

ISSN 1479-4403 21 ©Academic Conferences Ltd

Reference this paper as:
Costelloe E, Sherry E and Magee P (2007) “Determining Areas of Weakness in Introductory Programming as a
Foundation for Reusable Learning Objects” The Electronic Journal of e-Learning Volume 5 Issue 1, pp 21 - 30, available
online at www.ejel.org

Determining Areas of Weakness in Introductory Programming
as a Foundation for Reusable Learning Objects
Eileen Costelloe, Elisabeth Sherry and Patricia Magee
ITT Dublin, Ireland
eileen.costelloe@ittdublin.ie
elisabeth.sherry@ittdublin.ie
patricia.magee@ittdublin.ie

Abstract: Teaching programming to novices has proved challenging for both learner and lecturer due to the abstraction
and complexity of the subject matter. The work described in this paper is part of an EU funded Minerva project called
TUPULO (Teaching Undergraduate Programming Using Learning Objects) which aims to address the challenges faced
by novice programmers by providing them with an innovative learning tool. This learning tool that is currently under
development and rollout incorporates a set of Reusable Learning Objects (RLOs) based on sound pedagogical principles
and encapsulated in a Constructivist Learning Environment (CLE), which includes a meta-cognitive interface. The subject
matter experts and instructional designers in the local academic partner institutions designed these learning objects. The
outputs and findings of the TUPULO project will not only benefit learners in the partner institutions involved, but by being
disseminated to the wider educational community, they will also help learners in the domain on a broader scale. This
paper describes the preparatory work undertaken in order to establish a set of potential LOs for development based on
the student’s main areas of weakness.

When attempting to build learning objects for use in any domain the primary consideration should always be the needs
and abilities of the learners. This paper describes the work done by the authors in conducting a user needs analysis in
order to establish the key problem areas facing learners of introductory programming. A methodology for user needs
capture and analysis was produced based on the set of user groups available at the Institutions and the needs of the
users were captured and analysed. The methodology was devised to incorporate both quantitative and qualitative
analysis of the information available to us regarding students. Exam scripts and corresponding results together with
focus group discussions were used in order to ascertain perceptions regarding the course content, delivery, level of
difficulty and areas of difficulty in programming. Additional institutional information such as students’ leaving certificate
points and Maths grade together with students’ overall performance in other subject areas were used to investigate
possible correlations. The analysis of this data provided some preliminary information on the ways in which students
interpret various questions and their conceptual difficulties in understanding certain topics. This analysis leads to the final
selection of programming topics for potential development as reusable learning objects.

Keywords: novice programmers, learning objects, programming pedagogy, meta-cognitive support

1. Introduction
Research literature and practical experience of
subject experts indicate that teaching
programming to novices has proven challenging
for both learner and lecturer. Research supports
the fact that students find programming difficult.
Linn and Clancy (1992) found that “for
programmers to develop competency, they need
to have good problem solving skills and a
thoroughly organised knowledge of a
programming language”. Problem-solving skills
are central to developing competency as a
programmer yet these skills seem to be
inadequate in the incoming students. Riley (1981)
concluded that many students entering college
have problem-solving skills that are “woefully
inadequate”. Henderson (1986) notes that
problem solving and analytical thinking are
students’ major weaknesses in a computer
science course. The implementation phase of
programming presents additional problems for
novice programmers. These include: syntax of the
chosen language, programming constructs,

development environment and testing and
debugging.

In addition, novice learners fail to reflect on their
approach to designing solutions to problems and
less successful problem-solvers act but do not
look and learn from their actions (Gage and
Berliner, 1980). Reflection, self-analysis, self-
assessment and articulation are essential for the
development of the learner’s meta-cognitive and
independent learning skills. Meta-cognitive skills
are activated during learning, making learning
easier and facilitating the transfer of learning.
Fekete (Fekete et al 2000) and his colleagues
acknowledge the importance of reflection in
assisting students develop meta-cognitive skills.
For example, by explicitly outlining subject goals,
getting the students to maintain a reflective diary,
students are encouraged to think about what they
know, how they learned it and how well it matches
the announced goals of a subject. A meta-
cognitive interface will be incorporated into the
learning tool to assist in developing these skills.

Electronic Journal of e-Learning Volume 5 Issue 1 2007 (21 - 30)

www.ejel.org ©Academic Conferences Ltd 22

These skills are needed where habitual responses
are not successful (Blakey and Spence, 1990)
and problem solving is one area where it is
necessary to develop these skills.

The TUPULO project aims to address some of the
challenges faced by novice programmers by
providing them with an innovative learning tool,
incorporating a set of Reusable Learning Objects
(RLOs), based on sound pedagogical principles
and encapsulated in a Constructivist Learning
Environment (CLE). The Learning Objects will
focus on the common areas of weaknesses that
are determined by the User Needs Analysis. As
indicated the Constructivist Learning Environment
will encompass a meta-cognitive interface which
will encourage the novice programmers to reflect,
self-analyse and elicit articulation of the learner’s
understanding of certain programming constructs.
By eliciting articulation from the learner, the CLE
is encouraging reflection “which is an important
cognitive activity, critical for effective learning”,
(Guzdial, 1994). The outputs and findings of the
TUPULO project, by being disseminated to the
wider educational community, will help learners in
the domain on a broader scale, as well as
promote the development and use of learning
processes and resources that are both innovative
and effective. One of the initial core activities of
the TUPULO project when it commenced in
October 2005 was to classify users according to
their generic need, i.e. identify a target group and
to conduct a User Needs Analysis. This paper
describes these activities and draws conclusions
from the research carried out in one of the
academic partner institutions, which will inform
and direct the remainder of the research project.

The objective of this phase of the project was to
establish the target audience and the students’
major areas of weaknesses in undergraduate
programming, so that they could be targeted and
the appropriate Learning Objects could be
designed and deployed. ITT Dublin carried out
extensive research of their past first year students’
examination scripts and analysed the results
generated. The results were then collated with the
results of the other academic partner institutions
in order to determine cross-institutional areas of
weaknesses in undergraduate programming in the
student sample that could be deemed to be
representative of the general population. The
students, at both first and second year level, were
surveyed to determine their perceptions of the
courses they were taking. A number of focus
group discussions with the students were also
conducted.

2. Classification of participants
A core activity of the project’s initial work package
was to classify users according to their generic
need. Research indicates that novice
programmers have a number of difficulties to
overcome (Riley op. cit., Henderson op. cit.). The
literature also indicates that novices have poor
meta-cognitive skills, (A.L. Brown, cited in Gage
and Berliner,1980), these are skills which they
need to develop in order to become life-long
learners and proficient programmers.

This project focuses on a target audience of
novice programmers in their first undergraduate
year in third-level education. Three Irish third-level
institutions, Institute of Technology Tallaght, (ITT
Dublin), the Dublin City University, (DCU) and the
Institute of Technology Blanchardstown (ITB),
participated in the research, see Table 1. Samples
of student data from each institution were used
spanning three academic years, 2003, 2004 and
2005. These samples were broken down into sub-
categories of, students in Semester 1 and
students from Semester 2. The current student
group from the academic year 2005/2006, at both
first and second year level, were also surveyed in
ITT Dublin and ITB to determine their perceptions
of the courses, and ITT Dublin students were
involved in focus group discussions.
Table 1: Participating Academic Partners
Numbers of Students Sampled

Institution Number of
Students Sampled

ITT Dublin 157
ITB 167
DCU 311

The ITT Dublin conducted analyses of first year
student examination scripts from the years 2003,
2004, 2005, see Table 2
Table 2: Breakdown of Students Sampled at ITT
Dublin

Academic
Year

Semester Number of
Students

2003 1 17
2003 2 64
2004 1 36
2004 2 20
2005 1 20

A total of 157 students from ITT Dublin were
involved in this study to establish key areas of
weakness of students of programming at
introductory level. Using research literature and
the academic participants’ experience in the field
as guidance, the target audience of novice
undergraduate programmers was selected. Once
the target audience was determined, the objective
of the next phase of the project, which was the

Eileen Costelloe, Elizabeth Sherry and Patricia Magee

www.ejel.org ISSN 1479-4403 23

User Needs Analysis, was to establish the
students’ major areas of weaknesses in
undergraduate programming. The identified
audience could then be targeted and the
appropriate Learning Objects and Constructivist
Learning Environment would be designed and
deployed. Although this paper primarily focuses
on the analysis carried out in ITT Dublin, it is
worth noting that the same study was carried out
in the other two academic partner institutions.

Each participating academic institution carried out
extensive research of their past first year students’
examination scripts and analysed the results
generated. Qualitative information was gleaned by
carrying out surveys and focus group discussions.
A comparison of areas of weakness across all
three academic institutions was carried out in
order to determine common problem areas. The
learning objects were then subsequently designed
and developed to specifically target the subject
areas posing the greatest difficulty for
programming students. The choice of content for
the learning objects was constrained to some
degree by the need to make the topics relevant to
each of the partner institutes’ software
development modules. The remainder of this
paper details the extensive research carried out
by ITT Dublin into first year students’ Software
Development examination scripts and presents an
analysis of the results generated. The concluding
section of this paper will outline the main points of
interest from each of the three studies carried out
in the partner institutes as part of the user needs
analysis.

2.1 User needs analysis methodology
As a first step in the User Needs Analysis
process, a User Needs Analysis Methodology was
drafted and agreed with the participating
academic institutions, as outlined in Table 3
below:
Table 3: UNA Methodology
UNA Methodology
Examination Scripts collation and analysis based on the
following:

 Categorisation of questions, based on topic
 Number and percentage of students who took

questions per category
 Students’ results per question, and sub-question, F,

D, C etc.
 Students’ overall performance in the paper

Student Survey
Questionnaire of 1st year students to ascertain
perceptions regarding:

 course, content, delivery, level of difficulty and areas
of difficulty.

Questionnaire of 2nd year students to ascertain
perceptions regarding:

 course, content, delivery, level of difficulty and areas
of difficulty

Focus group discussions, 1st and 2nd year students to
ascertain perceptions regarding problem areas

Institutional Information
Students’ overall performance in other subject areas,
where available
Leaving Certificate points where available

Course Information
Syllabus, break down of topics and time allocated to
same
Teaching methodology, combination of lectures/
tutorials/ laboratories, other tools used
Technology used in teaching of same

The objectives of the UNA were to provide
answers, which could address the following
universal issues in undergraduate programming:
 Determine main areas of difficulty, ref Point 1

in table above
 By scripts analysis and student survey

 Why are these areas difficult for students?
 Student ability, Mathematical grade/Leaving

Certificate Examination (Leaving Certificate
Examination is the examination that Irish
students take at the end of their secondary
school education. They achieve Leaving
Certificate points based on their
performance). point correlation
 By statistical analysis

 How taught, examples, practical work,
teaching methodology
 By student survey

 Is Software Development the only area of
difficulty in the undergraduate course?
 Ref point 3a. in table above
 If so what are the issues?

 Problem – solving ability? (Ref Student
Survey), How students approach the
problems? No reflection on approach?

 Is there a statistical correlation between
only fail and Software Development?

 Glean information from student survey,
questionnaire and focus group discussion

2.1.1 Coding schemes
A coding scheme was generated in order to
analyse the examination scripts, these codes
were specific to ITT Dublin’s scripts and the other
participating institutions used these codes and
added their own specific codes as required, see
Table 4 and Table 5.

Table 4: Coding Scheme, Semester 1 (ITT
Dublin)

Electronic Journal of e-Learning Volume 5 Issue 1 2007 (21 - 30)

www.ejel.org ©Academic Conferences Ltd 24

Coding Scheme,
Semester 1 ITT

Related Topic

1DArr 1DArray
2DArr 2DArray
CC Code Comprehension
JC Java Coding
LP Loop/iteration
PS Pseudocode
SEL Selection
SEQ Sequence and

selection
STR Strings
TST Testgrid

Table 5: Coding Scheme, Semester 2 (ITT
Dublin)

Coding Scheme,
Semester 2 ITT

Related Topic

AP Access Protection
GSM Getter/Setter Methods
IH Inheritance
MTH Methods
OC Object Construction
OCMC Object Creation and method

calling
POLY Polymorphism
SOC Subclass Object

Construction
TH Theory

2.2 Data collection, analysis and
evaluation

A multi-method approach was adopted in this
research in order to collect as much data as
possible from a variety of viewpoints, which could
then be analysed, and in which one could be more
confident compared to using a single method
approach. By triangulating the data collected by
the different methods used, one can be more
confident in the research findings, and the more
the methods contrast with each other the more
confident one can be in the findings, (Cohen and
Mannion, 1997). The methodological triangulation
included a survey, which included a self-
completion questionnaire and focus group
discussions, and an analysis of students’
examination scripts over a number of semesters
from the participating academic partners. In
carrying out the analysis of the software
development examination scripts at ITT Dublin, a
MicroSoft Excel™ spreadsheet was used to store
the breakdown of results for each question and
sub-question for each student. This data enabled
the partners determine the main areas of
weakness in terms of student performance. An
analysis of this data was performed in order to
gather the information required as specified in the
User Needs Analysis methodology outlined
previously. In addition to the examination script
analysis, a survey was conducted to gather data

about the students’ perceptions of software
development. The survey involved first and
second year students completing questionnaires
and taking part in focus group discussions.
The main purpose of the enquiry was to:
 Determine the students’ perceptions regarding

the area under study, i.e. software
development

 Determine the students’ approach to designing
software solutions

When designing the self-completion
questionnaire, every attempt was made to ensure
that it was clear and unambiguous. It was
designed so that it would minimise potential errors
from respondents and that it would engage their
interest and elicit answers as close as possible to
the truth. Once the questionnaires were collected,
the data was entered into an Excel ™
spreadsheet for analysis. In addition to the
questionnaires, focus group discussions were
conducted with the students. This technique has
been shown to be particularly valuable as it gets
at deeper attitudes and perceptions of the
attendees in such a way as to leave them free
from interviewer bias. In conducting the group
discussions the facilitator’s guidance was kept to
a minimum to maintain the criterion of non-
direction. The respondent’s descriptions of their
experience were allowed full expression, and the
range of responses from the students was
maximised. The nature of the group discussions
facilitated a wide range of responses with the
students being able to challenge and extend each
other’s ideas.

2.2.1 Data collection, analysis and
evaluation – semester 1

The authors conducted an analysis of first year
student examination scripts from the years 2003,
2004, 2005, ref Table 2. The student sample
chosen was a random sample of scripts, which
were taken from the student population of each
year. The analysis of the scripts for Semester 1
2003 indicated that the main areas of difficulties
were questions based on the following topics,
ranked in order of difficulty, based on student
performance in the examination:
 1 Dimensional Arrays
 2 Dimensional Arrays
 Selection
 Pseudocode and Looping

The analysis of the scripts for Semester 1 2004
indicated that the main areas of difficulties were
questions based on the following topics, ranked in
order of difficulty, based on student performance
in the examination:
 Code comprehension
 1 Dimensional Arrays

Eileen Costelloe, Elizabeth Sherry and Patricia Magee

www.ejel.org ISSN 1479-4403 25

 Looping
 Looping with Selection

The analysis of the scripts for Semester 1 2005
indicated that the main areas of difficulties were
questions based on the following topics, ranked in
order of difficulty, based on student performance
in the examination:
 Looping/Theory
 Testing
 Looping with Arrays
 Code comprehension

An overview of these results is shown in Figure 1
below, the higher values indicating higher levels of
difficulty.

0

1

2

3

4

5

6

1D
Arr

2D
Arr

SEL
PS/LP CC LP

PS/LP
/S

EL/S
EQ

LP
/TH TST

LP
/1D

Arr/J
C

LP
/1D

Arr

2003

2004

2005

Figure 1: 2003, 2004 and 2005 Semester 1
Analysis of Examination Results (ITT Dublin)
indicating main areas of difficulties based on
student performance
In analysing the main topics of difficulty from each
sample taken, the main areas of difficulties, in
terms of programming constructs, for students in
semester one in ITT were determined to be:
 Arrays
 Looping
 Selection

The survey at ITT Dublin consisted of a
questionnaire and focus discussions. A total of
twenty questionnaires were completed and
returned. It should be borne in mind that the
students who completed the questionnaires were
not the same students whose data was included
in the scripts analysis. However, they were
randomly selected from the first and second year
student population. In order to ensure that the
students completed the questionnaires
individually, their completion was supervised. The
completed questionnaires were collected and their
results analysed. The questionnaire was designed
to gather information relating to the following
research questions:
 Determine the students perceptions regarding

the area under study, i.e. software
development and its concepts

 Determine the students’ perceptions regarding
their approach to designing software solutions

At ITT Dublin 75% of students surveyed either
strongly agreed or agreed that software
development was their most challenging module.
At ITT Dublin, 90% of those surveyed either
strongly agreed or agreed that problem solving
ability impacts on their performance see Figure 2.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Strongly
Agree

Agree Neutral Disagree Strongly
disagree

Problem Solving ability impacts performance

Figure 2: Problem solving ability impacts
performance (ITT Dublin)
Only 20% of students at ITT Dublin nearly always
think about their approach in designing software
solutions, see Figure 3, with 60% only sometimes
thinking about their approach and a further 20%
rarely or never thinking about their approach. This
concurs with the fact that novices have meta-
cognitive deficiencies and these skills need to be
developed. Consequently, one of the more
innovative aspects of the TUPULO project is the
design of a meta-cognitive interface to provide an
appropriate level of support for the learner in order
for them to develop their meta-cognitive skills.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Al
w

ay
s

N
ea

rly
al

w
ay

s

So
m

et
im

es

R
ar

el
y

N
ev

er

Think about approach taken in designing
solutions

Figure 3: Think about approach taken in
designing solutions (ITT Dublin)
The students were asked to rank the difficulty
level in a number of programming concepts, e.g.
loops, arrays, selection. Only 5% of students
perceived loops to be difficult with 95% of those
surveyed perceiving them to be either not difficult
or easy, see Figure 4.

Electronic Journal of e-Learning Volume 5 Issue 1 2007 (21 - 30)

www.ejel.org ©Academic Conferences Ltd 26

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Extremely
diff icult

Very diff icult Not diff icult Easy Very Easy

Level of diff iculty: Loops

Figure 4: Perceived Level of difficulty: Loops (ITT
Dublin)
When surveyed about the perceived level of
difficulty of arrays 60% of those surveyed found
arrays to be either extremely or very difficult with
only 40% indicating no difficulty with the concept,
see Figure 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

Extremely
diff icult

Very diff icult Not dif f icult Easy Very Easy

Level of dif f iculty: Arrays

Figure 5: Perceived Level of difficulty: Arrays (ITT
Dublin)
The students surveyed indicated no difficulty with
the selection construct with 40% indicating that
selection was not difficult and the remaining 60%
perceiving it to be either easy (45%) or very easy
(15%). In triangulating the results from the
examination script analysis and the student
questionnaires, bearing in mind that they pertain
to different student samples, the main area of
weakness from the script analysis, i.e. arrays,
concurs with the students’ perceptions of level of
difficulty with 60% of students perceiving arrays
as being extremely or very difficult. In terms of the
students’ perceptions, they rank looping next in
difficulty, with 5% indicating difficulty, finally with
selection, no one perceived this construct as
difficult. These results concur with the results of
the script analysis in their ranking of difficult
programming topics, as follows:
 Arrays
 Looping
 Selection

2.2.2 Data collection, analysis and
evaluation – semester 2

In semester 2 the course at ITT follows an object-
oriented paradigm and the topics covered are
object-oriented topics. The analysis of the
examination scripts for Semester 2 2003 indicated
that the main areas of difficulties were questions

based on the following topics, ranked in order of
difficulty:
 Polymorphism
 Getter/Setter Methods
 Object Creation and Method Calling
 Subclass Object Construction

The analysis of the examination scripts for
Semester 2 2004 indicated that the main areas of
difficulties were questions based on the following
topics, ranked in order of difficulty:
 Polymorphism
 Methods
 Code Comprehension
 Object Creation and Method Calling

An overview of these results is shown in Figure 6
below, the higher values indicating higher levels of
difficulty.

0

1

2

3

4

5

6

POLY GSM OCMC SOC MTH CC

2003

2004

Figure 6: 2003 and 2004 Semester 2 Analysis of
Examination Results (ITT Dublin) indicating main
areas of difficulties based on student
performance.
In semester two the main areas of difficulty at ITT
over the period studied, in terms of programming
constructs were

 Methods
 Polymorphism
 Objects

These results and areas of weaknesses are
specific to ITT Dublin, given the sample of
students’ examination scripts analysed over the
time period outlined.

Twenty-second year students at ITT Dublin
completed questionnaires in order to determine
their perceptions relating to topics covered in
semester two. These students were not, as stated
above, the same sample on which the script
analysis was based. In relation to the students’
perception of the level of difficulty of methods and
parameter passing, only 20% of the students
perceived these concepts to be either extremely
or very difficult with the remaining 80% perceiving
them to be not difficult or easy, see Figure 7.

Eileen Costelloe, Elizabeth Sherry and Patricia Magee

www.ejel.org ISSN 1479-4403 27

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Extremely
diff icult

Very
diff icult

Not
diff icult

Easy V. Easy

Level of diff iculty: Methods & Parameter Passing

Figure 7: Perceived Level of difficulty: Methods
and parameter passing (ITT Dublin)
However when surveyed regarding the perceived
difficulty of polymorphism, 55% of the students
surveyed indicated that they found it extremely or
very difficult, see Figure 8.

0
0.1
0.2
0.3
0.4
0.5
0.6

Extremely
diff icult

Very
dif f icult

Not diff icult Easy V. Easy

Level of diff iculty: Polymorphism

Figure 8: Perceived Level of difficulty:
Polymorphism (ITT Dublin)
In relation to subclass object creation 30% of
those surveyed perceived this topic to be either
extremely (5%) or very (25%) difficult. In
triangulating the results from the script analysis for
semester two and the second year student survey
results, the following observations were made:

In semester two, the main areas of difficulty at ITT
determined from the scripts analysis, were:
 Methods
 Polymorphism
 Objects

From the survey the students perceived
polymorphism to be the most difficult topic with
55% of students perceiving difficulty. The students
then perceived Inheritance to be next in difficulty
with 35% of those surveyed indicating that they
found the topic extremely or very difficult. Object
construction and Subclass object creation both
had a 30% perceived difficulty with Methods and

parameter-passing producing a 20% difficulty, see
Figure 7. The findings of both data analyses
match in identifying the areas of weaknesses but
the actual and perceived level of difficulty are
different. The students perceived methods to be
the least difficult but in the analysis of the scripts
this topic was determined as one of the main area
of weakness.

A sample of the data, where Leaving Certificate
Points, (results obtained from a State examination
sat by all students at the end of second-level
education), and other subject results were
available, from ITT was input to a statistical
analysis package, MINITAB™ for further analysis.
A regression analysis carried out on students’
Leaving Certificate points and their final result in
the Software Development examination indicated
that there was a linear relationship between the
two, p = .001. However, given the sample that
was analysed, the relationship, Rsq2, 15%, was
not very strong, this area requires further
research. A more significant relationship existed
between a student’s final result in Software
Development and the number of fails the student
had in other modules. A significant p value of .029
was returned; indicating that a student’s result in
Software Development is a useful result in
predicting that they may have fails in other
subjects. One can assert that the lower the
Software Development result falls, the student is
more likely to have more failures in other subjects.

2.3 Focus group discussions
As mentioned earlier the focus group discussion
was the tool used for collecting qualitative data
from a sample of the user group. These focus
groups were facilitated by a moderator and again
were done with a random group of 1st and 2nd year
students. As larger focus groups can inhibit the
participation by some members (Sherraden, cited
in Shapiro and Wolff, 2001), the size of both focus
groups was kept fairly small at 6-15 people. An
interview guide as shown in the first column of
Table 6 below was prepared in order to help
structure the discussion. The first focus group
consisted of 1st year students who were asked
some general questions about their course using
the above guide. The responses from the group
were collated and are presented in the 2nd column
of the table below:

Table 6 Focus Group Guide and Responses

Interview Guide 1st Focus Group
(1st Year)

2nd Focus Group
(2nd Year)

Do you find Software Development the most difficult
module in your programme?

Over 70% agreed 43% agreed

Do you think that the ability to problem solve has a Over 50% agreed 100% agreed

Electronic Journal of e-Learning Volume 5 Issue 1 2007 (21 - 30)

www.ejel.org ©Academic Conferences Ltd 28

Interview Guide 1st Focus Group
(1st Year)

2nd Focus Group
(2nd Year)

major impact on your performance in Software
Development?
Do you think it is necessary to be good at Maths to
perform well in Software Development?

Most disagreed Most disagreed

Do you think that your performance in Software
Development is linked to the result you got in Leaving
Cert Maths?

Most disagreed Most disagreed

When solving a Software Development problem, do
you spend time away from the computer designing
your solution?

50% agreed that they did
not

70% agreed that they
did not but may
sketch an outline
solution

What do you regard as the most difficult concepts in
Software Development?

 Looping and arrays
 from semester 1
 Polymorphism from
 semester 2

Methods and general
environment set-up
from semester 1
Threads from
semester 2

Which format do you find the most useful in learning
Software Development?
 a) Lectures? b) Tutorials? c) Labs?

Labs Labs

If given the opportunity, would you choose to study a
computing course, which had no Software
Development module?

Over 30% said yes 100% said no

The authors examined the set of responses to the
focus group discussion with the 1st year group
more closely in order to demonstrate whether they
validate even further the earlier quantitative
analysis conducted. When the relevant aspects of
the focus group were compared with the earlier
results of the quantitative analysis, there is
significant agreement between both sets of
results. For example, over 50% of the 1st year
group agreed that the ability to problem solve has
a major impact on Software Development
performance. The survey conducted with a larger
sample group showed 75% agreeing with this
statement also. In the focus group over 50%
agreed that they did not spend time away from the
computer designing a solution while the survey
showed 80% as sometimes, rarely or never
designing before implementation. With regard to
analysis of the examination scripts, arrays,
looping and polymorphism emerged as the topics
with the highest failure rates.

These three topics were also pointed to in the
focus group discussions as areas that cause
students the most difficulty from a conceptual
perspective. It is interesting to note that on certain
issues there was a substantial difference in
opinion between the two student groups, which
was reflected in their responses to certain
questions in the focus group discussions. While
70% of the 1st year group registered that they
found software development to be the most
difficult module in their programme, only 43% of
the 2nd year group felt this to be the case. There
may be a number of reasons for this difference in
opinion. Interestingly, students reported a greater
level of comfort with the software development in

2nd year as opposed to how they felt about the
module in 1st year. It could suggest that students
in 1st year are still in the process of becoming
used to programming which is a totally new
subject that they would generally not have
encountered before entering third-level.

Another point of note is that over 30% of the 1st
year group would choose to study a programme,
which contained no software development
module, if given the chance. However, not one
member of the 2nd year group would choose this
type of programme. This seems to suggest that a
significant number of 1st year students experience
major doubts regarding their choice of
programme. In contrast, students in the 2nd year
group expressed a greater sense of enjoyment
and satisfaction with software development and
explained, “it is the ability to write bigger programs
that actually do something”, “the project in 2nd
year gives us lots of practice at writing Java”, “.…
more time spent on Java the better”.

Interestingly, with regard to the relationship
between performance in Mathematics and the
student’s ability in software development, neither
group felt there was any link. Both groups also
agreed that the most useful learning environment
for them is the laboratories where they can spend
time on solving practical exercises, worksheets
etc, with the help of laboratory facilitators. This
concurs with the constructivist approach in
engaging the learner. The learning tool which was
developed will be used online and in the
laboratories. After conducting the focus group
discussions, one overall observation from the
authors’ viewpoint is the increasing amount of

Eileen Costelloe, Elizabeth Sherry and Patricia Magee

www.ejel.org ISSN 1479-4403 29

guidance and support needed to help 1st year
students overcome the initial hurdles and
convince them of the more enjoyable and
rewarding aspects of software development as
described by the 2nd year students.

3. Conclusion
The methods used for data gathering have been
outlined and these include both quantitative, the
scripts collation and the statistical analysis of
same, and qualitative approaches such as the
analysis of questionnaires and focus group
discussion. A triangulation of both quantitative and
qualitative measures was used to gather data.
The measures used focused on gathering data
that would be analysed in light of the research
objectives. These objectives and their
relationships to measures used are as outlined in
Table 7:
Table 7: Relationship between research
objectives and data gathering measures

Research Objective Corresponding
Data Gathering
Measure

Determine students’ main
areas of weaknesses in
semester 1 and semester 2 of
software development

Analysis of
students’ past
examination
scripts.

To gain insight into the
students’ perceptions of their
approach to problem solving
and design

Survey
responses/ Focus
group discussion

Is Software Development the
only area of difficulty in the
undergraduate course

Statistical
analysis of
students’ overall
performance.

The data gathered pertaining to semester 1 topics
in terms of the ranking of the areas of
weaknesses across participating academic
institutions, as determined by the user needs
analysis, is outlined below in Table 8.

Table 8: Ranking of the different areas of
weaknesses in participating institutions

Areas of Weakness
Semester 1

ITT ITB DCU

Arrays 1 3
Looping 2 2
Selection 3 3
Methods 1 2
Problem-solving 1

The data gathered pertaining to semester 2 topics
in terms of the ranking of the areas of
weaknesses, as determined by the user needs
analysis, is outlined below in Table 9.

Table 9: Ranking of the different areas of
weaknesses in semester 2 in the participating
institutions

Areas of Weakness
Semester 2

ITT ITB DCU

Methods 1 1
Polymorphism 2
Subclass object
creation

3

Arrays 1 3
GUI 2
Object construction 3 2
Object creation 1

Having determined the main areas of weaknesses
in the participating institutions, it was agreed to
base the project’s Learning Objects on some of
the following areas:
 Arrays
 Looping
 Selection
 Methods
 Objects

The development of these Learning Objects is
dependent on the time frame and scope of the
project, and as such would be limited by those
constraints. An initial prototype based on arrays
was developed for review and discussion. An
important feature of the project is to design and
develop a meta-cognitive interface to develop the
necessary reflective and self-analysing skills in
novice programmers. As part of the meta-
cognitive interface learners outline an initial
approach to a concept/problem solution, reflect on
what they knew initially and what they have
learned and then review the approach initially
adopted. By requiring the learner to articulate
his/her approach, implicit knowledge becomes
explicit, making the learning process more
effective. The students’ approaches and
reflections will be stored and these metacognitive
traces will be captured to provide the lecturer/tutor
with a valuable insight into the approaches
adopted by the students and any particular areas
of weakness.

This tool is scheduled to be rolled out from
Febuary 2007. An in-depth, cross-institutional
evaluation of the educational impact of the RLOs
with the supporting metacognitive interface, within
the proposed learning environment, will be
conducted. The evaluation will include an
observational case study, quasi-experiment,
student questionnaire and focus groups. An
evaluation of a discussion forum will also be
conducted as part of the evaluation phase. The
data stored from the metacognitive interface will
be retrieved and analysed. The data from the

Electronic Journal of e-Learning Volume 5 Issue 1 2007 (21 - 30)

www.ejel.org ©Academic Conferences Ltd 30

different evaluation methods will be triangulated in
order to draw conclusions. The findings of the
project will be disseminated to the wider
educational community. By wrapping a meta-
cognitive interface around learning objects which
target the novice programmers’ main areas of
weaknesses, it is hoped to provide a

comprehensive and innovative learning tool which
addresses conceptual difficulties with
programming constructs and at the same time
promotes the learners’ meta-cognitive skills which
are essential for learning in this domain.

References
Blakey E., Spence S., 1990, “Developing Metacognition”. ERIC Digest. ED327218.
Cohen, L., and Manion, L., 1997, “Research Methods in Education”. London.
Fekete, A., Kay, J., Kingston, J., Wimalaratne, K., 2000, “Supporting reflection in Introductory Computer Science”, ACM

SIGCCSE Bulletin, Proceedings of the 31st SIGCSE technical symposium on Computer Science Education.
Gage N.L., Berliner, D.C.,1980, “Educational Psychology”, Houghton Miffin, Boston.
Guzdial, M., 1994, “Software-realised scaffolding to facilitate programming for science learning.” Interactive Learning

Environments,4(1) 1-44.
Henderson, Peter B. 1986, Anatomy of an introductory Computer Science Course”, Proceedings of the Seventeenth

SIGCSE technical symposium on Computer Science Education, February 1986,257-263.
Linn Marcia C., Clancy Michael J, 1992,“The case for case studies of programming problems.” Communications of the

ACM, March 1992 v35 n3 p121(12).
Riley, D, 1981, “Teaching problem solving in an introductory computer science class”, 12th SIGCSE Technical

Symposium on Computer Science Education.
Shapiro, T. and Wolff, E. (eds.), 2001, Asset Building Policy and Programs for the Poor, Assets for the Poor: The

Benefits of Spreading Asset Ownership, Russell Sage Foundation, New York.

