

Maintenance and Exchange of Learning Objects in a Web
Services Based e-Learning System
Gottfried Vossen, and Peter Westerkamp
European Research Center for Information Systems, University of Muenster, Germany
vossen@uni-muenster.de
westerkamp@uni-muenster.de

Abstract: Web services enable partners to exploit applications via the Internet. Individual services can be
composed to build new and more complex ones with additional and more comprehensive functionality. In this
paper, we apply the Web service paradigm to electronic learning, and show how to exchange and maintain
learning objects is a corresponding e-Learning system. We start from a perception of core e-Learning activities as
processes, which enables us to break central functionalities of an e-Learning system down into several stand-
alone applications; these can then be accessed as Web services. However, building a decentralized system by
composing suitably chosen Web services to achieve a functionality similar to that of a traditional e-Learning
system leads to a variety of challenges, two of which are discussed in detail: (1) Storing learning content in a
distributed fashion, and (2) dynamically exchanging content when necessary or appropriate. The paper also
discusses some of the problems arising from storing data on different servers.

Keywords: e-Learning, Web Service, Learning Object, Repository, Distributed Storage

1. Introduction
By moving offline activities online, the
emerging paradigm of Web services promises
to enable partners to exploit vastly arbitrary
applications via the Internet. In a nutshell, a
Web service is a stand-alone software
component that has a unique URI (the Uniform
Resource Identifier is a unique address), and
that operates over the Internet and especially
the Web. The basic premise is that Web
services have a provider and (hopefully) users
or subscribers. Web services can be combined
to build new ones with a more comprehensive
functionality. The benefits of a Web Services
Architecture (WSA) are well-understood in the
area of business-to-business (B2B)
applications, where companies use it for
enterprise application integration; even in
business-to-customer (B2C) scenarios, Web
services are of growing importance. In this
paper, we apply the Web service paradigm to
electronic learning and discuss some of the
realization problems that arise.

Clearly, Web services need to be
interoperable, since individual services
typically are restricted and limited in their
functionality. Moreover, they have to be
independent of the underlying operating
systems, they should be usable on every Web
service engine regardless of the respective
programming language, and they should be
able to interact with each other. To achieve
these goals, Web services are commonly
based on standards; currently most used are
the XML-based specifications SOAP (Simple
Object Access Protocol), UDDI (Universal
Description, Discovery and Integration), and

WSDL (Web Services Description Language).
Even for the composition of Web services,
XML-based languages are being introduced or
even used already (e.g., XLANG, WSFL, or
BPEL4WS, see Leymann (2001) and Andrews
et al. (2003)).

As has been discussed previously, electronic
learning (“e-Learning”) is also taking the shape
of a Web service in many applications these
days. Here the idea is that learners can, for
example, search for content suitable to their
needs, book it, pay for it, and finally consume
it, all by composing appropriate lookup,
payment, and presentation services, resp. The
basics of a platform called LearnServe
providing this are the subject of this paper.
LearnServe starts from the perception that a
typical learning system is a collection of
activities or processes (Vossen et al. 2002)
that interact with suitably chosen learner and
learning objects (Vossen and Jaeschke 2002,
2003); these processes can be broken down
into suitably chosen components which can
then be realized as services individually
(Vossen and Westerkamp 2003).

Building a decentralized system by composing
Web services to achieve functionality similar to
that of a traditional e-Learning system clearly
leads to a variety of novel challenges, among
them that of managing the content for the
learner. Indeed, in a distributed system
organization learning objects cannot simply be
imported into a particular learning
management system. Instead, content needs
to be stored on distributed servers and be
called on demand. This paper will show how
these aspects can technically be combined

ISSN 1479-4403 293 ©Academic Conferences Limited

mailto:vossen@uni-muenster.de
mailto:westerkamp@uni-muenster.de

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (292-304)

with recent standardization efforts that aim at
content exchangeability and efficient reuse,
and how it is even possible to exchange
content for courses vastly “on the fly.” Our
repository for learning object publication and
search essentially adapts the UDDI framework
also used for commercial Web services
(Newcomer 2002) to an e-Learning context. Its
main features are that the repository itself
contains centralized data about learning
objects, i.e., all meta-information, while the
actual content that it refers to can be arbitrarily
distributed. We are thus able to tackle some of
the problems arising in the realization of a
service platform, including

1. storing learning content in a distributed
fashion, and

2. dynamically exchanging content when
necessary or appropriate.

Using LearnServe, content can be published
and organized for exchange, and content can
be accessed in a service-based environment.
We also discuss some of the problems arising
from storing data on different servers, including
quality of content, availability of content, and
security problems.

Once a platform such as LearnServe is in
place and ready to operate, the usage of Web
services will enable the integration of e-
Learning functionality directly to business
applications (e.g., CRM1 and ERP2 systems),
since it will become possible to directly interact
with applications, processes, and other
information sources. This could provide
benefits for a number of learners particularly in
secondary and tertiary education, who are
mostly following a learning-on-demand
approach driven by their professional needs.
Indeed, in a society where on the one hand it
becomes more and more common to change
jobs several times during a work life, and
service provision based on the Web becomes
more and more mature on the other, it is more
than feasible to bring these two developments
together so that one can benefit from the other,
and flexibility for the learner is supported as far
as current technological developments allow.
We emphasize that the system development
reported in this paper is not intended as a
replacement for any form of electronic learning
scenario. Moreover, even for an on-demand
learning application it might not be the only
choice available. However, as technology
advances towards Internet2, and as Internet
access and computing devices become more
and more ubiquitous, the flexibility offered by a

Web service approach to learning will become
attractive for a growing number of people.

The organization of the paper is as follows: We
first describe the basics of e-Learning as Web
service in Section 2. In Section 3 we present
the architecture of LearnServe as a result of
the decomposition of learning-related
processes, and we discuss the challenges that
need to be met for realizing such a platform. In
Section 4 we show how content can be
organized for exchange, how content
publishing can be done, and how content
access can be managed in a distributed
platform. Section 5 concludes with a
discussion of some of the problems that
deserve further study.

2. Exploiting web services for
electronic learning

In this section, we describe the basic
assumptions and ideas behind the creation of
an e-Learning system based on the Web
services paradigm. Essentially, we need to
distinguish the learner (or client) side and the
provider side, where the latter includes all the
functions of a learning system other than those
pertaining to learners. We discuss each side
individually in the following subsections. For
both we focus on content aspects since we
later want to illustrate the handling of content
in a distributed system.

As has initially been discussed by Vossen and
Westerkamp (2003), in an e-Learning system a
variety of features and components can be
perceived as processes and consequently be
realized as atomic or composite Web services;
examples include content authoring, content
configuration into classes or courses, learning
object management, content updating, learner
registration and management, content
adaptation, learner profiling and tracking,
testing of acquired knowledge, tutoring, virtual
classroom setups, organization of chat rooms,
and last, not least, the search for and
presentation of content itself. Thus, we
imagine that the entire functionality of an
electronic learning system is decomposed into
individual activities or groups of activities which
can be implemented independently and offered
as services, in such a way that the original
functionality can be “reconstructed” through a
suitable service composition. Notice that this is
an application of the core Web services
paradigm as described, for example, by Alonso
et al. (2004) or by Newcomer (2002), to the
area of e-Learning.
 1 Customer Relationship Management

2 Enterprise Resource Planning

www.ejel.org ©Academic Conferences Limited 294

Gottfried Vossen and Peter Westerkamp

In such a scenario, all learning objects,
classes, and courses may be stored on
different servers, and they need to be
registered in a central repository together with
meta-information. An individual learning object
(i.e., content) is not stored in this directory. To
“use” a class, the underlying service platform
needs to call the desired learning object, which
is then accessed by a presentation service and
delivered to the learner. The particular Web

service used depends on the metadata, which
should be provided by the author of the course
and which should fit the profile and
preferences of the learner (see below). Figure
1 shows the service subsystems that we will
later describe in detail. In particular, we make a
distinction between three kinds of services:

Content Provider 2

E-Learning
Course

Learner/Client

Internet

Content Provider 1

Content
Presentation 2

User Tracking

Content
Authoring qqq

Content
Presentation 1

Content Provider n

Learning
Object

Meta-
Data

Learning
Object

Meta-
Data

Learning
Object

Meta-
Data

Learning
Object

Meta-
Data

Meta-
Data

Content
Repository UDDI qpp... ppppqq

Content Services Discovery Services Further Web Services
Figure 1: e-Learning as a web service.

1. Content Services provide the learning

material in form of learning objects, courses
or classes.

2. Discovery Services are used to search for
content (content repository) as well as for
additional functionalities that can be added
to the system (UDDI).

3. Further Web Services can implement a
huge variety of functionalities. This can
include typical e-Learning activities and
third party services that are worth to be
consumed by both learners and teachers.
These services also encompass payment
and certification services.

We mention that the choice of subsystems we
discuss here is not exhaustive, and that
various additions may be feasible. We also
mention that this architecture allows for a
variety of implementation choices, i.e., which
part of the system is implemented in the
central platform that is used by the client and
what parts just call upon external or remote
Web services.

2.1 Provider side
The provider side is split into different sections
that can be handled by individual services.
There are authors who create learning objects

(LO), authors who build courses or classes
from such objects, and trainers who
communicate with learners. Authors creating
content do this for a specific group of people or
just for an anonymous circle of learners. The
first step in building learning material is to
create individual learning objects which may
afterwards be configured into classes and
courses, as we have described in Vossen and
Jaeschke (2002, 2003). We assume that
authoring tools are made available as
appropriate Web services, so that an author
can choose between different services to
select the one which is best suited for his or
her situation. At the end of a content creation
session, an author registers the new content in
a content repository; in addition, the LOs
produced are stored on a selected server of
the content provider (see Figure 1).

The creation of classes and courses can even
be done by users or persons who are not
themselves authors of LOs. To do so, they use
existing LOs from other suppliers and combine
them into a class or course. This creates a kind
of added value by plugging the LOs together
and cutting development time. New classes
are also stored on a server and registered in
the repository, without storing the LOs again,
because the latter are reused from the

www.ejel.org ISSN 1479-4403 295

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (292-304)

publisher. Even the action of publishing may
be handled by the same Web service as the
publication of the LO as described before. The
provider side also has to offer Web services to
deliver and represent the content to the
learner. The presentation of the material
depends on the technical requirements of the
LO and is not discussed in detail here.

Special services, also on the provider side,
need to be available for handling trustworthy
actions, such as the collection of payment from
a content user or the transfer of royalties to the
respective content author, the certification of
classes for special exams, or the storage of
user profiles. Even the execution of tests and
exams or the tracking of a user can be handled

by corresponding services. A tracking service
is designed to check for completion of
assignments, determination of degrees if
applicable, and updates to the learning
allowances or charges in the account of the
learner. Importantly, all these services can be
implemented as Web services. As shown in
the example of the Petri net (Reisig 1985) in
Figure 2, content certification is typically a
strictly defined process that includes
searching, reviewing, and certifying of specific
material. Each of these sub-processes can
straightforwardly be implemented as Web
services (encircled actions). Afterwards these
services can be a composed to a complex
Web service “Content certification”.

Auditor

Download LO

Check content

Certify LO

Search for content
 to certify

Publish
Certification

Content
 Repository

latigid

LO Provider

Figure 2: Web services in a content certification process.

Note that the “syntax” of a Petri net as the one
shown in Figure 2 is such that rectangles
represent activities which may be atomic or
composite, and that circles represent “states”
of the system (which may be initial,
intermediate, or final states) or documents that
are consumed or produced. For example, the
“Certify LO” activity, which is a composite one
(indicated by the double bars), has as input
one or more LOs that have been checked
already and that are now ready for being
certified, and that has as output the certified
LO or LO collection. Additional processes of
this type have been described by Vossen et al.
(2002) or Grüne et al. (2004).

2.2 Learner side
As mentioned earlier, different kinds of
learners will want to access and use an e-
Learning system with various motivations and
perspectives. In a Web-based system the
learner ideally just needs a Web browser to
use the system, and he or she does not have
to bother about what part of the platform is part

of the server system and what part is actually a
Web service that gets included from a remote
site. A personal login ensures that a profile can
be created for each user, in order to adapt the
system to a user’s preferences.

A learner usually logs on to the system with a
clear intension of what to learn. Often a learner
has already been assigned a course and can
start working on the material right away. In our
vision of future learning scenarios, the typical
learner searches a content directory and
“orders” learning objects, classes, or courses
that match his or her requirements. Such a
search may be driven by needs, prerequisites,
budget, client hardware and software,
preferences, age of material, author/provider,
and the profile of the learner. Upon
presentation of search results, a learner can
choose and “book” the content he or she wants
to use or consume. Suppose the choice is a
class which is generally composed of several
learning objects that will be presented to the
learner in some sequence. The learner just
uses the presented material as it would be in a

www.ejel.org ©Academic Conferences Limited 296

Gottfried Vossen and Peter Westerkamp

centralized runtime system of an LMS. In fact,
each presentation of material technically
consists of a search in the content repository, a
call of the learning object, and a call of the
corresponding Web service to present the
material.

During a learning session, the executing
platform has to decide whether or not a learner
has passed given test sections and, based on
the outcome, whether and which learning
objects to present next. If the learner fails such
a test, the system has to decide whether to
repeat the presentation or to switch to an
alternative, where the latter can be done by a
dedicated Web service based on the content,
the learners’ preferences and the authors’
prerequisites as mentioned above.

Figure 3 shows a high-level Petri net in the
same syntax as before where possible
application areas for Web services in the
booking of content are again circled. The
search for content is done by a search service,
which in turn uses another service for querying
the user profile and for selecting an
appropriate learning object for a learner. Since
not every such object can be used without
charge, a payment service is also included in
the process. At the end, a special service is
used for updating the user’s profile. Clearly,
also the activity of learning can be associated
with various services.

Learner

Download LO

Pay for Content

Learning

Search for content

Update User
Profile

Content
 Directory

latigidLO Provider
User

 Profiles

Bank

Figure 3: Web services for content booking.

Learners typically need assistance during their
work on the material. Help can be provided in
an e-Learning system using asynchronous
techniques like email or message boards or by
using synchronous techniques such as chat
with a tutor or video conferencing with virtual
classmates. Clearly, all these functionalities
can be included in an e-Learning environment
by calling upon respective Web services of
special vendors, as is currently done in
business environments for virtual meetings and
video conferencing; details are omitted.

3. LearnServe: Making learning
offerings available as services

In this section, we provide an overview of
LearnServe, a system under development at
the University of Muenster; specifically, we
show how its functionalities are identified to be
built as Web service.

Clearly, it is a crucial design decision which
part of a platform should be “outsourced” and
hence be included as a Web service from an
external provider and which part is not. We
mention that a realization of an e-Learning
platform as a collection of Web services can
basically use an existing service platform and
its development tools (e.g., HP Web Services
Platform, Microsoft .NET, Sun ONE, BEA
WebLogic Enterprise Platform, IBM
WebSphere). However, as the discussion
about “standards” in this area is far from
converging, we are currently experimenting
with our own prototypical implementation that
grew out of our XLX learning platform
(Hüsemann et al. 2002) as well as out of e-
Learning workflow studies done in the context
of the INCOME Teacher project (Vossen and
Jaeschke 2002, 2003; Vossen et al. 2002).

As has been indicated, the idea behind
LearnServe is to take the functionality of an e-
Learning system apart, specify its major

www.ejel.org ISSN 1479-4403 297

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (292-304)

components and activities as processes (cf.
Figure 2) that can be executed as workflows,
and group the result into atomic and composite
Web services, for which UDDI as well as
WSDL documents are then prepared. The
prototypical implementation independent of a

commercial platform, which is discussed next,
renders it possible to study various aspects
specific to learning environments and
scenarios; its overall architecture is shown in
Figure 4.

Web Server with PHP- and
Java Servlet Engine

User Data / Excercise
Data

XLX

XML-Extender

OLAP - Engine

Text - Extender

IBM DB2
Universal Database

Internet

Learning Content

Web Services
 Interface

Web Services
 Interface

Content Provider

Profiles/Tracking

Web Services
 Interface

User Data

WSDL Files

WSDL Files

Meta Data

Content RepositoryWSDL Files

Web Services
 Interface

LearnServe
Client

Web Server

UDDI

Learner

Learner /
 other clients

WSDL Files

Further Web Service

Internet

Figure 4: Architecture of LearnServe.

From a logical point of view, LearnServe is
divided into two parts: a client software and
Web services provided by several vendors or
providers. All core components of LearnServe
are gray shaded in Figure 4. The LearnServe
client is the web-based “access point” for a
user that enables her or him to consume and
use the learning services. These services are
implemented on distributed servers and in
particular include authoring, content, exercise,
tracking, and discovery services as well as
communication services such as email and
message boards. Usage of these services is
not limited to our own clients, because the
implementation of the entire functionality as
Web services enables an integration of the e-
Learning functionality directly into any
business application, in order to interact with
applications, processes, and information. The
learning Web services can also be used on
mobile devices if there is an appropriate client
for that device.

As mentioned, the LearnServe system is
based on XLX3 (Hüsemann et al. 2002), which
has already been used by different German
universities and other customers to train
graduate level students in various scientific
courses. XLX is implemented using a typical
three-tier architecture consisting of a client, an
application, and a data layer, resp. Students
need an Internet connection and a Web
browser to access the system, but no special
client software or plug-ins. On the server side,
XLX uses an Apache Web server with PHP as
well as a Java servlet engine, and stores all
necessary data in an IBM DB2 UDB database
or in a system with similar functionality. To
include third-party systems (such as an XSLT
or an XQuery processor) for training purposes,
XLX also provides an external interface.

For LearnServe, XLX is currently being
enhanced for Web service support (see light

3 See http://dbms.uni-muenster.de/xlx for more information
as well as a guest account.

www.ejel.org ©Academic Conferences Limited 298

Gottfried Vossen and Peter Westerkamp

gray shaded box in Figure 4) to reuse the
already implemented exercise and training
sections. XLX now serves as a provider of
Web services to be used in our LearnServe
client. All services are registered in a UDDI
directory which provides all necessary
information to use the functionality of the
remote service within our platform. If one of
these internal Web services of XLX is called,
the corresponding listener module recognizes
this and executes the service. Upon execution,
the services are able to communicate with
different data sources to read or write the
information as needed to (e.g., learning objects
or data of a user profile).

Additionally we are implementing services for
the usage of learning objects in the
LearnServe client. These are based on the one
hand on the well established SCORM
standardizations and on the other hand on the
already mentioned Web services
standardizations. Of course this content can be
combined with the exercises provided by XLX
to build comprehensive courses.

The strict modeling and analysis by cutting the
process models in parts delivers a detailed to-
do list of what to implement as Web services.
In the next section we will focus on the
services and requirements in the area of
content usage and offering and the potential
that service orientation provides.

4. Content management in a web
services based system

This section is to show how learning objects
are handled in a Web services based system,
with both advantages and disadvantages.
Several problems newly arise in a distributed
system when compared to a centralized
learning platform, which require specific
solutions.

Content for e-Learning can be composed of
miscellaneous items such as text, pictures,
videos, animations, diagrams, XML and HTML
files, etc. Moreover, content should be
designed in a way so that it can be exchanged
between different learning management
systems, in order to enable efficient reuse. To
this end, the IMS Content Packaging
Information Model (IMS 2001) specifies a
technique for storing and exchanging learning
object content using XML and a suitable
bundling of files and is part of the SCORM
standard (ADL 2001). There are three steps in
preparing given content for being exchanged:
First, a so-called Manifest document, which is

an XML document, is created; this document is
then validated in the second step. Finally, the
XML document is bundled with physical files
which contain the actual content to form a
package. Thus, a package is a logical directory
and consists at least of two major elements:
� a special XML file (the Manifest,

always called "imsmanifest.xml")
describing the content organization,
metadata and recourses in a package
in conjunction with any XML control
document that it references, and

� the physical files being described by
the Manifest file organized in
subdirectories.

This IMS Package represents a unit of (re-)
usable content and can be combined or
composed with other packages; for an easy
exchange and storage it can be incorporated
into a single file (using standard archive
formats, e.g., zip, jar, or cab), too, which is
henceforth called a “Package Interchange File”
(PIF) as indicated in Figure 5. PIFs can be sent
over the Internet or be exchanged via CD-
ROM.

Figure 5: Logical structure of a Package

Interchange File.
The Manifest can include an identifier for
labeling purpose and a version which refers to
the IMS Content Packaging version number.
As seen in Figure 5, the Manifest is subdivided
into four parts which contain a meta-data
section, an organizations section and a
resources section as well as an optionally
additional Submanifest:
� The metadata of the learning content in the

meta-data section is embedded into a
metadata tag and follows the specifications
of the IMS Meta-Data Information Model
(IMS 2001). The metadata describes the
Manifest (and thus the learning object) as
a whole.

� The organization segment contains
information describing the structure of the
content in the package, e.g., the table of
contents or a custom structure.

� The resources reference the actual
content. This can be a physical file in the

www.ejel.org ISSN 1479-4403 299

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (292-304)

package or even a reference to another
Manifest file. Each resource can be
additionally described by metadata
following the specification of the IMS Meta-
Data Information Model (IMS 2001).

� Any nested Submanifest describes the
content at the level to which it is scoped,
such as a course, instructional object, or
other.

The objective of the IMS Content Packaging
Information Model is to define a standardized
set of structures that can be used to exchange
content. These structures provide the basis for
standardized data bindings that allow software
developers and implementers to create
instructional materials that interoperate across
authoring tools, LMSs, and runtime
environments that have been developed
independently. Further information can be
added to the structure of a Manifest document,
like IMS Simple Sequencing (IMS 2003) for
defining the behavior and a set of rules for
content selection within a course.

Since content cannot be stored in a central
place in our distributed environment, we
provide a repository that is based on the
information provided in the Manifest
documents of the PIFs. The repository is made
up of several Web services to use its
functionality from a remote system, as well as
a relational database to store the information
about a learning object. The object itself is not
stored in the repository; instead, a cross
reference is provided in the repository which
points to its actual location. For example, this
location can be a Web server of the author
which has a unique address. The main idea
when publishing a learning object is that a
Web service can be employed to read the
object’s metadata of its Manifest document
and to store this information in the database
provided by the repository.

Notice that this approach has several
advantages: For one, calling the described
actions can be made very flexible using a
dynamic call of Web services, such as the one
introduced by Keidl et al. (2002) and described
for an e-Learning scenario in Vossen and
Westerkamp (2003), by querying the UDDI
directory of all available services that are
based on the same technical model; in
addition, the use of learning objects can
become dynamic. Traditional systems have to
import learning objects to their own data pool
in order to make use of them. This makes
learning object availability dependent on the
local database system only, at the expense of
limiting reuse (in particular in other learning

communities) and exchangeability. Using a
central content directory enables authors to
reduce the workload of creating courses by
reusing content from other authors. Because
content is stored on distributed servers we
have to transfer the dynamic call of Web
services to the call of learning objects.

As an example, think of an online course to
become a database certified engineer (DCE)
as shown below in Figure 6. A learner may first
look up the requirements, which are published
by the database system vendor, then registers
for the course, obtains a to-do list, and starts
with the first learning object. The system
knows how to assemble learning objects of a
particular type, thanks to the authors’ class
(and course) definition. Let us have a closer
look at a “schema tuning” object, which is
called after a successful processing of the
class for “database administration” as well as
after the “query tuning” object. The platform
triggers the call of the object by using the
definitions the author has made while building
up the class. In fact, the author has defined
different objects for “schema tuning” to be
possibly used in the class. Depending on the
preferences of the user and on the (time or
cost) allowance, the system selects the object
that fits the learner’s needs and profile best.
Hence, different learners can receive different
objects on the same topic if working on the
same class, depending on their personal data
and preferences. Let us now assume the
system has chosen an object for submission to
the student. Based on the metadata of the
object, a Web service is called that computes
the optimal presentation of the material to the
learner and delivers the result of the
computation. This is not a static call either, but
a dynamic one for the presentation of the
object. Restrictions and preferences of learner,
author, and client trigger the choice of the Web
service to present the material.
Building a system of dynamic selection of
learning objects has the advantage of an
increased flexibility and adaptability. A learner
does not even have to notice an exchange of
learning objects for the purpose of updating or
adapting the course material to his or her
needs, or for exchanging content in case of a
learning object being offline and hence
unavailable. Critical, however, are the facts
that reusing learning objects and storing data
about them in a central content directory
require a use of generally accepted standards.
Today, many e-Learning systems do not care
much about standards and use their own way
of handling content, what makes this material
difficult to be reused for a system based on

www.ejel.org ©Academic Conferences Limited 300

Gottfried Vossen and Peter Westerkamp

Web services. This lack of interchangeability
can be solved by using Web services to create
the content, which are implemented carefully to
use corresponding standards; we mention that
this is not yet generally the case today. On the
other hand, the dynamic call and flexible
exchange of learning objects leads to the
problem of being able to evaluate and
compare them. To use different objects on,
say, “schema tuning” in a database course,
they must have a comparable and similar

content to ensure that all learners can learn
the same topics, reach the same level of
knowledge, yet do so in different ways. This
problem can, for example, be solved
“manually” by the author of a course or by a
special instance that certifies learning objects.
The latter has the advantage that certified
content can be used to confer degrees after
passing an (online) exam.

Schema
Tuning

Database
Administration

Database
Tuning

Database
Application
Develpment

Database certified
engineer

Query
Tuning ...

Storage
Tuning Test2Test1

Examination

Course Program

Classes

Learning
Objects

Figure 6: Sample DCE course program.

In addition to the dynamic exchange of
learning objects during ongoing learning
activities, an author can exchange an object
without changing the definitions of the
respective course. The main advantage of
distributed storage of content is an easy
upgrade and correction of content, because
the author just has to replace special
(commonly just small) parts of the package
without changing anything in the repository, if
the metadata of the content remains
unchanged. Clearly, the repository has to
provide a versioning of learning objects since
major changes may confuse learners. A
disadvantage is that potentially dead links are
stored in the database. To resolve this
problem, the repository needs to scan stored
links regularly to detect registered, but already
erased learning objects. The usage of Web
services enables developers of an LMS to
include the functionality of the repository
straightforwardly into their own systems and
hence opens them up for a larger diversity of
content. This can reduce the authoring of
content tremendously, as content can be much
easier reused. The learner has a choice of
much more content to use - he has now even a
choice of similar content of different authors.

Another problem concerns security aspects on
the client side. Since learning objects might
execute programs on the client’s computer, it is
difficult to ensure that no attacks will take place

to that machine, since normally everybody can
build content and provides it for download.
Finally, all repositories independent of the type
of storage and access properties face the
problem of having to verify or at least check
the quality of the registered content. To a large
extent, this problem can only be solved by
human supervisors. The LearnServe repository
provides a Web service for reviewers to certify
content to allocate LOs of a certain quality to
learners.

5. Discussion and conclusions
In this paper, we have described how content
can be handled in a Web services based
electronic learning platform. Several positive
aspects such as a dynamic exchange of
learning objects during a learning process as
well as an easy updateability of content are
provided by distributed storage in connection
with a central repository which keeps metadata
about the objects. Moreover, a consequent
modeling of learner, author, trainer,
administrator, and system activities as
processes enables us to break down the
functionalities of traditional centralized learning
platforms into many small components and
individual applications that can be “outsourced”
and hence be realized as Web services.

We mention that we are not claiming a general
replacement of present-day e-Learning
systems and scenarios by systems based on

www.ejel.org ISSN 1479-4403 301

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (292-304)

the Web services paradigm. Instead we
envision what we have described in this paper
as one of several forms in which future
learning will take shape. The Web services
approach seems particularly suited for learners
seeking secondary or tertiary education on
demand, due to changing or new job
requirements, personal interests or
necessities, or other conditions. What has
been described in this paper is only a first step
in this direction.

We conclude by mentioning several
approaches that are related to our work. Sadiq
and Orlowska (2001) have introduced an
workflow based e-Learning system, where
content can be exchanged in the workflow
model, and plans can be defined to enable
different pathways through the learning content
in a centralized system. A similar approach is
the COW system under development in
France, see Vantroys and Peter (2001), its
goal is to develop a workflow based system for
e-Learning purposes which is supposed to
support personalization and adaptation as well
as a sequencing of learning activities. On the
other hand, there are several different
repositories in the area of e-Learning: iLumina4
provides a centralized register and references
content on distributed servers; however, it is
not based on the IMS Content Packaging and
on Web services, which makes an integration
of content difficult. The LORAX5 repository
provides a central content management facility
("The Exchange") to store and publish content.
A detailed specification is given how to access
this repository via Web services to search for
and retrieve learning objects. Learning objects
are delivered in the form of PIFs from the
central "Exchange". Finally, OLR (Open
Learning Repository) follows the idea of not
storing content within a repository, but it is not
accessible via Web services; for details, see
Dhraief et al. (2001).

Among the issues that deserve further studies
are on the one hand technical ones, such as
the provision of easy-to-use interfaces for Web
service composition. Indeed, if a learner is
faced with the task of composing a course by
herself or himself, this should not have to deal
with, say, integrity or plausibility checks;
instead, whatever is offered as possible
composition parts should indeed be
composable. Another study area, from a more
conceptual perspective, needs to deal with the
provision of pricing models. Here we envision

strategies similar to those currently used by
telecommunication providers, including flat
fees, “call-by-call” fees, or base rates plus fees
based on usage. Pricing schemes not only
need to consider what learners have to pay,
but also, for example, what authors can make
in terms of royalties. We expect to report on
these issues in th near future.

4 see http://www.ilumina-dlib.org
5 see http://www.thelearningfederation.edu.au/

References
Advanced Distributed Learning Initiative

(2001). Advanced Distributed Learning
Sharable Content Object Reference
Model, The SCORM Overview, Version
1.2.

Alonso, G., F. Casati, H. Kuno, V. Machiraju
(2004). Web Services - Concepts,
Architectures and Applications.
Springer-Verlag, Berlin.

Andrews, T., F. Curbera, H. Dholakia, Y.
Goland, J. Klein, F. Leymann, K. Liu, D.
Roller, D. Smith, I. Trickovic, S.
Weerawarana (2003). Specification:
Business Process Execution Language
for Web Services Version 1.1,
ftp://www6.software.ibm.com/software/d
eveloper/library/ws-bpel11.pdf.

Dhraief H., W. Nejdl, B. Wolf, M. Wolpers
(2001). Open Learning Repositories and
Metadata Modeling. In Proc.
International Semantic Web Working
Symposium (SWWS), Stanford
University, California, USA.

Grüne, M., K. Keferstein, K. Lenz, A.
Oberweis, M. von Mevius, G. Vossen
(2004). Individualization of E-Learning
Processes by Workflow-Based Learning-
Object Management. In Proc.\ 7th
International Conference on Business
Information Systems (BIS), Poznan,
Poland, 214-226.

Hüsemann, B., J. Lechtenbörger, G. Vossen,
P. Westerkamp (2002). XLX - A Platform
for Graduate-Level Exercises. In Proc.
1st International Conference on
Computers in Education (ICCE),
Auckland, New Zealand, 1262-1266.

IMS Global Learning Consortium, Inc. (2001).
IMS Content Packaging Best Practice
Guide, Version 1.1.2. August 2001.

IMS Global Learning Consortium, Inc. (2003).
IMS Simple Sequencing Best Practice
and Implementation Guide, Version 1.0
Final Specification, March 2003.

http://www.imsproject.org/simplesequencing/ss
v1p0/imsss_bestv1p0.html

Keidl, M., Kreutz, A., Kemper, A., Kossmann,
D. (2002). A Publish & Subscribe
Architecture for Distributed Metadata
Management. In Proc. 18th IEEE

www.ejel.org ©Academic Conferences Limited 302

Gottfried Vossen and Peter Westerkamp

International Conference on Data
Engineering (ICDE), San Jose, CA.
IEEE Computer Society, 309-320.

Leymann, F. (2001). Web Services Flow
Language (WSFL 1.0). IBM Report.

Newcomer, E. (2002). Understanding Web
Services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley, Reading, MA.

Reisig, W. (1985). Petri Nets, An Introduction.
EATCS, Monographs on Theoretical
Computer Science, W.Brauer, G.
Rozenberg, A. Salomaa (Eds.), Springer
Verlag, Berlin.

Sadiq, W., M. E. Orlowska (2001). Flex-eL -
Managing e-Learning through
Worfkflows. In Proc. SAP Research and
Applications Congress, February 2001,
San Diego, USA.

Vantroys, T., Y. Peter (2001). A WMF-based
workflow for e-Learning. In Proc.
European Research Seminar on
Advances in Distributed Systems
(ERSADS), Bertinoro, Italy, May 2001.

Vossen, G., P. Jaeschke (2002). Towards a
Uniform and Flexible Data Model for

Learning Objects; In Proc. 30th Annual
Conference of the International
Business School Computing Association
(IBSCA), Savannah, Georgia, 99-129.

Vossen, G., P. Jaeschke (2003). Learning
Objects as a Uniform Foundation for
Database-Driven E-Learning Platforms.
In Proc. 7th International Database
Engineering and Application Symposium
(IDEAS), Hong Kong, China IEEE
Computer Society Press, 278—287.

Vossen G., P. Jaeschke , A. Oberweis (2002).
Flexible Workflow Management as a
Central E-Learning Support Paradigm.
In Proc. 1st European Conf. on E-
Learning, Uxbridge, UK, 253—267.

Vossen, G., P. Westerkamp (2003). E-
Learning as a Web Service (Extended
Abstract). In Proc. 7th International
Database Engineering and Application
Symposium (IDEAS), Hong Kong,
China, IEEE Computer Society Press,
242—249.

www.ejel.org ISSN 1479-4403 303

