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R E S E A R C H R E P O R T

The Log-Linear Cognitive Diagnostic Model (LCDM) as a
Special Case of the General Diagnostic Model (GDM)

Matthias von Davier

Educational Testing Service, Princeton, NJ

Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information
about test takers’ performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize
the possibility that multiple skills may interact in a conjunctive way within the item function, while individual skills still may retain
separable additive effects. This extension of either the conjunctive deterministic-input-noisy-and (DINA) model to the generalized ver-
sion (G-DINA) or the compensatory/additive general diagnostic model (GDM) to the log-linear cognitive diagnostic model (LCDM) is
aimed at integrating models with conjunctive skills and those that assume compensatory functioning of multiple skill variables. More
recently, a result was proven mathematically that the fully conjunctive DINA model, which combines all required skills in a single
binary function, may be recast as a compensatory special case of the GDM. This can be accomplished in more than one form such
that the resulting transformed skill-space definitions and design (Q) matrices are different from each other but mathematically equiva-
lent to the DINA model, producing identical model-based response probabilities. In this report, I extend this equivalency result to the
LCDM and show that a mathematically equivalent, constrained GDM can be defined that yields identical parameter estimates based
on a transformed set of compensatory skills.

Keywords Diagnostic classification models; general diagnostic model; log-linear cognitive diagnosis model; model equivalency;
parameter redundancy; identifiability
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Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more
information about test takers’ performance than do unidimensional latent variable models. Recent developments in diag-
nostic modeling emphasized the possibility that multiple skills may interact in a conjunctive way within the item function,
while individual skills still may retain separable additive effects. This extension of either the conjunctive deterministic-
input-noisy-and (DINA; Junker & Sijtsma, 2001; Macready & Dayton, 1977) model to the generalized version (G-DINA;
de la Torre, 2011) or the compensatory/additive general diagnostic model (GDM; von Davier, 2005, 2008; von Davier
& Yamamoto, 2004) to the log-linear cognitive diagnostic model (LCDM; Henson, Templin, & Willse, 2009) is aimed at
integrating models with conjunctive skills and those that assume compensatory functioning of multiple skill variables.

More recently, a result was proven mathematically that the conjunctive DINA model, which combines all required skills
into a single binary function, may be recast as a compensatory special case of the GDM (von Davier, 2011, 2014). This can
be accomplished in more than one form such that the resulting transformed skill-space definitions and design (Q) matri-
ces are different from each other but mathematically equivalent to the DINA model, producing identical model-based
response probabilities. DeCarlo (2011) showed in a related result that the DINA model can be transformed in a way such
that it can be estimated with general-purpose latent class software such as LEM (Vermunt, 1997). These results emphasize
the need to reduce these models to their mathematical definitions and to try to understand them on this formal basis rather
than based on verbal descriptions of how compensatory or conjunctive skills may or may not better represent the underly-
ing cognitive functions required to solve a task. Moreover, if multiple mathematically equivalent, but structurally different,
sets of skill definitions that produce the same conditional response probabilities with different underlying assumptions
exist, conjectures about whether skills function in a compensatory or conjunctive manner become questionable at best.

This report extends the equivalency result that shows the DINA model to be a special case of the GDM (von Davier,
2011, 2014) to the LCDM and shows that a mathematically equivalent, constrained GDM that yields identical model-based
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response probabilities, as well as equivalent parameter estimates based on an alternative compensatory latent skill struc-
ture, can be defined.

The remainder of the report is structured as follows. The next section introduces the GDM and shows why the LCDM
may be conceptualized (e.g., Rupp, Templin, & Henson, 2010) as a generalization of the GDM. It is followed by a section
that recasts the LCDM as a special case of a constrained GDM with a modified skill space and a constrained skill distri-
bution, extending the results presented in von Davier (2011, 2014). An empirical example is then presented. The report
closes with a discussion of the main result.

The General Structure, and Examples, of Diagnostic Models

Diagnostic models are latent structure models (von Davier, 2005, 2008, 2009), that is, models that relate observed ran-
dom variables to unobserved random variables that are considered probabilistic causes (Suppes & Zanotti, 1981) of the
observed variables. More specifically, assume that there are i= 1, … , I multinomial random variables Xi with values in
Ωi = {0, 1, … , mi} observed on n= 1, … , N respondents. That is, let xni ∈ {0, 1, … , mi} denote the response of test taker
n on variable (item or task) i. Then, denote

xn =
(

xn1, … , xnI
)
∈ ⊗I

i=1Ωi = ΩO, (1)

the vector of observed responses for respondent n.
In addition to these observed variables, diagnostic models assume d= 1, … , D unobserved variables Ad, with values

in ΩA
d =

{
l1d, … , lsdd

}
, called attributes or skills in this context. That is, let

a =
(

a1, … , aD
)
∈

D∏
d=1

ΩA
d = ΩL, (2)

where an denotes the attribute vector of respondent n. There are
∏D

d=1 sd distinct elements in ΩL. Assume that there is a
discrete probability measure 𝜋 with

𝜋
(

a1, … , aD
)
≥ 0 and

∑
ΩL

𝜋
(

a1, … , aD
)
= 1. (3)

In many cases, only binary skills are assumed and binary observed response variables are analyzed. I therefore assume
that all skills/attributes are binary, that is,ΩA

d = {0, 1} for all d= 1, … , D. Note, however, that the GDM is also well defined
for ordinal and interval-level skill variables as well as for polytomous response variables (von Davier, 2008).

The joint space of observed and unobserved variables is given by Ω=ΩO ×ΩL, and the complete data for each respon-
dent can be written as (xn, an).

Like all latent variable models, diagnostic models can be viewed as incomplete data problems as only the xn part is
observed and a model is needed to make inferences about the unobserved an.

An important point to make is that the latent variable space an ∈ ⊗D
d=1Ω

A
d = ΩL is nothing but an assumption or

a hypothesis, based on either a substantive theory or (unfortunately, and not infrequently) some ad hoc choice of the
analyst. It is merely one of many potential conceptualizations of additional (but unobservable) variables that are utilized
to “explain” the associations seen in the observed variables.

More specifically, most (if not all) latent variable models assume that the associations among the X1, … , XI vanish once
we condition on the A1, … , AD. More formally, it is assumed that the conditional probability of the observed variables
given latent variables exists and that

P
(

x1, … , xI|a1, … , aD
)
=

I∏
i=1

Pi
(

X = xi|a1, … , aD
)

. (4)

The assumption in Equation 4 is commonly referred to as local (stochastic) independence. What remains to be defined
is the functional form of the probability functions in the product on the right-hand side of Equation 4. More specifically,
an item response function

Pi
(

X = xi|a1, … , aD
)
= g

(
xi, 𝜆i, qi, a1, … , aD

)
, (5)
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has to be specified to allow inferences about a1, … , aD given the observed variables x1, … , xI . In Equation 5, the qi
denotes a D-dimensional binary vector that determines which of the a1, … , aD are utilized in the item function, and the
𝜆i is a Ui-dimensional vector of item parameters.

A very general approach was suggested by von Davier and Yamamoto (2004) and later implemented in the GDM
(von Davier, 2005, 2008). More specifically, the item function in Equation 5 is written such that linear functions of skill
components and their combinations can be used to predict the log-odds of response probabilities.

That is, for binary or ordinal response variables x= 1, … , mi, let

g
(

x, 𝜆i, qi, a
)
=

exp
(

fx
(
𝜆i, h

(
qi, a

)))
1 +

∑mi
y=1 exp

(
fy
(
𝝀i, h

(
qi, a

))) , (6)

(see, e.g., von Davier, 2005, 2008; von Davier & Yamamoto, 2004), and for x∈ {0, 1} binary only, a very similar setup has
been suggested in Henson et al. (2009) and Rupp et al. (2010). Obviously, Equation 6 can be transformed into

ln

[
g
(

x, 𝜆i, qi, a
)

g
(

0, 𝜆i, qi, a
)] = fx

(
𝜆i, h

(
qi, a

))
, (7)

a customary approach frequently used in categorical data analysis (Agresti, 1990; Haberman, 1978). The advantage of
Equation 7 over Equation 5 is that the left-hand side of Equation 7 is not a bounded quantity, so the image of f x(.) can
cover the real numbers. In contrast, Equation 5 parameterizes a probability such that 0< g(x, 𝜆i, qi, a)< 1 needs to be
ensured.

The General Diagnostic Model (GDM)

The GDM, as given in the developments presented by von Davier and Yamamoto (2004), defines the right-hand side of
Equation 7 as

fx
(
𝜆i, h

(
qi, a

))
= 𝜆T

ixh
(

qi, a
)

, (8)

with h(qi, a)= (1, qi1a1, … , qiDaD) and 𝜆ix = (𝜆i0x, 𝜆i1x, … , 𝜆iDx). Often, we will assume that 𝜆idx = x𝜆id for all
d= 1, … , D. That is, we obtain the customary additive form of the GDM for dichotomous and polytomous item
responses:

fx
(
𝜆i, h

(
qi, a

))
= 𝜆i0x +

D∑
d=1

x𝜆idqidad. (9)

The GDM was subsequently extended to mixture distribution GDM (von Davier, 2007), which allows different skill
distributions in different latent subpopulations, as well as a multigroup GDM with constraints across groups (e.g., Xu &
von Davier, 2008) and multilevel diagnostic models (von Davier, 2007, 2010).

The Log-Linear Cognitive Diagnostic Model (LCDM)

The GDM served as the basis for the derivation of the LCDM (Rupp et al., 2010). More specifically, Henson et al. (2009)
suggested extending the function h(qi, a) used in Equations 6–9, which connects the skill pattern a= (a1, … , aD) and
the item-skill requirements qi = (qi1, … , qiD) to account for potential skill interactions. More specifically, the LCDM,
as Henson et al. suggest, can be understood as a simple extension of the binary special case of the GDM, as given in
Equation 9. That is, the LCDM assumes

f
(
𝜆∗i , h∗ (qi, a

))
= 𝜆i0 +

D∑
d=1

𝜆idqidad +
∑
d<e

𝜆
d,e
i qidqieadae + … (10)

for binary skills ad ∈ {0, 1} and binary item response data. The dots also indicate that higher order terms𝜆d,e,f
i qidqieqifadaeaf

of three or more skills also may be included in the item function. The parameters 𝜆d,e
i , 𝜆

d,e,f
i , … associated with these

interactions quantify the conjunctive effects of having two, three, or more of the required skills that are not already
explained by the main effects 𝜆id of required (qid = 1) skills.
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The Deterministic-Input-Noisy-And (DINA) Model

The DINA model (Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) produces only two levels of proba-
bilities for the correct response per item. These two probabilities are the guessing probability, gi, and the complement of
the slipping probability, 1− si, no matter how many skills are involved. For example, an item that requires four different
skills has, potentially, 16 different probabilities of a correct response, one for each of the 16 skill combinations that are
possible in a four-skill item, while the DINA constrains these 16 levels to only two different values.

The DINA model can be written as a set of two nested equations: a first expression

h
(

qi, a
)
=

D∏
d=1

aqid
d ∈ {0, 1} = 𝜉

qi
a , (11)

that maps the skill pattern and the Q-matrix vector onto a single binary variable, and a second equation that combines
the expression in Equation 11 with the slipping and guessing parameters into a simple item function

Pi (X = 1|a) = (
1 − si

)𝜉qi
a g

(
1−𝜉qi

a

)
i , (12)

and, consequently,

Pi (X = 0|a) = s𝜉
qi
a

i

(
1 − gi

)(1−𝜉qi
a

)
. (13)

The DINA model is referred to as a conjunctive model. Any combination of required skills is projected on a 0/1 variable;
only if all required skills are present do we have 𝜉

qi
a = 1. The DINA model as given in Equation 12 may be transformed

into the logistic form as given in Equation 6. That is, one may write

ln
[

Pi (X = 1|a)
Pi (X = 0|a)

]
= 𝜆i0 + 𝜉

qi
a 𝜆i1, (14)

with
ln
[

1 − si

si

]
− ln

[
gi

1 − gi

]
= 𝜆i1 and ln

[
gi

1 − gi

]
= 𝜆i0. (15)

DeCarlo (2011) provided a reparameterization of the DINA model along the same lines. This transformed version of
the DINA can be estimated with LEM (Vermunt, 1997).

While the conjunctive nature of the DINA model appears to be one of the defining characteristics of this model, the
model representation is not unique. von Davier (2011, 2014) showed that the DINA model can be recast as a compensatory,
nonconjunctive model by transforming the skill space and deriving a mapping of the original skills and the Q-matrix onto
the transformed space. Two variants of this equivalency were presented, and the equivalency was proven mathematically.
That is, the DINA can be transformed in two different ways, and each variant can be written as a special case of the
GDM. Estimation of the DINA equivalent model using the GDM produces parameter estimates that are identical up to
differences in convergence criteria, and the skill-space restrictions can be relaxed such that the DINA-equivalent GDM
can be tested against less constrained GDMs (von Davier, 2014). I do not include details of the approach here because a
variant of this approach is described in detail and used in the next section to prove that the LCDM is a special case of
the GDM.

The Main Result: The Log-Linear Cognitive Diagnostic Model (LCDM) Is a Special Case of the General
Diagnostic Model (GDM)

With the notations introduced earlier, let a* denote a t-dimensional skill vector that we refer to as the transformed skill
space. Similarly, let q∗i denote the t-dimensional transformed Q-matrix entry for item i. We define the entries of the trans-
formed q∗i for a given source qi and the distributional constraints required for 𝜋(a*) in the following. More specifically,
the extended Q-matrix Q* is defined as follows:

Let

kDv =
(

D
v

)
= D!

v! (D − v)!
(16)
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denote the number of transformed skill columns required for each interaction of order v− 1. For main effects, these
can be considered as interactions of 0th order, that is, v= 1, and for first-order interactions, we have v= 2, and so on.

The index v shows how many skills are involved, and kDv =
(

D
v

)
is the potential number of these types of interactions.

For example, consider a Q-matrix with four skills: There are four main effects, one for each skill, corresponding to the

𝜆id parameters. There are
(

4
2

)
= 6 interactions involving two skills (for the 𝜆d,e

i parameters) and
(

4
3

)
= 4 interactions

involving three skills (for the 𝜆d,e,f
i parameters), and one,

(
4
4

)
= 1, that involves all four skills, 𝜆1,2,3,4

i . Implicitly, there is

also
(

4
0

)
= 1 zero-skill “interaction” that corresponds to the baseline item parameter 𝜆i0 present in all items. Note that

1+ 4+ 6+ 4+ 1= 16= 24 in this example. More generally, we find for the number of transformed skills that

D∗ =
D∑

v=1
kDv = 2D − 1 since

D∑
v=0

(
D
v

)
= 2D. (17)

The equality on the right is a widely known result that finds applications, among other things, in the binomial distri-
bution. For the purpose of mapping the main effects and first-order (two-skill) interactions, define

q∗id = qid for 0 < d < D = kD1, (18)

and
q∗is = qid qie with s = kD1 + rank ((d, e) ∶ d < e ∈ {1, … ,D}) , (19)

where rank((d, e) : d< e∈ {1, … , D}) is a well-defined function that rank orders tuples (d, e) with d< e from the set
{1, … , D}. Similarly, for three-skill (second-order) interactions, let

q∗it = qid qieqif

with

t = kD1 + kD2 + rank
((

d, e, f
)
∶ d < e < f ∈ {1, … ,D}

)
, (20)

and so on, for Q-matrix entries qi and assumed four or more skill interactions. This assignment is unique and well defined
and produces Q-matrix entries q∗i based on a transformed set of D*= 2D − 1 skills. Obviously, this produces a Q-matrix
that includes all potential skill interactions and represents a GDM that is equivalent to what is called the “saturated” item
model in LCDM and G-DINA. Obviously, this matrix can be reduced by removing interactions that are not required as
well as all-zero columns that may occur if the Q-matrix for a given test does not contain all possible skill combinations.

A general form for all interactions, that is, all transformations together, can be written as a function from qi ∈ {0, 1}D

to q∗i ∈ {0, 1}D∗
, such that

q∗i = G
(

qi
)
, with q∗it =

∏
(

j1<…<jg
)
∈{1,… ,D}g

qijr ,

where

t =
g∑

v=1

(
D
v

)
+ rank

((
j1 < … < jg

)
∈ {1, … ,D}g

)
for all g = 1, … ,D. (21)

This function G(qi) transforms all Q-matrix entries of a log-linear cognitive diagnosis model (LCDM) source matrix
into entries based on an extended skill space for the LCDM-equivalent version written as a constrained GDM.

The proof showing that this produces an LCDM-equivalent compensatory skill space that is used in the GDM becomes
evident when inspecting Equation 21. For each of the potential skill interactions in the source LCDM, Equation 21 defines
the required skill entries in the transformed skill space. The transformation in Equation 21, together with the general
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definition in Equations 8 and 9, defines an item model that is equivalent to the LCDM definition given in Equation 10 but
that operates on a transformed additive/compensatory skill space.

The same function can be used to define the constrained skill space for this LCDM-equivalent GDM. Because
Equation 21 defines function mapping binary vectors from {0, 1}D to {0, 1}D∗

, we can utilize G(.) for skill patterns as well
as Q-matrix vectors (as both are elements of {0, 1}D). Define

CSD =
{

a∗ = G (a) ∶ a ∈ {0, 1}D} ⊆ {0, 1}D∗
, (22)

as the set of transformed skill vectors a* in {0, 1}D∗
that correspond to a skill vector a in {0, 1}D. Now, we define a mea-

surable function on the constrained skill space CSD, which is a subset of {0, 1}D∗
, rather than on the whole set. That is,

we use constrained skill distributions over {0, 1}D∗
that have positive mass on CSD only.

More formally, let

𝜋
(

a∗) > 0 iff a∗ ∈ CSD

with∑
a∗∈ CSD

𝜋
(

a∗
)
= 1 and 𝜋

(
a∗
)
= 0 iff a∗ ∉ CSD. (23)

The condition expressed in Equation 23 ensures that the resulting constrained GDM defined on the transformed skill
space is equivalent to the source LCDM. However, if it turns out that the LCDM does not fit the data, the constraints
defined in Equation 23 can be relaxed and a GDM that is more general than the LCDM on the transformed skill space
can be utilized.

An Application

One curious observation related to research on diagnostic models is that many articles tend to use the same data sets. One
is the widely used fraction subtraction data set, originally described in the seminal work of Kikumi Tatsuoka (1983); the
other is the Examination for the Certificate of Proficiency in English (ECPE) data set, which is more recent but has been
used in various articles.

The frequent reuse of only a handful of data sets in the field of diagnostic modeling is in part due to the availability of
a Q-matrix associated with the data. However, this practice might be counterproductive to the field because practitioners
may come to one of the following conclusions:

1. There may be a few data sets for which any diagnostic model produces skill estimates that can be made sense of, or
can be considered preferable over model estimates using customary unidimensional latent traits or other types of
simpler score variables.

2. Researchers developing new diagnostic models are not that interested in applying these models to current problems
in educational and psychological measurement. Instead, they are more driven by “scoring” the next publication,
whether or not the model developed in the process is useful for a range of real data applications.

To avoid these types of potential concerns regarding limited utility or practical applicability, we agree it would be prefer-
able to present work on diagnostic models that is driven by answering concrete research questions using data collected
in current assessment programs. But we feel it is appropriate in this instance to reuse the ECPE data because they will
allow us to maintain comparability with published results, keeping two goals in mind: (a) to show that the LCDM is, and
can be estimated as, a constrained GDM, and hence no special purpose implementation or treatment of the LCDM is
required; and (b) to demonstrate that even for this widely used data set, the tools available through the GDM framework,
as described in von Davier (2005, 2008, 2011, 2014), can be used to gain a deeper understanding of the appropriateness
of diagnostic models in general, and the LCDM in particular, for this and other data sets. The tools available in the GDM
software mdltm (von Davier, 2005) allow evaluation of the fit of the LCDM compared to a range of other models and a
check on whether this model is identified for the ECPE data.

The ECPE data are available in the R package CDM (Robitzsch, Kiefer, George, & Ünlü, 2011–2014) and online (see
Templin, 2012), which provides materials on a workshop conducted in 2012. Analyses of this data set with the LCDM were
described in Templin and Bradshaw (2014) and Templin and Hoffman (2013). Chiu (2008) also used the ECPE data but
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Table 1 Transformed Q-Matrix for the Examination for the Certificate of Proficiency in English (ECPE) Data

Skills

Items 1 2 3 4 5 6 7

10, 13, 14, 25, 27 1 0 0 0 0 0 0
2, 8, 23, 24 0 1 0 0 0 0 0
4, 5, 6, 9, 15, 18, 19, 22, 26, 28 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
3, 7, 11, 12, 16, 20, 21 1 0 1 0 1 0 0
17 0 1 1 0 0 1 0
NA 1 1 1 1 1 1 1

studied different modeling approaches, and Robitzsch et al. (2011–2014) presented exemplary analyses with the ECPE
data for Robitzsch’s R package, CDM. The ECPE file contains responses from 2,922 test takers to 28 items, each of which
is associated to one or two out of a total of three skills.

Comparing a Log-Linear Cognitive Diagnostic Model (LCDM)–Equivalent General Diagnostic Model
(GDM) With Published LCDM Results

The LCDM-equivalent GDM was used to estimate the parameters of the LCDM for the ECPE data using the transformed
Q-matrix given in Table 1. All analyses were carried out with the software mdltm (von Davier, 2005) and compared against
results published in Templin and Bradshaw (2014); Templin and Hoffman (2013), and Robitzsch et al. (2011–2014). The
software mdltm is available on request based on a license agreement that allows noncommercial use for research and
teaching.

None of the items in the ECPE Q-matrix required all three skills, so the transformed Q-matrix requires only 23 − 2= 6
columns. Also note that two of the required-skill combinations appear on single items only in the Q-matrix used with
LCDM for the ECPE data.

The transformed skills space is given by {G(a) : a∈ {0, 1}3} according to Equation 22 and is reduced by eliminating the
last column. Note that this does not change the distribution, because the original skill space still contains (1,1,1), which is
mapped onto either (1,1,1,1,1,1,1) or the reduced (1,1,1,1,1,1) with six skills, respectively. The last column represents the
interaction of three skills and hence is obsolete (and its entries crossed out) because the original Q-matrix contains at most
two nonzero skill entries. The constrained skill distribution is given, as defined in Equation 23, by𝜋(a*)> 0 for all a*∈CS3
and 𝜋(a*)= 0 for a*∉CS3.

When estimating the equivalent model, the parameters of the LCDM-equivalent GDM were initially not range con-
strained, whereas in a second run, range constraints required for identification that are equivalent to those found in
Templin and Bradshaw (2014); Templin and Hoffman (2013), and Robitzsch et al. (2011–2014) were imposed on three
items.

The second set of analyses was needed because results from the unconstrained analysis suggest a problem with iden-
tifiability. Among other things, some very large standard errors (e.g., model-based SE 1.83, jackknife-based SE 5.93 for
two parameters of item 12) were obtained, and the condition number was 3.64e-08, which is indicative of identification
issues (Muthén & Muthén, 2012). In addition, the correlation of certain pairs of parameters was found to be −0.99, which
is another indicator of lack of parameter identification.

Therefore we only report the results on constrained analyses here. We report parameter estimates for the LCDM-
equivalent GDM and associated standard errors, the condition number, and parameter correlations and compare these
parameter estimates with the values published by Templin and Hoffman (2013), which agree with those obtained from
the CDM R-package (Robitzsch et al., 2011–2014) and the parameters available from output files on the workshop Web
site for the data set (Templin, 2012).

Table 2 contains a comparison of the skill distribution published in the sources listed, whereas Table 3 presents an
overview of the item location and slope (𝜆) parameters obtained from estimating the constrained equivalent GDM. Both
tables include the standard errors. Estimates were obtained using the jackknife procedure available in mdltm (von Davier,
2005).
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Table 2 Model Parameters Obtained From the Constrained Analysis of the Examination for the Certificate of Proficiency in English
(ECPE) Data With the Log-Linear Cognitive Diagnostic Model (LCDM)–Equivalent General Diagnostic Model (GDM)

Item s1 s1 s2 s2 s3 s3 s4 s4 s5 s5 s6 s6 Diff Diff

1* 0.00 * 0.60 [0.16] – – 1.22 [0.24] – – – – 0.83 [0.07]
2 – – 1.24 [0.13] – – – – – – – – 1.03 [0.08]
3 0.75 [0.24] – – 0.34 [0.10] – – 0.53 [0.26] – – −0.34 [0.06]
4 – – – – 1.69 [0.10] – – – – – – −0.13 [0.08]
5 – – – – 2.01 [0.14] – – – – – – 1.08 [0.08]
6 – – – – 1.69 [0.13] – – – – – – 0.86 [0.08]
7* 2.85 [0.19] – – 0.95 [0.12] – – −0.95 * – – −0.10 [0.07]
8 – – 1.92 [0.25] – – – – – – – – 1.48 [0.09]
9 – – – – 1.19 [0.09] – – – – – – 0.11 [0.06]
10 2.05 [0.14] – – – – – – – – – – 0.05 [0.06]
11 0.82 [0.29] – – 0.96 [0.12] – – 0.77 [0.30] – – −0.03 [0.07]
12* 0.00 * – – 1.29 [0.11] – – 1.51 [0.12] – – −1.76 [0.09]
13 1.63 [0.15] – – – – – – – – – – 0.66 [0.06]
14 1.36 [0.12] – – – – – – – – – – 0.17 [0.05]
15 – – – – 2.11 [0.14] – – – – – – 0.99 [0.09]
16 2.32 [0.90] – – 0.89 [0.11] – – −0.84 [0.91] – – −0.10 [0.07]
17 – – 0.77 [0.37] 0.59 [0.21] – – – – 0.06 [0.39] 1.35 [0.05]
18 – – – – 1.38 [0.11] – – – – – – 0.92 [0.08]
19 – – – – 1.84 [0.10] – – – – – – −0.19 [0.08]
20 0.250 [0.33] – – 0.90 [0.11] – – 1.40 [0.32] – – −1.39 [0.08]
21 1.054 [0.29] – – 1.13 [0.12] – – 0.04 [0.30] – – 0.16 [0.07]
22 – – – – 2.24 [0.10] – – – – – – −0.87 [0.09]
23 – – 2.07 [0.17] – – – – – – – – 0.66 [0.08]
24 – – 1.52 [0.10] – – – – – – – – −0.67 [0.08]
25 1.136 [0.11] – – – – – – – – – – 0.09 [0.05]
26 – – 1.11 [0.09] – – – – – – 0.16 [0.06]
27 1.713 [0.10] – – – – – – – – – – −0.88 [0.06]
28 – – – – 1.74 [0.11] – – – – – – 0.56 [0.08]

Note. Items with constrained parameters are marked with an asterisk; fixed parameters are given in bold+ italics font. Standard errors
are given in parentheses, large values in bold font. The root mean squared deviation of parameter estimates compared to parameters
published elsewhere is 0.004, indicating close agreement.

Table 3 Skill Distributions (With Standard Errors) Obtained for the Log-Linear Cognitive Diagnostic Model (LCDM)–Equivalent
General Diagnostic Model (GDM) Compared to Publicly Available Estimates

Skill pattern LCDM (T&H) LCDM (GDM) Δ SE

(0,0,0) 0.3007 0.3006 0.0002 0.0149
(1,0,0) 0.1290 0.1288 0.0002 0.0173
(0,1,0) 0.0119 0.0119 0.0000 0.0101
(1,1,0) 0.1751 0.1750 0.0001 0.0174
(0,0,1) 0.0087 0.0090 −0.0002 0.0046
(1,0,1) 0.0182 0.0182 0.0000 0.0078
(0,1,1) 0.0108 0.0110 −0.0002 0.0053
(1,1,1) 0.3462 0.3457 0.0004 0.0157

Note. T&H=Templin & Hoffman.

The root mean squared deviation between estimates published by Templin and Hoffman (2013) and the LCDM esti-
mated using an LCDM-equivalent GDM is√

1
#par

∑
i,d∗

(
𝜆id∗pub − 𝜆id∗LCDM(GDM)

)2 = 0.004,

indicating close agreement between the two sets of estimates. The sum of squared differences runs over all estimated
(not constrained or by definition zero) parameters, and #par denotes the number of (previously published and equivalent
model-based) estimated parameters.
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Note, however, that the maximum standard error is about 0.9 for two parameters associated with Item 16, so there may
still be issues with weak identifiability of the LCDM.

Evidently, the LCDM-equivalent GDM produces parameter estimates that are practically identical to the published
values. This is somewhat surprising because the LCDM seems weakly identified at best, as the condition number for the
constrained LCDM is 1.74e-06, and the (in absolute terms) highest correlation between two parameter estimates is−0.977.

Note that the weak identification is not a consequence of using an equivalent model specification (because the models
are mathematically equivalent but use transformed parameterizations). The weak identification is rather a consequence
of the assumptions made in the LCDM relative to the empirical evidence present in the ECPE data. It appears that a
model with multiple skills and interactions between skills is not supported by the data. von Davier and Haberman (2014)
pointed out that the skill distribution presented for the ECPE data set provides support for a single ordered latent trait or
a continuous latent trait being sufficient.

Examining Table 3 shows that only four of the eight skill vectors carry substantive mass. The other four estimates
are numerically rather small, suggesting that four nonzero probabilities associated with the skill patterns (0,0,0), (1,0,0),
(1,1,0), and (1,1,1) would suffice to fit the data. This implies a strict order of skills and suggests that a model with a limited
number of ordered latent classes may be sufficient to fit the data. von Davier and Haberman (2014) pointed this out and
conjectured that the skill distribution presented for the ECPE data set provides support for a single underlying skill, not
multiple skills.

In the next section, we delve deeper into the issue of appropriateness of the LCDM for the ECPE data by comparing
the model data fit of the LCDM with more parsimonious models, including item response theory (IRT) and located latent
class models.

Comparison of the Log-Linear Cognitive Diagnostic Model (LCDM) Model Data Fit to Other Models

This section provides two additional lines of analysis. First, the model constraints required to make a weakly identifiable
model out of the unidentified unconstrained LCDM are further investigated. Second, the constrained-LCDM equivalent
model is compared to customary IRT models, to a three-skill GDM, and to two- and three-skill exploratory item factor
analysis models on the basis of the GDM.

The constraints found in the Mplus-based estimation of the LCDM provided by Templin and Bradshaw (2014) as well
as Templin and Hoffman (2013) and in the R-package CDM are as follows:

1. Ensure that all skill main effects are nonnegative: 𝜆id > 0.
2. Ensure that the negative skill interaction is not larger than the main effects of any of the involved skills: −𝜆d,e

i < 𝜆id
and −𝜆d,e

i < 𝜆ie.

These were also implemented (on the corresponding compensatory skill variables) during estimation by means of the
LCDM-equivalent (constrained) D* -skill GDM to ensure comparability with published results and to improve identifia-
bility. However, though these constraints were effective in reducing the threat of lack of identifiability, the choice of these
constraints is somewhat arbitrary, as Table 4 shows.

There may be a different rationale that assumes skill main effects can be negative (unless combined with the other
required skill) or that skill interactions lead to a probability of success that is lower than in the presence of one or the
other, but not both skills, for example, if skills represent two alternative but not compatible strategies to solve a task.
That means that different rationales for different skill constraints may be found, so it is prudent to compare the effects of
different constraints on the results. In Table 4, eight alternative constraints imposed on the same parameters as marked
constrained in Table 2 are compared. The comparison involved the effect on the estimated skill distribution as well as the
achieved log-likelihood under the different constraints.

As can be seen when comparing the log-likelihood of the models associated with different constraints to improve
identifiability, none of these have profound effects on the fit of the model. If anything, the constraint that assigns −1.0
to all three parameters that were treated to achieve weak identifiability results in the largest log-likelihood. However, the
difference from the log-likelihood based on published results is marginal. The constraint variants with more negative
skill main effects have a small advantage over the constraint that assumes vanishing main effects, while the effect on skill
distributions is likewise marginal. This result gives credence to any (or none) of these constraints, as they can hardly be
distinguished empirically, and each of the constraints implies somewhat different interpretations of the resulting LCDM
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Table 4 A Comparison of the Effects of Eight Different Constraints (a to h), in Addition to the One Previously Published, Imposed on
Items 1, 7, and 12 Used to Achieve (Weak) Identifiability of the Log-Linear Cognitive Diagnostic Model (LCDM) for the Examination
for the Certification of Proficiency in English (ECPE) Data

Different model constraints to achieve (weak) identifiability

Effect pub a b c d e f g h

I01 S1 0.000 −0.500 −0.200 −0.700 −0.100 −0.400 −1.000 −0.100 −0.800
I12 S1 0.000 −0.500 −0.200 −0.100 −0.700 −0.400 −1.000 −0.100 −0.800
I07 S5 −0.952 −0.952 −0.952 −0.952 −0.520 −1.320 −1.000 −1.000 0.000

Effects on fit and skill distribution

Distr. pub a b c d e f g h

𝜋 (000) 0.301 0.302 0.301 0.302 0.301 0.302 0.302 0.300 0.303
𝜋 (100) 0.129 0.127 0.128 0.126 0.128 0.127 0.125 0.129 0.125
𝜋 (010) 0.012 0.011 0.012 0.012 0.011 0.012 0.012 0.012 0.010
𝜋 (110) 0.175 0.177 0.176 0.178 0.175 0.177 0.180 0.175 0.179
𝜋 (001) 0.009 0.005 0.007 0.005 0.007 0.006 0.002 0.010 0.003
𝜋 (101) 0.018 0.018 0.018 0.017 0.019 0.018 0.016 0.018 0.017
𝜋 (011) 0.011 0.013 0.012 0.013 0.013 0.012 0.015 0.011 0.016
𝜋 (111) 0.346 0.347 0.346 0.347 0.346 0.346 0.349 0.346 0.348
LogLik −42739.7 −42739.2 −42739.4 −42739.4 −42739.4 −42739.2 −42739.0 −42739.9 −42739.4

Note. The constraints used in variant f (boldfaced column) achieve the best fit.

Table 5 Comparison of Model–Data Fit Among Various Different Models

Model #par Likelihood AIC BIC

2PL 56 −42546.84 85205.68 85540.56
LLCA 65 −42516.52 85163.04 85551.74
GDM 72 −42744.76 85633.52 86064.08
GDM3 91 −42503.34 85188.68 85732.86
IFA 2 86 −42520.47 85212.95 85727.23
IFA 3 112 −42432.34 85088.68 85758.45
LCDM 81 −42738.74 85639.47 86123.85
LCDM2F 78 −42739.72 85635.43 86101.87
LCDM_FIX 81 −42739.71 85641.43 86125.81
?JT_LCDM? 81 −42487.40 85136.80 85621.18

Note. AIC=Akaike information criterion; BIC=Bayesian information criterion. Models compared: 2PL IRT, located latent class
(LLCA) with 12 ordered levels, general diagnostic model (GDM) with binary (0,1) latent variables, GDM3 with trichotomous (−1,
0, +1) latent variables, item factor analysis with 2 or 3 binary latent variables, and constrained (LCDM2F) as well as unconstrained
log-linear cognitive diagnostic model (LCDM), and an LCDM_FIX with parameters fixed to published estimates. Numbers in boldface
indicate the minimum in each column.

estimates. Therefore, a decision about which set of constraints is most defensible or sensible remains mainly a matter of
interpretation, not a question that can be answered by quantitative methods. The differences between the skill distribution
and goodness of fit results are small, whereas the differences between estimates of parameters fixed at certain values are
substantial but almost inconsequential owing to the lack of identifiability of the underlying unconstrained LCDM.

Moving to the comparison of the LCDM with customary IRT models and diagnostic models that require or imply no
skill interactions, Table 5 presents the log-likelihood and the associated information criteria—the Akaike information
criterion (AIC; Akaike, 1974) and Bayesian information criterion (BIC; Schwarz, 1978).

The fit indices reported in Table 5 show that neither the unconstrained (but not identified) nor the weakly identified
constrained LCDM are among the preferred models. The three-skill GDM achieves lower, and hence more desirable, fit
indices than the constrained and unconstrained LCDM variants. The equivalent LCDM-estimated parameters, as well
as the LCDM with parameters fixed to previous values, achieve practically the same values, which coincide with what
Templin and Bradshaw (2014)1 report as well as with the LCDM (Mplus-based) output on the LCDM workshop Web site
(Templin, 2012) and with the values calculated with the CDM R-package by Robitzsch et al. (2011–2014).
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The relatively best fitting model, when looking at the AIC, is the exploratory item factor analysis model with three latent
variables (IFA3), whereas the preferred model when looking at the BIC is the unidimensional two-parameter-logistic IRT
model. The BIC was found to be superior compared to the AIC in terms of identification of the correct model (Bozdogan,
1987; Li, Cohen, Kim, & Cho, 2009 ; Nylund, Asparouhov, & Muthén, 2007; Schwarz, 1978).

Conclusion

This report shows an example of how a general class of models can be used to facilitate understanding that a model
including complex skill interactions may not be uniquely defined. This means that alternative parameterizations that
are mathematically equivalent but based on or representing a different set of assumptions may exist. More specifically,
we showed that any model the LCDM can represent, including the DINA and the saturated LCDM, can be recast as a
GDM with a transformed set of skills that do not involve skill interactions. This LCDM-equivalent GDM can be used to
provide parameter estimates that agree with other approaches to estimate the LCDM. In addition, however, the software
implementation of the GDM allows an assessment of model identification of the LCDM, and the LCDM can be tested
against more parsimonious models such as customary IRT models or located latent class models, which provide, for the
case studied here, better model–data fit than the LCDM.

This report also shows that a constrained version of the LCDM that appears to provide reasonable results can, on closer
inspection, be shown to achieve identification only after making some additional, largely arbitrary adjustments in terms
of parameter constraints (see Table 4).

The need for replication and model comparisons cannot be overstated. New models are proposed on a frequent basis,
but these new developments have to be studied rigorously. This includes (a) close inspection regarding potential overlap
or even equivalency to other models as well as (b) an empirical comparison to customary models that involve less complex
structures. Such comparisons should ideally be carried out on real data, because simulated data can only give us answers
that we already provided in the conditions selected and the models used to generate the data.

Real data, however, come in two variants: (a) data that have been used previously and were selected mainly because the
data appear to fit the model and (b) data that are of genuine interest and are collected to answer a research question, not
merely to serve only the purpose of being the data that happened to be there for an apparently new model. In this report,
data of Type a were used to deliver comparisons of Types a and b, as described. It appears necessary to use existing data
to deliver the comparisons of Types a and b that were either missing or misleading owing to incomplete or incongruent1

reporting of model–fit indices in previous publications.
The model comparisons and the main equivalency result presented in this report extend previous findings showing

that the assumptions made in cognitive diagnosis do not lead to uniquely defined Q-matrices (Maris & Bechger, 2009).
Moreover, the result presented here extends the equivalency result derived for the DINA (von Davier, 2011, 2014). This
new result shows that the assumptions underlying the LCDM do not lead to a unique specification of a model, because
multiple skill-space definitions and different conjunctive and nonconjunctive modeling approaches can be devised that
produce the same model-based probabilities of observed responses.

For the practice of using these models, these results indicate that interpretations made based on model choices can
be contrasted by rather different alternative conceptualizations and specifications of model structures that do not assume
conjunctive skills. If there are multiple latent structures that lead to the same model-based response probabilities, inter-
pretations that use one specific variant as evidence of certain response processes or cognitive patterns do not appear to be
on solid ground.

Note

1 However, Templin and Hoffman (2013) report a more optimistic AIC comparing the LCDM to the 2PL. That value appears to
indicate a lower AIC for the LCDM than the 2PL. The AIC cannot be replicated, and it differs from the AIC reported by Templin
and Bradshaw (2014) and the analyses provided on the 2012 workshop site, and from the Robitzsch R-package, which all
coincide with the values reported for the LCDM-equivalent GDM in this report. Also, when recreating the BIC based on
incongruent AIC in the 2013 publication, the 2PL would still be favored over the LCDM.
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