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Abstract 

In recent decades, Hungary and the United States have embraced new philosophies in their approach to teaching 
mathematics. Hungary’s changes were driven by social and economic shifts, the U.S. by the creation of national 
standards. In both countries, university faculty members complain about students’ poor math skills. Professors 
from three universities tested students in different business classes; all classes have a significant math component 
and require critical thinking. Analyses revealed that Hungarian students outperformed those in the U.S., that 
there was no difference in performance by gender, and that students who were further along in their university 
classes did not perform better than those who were beginning degree programs. 
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1. Introduction 

Beginning in late 1989 and early 1990, Hungary’s education system began a slow evolution from a soviet model 
to one that more resembled Western Europe, a journey influenced by changes in the social and economic 
environment (Pusztai and Szabó, 2008). While many educators favored a Western focus, there was resistance. 
Teachers were reluctant to alter subject areas in which national exams were administered (Kaufman and Paulston, 
1991). Consequently, early changes included dropping mandated instruction in the Russian language and moving 
to a decentralized education plan in which decision making was returned to the local level. Communities had a 
voice in the education of their children, electing school boards, and hiring principals. Private schools opened 
(Gutsche, 1993). The value of a teacher depended on his/her subject area. Those who could teach German or 
English were paid a great deal more than those teaching natural and social sciences (Kaufman and Paulston, 
1991). 

Work on reforming the Hungarian educational system has been continuous, driven by a growing need for higher 
education (Pusztai and Szabó, 2008). In fact, so many changes occurred during the 1990s that this time period is 
referred to as “the long decade of Hungarian higher education” (Fàbri, 2002). Schools were given more freedom 
and financial support; teachers were raised to a more revered status (Gutsche, 1993). 

Today the approach to teaching mathematics in Hungary has caught the attention of educators. It has been 
“suggested that the salvation of English mathematics teaching may lie in our adopting the practices used so 
effectively by Hungarian colleagues” (Andrews, 1997). Hungarian teaching is interactive; it engages the whole 
class and focuses on justification and proof (Andrews, 1997). Lessons carry a narrow focus but are multifaceted 
and delivered with energy and confidence (Harries, 1997). Math is considered to be worthwhile and is valued. A 
sense of competition, in part, pushes students to excel but also a desire to please parents and gain respect of their 
teacher (Andrews, 1997). 

Since the advent of the 1950s, preliminary mathematics instruction in the United States has been in a constant state 
of reform. For the U.S., the biggest hurdle was obtaining a consortium across state lines; up until the late 1980s 
there was little to no national standard (Klein, 2003). In 1989, the National Council of Teachers of Mathematics 
(NCTM) proposed “An Agenda for Action,” a document that lead to the “math wars” of the mid-1990s. The 
discussion is ongoing, notable in the subsequent pedagogy problems at the turn of the new century (Zaslovsky, 
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2008), and the more recent reform in 2006 with NCTM’s “Curriculum Focal Points for Prekindergarten through 
Grade 8 Mathematics” (Schielack et al., 2006). 

The NCTM standards put into place during the late 1980s and early 1990s were seen by many as vague and easily 
misinterpreted (Klein, 2003). The NCTM standards divide learning into intervals of K-4, 5-8, and 9-12, with three 
different curricula to approach the end goals for each partition. The three subsets of the NCTM standards at the 
elementary level, funded by the National Science Foundation (NSF), were: Everyday Mathematics, Math 
Trailblazers, and Investigations in Number, Data, and Space. Everyday Mathematics integrated teacher and student 
projects for hands on experiences focused on problem solving (Baki and Gokcek, 2005). Math Trailblazers focused 
on real world and applied mathematics to underline mathematical use in everyday life, while Investigations in 
Number, Data, and Space focus on group learning through teacher led dialogue and extensive homework and note 
booking (Klein, 2003). 

Following the implementation of the NCTM/NSF guidelines, American mathematics education seemed to be 
awash in conflict between the mixture of pedagogy style and mathematics. Although there was adherence to the 
NCTM standards at the state level (Raimi, 2000), there still remained arguments over what worked best in practice, 
in continuing education, and in the methods of the elementary NCTM programs (Carnine, 2000). The main 
argument against these NCTM platforms was the perceived failure to help students develop basic algebra and 
arithmetic skills, in part due to the encouragement of calculator use and the lack and/or inefficiency of elementary 
student projects (Klein, 2007). Graham, Li, and Buck (2000) found that in most institutions content courses are 
typically taught in the mathematics departments and methods are taught by the faculty of education. This may 
foster a perspective that methods are unrelated to content or that content is more important than methods. Ball and 
Bass (2000) note that there even seems to be a disconnect between teaching mathematics as a true knowledge base 
and forcing the discipline upon students as a stringent and pragmatic approach. These two rifts in the teaching of 
elementary mathematics remain the bane of mathematics education, necessitating a broad base of requirements for 
those teaching mathematics to young developing minds. 

The requirements of mathematics educators are great; there are governmental, institutional, and familial forces 
pulling the teachers in different directions. Zaslovsky (2008) notes that because of the push of mathematics 
instructors to have the knowledge of a mathematician coupled with the structure and approach of a mentor, “the 
demands on teacher educators, in terms of knowledge and qualities, are enormous and multifaceted.” Supporting 
this claim, Shulman and Grossman (1988) theorize that there are seven purviews of knowledge required by not 
only mathematics instructors, but all educators: subject matter, pedagogical content, other contents, curriculum, of 
learners, of educational aims, and general pedagogical knowledge. These requirements only add to the problems 
facing educators as they battle state guidelines, professional criticism, and parental backlash. 

Taking into account the discord among professionals, parents, and educators, the NCTM once again attempted to 
strengthen preliminary mathematics instruction. In 2006, the “Curriculum Focal Points for Prekindergarten 
through Grade 8 Mathematics” was implemented. This program had focal points for each individual grade and 
hoped to lessen the inconsistency within the previous K-8 NCTM platforms (Schielack et al., 2006). However for 
the future of American mathematics, the boundary among educators, mathematicians, and professionals needs to 
be addressed. Many in the field of mathematics education indicate that “national leadership is needed to assist in 
future articulation of learning expectations in mathematics, particularly from national professional organizations 
of mathematics teachers (K–12 and university) and mathematicians” (Reys et al. 2005). 

For the sake of this research, our primary interest is student performance in the international arena in higher 
education. The National Center for Education Statistics reported international rankings of general mathematics 
knowledge for students in grades 4, 8, and 12 (National Center for Education Statistics, 1999). Compared to 
twenty-five nations, U.S. fourth graders scored above the international average of 529 and were ranked eighth; 
Hungary’s students were similar with an average score of 548 versus the U.S. score of 545. By grade eight, U.S. 
students scored an average of 500, which was below the international average of 513 and placed the U.S. at 28 

out of 41 countries. Hungary’s students had a mean score of 537 and were ranked 14th. By grade 12 with 21 
countries participating, U.S. students were ranked 19th, followed only by Cyprus and South Africa. Hungary 
remained 14th in rankings, still above the international average. In recent international rankings, students from 
the U.S. placed 25th in math (McCarron, 2012). 

Finger pointing to assign blame for the poor performance of U.S. students has been widespread. Historically it is 
states and not the federal government that control curriculum, resulting in wide-ranging expectations (Vernille, 
n.d.). Math curricula in the U.S. covers more topics but in less detail than curricula in Asian countries (Prystay, 
2004). Tests in the U.S. are more likely to be multiple-choice versus open response, involving lower levels of 
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problem solving (Vernille, n.d.). Parents in America do not view math as an essential skill (Rimer, 2008) and are 
less likely to hire tutors when children need help (Jackson, 2012). Regardless of the cause, the result is that 20 
percent of U.S. college freshmen majoring in science or engineering need remedial math classes (Prystay, 2004). 

2. Background 

In an attempt to ascertain students’ basic math skills, faculty members at two universities in the southern United 
States, both classified by Carnegie as a Doctoral Research University with roughly the same size student body 
(over 19,000) and AACSB accredited business programs, administered a problem set (see Appendix 1) to 595 
students enrolled in production, business statistics, and quantitative analysis. The difficulties students 
experienced with basic math skills were found to be consistent from classroom to classroom, campus to campus, 
in classes of different levels (sophomore versus junior versus senior), and with different prerequisites (Jones, 
Price, & Randall, 2011). 

During the spring semester of 2011, one of these authors served as a Fulbright Lecturer at a Hungarian university 
similar in many respects to the universities in the original study. A key difference between the higher education 
systems in Hungary and the United States is that in Hungary the lecture portion of the class is delivered to a large 
group of students. This group is then broken into clusters of 25 to 30 students for the seminar portion of the class. 
The faculty of the Hungarian university agreed to translate the problem set to Hungarian (see Appendix 2) and 
administer the basic math skills test to 230 students in two required courses in the management curriculum: 
microeconomics and statistics II. 

The following sections compare the courses from the American and Hungarian universities including the basic 
content, placement of the course in the curriculum, class size, presentation method, prerequisite requirements, 
and student characteristics. Then, the results of the basic skills test are reported and analyzed. Finally, the 
observations and insights of the Hungarian and American Fulbrighter faculty members are reported and 
interpreted. 

3. Methodology 

In spring 2011, students in Hungary enrolled in microeconomics and statistics II were administered a basic math 
skills test. These two courses, as well as the courses assessed at the American universities, differ in content and 
placement in the curriculum (see Table 1). However, all of classes have a significant math component and force 
students to engage in critical thinking. The classes vary in size and in delivery. Production is generally delivered 
to classes of 50 students and is primarily taught through lectures. Business statistics and quantitative analysis 
classes are held in computer labs, limiting class size to 45 students. While there is a lecture component to these 
classes, the lab environment affords a hands-on element, allowing the students to actively work during class. 
Microeconomics lecture is offered as a mass class, drawing 178 students (for the class included in this study). 
The statistics II class was larger, with 337 students enrolled. Both Hungarian classes have a two hour lecture 
(with all students together in a large lecture room) and a two hour seminar component (organized from the large 
lecture portion and broken into smaller classes composed roughly of 25 to 30 students). 

 

Table 1. Course placement and content 

Course 
Placement in 
Curriculum Course Content 

Production sophomore year This required core course is designed to provide students with a 
broad understanding of the production and delivery of 
goods/services. The course focuses on concepts and 
methodologies for managing the flow of material and 
information throughout the production and delivery of 
goods/services: information needs, information systems, 
forecasting, regression, time series, managing inventory, logistics 
network design, facility location, transportation modes, and cost 
allocation and activity-based costing. 

Business Statistics junior year This introductory course covers the concepts and techniques 
concerning exploratory data analysis, frequency distributions, 
central tendency and variation, probability, sampling, inference, 
regression, and correlation. 
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Quantitative 
Analysis 

junior/senior year This class is a required junior core course that focuses on 
scientific decision-making methods for modern day managers, 
including such topics as linear programming, regression, 
forecasting, project management, and decision analysis. 

Microeconomics semester 2 
(of 6 or 7) 

The course is aimed at making students familiar with the basic 
concepts of microeconomic analysis. Particularly, the course 
focuses on the analysis of how economic actors, consumers and 
firms, choose between different alternatives. By the end of the 
course, students should be able to use the basic tools and models 
of microeconomics, and apply them in solving problems. 

Statistics II semester 4 
(of 6 or 7) 

This course covers the basic concept of hypothesis tests, 
parametric hypothesis tests (for means, variances and population 
proportions) as well as some further tests for goodness of fit and 
independence. The second half deals with regression analysis, 
both simple and multiple, and some basic time series methods 
(smoothing, trends, seasonality, forecasting). 

 

These five classes differ in course prerequisites (see Table 2). The two classes taught at the Hungarian university 
have fewer prerequisites, allowing them to be placed earlier in the program of study. 

 

Table 2. Course prerequisites 

Prerequisites Production 
Business  
Statistics 

Quantitative  
Analysis 

Microeconomics 
(Hungary) 

Statistics II 
(Hungary) 

Finite Math X 

Business Calculus X 

Business Statistics X 

Fundamentals of 
Business 

X X 
   

Advanced Business 
Applications  

X 
   

Legal Environment 
of Business 

X X 
   

Data Analysis and 
Interpretation 

X 
    

Financial 
Accounting  

X 
   

Microeconomics X 

Macroeconomics X 

Statistics I X 

Introduction to 
Economics    

X 
 

 

It should be noted that Statistics II has as its prerequisite Statistics I. However, Business Mathematics, which is 
largely a calculus class, serves as the prerequisite for Statistics I. Therefore, the Hungarian students are 
completing a calculus course as part of their degree program. 

The composition of the classes in Hungary by gender differed from those in the U.S. A greater percent of the 
students in Hungary were female (over 50 percent). The classes at the American universities had a higher percent 
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of males (see Table 3). The Hungarian students outscored the U.S. students on the math skills assessment, 
scoring 84 percent or more correct versus roughly 72 percent correct. 

 

Table 3. Student characteristics 

Course Females Males Overall % Correct 

Production 29.9% 70.1%  72.6% 

Business Statistics 39.1% 60.9% 71.4% 

Quantitative Analysis 35.5% 64.5% 72.0% 

Microeconomics 65.7% 34.3% 90.4% 

Statistics II 53.1% 46.9% 84.5% 

 

4. Data Analysis 

The 15 problems on the math skills assessment were marked as correct or incorrect, with no partial credit given. 
First, the results were compared for the five groups (production, statistics, and quantitative analysis students in 
the U.S. study and microeconomics and statistics students in Hungarian study). The overall mean percentage of 
correct answers was compared along discipline lines and the inequality of the overall mean percentage correct 
for the five groups was tested for significance using ANOVA. For this we tested first the homogeneity of 
variances of the different groups by Levene’s test, and the Welch test was also run as an alternative of the 
one-way ANOVA for the case of unequal variances. Based on the results of the above tests, in-depth analysis of 
the identified differences was conducted. 

Next, the data were divided by student nationality. The test results of the U.S. students were compared problem 
by problem to the test results of the Hungarian students. The overall mean percentage of correct answers was 
compared for the two groups and the inequality of the overall mean percentage correct for the two groups was 
tested for significance using ANOVA or Welch test, based on the results of Levene’s test. 

Finally, the data were divided by student gender. The performance on the problem set for the female students was 
compared to the performance of the male students. The overall mean percentage of correct answers was 
compared for the two groups and the inequality of the overall mean percentage correct for the two groups was 
tested for significance using ANOVA or Welch test, based on the results of Levene’s test. 

5. Results 

The following hypotheses were tested: 

Ho: There is no difference in the mean percent correct response per question by discipline. 

Ho: There is no difference in the mean percent correct response between nationalities. 

Ho: There is no difference in the mean percent correct response between genders. 

Using the mean percent correct response of the students enrolled in the five different subjects, box plots were 
created to illustrate the difference in performance of the groups (see Figure 1). The mean percent correct 
response among the production students was 72.6% (with a standard deviation of .207), among the statistics 
students it was 71.4% (with a standard deviation of .193), among the quantitative analysis students it was 72.0% 
(with a standard deviation of .191), among the statistics II students it was 84.5% (with a standard deviation of 
0.148), and among the microeconomics students it was 90.4% (with a standard deviation of 0.107). Thus, the 
Hungarian classes outperformed the American students on average and the variation in mean scores for the 
Hungarians was much less. However, there were a few extreme low score outliers in the Hungarian scores. 
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Figure 1. Box plot comparing overall mean percent correct by discipline 

 

It was interesting to note that while the Hungarian students had a higher mean percent correct response than their 
American counterparts on all but one problem, the patterns of the five disciplines on the line chart is roughly the 
same (see Figure 2). The Hungarian students outperformed the U.S. students on every question except a problem 
in which students were asked to express a percent as a decimal. For this question, there was confusion in the 
translation of the problem. The Hungarian faculty members believed that this had an impact in the mean 
response rate of their students. As shown in Figure 2, while the Hungarians performed better, they still had 
difficulty with the same concepts that stymied the American students. The problem set incorporated operations of 
arithmetic as well as the order of operations for the first five questions (1(a) through 1(e)), decimal and percent 
conversions (questions 2 through 5), algebra (questions 6(a) through 6(d)), and numerical substitution into and 
evaluation of formulas (questions 7(a) and 7(b)). 
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Figure 2. Mean percent correct response by question by discipline 

 
ANOVA and Welch tests were employed to statistically determine whether or not there was a significant 
difference in the mean percent correct responses of the five disciplines (see Table 4). The Levene’s test shows 
that the equality of variances was rejected (p-value<0.0001), hence one should use the Welch test rather than the 
one-way ANOVA. The Welch test generated a p-value of <0.0001. The p-value failed to support the conviction 
of the researchers that there was no significant difference between the mean performances of students by 
discipline. Therefore, Ho was rejected. Research Hypothesis 1 was not supported. 
This finding was not consistent with prior results. Jones, Price, and Randall (2011) compared the mean responses 
from the production, business statistics, and quantitative analysis students. The subsequent ANOVA test 
generated an F-ratio of .2099 and a p-value of .8107. The p-value supported their hypothesis that there was no 
significant difference between the mean performances of students from these three disciplines. When data from 
the two classes in Hungary was included, the results failed to support the hypothesis of no difference in mean 
performance by the five disciplines. The significant difference found when comparing the mean response of the 
five disciplines can be attributed to the inclusion of data from the Hungarian students. 
 
Table 4. ANOVA results comparing mean percent correct response by discipline 

Production  

% Correct 

Business  

Statistics  

% Correct 

Quantitative  

Analysis  

% Correct 

Statistics II  

% Correct 

Microeconomics 

% Correct 

Sample size 184 230 181 127 104 

Sample mean 0.7261 0.7135 0.7204 0.8446 0.9045 

Sample std. dev. 0.2074 0.1933 0.1910 0.1479 0.1070 

Sample variance 0.0430 0.0374 0.0365 0.0219 0.0115 

Pooling weight 0.2229 0.2789 0.2192 0.1535 0.1255 

One-way ANOVA 
Table 

Sum of  

Squares 

Degrees of  

Freedom 

Mean  

Squares 

Between variation 4.0684 4 1.0171 31.0010 < 0.0001 

Within variation 26.9359 821 0.0328   

Total variation 31.0043 825    
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 Test Statistic 

Degrees of  

Freedom 1 

Degrees of  

Freedom 2  p-value 

Levene test 16.9264 4 821  < 0.0001 

Welch test 52.5755 4 387.7880  < 0.0001 

 

Looking deeper into the data, a comparison was made to determine which differences contributed to the change 
in findings with respect to disciplines. Clearly, the multiple comparisons in Table 5 indicated that on average the 
students in the Hungarian courses performed better than the students in the American courses and that the first 
year Hungarian students performed significantly better than the more advanced Hungarian students. Both of 
these results were interesting and significant. 

 

Table 5. Pairwise multiple comparisons 

Group Means Compared a 
Difference of 

Means 

95% Confidence Intervals 

Lower Upper 

Percent correct A – B 0.0125 -0.0226 0.0477 

Percent correct A – C 0.0056 -0.0316 0.0429 

Percent correct A – D ** -0.1185 -0.1595 -0.0775 

Percent correct A – E ** -0.1784 -0.2220 -0.1348 

Percent correct B – C -0.0069 -0.0422 0.0284 

Percent correct B – D ** -0.1311 -0.1704 -0.0918 

Percent correct B – E ** -0.1909 -0.2330 -0.1489 

Percent correct C – D ** -0.1242 -0.1653 -0.0830 

Percent correct C – E ** -0.1840 -0.2278 -0.1403 

Percent correct D – E ** -0.0599 -0.1069 -0.0128 
a Groups A, B, and C denote the three American courses (production, business 
statistics, and quantitative analysis, respectively). Groups D and E denote the two 
Hungarian courses (statistics II and microeconomics). 
** The difference of means is statistically significant. 

 

Comparing the mean percent correct by nationality, box plots were created to illustrate the difference in 
performance of the two groups (see Figure 3). The mean percent correct response among the Hungarian students 
was 87.2% (with a standard deviation of .134) while the mean percent correct response among the students in the 
U.S. was 71.9% (with a standard deviation of .197). 
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Figure 3. Box plot comparing overall mean percent correct by nationality 

 

A line chart plot is provided, plotting the mean percent correct response by question by nationality (see Figure 4). 
Again, it illustrates that Hungarian students outperformed U.S. students. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mean percent correct response by question by nationality 

 

ANOVA and Welch tests were employed to statistically determine whether or not there was a significant 
difference in the mean percent correct responses between nationalities (see Table 6). Based on the Levene’s test, 
we rejected the equality of variances of the different groups (countries). Hence we turned to the Welch test which 
produced a p-value of <0.0001. The p-value failed to support the conviction of the researchers that there was no 
significant difference between the mean performances of Hungarian versus American students. Therefore, Ho 
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was rejected. Research Hypothesis 2 was not supported. 

 

Table 6. ANOVA results comparing mean percent correct response by nationality 

Hungarian  

Students 

% Correct 

American  

Students  

% Correct    

Sample size 231 595    

Sample mean 0.8716 0.7195    

Sample std. dev. 0.1342 0.1968    

Sample variance 0.0180 0.0387    

Pooling weight 0.2791 0.7209    

F-ratio p-value 
One-way ANOVA 
Table 

Sum of  

Squares 

Degrees of  

Freedom 

Mean  

Squares 

Between variation 3.8472 1 3.8472 116.7300 < 0.0001 

Within variation 27.1571 824 0.0330   

Total variation 31.0043 825    

 Test Statistic 

Degrees of  

Freedom 1 

Degrees of  

Freedom 2  p-value 

Levene test 58.6173 1 824  < 0.0001 

Welch test 161.6060 1 610.0070  < 0.0001 

 

Comparing the mean percent correct responses by gender, box plots were created to illustrate the difference in 
performance of the two groups (see Figure 5). The mean percent correct response among female students was 
76.6% (with a standard deviation of .188) while the mean percent correct response among male students was 
75.9% (with a standard deviation of .198). 
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Figure 5. Box plot comparing overall mean percent correct by gender 

 

ANOVA was employed to statistically determine whether or not there was a significant difference in the mean 
percent correct responses between genders (see Table 7). The Levene’s test gave a p-value=0.2130, thus the 
equality of variances can be accepted. Therefore, we turned next to the one-way ANOVA which generated an 
F-ratio of .238 and a p-value of .614. The p-value supported the conviction of the researchers that there was no 
significant difference between the mean performances of females versus male students. Therefore, Ho was not 
rejected. Research Hypothesis 3 was supported. 

 

Table 7. ANOVA results comparing mean percent correct response by gender 

Female  

Students  

% Correct 

Male  

Students  

% Correct    

Sample size 353 472    

Sample mean 0.7663 0.7595    

Sample std. dev. 0.1879 0.1981    

Sample variance 0.0353 0.0392    

Pooling weight 0.4277 0.5723    

F-ratio p-value 
One-way ANOVA 
Table 

Sum of  

Squares 

Degrees of  

Freedom 

Mean  

Squares 

Between variation 0.0093 1 0.0093 0.2483 0.6184 

Within variation 30.9076 823 0.0376   

Total variation 30.9169 824    

 Test Statistic 

Degrees of  

Freedom 1 

Degrees of  

Freedom 2  p-value 

Levene test 1.5533 1 823  0.2130 

Welch test 0.2522 1 778.4823  0.6157 
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6. Observations and Conclusions 

The findings of the data analyses are consistent with the informal observations of the Fulbright Professor. 

 During her six months lecturing in Hungary, the professor found the students’ technical math skills to be 
significantly better than the students she has been teaching in the United States for almost 40 years. 

 However, it appeared that the strength of technical skills was not retained as the students moved through the 
program. 

 In addition, although the Hungarian students possessed stronger technical skills, they did not appear to have 
stronger abilities in applying and interpreting the results of analyses. 

 Gender did not appear to be a factor in mathematical abilities. That is, the differences were found by 
nationality of the students, not the gender. 

What conclusion can be reached? Clearly any conclusions are primarily observational and anecdotal. The 
research cannot support a cause and effect relationship between pre-college mathematical training and the 
technical mathematical skills demonstrated by the American and Hungarian university students. However, based 
on the significant findings, the data indicate that the Hungarian university students have better mastered the basic 
arithmetic concepts and skills tested in the project. Considering the concerns many faculty have regarding math 
skills of students in quantitative courses, the results of this study provide impetus to delve more deeply into the 
causes and perhaps develop recommendations to address the concerns. 

Many students exhibit a lack of basic math skills. Students, who lack mastery of these concepts, possess 
deficiencies which put them at a disadvantage in learning material that is dependent upon these concepts. Faculty 
must recognize these deficiencies exist and be prepared to assist students to overcome these weaknesses. As the 
earlier article by Jones et al. (2011) noted, a course was developed at one of the studied universities that could 
address the observed mathematical weaknesses; however, the proposal stalled at the college level. Based on the 
results presented here, the authors plan on reinitiating the approval process. 

Acknowledgements 

This research has been partially supported by the Hungarian Scientific Research Fund under Grant No. OTKA K 79128/2009. 
The authors thank Carol Waller, Office of Publications and Faculty Research Services, College of Business Administration, 
Georgia Southern University, for her efforts in preparing this paper for publication. 

References 

Andrews, P. (1997). A Hungarian perspective on mathematics education. The Association of Teachers of 
Mathematics (ATM), 161, 14-17. 

Baki, A., & Gökçek, T. (2005). Comparison of the development of elementary mathematics curriculum studies in 
Turkey and the U.S.A. Educational Sciences: Theory & Practice, 5(2), 579-588. 

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and 
using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 
83-104). Westport, CT: Ablex. 

Carnine, D. (2000). Why education experts resist effective practices. Thomas B. Fordham Foundation. 

Fàbri, György. (2002). Az akadémia és a mindentudàs egyeteme. Vilàgossàg, 10-12(8-14). 

Graham, K. J., Li, Y., & Buck, J. C. (2000). Characteristics of mathematics teacher preparation programs in the 
United States: An exploratory study. The Mathematics Educator, 5(1/2), 5-31. 

Gutsche, M. (1993). The Hungarian education system in the throes of change. European Education, 25(2), 5-11. 
http://dx.doi.org/10.2753/EUE1056-493425025 

Harries, T. (1997). Reflections on a mathematics lesson in Kaposvar. The Association of Teachers of 
Mathematics (ATM), 161, 11-13. 

Jones, T. W., Price, B. A., & Randall, C. H. (2011). A comparative study of student math skills: Perceptions, 
validation, and recommendations. Decision Sciences Journal of Innovative Education, 9(3), 379-394. 
http://dx.doi.org/10.1111/j.1540-4609.2011.00314.x 

Jackson, B. (2012). Why other countries do better in math. The Daily Riff – Be Smarter About Education. 
Retrieved from http://www.thedailyriff.com/articles/why-other-countries-do-better-in-math-520.php (July 
19, 2012) 



www.ccsenet.org/jel Journal of Education and Learning Vol. 1, No. 2; 2012 

140 
 

Kaufman, C. C., & Paulston, R. G. (1991). Hungarian education in transition. Presented at the Annual 
Conference of the American Educational Research Association (AERA), Chicago, IL (April). 

Klein, D. (2003). A brief history of American K-12 mathematics education in the 20th century. In J. Royer (Ed.), 
Mathematical cognition: A volume in current perspectives on cognition, learning, and instruction (pp. 
175–225). Edited by James Royer, Charlotte: Information Age Publishing. 

Klein, D. (2007). A quarter century of U.S. “Math Wars” and political partisanship. Journal of the British Society 
for the History of Mathematics, 22(1), 22-33. 

National Center for Education Statistics. (1999). Overview and key findings across grade levels. Highlights from 
TIMSS: the Third International Mathematics and Science Study. Office of Education Research and 
Improvement. U.S. Department of Education, NCES 1999-081. July 23, 2012 Retrieved from 
http://nces.ed.gov/pubs99/1999081.pdf (July 23, 2012) 

McCarron, S. (2012). Let’s solve our math and science challenges. Perspectives. Retrieved from 
http://www.exxonmobilperspectives.com/2012/04/08/lets-solve-our-math-and-science-challenges (July 19, 
2012) 

Prystay, C. (2004). As math skills slip, U.S. schools seek answers from Asia. The Wall Street Journal Online 
(December 13). Retrieved from http://www.wsj.com 

Pusztai, G., & Szabó, P. C. (2008). The Bologna Process as a Trojan horse: Restructuring higher education in 
Hungary. European Education, 40(2, Summer), 85-103. 

Raimi, R. A. (2000). Judging state standards for K-12 mathematics education. In S. Stotsky (Ed.), What’s at stake 
in the K-12 standards wars: A primer for educational policy makers (pp. 33-58). New York: Peter Lang. 

Reys, B. J., Dingman, S., Sutter, A., & Teuscher, D. (2005). Development of state-level mathematics curriculum 
documents: Report of a survey. Columbia, Mo.: University of Missouri, Center For the Study of Mathematics 
Curriculum. 

Rimer, S. (2008). Math skills suffer in U.S., study finds. The Richard Dawkins Foundation for Reason and 
Science. Retrieved from http://richarddawkins.net/articles/3231-math-skills-suffer-in-u-s-study-finds 

Schielack, J. F., Beckman, S., Charles, R. I., Clements, D. H., Duckett, P. B., Fennell, F., Lewandowski, S. L., 
Treviño, E., & Zbiek, Rose M. (2006). Curriculum focal points for prekindergarten through grade 8 
mathematics: A quest for coherence. National Council of Teachers of Mathematics. 

Shulman, L. S., & Grossman, P. (1988). Knowledge growth in teaching: A final report to the Spencer Foundation. 
Technical Report of the Knowledge Growth in a Profession Research Project. Stanford, CA: School of 
Education, Stanford University. 

Vernille, K. (2012). Why are U.S. Mathematics students falling behind their international peers? Retrieved from 
http://www-users.math.umd.edu/~dac/650/vernillepaper.html (July 19, 2012) 

Zaslovsky, O. (2008). Meeting the challenges of mathematics teacher education through design and use of tasks 
that facilitate teacher learning. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics 
teacher education, vol. 4: The mathematics teacher educator as a developing professional (pp. 93-114). 
Rotterdam: Sense Publishers. 

 

Appendix 1 

 

1. Perform the indicated operations for each of the following expressions without using a calculator. 

(a) 26 + 34 / 2 = 

(b) 29 − 37 − 18 = 

(c) 3 / 2 + 1 = 

(d) 6 − 2 × 14 = 

(e) 3 + 4 (20 − 17) = 

2. Express .01 as a percentage. 

3. Express 3/4 as a percentage. 
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4. Express 3 percent as a decimal. 

5. 2 is what percentage of 8? 

6. Solve each of the following expressions for x. 

(a)  

 

 

(b) 11x + 3000 = 7x + 8000 

(c) 3 
 

x = 45 

(d) 

  

 

7. Evaluate each of the following formulas without using a calculator assuming that A = 108, C = −4, N = 6, and 
S = 312. 

(a)  

 

(b)
    

 

Appendix 2 

Matematikai készségek 

Név ________________________________ 

 

1. Végezze el az alábbi műveleteket számológép használata nélkül! 

(a) 26 + 34 / 2 = 

(b) 29 − 37 − 18 = 

(c) 3 / 2 + 1 = 

(d) 6 − 2 × 14 = 

(e) 3 + 4 (20 − 17) = 

2. Fejezze ki 0,01-et százalékos formában! 

3. Fejezze ki ¾-et százalékos formában! 

4. Fejezze ki a 3 %-ot a tizedestört alakban! 

5. A 2 hány százaléka a 8-nak? 

6.  Mennyi az x értéke az alábbi kifejezésekben? 

 

(a) 

 

(b) 11x + 3000 = 7x + 8000 

(c)       3 
 

x = 45 

 (d) 

 

7  Oldja meg az alábbi egyenleteket, ha feltételezzük, hogy: A = 108, C = -4, N = 6, S = 312. 
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(a)  

 

(b)  

 

8. Neme: 

Férfi 

Nő 

9. szak ________________________ 

10. Évfolyam 

(a) év 

(b) év 

(c) év 

(d) év 

Posztgraduális 

 

Egyetértek azzal, hogy válaszaimat tudományos kutatás céljára felhasználják. Tudomásul veszem, hogy sem a 
jövőbeli kutatási tevékenység, sem az összegyűjtött adatok nem fognak azonosítható utalásokat tartalmazni a 
válaszaimra. A kérdőív anonim, a válaszadó személye az adatbázisban nem azonosítható. 

Translation: 

I agree that my answers can be used for scientific research. I understand that any future research or data collected 
will not be identifiable references to be included in the answers. The questionnaire is anonymous; the 
respondent's identity in the database cannot be identified. 

 


