could provide information related to 

what content or construct subareas are implied in the test design, how they are measured, and 

what the interrelationships are; it could determine if all test items or a subgroup of them should 

be summarized and reported in the form of a score (Peak, 1953). Understanding the internal 

structure would help to interpret the test scores as well as the subscores. For example, a single 

total score often implies a unidimensional construct or structure of the test, while a combination 
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of subscores and composite scores implies a hierarchical structure or multidimensional structure 

(Messick, 1989, p. 44).  

The subscore’s reliability and the test’s internal structure both seem necessary when 

considering reporting subscores for a test. However, little empirical study can be found in the 

literature that has addressed or investigated the relationship between them. It is necessary to 

compare these two approaches and to see if they could provide consistent answers to the question 

related to subscore reporting. Three research questions are explored in this study, using the 

Major Field Test in Business (MFT Business) as an example: 

1.   Should the subscores be reported based on the augmented score analysis? Or more 

specifically, do individuals’ observed content-based subscores approximate the true 

subscores more accurately than the augmented scores, for example, from the observed 

total score?  

2.   What is the internal structure of the MFT Business? Does it support the reporting of 

individual students’ content-related subscores? 

3.   Do the answers provided by the two methods agree with one another? 

Methods 

Instrument and Data 

MFT Business (ETS, 2008) is a comprehensive outcomes assessment of basic, critical 

knowledge obtained by students in a business major (e.g., for a bachelor’s degree). Students take 

the Major Field Test after they successfully complete the major-required courses, typically in the 

last year of college study. The test includes 120 multiple-choice items in total. These items cover 

seven subdomains of business knowledge and skills. The seven subdomains or content areas are: 

(a) S1 - accounting, (b) S2 - economics, (c) S3 - management, (d) S4 - quantitative business 

analysis and information systems, (e) S5 - finance, (f) S6 - marketing, and (g) S7 - legal and 

social environment. The number of items varies from 12 to 21 across the seven subscales.  

Two types of scores are currently reported for the MFT Business: individuals’ total test 

scores and the aggregate-level subscores—the assessment indicators (AIs; see ETS, 2008). The 

total test scores of individuals are scaled between 120 and 200 from the observed number of 

correct scores. Assessment indicators are the average scores (on a scale of 20 to 100) in a 

particular content subdomain for a group of students, equivalent to the average subscore of all 
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students in a class, in a program, or of an institution for a particular content subdomain (ETS, 

2008). The aggregate-level subscores indicate the mastery level of business knowledge for 

students who are nested in a group (i.e., as a class or a program) instead of the mastery level for 

an individual student. The MFT Business presently does not report individual students’ 

subscores. 

The data came from the MFT Business administered between 2002 and 2006, including a 

total of 155,235 students who took the test (the same form) during this time period and provided 

a response to every item. Each individual item was scored as 1 if correct and as 0 if incorrect. 

The total number of correct responses in the test is counted as the total score. Similarly, the 

number of correct responses in each subscale is counted as the subscore. Table 1 displays the 

descriptive statistics for the total test and each subscale, using number-correct scores.  

Table 1 

Subscales and Relevant Statistics 

 Subscale  

 Account. 
(S1) 

Econ. 
(S2) 

Mgmt. 
(S3) 

Quant. 
(S4) 

Finance
(S5) 

Mktg. 
(S6) 

Legal 
(S7) 

Total 
test 

Number of items 21 20 19 19 13 14 12 118 

Mean 9.37 8.57 10.95 10.79 4.75 6.48 6.02 56.92 

SD 3.50 3.22 3.30 3.27 2.28 2.27 2.16 14.98 

Corr. with total score .78 .78 .78 .81 .69 .66 .67 — 

Cronbach’s α .64 .60 .64 .65 .53 .44 .43 .89 

Expected reliabilitya .57 .55 .54 .54 .45 .47 .43  

Note. Account. = accounting; Econ. = economics; Mgmt. = management; Quant. = quantitative 

business analysis and information systems; Mktg. = marketing; Legal = legal and social 

environment; Corr. = correlation. 
aThe expected reliability is computed based on the Spearman–Brown prophecy formula (Wainer 

et al., 2001). 
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The Management (S3) subscale had higher mean scores (10.95 out of 19 items) than the 

others, while the Finance subscale (S5) had lower mean scores (4.75 out of 13 items). The  

total test had a mean score of 56.92 out of 118 items, which means on average, students had 

slightly less than half of all items correct. The total test had a desirable reliability (Cronbach’s α) 

of .89. 

Methods and Analyses 

Wainer et al. (2001) suggested using augmented scores to improve a subscore’s 

reliability, which borrows from other subscores in the test to compute a particular subscore for 

individual students. More recently, Haberman (2005, 2007; Haberman, Sinharay, & Puhan, 

2006; Sinharay, Haberman, & Puhan, 2007) found that reliability-based analysis is helpful in 

informing the decision of reporting subscores. His approach compares the root mean square error 

(RMSE) of the true subscore when it is predicted (or approximated) by the observed subscale 

score, the observed total test score, and the two scores conjointly. The rationale is that if the 

RMSE of the predicted true subscore using the observed subscores is smaller than the RMSE 

approximated through other scores or estimations, then the observed subscore contributes unique 

and substantial information beyond that provided by the total score (Haberman, 2005). In other 

words, the true subscores could be approximated more accurately from the observed subscores 

than from the other scores. Wainer et al.’s augmented scores method shares the same flavor as 

the methods suggested by Haberman and his colleagues. Both methods focus on borrowing 

information from other sections or subscales; they are also noted as the augmented scores 

method in this report. 

In addition to the augmentation approach, Wainer et al. (2001) applied the Spearman–

Brown formula to compute the expected reliability for each subscale, which they used to make 

inference about the test dimensionality. More specifically, the expected reliability is computed 

using the number of items in the subscale (m) and the total number of items in the test (M) in the 

Spearman–Brown formula, with the total test reliability coefficient (Cronbach’s α, represented as 

ρ  in the formula). The expected reliability of a given subscale ( sρ ) can be expressed as follows: 

(1 )*
s M

m

ρ
ρ =

ρ+ −ρ
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Furthermore, Wainer et al. (2001) suggested that when the expected reliability coefficient 

is “about equal to” (p. 357) the observed reliability (Cronbach’s α) for each subscale, a 

unidimensional structure is likely to be supported. Otherwise, unidimensionality may be less 

likely, and multidimensionality is likely to be supported (see also Nunnally & Bernstein, 1994). 

Descriptive analyses of item scores, subscores, and total test scores were conducted in the 

present study. Moreover, the reliability of each subscale, the total test, the correlations between 

subscores, and the correlations between each subscore and the total test score were analyzed and 

compared. Expected reliability was also computed for each subscale using the Spearman–Brown 

formula. Following the approach of Haberman (2005) and his colleagues, a set of RMSEs was 

computed for each of the seven subscales while using different observed scores to approximate 

the related true subscores. 

It should be noted that the augmented scores approach fails to take into account the 

internal structure of the test. In many cases, the test’s internal structure may influence the 

interpretation of the subscore and affect the decision of whether to report individual students’ 

subscores (Messick, 1989). Analyzing the internal structure (or dimensionality) of the test and 

subscales provides additional evidence beyond that provided by the reliability analysis. 

Two types of exploratory analysis were performed to evaluate the internal structure of the 

test based on the seven subscores. Both principal component analysis (PCA; Widaman, 2007) 

and exploratory factor analysis (EFA) based on the maximum likelihood method were performed 

using the variance–covariance matrix of the seven subscale scores. The SAS Factor Procedures 

(PROC Factor; SAS Institute, 2002) were applied here. Confirmatory factor analysis (CFA) was 

then performed using LISREL 8 (Jöreskog & Sörbom, 1999), based on the models selected from 

the exploratory analysis. 

A common goal of structural equation modeling (SEM) is to approximate or reproduce 

the observed variance–covariance matrix (for continuous variables) or the tetrachoric–polychoric 

correlation matrix (for categorical variables). More specifically, a model-implied variance–

covariance (or correlation) matrix is specified to approximate the observed variance–covariance 

(or correlation) matrix, with a set of parameter estimates that could minimize the distance 

between the two matrixes (Jöreskog & Sörbom, 1999; Raykov & Marcoulidies, 2000). 

Many different measures or fit indices have been discussed in the literature. Four fit 

indices were used to evaluate the model-data fit because they are typically reported in the 
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literature (e.g., Browne & Cudeck, 1993; Hu & Bentler, 1999; Hooper, Coughlan, & Mullen, 

2008; Raykov & Marcoulidies, 2000; Yu & Muthén, 2001). More specifically, these authors 

suggest that a model with a root mean square error approximate (RMSEA) value below .08, a 

Tucker–Lewis index (TLI) value above .90, a comparative fit index (CFI) value above .90, and a 

standardized root mean residual (SRMR) value below .1 can be considered an acceptable fit; a 

model with an RMSEA value below .05, a TLI (and CFI) value above .95, and an SRMR value 

below .08 can be considered a good fit. 

Item-level factor analysis—a method for categorical or binary variables—was applied as 

well. The traditional factor analysis based on continuous observed variables may lead to a biased 

estimation of the latent construct and other parameters for categorical or binary variables, 

especially when the distributions of categorical variables severely deviate from the normal 

distribution (e.g., Woods, 2002). Woods revealed that traditional factor analysis with binary–

categorical item scores results in biased estimation of the standard errors, biased significance 

tests, overestimation of the number of factors, and underestimation of the factor loadings. 

Two approaches have been developed for item-level factor analysis, the probit-link-based 

limited information factor analysis approach (e.g., Jöreskog & Sörbom, 1999), and the logit-link-

based full information factor analysis approach (Bock & Aitkin, 1981). The former models 

(probit-link-based models) are more widely used under the framework of SEM, for example, in 

LISREL (Jöreskog, 2002; Jöreskog & Sörbom, 1999), in MPLUS (Muthén & Muthén, 1998), 

and in EQS (Bentler, 2001), and were adopted in this study. 

Four models were constructed for the MFT Business, based on the binary item scores. 

More specifically, a probit linking function between each binary item score and the underlying 

latent variable was specified in the model. The observed variance–covariance matrix for 

continuous variables was replaced with the tetrachoric correlation matrix, estimated based on the 

binary scores. The diagonally weighted least squares (DWLS) estimation method through 

LISREL 8.8 (Jöreskog & Sörbom, 1999) was applied to fit the model to the data. 

First, a measurement model was constructed for each subscale separately. All items of a 

content area (e.g., all accounting items) were set as indicators of a latent factor (e.g., accounting-

related knowledge, skill, or the subscale latent factor). This model was used to examine how 

items within the same content domain perform when specified to measure a common latent 
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construct. The subscale-based measurement model is typically considered a priori for a more 

complex structural model based on these subscales (Raykov & Marcoulidies, 2000). 

Second, a one-factor measurement model was constructed to see whether all the test 

items measured a single factor. Such a model having a good fit would support the argument that 

the test measures a single construct, and a single total score would be appropriate to represent the 

test performance. 

Third, a correlated seven-factor model was constructed to incorporate all subscales and 

all items associated with each subscale. The seven subscale-related factors were assumed to be 

correlated with each other (see Figure 1). This model is more complex than the one-factor model. 

A good model fit would suggest that the seven content-based subscales measure correlated 

constructs. However, if these correlations are all very strong, for example, greater than .80 or .90, 

this may suggest unidimensionality (e.g., Bagozzi & Yi, 1992; Kline, 2005; Stricker & Rock, 

2008). 

The fourth model (the higher-order factor model) was assumed to have zero correlations 

specified among subscale factors but to have a second-order common factor explaining the 

subscale factors (see Figure 2). Numerically, the correlation between a pair of subscales is equal 

to the product of the two standardized regression coefficients in the higher-order model. 

However, if the higher-order regression coefficients (standardized) are all .9 or greater, the 

subscales can be explained by a common factor to a great extent, which would support the notion 

of a unidimensional test structure (e.g., Kline, 2005; Sawaki, Stricker, & Oranje, 2008). 

A similar set of guidelines as described earlier in the subscore level CFA was applied to 

examine the model-data fit for these item-level factor models. To compare the latter three models 

based on the whole test, the correlated seven-factor model is less parsimonious than the higher-

order factor model and with fewer parameters to estimate. The one-factor model was the simplest 

model with the greatest degree of freedom among the three models, which could support 

reporting only the total score. When the fit indices are comparably acceptable or good, simple 

models (more parsimonious) are often preferred over more complex models, though the latter 

models fit slightly better (Mulaik et al., 1989; Steiger, 2007; Tabachnick & Fidell, 2007).  
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Figure 1. The correlated seven-factor model using item scores. 

 

Figure 2. The higher-order factor model using item scores. 
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Results 

Results of Descriptive and Reliability Analyses 

Descriptive statistics showed that the reliability of the seven subscales ranged from .43 to 

.65 (Cronbach’s α), much lower than the total test reliability (.89). These subscale reliabilities are 

considered low according to the commonly accepted minimum value of .70 in psychological and 

educational measurement (Nunnally & Bernstein, 1994, p. 265). The expected reliability of each 

subscale was also computed using the Spearman–Brown formula given the total test reliability 

(Nunnally & Bernstein, 1994; Spearman, 1904; Wainer et al., 2001). The expected reliability 

coefficient for each subscale was about equal to the observed reliability (Cronbach’s α 

coefficient) as summarized in Table 1, with the average difference in the second decimal. 

Following the rationale of Wainer et al. (2001), this supports a unidimensional structure among 

the subscales. 

Following the approach of Haberman and his colleagues (Haberman, 2005, 2007; 

Sinharay et al., 2007), four sets of RMSEs of the true subscore were computed and compared to 

the RMSE when it was estimated from the observed subscore, noted as SD( eS ). The four sets of 

RMSEs were computed using (a) the regression of the true subscore on the observed total score, 

SD(L- tS ); (b) the regression of the true subscore on the observed total score and the observed 

subscore, SD(M- tS ); (c) Kelly’s estimation of the true subscore, SD(K- tS ); and (d) the 

approximated true error of the subscore, SD(F-Dt). The SD( eS ) value should have been smallest 

if the observed subscore could approximate or estimate the true subscore more accurately than 

the other scores (Haberman, 2005). However, results showed that the RMSE of the true subscale 

score estimated from the observed subscale score, SD( eS ), was consistently greater than those 

estimated from the observed total score, the combination of the subscale score and the total 

score, or the approximate true RMSE (see Table 2). 

Using the first subscale, S1-Accounting, as an example, the SD( eS ) was 2.09, which 

represented the standard error of the true subscore of S1 when it was predicted from the observed 

subscore. The standard error for the observed total score, SD(L- tS ), was only 1.38, with the 

corresponding variance only less than half of the variance of eS  (see Table 2). This suggests that 

the approximation of subscale S1’s true score from the observed subscore produced greater error 

than the approximation of the same true score of S1 from the observed total test score. Similarly, 
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the RMSEs of the other predictors or approximation methods were all smaller than that of the 

observed S1 subscore. 

Table 2 

Root Mean Square Error Comparisons Using Haberman’s (2005) Approach 

 Subscale 

 
Account. 

(S1) 
Econ. 
(S2) 

Mgmt. 
(S3) 

Quant. 
(S4) 

Finance 
(S5) 

Mktg. 
(S6) 

Legal 
(S7) 

No. of items 21 20 19 19 13 14 12 

SD( eS ) 2.09 2.05 1.99 1.93 1.56 1.70 1.66 

SD(K- tS ) 1.67 1.58 1.59 1.56 1.14 1.12 1.06 

SD(L- tS ) 1.38 1.06 1.25 1.06 0.86 0.64 0.58 

SD(M- tS ) 1.17 0.52 0.99 0.73 0.64 0.33 0.41 

SD(F- tD ) 1.67 1.58 1.59 1.56 1.14 1.12 1.06 

Note. SD( eS ) = observed subscore; SD(K- tS ) = Kelly’s estimation of the true subscore;    

SD(L- tS ) = regression of the true subscore on the observed total score; SD(M- tS ) = regression 

of the true subscore on the observed total score and the observed subscore; SD(F-Dt) = 

approximated true error of the subscore; Account. = accounting; Econ. = economics; Mgmt. = 

management; Quant. = quantitative business analysis and information systems; Mktg. = 

marketing; Legal = legal and social environment. 

The same patterns were found with the other six subscales (see Table 2), where the true 

subscore’s RMSE was greater when it was predicted from the observed subscore than from the 

other predictors. These results suggest that the individual students’ observed subscores could 

approximate the true subscores with greater errors than the total test scores or the combination of 

the total score and the subscore (Haberman, 2005).  

Results of Subscale Score Factor Analysis 

PCA and EFA were conducted based on the variance–covariance matrix of the seven 

observed subscores (number-correct raw scores) using PROC Factor (SAS Institute, 2002). The 

screeplot based on PCA is presented in Figure 3. A clear elbow appears at the second factor, with 

54% of the total variance explained by the first factor and another 11% by the second factor. 

These results suggest the presence of one dimension (Cattell, 1966). 
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Figure 3. Screeplot of eigenvalues from the principal component analysis. 

The one-factor model (see Figure 3) was then fitted to the data using LISREL 8.8 

(Jöreskog & Sörbom, 1999). The fit indices suggest that the model fits the data very well (Hu & 

Bentler, 1999), with an RMSEA value of .064, a CFI value of .99, a TLI value of .98, and an 

SRMR value of .024. The standardized loadings were between .62 and .78. This well-fitted one-

factor model supports the unidimensional nature of internal structure for the MFT Business. 

 

Figure 4. Factor model and standardized estimates for the one-factor model using 

subscores.  
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Results of Item-Level Factor Analyses 

In the first stage, a measurement model was fitted to each of the seven subscales, where a 

single latent variable was indicated by all items belonging to a particular content subdomain. The 

measurement model fit the data well for each subscale. All of the RMSEAs were below the .05 

criterion, and some of them were very close to .01; the CFIs and TLIs were all above .98 (see 

Table 3), suggesting that the distances between the model-implied correlation matrix and the 

tetrachoric correlation matrix were very small (Hu & Bentler, 1999). 

Table 3 

Model Fit Indices for the Subscales’ Measurement Models Based on Item Scores 

Note. RMSEA = root mean square error of approximation; CI = confidence interval; TLI = 

Tucker–Lewis index; CFI = comparative fit index. 

Although item-factor loadings were all significantly different from zero (at the .05 level 

of significance), some were relatively low. For example, a total of 11 items had factor loadings 

below .20, including two items from S1-Accounting, three items from both S3-Economics and 

S7-Legal and Social Environment, and one item from each of S3-Management, S5-Finance, and 

S6-Marketing (see Table 4).  

Subscale  RMSEA 

90% CI 

RMSEA TLI CFI 

S1-Accounting .015 (.014–.017) .99 .99 

S2-Economics .016 (.014–.017) .99 .99 

S3-Management .015 (.013–.016) .99 .99 

S4-Quantitative Business Analysis and Information 

Systems 

.020 (.019–.021) .99 .99 

S5-Finance .016 (.014–.019) .99 .99 

S6-Marketing .014 (.012–.016) .98 .98 

S7-Legal and Social Environment .014 (.011–.016) .99 .99 
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Table 4 

Item-Factor Loadings of the Item-Level Factor Models  

Subscale Item 

Subscale 

measurement model 

One-factor 

model 

Correlated 

seven-factor model 

Higher-order 

factor model 

S1 4 .14 .50 .51 .14 

7 .46 .07 .08 .39 

13 .42 .26 .27 .40 

24 .26 .37 .40 .19 

28 .36 .35 .37 .40 

31 .54 .26 .27 .59 

34 .19 .27 .29 .19 

38 .52 .19 .20 .54 

42 .35 .27 .29 .37 

48 .34 .39 .42 .32 

50 .40 .26 .29 .41 

82 .44 .50 .54 .53 

83 .50 .50 .55 .52 

86 .19 .35 .39 .16 

88 .25 .22 .23 .25 

95 .31 .39 .42 .21 

99 .37 .52 .54 .42 

108 .26 .20 .22 .29 

109 .34 .48 .52 .38 

110 .65 .28 .31 .56 

115 .37 .33 .35 .33 

S2 5 .35 .22 .23 .35 

10 .49 .23 .23 .50 

11 .31 .27 .29 .27 

15 .50 .37 .39 .53 

19 .28 .30 .33 .21 

26 .22 .51 .53 .20 

51 .44 .51 .54 .44 

55 .35 .35 .38 .33 

56 .24 .34 .37 .22 

58 .50 .33 .36 .51 
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Subscale Item 

Subscale 

measurement model 

One-factor 

model 

Correlated 

seven-factor model 

Higher-order 

factor model 

S2 

(cont.) 

69 .48 .21 .23 .44 

81 .59 .50 .52 .54 

85 .51 .42 .44 .47 

93 .39 .60 .62 .39 

94 .19 .35 .38 .16 

96 .34 .35 .38 .35 

103 .19 .45 .47 .16 

105 .28 .25 .26 .26 

107 .20 .48 .52 .23 

118 .17 .50 .51 .14 

S3 16 .49 .28 .30 .50 

20 .32 .36 .37 .33 

22 .32 .16 .17 .29 

25 .46 .25 .28 .44 

27 .17 .47 .50 .14 

35 .42 .15 .17 .42 

39 .41 .13 .14 .38 

40 .24 .37 .40 .23 

46 .48 .42 .45 .47 

60 .38 .44 .47 .38 

70 .57 .32 .33 .53 

72 .31 .49 .51 .27 

77 .33 .49 .53 .38 

79 .40 .39 .42 .38 

84 .34 .13 .14 .32 

90 .46 .30 .31 .52 

111 .39 .34 .38 .39 

112 .27 .38 .39 .30 

117 .41 .48 .50 .47 

S4 2 .21 .48 .50 .27 

6 .34 .16 .16 .32 

12 .36 .35 .38 .37 
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Subscale Item 

Subscale 

measurement model 

One-factor 

model 

Correlated 

seven-factor model 

Higher-order 

factor model 

S4 

(cont.) 

17 .40 .41 .44 .37 

36 .29 .17 .19 .29 

43 .33 .36 .40 .33 

47 .43 .18 .19 .39 

57 .48 .32 .33 .51 

59 .36 .30 .33 .34 

65 .53 .38 .41 .52 

73 .26 .49 .51 .31 

76 .62 .36 .38 .62 

80 .53 .35 .39 .51 

87 .26 .49 .53 .26 

98 .52 .50 .51 .50 

100 .26 .49 .53 .28 

101 .51 .48 .52 .51 

114 .54 .19 .21 .54 

116 .39 .39 .41 .37 

S5 14 .38 .52 .56 .27 

21 .38 .44 .47 .32 

30 .45 .20 .21 .40 

32 .07 .31 .33 .08 

37 .33 .41 .44 .29 

41 .35 .48 .51 .38 

61 .45 .38 .39 .54 

64 .45 .33 .35 .39 

67 .52 .13 .14 .55 

74 .39 .33 .34 .31 

75 .49 .31 .32 .40 

92 .41 .36 .40 .38 

106 .38 .23 .25 .55 

S6 1 .11 .13 .14 .14 

3 .21 .28 .28 .29 

8 .22 .25 .26 .27 
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Subscale Item 

Subscale 

measurement model 

One-factor 

model 

Correlated 

seven-factor model 

Higher-order 

factor model 

S6 

(cont.) 

9 .24 .50 .55 .22 

45 .25 .08 .08 .33 

49 .26 .28 .29 .22 

53 .27 .13 .14 .24 

54 .28 .21 .23 .23 

63 .28 .20 .22 .42 

66 .33 .42 .44 .54 

68 .35 .22 .24 .14 

71 .41 .21 .22 .23 

89 .52 .25 .27 .52 

91 .53 .28 .31 .31 

S7 18 .17 .53 .54 .15 

23 .21 .35 .37 .17 

29 .54 .14 .15 .51 

33 .45 .29 .32 .45 

44 .32 .55 .59 .36 

52 .13 .36 .38 .14 

62 .35 .30 .32 .33 

78 .41 .30 .33 .42 

97 .46 .25 .27 .41 

102 .22 .30 .32 .23 

104 .05 .15 .16 .08 

113 .39 .16 .16 .43 

The other three models—the one-factor model, the correlated seven-factor model, and the 

higher-order factor model—fit the data well, with acceptable to good fit indices (see Table 5). In 

the one-factor model, all 118 items were assumed to load on the single common factor, with all 

the residuals of these items assumed independent from each other (all covariances among 

residuals were set to 0; see Figure 1). The results suggest that this model had a good fit on most 

indices, with an RMSEA value of .015, an SRMR value of .025, a CFI value of .903, and a TLI 

value of .959 (see Table 5). The CFI value seems a bit lower than a good-fit criterion but still 

acceptable (Hu & Bentler, 1999).  
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Table 5 

Model Fit Indices for the Three Item-Level Factor Analysis Models 

 One-factor model Correlated seven-factor model Higher-order factor model 
CFI .903 .918 .932 

TLI .959 .965 .960 

RMSEA .015 .010 .010 

SRMR .025 .026 .026 

df 6785 6764 6778 

Note. CFI = comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean 

residual.  

The item-factor loadings were all significantly different from zero, with some item 

loadings relatively low. A total of 17 items had loadings below .20 on the factor (see Table 5). A 

comparison with the previous results of the measurement model indicates that 15 out of the 17 

items also had low loadings in the subscale measurement models. In summary, the fit indices of 

the second model suggest that the MFT Business measures a unidimensional construct. 

The third model, the intercorrelated seven-factor model (see Figure 3), fit the data 

acceptably well by the CFI value of .918 but very well by the other fit indices (i.e., a TLI value 

of .965, an RMSEA value of .010, and an SRMR value of .026; see Table 5). The item-factor 

loadings were all significantly different from zero, with 16 items having a low item-factor 

loading (below .20). The fit indices, especially the CFI, suggest a slightly better fit than the one-

factor model. In addition, the intercorrelations among the seven factors were very high, ranging 

from .83 to .95 (see Table 6), which indicates that the seven subscales are likely to measure a 

unidimensional construct. 

Finally, the seven-factor model with a higher-order factor was fitted to the data. Instead 

of letting the seven subscale-related factors correlate with each other, a second-order common 

factor (f) was specified to be explained by the subscale-related factors (see Figure 2). The fit 

indices were very similar to the third model, the intercorrelated seven-factor model. The RMSEA 

value was .010, with an SRMR value of .026, a CFI value of .932, and a TLI value of .960 (see 

Table 5). The item-factor loading pattern was very similar to that in the correlated seven-factor 

model. The standardized regression coefficients between the second-order common factor and 

the seven subscale latent variables were all very high, ranging from .90 to .95 (see Table 6). 
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Table 6 

Observed and Model-Implied Subscale Correlation Matrix 

 Observed correlations between subscales and total test score 

 
Account. 

(S1) 
Econ. 
(S2) 

Mgmt. 
(S3) 

Quant. 
(S4) 

Finance 
(S5) 

Mktg. 
(S6) 

Legal 
(S7) 

S2 .53       

S3 .49 .52      

S4 .56 .56 .58     

S5 .52 .51 .41 .50    

S6 .39 .45 .49 .47 .36   

S7 .44 .43 .49 .48 .36 .38  

Total score .78 .78 .78 .81 .69 .66 .67 

Model-implied correlations between seven factorsa 

S2 .91       

S3 .84 .89      

S4 .91 .93 .91     

S5 .93 .93 .83 .91    

S6 .83 .92 .95 .90 .83   

S7 .89 .91 .93 .93 .86 .90  

Standardized regression coefficients of seven factors on the higher order factor b 

 .90 .95 .91 .96 .90 .92 .94 

Note. Calculations were based on the total test (118 items) and all valid observations.  

Account. = accounting; Econ. = economics; Mgmt. = management; Quant. = quantitative 

business analysis and information systems; Mktg. = marketing; Legal = legal and social 

environment. 
a Estimated based on the correlated seven-factor model using item scores. b Estimated based on 

the higher-order factor model using item scores. 

 

When comparing the latter three models, all had acceptable to good-fit indices. The 

fourth model—the higher-order factor model—fit the data as well as the correlated seven-factor 

model (the third model). Considering the high correlations estimated in the correlated seven-

factor model and the higher-order factor model being more parsimonious, the latter one seems a 

better choice between the two models (Mulaik et al., 1989; Steiger, 2007). In addition, the 

extremely high values of the latent regression coefficient estimates (standardized) in the fourth 

model also suggest that the seven subscale-specific factors may likely measure a business-related 

general skill across domains of business knowledge and skills. The second model—the 
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one-factor model—fit slightly less well according to the CFI (slightly lower than the other two 

models) but fit the data comparably well by the other fit indices. In addition, the one-factor 

model had the fewest parameters among the three models. Combining the fit indices’ and 

models’ parsimoniousness, the one-factor model appears to be a better representation of the data, 

which also supports a unidimensional structure (Mulaik et al., 1989; Steiger, 2007; Tabachnick 

& Fidell, 2007). 

Summary and Discussion 

In summary, the results of this study suggest that the observed subscores of the MFT 

Business correlated moderately with each other and moderately to strongly with the observed 

total test score. Subscales had a much lower level of reliability than the total test in terms of 

Cronbach’s α. The low reliabilities of the seven subscales and the very small differences between 

the expected and the observed reliability both indicate that is the test is most likely 

unidimensional (Wainer et al., 2001). 

Analyses of reliabilities using the augmented scores approach showed that the RMSE of 

the subscale true score was greater when estimated by the observed subscore than by the total 

observed score or other predictors. In other words, for each subscale, the true score estimated by 

the subscale observed score was less reliable than the one estimated by the observed total test 

score. These results support the claim that reporting individual students’ subscores may not add 

statistical information to the total score. These results also help answer the first research 

question: The content-based individual students’ subscores did not add statistical information to 

the total score. 

Traditional factor analysis using the subscores’ variance and covariance information 

confirmed that a single-factor model fit the data well. The item-level factor analysis also 

demonstrated that a unidimensional structure could represent the MFT Business very well. These 

results suggest that although each subscale measured a content-specific subarea well, the MFT 

Business measures a unidimensional construct. This also answers the second research question: 

The MFT Business measures a unidimensional construct of business-related skills and 

knowledge and does not support reporting individual students’ content-based subscores. 

Combining the results from both augmented score analyses and the factor analysis of the 

internal structure, it supports a conclusion that the MFT Business should not provide individual 

students’ subscores because such subscores do not add statistically reliable information over the 
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total test score. This also answers the third research question: The two approaches are consistent 

in supporting the current practice of not reporting individuals’ content-based subscores for the 

MFT Business. 

It should be noted that although the results of the two methods agree with each other in 

the context of the MFT Business, it may not necessary mean that such an agreement exists with 

other tests having different internal structure, subtotal correlations, and internal consistency.  

The augmented scores method, or borrowing information from other subscales and the 

total test to estimate the true score of a given subscale, also imposes an implicit assumption 

about the unidimensionality of the test; that is, items of different subscales measure the same 

construct. 

In the best scenario of a unidimensional test, the intersubscale correlations are typically 

very high and the subscales are less reliable than the total test; the observed subscores could 

provide some information about individual students’ performance on the subscale but with less 

accuracy than that provided by the total test. In this situation, there is little theoretical or 

statistical evidence supporting subscore reporting, which is likely the case for the MFT Business 

in this study. 

In a multidimensional test where each subscale measures a construct very distinct from 

the other subscales, the inter-subscale correlations will be relatively low. In these cases, the 

subscales’ reliabilities will still be lower than that of the total test, but the differences may 

depend on the uniqueness of the subscales and the relationship between the subscale-specific 

factor and the common factor. 

When using the augmented scores method, the reliability of a real test is estimated using 

Cronbach’s α or other formulas based on the data, which typically provide a conservative 

approximation of the true reliability. As Lord and Novick (1968, pp. 47–50) pointed out, only in 

an essential tau-equivalent measurement or more restrictive model does the estimated reliability 

coefficient equal the true reliability. This may affect the results based on the reliability as most 

educational tests do not have the ideal feature of tau-equivalent measurement. Moreover, as 

suggested by Haberman (2005), the RMSE used in the augmented scores approach is determined 

by the reliabilities of the subscales and the total test (as well as the intersubscale correlations), 

which may confound the results as well. These two issues may require future research. 
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The analysis of a test’s internal structure is a useful step to confirm the theoretical basis 

in terms of construct structure and could help to make decisions such as how to score the test and 

what scores to report (e.g., Messick, 1989). Using a factor analysis approach has added value to 

the augmented scores method because the former provides additional construct validity evidence 

of the test structure and links the subscores with the dimensionality of the test. A test with a 

multidimensional structure would strongly justify the meanings and interpretations of the 

subscores. However, more research is needed to evaluate if, in such cases, results obtained 

through the augmented scores and the internal structure approach agree. 

Other methods, including the application of the SEM approach (e.g., Raykov, 2002), 

might also be considered for future research examining the reliabilities of subscores. Raykov’s 

approach utilizes the measurement construct of the total test and the subscales, and provides an 

alternate estimate of the reliabilities of subscales. It would be interesting to investigate how these 

estimated reliabilities for the subscales differ from those estimated in the current study and the 

relationships among them.  
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Notes 
1 In general, subscore refers to a score derived from a subset of items of a test. These items may 

measure a particular content, domain, or construct that is specified at the test development 

stage. It does not necessarily mean the score itself is reliable, nor does it mean the subscore 

should actually be reported. In this report, subscore, if not specified, stands for the subscore of 

individual students. 

2 The total test includes 120 items, but two items (Items 6 and 18 in the second section) were 

excluded from scoring. Thus those two items were excluded from this study as well. 

 


