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Abstract

  Units of measure are critical in many scientific fields. While instructors 
often note that students struggle with units, little research has been conducted 
about the nature and extent of these difficulties or why they exist. We 
investigated calculus students’ unit use in area and volume computations. 
Seventy-three percent of students gave incorrect units for at least one task. 
The most common error was the misappropriation of length units in area 
and volume computations. Analyses of interview data indicate that some 
students think that the unit of the computation should be the same as the unit 
specified in the task statement. Findings also suggest that some students have 
difficulties correctly indicating the units for computations that involve the 
quantity π. We discuss students’ correct and incorrect use of unit in relation 
to their understanding of area and volume as arrays, as well as in terms of 
Sherin’s Symbolic Forms. 
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Introduction

  Units of measurement are important in many disciplines including those 
in science, technology, engineering and mathematics (STEM). Values are 
often meaningless without units and there are often multiple options for the 
unit in which something is measured (e.g., meters, yards), creating potential 
ambiguities if quantities are reported without units. In addition, understanding 
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units can be useful for problem solving. For example, knowing what units 
the answer must be in can help one determine which quantities to combine 
to obtain the answer. In addition, as Rowland (2006) noted, “Units can also 
be used to check the validity of equations: while an equation can be wrong if 
the units are right, an equation can’t be right if the units are wrong” (p. 553). 
  Many future scientists and engineers get their foundational understanding 
of key ideas of measuring quantities (e.g., rates, rates of change) in 
undergraduate calculus courses. Success in any STEM discipline requires 
both the knowledge to obtain quantitative answers and the knowledge of how 
those quantities relate to the physical world, including the units in which 
such quantities are measured. Findings from research on the teaching and 
learning of calculus indicate that applied problems as well as those involving 
modeling of quantities are quite challenging for students (e.g., Engelke, 2008; 
Martin, 2000; Orton, 1983).
  Despite the importance of understanding units of measure and anecdotal 
evidence from instructors that undergraduate students struggle with units, 
there is little research about the nature and extent of these difficulties. 
The few studies that exist provide evidence that units pose difficulties for 
undergraduate students in differential equations, physics, and chemistry 
(Redish, 1997; Rowland, 2006; Rowland & Jovanoski, 2004; Saitta, Gittings, 
& Geiger, 2011). Additionally, researchers have found that elementary school 
students have difficulty with measurement in general and the units of area 
and volume in particular (Battista & Clements, 1998a; Curry & Mitchelmore, 
2006; Lehrer, 2003; Lehrer, Jacobson, Thoyre, Kemeny, Strom, Horvath, 
Gance, & Koehler, 1998; Lehrer, Jenkins, & Osana, 1998). 
  The exploratory investigation reported here focused on calculus students’ 
understanding of the units of area and volume computations. Understanding 
what area and volume are and being able to carry out computations for them 
are important in the study of calculus. Topics such as the definition of the 
definite integral and the volumes of solids of rotation are built on ideas of 
area and volume. Understanding students’ thinking about units is one window 
into the understanding of these key issues and, to our knowledge, this is the 
first exploration of unit understanding for university calculus students. We 
were curious if the unit issues found in elementary school students persisted 
through their mathematical careers; given the findings about trouble with 
units in physics and differential equations, it seemed logical that they might. 
Knowing more about calculus students’ understanding of and difficulties with 
units of measurement can enhance the education field in two important ways. 
First, topics involving units are known to be difficult, but what is not clear 
is the extent to which the units aspect is causing the topics to be difficult. 
Second, armed with an understanding of the nature of those difficulties, 
instruction can be designed to help students develop more robust knowledge 
in this area in conjunction with learning the calculus content. 
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  To begin an investigation of how calculus students understand units, we 
gave calculus students basic area and volume computational tasks with the 
goal of answering the following research questions:

1.	How do calculus students answer area and volume computational 
tasks? 

2.	How do calculus students think about the units in area and volume 
computational problems?

3.	How do calculus students’ difficulties with units compare to 
elementary school students’ difficulties with units?

Analyses of written survey and interview data revealed that calculus 
students struggle with the units of area and volume computations; that these 
difficulties are related to students’ difficulties with understanding arrays and 
dimensionality; and that some calculus students’ difficulties are similar to 
those documented in elementary school students.

Student Understanding of Units

  Investigating what students understand about units in mathematical 
contexts is of interest to science and mathematics educators alike. Units are 
an important part of many scientific calculations and findings from research 
indicate that students’ understanding of units affects their learning of some 
physics concepts (Rowland, 2006; Van Heuvelen & Maloney, 1999). While 
units may be less emphasized in mathematics, there are topics in which they 
play a critical role (e.g., mathematical modeling of physical phenomena, 
“word problems” of various sorts, measurement of one-, two-, and three-
dimensional objects). In this section, we give examples of the importance 
of units in physics, chemistry, and mathematics, then review literature about 
elementary school students’ understanding of units. 

Units in Physics and Chemistry
  In disciplines with applied mathematics such as chemistry, physics, and 
engineering, the variables used in equations relate to physical quantities in the 
real world. Most of these quantities possess dimensions and these dimensions 
are an essential part of their nature. Density, for instance, is the amount of 
matter in a unit volume and thus thinking about density involves thinking 
about the units involved. Equations used for computation or modeling 
must both make mathematical sense and be dimensionally consistent. For 
instance, Newton’s Second Law (F=ma) is dimensionally consistent because 
the product of the units of mass and acceleration is kgm/s2, equivalent to 
Newtons (a unit of force). The Ideal Gas Law, PV = nRT, is an example of an 
equation in chemistry which must be dimensionally consistent. In chemistry, 
units are particularly important in stoichiometry and dimensional analysis. 
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Converting between units is especially problematic; in particular, “although 
unit conversions are taught in a variety of subjects over several grade levels, 
many students have not mastered this topic by the time they enter college” 
(Saitta, Gittings, & Geiger, 2011, p. 910).  
  We did not locate any physics education articles explicitly stating that 
students struggle with units, but several researchers write that students do not 
make use of implying unitsʼ importance, difficulty, or both. Redish (1997) 
noted students may interpret symbols as pure numbers rather than as standing 
for physical quantities; students are also likely to substitute numbers into an 
equation right away. The implication is that students may miss opportunities 
to use the units of the quantity as a ‘clue’ in the equation (e.g., figuring out 
what other quantities might be needed). Van Heuvelen and Maloney (1999) 
proposed a way of using units to help physics students understand concepts. 
The researchers suggested that problems be written backwards; that is, rather 
than give students a physical situation and have them provide an equation to 
model it, the students are given an equation with quantities and their units 
and students create physical situations to match. They give the example 
of proposing to students the equation N-(60kg)(9.8 m/s2)=0 , from which 
students could reason that kg indicates mass and m/s2 indicates acceleration 
due to gravity, and so on. The students would then create scenarios, such as 
a 60kg person standing on a flat surface (Van Heuvelen & Maloney, 1999, 
p. 252-253). A strength of these problems is that “the units become more 
meaningful since they become the key to determining what quantities are 
involved… consequently the units become useful sources of information” 
(Van Heuvelen & Maloney, 1999, p. 254). Redish’s (2007) note that students, 
to their detriment, often try to work with only pure numbers and Van Heuvelen 
and Maloney’s (1997) emphasis on units as useful in decoding equations 
indicate the importance of units to the physics world, and their usefulness 
to students as conceptual tools. 

Units in Mathematics
  The abstract nature of mathematics means that key issues in the field have 
to do with values and their relationship with one another. That variables 
sometimes model quantities in the physical world is not always the core issue; 
however, there are a number of topics for which units are an important part 
of a concept. One example is applications of integration, in which the units 
of the integral depend on the units of the integrable function and the units of 
the dependent variable. For instance, if v(t) is a velocity function with units 

distance/time,              is the total distance travelled with a distance unit. If 

a(t) is an acceleration function with units distance/time2,                is velocity
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with units distance/time. Rasslan and Tall (1997) studied understanding of 
definite integration in above-average high school students and found the 
majority of students had “difficulty interpreting problems, calculating areas, 
and with definite integrals in wider contexts” (Rasslan & Tall, 1997, p. 8). 
  Units are also crucial in modeling problems in differential equations. 
Rowland (2006) and Rowland and Jovanoski (2004) found that few first-year 
undergraduate engineering students checked that equations were dimensionally 
consistent when constructing a first-order differential equation to model 
physical situations. Some of these students also believed that the units on one 
side of an equation did not have to be the same as the units on the other side of 
the equation. In a later study, Rowland (2006) asked students to provide units 
for and interpret the terms in a differential equation modeling the amount of 
drug in a patient’s system as a function of time. Students had trouble identifying 
which terms had units of rate (i.e., some quantity per unit of time) and which 
terms represented an amount (e.g., milligrams of drug). Students also had 
difficulty determining the units of k, a proportionality factor, when given an 
equation for the rate of change of velocity with respect to time, dv/dt = -kv2 .
  Area and volume understanding has been studied in depth in elementary 
school students. However, we found no research about calculus students’ 
understanding of unit. In the remainder of this section, we present findings 
from research about elementary school students’ understanding of unit that 
informed our research design and interpretation of our findings. 

Elementary School Students’ Understanding of Units
  Units are difficult for elementary school students and these difficulties 
seem to stem from trouble understanding area and volume. Specifically, 
elementary school students have trouble with arrays (Battista & Clements, 
1998) and they frequently misappropriate units of length for units of other 
spatial computations such as area, volume, and angle (Lehrer, 2003). 
  Area and volume computations rely on the idea of arrays of unit squares 
and unit cubes, a representation troublesome for elementary school students 
(Battista & Clements, 1998; Curry & Outhred, 2005). Researchers have found 
that students have trouble visualizing and using the unit structure of an array 
(Battista & Clements, 1998; Curry & Outhred, 2005). Battista and Clements 
(1998) found that only 23% of third graders and 63% of fifth graders could 
determine the number of unit cubes in a 3x4x5 array of cubes.
  Students frequently misappropriate units of length measure for area, 
volume, and angle measurements (Lehrer, 2003). Researchers have replicated 
this finding with different tasks and concluded that some elementary school 
students do not see the need for a unit of cover in area measurements (Iszák, 
2003; Fuys, Geddes, & Tischler, 1998; Lehrer, Jenkins, & Osana, 1998).  
Rather, they add the lengths together to get the “area.” For example, some 
children measure the area of a square by measuring one side of the square, 
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moving the ruler a short distance parallel to the side of the square, and 
measuring the lengths of the two sides perpendicular to the ruler with each 
successive horizontal movement (Lehrer, 2003). Children also often believe 
length units are used with measures of angle (Lehrer, Jenkins, & Osana, 1998). 
Misappropriating length units for other spatial measures seems indicative 
of trouble with dimensionality (e.g., length is one-dimensional but area is 
two-dimensional). 
  These findings from different disciplines and age groups suggest that units 
are important and difficult, but the reasons such difficulties exist are not 
entirely clear. Our study was designed to contribute knowledge about older 
students’ unit use, as well as why units are difficult.

Research Design

  To begin to develop a base of research findings on undergraduate students’ 
understanding of units, the present analysis focused on calculus students’ 
understanding of units in computational area and volume problems and 
compared it to findings about elementary school students. We conducted 
this study within a cognitivist framework (Byrnes, 2000). We gave students 
mathematical tasks and analyzed the reasoning underlying their answers. 
This is consistent with the cognitivist orientation toward focusing on the 
cognitive events, like a student’s conceptual understanding of a question, 
that cause behaviors (Byrnes, 2000). 

Data Collection
This research is part of a larger study about calculus students’ understanding 
of area and volume in non-calculus contexts (Dorko & Speer, under review; 
2014a; 2014b; 2013). The data analyzed here are from written surveys 
completed by 198 differential calculus students and 20 clinical interviews with 
a subset of those students. All students were enrolled in differential calculus at 
a large public northeastern university and student volunteer participants were 
recruited. The university offers a single track of calculus for all majors and 
therefore participants included those pursuing majors in physical sciences, 
engineering, biological sciences and education, as well as other disciplines. 
The data collection had two phases: first, students completed the written 
tasks and data were analyzed using a Grounded Theory inspired approach 
(Glaser & Strauss, 1967). Clinical interviews (Hunting, 1997) were used to 
investigate patterns from the written data; that is, interview subjects were 
selected because their answers on written tasks represented an emergent 
category. This methodology allowed for a quantitative analysis of a large 
number of written responses and a qualitative analysis of student thinking 
about those written responses. 
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Research Instrument 
  The written survey and interview tasks consisted of diagrams of figures with 
dimensions labeled that included units. Students were directed to compute 
the area or volume of a figure and to show their work. Two of the tasks are 
shown in Figure 1; the others are included in Appendix A. 
  We created some of these tasks based on those used by other researchers. 
Area-of-rectangle tasks have been used by a number of researchers (e.g., 
Battista, Clements, Arnoff, Battista, & Borrow, C.V.A.; 1998; Lehrer et al., 
1998; Lehrer, Jenkins, & Osana, 1998). The rectangular prism was included 
to mirror the tasks used by Battista and Clements (1998). The area of the 
circle task was inspired by Lehrer, Jenkins, and Osana (1998), in which the 
researchers found that elementary school students had difficulties envisioning 
an array for a shape with a curved boundary. The first iteration of the survey, 
given to three sections of calculus students, contained the following tasks:

	 • Area of rectangle
	 • Area of circle
	 • Volume of rectangular prism
	 • Volume of cylinder

What is the area of the rectangle? Explain how you found it.

What is the area of the circle? Explain how you found it.

Figure 1. Area of rectangle and area of circle tasks.
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  When we analyzed these responses, we found many students had written 
formulae such as A = LW, V = LWH, A = πr2 , and V = πr2h. We suspected 
these might be memorized and as the larger study was about students’ 
understanding of area and volume, we wanted to create a task involving a 
formula which students were unlikely to have memorized. Thus we added 
a fifth task before giving the survey to additional students. This task was a 
triangular prism, shown in Figure 2. 
  The clinical interviews used all five written tasks. Interviewees were a 
subset of the 198 students who had completed the written tasks, and were 
asked to do the problems again while “thinking aloud.” We asked questions 
to probe understanding, like “Why is that measured in inches?” If a student’s 
response during the interview did not match what the student had written 
earlier on the written survey, the researcher showed the student the earlier 
work and asked about the discrepancy. Interviews were audio recorded and 
transcribed.

Find the volume of the right triangular prism.

Data Analysis
  Both written and interview data were analyzed using an approach inspired 
by Grounded Theory (Glaser & Strauss, 1967). This entailed first looking for 
patterns in a portion of the data and using patterns to form categories, followed 
by forming category descriptions and criteria. Those criteria were then used 
to code all the data, testing the criteria until new categories ceased to emerge. 
The researchers’ departure from Grounded Theory was that literature was 
accessed prior to coding and findings from these studies informed coding. 

Figure 2. Volume of  a right triangular prism task.



- 31 -

For instance, we knew that elementary school students often misappropriated 
length units for other spatial measures, and we looked for the occurrence of 
that in our data in addition to our search for emergent categories.  
  The three parts of responses to a task were the magnitude, the unit, and 
any work shown. For the present article, researchers coded only the unit 
written without regard to whether the magnitude was correct. Correctness 
of magnitude is an additional issue that was part of a larger study (Dorko & 
Speer, under review; 2014a; 2014b; 2013) but is not reported on here. 
  The first data analysis yielded three categories: correct units, incorrect units, 
and no units. This formed our first, and broadest, layer of analysis. The second 
layer was to look at answers with incorrect units and see if patterns arose 
there; that is, what were the incorrect units students were writing and why 
might they write these? This second layer had two sections: misappropriation 
of length units and issues specific to circles and cylinders. We discuss these 
two layers of coding in the following subsections. 
  Correct units, incorrect units, no units. We first coded answers as having 
correct units, incorrect units, and no units. Students had a variety of correct 
and incorrect responses (e.g., a student might use correct units for the area 
problems, but no units for the volume problems) and so we chose to code each 
response as independent of the others. Any squared unit for an area problem 
(e.g., cm2, units2 ) or cubic unit for a volume problem (e.g. ft3 , units3) was 
coded as Correct Unit. Any number without a unit (e.g., 48, 72 π) was coded 
as No Unit. Any incorrect unit (e.g., 48 cm, 200 cm2, 480 ft4 ) was coded as 
Incorrect Unit. All responses fit into exactly one of these categories. 
  Incorrect units: Misappropriation of length units. One of the findings 
from research with elementary school students was that students may see 
length units as adequate for other spatial measures. We coded our data to see 
if this issue persisted in undergraduate students. We coded any answer with 
a one-dimensional unit (e.g., cm, ft, in, unit) as Misappropriation of Length 
Units and all other answers as ‘other’ (it was not relevant here to classify 
the ‘other’ category further). 
  Incorrect units: Circle and cylinder. Findings from analyzing interview 
data (discussed later) took us back to responses to the circle and cylinder 
tasks. The finding that spurred this was that some students seemed to think 
π was a unit. Looking at only the responses to the area of circle and volume 
of cylinder task, we coded all responses that ended in π and had no unit as 
“π with no unit.” For instance, 25π was coded as “π with no unit” but 25π in2 

was coded as “other.” We only broke this “other” into further categories for 
ten students (those who had π with no unit for both the circle and cylinder). 
This was done to see if those responses had anything else in common. The 
categories we used (see Table 4) were ‘other tasks units correct,’ ‘other tasks 
units incorrect,’ and ‘no units.’ The criteria for these labels were the same as 
in the first layer of coding (see Data Analysis). 



- 32 -

  Interview data. Recall that we selected interviewees by finding students 
who had made specific mistakes on the surveys (e.g., length units, circle and 
cylinder units incorrect). We also included some students who had all of the 
units correct, as comparing the thinking used by successful students can 
provide insights into difficulties encountered by others, as well as indicate 
what might be emphasized in instruction. We took transcript excerpts in which 
students discussed a particular issue we had identified, then used Grounded 
Theory to look for patterns. For example, we identified interviewees who had 
all units correct and looked for patterns in their reasoning. Details of how 
transcript excerpts were coded are presented in conjunction with the results. 

Results

  In this section, we present the results of coding, giving the various 
frequencies for students’ unit use. The section is separated into Correct, 
Incorrect, and No Units; Misappropriation of Length Units, and Issues 
Specific to the Circle and Cylinder. 

Correct, Incorrect, and No Units 
  Our first research question was “How do calculus students answer area 
and volume computational tasks?” We answered this question by sorting the 
data in terms of correct, incorrect, and no units, and then further sorting the 
Incorrect Units category (see subsequent section). Table 1 shows the results 
of the first round of coding that was used to determine what percentage of 
students used correct units, incorrect units, and no units on the tasks. 

Table 1. Correct, Incorrect, and No Units 

Task	 Area of 	 Area of	 Volume of	 Volume of	 Volume of 
	 rectangle	 circle	 rectangular 	 cylinder	 triangular
			   prism	 prism

n total	 197	 197	 197	 197	 128
n responses	 195	 195	 196	 182	 107
Correct unit	 159	 113	 165	 125	 77
  % responses	 81.54	 57.95	 84.18	 68.68	 71.96	
Incorrect  Unit	 26	 27	 23	 23	 19
  % responses	 13.33	 13.85	 11.73	 12.64	 17.76	
No unit	 10	 55	 8	 34	 11
  % responses	 5.13	 28.21	 4.08	 18.68	 10.28

Percentages in Table 1 are the percent of the total responses (not all students 
answered all questions). For instance, 84.18% of students had the correct unit 
for the volume of the rectangular prism task; 81.54% had the correct unit for 
the area of the rectangle task; and so on. 
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  Note that the area of the circle and volume of the rectangular prism tasks 
had the highest percent of ‘correct unit’ responses (81.54% and 84.18%, 
respectively). In contrast, area of the circle and volume of the cylinder tasks 
had the lowest percentages of ‘correct unit’ responses (57.95% and 68.68%, 
respectively). The ‘no unit’ category is also much higher for the circle and 
cylinder than for other shapes. We used interview data to examine some of 
these discrepancies; the thinking of students who had correct units is discussed 
below, and the circle issues are considered later.
  We found that interviewees who had correct units talked about at least one 
of the following: dimensionality, arrays, or rules of exponents. For instance, 
Steven, Rose, and Isaac explained how they decided what unit was correct 
as follows:

Steven: 	 Area is a square [unit]. Every time we multiply one dimension by 
the next, we’re multiplying centimeters by themselves. We change 
from a linear to an area, then area to volume. It’s recognizable 
that volume is cubic, as opposed to area, which is squared. [The 
volume of the rectangular prism] is the length times the width of 
the base times the height. It’s like the area formula only now we 
have a vertical dimension so we have 200 little centimeter boxes 
inside. 

Rose:	 Area is a two dimensional measurement of the amount of space 
that um something occupies. But it’s two dimensional where a 
length, like each side, would be one dimensional, I believe. And 
then volume would be three dimensional, so it’s cubed.

Isaac:	 If we think about this [5 cm x 10 cm face] in terms of an area – 
you have 50 boxes [draws a 5 x 10 array of squares on the face]. 
You know that you have four of these, fifty times four. So you can 
think of it as having four layers of this area because the difference 
between volume and area is just adding another dimension … so 
we can think of it as four sheets of  50 squares. 

Steven thought about dimensions and rules of exponents as he identified a 
correct unit. Rose also thought about dimensions, though she did not explicitly 
connect dimensionality of the figure to dimensionality of the unit. Isaac, who 
determined that the volume of the box was 200 cm3, thought about arrays, 
and used the idea of sheets of squares (we suspect he meant ‘sheets of cubes’) 
to reason that the unit should be cubic centimeters. These three students’ 
thinking is representative of others who had all the units correct. Therefore, 
we can conclude that ideas of dimensionality, arrays, and rules of exponents 
are helpful for students in understanding the units of a spatial computation. 
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  We were also curious how many students had correct answers to all tasks. 
We took data that had been coded for ‘correct units,’ ‘incorrect units,’ and 
‘no units’ and looked for students whose answers were all marked ‘correct 
units.’ There were 45 (26.63%) such students of 169 who answered all the 
tasks. In the next section, we use interview data to shed light on some of the 
thinking of students who had incorrect units. 

Misappropriation of Length Units
  One of elementary school students’ most common difficulties with units is 
the misappropriation of length units for other spatial measure; that is, writing 
a linear unit for an area or volume problem (Lehrer, 2003). Some calculus 
students have this same issue, as shown in Table 2. 

Table 2. Misappropriation of Length Units 

	 Area of 	 Area of circle	 Volume of	 Volume of	 Volume of
	 rectangular	 circle	 rectanglar	 cylinder	 cylinder
			   prism		  prism

n total	 197	 197	 197	 197	 128
n responses	 195	 195	 196	 182	 107
Length Units	 29	 25	 18	 13	 16
% responses	 14.87	 12.82	 9.14	 7.14	 15.00

Though only two students used length units on all tasks, a number of students 
used length units on one or more tasks. Interviewees who used length units 
for all the tasks told us that the unit of the computation was [to paraphrase] 
‘the same as the unit you’re told in the problem.’  Rae and Alex wrote “cm” 
with their answers. Here, they respond to the interviewer asking them to “tell 
me about the centimeters.” 

Rae: 	 That’s the thing that goes along with the sides. Whatever the 
side is in, that’s what the answer is in. 

Alex: 	 We were given a unit. The numbers are centimeters. 

Jolie wrote length units for all of the tasks except the triangular prism, in 
which she wrote ‘60’. The interviewer directed her back to the area of the 
rectangle task:

Interviewer:	 On this rectangle question, you wrote 48 centimeters. Does 
this question have anything like that [points to the ‘cm’]?

Jolie: 	 Well, it’s feet, but I don’t know if it’s cubed because it’s 
a triangle. I know it wouldn’t be just feet.
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Interviewer: 	 Do you remember volumes of other things being cubed?

Jolie: 	 I don’t remember.

We can suggest several possible explanations for the occurrence of students 
writing a length unit for an area or volume computation. One is that the 
students believe length to be an adequate measure of area or volume, as 
is the case with some elementary school students (Lehrer, 2003). Another 
explanation is that the students do not believe the answer is a length, but do 
believe that the answer is given in the units the problem gave them. That 
is, the students may understand volume as the amount of three-dimensional 
space something takes up, without a corresponding understanding that it is 
measured in cubic units. Students’ initial learning experiences with units may 
predispose them to this sort of thinking, in which they believe the correct 
unit is whatever is given in the initial problem. For instance, consider an 
elementary school arithmetic problem in which a teacher reminds students 
to “include the units” in arithmetic problems like 6 apples plus 6 apples. The 
unit corresponding to the answer (12 apples) is the same unit as in the problem 
statement. Students may incorrectly generalize this to other problems that 
require units, such as the tasks shown here. A third explanation related to this 
one, which we explore later, is that students have a Symbolic Form (Sherin, 
2001) for problems involving units; that is, students believe that the answer 
to a spatial computation looks something like Figure 3,

Figure 3. Symbol pattern for “measurement” symbolic form.

In a symbol pattern, the larger square is filled with a magnitude and the 
smaller square is filled with a unit. 
  While we are not sure which of these explanations (if any) are correct, the 
common theme is that the misappropriation of length units seems to stem from 
not recognizing the connections between units, arrays, and dimensionality. 
In all of these cases, it seems that the underlying issue is that students do not 
see the connections between units, arrays, and dimensionality. 

Issues Specific to the Circle and the Cylinder
  As noted earlier, the initial coding of answers (see Table 1) revealed patterns 
in the types of tasks that seemed most problematic for students. In particular, 
students did not include units with their answers to the area of a circle and 
volume of a cylinder tasks at higher rates than for the other tasks. Table 3 
shows the results of coding circle and cylinder task data for “π and no unit.” 
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(Note that these figures are the same as in the ‘no unit’ category of Table 1). 

Table 3. Issues specific to the circle and cylinder 	
                                                      Area of circle	              Volume of cylinder

n total	 197	 197
n responses	 195	 182
π with no unit	 55	 34
% responses	 28.21	 18.68

This table is to be interpreted as follows: 55 of 195 students (28.21%) had 
an answer like 25π (magnitudes may have differed) for the area of the circle. 
Thirty-four students (not a subset of the 55) of 182 (18.68%) had an answer 
like 72π for the volume of the cylinder. These students’ unit choices for the 
other tasks and their discussion of these tasks in the interview give us reason 
to believe that something about the presence of the π creates issues with the 
units of the computation. 
  We find it useful to consider the responses from the students who fell into 
the “π and no unit” category for both the circle and the cylinder. There were 
10 such students (see Table 4). These students gave answers such as 25π for 
the area of the circle and 72π for the volume of the cylinder, indicating that 
they could carry out measurement computations and knew those computations 
involve π. Their answers, however, did not include units for either task. We 
wondered if these students’ answers to the other tasks would shed any light as 
to why they did not give units for the circle and cylinder tasks. Their responses 
to all tasks are shown in Table 4. Only one student, Ian, was in the group 
of students given the triangular prism task; the ‘not applicable’ mark in the 
volume of the triangular prism column indicates that triangular prism task 
was not part of the student’s set of questions (as opposed to a blank answer).  
  Table 4 shows that of the 10 students who did not include units with the 
circle and cylinder task answers, 8 of them did include units with their other 
answers. While some of the units are incorrect, the fact that the students 
included some sort of unit on the other tasks seems a compelling piece of 
evidence that something about circle and cylinder area/volume computations 
causes students to have issues with the units. 

Table 4. π as and no unit for both circle and cylinder tasks 
Student	 Area of	 Area of	 Volume of	 Volume of	 Volume of	  Code
	 Circle	 Rectangle	 Rectangular	 Cylinder	 Triangular
			   Prism		  Prism

Amy	 48 cm2	 25π	 200 cm3	 144π	 n/a	 Other tasks
						      units correct
Bob	 48 cm2	 25π	 200 cm3	 72 π	 n/a	 Other tasks
						      units correct
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Cory	 48 cm2	 25π	 200 cm3	 72 π	 n/a	 Other tasks
						      units correct
Deb	 48 cm2	 25π	 200 cm3	 72 π	 n/a	 Other tasks
						      units correct
Eric	 48 cm2	 25π	 200 cm3	 72 π	 n/a	 Other tasks
						      units correct
Fritz	 48	 25π	 200	 72π	 n/a	 Other tasks
						      no units
Gillian	 60	 10π	 200	 48π	 n/a	 Other tasks
						      no units
Henry	 48 cm	 25π	 200 cm	 24π	 n/a	 Other tasks
						      units incorrect
Ian	 48 cm	 25π	 200 cm3	 556π	 48 ft2	 Other tasks
						      units incorrect
James	 48 cm	 25π	 200 cm3	 48π	 n/a	 Other tasks
						      units incorrect

  One might argue that a student “forgot” to write the units, was being 
“careless,” or perhaps did not think units were important. We think that these 
students’ responses are evidence to the contrary. That is, it seems unlikely to 
us that a student who includes units on two problems would neglect to put 
units with the other two problems out of sheer forgetfulness. Moreover, of 
these ten students, half had the units for the other tasks correct. Again, we 
find it unlikely that students who give correct units with other tasks would 
“forget” units for the circle and cylinder tasks. 
  Interview excerpts helped us understand why circles and cylinders might 
be tricky. Students talked about the presence of π affecting their unit use. 
For instance, Amy and Bob said that they did “forget” the unit, but it was 
because of the π involved: 

Amy: 	 I probably didn’t even think of it because I was using pi, so I left pi 
in it and I didn’t think to label it. But I labeled all the rest of them. 
That’s really weird. Well I know pi is an actual value, but I guess I 
would … I don’t know. It probably just slipped my mind because 
I was using pi to represent a number rather than saying 3.14 and I 
probably just forgot to put a label on it. I probably have a tendency 
to do that with circles because you really only use pi with circles 
and it kind of doesn’t have a label on it. And I guess it makes sense 
that I would use it consistently with circles. You can multiply it out 
but I tend to leave pi as pi. 

Bob: 	 I think it’s because I forgot [the units for the circle problem]. Either 
that or the pi threw me off and then I forgot. Pi doesn’t have a unit. 
I think I 	forgot because of the unitless pi.

Three students had the units for at least one of the other tasks incorrect. 
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Having an incorrect unit for one of the other tasks, in addition to not putting 
a unit on the circle or cylinder, seems indicative of general issues with units; 
that these students included units with neither the circle or nor the cylinder 
seems indicative of something about the circle contributing to these unit 
issues.  The final two students in this subset who gave no units for any of 
the tasks are less telling in terms of some sort of circle issue. In a way, they 
are the opposite of the students who had the other tasks’ units correct: these 
students may have thought units were not needed, and thus their answers 
for the circle and cylinder tasks may not be indicative of a “π and no unit” 
issue. While our data does not fully explain what is happening with the circle 
tasks, the findings do suggest that π being related to unit difficulties warrants 
further investigation. 

Discussion

  Our first research question was “What percent of differential calculus 
students write correct units for area and volume computational tasks? What 
is the thinking and reasoning of these students?” The percentage of students 
who wrote correct units differed by shape. The highest percentage was for 
the volume of the rectangular prism (84.18%), followed by the area of the 
rectangle (81.54%), then the volume of the triangular prism (71.96%) and 
the volume of the cylinder (68.68%), and finally 57.95% for the area of the 
circle task. Another way to answer this question is that only 26.6% of the 
students wrote the correct units for all tasks. We did not locate percentages 
for elementary school students’ unit use that we could compare to these 
percentages for calculus students’ unit use. However, our results are somewhat 
similar to what Rowland (2006) found with undergraduate differential 
equations students. Rowland (2006) found that only 13% of students gave 
the correct units for a constant term in a differential equation, though roughly 
80% of students could give correct units for dD/dt (see Rosken, 2006, p. 
555). We would hope that all students know the correct units for area and 
volume by the time they enter college mathematics. However, our findings 
indicate that they do not. We speculate this may cause difficulty in differential 
equations and science classes as well as in application problems in calculus. 
Moreover, not understanding units prevents students from using them to gain 
information about equations and how to manipulate them; this is a skill that 
is useful in physics (Redish, 1997) and other sciences. 
  Interview data analysis revealed that students who wrote correct units 
could explain area and volume as arrays and/or could explain dimensions of 
planar figures and solids, and connect this knowledge to the shapes’ units. In 
contrast, students who struggled with units did not seem to possess knowledge 
of arrays or dimensionality. 
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  The link between correct units and understanding area and volume in terms 
of arrays and dimensionality is similar to what other researchers found true 
of elementary school students (e.g., Battista & Clements, 1998; Battista et 
al., 1998; Lehrer, 2003). For instance, Lehrer (2003) found some elementary 
school students treat length as a space-filling attribute, indicating that they 
did not understand dimensionality or tiling (that is, creating an array). While 
none of our interviewees measured the area of a rectangle as Lehrer’s (2003) 
students did, their consensus that the computation retained the original unit 
of measure is indicative of a lack of understanding of dimensionality and/or 
arrays. Battista and Clements (1998) found that not all fifth graders understand 
volumes of rectangular prisms in terms of arrays, and findings from this 
study indicate that this may also be true of some undergraduates. Battista 
and Clements found that only 63% of fifth graders could use an array model 
to find the volume of a rectangular prism. While we do not have a figure 
for how many of our subjects could find volume using an array, findings do 
suggest it is less than 100% of students, and a related study (Dorko & Speer, 
under review; 2014a, 2014b; 2013) details some of the issues students have 
with finding volume and the potential ramifications. 
  The second research question was “What percent of differential calculus 
students write incorrect units for area and volume computational tasks? What 
is the thinking and reasoning of these students?” We direct the reader to Table 
1 for the per-task percentages, but the 26.6% of students who had all of the 
units corrects leaves 73.4% of students who had at least one unit incorrect 
or missing. Interviewees gave several reasons for these incorrect or missing 
units. Students who used length units cited “the unit of the initial measure is 
the unit of the computation,” which is reasoning indicating that they may have 
not understood arrays or dimensionality. Students who had incorrect units 
for the circle and cylinder tasks talked about the presence of the π causing 
difficulties.  We suspect geometry and trigonometry instruction may play a 
role. For instance, it is not uncommon to tell geometry students to “leave your 
answer in terms of/in units of p.” Additionally, when students learn about 
radians, we express angles using p and no other unit (e.g., 3p/2, sin(p/4). 
While the intent is that students grasp the idea of radians, the meaning that 
students may take away is that numbers with p need no other unit. Further 
research is needed about student understanding of p to clarify this issue.

Symbolic Forms
  Sherin’s (2001) theory of symbolic forms may explain some of the results 
of this study, most notably the p and incorrect unit findings. Developed to 
explain how students understand and construct equations in physics, the 
symbolic forms framework hypothesizes that students have conceptual 
schema with which they associate certain symbol patterns in equations. 
Sherin (2001) developed a list of these symbolic forms, noting that it is not 
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comprehensive and hypothesizing mathematics-specific symbolic forms also 
exist for mathematics equations. Izsák (2000) explored the existence of a few 
symbolic forms in students’ modeling of physical situations with algebra. 
It is important to note that in Sherin and Izsák’s work, the symbolic form is 
connected to understandings that students have about the situation they are 
modeling. That is, a symbolic form and symbol pattern are not something 
that arise from rote memorization or how something is “supposed to” look: 
rather, the form and symbol pattern have meaning to the student. For instance, 
students who understand upwards acceleration and acceleration due to gravity 
as competing forces might write an equation with a ☐ - ☐ symbol pattern 
because that specific pattern represents a “competing terms” symbolic form. 
Similarly, an exponential decay situation might trigger a “dying away” 
symbolic form, expressed in an exponential symbol pattern such as e-x. 
  Neither Sherin’s nor Izsák’s accounts of forms include forms regarding 
units, but our data lead us to believe that (a) such forms exist and (b) they 
may explain students’ unit use. We might say that students understand an 
area or volume calculation to be measuring something, and because it is a 
measurement, it has a unit. Certainly Steven, Rose, and Isaac, understood that 
volume was a measurement of three-dimensional space.  Rae, Alex, and Jolie, 
who wrote length units seemed to understand that the computation did need a 
unit. The evidence for this is that they included the unit given to them in the 
problem. For instance, Alex’s comment “we were given a unit. The numbers 
are centimeters” suggests that she does indeed associate a measurement with 
the computation. We propose that there may be a measurement symbolic form 
and an associated symbol pattern as shown in Figure 3 discussed previously.
We think that students’ early experiences with units likely contribute to the 
development of this form; for instance, in our ‘apples’ example earlier, the 
answer of 12 apples has the form 

Figure 4. Symbol pattern for units in early addition problems

We find it quite possible that students generalize a symbol pattern as shown 
in Figure 3 for problems with units, and thus come to see other unit problems 
as fitting the ‘magnitude, unit’ pattern. 
  Some students may have a more nuanced symbol pattern for the 
measurement form. For instance, Steven, Rose, and Isaac expressed an 
understanding of the unit’s exponent as connected to unit squares and cubes 
and their dimensionality. Steven explicitly stated that “volume is cubic, 
opposed to area, which is squared.” These students’ symbol patterns for 

  12       apples
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measurement may look like Figure 4, where the biggest box is for a magnitude, 
the medium box is for the unit, and the smallest box is for an exponent.

Figure 5. Nuanced symbol pattern for “measurement” symbolic form. 

These forms may also explain some students’ tendency to include π, but not 
a unit, for circle and cylinder computations and units on other problems. If 
“measurement” cues the symbol pattern in Figure 3, π may fill the second 
box, and students may think the symbol pattern is satisfied. They may then 
proceed to a different task (say, the volume of the rectangular prism), activate 
the same measurement schema, and in this case include a unit to satisfy the 
symbol pattern. In short, if, as seems reasonable, these two forms exist, it 
would explain students’ unit use and the sometimes contradictory behavior 
of including units on some problems but not others, or including an incorrect 
unit. From an instructional viewpoint, this would suggest good news that 
students do indeed connect area and volume with the measurement concept. 
We discuss further instructional implications next.  

Implications for Instruction
  Successful students tended to think about arrays, dimensionality, or both. 
We suggest that instructors of elementary school mathematics introduce area 
and volume with arrays of unit squares and unit cubes, respectively, and that 
students gain experience with arrays for a variety of different shapes (more 
than just rectangular prisms) throughout their learning. This is important 
because findings from research indicate that elementary school students 
sometimes have difficulty with tiling to form an array (e.g., Lehrer, 2003); 
in addition, data from a related study (Dorko & Speer, under review; 2014a; 
2014b; 2013) indicate that some interviewees could describe an array for the 
rectangular prism but had difficulty with the arrays of other shapes. With 
younger students, we suggest emphasizing that area is a two-dimensional 
measure and can be tiled with unit squares, so it has square units and that 
volume is a three-dimensional measure and can be tiled with unit cubes, 
resulting in cubic units. We think this would be useful because it fosters ideas 
about dimensionality that can be made more formal. That is, once students 
have learned about the rules of exponents, we suggest helping students see 
that, for instance, in measuring area, 4 cm x 5 cm = 20 cm2 because the 
centimeters are multiplied and rules of exponents dictate that cm1 X cm1 = 
cm2.  This can be linked back to the unit square and unit cube: a unit square 
is, for instance, 1 in2 because it is 1 in X 1 in = 1 in2 (and similarly for the 
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cube). We think that having students write the unit with the computation (e.g., 
4 cm x 5 cm = 20 cm2 , not 4 x 5 = 20 cm2 ) is a good way to reinforce the 
connections between dimensionality, rules of exponents, and units. 
  These suggestions are based on how successful students thought about 
the units of the computation. One of the most common errors in this study 
was that students misappropriated length units for the units of other spatial 
measures, and their reasoning was that “the units of the initial measure are the 
units of the computation.” We think that the above suggestions, particularly 
writing the units with all steps of the computation, would reduce the chance 
of students giving length units for area and volume. Per the finding that some 
students seem to view p as a unit or as unit-like, we suggest that instructors 
clarify what p is and that the phrase ‘in units of p / in terms of p’ does not 
mean that p is a unit like, say, a square inch. Further research about student 
understanding of p is needed before more specific instructional implications 
can be offered. 
  Our final suggestion for instruction is based on physics problems that direct 
students’ attention to units. Van Heuvelen and Maloney (1998) suggest that 
creating problems that force students to make sense of and pay attention to 
units aids in understanding. We gave an example of one of their problems for 
physics earlier. A way to adapt this for area and volume might be problems like 

16 m3 = p(2m)2(4m)
and

51 in2 = (17in)(3in)

and asking them what shape the equation represents (e.g., the first of these 
examples could be a cylinder with radius 2m and height 4 m, and the later 
could be a rectangle with length 17 inches and width 3 inches). 

Suggestions for Further Research
  Findings indicate that some calculus students struggle with the units of 
area and volume in non-calculus contexts. One area for further research is 
how these struggles interact with students’ learning of calculus. For instance, 
related rate and optimization problems often involve area and volume and 
their units; it is possible that students’ issues with the units for area and 
volume negatively impact their learning of calculus. This has been the case, 
for instance, with student understanding of function (Carlson, 1998) and 
variable (Trigueros & Ursini, 2003). Additionally, given the known difficulties 
students have with integration (Orton, 1983), it could be fruitful to study how 
students understand the units of integration (for instance, the units from the 
integral of a velocity or acceleration function). 
  These findings demonstrate that some students have developed solid 
understandings of these ideas while others have not but the data do not provide 
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insights into how students came to have an accurate understanding. It would 
be productive to examine how students transition from having difficulties with 
these unit ideas to having a robust understanding of units and dimensions. 
Teaching interviews or teaching experiment studies could yield insights into 
the mechanisms by which students can develop normative understandings of 
one-, two- and three-dimensional units of measurement. 
  Because a finding from this study is that students seem to attach a different 
interpretation to p than mathematicians do (that is, p is a unit or is unit-
like), a second suggestion for further research is to learn more about student 
understanding of p. Finally, more research about student understanding of 
unit in physics, chemistry, and engineering could be useful in helping students 
succeed in these disciplines.
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