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Abstract

Learning to compute integrals via the various techniques of integration (e.g., 
integration by parts, partial fractions, etc.) is difficult for many students. 
Here, we look at how students in a college level Calculus II course develop 
the ability to categorize integrals and the difficulties they encounter using 
a card sort-resort activity. Analysis of the data required the use of several 
non-standard techniques which provided interesting insights into the ways 
students develop categories in mathematics. One finding of note is that stu-
dents may need a significant amount of time “off topic” to allow sufficient 
time to fully organize their schema for integration.
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Understanding Students’ Difficulties with Integration
Through a Card Sort Task

  Most second semester college calculus courses involve two main topics. 
The first part of the semester is devoted to techniques and applications of 
integration, while the second half of the semester is often devoted to topics 
related to sequences and series. While the need for this particular content will 
not be debated here, it is sufficient to point out that that (a) not all college 
calculus courses work this way (e.g. Heid, 1988) and (b) not everyone is 
convinced that it is necessary to devote that much time to these topics in the 
days of Maple, Mathematica, Wolfram-Alpha, and other Computer Algebra 
System [CAS] tools (Gordon, 1993).
  Perhaps, in a CAS-driven world, the need for teaching procedural skills 
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such as integration should be focused on particular groups of students who are 
expected to need these skills in the future, rather than all students (Gordon, 
1993; Oates, 2009). As Harel (2008) points out, though, we might lose certain 
other aspects that are not directly related to the knowledge of integration. 
And we might not be aware of which students will need what skills in the 
future, making such tracking difficult.
  One difficulty faced by students when asked to integrate a function is in 
selecting an appropriate technique to apply. Typical techniques taught in a 
second semester calculus class include integration by substitution, integration 
by parts, partial fractions, trigonometric substitution, and the like. In a brief 
survey of available calculus books at the present, almost all present the various 
techniques of integration, then include a discussion of how to organize all of 
these into a heuristic for dealing with integrals in general. These are typically 
based on some version of Shoenfeld’s (1978) or Slagle’s (1963) algorithm.
  However, when teaching these algorithms, students suffer from several 
pitfalls which many cannot overcome. First, if a student’s algebra skills are 
weak, implementing the methods of integration, once one is selected, becomes 
very difficult and errors in basic algebra or differentiation can mislead them. 
Asking students to check their answers by differentiation then requires them 
to rely on this already weak skill and rarely helps them to find their mistakes 
or correct them. Further, a given integral can be expressed in multiple forms.
Students with weak algebra skills can have difficulty recognizing how two 
answers that appear different may be the same, so “looking in the back of 
the book” often fails to help them identify the problem.
  Another concern is more conceptual in nature and calls to question the entire 
undertaking. By teaching these explicit techniques of integration, structured 
in some general algorithm, we can, at best, hope to turn our students into 
slower, incomplete versions of a CAS that are prone to basic computational 
errors. Given the extensive time devoted to these topics, we should consider 
whether this time is well spent, especially in light of the general audience 
for these courses. 
  Based partly on these concerns and partly on curiosity about several 
inquiry-based labs we encountered for teaching techniques of integration 
(e.g. Anderson, 2010; Stewart, 2008), the present study examines how stu-
dents develop understanding of techniques for integrating functions through 
two unique components. First, we restructured the typical approach to the 
content to build a scaffold for the entire concept of “integrating functions.” 
This structure was then filled in by focusing on the different components 
of this process. Second, the scaffolding gave us access to a large variety of 
data on students’ concepts of integration that required non-standard tools for 
analysis. We thus applied techniques adapted from graph theory (Green & 
Ricca, 2014) to examine how these students developed the ability to classify 
integrals by the method for solving them. 



- 3 -

  In particular, we focused first on classifying integrals before explicitly 
teaching the specific techniques for solving each type of integral problem. 
On the surface, this may seem illogical, but there are two factors that led us 
to explore this approach. First, the availability of the CAS provides a tool 
for students to collect data, even when they cannot themselves perform the 
integration. They can then construct a classification scheme. Many CAS 
have a “verbose mode” available whereby the steps taken by the CAS can 
be made explicit, walking the user through the solution, providing additional 
data. Second, by creating the classification scheme first, we seek to unify the 
different techniques of integration into a single coherent framework from 
the start, rather than try to reorganize the way students think about integra-
tion after they have learned specific details. By scaffolding the process, we 
expect that students will develop a general scheme that motivates the need 
for different techniques of integration, so that when these are encountered 
later, they can be used more efficiently.
  We thus had two research questions to investigate. How does a “classi-
fication first focus” – rather than learning specific techniques first – impact 
students’ abilities to classify integrals by the method of integration? How 
do students organize their knowledge of integrals to aid them in solving 
routine integration problems? These questions were explored by gathering 
data through an inquiry activity based on cycles of a card sort task (CST) 
with indirect feedback.

Background

  Recently, Sofronas, DeFranco, Vinsonhaler, Gorgievski, Schroeder and 
Hamelin (2011) found agreement among most national experts that integration 
is a critical component of learning what the calculus is all about. Specifically, 
these experts ranked techniques of integration and concepts of integration as 
the two most important aspects of learning integration. However, previous 
studies have shown that students’ conceptual understanding of integration 
is weak (Orton, 1983; Bennett, Moore, & Nguyen, 2011) We know that a 
focus on procedural knowledge is inadequate without a concomitant devel-
opment of conceptual and strategic knowledge for helping students decide 
what algorithms and techniques to use in particular situations (Shoenfeld, 
1978; Rittle-Johnson & Alibali, 1999). Although procedural and conceptual 
knowledge interact dynamically (Byrnes & Wasik, 1991) without parallel 
knowledge structures in procedural techniques and strategic thinking, students 
will not be developmentally ready to use their procedural knowledge (Adey, 
1999; Pettersson, & Scheja, 2008; Campbell, 2011). Acceptance of this has 
led to the development of and teaching of more transferable algorithms for 
teaching the strategic aspect of integration. However, many of these can 
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devolve into purely procedural approaches or random guessing. Even when 
students are good at implementing the algorithm, external features in present-
ing a problem can mislead them (Lauten, Graham, & Ferrini-Mundy, 1994; 
Mallet, 2011) especially in the absence of adequate strategic knowledge. 
This then forces the students to compartmentalize the various aspects of the 
knowledge of integration, leading to future problems and a lack of flexibility 
in problem solving (Mallet, 2011; Tall, 1993; Abdul-Rahman, 2005; Rosken 
& Rolka, 2007). Even when students possess adequate procedural and stra-
tegic knowledge related to integration, fundamental difficulties with algebra 
interfere with their implementation (Grundmeier, Hansen, & Sousa, 2006). 
  Thus, while some studies call for more development of procedural and 
strategic knowledge (e.g, Grandsard, 1997), this is largely the opposite of 
creative problem solving. We are attempting to reduce an art – solving a 
particular integration problem – to an algorithm (what Buschberger (1990) 
calls “trivialization”). We cannot expect, however, that students will develop 
sufficient fluency with this to rival the Risch algorithm implemented by most 
CAS, nor should we expect students to merely reproduce the complexities of 
this algorithm. If we expect students to exhibit strategic thinking about how 
to solve a problem, their existing strategies tell them to use a better tool – like 
a CAS – rather than rely on their own inadequate abilities. Instead of forcing 
them to focus on the procedural side of things, we must recognize that even 
a procedural topic like integration requires creativity to solve. Consider, for 
instance, the case of integrating sin2x. This requires much more than a list of 
procedures to follow, even though it can be reduced to such a list. Recognition 
that substitution of an equivalent expression for the integrand will “simplify” 
the problem – a term itself which is confusing to students since the integrand 
grows from one term to two terms – is not a trivial thing to expect. Trying 
to memorize all the patterns without strategic thinking about their uses to 
help organize them will result in overload and failure. After all, Gradshteyn 
& Ryzhik (1994) is not a book to be memorized!
  One of the problems in much of the research on students’ knowledge of 
integration is the conflation of two things that are not necessarily equivalent. 
Studies like Grundmeier, Hansen, & Sousa (2006) and Mahir (2009) observe 
student work on a sample of integration-related procedural questions then 
draw conclusions about the students’ underlying conceptual understand-
ing. We certainly expect these inferences to be valid in many cases, but we 
recognize that a single visible symptom can be caused by several different 
underlying misconceptions or mistakes. In the GLP metaphor for learning 
(Green & Ricca, 2013), we refer to this as the confusion between the underly-
ing space of possibilities (genotypes) and observed behaviors (phenotypes). 
So, in order to help students resolve their confusion and construct more 
appropriate conceptual, procedural and strategic thinking about a topic like 
integration, we need to understand their current thinking more deeply. We 
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must find out about the underlying “genes” from which they have built their 
knowledge and skills. We must support the evolution of their existing set of 
genes into a more fit and successful phenotype not only by helping them to 
acquire new genes for thinking, but also by selectively mutating and modify-
ing the existing thinking.
  But how do we guide students in developing problem-solving skills relevant 
to integration? First, we must make sure that we level the playing field so that 
all students are targeting the same goals in problem solving. This means that 
we must help them see that integration is a tool for solving other problems 
and that conceptual knowledge of integration (e.g. as a limit of sums) will 
help set up such problems while procedural and strategic knowledge will 
help solve the problems. Without explicitly setting such goals, subjectively 
perceived external factors, such as efficiency and accuracy, may drive the 
problem-solving process (Campbell, 2011; Pettersson & Scheja, 2008). Sec-
ond, we must help them develop all three legs of support for their knowledge 
of integration – procedural, conceptual and strategic – to avoid a wobbly 
foundation and ensure that all students have sufficient potential (Pettersson & 
Scheja, 2008) to develop these understandings. This means a focus on the deep 
knowledge of integration and building a coherent understanding of integration 
as a single concept rather than separate ideas that conflict (Tall,1992). Such 
deep learning focuses on the conceptual and strategic support for the topic, 
rather than strictly on the procedural methods (Mahir, 2009; Mackie, 2002).
  What would a calculus classroom driven by such ideas look like? Sev-
eral studies (Palmiter, 1991; Heid, 1988; Murphy, 1999) have reported on 
experiments that integrate CAS support for procedural skills while focusing 
primarily on the problem solving and conceptual development of the students. 
Only after a majority of the course dealt with conceptual understanding and 
application were the students exposed to the procedural techniques used 
in integration by hand. Findings suggest that the CAS does not reduce the 
amount of procedural knowledge gained, in spite of the shorter time spent on 
this aspect. In particular, students in Heid (1988) recognized the CAS let them 
focus more on problem solving, which is often cited as one of the primary 
goals of mathematics education. While studies such as these are promising, 
others (e.g., Meel, 1998) have shown more mixed results when implementing 
a CAS-enhanced calculus curriculum. In the end, though, we find few stud-
ies investigating the co-development of procedural and strategic knowledge 
in integration. Most focus on conceptual understanding, following Orton 
(1983), and assuming implicitly either that we are already doing the best we 
can with respect to the procedural side of integration, or that understanding 
this aspect of student learning is too difficult to tackle. 
  Functional MRI studies by Schroeder (2011) have identified several 
areas of the brain active in the integration tasks after explicitly training the 
participants in Shoenfeld’s (1978) strategies for integration; this training in 
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strategic thinking also led to improvement in participants’ accuracy. Further 
studies have shown that in some cases problem-solving skills can be im-
proved by developing supporting conceptual knowledge. This is likely due 
to an improved problem representation (Rittle-Johnson & Koedinger, 2005). 
Others have shown that strategic knowledge can alter problem representa-
tion (Alibali, Phillips, & Fischer, 2009) although none have explored this 
development at the level of the calculus.
  One way to elicit students’ knowledge of categories, such as the categories 
of different integral problems (simple, substitution, integration-by-parts, etc.), 
is to use a cart sort task. In such tasks, participants are given a set of cards, 
pictures, or objects and asked to sort them on some criterion. Often, they are 
asked to repeat the sort, using a different criterion each time, although Rugg 
and McGeorge (1997) mention a number of variations on this basic task. 
Once the participants have sorted the cards into groups, researchers have a 
number of tools available to make sense of the different sorts. Fincher and 
Tenenberg (2005) review a number of these in their introduction to a special 
issue of Expert Systems; these largely fall into semantic or syntactic analyses. 
Often, techniques from graph theory, such as edit distance (Deibel, Anderson 
& Anderson, 2005) to compare the participant sorts either on a participant-by-
participant basis, a sort-by-sort basis, or in comparison to some “expert” sort 
of the cards. Since we wanted to focus on participants conceptual knowledge 
categories to support their strategic knowledge of integration techniques, we 
implemented a “free sort” (Harper, Jentsch, Berry, Lau, Bowers, & Salas, 
2003) with indirect feedback over multiple rounds of sorting.

Methodology

Participants
  Participants in this study were students enrolled in a second-semester 
calculus course at a small, liberal arts college. The course was taught by one 
of the authors. The second author has previously taught this course at the 
college, and served as an observer during the activities described below. All 
students were provided an opportunity to opt out of the research experience, 
which was conducted as a normal part of the course activities and approved 
by our institution’s IRB procedures. None of the fifteen students opted out, 
providing a sample of 15 students. Their previous calculus backgrounds and 
intended majors are shown in table 1. Note that the majority of the participants 
had no previous experience with calculus II. Most of the participants (8 of 
15) planned to major in chemistry, which is quite typical of students enrolled 
in calculus at our institution.
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Data Collection
  The activities described below took place over a period of 15 class 
meetings and were supplemented with work outside of class in the form of 
pencil-and-paper homework and WebAssign problems. The majority of the 
in-class activities were conducted in a computer lab using Maple. The class 
met four times each week with 55 minute class meetings. The timeline and 
support for each component of the activity, along with a brief description 
are provided in table 2. In all components, students were given the option to 
work with a partner or alone.

Table 1. Summary of participants’ experience with calculus

Credit for calculus I from…	 Never taken calculus II	 Had taken calculus II

AP exam		  3	 0
Calculus I at our college		  5	 3
College course taken in high school		  2	 1
Calculus I at another college		  1	 0

TOTAL		  11	 4

  Prior to this, students had studied chapters 5 and 6 of Stewart's Calculus 
book (2008). This gave them familiarity with the basic definition and concept 
of integration, integration of basic functions, some familiarity with substi-
tution, several applications of integration, and the fundamental theorem of 
calculus. However, they had not studied or practiced integration by parts or the 
other specialized techniques of integration found in chapter 7 of the textbook.
  After a short pre-test on differentiation and integration to ensure that par-
ticipants had an adequate understanding of the symbols involved in integration 
and differentiation, which is a pre-requisite for using card sort tasks (Rugg 
& McGeorge, 1997), participants completed the demographic survey. They 
then began round 1 of the experiment. For this, the students received twenty 
cards, each with an integral printed on it; these are reproduced in the appen-
dix. Each card had been assigned a random three-digit number to facilitate 
identification. Students also received a worksheet with directions and room 
to write down the results of their sort activity with explanations (see Table 
3 for the directions given at each phase.) The integrals on the cards were 
chosen from five categories, based on the primary technique of integration 
needed: simple integrals, integration by simple substitution, integration by 
parts, integration by partial fractions, and those requiring a mix of methods. 
In addition, the integration variable was randomly chosen to be either x, r, t, 
or v in order to evaluate whether surface features dictated some classification 
schemes. Each of the subsequent four rounds began with a data collection 
activity – either using the CAS to get information about each integral or doing 
some work by hand on each integral – and then revisiting their classification 
scheme to account for the new data.
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Table 2. Timeline of the data collection and classroom activities involved in the project. Days 
are indexed from the first day of class. 

Day	 Setting	 Description	 Data Generated

12	 Assignment	 Pre-test on differentiation	 Demographic questionnaire
		  and integration.	 Pre-test on differentiation 		
13	 Computer lab	 Initial card sort activity [15 min]	 Round 1 sort and explanation
		  Second sort activity, using Maple	 Round 2 sort and explanation 	
		  to find each integral [30 min]	 Observational data
14, 17	 Classroom 	 Third sort activity, taking 	 Round 3 sort and explanation 
	 completed at	 derivatives of each answer from	 Observational data
	 home	 phase 2
18	 Computer lab	 Fourth sort activity, using the	 Round 4 sort and explanation
		  “verbose” mode of Maple to see	 Observational data
		  the steps in the integration	
19-26	 Classroom	 Instruction and practice on	 Various homework assign- 
		  techniques and applications of	 ments and class activities
		  integration	
27	 Classroom	 Final sort activity	 Round 5 sort and explanation 
			   Observational data
28	 Classroom	 Unit test on integration	 Test 2 results
50	 Classroom	 Final exam	 Performance on four exam 	
			   questions
Note. Days 15 and 16 involved a review and exam for the first unit of the course which did not include content 
from the activities discussed in the present paper.

  After the first four rounds were completed, the instructional period con-
sisted of “active lectures” on the various techniques of integration along with 
practice applying each technique. During this period, the students submitted 
work on various integration problems collected in notebook in which they 
were instructed to include all their work; if they started off and realized they 
were on the wrong track, they were instructed to draw a single line through 
the work that was incorrect and start over, carefully labeling the problems. 
After the instructional period, but before the exam on this material, students 
completed the final round of sorting.

Table 3. Instructions provided at each round of the card sort activity.

Round	 Directions

1	 There are lots of methods for integrating functions. Look at the 20 integrals on the 
cards provided. Your job is to use whatever tools and techniques you want to try and 
group these integrals into categories so that the integrals within each category require 
a similar method to carry out the integration.

2	 Now use the CAS to find the antiderivative of each function. Then revise your groups 
from part 1, using the antiderivatives provided by the CAS to guide you. Explain the 
reasoning behind your new groupings.

3	 Next, take the derivatives of each of the antiderivatives you computed in part 2. Take 
note of any special techniques used to find the derivatives. (Hint: In each case, you 
should be able to recover the original integrand by taking the derivative…) Revise 
your groups from part 2, using your notes from taking the derivatives.
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4	 Finally, you are going to have the CAS show you all the steps used in determining 
the antiderivative of each function. This can be accomplished with the script below. 
Then, revise your categories and explain your new groupings for the integrals.

5	 Group the following integrals into categories by putting an “X” in the box correspond-
ing to the category of integrals that require the most similar techniques for solving. 
Then, describe each of your categories in the space below. You do not have to use all 
six categories; they are provided as a convenience.

Results and Analysis

  After collecting the data described above, we recognized that we had col-
lected a tremendous amount of data, but that many of the standard analysis 
techniques either did not apply or resulted in a loss of resolution. For example, 
using only edit distance (Deibel, et al, 2005) does not let us analyze a student’s 
groupings for both incorrect and correct groupings, since we only determine 
the number of moves required to match another grouping. The analysis of 
many card sort tasks focuses on the number of correct groupings only, which 
then ignores the information about student thinking and learning encoded in 
the incorrect groupings.
  Primarily, we needed ways to visualize the groupings of each student at 
each phase, and of the entire class in a variety of ways. Our analysis included 
standard methods, such as the edit distance (Deibel, et al, 2005) as well as a 
variety of non-standard methods. These are briefly discussed here, and more 
fully discussed in Green & Ricca (in process). The methods are adapted from 
various graph theory and network theory tools as well as non-standard tools, 
including the construction of link-gaps graphs, minimum volume enclosing 
ellipsoids, affinity networks, cluster analysis, and Monte Carlo methods.
  The non-standard methods were implemented to address shortcomings in 
the standard approaches with respect to what we wanted to explore. Simply 
looking at the number of integrals that each student classified correctly ignores 
a great deal of the information available since students could construct their 
own categories that might differ in number from each other, from the ideal 
grouping, and from themselves between rounds. Thus we wanted a method 
of analysis that allowed us to see this information. In our activity, there is 
an ideal grouping – one consisting of five groups of four integrals each – so 
we could use edit distances (Deibel, et al, 2005) or the Jaccard index (Real, 
1999) to compare each student’s adjacency matrix with the ideal. However, 
these measures conflate conceptually independent aspects of this task that 
we wanted to study separately, in that they provide only a single number 
for the “distance” between matrices like our data. This does not distinguish, 
for example, whether a student’s score improved by getting more groupings 
correct or fewer incorrect groupings. As we shall see, methods that allow 
one to examine such distinctions provide insight into student understanding.
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  One of the primary graphical tools used was the use of a link-gaps graph. 
For each of the 75 student groupings, we compute the number of correct links 
present; each link represents a pair of integrals that the student has placed in 
the same group. We also compute the number of correct gaps present – that 
is, we count the number of integrals that are correctly not grouped together. 
Representing these as a fraction of the possible correct links (30) and gaps 
(160) we then plot each student’s grouping at each round as a point on a 
Cartesian graph. The point (1, 1) represents the ideal grouping. Such a graph 
allows us to explore how the students clustered from round to round to in-
vestigate how feedback and instruction impacted the classifications. Details 
of this approach are available in Green & Ricca (2014).
  Some reference points may help to understand the plots better. Suppose a 
student constructed a grouping that exactly matched the ideal grouping. That 
student would be plotted at (1, 1) on the grid. If a student put each integral in 
a separate singleton group, they would be located at (0, 1). If a student put all 
the integrals into a single large group, they would be plotted at (1, 0). Getting 
four groups right but splitting the last group into two pairings would result 
in a point at (0.9, 1), while placing one from each correct group into a new 
group to make four groups of five that are not related in the ideal grouping 
would plot at (0.25, 0.75). Figure 1 shows the basic links-gaps graph with 
data from the five rounds of the experiment.

Figure 1. Links-gaps plot of student scores (X = % of correct links, Y = % of correct gaps) 
over each round, treating singleton groups as incorrect. [Left] Shows all students at each round; 
[Right] shows minimum volume enclosing ellipses with centroids for each round.

  Clustering of the students was explored by constructing the minimum 
volume/area enclosing ellipses using Moshtagh’s (2005) algorithm. This pro-
vided information about the size (via the minor and major axes), location (via 
the centroid), and orientation of each cluster. The centroids provide a measure 
of typical student results, allowing us to explore how performance changed 
during the different rounds of the activity, taking the class as a whole entity. 
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We also use the area of each ellipse, computed as a percentage of the total 
links-gaps graph area, as a measure of the variability of the student group-
ings at each round. The raw data and the round-by-round clusters are shown 
in figure 1, which shows that overall, the student groupings do not appear 
to change much over the five rounds of the activity, but this is misleading.

Table 4. Summary data of measures at each round. 
Round	 Centroid 	 Area of	 Average Edit	 Average Edit	 Average 
	 (N = 15)	 Cluster (%)	 Distance to	 Distance to	 Number of 	
			   Ideal	 Round	 Groups

1	 (0.52, 0.73)	   9.47	 10.40 (1.24)		  5.1 (1.13)
2	 (0.55, 0.82)	   6.71	 10.00 (1.89)	   7.73 (3.20)	 4.7 (0.88)
3	 (0.49, 0.82)	   8.77	   9.47 (1.68)	   9.67 (1.88)	 5.1 (1.46)
4	 (0.63, 0.80)	 12.24	   8.67 (1.91)	 10.00 (1.60)	 4.9 (0.96)
5	 (0.45, 0.84)	 10.06	   8.20 (1.70)	   9.40 (1.12)	 5.6 (0.91)
Note. Area is shown as a percentage of the total links-gaps plot area. For edit distance, standard deviation 
is shown in parentheses.

  The centroids and variability measures are shown in table 4. Note that 
the areas of the clusters are fairly consistent, around 10% of the total area, 
throughout the five rounds of the activity. While the edit distances do decrease 
slightly from the beginning to the end, the spread of these remains approxi-
mately constant, and one can see that the edit distances between successive 
groupings are about the same size as the edit distances to the ideal. One dif-
ficulty in interpreting these clusters is to decide whether the movement of a 
student through the five rounds of the experiment is “significant” and what 
significance actually means. This interpretation is still in process (see Ricca 
& Green, under review), but relies on a Monte Carlo simulation to explore 
the concept-space mapped by the links-gaps graphs in order to understand 
how much movement one would expect at random in comparison with the 
movement observed. Another complication is the existence of an additional 
degree of freedom in the student work: the number of groups a student used 
could change and affect the interpretation of the data. Table 4 shows the 
number of groups at each round. Notice that the number of groups remains 
fairly stable, but the variation is much larger in rounds 1 and 3.

Figure 2. Links-gaps plot showing round-by-round trajectories of (a) a high-achieving student 
and (b) low-achieving student. 
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  Some of this is apparent in following the trajectories of individual students. 
Figure 2 shows the round-by-round progress of two students on a links-gaps 
graph. The plot on the left are for a student who did relatively well on exam 
content related to classifying integrals and carrying out the integration; the 
data on the right show the path of a student who performed poorly on these 
tasks. Recall that the ideal grouping is in the upper right corner, at (1, 1), 
so both of these students exhibit changes that actually move away from the 
ideal. But they do so in quite different ways. Student (a) moves to the right 
(more correct groupings) and then starts to get more incorrect gaps, moving 
down. The student on the right almost oscillates; in between some rounds, 
the student improves the number of correct links while getting more incorrect 
gaps (moving to the right and down). In between other rounds, the student 
loses some correct links and also eliminates some incorrect gaps (moving up 
and to the left). Overall, this second student moved down and the left, which 
is away from ideal, while the first student has made some positive growth. 
This difference was borne out in the exam materials.
  We constructed two empirical models for predicting student work on in-
tegrations problems on the unit test and the final exam. Each of these exams 
included four procedural problems and student totals on these were scaled 
between 0 and 1. Despite the small sample size (N = 14) each model had high 
predictive power. The models are summarized in table 6. In both models, 
a single outlier was identified and removed from the data. The variables in 
the models suggest a great deal about student learning in this context. That 
the number of correct links after round 3 was significant for both models is 
encouraging. These links were constructed by students after explicitly con-
necting a more familiar and easily implemented topic, differentiation, with 
a newer content, integration. We infer that students were able to make use 
of these connections to support their learning of the concepts, procedures, 
and strategies of integration. 
  The second predictor for the unit test was based on the number of correct 
links students constructed after receiving feedback from the computer on what 
the result of each integration would be. In some of these cases, the surface 
features to which they attended correspond with the deeper structures needed 
to understand how to integrate these functions. In the model predicting final 
exam performance, the number of correct gaps after the initial sort (round 1) 
was significant, suggesting that students with fewer pre-conceived notions 
about what makes two integrals similar allowed them more flexibility to 
modify their thinking throughout the unit of study. In a sense, these students 
had less to “unlearn.”
  We note that student scores from test 2 were not significant in predicting 
final exam scores on the related questions. We also note that students did 
quite well on the four procedural final exam questions when compared to 
performance on similar questions on the test immediately proximal to the 
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unit of study (a mean of 0.708 versus 0.571, p < 0.05). We will have more 
to say on this later.
  Table 7 reports detailed results from the four procedural questions on the 
final exam. For all four problems, we note that the majority of the students 
were able to both categorize the integral by the correct method needed to 
compute it as well as set up the integration technique needed correctly. Eight 
of the fifteen students were able to categorize all four of the problems cor-
rectly, while eleven of the fifteen correctly categorized at least three of the 
problems (see table 8).

Table 7. Analysis of work on final exam questions showing the number of students in each 
performance group for each question. 
Success	 Integration	 Simplify 	 Simple	 Trig
by Parts			   Substitution	 Substitution

Useful category, implementation, algebra	 9	 7	 4	 2
Useful category, implementation	 0	 4	 10	 7
Useful category	 0	 0	 0	 5
Unhelpful category	 6	 4	 1	 1
Average Score (out of 10)	 6.67	 7.47	 8.20	 6.00
Note. “Useful category” refers to those students who categorization of the integral by type would allow for 
successful computation of the integral. “Implementation” refers both to the correct use of the method and 
selection of any options (such as the u and dv in IBP). “Algebra” refers to whether correctly performed all 
algebra, including differentiation for substitution, etc.

Table 8: Number of students correctly categorizing the four integrals on the final exam.

Problems categorized correctly	 All four	 Three	 Two	 One
Count of participants (N = 15)	 8	 3	 3	 1	

  Affinity graphs also provided insight into student thinking. These graphs are 
constructed by considering not only which integrals students group together 
in a particular round, but also how they label the groups. For example, figure 
3 shows the affinity graph for round 4 of the study. The integrals are labeled 
by the group they belong to in the ideal grouping. Integrals in group “a” are 
simple integrals, those in “b” require simple substitution, those in “c” require 
integration by parts, those in “d” require partial fractions, and integrals in 
category “e” require more than one strategy. After coding students’ category 
labels, we find groups with the labels shown above and below the integrals: 

Table 6. Summary of regression models predicting scores on the integration procedural problems 
from the unit test and final exam.

Model	 Range	 Mean (Standard Deviation)	 R2	 Variables

Unit test	 0.325 – 0.750	 0.571 (0.118)	 0.7634	 Links at round 3**
				    Links at round 2**
Final exam	 0.375 – 0.975	 0.708 (0.194)	 0.7891	   Links at round 3***
				    Gaps at round 1**
** p < 0.01, *** p < 0.001
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those categories listed above match the instructor “ideal” groups. The lines 
indicate the categories into which each integral was placed, and line thickness 
illustrates the proportion of students making that connection. Thus, by round 
4, we see that many of the students have started to construct the categories 
that are “useful” and have also correctly placed many of the integrals into 
these categories. At the same time, we see confusion about category “e” and 
a few unhelpful ways of thinking that are persistent and focus on surface 
similarities in the integrals, rather than deeper structure.

Figure 3. Affinity graphs showing each integral and the descriptions of the categories at round 
4. The categories along the top row are the instructor labels; those in the bottom row are student 
category labels. (The edge thickness between an integral and its category is proportional to the 
number of students who placed that integral into the associated group.)

Discussion and Implications
	
  Based on the edit distance (table 4) it seems clear that students did move 
closer to the ideal categorization throughout the activity. This movement 
seems to be due primarily to students making fewer incorrect pairings, rather 
than making more correct pairings. At the same time, it is clear that student 
classifications changed considerably from round to round. In many cases, 
students moved away from the ideal between rounds, while overall mov-
ing toward the correct grouping. Taken with the spread of the data at each 
round, we believe this variability means that the categories are not solid, 
which would suggest slower performance on tasks requiring this knowledge 
(Barasalou, 1983), but we did not collect data on the time it took students to 
perform any of the tasks described herein. It also appears that students are 
“resetting” between rounds and re-sorting based on some primitive ideas 
(p-prims) rather than incrementally modifying their existing framework. 
These underlying ideas may be related to the p-prims of diSessa (2001). For 
example, one group of students began round 2 with their cards in order from 
round 1 before adjusting for the new information; yet both of these students’ 
groupings at round 2 were a large edit distance from their round 1 sorts, 
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showing almost half of the cards changed groups. Such variations suggest 
that variability is underestimated in most studies, which could explain why 
applying educational research to particular settings does not always match 
expectations.
  The variability and movement from round-to-round also demonstrates that 
learning is not monotonic. Students rarely move toward expected understand-
ings in a uniform manner. This is likely due to a great many factors, such 
as individual confusion and misconceptions. Generic classification skills 
(if they exist) could also be playing a role. Adey (1999) demonstrated that 
the development of formal reasoning skills in concert with content results 
in commensurate gains for both aspects of thinking. We expect that another 
aspect of all this is that students are working with ideas at a deeper level 
than what is visible, a level sometimes referred to as p-prims (diSessa, 2001). 
Thus, sometimes, students are adjusting their category definitions, based on 
the underlying structure, and sometimes they are refining the membership of 
the categories. Certainly both are related; we note other examples of students 
acting consistently with this interpretation, (e.g. McNeil et al. 2010). They 
may not be very good at checking consistency with their own categories; this 
could be due partly to the nature of categories that are created and used “on 
the fly” (Baralou, 1983) or the difficulty with seeing category definitions as 
both a way of including certain items and excluding others (e.g., Edwards 
& Ward, 2004).
  From the affinity graphs (see figure 3 for an example) we note that students’ 
categorizations exhibited three features to differing degrees. Some are based 
on what we deem to be salient features, which could support student strategic 
knowledge for implementing integration. Still other categorizations seem 
based on surface features that are not appropriate for carrying out integration, 
such as using the functions involved, rather than the algebraic structure of the 
integrand. These categories are not entirely unexpected based on their prior 
mathematical knowledge. But we also note a third set of classifications that 
we refer to as sympathetic, since closer examination suggests reasons for 
the incorrect classification of some. For example, the integral of the natural 
logarithm requires integration-by-parts to implement; however, this integral 
is often listed in the “basic integrals” on the inside cover of many calculus 
texts. So we expect that some students have simply memorized the result of 
the integral, rather than the process of integrating this function. These three 
categories seem closely linked to the idea of heaps, complexes, and concepts 
(Vygotsky, 1986)
  By the end of the calculus course investigated in this study, we note that 
students were able to categorize and implement correct methods for inte-
gration, but not immediately after the instructional period – some time was 
needed for them to organize and modify their schema. More study of this time 
period is needed to investigate changes in student thinking. We attempted to 
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predict student performance on the final exam based on their work during 
the study and their performance on the unit exam. Such predictions were 
terribly inaccurate, possibly because we were trying to predict an evolution-
ary path of learning, possibly because there is a need for adequate wait time 
to allow the students’ brains to reorganize the concepts and procedures and 
these reorganizations are not linearly related to students’ precursor learning. 
Of note, is that actual final exam scores were only significantly related to 
the number of correct pairings at round 3 and the number of correct gaps 
made at round 1; both had impacts of a similar magnitude (see table 5). The 
first factor includes all the components needed: surface features, results of 
integration, and the related derivative rules; the second factor includes what 
they have to overcome or unlearn. Thus, it helps students to have more gaps 
correct at the initial categorization. We believe this is related to having fewer 
pre-conceptions about the problem with more openness to changing one’s 
categories demonstrating flexible thinking.
  An interesting aside is that, in spite of working in pairs, no pair of students 
constructed identical groupings across the 20 cards for any of the five phases 
of the CST. Some did share individual groups, but none had all groupings 
identical to another student on any round. Thus, despite sharing ideas, each 
student developed his or her own ideas. Thus, group interactions seem to have 
resulted in learning, but the mechanisms and reasons are poorly understood.
  Increasing student ability to choose a technique of integration and cor-
rectly implement it on a given integration problem is not simply the accre-
tion of more and more techniques along with a heuristic to choose among 
them. Instead, there are underlying components that must be appropriately 
coordinated to be successful at integration. Thelen and Smith (1994) under-
took a close examination of how various forms of human locomotion (e.g., 
walking, running, jumping) develop. Their examination highlights the de-
pendence of all these forms on the contextual coordination of an underlying 
set of muscle movements. While there are broadly applicable sequences of 
development (e.g., walking occurs before running in almost every person), 
Thelen and Smith showed that one form of locomotion is not built from a 
previously existing ones. Instead, each form of locomotion coordinates the 
underlying muscle movements in new ways and the basis of each coordina-
tion is contextual, dependent upon what the person wants to do, and what 
environmental constraints are in place. Thelen and Smith posit that such 
contextual coordinations are the basis of all cognition and action. Thus, 
although problems a1 and d1 from our integration tasks may appear similar 
on the surface (both are rational functions), direct polynomial division leads 
to two simple integrands in problem a1, while direct polynomial division is 
of little help in simplifying problem d1. Not only does this have implications 
for learning, it implies that useful formative assessments must examine not 
an hypothesized prior understanding upon which curriculum can be built, 
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but instead, formative assessments must examine the underlying components 
that are to be coordinated.
  We would be remiss to ignore certain limitations in the study, in design, 
analysis, and interpretation. With respect to the design of the activities, we 
note that feedback to the students was only indirect. We did not even imple-
ment a “you have X wrong” type of feedback. This was out of concern that 
students would focus too much on getting the right answer and not enough 
on developing their own conceptual understanding, but it might have been 
useful for helping them measure their progress.
  Note that many card sort tasks include instructions that students first read 
each card separately, then start classifying. We did not include such instruc-
tions, giving the students more freedom in how they chose to implement 
the sort procedure. For example, some students executed a “sequential sort” 
by putting the first card in a group, then testing whether the second card 
belonged to that group. If it did not, a new group was formed for the second 
card. This was repeated with each subsequent card, adding new groups as 
needed. Other students began by looking at all the cards, then attempting 
to construct groups holistically. This lack of unity may have introduced too 
much of a confounding variable. 
  Also, we seem to be using card sorts in a non-standard way. Rather than at-
tempting to elicit how participants group them based on techniques they would 
use from their prior learning (Rugg & McGeorge,1997) we are attempting 
to build their learning by categorization through scaffolding and feedback. 
Moreover, we are looking at aggregate data, which is more commonly done 
in closed sorts (Fincher & Tenenberg, 2005) than in open sorts like this one.
  We also note that the different features students used for categorizing the 
integrals demonstrates the role that mathematical knowledge prior to integra-
tion (e.g. algebra skills) may actually have hindered them by focusing them 
on surface, rather than salient features. Others have noted similar situations, 
where previous learning activates earlier, less helpful conceptions of math-
ematical structures (McNeil, Rittle-Johnson, Hattikudur, & Petersen, 2010). 
Interpretation is further complicated by the awareness that, for certain integral 
problems, surface features become more salient. For example, integrands 
which are rational functions typically require integration by partial fractions. 
Thus, there are complex interactions between the form of a problem and the 
method used to solve the integration problems.
  Students described their categories in their own words. While this freedom 
provided insight into student thinking, some descriptions required interpre-
tation by the researchers in order to categorize them. For example, some 
students grouped integrals together in a group called “trig,” others named a 
similar group “trig substitution,” and still others “sines and cosines.” For the 
most part, their intention was clear, but sometimes this resulted in ambiguous 
descriptions and a blurring of categories.
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  We note that the use of edit distance gives focus to another open question 
in learning. The standard definition of edit distance treats costs for making 
bonds and for breaking bonds equally. But it is unclear whether this is an 
accurate reflection of what is happening internally. It is possible that card sort 
tasks like this, in combination with microgenetic studies of the time involved 
could provide data to measure how these costs are related.
  Finally, we note that while helpful for exploring student category devel-
opment, the links-gaps graphs have some unusual features that complicate 
interpretation. Although one is tempted to apply traditional measures of 
distance to study changes in student learning, the space does not admit a 
simple distance measure. There are, in fact, a number of points in the space 
that cannot be reached. These holes in the space are not uniformly distributed 
throughout the space.

Conclusion

  This study demonstrated two major results. First, we have shown that an 
alternative ordering of the traditional learning of techniques of integration, 
one focused on developing a larger conceptual structure of the types of inte-
grals before learning specific procedural skills, can be effective. Second, the 
close examination of student categorization of integrals here gives quite a bit 
of insight into student thinking and learning about integration, and possibly 
about their developing understanding of other topics.
  The approach to the teaching of techniques of integration here started by 
exploring how integrals are different from each other. Feedback allowed 
students to adjust their categories of integrals, incorporating information 
about the algebraic structure of the integrand, the result of the integration, 
and the relationship between integration and differentiation. After this ex-
perience, students studied each of the major types of integration in detail. 
While they performed adequately on the exam most proximal to the learning 
experiences, their work on the final exam on related material was quite a 
bit stronger. This is likely due to the time students had to reorganize their 
thinking and to incorporate all of their thinking into a more coherent schema. 
The key to this, we believe, is the way student learning was scaffolded, so 
that the students’ minds could continue to reorganize the ideas even when 
not directly engaging with similar content.
  In the traditional ordering of these materials, students are also encouraged 
to build a heuristic for integration, but this is done after they have already 
learned about the separate techniques. It remains to be seen whether students 
experiencing this ordering of content also have the ability to reorganize their 
thinking, even when not focusing on this content. We should also point out 
that most texts on differential equations begin with a chapter on categorizing 



- 19 -

differential equations before learning methods for solving them, following 
the learning process demonstrated here, although it is considerably easier to 
categorize differential equations by solution method without implementation.
  With regard to the second aspect of this study, we demonstrate learning is 
not monotonic. Students often move further from “correct thinking” in the 
process of learning. Thus, being wrong is not the opposite of being right. Only 
by closer examination of the ways in which they have made mistakes can we 
truly understand student learning and help students move toward deeper under-
standing. Moreover, students vary greatly in the trajectories they take through 
the learning space on their way toward understanding, suggesting that vari-
ability is much greater than typically suspected. Students also require sufficient 
time for their schema to solidify after appropriate initial experiences. These 
implications may require the mathematics education community to rethink the 
efficacy of compressed-schedule summer courses in calculus, for example. 
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