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Abstract

This teaching experiment provided students with continuous engagement 
in a problem-solving based instructional approach during one mathematics 
unit.  Three sections of sixth-grade mathematics were sampled from a school 
in Florida, U.S.A. and one section was randomly assigned to experience 
teaching through problem solving.  Students’ problem-solving performance 
and performance on a unit test were analyzed.  The intervention had a positive 
effect on students’ problem-solving performance whereas the comparison 
group experienced no changes.  ANCOVA analyses suggest that intervention 
students solved more problems on the posttest than their peers, but the 
comparison group outperformed the intervention group on the unit test.

  Problem solving has long been a central theme within mathematics 
education, the importance of which is seen in mathematics standards 
around the world.  To name a few, much of the United States adopted the 
Standards for Mathematical Practice and Standards for Mathematical Content 
(National Governors Association, Council of Chief State School Officers 
[NGA, CCSSO], 2010), Australia draws upon the Australian Mathematics 
Curriculum (Australian Curriculum, Assessment, and Reporting Authority, 
2014), and Japan follows courses of study in mathematics (Ministry of 
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Education, Culture, Sports, Science and Technology, 2007).  The National 
Council of Teachers of Mathematics (NCTM, 1980, 1989, 2000, 2006, 
2009) has consistently advocated for problem solving as part of day-to-day 
mathematics instruction, with the rationale that solving problems is central to 
doing and learning mathematics (Ball, Ferrini-Mundy, Kilpatrick, Milgram, 
Schmid, & Schaar, 2005; Davis, 1992; Kilpatrick, Swafford, & Findell, 
2001; Lester, 1994).  The overarching goal of the present study is to describe 
an instantiation of one type of problem-solving instruction within a middle 
school mathematics classroom and explore students’ outcomes compared 
to their peers who experienced traditional teacher-led explicit instruction.  
We not only explore this problem-solving instruction and its outcomes but 
also problematize a problem-solving approach to mathematics instruction. 

Problems and Exercises

  Problem solving involves a problematic task, which offers a goal for the 
problem solver to accomplish, but the means for achieving the goal are not 
readily apparent (Lesh & Zawojewski, 2007; Schoenfeld, 2011).  A problem 
requires the problem solver to make sense of a problem situation and to make 
decision about a path to solution, which directs an individual toward the 
desired goal (Schoenfeld, 2011).  Problem solving can be challenging because 
a solution is uncertain and/or unknown to the problem solver.  Problems 
are distinct from exercises, which have their place in instruction. Exercises 
provide students a context in which they might develop efficiency with a 
known procedure thus improving their procedural competence (Kilpatrick et 
al., 2001).  Mathematics teaching that heavily relies on exercises, however, 
does not support students’ problem-solving outcomes (Kilpatrick et al., 2001; 
NCTM, 2009).  

Framing Teaching Through Problem Solving
  Mathematics instruction frequently separates problem solving from daily 
mathematics teaching (Hiebert et al., 1996).  This practice of separating 
the two encourages the notion that learning mathematics and learning to 
solve mathematics problems are distinct from one another (Hiebert et al., 
1997; Hiebert et al., 1996; Hiebert & Wearne, 2003; Lambdin, 2003).  A 
major instructional concern is how to integrate problem solving within 
daily mathematics teaching.  Three distinct approaches to problem-solving 
instruction, teaching about, for, and through problem solving, have been 
discussed in the research literature (Schroeder & Lester, 1989).  Teaching 
about problem solving usually involves heuristic instruction.  Teaching for 
problem solving focuses on teaching students mathematics procedures with 
the intention that they apply this knowledge to solve problems.  Teaching 
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through problem solving (TTPS) involves teaching mathematics concepts 
through problem-solving contexts, provides opportunities for students to 
develop higher-level thinking during mathematical problem solving, and takes 
place in an inquiry-oriented learning environment (Hiebert & Wearne, 2003; 
Lambdin, 2003; Schroder & Lester, 1989).  TTPS typically begins with a 
word problem that addresses one or more mathematics concepts and has the 
potential to engage students in complex forms of reasoning.  These problems 
typically have characteristics of high cognitive demand (i.e., rich) tasks (see 
Stein & Smith, 1998).  This approach differs from teaching about and for 
problem solving on conceptual and procedural levels.  TTPS instruction 
encourages students to learn mathematics without stripping away contexts 
such as those found in realistic settings.  Students must make sense of the 
problem’s situation and the underlying mathematics concepts and procedures 
to solve these problems.  While teachers may encounter pedagogical and 
mathematical challenges for TTPS, problems encourage the greater goal 
that mathematics is a way to help students make sense of their world rather 
than a set of procedures to master (Verschaffel, Van Dooren, Greer, & 
Mukhopadhyah, 2010).  Students engaged in TTPS have opportunities to 
develop problem-solving abilities and fluency (Sigurdson, Olson, & Mason, 
1994).  It is hypothesized that this growth in problem solving and fluency 
assists learners in building connections between concepts and procedures 
and developing greater adaptive reasoning for effectively and efficiently 
executing procedures at appropriate moments (Sigurdson et al., 1994).  This 
is a hypothesis because such a claim stems from classroom-based research, 
which is inherently complex with a multitude of factors. 
  It is not possible to easily separate an intervention’s effects attributed 
to the instructor, instructional method, tasks, and learning environment on 
students’ outcomes when engaging in classroom-based research (Ridlon, 
2009; Sigurdson et al., 1994; Verschaffel & De Corte, 1997; Verschaffel 
et al., 1999; Verschaffel et al., 2010).  Hence the intervention in this study, 
TTPS, is defined as an integration of these components. These components 
are described more fully later.  The present study aimed to extend the prior 
research with three objectives.  First, we describe TTPS through vignettes 
from a month-long unit.  Second, we investigated sixth-grade students’ 
problem-solving performance and performance on a unit test following an 
instructional intervention that utilized TTPS.  Problem-solving performance 
was characterized as the number of correct responses to developmentally 
appropriate word problems.  The unit test measured students’ knowledge about 
focal topics during the unit of instruction (i.e., rates, ratios, and data analysis).  
Third, we compared intervention students’ outcomes with their peers who 
experienced their typical teacher-led explicit mathematics instruction. 
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Problem-Solving Instruction

Prior Research on Problem-Solving Instruction
  Several studies across the world have explored students’ problem-solving 
performance and provide support for the present investigation.  Nearly thirty 
years ago Charles and Lester (1984) explored the impact of supplementing 
everyday mathematics instruction with 10-25 minutes of problem-solving 
experiences in U.S. classrooms.  Fifth- and seventh-grade students who ex-
perienced this supplemental instruction had more positive problem-solv-
ing outcomes when compared to their peers who experienced traditional 
teacher-led explicit instruction focused on procedures.  Sigurdson and col-
leagues (1994) compared students’ outcomes after experiencing three types 
of instruction in Canadian classrooms: (a) traditional procedure-focused 
explicit instruction, (b) an inquiry approach that involved a focus on con-
nections between mathematical concepts and procedures, and (c) an inquiry 
approach supplemented with 10 minutes of daily problem-solving work.  
Students in the latter groups significantly outperformed those in the first 
group on a test measuring general mathematics content knowledge and had 
significantly better problem-solving performance.  These studies support 
the conclusion that mathematics instruction supplemented with problem-
solving instruction focusing less on procedures leads to improved problem-
solving outcomes and positive growth in mathematics content knowledge.  
The authors also raise the important question regarding the impact of inte-
grating problem solving within mathematics teaching, rather than simply 
including problem solving as a supplement to this instruction (Sigurdson 
et al., 1994).
  Verschaffel and De Corte (1997) conducted a teaching experiment in 
Flanders with 10-11 year olds that responded to this question.  Problem 
solving and mathematics content instruction were integrated instead of sup-
plementing mathematics content instruction with problem solving.  Their 
goal was to explore whether students might give more realistic (not neces-
sarily correct) solutions to problems after learning about a problem-solving 
model and solving realistic problems in a supportive learning environment 
meant to foster student-to-student discourse.  Daily instruction lasted two-
and-a-half hours over five lessons.  Participants in the teaching experiment 
provided more realistic responses on the problem-solving tests than their 
peers in a traditional learning environment.  While this intervention was 
modest in its duration, students’ problem-solving performance improved 
following a short period of time engaged in mathematics instruction that 
integrated problem solving and content (Verschaffel & De Corte, 1997). 
Finally, in a study most similar to the present study, Verschaffel and col-
leagues (1999) developed, piloted, and implemented an instructional pro-
gram for Dutch fifth-grade students to examine a program aimed at helping 
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learners employ a metacognitive strategy for solving mathematics word 
problems.  Four sections of fifth-grade mathematics classes experienced 20 
problem-solving lessons over a four-month period while a group of seven 
comparison sections experienced typical teacher-led mathematics instruc-
tion. Instruction was guided by three “pillars” of a successful mathemat-
ics learning environment (Verschaffel et al., 1999, p. 202): “(a) realistic, 
complex, and open problems, (b) independent as well as small- and whole-
group instruction, and (c) supportive classroom expectations for engaging in 
mathematics.”  Similar to the present study, the researchers administered a 
pre- and posttest that had similar problems across both measures, as well as 
an achievement test measuring general mathematical knowledge and skill.  
Students in both groups improved their problem-solving performance, but 
the intervention group made greater gains on the problem-solving measure 
and outperformed the comparison group on the achievement test.  Based 
on these studies of problem-solving instruction, the present investigation 
sought to examine outcomes for students engaged in TTPS instruction for 
approximately 20 lessons implemented consecutively.  

The Current Study
  This exploratory mixed-methods investigation examined the effects of 
TTPS on sixth-grade students’ performance on a problem-solving measure 
and unit test.  An embedded design mixed-methods approach was selected 
for this study because of the study’s aim and nature of the research ques-
tions.  The embedded mixed-method design allows researchers to unpack 
statistical findings with qualitative evidence and concurrently, qualitative 
evidence is supported by quantitative results (Cresswell, 2012).  
  The first research question focused on within-group differences where-
as the second and third questions addressed potential between-group dif-
ferences.  Three research questions guided the present study. (a) What is 
the impact of the intervention on students’ performance on a test of word 
problems? (b) Does performance on a test of word problems differ between 
students from the intervention and comparison groups? (c) Does perfor-
mance on a teacher-constructed unit test following TTPS instruction differ 
between students from the intervention and comparison group?  In addition, 
one objective of this study was to offer a description of TTPS as instanti-
ated within this study.  This description contextualizes the findings, gives 
voice to student-to-teacher and student-to-student interactions, and supports 
critically examining possible social aspects implicating students’ outcomes.  
This investigation values both the social factors (e.g., classroom environ-
ments, mathematical discourse, and interactions between students as well as 
their teachers) and cognitive factors (e.g., problem-solving ability and con-
tent knowledge) of education.  Both factor types have been shown to impact 
students’ outcomes (Ridlon, 2009; Sigurdson et al., 1994; Verschaffel et al., 
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1999).  Therefore the findings from the present study are meant to spur fur-
ther conversations about teaching and learning mathematics, teaching and 
learning problem solving, and fostering students’ mathematical proficiency. 

Method

Setting and Participants 
  Students came from three sixth-grade mathematics sections taught by the 
same teacher within a K-12 school that represented the diversity of the state 
of Florida.  Classes were arranged to meet on a modified block schedule, so 
classes met three times per week.  All sections met for 60 minutes on Mon-
day and 90 minutes on two additional days.  One section was randomly as-
signed to receive the intervention.  Eighteen students from the intervention 
classroom and 20 students from each comparison classroom volunteered 
for the study.  These three sections met on the same days, one right after 
the other.  None of the participants received services for a disability or were 
English Language Learners.  Demographic information for the intervention 
and comparison group is provided in Table 1.  More than half of the students 
identified themselves as white and approximately 20% qualified to receive 
free-or-reduced lunch (FRL). 

Table 1. Demographic information for participation.
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  Intervention Group a Comparison Group b 
  Number (Percent) Number (Percent) 
Ethnicity 

  
White 11 (.61) 20 (.50) 
Hispanic 3 (.17) 11 (.28) 
African-American 3 (.17) 6 (.15) 
Multiracial 1 (.03) 2 (.05) 
Asian-American 0 (0) 1 (.02) 

Gender   
Male 7 (.39) 18 (.45) 
Female 11 (.61) 22 (.55) 

Free-or-Reduced Lunch   
Yes 5 (.28) 7 (.18) 
No 13 (.72) 33 (.82) 

a N = 18; b N = 40 
 
 
Table 2. Group means and standard deviations related to fifth-grade FCAT scores 
 
 Intervention Group a Comparison Group b 
 Mean (SD) Mean (SD) 
Reading Scale Score a 330 (36) 340 (45) 
Mathematics Scale Score a 350 (32) 354 (33) 

a N = 16; b N = 37 
 
 
 
Table 3. Item information for pretest 
 

  Infit Outfit 
Item 

# Mean Square ZSTD Mean Square ZSTD 
1 0.99 0 0.9 -0.2 
2 0.99 -0.1 0.94 -0.4 
3 1.02 0.2 1.14 0.6 
4 0.78 -1.7 0.67 -1.4 
5 0.94 -0.4 0.94 -0.2 

 
 
 
 
 

Group Comparisons
  We examined the intervention and comparison groups for comparabil-
ity.  To control for differences in prior mathematics instruction, students 
from the same teacher were assigned to the intervention and comparison 
conditions.  Students’ gender, ethnicity, fifth-grade mathematics and read-
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ing standardized test scores (i.e., Florida Comprehensive Assessment Tests 
(FCAT)), and FRL status were collected from students’ records by school 
faculty.  There were no significant difference between the group’s standard-
ized test scores on the reading FCAT, F(1, 51) = .62, p = .44, and mathemat-
ics FCAT, F(1, 51) = .17, p = .68 (see Table 2).  

Table 2. Group means and standard deviations related to fifth-grade FCAT scores
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Chi-square analyses were also conducted to determine whether there were 
differences between the groups in terms of gender, ethnicity, and FRL sta-
tus.  No significant pre-intervention group differences existed, suggesting 
the groups had similar demographic characteristics. 

Measures
  Students completed three measures including a Problem-Solving Pretest, 
Problem-Solving Posttest, and a test measuring students’ knowledge related 
to unit-specific topics.  
  Problem-solving tests.  Several steps were taken to create pretest and 
posttest problem-solving tasks.  Initially, problems were translated from Ver-
schaffel et al.’s (1999) problem-solving measures, adapted to suit students’ 
interests and prior knowledge, and revised to conform to American English 
grammar rules.  Each problem-solving measure included five problems (see 
Appendix A for posttest items) that were matched for content between the 
pretest and posttest.  Five items on each instrument exceeded the minimum 
number of items necessary to sufficiently measure a single construct (i.e., 
problem-solving ability; Ary, Cheser-Jacobs, Sorenson, & Razavieh, 2009).  
These tasks drew upon a variety of developmentally appropriate mathemat-
ics concepts and procedures that students should have experienced prior to 
the study as determined by several middle and elementary school teach-
ers and mathematics educators.  The teachers and mathematics educators 
also believed the situations embedded within the problems drew on realistic 
contexts.  Finally, the group agreed that the problems could be solved using 
more than one approach.  
  A pilot study was conducted to determine how these measures function with 
sixth-grade students in the U.S. including the measure’s dimensionality, item 
parameters, and measure reliability (i.e., internal consistency and alternate-
forms reliability).  One hundred sixty-nine sixth-grade students from a nearby 
school district that had similar demographics to the present study’s setting 
participated in the pilot study (see Bostic, Pape, & Jacobbe, 2011).  This 
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sample size for five items was adequate for 95% confidence in results with 
stable item calibrations in the 0.5 logit range (Linacre, 1994).  Data were 
calculated using WINSTEPS Version 3.62.1 (Linacre, 2006).  Rasch model 
analysis was employed for two reasons: to determine overall fit of the data 
to the Rasch model and then explore the relative item difficulty.  Related to 
the first reason, item information for the pre- and post tests was explored, 
specifically looking at the mean-square (MNSQ) fit statistic of infit and outfit 
data.  MSNQ assesses an item (as in this case) or person’s contribution to 
measurement productivity (Drouin, Horner, & Sondergeld, 2012).  Perfect 
MNSQ is one unit, which is rarely found, and values far greater than two 
or less than 0.5 may potentially distort the measurement system (Linacre, 
2002).  MNSQ values are found in Tables 3 and 4.  

Table 3. Item Information for pretest

Table 4. Item information for posttest
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Table 4. Item information for posttest 
 

  Infit Outfit 
Item 

# Mean Square ZSTD Mean Square ZSTD 
1 1.26 2 2.03 2.2 
2 0.93 -0.7 0.83 -1.1 
3 1.01 0.2 0.99 0 
4 1.04 0.4 1.04 0.3 
5 0.8 -2.3 0.67 -2.2 

 
 
 
 
 
Table 5. Item difficulties for problem-solving measures 
  

  Item difficulty 
Item # Measure Model Std. Error 
Pretest 

    1 -0.92 0.12 
  2 0.34 0.11 
  3 0.82 0.12 
  4 0.85 0.12 
  5 0.74 0.12 
Posttest 

    1 -0.96 0.12 
  2 0.29 0.1 
  3 0.37 0.1 
  4 0.55 0.11 
  5 0.39 0.1 

 
  Intervention Group a Comparison Group b 
Factor Mean Std. Dev. Mean Std. Dev. 
Problem-solving performance.  

    Pretest  2.22 1.17 1.66 1.51 
Posttest  2.83 1.34 1.73 1.28 

Unit Test performance 17.11 3.69 19.88 3.07 
a N = 18; b N = 40 

Two items on the measures were slightly higher than two MNSQ units but 
were retained since they were reasonably close to the recommended threshold.  
  Rasch reliability is similar to traditional reliability and was computed for 
individuals.  Reliability for the pretest and posttest was high, α = 0.96 and α  
= 0.97, respectively.  This met the excellent threshold (Duncan, Bode, Lai, & 
Perera, 2003).  Alternate-forms reliability was calculated using a correlation 
statistic.  Results indicated that it exceeded the minimum to link scores across 
tests, r = 0.97 (Ary, Cheser-Jacobs, Sorenson, & Razavieh, 2009).  
  Rasch separation was examined to investigate how many distinct groups 
can be made based on respondents’ data.  Rasch separation near two units 
suggests that only two groups of respondents can be formed: those who were 
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successful and those who were unsuccessful.  Values greater than 3.00 are 
considered excellent (Duncan et al., 2003).  The Rasch separation for the 
measures was exceptionally high, 4.81.  Thus, respondents could be sorted 
into approximately four distinct groups.  This psychometric-based evidence 
indicated that the measure adequately captured the construct, problem-solving 
ability, and did so reliably.  Next, the authors explored item difficulty again 
using WINSTEPS Version 3.62.1 (Linacre, 2006). 
  Item difficulties characterize the likelihood a respondent will respond 
correctly to the item.  Item difficulties are measured in logits.  The item 
difficulty scale extends in both positive and negative directions but usually 
ends near three logits, with the average value set at zero logits.  An item with a 
difficulty parameter of zero logits suggests a respondent has an equally likely 
chance to answer the item correctly or incorrectly.  Items with values greater 
than one logit are considered moderately difficult for the average-ability 
respondent, whereas negative logit values are easier for the average-ability 
respondent.  Problem-solving items are more cognitively taxing than rote 
mathematical exercises.  Therefore it should be expected that item difficulties 
ought to be greater than zero logits.  Results from investigating item difficulty 
suggested that items ranged from easier to moderate difficultly (see Table 5).  

Synthesizing these findings with the earlier psychometric evidence leads to 
the conclusion that psychometrically speaking; the five-item measures were 
working sufficiently. 
  Unit test. Students’ content knowledge related to rates, ratios, and data 
analysis was measured with a two-page unit test.  Results from the unit 
test filled a needed gap in the literature.  Previous studies explored general 
achievement or content outside the scope of the instruction; none have 
investigated students’ performance on a test covering only the content 
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addressed during the instructional intervention period.  The classroom 
teacher adapted it from the assessment materials that accompanied the class 
textbook: Big Ideas: Math 6 (Larson & Boswell, 2010).  The test consisted 
of 16 short-answer items, of which five tasks required two or more correct 
responses to receive full credit.  Twelve items asked students to rewrite ratios 
in simplest form and give the unit rate for a situation described in a verbal 
exercise.  For example, one item asked students to write the statement “1200 
calories in 3 liters” as a unit rate.  The other tasks were focused on finding the 
mean, median, mode, and/or range of a data set.  A sample data analysis task 
read “Find the median and mode(s) of the data set 4,6,5,4,4,5,4,8.”  Students 
could earn up to 25 points on the unit test.  Internal consistency was found 
to be acceptable, ρ = .82. 
  
Procedure
  All sixth-grade students received mathematics instruction in the same 
classroom resulting in an identical classroom layout and equitable access 
to materials (e.g., textbooks and manipulatives) across sections.  During the 
teaching experiment, the first author became the instructor in one classroom 
while the classroom teacher continued her instruction in the two compari-
son classrooms.  The classroom teacher was not present in the intervention 
classroom during the study.
  Data collection. The pretest and posttest were administered during stu-
dents’ regular mathematics class approximately one month apart.  The in-
structor read the directions aloud to students prior to beginning the measure.  
Most students needed 30 minutes for the problem-solving measures.  The 
classroom teacher administered the unit test, which took approximately 60 
minutes to complete, in all three sections.  A mathematics educator not af-
filiated with the study observed instruction, videotaped lessons, and took 
field notes in both classrooms on three randomly selected occasions during 
the second, third, and fourth week of instruction.  These data were used to 
develop a description of the instruction in each of the classrooms. 
  Instruction: Standards, tasks, and questions. The following four 
sixth-grade benchmarks from the Next Generation Sunshine State Stan-
dards (NGSSS; Florida Department of Education, 2007) selected by the 
classroom teacher were the focus of instruction during the present study:

•	 MA.6.A.2.1 Use reasoning about multiplication and division to solve ra-
tio and rate problems

•	 MA.6.A.2.2 Interpret and compare ratios and rates  

•	 MA.6.S.6.1 Determine the measures of central tendency (mean, median, 
and mode) and variability (range) for a given set of data
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•	 MA.6.S.6.2 Select and analyze the measures of central tendency or vari-
ability to represent, describe, analyze and/or summarize a data set for the 
purposes of answering questions appropriately. 

Lessons in the intervention classroom conducted during block scheduled 
periods tended to follow this order: (a) check homework, (b) discuss issues 
related to homework, (c) complete introductory task, (da) individual work 
on one problem, (db) examine the problem with a partner or in a small 
group, (dc) discuss the problem with the entire class, and (e) and complete a 
concluding activity meant to stimulate reflection.  Rich tasks help students 
see that mathematics is connected (Stein & Smith, 1998). In this manu-
script, we use the terms problem and rich task synonymously because the 
problems aimed to promote connectedness within mathematics and were 
sufficiently complex to address features of high cognitive demand, as ex-
pressed in Stein and Smith’s (1998) cognitive demand framework.
  A brief outline of the process used to adapt problems from textbook tasks 
is provided here, but a more detailed description of the process may be 
found in Bostic (2012/2013).  Creating word problems for each lesson be-
gan by examining the state-level standards and considering the mathemati-
cal relationships between them.  Next, the instructor reflected on ways to 
turn tasks from resources such as their textbook (Larson & Boswell, 2010) 
into open-ended and complex word problems that drew on realistic con-
texts.  Students were consulted about their interests and experiences to learn 
about contexts they perceived as realistic.  The instructor explored the text-
book and other classroom resources for tasks.  Typically information was 
added to the textbook tasks to make it realistic.  Finally, additional questions 
that required higher-level reasoning skills, such as analysis and evaluation, 
were included.  A sample problem is shown in Appendix B.

Data Analysis 
  Students’ performance on the pretest and posttest was scored as correct 
or incorrect and a sum was calculated.  The researcher and a second coder 
randomly selected 20% of the tests and scored them independently.  Inter-
rater agreement was 100% (rwg = 1; James, Demaree, & Wolf, 1984).  The 
two coders scored the remaining 80% of the tests after reaching satisfactory 
interrater agreement.  The classroom teacher scored the unit tests for the 
three sections.  Each response was scored as correct or incorrect and was 
equally weighted.
  A repeated measures t-test was used to determine whether the interven-
tion improved students’ problem-solving performance.  The second re-
search question was examined using ANCOVA to investigate differences 
between groups’ problem-solving performance using the pretest as a covari-
ate.  Since the groups were similar in terms of their demographic charac-
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teristics and the sample size resulted in limited power to test effects, demo-
graphic data were not included as covariates.  The third research question 
examined differences between the intervention and comparison students’ 
content knowledge as measured by the unit test.  Data were analyzed using 
ANCOVA with the students’ fifth-grade standardized mathematics score as 
a covariate. 
  Assumptions related to normality, homoscedasticity, linearity, and 
multicollinearity were also investigated.  Results from examining the residual 
plots and statistical analyses provided sufficient evidence to justify use of 
ANCOVA.  When there was a significant difference between groups, partial 
η2 was calculated to examine the size of the effect. 

Results

A Description of TTPS 
  A description of typical TTPS instruction in this study based on an ex-
amination of the videotapes and field notes is provided to frame the instruc-
tional intervention and student outcomes.  Excerpts of classroom dialogue 
are provided to contextualize instructional aspects.  Vignettes from three 
instructional days that exemplify unique aspects of the TTPS instruction 
implemented in this study are shared to frame the intervention. 
  Classroom environment.  Two posters that reflected the expectations for 
classroom processes and questions students were to ask one another while 
solving problems were displayed in the classroom (see Appendix C).  An 
agenda that indicated tasks to accomplish at the beginning of class as well 
as objectives for that day was projected.  Students usually checked home-
work first and then began an introductory task.  
  Checking homework.  Students examined their homework on their own 
and were asked to consider tasks, procedures, or concepts for discussion.  
After five minutes, students were asked to indicate homework tasks they 
wanted to review, and the instructor invited students to discuss these ques-
tions (e.g., “Does someone have ideas about this problem?”).  One student 
was selected to explain his or her approach to solving the problem.  Stu-
dents frequently described aspects of the problem that were critical fea-
tures for solving it.  After this explanation, the instructor asked the student 
who originally posed the question whether it was resolved (e.g., “Does that 
make sense?”  ”Would you like him/her to describe it in another way?”).  
The instructor followed up by probing students for other ways to solve the 
same problem—typically one student shared an alternate representation or 
process.  This continued until students’ questions about the homework were 
resolved, which typically took 10 to 15 minutes.
  Introductory task.  Following the homework discussion, the instructor 
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reminded students to complete an introductory task, which was projected on 
the front whiteboard.  Students usually completed it in 10 minutes or less.  
The instructor interacted with students one-on-one during this instructional 
part and asked them to share their thinking.  Peers were selected to share 
their thinking based on Smith and Stein’s (2011) suggestions for fostering 
productive classroom mathematics discussions: (a) complexity of students’ 
ideas, (b) whether their solution strategies were concrete or abstract, and (c) 
the correctness of their answer.  
  Problem.  Following the introductory task, the instructor posed a question 
and students’ preferences that were related to the context of the problem the 
students would examine during class (e.g., “What was the name of the last 
restaurant where you ate pizza?”).  Multiple students mentioned several 
local restaurants that they would later see within the context of the problem, 
and some shared their pizza preferences.  Many shared that the cheapest 
pizza was not necessarily the best value.  The instructor elaborated that the 
problem they would solve involved investigating pizza prices from various 
local establishments and distributed individual copies of the problem (see 
Appendix B).  
  The students were initially encouraged to work independently for a few 
minutes.  Students were reminded that they could collaborate on the problem 
after working independently.  Students usually spent 5 to 10 minutes on 
their own before forming small groups.  When the instructor announced that 
independent work time was over, students formed pairs or triads on their own.  
After discussing the problem’s context and goal, students discussed how to 
solve it.  Small-group work typically began with peer-to-peer questions, such 
as “What do we need to do?” and “What do you think about this [problem]?”   
  For example, one student in a group of three started the conversation about 
the pizza problem with a question and then a second student proceeded to 
read the problem and share a goal.

S1:	 What’s the goal of the task? 
S2:	 [Reads task aloud.] What is the best value for a pizza?  
S1:	 We have to find out how many slices there are.  [Points to data in table.] 
S3:	 It says costs of… 
S2:	 [Pause while S1 and S3 reread problem. S2 works independently.] I 

found the lowest price!   

At times, students challenged each other to justify their ideas (e.g., “Why are 
you doing that?”).  With regard to this problem, groups of students shared 
that the best value for one pizza may not necessarily be the least expensive 
pizza.  After agreeing on a mathematical representation, they carried out a set 
of procedures and interpreted the result.  Students continued to share ideas 
in small groups for 15-25 minutes depending on the problem’s complexity.  
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During small-group work, the instructor walked around the classroom 
observing students’ work and responding to requests for assistance with 
questions such as “What do you think you’re supposed to do?” and “What 
do you think is important in the problem?”  The class reconvened to discuss 
the problem when most students were finished.
  The instructor began the whole-class instruction by posing an open-ended 
question such as “What is going on in this problem?” or “What do we need 
to find?”  Presenters typically discussed their mathematical representation, 
procedures used to solve the problem, thoughts about their problem solving, 
and answer(s).  Some transcribed their work onto the whiteboard located at 
the front of the room whereas others used the document camera to project 
their work to frame their discussion.  During another class session, students 
investigated a problem aimed to answer the question “What type of music 
is preferred by students in the sixth grade?”  Students and the instructor 
discussed how preference could result in multiple types of music given the 
shape, center, and spread of the data.  In the following excerpt, the instructor 
asked students to share problem-solving actions about a problem they had 
worked on the previous day.  The problem read:

This year, the school band decided to poll all 330 middle school students 
about their favorite kind of music. The kind of music that is liked by more 
than 20% of the students will be played at the spring concert.  Forty-two 
students liked country music, 110 preferred pop music, 13 voted for 
rap, 127 said music from TV shows like High School Musical, and 38 
students tend to listen to rock.  The band director wants a meaningful 
data display, an answer to her question, and for you to describe the (1) 
spread of the data and (2) whether there are any outliers. 

 
T: 	 What did you do [to solve the problem]?
S1: 	Highlighted and underlined and drew a little thing [bar graph].  There 

were five categories that people could vote for, so I split it up into 
categories and all the students and then that’s. Since I knew how many 
students I had, then I started, I set that up and it easily laid it out for me 
so that I could start solving the problem.

…
T: 	 Did anyone do it differently?
S2: 	I was going to do something different but then it didn’t work out.  What 

I was going to do is first make a bar graph so I can compare how many 
people like what.  Do you want me to draw a bar graph on my paper so 
you can see it?

T: 	 Yeah, why don’t you do that and then we can come back to you. 

  The instructor routinely encouraged students to share their ideas so the 
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entire class might further explore and critique them.  They were given data, 
asked to analyze it, and to determine the type of music that should be played 
at the next school dance, which might include multiple types if the data 
supported that conclusion.  After individual think time followed by time 
for sharing ideas in pairs, the class reconvened to talk about their problem 
solving.  The following excerpt starts after one student shared his thinking 
about the problem and had returned to his seat.  

T:   	Did anyone do it [the problem] differently?
S1: 	[Walks to document camera and slides paper underneath it.] What I did 

was, if you see like this (points to projection) I put three hundred and 
thirty up there and then I put them up into those [genres of music].

S2: 	Forty-two divided by 330 because that’s how you get percent, and I did 
that for each of them. And then for each of the percents, I either had to 
round up or round down.  Like this one, you had to round up because 
that’s a seven and seven is bigger than five, so you round up. …I found 
which ones were higher than twenty percent because it said on this 
side.  The kind of music that is liked by more than twenty percent will 
be played.  But I had a problem because … there were two that were 
bigger than twenty and I didn’t really get that. … the outliers are 127 
kids that like TV music and 13 kids that like rap. That’s what I did. 

T:   	Is it possible that more than one type of music might be liked by more 
than 20% of students? [Several students nod affirmatively.]  What do you 
think about her idea that she shared?  [Several students nod affirmatively 
followed by a pause for the student to return to her seat.]  Did anyone 
else do it differently?

S3: 	Well I think, you figure out how to divide 330 into 100, how to make 
330 one hundred by dividing and then take that number, divide each of 
the categories and then you have a percent. 

S4: 	You take 330 and then figure out what you need to do.  What you need 
to divide by to make it 100 and then you take that number and divide 
each of the number of kids by that number and you get a percent because 
it’s out of 100.

This discussion is evidence of how students decontextualized the information 
from the problem, manipulated the quantities to answer the question, and 
wrestled with contextualizing the result as it related to the question. 
  During these lessons, the instructor frequently asked whether students 
had questions about the student’s presentation, which usually resulted in a 
couple of student-initiated questions.  Some asked for assistance (e.g., “Can 
you explain it again?”) whereas others posed more probing questions (e.g., 
“Why did you do it that way?”).  After one presentation concluded, students 
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were asked to offer another mathematical model or strategy related to the 
problem.  At least one student presented a viable model or alternate strategy 
for each problem.  Students and the instructor ended the discussion when 
students’ questions were answered and the classroom community believed (a) 
the problem was solved and (b) at least two distinct approaches (i.e., different 
representations, procedures, or combination of both) had been shared.  Thus, 
some instructional decisions (e.g., ending a discussion) were jointly made 
by both the teacher and students.  Following this discussion, students agreed 
on what music should be played at the dance.  The whole-class discussion 
usually took 20-25 minutes.
  Finally the instructor synthesized students’ work and offered a summary 
of concepts, models, and analytic techniques that came up while solving the 
problem.  Mathematics topics were often the focus of the synthesis.  For 
example, the instructor shared how the range of a set of numbers provided 
different information about a data set than measures of central tendency.  
Students occasionally added to the instructor’s synthesis and offered what 
they learned from solving the problem.  The individual, small-group work 
time and whole-class discussion usually lasted 40-65 minutes. 
  Closure. During the last five minutes of class, concluding activities such 
as exit slips, reexamining introductory tasks, and writing summaries of the 
lesson were completed.  One closure activity, from a class meeting different 
from the previous two discussed earlier, required students to share their ideas 
about statistical terms.  The instructor asked students to define the word 
“cluster” after an earlier lesson.  Many students commented that they were 
uncertain how best to characterize clusters of data.  

S1: 	Clusters, it’s a group or a pack.
S2: 	A bunch of things together. 
S3: 	Say like in a number line, there’s a bunch of numbers around five, six, 

and seven and there’s like nothing for awhile, and then there’s 19, 20, 
21 it’s just like, there’s a lot of stuff in one area.

T:   	Okay, so, what do you think is an example of cluster?  
S1: 	Well, to me, clusters are like groups.  I would think of it like a pack of 

wolves.  Like six and two packs of wolves, how many wolves are there?
S4: 	I’m sorry. I kind of disagree with your definition of it because this is 

talking about data and so groups can also mean like say there’s a cluster 
of people who drive to school that are 18 or 19 and then there’s less 
around 16.

As evident in this example, students shared and challenged each others’ ideas.  
Materials such as summaries stayed in students’ notebooks whereas exit slips 
were handed to the instructor as students left the room.  
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Problem-Solving and Unit Test Performance
  A repeated measures t-test was conducted to answer the first research 
question: What is the impact of the intervention on students’ performance 
on a test of word problems?  Students in the intervention group performed 
better on the problem-solving posttest than the pretest, t(17) = 2.65, p = .02, 
d = .48, whereas their peers in the comparison group did not improve, t(39) 
= 0.52, p = .61 (see Table 6). 

Table 6. Group means and standard deviations related to problem-solving performance and 
unit test performance
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Table 4. Item information for posttest 
 

  Infit Outfit 
Item 

# Mean Square ZSTD Mean Square ZSTD 
1 1.26 2 2.03 2.2 
2 0.93 -0.7 0.83 -1.1 
3 1.01 0.2 0.99 0 
4 1.04 0.4 1.04 0.3 
5 0.8 -2.3 0.67 -2.2 

 
 
 
 
 
Table 5. Item difficulties for problem-solving measures 
  

  Item difficulty 
Item # Measure Model Std. Error 
Pretest 

    1 -0.92 0.12 
  2 0.34 0.11 
  3 0.82 0.12 
  4 0.85 0.12 
  5 0.74 0.12 
Posttest 

    1 -0.96 0.12 
  2 0.29 0.1 
  3 0.37 0.1 
  4 0.55 0.11 
  5 0.39 0.1 

 
  Intervention Group a Comparison Group b 
Factor Mean Std. Dev. Mean Std. Dev. 
Problem-solving performance.  

    Pretest  2.22 1.17 1.66 1.51 
Posttest  2.83 1.34 1.73 1.28 

Unit Test performance 17.11 3.69 19.88 3.07 
a N = 18; b N = 40 

  A one-way ANOVA was used to investigate the second question: Does 
performance on a test of word problems differ between students from the 
intervention and comparison groups?  There was no significant difference 
between the intervention and comparison groups’ pretest problem-solving 
performance, F(1, 56) = 2.01, p = .16.  ANCOVA was employed to examine 
the relationship between posttest problem-solving performance and group 
status while holding pretest problem-solving performance constant.  Students 
in the intervention group performed better than their comparison group peers 
(Mint = 2.83, SDint = 1.34; Mcom = 1.73, SDcom = 1.28; F(1, 55) = 77.84, p < 
.005, d = .84) (see Table 7).  

Table 7. Problem-solving performance results
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Table 8. Unit test performance results 
 
Variable a SS df MS F partial η2 
Intercept 16774.74 1 16774.74 1563.39* 0.97 
Intervention Status 88.71 1 88.71 8.27* 0.13 
Residual 590.14 55 10.73     
* p < .005 a N = 57  

     
 
 
Table 9.  Instructor and comparison teacher differences 
 
Factor Instructor Comparison Teacher 
Years teaching middle school mathematics 3 5 
Mathematics Coursework 

  Undergraduate hours 41 3 
Graduate hours 12 0 

Mathematics Education Coursework 
  Undergraduate hours 3 3 

Graduate hours 12 0 

Variable a SS df MS F partial η2 
Intercept 15.78 1 15.78 22.19* 0.29 
Intervention Status 55.36 1 55.36 77.84* 0.59 
Pretest Performance 5.98 1 5.98 8.41* 0.13 
Residual 39.11 55 0.71     
* p < .005 a N = 58 

   
Intervention status was uniquely associated with 13% of the total variance in 
posttest performance.  Pretest performance and intervention status explained 
72% of variance in students’ performance on the posttest. 
  Finally, students’ performance on the unit test was examined to answer the 
third research question: Does performance on a teacher-constructed unit test 
following TTPS instruction differ between students from the intervention and 
comparison groups?  Mathematics FCAT sores were used as a covariate in 
the relationship between intervention status and unit test performance.  Initial 
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ANCOVA results indicated that the covariate was not significantly related to 
posttest scores; therefore a one-way ANOVA was performed.  There was a 
significant difference in the groups’ mean scores on the unit test favoring the 
comparison group, F(1, 55) = 8.27, p < .005, d = .79 (see Table 8).  

Table 8. Unit test performance results
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The comparison group had a higher average score than the intervention 
group (Mcom = 19.79, SDcom = 3.07; Mint = 17.11, SDint = 3.69).  Similar to the 
problem-solving results, intervention status was uniquely associated with 
13% of the variance in students’ content knowledge. 

Discussion

  Findings from this study were both consistent and inconsistent with prior 
problem-solving research and offer information about the impact of TTPS 
as part of typical daily instruction during one sixth-grade mathematics 
unit.  Intervention participants successfully answered more problems on the 
posttest than the pretest whereas their peers did not, much like the results 
from prior problem-solving explorations.  The intervention group showed 
better problem-solving performance than the comparison group after one 
month of the instructional intervention.  This finding is consistent with all 
of the past research on problem-solving instruction (e.g., Charles & Lester, 
1984; Verschaffel & De Corte, 1997).  Problem-solving test items were 
not explicitly constructed on the topics explored during the study.  These 
findings provided evidence that TTPS supported students’ problem-solving 
performance, regardless of the content embedded within problem-solving 
measures.  Students showed some ability to transfer their experiences from 
the intervention period to problem-solving items that required students to 
draw on other mathematical concepts and procedures.  One key finding of 
this study was that enacting TTPS instruction on a daily basis in a fashion 
described here led to improved problem-solving outcomes even after a short 
time period.  
  A second key finding is that the TTPS approach enacted in the present 
study did not help students respond correctly to unit-specific test items as 
much as typical teacher-led explicit instruction delivered by the comparison 
teacher.  This is inconsistent with research on problem-solving instruction.  
Students experiencing problem-solving instruction tend to outperform their 
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peers experiencing explicit instruction (Sigurdson et al., 1994; Verschaffel 
et al., 1999).  We take up this inconsistency more critically here through 
examination of two possible factors with an aim to stimulate thinking about 
the role of mathematics teaching, mathematical problem solving, mathematics 
content learning, and their interactions. 

Realistic Tasks
  The rich tasks in the intervention classroom provided a context for students 
to discuss mathematics content and procedures and engage in problem 
solving.  The use of open, complex, and realistic word problems during 
instruction may foster cognitive links between students’ prior knowledge 
(e.g., their mathematical knowledge and knowledge gained from experiences 
in the community; Boaler, 2002; Boaler & Staples, 2008; Palm, 2008).  A 
word problem is realistic if its elements account for conditions in and out-of-
school settings (Palm, 2006).  Problems about local weather, pizza prices from 
local restaurants, and movie watching habits of local households provided a 
context for students to use their real-world knowledge in conjunction with 
their mathematics knowledge.  Many (e.g., Boaler, 1993, 2002; Boaler & 
Staples, 2008; Matney, Jackson, & Bostic, 2013; Palm, 2008) have argued 
that realistic problems encourage children to draw on their knowledge from 
nonacademic situations, which may help them solve problems using novel 
approaches.  On the other hand, some suggest that socioeconomic class 
strongly influences how students solve problems, which may limit their 
performance on realistic problems (e.g., Cooper & Dunne, 2000).  In one 
study, students from lower socioeconomic households did not perform as well 
as their middle socioeconomic peers on items drawing upon realistic contexts 
(Cooper & Dunne, 2000). We cannot provide support for either argument 
about the influence of realistic problems due to low statistical power but we 
acknowledge that what may be realistic to one individual or group may not 
be realistic to another.  

Pedagogy and Mathematics Learning
  This study investigated students’ performance on unit-specific mathematics 
items after experiencing TTPS.  The average unit test score from the 
comparison group was approximately two points higher than the intervention 
group and we explore some potential explanations here.  
  First, it is possible that explicit instruction focused on learning procedures 
may have been a critical element linked to students’ unit-test performance.  
Mathematics procedures were not made explicit during instruction within the 
intervention classrooms.  Intervention students might have needed assistance 
abstracting mathematics procedures from the problem-solving experience and 
time spent practicing them, which may be a crucial element for supporting 
students’ academic growth when employing TTPS.  Davis (1992) suggests that 
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teachers “should start with problems or tasks, and as a result of working on 
these problems…a residue of mathematics…is what you have left over after 
you have worked on problems” (p. 237).  The mathematical residue includes 
the procedures specific to solving a particular task, which may not have been 
explored adequately in the study’s lessons.  Students need opportunities to 
practice employing procedures to solve mathematics tasks.  Thus, students’ 
procedural knowledge growth might not have been sufficiently supported 
through the TTPS instructional approach enacted in this study, which might 
account for the differences in unit test scores.
  Second and related to the first issue, students may be used to teacher-led 
explicit instruction and be unfamiliar with abstracting procedures from a 
problem.  This has been documented in prior research (Arbaugh, Lannin, 
Jones, & Park-Rogers, 2006; Henningsen & Stein, 1997).  Students in the 
intervention classroom might have needed more time to acclimate to this 
instructional approach.  A third explanation is comparison students may have 
also been more prepared than their intervention peers for the types of questions 
found on the unit test.  That is, the comparison teacher routinely administered 
tasks associated with the textbook materials.  Daily assessment and instruction 
in the intervention classroom involved complex, realistic, and open-ended 
word problems, which were not found on the unit test.  Intervention students’ 
lower scores on the unit test compared to their peers may be influenced by 
a misalignment between daily mathematics instruction and that measure.  A 
similar argument might be constructed with the problem-solving performance 
differences and intervention students’ day-to-day engagement in problem-
solving tasks.  Future research could provide more valid evidence about 
students’ mathematics knowledge if both groups completed a unit test with 
both exercises and complex, realistic, and open-ended word problems. 

Problem-solving Instruction
  This study sheds light on a relevant instructional question: How might 
teachers teach mathematics content within problem-solving contexts?  The 
results extend prior problem-solving studies by demonstrating that enacting 
TTPS on a daily basis within a supportive learning environment promoted 
better problem-solving performance than teacher-led explicit instruction. This 
study is further evidence that blending problem solving and mathematics 
instruction to achieve positive problem-solving and content knowledge 
outcomes is difficult.  This statement, by itself, is not necessarily novel to 
the mathematics education field; however, the way the problem-solving 
instruction was conducted within the classroom was different from prior 
studies.  Previous studies discussed earlier used a TTPS instructional 
approach sporadically (e.g., 20 times over four months) whereas the present 
investigation sought to examine students’ outcomes after employing TTPS 
everyday.  Hence the present findings extend the mathematics education 
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field’s knowledge base regarding students’ outcomes from problem-solving 
instruction.  
  Students need instructional time to develop greater procedural fluency 
through exercises just as they need problem-solving experiences.  This 
instantiation of problem-solving instruction, which did not allow students 
as much practice with procedures, may have limited their development of 
procedural fluency.  Students needed time to practice procedures after using 
them within the problem-solving context.  We conclude that teachers must 
make procedures (and practice with them) an explicit part of problem-solving 
instruction.
 
Limitations and Future Directions
  This quasi-experimental mixed-methods study had limitations that impact 
the findings’ generalizability.  One limitation was that the sample size affected 
the statistical power of this study.  A second limitation was evidence related 
to permanence of the intervention outcomes.  This limitation arises in much 
of the past research on problem-solving instruction (e.g., Ridlon, 2009; 
Sigurdson et al., 1999; Verschaffel et al., 1999) and ought to be explored in 
a systematic fashion.  A third limitation of this teaching experiment was an 
inability to randomly assign individual participants to each group.  Statistical 
analyses suggested that the groups were similar in many aspects albeit this 
does not meet the randomized control assignment standards.  The goals of 
this exploratory study were met; however, future investigations ought to 
draw on more students, sections, and teachers in order to explore the role of 
demographic variables in students’ outcomes.  
  With two comparison classrooms and one intervention classroom, it was not 
possible through quantitative analyses to separate the effects of the instructor, 
intervention, and classroom.  Future researchers might consider two classroom 
teachers conducting instruction in two classrooms in order to better separate 
the classroom and intervention effects and gain greater ecological validity 
evidence.  A related question arises from the results: Might differences in 
instructors’ content, pedagogical, and/or pedagogical content knowledge 
account for students’ varied performance on the tests?  Prior research suggests 
these bodies of knowledge likely impacted students’ outcomes (e.g., Ball, 
Thames, & Phelps, 2008; Carpenter, Fennema, Peterson, & Carey, 1988).  
The instructor is a critical aspect of the intervention and there were some 
differences and similarities between instructors (see Table 9).  
  The instructor of the intervention group was a mathematics education 
doctoral student who taught elementary (i.e., grades K-6) mathematics 
methods courses over multiple semesters and previously taught in the 
middle grades (i.e., grades 6-8).  The classroom teacher held a master of 
education degree and had been teaching middle grades mathematics at the 
school for approximately five years.  The differences in the instructor and 
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teacher’s mathematical and pedagogical content backgrounds may have 
influenced the format and content of the instruction.  This uncertainty could 
be resolved through a broader examination of the intervention across sections 
and instructors. 

Summary

  Enacting TTPS on a consistent basis during one mathematics unit was 
linked to both positive and negative outcomes for sixth-grade students.  
This study described an instantiation of TTPS during one unit and provided 
evidence that TTPS positively impacted students’ problem solving.  TTPS 
as enacted in this study, which placed little emphasis on solving exercises 
and developing procedural fluency, might not support students’ mathematics 
content knowledge as measured by a unit test.  The findings from this 
study suggest that TTPS should be supplemented with teacher-led explicit 
instruction rather than replace it as done in the present investigation.  This 
conclusion is not contradictory to our results.  Prior studies supplemented 
explicit (or otherwise) instruction with TTPS; results indicated students had 
better problem-solving and achievement outcomes than peers experiencing 
explicit instruction only.  Further research is needed to explore other ways 
to implement TTPS, frequency of implementation (e.g., daily versus 
sporadically), and students’ outcomes from those experiences.  
  This exploratory teaching experiment characterized one way that TTPS 
might occur.  Prior investigations provided guidance for this instructional 
intervention but TTPS had not been delivered on a regular basis during 
typical classroom duration and did not draw on state or national standards.  
The present study provides new evidence regarding the effects of TTPS and 
a description of TTPS instruction.  In response to the first research question, 
intervention participants became better problem solvers as a result of daily 
TTPS.  Intervention students had significantly better problem-solving 
performance than their peers in the comparison group after the intervention 
period.  Finally, the comparison group did better than the intervention group 
on the unit test, responding to the third research question.  This study provided 
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Residual 39.11 55 0.71     
* p < .005 a N = 58 
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evidence about students’ problem solving and content knowledge following 
daily TTPS instruction, which future researchers might explore in the era of 
accountability and CCSSM.  For too long, problem solving has been treated 
“as an isolated topic akin to algebra or geometry.  We need better integration 
of problem solving within all topic areas across the mathematics curriculum” 
(English & Sriraman, 2010, p. 267-268).  If a goal of mathematics instruction 
is to develop competent problem solvers who are able to solve realistic 
problems, then teachers might consider supplementing their daily instruction 
with some form of TTPS to improve students’ problem-solving performance.
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Appendix A 
 
1) Ruth is planning to serve ice cream sundaes to guests at her birthday party.  She purchased 3 
flavors of ice cream: vanilla, chocolate, and strawberry, 2 different sauces: chocolate and 
caramel, and 4 different toppings: bananas, nuts, sprinkles, and whipped cream.  How many 
different types of sundaes can be made if every guest selects only one ice cream flavor, one type 
of sauce, and one topping? 
 
2) A group of 150 tourists were waiting for a shuttle to take them from a parking lot to a theme 
park’s entrance.  The only way they could reach the park’s entrance was by taking this shuttle.  
The shuttle can carry 18 tourists at a time.  After one hour, everyone in the group of 150 tourists 
reached the theme park’s entrance.  What is the fewest number of times that the shuttle picked 
tourists up from the parking lot? 
 
3) Aunt Marie purchased 80 Silly Bandz for her two nephews Elijah and Jordan.  She gave Elijah 
10 more Silly Bandz than Jordan.  How many Silly Bandz did Elijah and Jordan each receive? 
 
4) A family is planning a camping trip to a national park and receives the following information 
about the costs per day:   
Camping Fee  
     Children 12 years and younger  $3.00 per day 
     All others  $7.00 per day 
  
Parking for trailer $9.00 per day 
  
Use of common areas  $1.50 per person per day 
 
The family will camp for 10 days and need to park their trailer each day.  The family consists of 
4 people including a father, mother, 8 year-old child, and a 14 year-old child.  Each person will 
need to use the common areas on a daily basis.  How much will they pay for their camping trip? 
 
5) Maria wanted a bicycle so she started saving all of her money.  For every $6.00 that Maria 
saved, her mother gave her $2.00.  Maria had $56.00 after three months.  How much money did 
Maria’s mother give her?  
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Appendix B 
 

Southernville Pizza 
 

Directions: Use your knowledge of ratios, rates, unit rates, data representations, and data analysis 
to answer the questions below.  Please show all of your work for every problem-solving step. 
Create a math model and use a strategy to find the result for each question.  Carry out your work 
here and use the back of the paper, if needed.  Answer all questions in complete sentences that 
fully justify and explain your solution.  
 
The city of Southernville has many places to purchase a pizza.  Jeremy decides to create a 
website to provide residents with information that may help them decide where to purchase their 
pizza.  The following data provide the cost of a cheese pizza, a pepperoni pizza, a large pizza 
with five toppings, the diameter of a large pizza, and the number of slices on a large pizza: 
 

Pizza 
Restaurant 

# of Slices 
on Large 

pizza 

Diameter of 
Large Pizza 

(in.) 

Cost of 
Large 
Cheese 
Pizza 

(dollars) 

Cost of 
Large 

Pepperoni 
Pizza 

(dollars) 

Cost of Large 
Pizza with 5 

Toppings 
(dollars) 

Pizza Hut 8 14 10.00 10.00 10.00 
Papa Johns 8 14 8.99 9.99 12.99 
Domino’s 8 14 9.99 7.99 15.06 
Five Star 8 14 8.99 10.49 12.99 
Leonardo's 8 14 8.75 10.95 16.50 
Hungry 
Howie’s 8 14 10.55 12.95 16.05 
Pizza Vito 8 14 10.95 12.70 19.95 
 

Q1: Create a data representation that Jeremy might display on his website to help customers 
decide on what pizza to buy from a restaurant.  
Q2: Write a letter describing the best value for a pizza that your family might be interested in 
purchasing.  Write in a way that a 6th grade student might understand.  

 
***Check your work with one other person or another group of people. If they have 
something different, write it in pen near your answer because we will discuss them 

later.*** 
 

Appendix C 

A guide to the six stages of problem solving 

1. Reading the problem.  
a. Did you read the entire problem?  
b. Were there any words that you need help understanding? 
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Five Star 8 14 8.99 10.49 12.99 
Leonardo's 8 14 8.75 10.95 16.50 
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Howie’s 8 14 10.55 12.95 16.05 
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Q1: Create a data representation that Jeremy might display on his website to help customers 
decide on what pizza to buy from a restaurant.  
Q2: Write a letter describing the best value for a pizza that your family might be interested in 
purchasing.  Write in a way that a 6th grade student might understand.  

 
***Check your work with one other person or another group of people. If they have 
something different, write it in pen near your answer because we will discuss them 

later.*** 
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1. Reading the problem.  
a. Did you read the entire problem?  
b. Were there any words that you need help understanding? 
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c. Do you understand what you are supposed to find? 
 

2. Describing the situation 
a. What is happening in this problem?  
b. Can you represent the situation presented in the problem?  

 
3. Creating a mathematical model 

a. What information is necessary to solve the problem? 
b. What information is unnecessary to solve the problem? 
c. Think about whether this problem is similar to others you have seen before.  
d. Is there more than one way to begin solving this problem? 

 
4. Using a strategy and finding the result. 

a. Think about some possible strategies and choose one that will work with what 
you created in the previous stage. 

b. Look at your work thus far. Did you make any mistakes with your arithmetic or 
carrying out the strategy? 

c. Does your result make sense when you look at your mathematical model? 
 

5. Interpreting your result 
a. What are the units for your result? 
b. Does your result answer the original question?  
c. Does your result fit with your situation? Is it a realistic answer? 

 
6. Reporting your answer 

a. Did you write a sentence that clearly answers the question with the final solution? 
 

** Is there another strategy that might answer the problem? Does your strategy use different 
steps to calculate the result? ** 
 




