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This paper addresses some methodological issues concerning traditional linear approaches and shows the
need for a paradigm shift in education research towards the Complexity and Nonlinear Dynamical Systems
(NDS) framework. It presents a quantitative piece of research aiming to test the nonlinear dynamical
hypothesis in education. It applies catastrophe theory and demonstrates that students’ achievements in
science education could be described by a cusp model, where two cognitive variables are implemented as
controls - the logical thinking as the asymmetry and the field dependence/independence as the bifurcation
respectively. The results support the nonlinear hypothesis by providing the empirical evidence for
bifurcation and hysteresis effects in students’ performance. Interpretation of the model is provided and
implications and fundamental epistemological issues are discussed.

Introduction

One of the main concerns in education is to get a better understanding of the factors affecting
school performance and students” academic and social behavior, and to prepare them for their
future citizenship. In this task, which is not an easy one, research methodology has a central and
crucial role. In the mainstream, however, most researchers have been following the traditional
methodologies for decades, while on the other hand, theoretical and philosophical discussions
have shown that changes are needed in education research and specifically a paradigm shift
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towards the Complexity regime (e.g. Lemke & Sabelli, 2008 ). Complexity theory and Nonlinear
Dynamics (NDS) have inspired researchers in all disciplines, since they provide a rich array of
constructs, concept and tools, which can describe complex systems changing with time. Those
concepts are attractors, chaos, fractals, bifurcations, catastrophes and the notion of self-organization
(Cleick, 2008). The NDS language has been productively used in social sciences to describe
systems and phenomena and it has enhanced our understanding about them. The same trend
has also appeared in education literature, where complexity-informed analyses supported
alternative approaches to research, teaching or curriculum development (e.g. Fleener, 2000;
Hetherington, 2013; Ricca, 2012). However, descriptions and the use of NDS concepts have
stayed at the metaphorical level. Complexity and NDS could undoubtedly serve as a meta-
theory to embrace local and specific theories in educational sciences; but for achieving this,
empirical research with the implementation of nonlinear methodologies and statistical tools are
needed, compatible with the alternative to reductionist views and suitable to test appropriate
hypotheses. It is important to point out that the NDS view is a choice to be fostered, but that the
nonlinearity has to be confirmed by empirical research. In reality, at any level of complexity at
which research might be focused on, things are not always definitely linear or definitely
nonlinear. Nonlinearity and the signs of complexity and chaos are not always manifested or
cannot be confirmed. The nonlinear hypothesis, then, is not an a priori assumption or guess, but it
has to be tested empirically against its linear alternative. Moreover, even within the nonlinear
regime, there are many alternatives; different dynamics might be present in a nonlinear system
mixed with linear dependences and Gaussian noise (Gregson & Guastello, 2005). Thus, the
development of the new paradigm is strongly dependent on a nonlinear research methodology,
compatible with philosophical -ontological and epistemological - considerations.

Making a step towards the new agenda, within the NDS regime, the present work adds
to the paradigm shift by presenting an empirical study from science education, where two
cognitive variables are implemented to describe changes in students' performance by
implementing a nonlinear model. These findings have important epistemological implications,
which are discussed along with the relevant methodological issues.

A Need for Nonlinear Methods in Educational Research

In this part, an attempt is made to exemplify the fundamental limitations of the traditional
linear (statistical) approaches and the need for a paradigm shift in methodology, coupled with
world-view changes in ontological and epistemological considerations.

A core issue in research is that of causality, which for science has been extensively
analyzed (Bunge, 1979). While it might be considered that what holds for physics sciences holds
also, mutatis mutandis, for social sciences, today no consensus has been reached on this issue in
the literature. The diversity of traditional methodological choices, qualitative and quantitative,
does not seem to solve the problems related to establishing causality because they usually are
inspired by different theoretical orientations (Maxwell, 2004). The experiment as a scientific
method has been the only suitable approach to establish causality; however the randomized
control trials (RCT) and related designs such as quasi-experimental ones in educational settings
and any social process are questionable from various points of view. Koopmans (2014a; 2014b)
discusses the disadvantages of RCT in educational experiments, where the process under
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investigation is considered as a 'black box'. This approach focuses on measurements of
input/output conditions ignoring the underlying processes or mechanisms which are actually
reflect the nature of the phenomenon under investigation. Cognitive and social phenomena
taking place in educational settings are more complex processes when considering the variety of
individual differences, levels of motivation and self-regulation, or other cognitive and social
skills. Causality through these processes cannot be considered with the linear, common sense
cause-and-effect paradigm. These variables, intellectual and mon intellectual' resources are
expected to interact with environmental constraints (tasks) and with each other, in a fashion
producing patterns of behavior evolving in time, which are totally ignored by the 'black box'
approach. These patterns are dynamic or history dependent in Prigogine's notion, since there is
no unique path to follow, and thus, the outcomes are not predetermined and cannot be reduced
to certain initial states or variables. Thus, causality and reductionism are matters to be
reconsidered.

Another issue is the magnitude and nature of anticipated changes in an educational
setting. The above mentioned short-term interactions e.g. during the course of teaching
interventions (inside the 'black box') lead to changes, which might not be always small and
smooth, but they might be large and abrupt. For instance, quite often it is observed that a low-
achiever exhibits, out of the blue, a burst of cognitive abilities when some crucial variables e.g.
motivation or self-esteem exceeds a threshold value. Analogously, in developmental trajectories,
nonlinear changes are the emergence of talent, and specifically the appearance of late bloomers
(Simonton, 2000). These phenomena are nonlinear; in mathematical sense they are
discontinuities, which cannot be captured and explained by the usual linear models. All the
above identify fundamental ontological features of educational processes and deserve special
attention.

Focusing on methodological issues, the dominant quantitative paradigm, in quasi-
experimental designs or in cross-sectional studies, is based on linear statistics, which treats
students” achievement as ‘error’ around the mean and they are based on certain presuppositions
e.g. the normal distribution. In fact, normal distributions are rarely obtained. Especially when
considering very challenging tasks, students’” scores are not distributed normally around the
expected value. Often in multiple regression models, it is suggested by residual analysis that the
estimated coefficients may not be the best linear unbiased estimator, because the basic
assumption of normality is violated and thus the inferential power of the statistical method is
limited. The problem with distributional assumptions is ameliorated by implementing
alternative distributions e.g. the generalized linear modeling (Hardin & Hilbe, 2012). In
educational research the predictive power of linear models is typically low; however this is not
an issue, since predictions are not made in the same sense as in other social sciences e.g.
economics. A researcher merely attempts to provide empirical evidence that some independent
variables have a significant contribution to the outcome, explaining a portion of the percent
variance. What is more, the percent of the explained variance is usually small; this is attributed
to the large errors and to other variables which are ignored; both are incorporated in the error
term and the researcher seeks additional variables to include in the model in order to minimize
the portion of unexplained variance. Interestingly, quite often, even with more variables in the
model the increase of the explained variance remains unsatisfactory. Although methodological
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limitations of statistical origin exist, e.g. distributional assumptions and collineariry effects, the
researchers usually persist in searching for the suitable set of predictors additively explain a
large portion of the variance.

The crucial question is: "hypothesizing that all potential predictors become known, will
they be able to explain a hundred percent of the variance?" In other words, is it possible to
express the outcome of students’ performance as a simple weighted linear sum of the
contributing variables? Similarly, in a "black box" -education process, given that all important
inputs are known and well measured, is it possible to express and predict the output as a linear
function of the contributing components? This is not a merely a methodological question. The
main thesis of this paper is that the limitations of linear models are not due the distributional
presuppositions which do not hold or to the variables ignored by the theory, but that they are
deeply epistemological (Stamovlasis, 2010). Linear models are compatible with ontological
considerations that foster a mechanistic view, that is, the whole can be understood from its
parts, by an additive manner. If this mechanical metaphor does not hold for educational
processes, then the linear approach is epistemologically inadequate to access information or
knowledge about the system under investigation.

An additional epistemological remark should be made at this point, rethinking
unexplained variance. In classical psychometric theory, applied to educational measurements as
well, a measurement y consists of a true score, ¢, and error e. Errors are assumed to be identically
and independently normally distributed (iid). In fact, non-iid errors are often present in the
residuals and these are indicative of nonlinear processes (Brock, Hseih, & Lebaron, 1990). Then
it is epistemologically appropriate in statistically modeling to include nonlinear components
that could convey information about the process under investigation. It is important however,
that these components are theory laden and provide better interpretation of data, and not just
contribute to the curve fitting procedure.

Conclusively, ignoring the dynamic nature of the processes involved in education,
assumptions of linearity and the implementation of epistemologically incompatible methods
might falsify our inference about outcomes and anticipated changes. If nonlinear changes occur,
then an alternative approach for modeling discontinuous patterns of behavior is proposed next
by the use of catastrophe theory.

Catastrophe theory

Catastrophe theory (CT) originates with pioneering work of Thom (1975) on morphogenesis and it
is a branch of the NDS framework. CT is pertinent to natural sciences and to social and
behavioural sciences as well (Zeeman, 1976, Poston & Stewart, 1978). In psychology and
behavioral science many applications have been demonstrated within the emergent scientific
paradigm of NDS. Some characteristic works are: the connection of CT to Piagetian stagewise
development (Molenaar & Oppenheimer, 1985; Van der Maas & Molennar, 1992), to motivation
and academic performance (Guastello, 1987), attitude change (van der Maas, Molenaar & van
der Pligt, 2003), modeling cognitive overload phenomena (Stamovlasis, 2006, 2011), to mention a
few related to educational research.

CT models describe discontinuous changes between stable states in a system observed
under gradual increases in a number of independent or control variables. The most well-known
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and the most applicable model of catastrophe theory is the cusp model (Guastello, 2001; 2002)
which describes the changes between two qualitatively different states by two controlling
variables, the asymmetry, a, and bifurcation, b, factor respectively. Graphically the cusp model is
depicted by a response surface (Figure 1), which mathematically is described by the function:

SV(y,a b)/ dy=y’-by-a M

where y is the dependent variable.

When bifurcation variable, b, has low values, then the system is rather stable and a linear
relationship best describes the link between the asymmetry variable and the dependent
variable, that is, behavior changes gradually and smoothly. However, when the bifurcation
variable takes on high values the behavior becomes bimodal. That is, beyond a critical point, a
threshold value, the dependent variable (behavior) becomes unstable oscillating between the
two modes of behavior. This is what introduces nonlinearity, turbulence and unpredictability in
the system, pushing the behavior towards the chaotic regime.
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Figure 1. A three-dimensional representation of the cup catastrophe response surface. Bifurcation (upper
left) and hysteresis (low center) effects are shown. For the present application logical thinking (a=L) and
field dependence/independence (b=F) are the asymmetry and the bifurcation factors respectively.

An important issue when applying a catastrophe model is the appropriate choice for the
variables implemented as controls. This is a theory-driven decision and should be based on a
deeper understanding of the role of the candidate variables. In general, variables having strong
linear association with the dependent variable are suitable for asymmetry factors, while for
bifurcation factors, appropriate candidates are moderator variables, which belong to an
opposite or are antagonistic to the asymmetry mechanism. The selected variables could be of
any type, cognitive or affective in nature, individual differences or group characteristics,
depending on the local theory implemented to interpret the process under investigation.
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In the next section, the neo-Piagetian theory is briefly presented in relation to science
education, with which the following application is concerned.

Neo-Piagetian Framework in Science Education

Science education research focuses on students' difficulties in understanding physical and
chemical phenomena. One interesting and rather challenging area is teaching the material world
in terms of atoms and molecules, which is of paramount importance for the contemporary
person as a future scientist and citizen. The large amount of work carried out in order to
investigate the teaching and learning difficulties on this topic has reveled a wide range of
persisting student errors and misconceptions on the structure of matter, which hinder
understanding phenomena related to the changes of states e.g. melting boiling, condensation
and evaporation (Johnson & Papageorgiou, 2010). One trend in this research area is based on
conceptual change theories (diSessa, 1988; Vosniadou & Brewer, 1992) and focused on
difficulties arising from the subject matter itself, without however, providing explanations for
their origin or correlating them with independent variables. On the other hand, psychological
approaches to this domain, such as information processing models and neo-Piagetian theories,
view cognitive processes as driven by mental resources explaining variation in performance on
cognitive tasks. An example is Pascual-Leone’s theory of constructive operators (TCO; Pascual-
Leone 1969, 1970). According to TCO, cognitive performance is the responsibility of a variety of
constructive operators, each of which performs a specific function: The M-operator deals
primarily with mental capacity, the C operator with content knowledge, the L-operator with
logical operations such as conservation and formal logic, the F-operator with field
dependence/independence, and so on. Research has supported the construct validity of TCO,
since these operators correspond to mental resources activated during cognitive tasks. Moreover
they can be operationalized by psychometric variables measured at the behavioral level.
Variables, such as, information processing capacity (M-capacity), logical thinking, field
dependence/independence, or convergent/divergent thinking, have been proven to play a
significant role in a wide range of tasks, and they affect students” performance in learning
science (e.g. Lawson & Thompson, 1988; Tsaparlis & Angelopoulos, 2000; Tsaparlis, 2005).

Logical thinking and field dependence/independence were found to be strongly related
to students” achievement score on the specific topic of the structure of matter and its changes of
state (Tsitsipis, Stamovlasis & Papageorgiou, 2010). It was found that students' achievements in
understanding and explaining phenomena, such as changes in physical states, could be
modeled as a function of their level of understanding the structure of matter (the prerequisite
knowledge) and the two above cognitive variables. The proposed linear model had low
explanatory power and the disadvantages mentioned in the previous sections. In the next
section, a brief description of the cognitive variables in question is provided.

Cognitive variables

The cognitive variables implemented in the present application were logical thinking and field
dependence/independence:
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Logical thinking: Logical thinking is a Piagetian concept and refers to the ability of an
individual to use concrete- and formal-operational reasoning and is also referred as the
developmental level (Lawson, 1978, 1985, 1993). Logical thinking was assessed by the Lawson
test, a pencil-paper test of formal reasoning (Lawson, 1978), which includes the following
reasoning modes: Proportional, combinational and probabilistic reasoning as well as reasoning
related to the isolation and control of variables, conservation of weight and displaced volume.
In science education, but not merely, logical thinking has been found to play a major role in
students’ performance.

Field dependence/independence: Field dependence/independence or disembedding ability is
a cognitive style associated with one’s ability to disembed relevant information from complex
and potentially confusing contexts (Witkin, 1978). Those who efficiently separate an item from
its context, without being confused by dominating field (context) are characterized as field-
independent, otherwise they are classified as field-dependent. The two above cognitive styles
are not distinct types, but a continuum of intermediate abilities exists, and thus a portion of
individuals could be characterized as field-intermediate. Interdisciplinary research has shown
that field dependence/independence is correlated with academic performance in various
disciplines (Tinajero & Paramo, 1998), such as, language, mathematics, natural sciences,
computer sciences, social sciences and art.

Research Questions and Hypotheses

This paper is part of a series of investigation aiming to build bridges between educational
research and nonlinear dynamics. It tests the nonlinear hypothesis in educational context.
Specifically, the working hypothesis behind this design is to predict students' achievements in
understanding and explaining physical phenomena (Task 2, challenging task), given their
previous achievement on the structure of matter. (Task 1, prerequisite knowledge). Two
independent predictors were implemented, which are operationalized as mental resources
involved in the task execution.

There are three interdependent research hypotheses: 1) There are bifurcations and
hysteresis! effects in students” achievement in challenging tasks. 2) Students' achievement scores
in science education, particularly in understanding and explaining physical phenomena, could
be understood in relation to two cognitive variables within a cusp catastrophe model, where
logical thinking acts as asymmetry and field dependence/independence acts as bifurcation
factor. 3) Cognitive processes involved in this educational setting such as conceptual change in
learning science, can be nonlinear dynamical process.

Method

Participants and measures

! The term hysteresis is a Greek word (Votépnoig) meaning 'lag behind'. It might be more appropriate for time series
terminology; however, it fits to the present context as well, emphasizing the 'hysteresis' as far as the performance
level (or achievement score) is concerned.
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The subjects (N=205, 48% male) were students in the 10" grade high school, aged 16, who were
taking a compulsory course in physics. The research took place almost one year after the time
they had been taught the relevant matter. For the depended measures two tests were
implemented, which have been developed and used in the related literature (Tsitsipis, et al.,
2010; 2012). Test 1 (Time 1) was an instrument that assessed the students” understanding of the
particulate nature of matter. Test 2 (Time 2) was an instrument targeting in assessing students’
understanding of physical changes such as boiling, melting and evaporation. The mean score of
all items was used as a final score. Both Test 1 and Test 2 were parts of the same examination
paper; thus, time is implicit here. Data were collected during one school year through paper-
and-pencil tests.

In addition, all students were assessed for the two psychometric variables:
Field dependence/independence (F): F ability of the subjects was assessed by a version of the Witkin,
Oltman, Raskin, & Karp (1971) Group Embedded Figures Test (GEFT). This is a timed test (20
min) in which the subject’s task was to locate and outline simple figures concealed in complex
ones. In this study a Cronbach’s alpha reliability coefficient of 0.84 was obtained.
Logical thinking (L): Pupils’ logical thinking abilities were measured using the Lawson paper-
and-pencil test of formal reasoning (Lawson, 1978). The test consists of 15 items involving,
conservation of weight, displaced volume, control of variables, proportional reasoning,
combinational reasoning and probabilistic reasoning. The students had also to justify their
answers. A Cronbach’s alpha reliability coefficient of 0.79 was obtained for the present sample.

Statistical Analysis and Results

Cusp catastrophe analysis with empirical data can be performed by four different statistical
approaches proposed by Oliva et al (1987), Guastello (1987), Cobb (1998) and Grasman, van der
Maas and Wagenmakers (2009) respectively. They use different modeling and optimizations
techniques e.g. least squares or maximum likelihood method, and can be performed with
ordinary software or more sophisticated ones, e.g. modeling in cusp-package available in R.

In the present analysis the least squares regression method by Guastello (2002; 2011) was
implemented. To this method, bootstrap estimates were added (Stamovlasis, 2012). The
dependent measure in this study was the standardized students’ change in achievement from
Time 1 (Test1) to Time 2 (Test 2). Students’ raw scores were transformed to z scores corrected for
location and scale s:

2= (Y = Yoin)/S )
Location correction is made by setting the zero at the minimum value of y. The scale is the
ordinary standard deviation.

The specific equation to be tested for a cusp catastrophe model is:

0z=2z2—2z1 =b1z’+b2z:2+bsFz1+bsL +bs (3)

z is the normalized behavioral variable, while L and F are the normalized asymmetry (Logical
thinking) and the bifurcation (Field dependence/independence) respectively.

The alternative and the most antagonistic linear model is the pre/post model:
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z2=bi1L+b2F +bs z1+ bs 4)
while two additional models :
z2=bi1L+b2F+bs (5)
and
0z =biL+b2F +bs L F+bs (6)

are also examined.

In order to support the nonlinear hypothesis, that a cusp catastrophe is appropriate
model to describe students” achievements, the regression equation (3) should account for a
larger percent of the variance in the dependent variable than the linear models. In addition, in
order for the cusp to be the appropriate model for the data both the cubic and the product terms
in equation (3) must have significant weights and the confidence intervals (95% CI) should not
span the zero point. Table 1 shows the regression slopes, standard errors, t-tests, confidence
intervals and model fit for cusp catastrophe model and the controls linear models.

Model 29 seb t 95% CI Model
R? F

Pre/Post 0.51 76.2%%%*
z1 0,372 0,057 6.4970% 0,484 0,259
L 0,379 0,060 6.21700% 0,499 0,258
F -0,137 0,055  -2.42* -0,028 -0,246

Cusp 0.69 105.2%***
z13 0,077 0,020 3.82%** 0,116 0,038
z12 -0,554 0,091 -6.09%** -0,376 -0,732
F Xz -0,077 0,035 -2.20* -0,008 -0,146
L 0,375 0,061 6.17%*** 0,495 0,255

Bootstrap estimates

Cusp 0.67 107.77%4
z1’ 0,081 0,022 3.91*** 0,124 0,038
z1? -0,568 0,09  -6.117%* -0,380 -0,756
F Xz -0,078 0,036  -2.10* -0,007 -0,149
L 0,383 0,065 6.15% 0,510 0,256

*p <0.05, * p<0.01, ** p<0.001, *** p<0.0001

Table 1. Regression Slopes, Standard Errors, t-tests, Confidence intervals and Model Fit for Cusp
Catastrophe Model and the Controls Linear Models. Bootstrap estimates are included.

The pre/post linear control model based on equations (4), was able to predict a
significant portion of the variance in the dependent variable [Adjusted R? = 0.51, F(3.201) = 76.2,
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p <0.0001]. The weights of predictors are significant and the 95% CI do not span the zero point,
thus the model could be considered as significant, explaining 51% of the variance. The linear
control models based on equations (5) and (6) were insignificant explaining a negligible portion
of the variance in the dependent variable

The cusp model, based on equation (3) was able to predict a significant portion of the
variance in the dependent variable, change in achievement, from Time 1 to Time 2 [Adjusted R?
= 0.69, F(4.201) = 105.2, p <0.0001]. Each of the terms in the cusp model significantly predicted
change in the behavioral variable: the cubic term [£(200) = 3.82, p <0.001], the quadratic term
[£(200) = -6.09, p <0.0001], the bifurcation parameter, field dependence [t(200) = -2.20, p <0.05]
and the asymmetry or normal parameter F [#(200) = 6.17, p <0.0001].

In addition, bootstrap estimates of the cusp were performed. The results are shown in
the lower part of Table 1 and they support the statistical significance of the cusp catastrophe
model.

Model Interpretation and Epistemological Remarks

The cusp model in the present application reveals that both linear and nonlinear changes in
behavioral variable might be expected and the pattern of these changes can be described by the
two cognitive variables L and F.

At low values of F, changes are smooth and at high values of F they are discontinuous.
At low values of L, changes occur over the lower mode and are relatively small. At high values
of L, changes occur around the upper mode and are small too. At middle values of L, and
depending on the value of F, changes can occur between modes and are relatively large. At the
control surface we can observe the bifurcation set mapping in the unfolding of the surface in
two dimensions (Figure 1). The cusp bifurcation set induces two diverging response gradients,
which are joined at a point, the cusp point. At the cusp point the behaviour is ambiguous, while
the two diverging gradients represent varying degree of probability that a student might
succeed of fail (Figure 1).

From the above geometry of behaviour one can conclude that for certain mental
resources and cognitive tasks, a point, the bifurcation point, there exists, beyond which the
system enters the bifurcation set, the area where discontinuous changes occur (Figures 1). Any
subject within the area of inaccessibility could be pulled towards either attractor (success or
failure). The phenomenon of hysteresis is observed on the bimodality (Figure 1, lower part), that
is, subjects with the same parameter values (L, F) oscillate between the two states/modes. This is
a dynamic effect and indicates sensitivity of the parameters, that is, small differences in L and/or
F, may lead to sudden shifts between the two modes representing success and failure.

Based on the initial research hypotheses, it can be concluded that: 1) There are
bifurcations and hysteresis effects in students’ achievement in challenging tasks, such as
understanding and explaining state changes phenomena. 2) Students' achievement scores in this
subject matter education can be understood in relation to two cognitive variables within a cusp
catastrophe model, where logical thinking acts as asymmetry and field
dependence/independence acts as bifurcation factor. 3) Execution of a cognitive task in learning
science could be a nonlinear dynamical process. The third conclusion, that a nonlinear
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dynamical process is being investigated, is based on the first and second hypotheses, but also on
the following epistemological discussion.

Statistical analysis supported the existence and the superiority of the cusp structure in
the data comparing to the linear alternatives. Though, detecting a cusp model is more than a
curve fitting procedure; it has serious epistemological implications. The cusp is a
phenomenological model which describes rather than explains the behavior. Explanation of
why that particular geometry of behavior is being followed cannot be given within a linear
framework, but can be understood merely by considering nonlinear dynamics. The revealed
bifurcations and hysteresis effects are the signatures of chaos and complexity; they imply a
dynamical system, where abrupt changes are seen as transitions between two operating
attractors as a result of an underlying self-organization process (Nicolis & Nicolis, 2007). This is just
the point where advances in methodology have challenged fundamental philosophical
assumptions and especially systems' ontology (Jorg, 2011). Bifurcations cannot occur in a linear
and mechanical system. This comes to support also the initial argument that the linear
methodology is incompatible with the system under investigation. The ontology that the
present findings suggest is that of a Complex Adaptive System (CAS), where self-organization
mechanisms and the dynamics of the system are the causal interpretation of the nonlinear
phenomenology (Molenaar & Raijmakers, 2000; Stamovlasis, 2011).

A general faith, (it is written in any introductory text book of educational research
methodology) is that ontological assumptions about reality determine the epistemological
assumptions and finally the methodological choices. This traditional thought does not hold any
longer; advances in methodology have changed the ontological views and induced a new
epistemology. The above support the claim stated in previous sections, that further growth of
the new paradigm needs empirical research evidences for the nonlinear hypothesis by means of
research methodology compatible with the new epistemology.

Educational research can focus on various levels of complexity: Students at the
individual level can be considered as dynamical systems and their development, academic and
social behavior can be modeled accordingly (Lewis, 2000; van Geert, 2003). Classes or groups of
interacting learners could be viewed as dynamical systems, where the nature and patterns of
interaction could determine outcomes in unexpected ways (e.g. Stamovlasis, Dimos & Tsapalis,
2006). Studies could also be focused at a 'meso-scopic’- the school level, where schools as
evolving systems could be traced by time series analysis demonstrating the dynamic of their
functioning (e.g. Koopmans, 2011, 2013). Finally, viewing an educational system as a whole, its
dynamics at the macro-level could be analyzed with NDS tools, predicting its efficiency and its
deviations from the expected outcomes (e.g. Guevara, Lopez, Posch, & Zuahiga, 2014).

Summarizing, the present research applied a catastrophe theory model in empirical data
from students' conceptual understanding of physical phenomena. Nonlinearity in academic
behavior explained by individual differences has certain implications for teaching and learning,
related to anticipated performance and to adoption of suitable pedagogical approaches. The
emphasis here, however, is on the philosophical - ontological and epistemological- implications
with which the methodology of educational research is directly concerned. Hence, co-evolution
of methodology, epistemology and ontology has been demonstrated and a contribution has
been made to the emergent perspective of the complexity and NDS.
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