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Abstract 

Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and 
forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research 
develops mathematical modeling of these processes that provide a theoretical framework for understanding the 
process variables and their effects on productivity and quality. However it is usually difficult to provide the 
students with hands-on experience of experimentation with process parameters which leads to disconnect 
between engineering education and industrial needs. In order to solve this problem, interdisciplinary student 
projects were undertaken at author’s institution to develop computer simulation tools that would facilitate 
process visualization, experimentation, exploration, design and optimization. The hypothesis is that these new 
computer-based tools would enhance educational experience for the manufacturing engineering students as 
assessed by the ABET-derived educational outcomes and also based on Bloom’s cognitive outcomes modified 
for STEM disciplines. 

The first system described in this paper is the visualization of metal ingot production schedule in an industrial 
setting that provides a basis for interactive decisions. The graphical user interface is created to visualize the 
schedule according to the specific characteristics of the machines. Another example of process simulation 
presented in this paper is the design and analysis of flexible rolling technology in industrial processing of low 
carbon steels. Process simulation tools designed in both cases allow new process sequences to be generated by 
breaking down existing process routes into key elements and then by recombining them to generate novel 
alternative and more efficient hot processing sequences. This enables the identification of an optimal process 
sequence for specified steel compositions that also satisfies simultaneous design criteria such as process 
feasibility and property maximization. It is proposed that incorporation of such computer simulation tools in the 
pedagogy would be highly effective to enhancing and enriching undergraduate manufacturing education. 

Keywords: process simulation, optimization, mathematical modeling 

1. Introduction 

Manufacturing and mechanical engineering curricula typically include one or more courses where the students 
are introduced to industrially significant, primary manufacturing process such as casting, rolling, forging, 
forming, and welding. Such processes are best taught in a hands-on manner using lab scale equipment or via 
industrial visits. While such lab activities are important for student’s understanding of the subject matter they are 
both expensive and cumbersome. In order that the students achieve the most benefits from hands-on lab 
exercises, they must therefore be well prepared prior to conducting the hands-on activities. In this regards, this 
paper proposes that the computer simulation tools offer a wonderful opportunity to enhance the 
teaching—learning process. The paper describes a couple of process simulation and visualization tools 
developed by the students at the authors’ institution as part of their project work. 

It is important to understand how the steel properties change during processing for designing appropriate process 
control, conduct process optimization as well as to predict the properties at room temperature of the final product. 
To achieve these objectives, traditional tools involve experiments done with laboratory scale hot rolling mill or 
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by conducting trials on pilot plants. However, such experimentation is both expensive and time consuming and 
so the academic setting has mostly relied on the mathematical modelling of the phenomena to educate students 
about the processing. The mathematical models abstract the processes using several simplifying assumptions and 
the metallurgical phenomena, material behaviour and the reaction rate kinetics gets hidden behind these models 
and assumptions. The entire process then becomes a big black box. The students are unable to see what can be 
changed and what must remain constant and thus analytical models do not provide a comprehensive picture of 
the process behaviour. In the proposed simulation tools, the number of assumptions made is kept to a minimum 
and the assumptions are explicitly stated. The process becomes transparent where the student is able to sample 
data from all the steps of the process sequence which enhances student’s understanding of the processing. The 
proposed computation tools thus allow the students to gain deeper insight into complex industrial processing by 
conducting computer-based process simulations. 

The complex task of process visualization of both casting and downstream rolling using computer programming 
and modeling was undertaken as interdisciplinary student projects. The work was supervised by manufacturing 
and software faculty and implemented in Visual C++. The paper will demonstrate this approach where the 
students developed process visualization tools as part of their manufacturing engineering curriculum. The 
proposed method solves the problem of giving students an opportunity to experiment with a large-scale industrial 
manufacturing process using computer simulation and visualization which they would otherwise not have had. 
The educational innovation in the proposed work is thus about solving a critical pedagogical problem of teaching 
large-scale industrial manufacturing processes to a relatively large number of students, without the need for 
expensive laboratory set ups in academic settings. This is done by developing teaching tools that simulate 
extremely complex manufacturing process sequence deployed in industry. These tools are currently lacking and 
there is no real way for the students to gain an understanding of how the process works, which parameters can be 
tweaked to optimize the process, and how to predict material properties of the products made by these 
manufacturing processes. So the paper describes two such new process simulation and experimentation tools to 
enhance the teaching and learning process. 

Over the past three decades a number of computer based expert systems have been developed around the world 
for a more efficient solution of manufacturing problems in several areas such as diagnostic, design, planning, 
scheduling, process control, and quality control within the iron and steel industry (Bloom, 1956; Girgis, 2010). 
More recent research focus has been on the application of Artificial Intelligence (AI) to the hot rolling of the 
steel (Goldratt & Fox, 1984; Greene, 1996). The primary objective of steel rolling to obtain the desired shape has 
been augmented by the need to produce steel products with a range of desired properties such as strength, 
toughness, weldability, and formability at low overall cost. Going further upstream in primary processing 
industry, the optimization of metal ingot casting schedules presents significant challenges as market needs 
change rapidly. In this case, production planning decisions must be made quickly to be responsive to the market. 
Quite often judgments need to be made when objectives and constraints are not even readily quantifiable. In 
order to avoid knee-jerk response to the merging situation, it is important that response is evaluated using 
appropriate tools such as an information system. The information system should then be able to visually present 
production plan with its capacity and load, allowing human interaction to make changes while showing the 
ramifications by immediate feedback (Manohar, 2008, 2010; Manohar, Lim, Rollett, & Lee, 2003). The human 
planner would thus be able to promise a delivery based on the available production capacity without causing 
problems in other areas of production scheduling. 

2. Ingot Casting System 

Production planning is known to be an extremely difficult task due to rapidly changing market needs, a high 
degree of complex logistics involved, and therefore the use of the right tool will make the job easier and may 
result in higher efficiency and higher profits (Manohar, Shivathaya, & Ferry, 1999). The production planning 
problem of metal ingots casting is addressed in the system presented in the present work. The solution strategy is 
based on an analysis of the bottle neck of the assembly line (McIlvaine, 1996), where the melting furnace and the 
heating oven have been identified as the production machines casing bottleneck. The system approach is based 
on visualizing the production capacity and load on the schedule of these machines. An interactive load graph is 
designed to visualize the effect of production capacity and load on the production scheduling of these machines. 
Using the interactive load graph the planner can then interact with the production schedule and make changes 
manually, while relevant information about the impact of the changes may be shown immediately through visual 
feedback. 
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The user interface design is the most important aspect of system visualization. In metal ingot casting, the bill of 
materials is relatively simple: the bill of materials for each alloy specifies the ingredients proportion to be mixed 
with the metal ore. The manufacturing process is shown schematically in Figure 1. The metal ore mixture is first 
poured into the melting furnace. In the next step the molten mixture is released into the dropping tool where it is 
casted into alloy ingots. The ingots then need to go through the pre-heat oven for heat treatment. Each type of 
ingot product will have its own recipe that details the necessary temperature profile to be used in the heat 
treatment process. This recipe is important for the preferred metallurgical properties of the ingot. 

 

Melting 
Furnace 

Dropping 
Tool 

Metal Ore 
 

Pre-heat 
Oven 
 

 

Figure 1. The metal ingot casting process 

 

Figure 2 depicts the design of a typical production plan with the time bucket size of one week. If the machine is 
available to operate 24 hours a day, 7 days a week then the maximum feasible load is calculated to be 7*24 = 
168 hours. In this diagram each colored block represents a job assigned for production within that week. The 
height of the blocks represents the load on production capacity which is defined as the time duration the machine 
will be occupied by the job. Using the production plan the planner can observe production capacity availability 
and overloading. Production jobs assigned to a particular week can have three statuses: early for production, late 
for delivery, or optimal. To represent this information the blocks are color-coded with early jobs in blue, late 
jobs in red, and optimal in green. The planner can interact with the load graph by dragging and dropping a block. 
The system permits the planner to move blocks from one week to another, re-arrange the order of the blocks 
within each week, or split up a block and move the individual blocks. The ramifications of changes made are 
automatically computed and provided as a visual feedback to the planner. At this point the planner can decide on 
keeping the change if it is feasible or continue rearranging the jobs. 

 

Maximum Load 

Week 1 Week 2 Week 3 Week 4
 

Figure 2. Production schedule showing capacity and load 

 

In addition the planner can use each of these blocks to drill down to see detailed information about the order. The 
system is capable of displaying information like product code, customer order number, and customer name. The 
planner is also able to display any of this information as label on the block. Further details of the system are 
given in a paper by (Noderer & Henein, 1996). 
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3. Hot Rolling System 

The overall industrial process for manufacturing steel products is shown schematically in Figure 3 while wire 
rod rolling process studies in this work is shown schematically in Figure 4. Figure 3 gives a global perspective of 
steel processing where important process steps are shown in sequence: starting from impure liquid carbon steel, 
steel purification in converter, then continuously casting into steel billets that are 50-80 mm thick or the steel can 
be cast into 200-250 mm thick ingots, the billets or ingots are reheated to prepare them for further hot rolling into 
bars, subsequent to hot rolling the bars are cooled, coiled, packaged and shipped.  

 

 

Figure 3. Overall process sequence to manufacture steel products 

 

The details of the process sequence in the box above marked “Wire Rod Rolling” are shown in Figure 4. 

 

 

Figure 4. The details of the multi-stage wire rod rolling process selected for visualization 

 

The details of the process shown in dotted box in Figure 3 are shown schematically in Figure 4. Figure 4 shows 
how a 250 mm thick slab gets rolled down to 5 mm thick steel plate in a sequence of 31 hot rolling passes with 
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several cooling stations during the continuous processing. It is therefore important to understand how the steel 
properties change during processing for designing appropriate process control, conduct process optimization as 
well as to predict the properties at room temperature of the final product. To achieve these objectives, traditional 
tools involve experiments done with laboratory scale hot rolling mill or by conducting trials on pilot plants. 
However, such experimentation is both expensive and time consuming and so the academic setting has mostly 
relied on the mathematical modelling of the phenomena to educate students about the processing. The 
mathematical models abstract the processes using several simplifying assumptions and the metallurgical 
phenomena, material behaviour and the reaction rate kinetics gets hidden behind these models and assumptions. 
The entire process then becomes a big black box. The students are unable to see what can be changed and what 
must remain constant and thus analytical models do not provide a comprehensive picture of the process 
behaviour. In the proposed simulation tools, the number of assumptions made is kept to a minimum and the 
assumptions are explicitly stated. The process becomes transparent where the student is able to sample data from 
all the steps of the process sequence which enhances student’s understanding of the processing. The proposed 
computation tools thus allow the students to gain deeper insight into complex industrial processing by 
conducting computer-based process simulations. 

The process was initially mathematically modeled and implemented within an expert system (Shivathaya, 1997; 
Takahashi, 2008). The results of the calculations made by expert system were then collated and used as input for 
visual display. The program was implemented in C++ and a user interface was developed as shown in Figure 5. 
Figure 5 shows the input interface for the user he can give details of the steel composition (grade) being 
processed, the initial and final thickness of the slab being rolled, process sequence including how many 
processing steps are needed and finally the cooling rate subsequent to mechanical processing of the steel product. 
In the drop down menu for the last items one can choose slow cooling like air cooling at 1 oC/s to rapid cooling 
such as water jet cooing where the cooling rate can be as high as 150 oC/s.  

 

 

Figure 5. Example of a user interface developed for process simulation 

 

A sample output of the program for medium C-Mn steel is shown in Figure 6 for a full-scale industrial rod 
rolling process (Shivathaya, 1997; Takahashi, 2008). The figure shows the evolution of austenite grain size as a 
function of process step. It can be seen from Figure 2 that the austenite grain size gets refined from an initial 
value of ~300 μm down to ~3.3 μm after finish rolling. The austenite grains coarsen to a size of ~15 μm during 
cooling from finish rolling temperature to the cooling stop temperature (CST). The predicted austenite grain size 
just before the onset of γ→α transformation is 15.2 μm. The measured prior austenite grain size in industrially 
processed steel was determined to be 14.4 μm. The transformed ferrite grain size after industrial processing was 
measured to be 4.6 μm while the predicted ferrite grain size is 4.9 μm. It is clear from this data that the predicted 
and experimentally measured mean austenite and ferrite grain size compare quite well, which validates the 
expert system for the computation of microstructural evolution in an industrial-scale rod rolling process. 
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Figure 6. Predicted austenite grain evolution during rod rolling of a medium C-Mn steel 

 

4. Incorporation into Teaching 

The projects were implemented as student work as part of independent studies and subsequently used as 
educational tools in ENGR 3600 Production Engineering class. Some details of this course are provided in the 
sections below. 

4.1 Production Engineering Course Objectives 

Manufacturing is the engine that powers most industrial economies of the modern world. This course presents a 
balanced coverage of relevant scientific and technical fundamentals and real world practices in modern 
manufacturing. Purpose is to develop a sound understanding of technical nature of processes involved in 
producing most things we use in our day-today life. 

The course incorporated a significant component of the hands-on lab exercises as listed below. 

4.2 List of Laboratory Exercises 

The following laboratory exercises and activities were conducted throughout the term: 

 Metal riveting hammer—traditional workshop—sawing, milling, turning, facing, drilling, tapping, grinding, 
assembly, finishing 

 Auto CAD/ SolidWorks—free-form design 

 Rapid prototyping—fused deposition modeling 

 Injection molding—demonstration and some operation of the machine—plastic rulers 

 Powder metallurgy— aluminum and stainless steel powders—cold isostatic pressing 

 Several manufacturing technology videos produced by SME, History channel 

 Metrology—calipers, micrometers, go—no-go gages, tolerances 

 3D CMM—Co-ordinate Measuring Machine 

In addition, sand molding and casting, MIG welding, sheet metal forming, vacuum forming for plastics and 
metal die casting labs have also been delivered when the schedule permitted it. 

The rolling process simulation and visualization tool was made available to the students to experiment with and 
learn the effects of process variable on the properties of the products. The applicable ABT outcomes for the 
course are given in the following section. 
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4.3 Applicable ABET Criterion 3 Outcomes and Student Performance 

ABET outcomes 1, 3, 5, 7 and 8 and track-specific outcomes M2 and M4 are applicable for this course according 
to the existing course description. 

Outcome 1: RMU Graduates have an ability to apply knowledge of mathematics, science, and engineering. 

Outcome 3: RMU Graduates have and ability to design a system, component, or process to meet desired needs. 

Outcome 5: RMU Graduates have an ability to identify, formulate, and solve engineering problems. 

Outcome 7:RMU Graduates have an ability to communicate effectively 

Outcome 8: RMU Graduates have the broad education necessary to understand the impact of engineering 
solutions in a global and societal context. 

These particular ABET derived outcomes have been selected as the applicable outcomes for this class based on 
the body of knowledge taught in the course. The justification of the applicable outcomes is given as follows. 
Outcome 1 is generic to most engineering courses where students develop an ability to grasp and apply the 
fundamentals concepts of science, engineering mathematics to find solution to the given problem. Outcome 3 is 
about process design that meets customer needs and this is one of the harder outcomes to achieve. The course 
content includes process design and optimization through several methods such as analytical and mathematical 
modeling, lab-scale experimentation and the proposed computer-based simulation and experimentation. 
Outcome 5 related engineering problem solving is integral to most engineering classes. Outcome 7 is about 
effective communication, the so-called soft skill, is becoming increasingly important skill is today’s globalized 
manufacturing supply chains. Finally, Outcome 8 is the broad education necessary to understand the impact of 
engineering solutions in a global and societal context where energy efficiency, water usage, carbon footprint and 
sustainability of the manufacturing processes are critical parameters that are subject to governmental restrictions 
in many countries. These concerns must be addressed in the education process along with the technical details of 
the processes taught so that the engineers gain a broad perspective on manufacturing engineering.  

The student performance in each assessment task was regrouped in terms of ABET outcomes to work out the 
percentage of students that scored  80% marks for each of the specified ABET outcomes. The bar graph 
depicting this analysis is shown in Figure 7. 

 

 

Figure 7. Class performance with respect to the applicable ABET outcomes 

The current RMU-designated benchmark for class performance is 80% 

 

Reflection:  

 It can be seen from Figure 7 that the class performance in this course is above the RMU-designated benchmark 
(at least 80% students in the class score >= 80%) in applicable ABET outcomes 1, 3, 5, and 7. 
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 ABET Outcome 8 was not assessed at this time. 

4.4 ABET Track-Specific Outcomes 

The following track-specific outcomes are identified for this course: 

 M2: RMU Graduates have proficiency in process assembly, and product engineering and understand the design 
of products and the equipment, tooling and environment necessary for their manufacture. 

 M4: RMU Graduates have an ability to design manufacturing systems through the analysis, synthesis and 
control of manufacturing operations using statistical or calculus based methods, simulation and information 
technology. 

85.7% students scored >= 80% points in Outcome M2 while 92.9% students scored >= 80% in Outcome M4, 
which is well above the RMU benchmark. Outcomes assessment for both of the applicable track-specific 
outcomes, M2 and M4, demonstrates that RMU benchmark is being met. 

5. Educational Enhancement 

The proposed methodology of incorporating computer based simulation tools in manufacturing engineering is 
expected to enhance educational experience and outcomes for the students. This aspect can be explained based 
on the Bloom’s taxonomy for Science, technology, Engineering and Mathematics (STEM) disciplines and the 
development of critical thinking abilities and creativity in engineering students as explained below.  

5.1 Bloom’s Taxonomy for STEM Disciplines 

The educational outcomes as a identified by Bloom (Wu, 1999) describes six levels within the cognitive domain: 
knowledge, comprehension, application, analysis, synthesis, and evaluation. A modified version of Bloom’s 
taxonomy for Science, Technology, Engineering and Mathematics (STEM) disciplines has been recently 
proposed by Girgis (Wu, 2001). The proposed STEM taxonomy is presented in Figure 8 that the shape of a 
pyramid: the base represents the first level of engineering knowledge, and the levels increase in difficulty with 
each tier. 

 

 

Figure 8. Conceptual and procedural knowledge and skills taxonomy 
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As is seen from Figure 8, the taxonomy consists of seven units, or taxa, each representing one stage in acquiring 
the hierarchical engineering knowledge and skills structure. The first three taxa represent basic conceptual 
knowledge: experimental pre-knowledge and hands-on experiences, basic domain concepts, and first-level 
applied knowledge. The fourth taxon focuses on the procedural knowledge of solving multi-concept problems. 
The final three taxa represent the advanced level of solving inter-domain and open-ended problems, conducting 
design projects, and practicing professional engineering work. The relationship between cognitive domain 
educational objectives for the proposed taxonomy and Bloom’s taxonomy is shown in Table 1, Bloom’s 
educational objectives are mapped to the proposed STEM taxonomy. 

 

Table 1. Comparison between Bloom’s and the proposed taxonomy for STEM disciplines 

Bloom’s 
Taxonomy 

Knowledge Comprehension Application Analysis Synthesis Evaluation 

Proposed 
Taxonomy 

I & II II & III III & IV IV & V VI VI & VII 

 

The relationship of the new taxonomy to ABET educational program outcomes has also been determined. 
According to ABET, “engineering educational outcomes are specific statements that describe what students are 
expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and 
behaviors that students acquire in their matriculation through the program.” Table 2 shows the relationship 
between ABET educational outcomes and the corresponding taxa of the proposed taxonomy. 

 

Table 2. Comparison between ABET learning outcomes and the proposed taxonomy for STEM disciplines 

ABET Learning Outcomes Relevant proposed 
Taxa, Figure 8 

1. Apply knowledge of mathematics, science and engineering II & III 

2. Design and conduct experiments, and analyze and interpret data I & III 

3. Design a system, component, or process to meet desired needs IV & V 

5. Identify, formulate, and solve engineering problems III, IV & V 

7. An ability to communicate effectively 

8. The broad education necessary to understand the impact of engineering solutions 
in a global and societal context 

 

VI 

9. A recognition of the need for, and an ability to engage in life-long learning 

10. A knowledge of contemporary issues 

11. An ability to use the techniques, skills, and modern engineering tools necessary 
for engineering practice 

 

 

VI & VII 

 

The computational simulation tools proposed in this work enhance educational outcomes for the students in 
majority of the elements of the Bloom’s taxonomy as applicable to the STEM disciplines. For example, the 
experimentation, process design, data analysis and evaluation leads to the development of taxa #I, #II, #III, #IV, 
#V and a part of #VI in Figure 8. The skills and experiences obtained by the students also maps onto the ABET 
educational outcomes #1, #3, #5, #7, and #8 as given in Table 2 above. 

5.2 Ability for Critical Thinking and Creativity 

The proposed methodology of computer experimentation allows students to change variables within permissible 
limits imposed by metallurgical phenomena or by process mechanics and equipment limitations. For example, 
the interpass time (the time between two consecutive deformation passes) depends on the speed of rolling and 
the input and the desired final thickness of material and can vary between 12s to 2s. The temperature of 
deformation can be varied between 1373 to 1173 K depending on the process sequence designed for a chosen 
grade of steel. The students are thus able to explore important questions and problems in metal processing, 
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conduct experiments, gather and assess relevant information, arrive at objective conclusions, test them against 
relevant theoretical models and practical industrial experience for model validation, and finally communicate the 
experiments, results and conclusions effectively with others in figuring out solutions to complex problems. 
These are all vital aspects of developing critical thinking skills in the students. The creativity is also enhanced by 
allowing new process sequence designs to work out the feasibility of the new approaches in metal processing and 
to generate metal products with novel combination of properties.  

6. Summary 

Process visualization using appropriate graphical user interfaces for industrially significant manufacturing 
processes such as ingot casting and hot rolling have been developed as educational tools. For ingot casting 
visualization the capacity and load in the production plan were plotted to evaluate adequacy of the designed plan 
as well as ramifications of the changes being considered. For hot rolling simulation and visualization 
mathematical models were collected and an expert system was built to capture process characteristics. The 
results of the computation were then used for visualization and experimentation. The computer based tools were 
used in the class room for teaching of these manufacturing processes. Analysis of the student assessment data of 
the applicable ABET derived learning outcomes, the correlation of these ABET learning outcomes to the 
modified Bloom’s taxonomy cognitive outcomes for STEM disciplines shows that the students are benefited by 
the new educational tools as they develop an ability for critical thinking and creativity. It is thus concluded that 
the proposed computer-based experimentation and visualization tools enhances student’s understanding of the 
complex processes and enriches their learning experience. 
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