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Abstract: Adult developmental mathematics 
students often work under great pressure to complete 
the mathematics sequences designed to help them 
achieve success (Bryk & Treisman, 2010). Results of a 
teaching experiment demonstrate how the ability to 
reason can be impeded by flaws in students’ mental 
representations of mathematics. The earnestness 
of the subject’s efforts and the frequent detours his 
learning took create a vivid portrait of what happens 
in the lives of students for whom  “the dream stops” 
at developmental mathematics (Bryk & Treisman, 
2010, p. 19). Results provide teachers with a clearer 
picture of what is needed to help their students build 
mathematical understanding.

Step into a developmental mathematics classroom 
at any community college or university and you 
will find a diverse population of students all of 
whom have something in common: they have not 
developed enough mathematical understanding 
to be successful in college mathematics courses. 
Among these students are adults coming back to 
school, hoping to develop a new career and a new 
life for themselves. Such students may have gradu-
ated from high school 10 or 15 years ago. They may 
be back in the course for the second, third, fourth, 
or fifth time. They may also bring nonacademic 
problems into the learning environment, including 
multiple demands on their time (Caverly, Collins, 
DeMarais, Otte, & Thomas, 2000). Developmental 
mathematics students face a dilemma when they 
work under great pressures in their personal lives 
while attempting to complete the mathematics 
sequences designed to help them get ahead (Bryk 
& Treisman, 2010).
	 Nonacademic challenges aggravate the dual 
issue of students’ lack of belief in their ability to suc-
ceed in mathematics, and an inability to accurately 
identify factors that have limited their success in 
previous attempts (Hall & Ponton, 2005). Adult 
students may feel certain they are incapable of doing 
well while being unable to give a good reason why. 
Thus they have no specific set of issues to conquer. 
They most likely started to fall behind in their 
school mathematics at a point in their education 
where they began to learn algebra, the primary 
mathematical content on which they are assessed 
for placement (Epper & Baker, 2009). Once students 
enter the developmental mathematics pipeline, 

they may find themselves in a situation where the 
instruction starts at chapter one and rushes forward 
without regard to their level of conceptual under-
standing; as a result they are never able “to get on 
the train” (Galbraith & Jones, 2008, p. 31). Demands 
on these students’ time makes it difficult for them 
to participate in enrichment programs that might 
help remedy the situation (Caverly et al., 2000). 
	 In addition to their other challenges, adult stu-
dents may have difficulty finding the time to become 
comfortable with the use of required technologies 
(Epper & Baker, 2009). Attention to issues surround-
ing digital literacy in developmental mathematics 
courses is vital because technology is often used 
to enable student learning outcomes (Caverly et 
al., 2000). If not managed well, technology can 
become yet another thing to learn and another set 
of procedures to memorize (Herman, 2007). To 
overcome this perception, students need time to 
master technology and engage in discourse that 
facilitates conceptual connections. Any technology 
used in developmental mathematics courses must 
be wisely chosen and appropriately integrated to 
support student efforts in building understanding 
and taking control of their own learning (Brothen, 
1998).
	 Many technological applications in use in 
developmental mathematics courses focus on 
procedural fluency rather than on conceptual 
understanding, due in part to the demands of the 
market (Epper & Baker, 2009). Such technology 
often follows a behaviorist model, only provid-
ing students with superficial levels of knowledge 
(Caverly et al., 2000). It may act as a virtual textbook 
or tutor, but it will not become an effective tool 
in the hands of students. Software as an effective 
tool allows students to choose and control which 
representations to display, and through its use they 
have a greater chance of reaching more complex 
levels of understanding (Caverly et al., 2000).
	 Instructors must take into account the influ-
ence of such representations on student under-
standing as they plan for the use of technology. 
Each student must have a conceptual understand-
ing of standard, discipline valued representations 
in order to be successful in mathematics course 
work. Conceptions of mathematics involve men-
tal imagery and other internal representations 
of mathematics that may or may not conform to 
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Methods

Participants and Setting
The subject of the case study to be discussed was 
Marlon, a 53-year-old African American male, 
formerly in the military, who was taking the second 
of three developmental mathematics courses at a 
midsized university in the southeastern United 
States. He had taken the first developmental math-
ematics course twice before passing it. He dropped 
out of high school in his final year and then earned 
his GED while serving in the military. The exact 
reasoning for his dropping out of high school was 
not clear. He said, “I tried to take my subjects very 
seriously but ...trying [to] raise kids at that time I 
just fell out.” He could not remember much about 
his high school mathematics classes, saying that he 
was “probably more into sports” at that time. He 
said at one point that he had loved mathematics 
when he was growing up but that “you really have 
to practice it all the time.” At the time of the study, 

he found mathematics challenging, particularly 
after having been out of school for a while, which 
he said made learning harder.
	 The study took place at a midsized university 
in the southern United States that not only offered 
advanced degrees but also had a large develop-
mental mathematics population. At the time the 
data was collected, the total enrollment was 8,179, 
with about 60% female, 40% male. About 32% of 
the enrolled students were African American and 
57% Caucasian; 638 students were enrolled in basic 
studies. Students were placed in basic studies if 
their mathematics SAT score fell below 460 for 
traditional students or 500 for nontraditional 
students or their ACT mathematics score was 
below 19 for traditional students or  below 21 for 
nontraditional students. A mathematics score of 
37 on the Compass exam was required to exit basic 
studies. 
	 The developmental mathematics program, 
housed in the basic studies department, included 
Math 98 and Math 99. In Math 98 students reviewed 
basic mathematics and were reintroduced to alge-
bra and linear functions. In Math 99 they reviewed 
those topics and also looked at quadratic func-
tions. Another course at the developmental level, 
Math 100, was offered through the mathematics 

standard representations and discipline valued 
meanings (Goldin, 2003). As previously noted, 
the quality of students’ internal representations 
of mathematics can be characterized in three ways; 
valid, useful, and enduring (Garrett, 2010). Internal 
representations are considered valid, if they accu-
rately reflect the mathematics they seek to represent 
and are flexible enough to allow additional math-
ematical ideas to be built upon them. Valid internal 
representations are also accompanied by sound 
mathematical habits of mind. Internal representa-
tions may be considered useful if they are accessible 
for reasoning and sense-making, communication 
of new ideas, and building new understanding; 
enduring representations remain with the student 
in various situations apart from the environment 
in which they were initially developed. Enduring 
internal representations will be carried forward, 
built upon, and refined over a period of time.
	 An example of an invalid internal representa-
tion is the conception of the graph of a quadratic 
equation as a parabola that must pass through the 
x-axis at two different locations. Such prototypi-
cal visual images are at odds with other different 
but also valid visual images of the same concept 
(Mourao as cited in Presmeg, 2006). These invalid 
internal representations can lead to manipulation 
of external representations without attached mean-
ing. Adult students cannot be successful in building 
complex levels of mathematical understanding 
unless they possess valid, useful, and enduring 
internal representations of mathematics.
	 A qualitative study was designed to gain 
insight into the effect of the use of technology on 
adult developmental mathematics students’ inter-
nal representations of mathematics. The purpose 
of the study was to observe and analyze their 
interactions with technological representations 
and the technological, verbal, and hand written 
representations that resulted. The central research 
question was “How can technology best be used to 
address adult learners’ needs and help them build 
valid, useful, and enduring internal representations 
of mathematics?” (Garrett, 2010, p. 85). In order 
to gain insight into students’ internal representa-
tions, case studies were conducted as part of a 
teaching experiment to allow the researcher to 
experience the subjects’ ways of thinking and 
reasoning firsthand (Steffe & Thompson, 2000). 
The observations of students’ interactions with 
and production of representations provided insight 
into their internal representations, as suggested by 
Goldin (2003). One of the cases in the original study 
resulted in unexpected findings about the nature 
of the conceptual challenges adult students face, 
giving rise to the emergent question: What was 
it about the subject’s thinking that hampered his 
ability to learn more about standard mathematical 
representations through the use of technology? 

department. Math 100 topics included real num-
bers, equations and inequalities, functions and 
graphs of functions, and systems of equations. 
Marlon was enrolled in Math 99 and listed Math 98 
as a previous course. He had some experience with 
technology but not with Geometer’s Sketchpad 
(Key Curriculum Press, 2006).

Procedures
To gather qualitative data about Marlon’s think-
ing, a sequence of interviews was conducted in 
order to gain insight into the way in which his 
internal representations of functions were affected 
by his interactions with technology, specifically 
the algebraic features of Geometer’s Sketchpad 
(Key Curriculum Press, 2006). The use of teaching 
experiment methodology allowed an examination 
of what Marlon might think in addition to what he 
did think going into the study (Steffe, 1991). It also 
allowed the researcher to become “an actor” who 
was constructing models of what was occurring 
in Marlon’s mind as a result of the researcher’s 
actions (Steffe, p. 177). Researcher actions were 
based on Marlon’s actions and included “on the 
spot” decisions based on what was happening in 
the experiment and the emerging model of his 
thinking (Steffe, p. 177).
	 Recording devices. In order to capture as 
much information as possible about the work 
Marlon was doing, the interviews were recorded 
in three ways. Software was installed to record 
everything that happened on the computer screen 
during the session. A camera was placed on a small 
tripod on the desktop to record the work the subject 
did on paper. In addition, another camera was set 
up across the room on a large tripod to record the 
interactions between the subject and interviewer. 
Recordings captured both audio and video. These 
recordings allowed the collection of rich data, and 
care was taken in the transcriptions to note mouse 
movements and the timing of the events within the 
episode. The transcription technique was inspired 
by Campbell’s (2003) examination of students’ 
mouse movements as a way of gaining insight into 
their thinking, which he called dynamic tracking. 
He included actions within braces { }  and timing 
within brackets [ ] to better capture that informa-
tion. Marlon participated in seven semistructured 
interviews for a total of 6 hours and 47 minutes, and 
Campbell’s transcription technique was applied.
	 Reliability and validity. In order to improve 
the validity of the data, I rephrased and repeated 
questions and encouraged Marlon to explain what 
he was thinking (Kvale, 1996). He was encouraged 
to talk continually as if he was thinking out loud to 
ensure that his thinking was accurately interpreted 
(Koichu & Harel, 2007). Only minimal field notes 
were kept since my focus was on responding to the 
circumstances that arose in the teaching experi-
ment. More detailed reactions were recorded later 

Students’ interactions 
with and production of 
representations provided 
insight into their internal 
representations.
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in a descriptive journal. Memoing, journaling, 
and multiple recordings added to the reliability 
of the work through triangulation (Tuckett, 2005): 
journaling provided a fresh memory of what hap-
pened during a session and recordings allowed 
key portions of the resulting transcriptions to be 
checked for accuracy. Inter-rater reliability tests 
were also conducted to determine the appropriate-
ness of codes assigned during the original data 
analysis. Total agreement over three sessions in 
recognizing the four major themes (mathematical 
content and thinking processes, representational 
ideas and issues, influences and uses of technology, 
and other) was 81.94%.
	 Reliability was also strengthened through the 
use of a pilot study. For the pilot study, a male in 
his early 20s, Steve, participated in 5 sessions for a 
total of 3 hours and 34 minutes. He had been out of 
school about 4 years and did not remember taking 
Algebra 1.  The pilot study allowed technological 
procedures to be practiced and also helped refine 
instrumentation, helping me to adjust tasks to the 
appropriate mathematical level.
	 Overarching structure. Initial questions in 
the first session were designed to put Marlon at 
ease and later questions were designed to include 
more specific examinations (Kvale, 1996). The 
methodology employed in the study resulted in 
rich data cataloging Marlon’s thinking and his 
struggle to demonstrate and build mathematical 
understanding. The purpose of the study was to 
observe the effect of technology use on adult stu-
dents’ understanding of representations associated 
with functions. The hope was to gain insight into 
the ways in which a student can build upon his or 
her own understanding of standard representations 
through the use of technology. Marlon’s ability to 
benefit from technological explorations was ham-
pered by qualities of his thinking and understand-
ing that may be common to other adult students. 
An examination of some of the interactions that 
occurred during the teaching experiment will 
highlight the specific challenges he faced.

Results
This examination of Marlon’s thinking is struc-
tured chronologically to help the reader gain 
insight into the mathematical journey that Marlon 
was experiencing. The results will then serve as 
evidence for a discussion of the mathematical 
dilemma he faced. Marlon’s journey through the 
teaching experiment began with an opportunity to 
demonstrate the mathematics he knew coming into 
the study. Following this, he had the opportunity to 
examine pictorial examples of functional relation-
ships. These served as a conceptual foundation 
for technological explorations of discipline valued 
representations.

Showing Mathematics He Knew
I began my work with Marlon by asking him to 
tell me about himself and his past experiences. 
He described the chal-
lenges of coming back 
to school, stating that 
“[Y]ou have to really 
adapt yourself ...[and] 
get back into ... learn-
ing different concepts. 
Being out for so long a 
period of time makes it 
harder.” He attributed 
his lack of success in 
his first attempt to take 
Math 98 to not studying 
sufficiently, saying that 
he “didn’t really open up 
[his] math book.” Once 
he began sharing more 
freely and some rapport 
seemed to have been 
established, I asked him 
to share some mathemat-
ics that he remembered. 
He gravitated toward 
algebraic topics he was 
currently studying and 
attempted to remember 
procedures he had been 
taught. He recalled the 
first outside inside last 
(FOIL) method of mul-
tiplying two binomials, 
but he misapplied it to a 
multiplication problem, 
as can be seen in Figure 1.

Looking at Dot Patterns
Later in the first session, I asked him to analyze 
the patterns found in two handouts “Looking at 
patterns” and “Looking at dot patterns” seen in 
Figure 2. This allowed me to learn something more 
about his mathematical thinking and provided a 
context for mathematical ideas to be investigated 
in later sessions with the software. His explora-
tion of “Looking at dot patterns” began in the first 
session and continued into the second session. He 
examined it carefully and determined that since 
the odd patterns had the leg of the T lined up with 
the center dot of the base but the even numbered 
pattern had the leg of the T lined up with the space 
between two dots in the base, that he would con-
sider the odd and even steps separately as if they 
were two different patterns. He was confused about 
whether or not to count the center dot in the base 
of the odd patterns as part of the leg or not. His 
inconsistency in doing so caused confusion as he 
analyzed the odd patterns. As a result, he focused 
on just the even patterns, which he could more 
accurately analyze. I allowed him to choose his 

continued from page 3

continued on page 6

Figure 2: Initial tasks used to provide a foundation for the 
study of functions.

Figure 1. Representations Marlon 
created to show mathematics he 
remembered. Arcs indicate that the 
FOIL method was applied to the 
multiplication problem.
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method of analysis so that I could learn more about 
his thinking. He came up with a reasonable way 
of thinking about the number of dots in the legs 
of the even numbered patterns. He gave the base 
of the T in his fourth pattern 6 dots and the leg of 
the T in his fourth pattern 5 dots. He had added 
2 to the number of dots in the leg of the second 
pattern to get the number of dots in the leg of the 
fourth pattern. This reasoning did not fit the overall 
pattern as it would conventionally be analyzed, but 
it made sense to Marlon based on his observations 
of the first three patterns. Figure 3 shows Marlon’s 
work with some of his statements added about the 
even numbered steps as he saw them. He had at first 
“estimated” that step 10 would have 13 dots in its 
leg. He later reasoned logically to determine that 
he should remove the last two dots so that the leg 
would only have 11 dots (see Figure 3).
	 Marlon dealt with his confusion about the 
odd numbered patterns by focusing on an aspect 
of the mathematics he could understand. Within 
his chosen focus, he was able to observe patterns, 
solve problems, reason, and make sense of things. 
He had valid mathematical ideas and was able to 
make some sense of what he was seeing.

Looking at Another Dot Pattern
Because I wanted him to have a conceptual under-
standing of an entire pattern before beginning the 
technological work, I gave him “Another dot pat-
tern” as a follow up to his work with “Looking at 
dot patterns.” The task associated with that pattern 
and a portion of Marlon’s work with it is seen in 
Figure 4.

	 He seemed to work with this task more flu-
idly, aided by the tabular representation that was 
included this time. After he had made five entries 
in the table based upon the five illustrated dot pat-
terns constituting the first five steps of the pattern, 
I asked him what he would put on the next line of 
the table of values. He noted he would put 6 in the 
left column and 7 in the right column, explaining 
that “looking at the pattern here everything is in 
numerical order, and I notice that the next one 
here {indicating the right hand column} follows 2 
and it’s also starting from 2 in numerical order.” It 
was uncertain whether the statement transcribed 
as “follows 2” meant “follows the number 2” or 
“follows also.” It did seem clear that he was noticing 
that the right hand column started at 2 and that 
when looking down the column, the numbers were 
in numerical order. Later he gestured from the left 
to the right hand column in explaining why the 
eighth step would have 9 dots. These gestures, used 
to show where he was looking for his information, 
were followed by the statement, “It’s just adding 
one.” The tabular representation seemed to help 
him to see these relationships.

 Graphing Points
In session two, I felt that Marlon had a conceptual 
understanding of “Another Dot Pattern,” and so 
I introduced him to the software. He was allowed 
to explore the tools and then 
shown how to use the graph 
menu to open up a coordinate 
plane. On that plane he was 
encouraged to place a point 
using the point tool and then 
to plot a point using the graph 

menu. Once these two objects were created, he was 
encouraged to use the selection arrow tool and 
measurement menu to explore their behavior and 
their characteristics. By allowing him to explore 
these tools and menus, and encouraging him to 
talk about what he was seeing and doing, I was 
able to gain insight into his understanding of the 
xy plane and the language he used to describe the 
mathematics. For example, when he had moved 
a point into the third quadrant he said “I’m in a 
negative area here; still in the positive area going 
upwards.”
	 When asked to move the cursor to a location 
where both coordinates of a coordinate point were 
positive, Marlon moved the cursor to the right from 
(0,0) along the x-axis. When prompted again, he 
moved the cursor to (0,9). I asked him to place 
the cursor where both coordinates would be nega-
tive and he placed it at (-14,0). Because he was not 
moving his cursor off of the axes, I asked him to 
explore what would happen if he took the point 
off of the axes. He eventually placed a point in the 
3rd quadrant and said “Okay so I have them all in 
the negative area.” I asked him to move the point 
across the x-axis, and he noted that x was negative 
and y was positive and indicated the corresponding 
portions of the axes, saying “This is {indicating 
the negative portion of the x-axis} my x {indicating 
the positive portion of the y-axis} and y.... Negative 

continued from page 4

Figure 3: Marlon’s work in analyzing the pattern given in the 
handout “Looking at dot patterns” is supplemented here 
by a record of some of the statements he made as he was 
working.

Figure 4. A portion of Marlon’s work on “Another dot 
pattern.”
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going this way {putting the cursor on negative por-
tion of x-axis} and positive going this way {stroking 
cursor upwardly in the 2nd quadrant}.” He had not 
understood the meaning of my request to find a 
point so that “both coordinates” had a particular 
quality, but was able to describe qualities of points 
and their relationship to the axes.
	 In session three, following a review of his 
previous explorations of the xy plane, I turned 
his attention back to “Another dot pattern.” He 
looked at it again and remembered the patterns 
he had noticed. Pointing to the first entry in the 
table of values, he noted that:

[H]ere it’s still going numerical[ly] going 
downward {gesturing down the step num-
ber column}. Skip a number {gesturing across 
from step number 1 to its associated number 
of dots, which was 2} still going downward 
{gesturing down the number of dots column}.

	 Because I wanted him to graph this data on 
the xy plane, I used guiding questions to lead him 
to the idea of associating the table with x and y 
coordinates. I noted that there was a left and a right 
coordinate. After observing the left and right coor-
dinates in the table, he said “This same sequence 
you would do like [an] x and y {gesturing across 
the first row of the table}.” I then told him to open 
a new sketch and plot those points, which he did 

using the plot points menu. His plot is shown in 
Figure 5.
	 He noted that they were in a straight line, and 
that, “It gives you your angle of that particular grid. 
I mean of that ... particular plot of the numbers.” 
When I asked him what he meant, he said “I would 
say actually its going on a 45 degree angle.” He 
then retracted this statement, and noted that it 
would only be considered a 45 degree angle if the 
line intersecting the points had intersected the 
origin. As he examined the points he had plotted 
and clarified his thoughts, he said: 

Okay, here {tracing with the cursor along the 
positive x and then the positive y axis} right 
now I’m dealing with I would say a 90 degree 
angle. 45 would actually be right here {tracing 
along the path where the line y = 1 would be, 
from the origin up and to the right}. So it’s 
right off of a 45 degree angle.

His technological gestures allowed me to see how 
he was thinking and why he did not think that 
the line connecting the points was at a 45 degree 
angle. Because this was not an intervention, and 
I wanted the focus to be on the function itself, I 
did not correct his misconception but chose to 
refocus his attention on the numerical data. He 
had created a pattern on paper predicting the 
number of dots in the 10th pattern. I asked him if 
he could make a prediction about whether or not 

his pictorial estimate of the number of dots in step 
10 was correct or not. At this point, his table only 
included entries up to step number 6. Rather than 
considering the graphical representation shown via 
the technology, he made his predications using the 
table of values and added the addition to the table 
seen to the right of the original table in Figure 4.
	 In session four, after some refamiliarization, 
Marlon again graphed the points associated with 
“Another dot pattern” using technology and made 
predictions about where additional points might be 
located. I prompted him to consider the graphical 
representation by asking where he thought the next 
point in the table would be located. He understood 
that the number of dots was one more than the step 
number, and so when asked to predict how many 
dots the 20th pattern would have, he said that it 
would have 21 dots, describing the pattern as being 
“in numerical order.” When asked where that point 
would be, he traced along the x-axis and then up into 
the first quadrant. His mouse movements strayed, 
and he actually ended up at the point (19, 20), but 
his method demonstrated understanding of the 
nature of the location of points on the xy plane.

Using Algebraic Representations
Following this discussion, I asked him questions 
to determine whether or not he could represent 
“Another dot pattern” algebraically. When I had 
asked him during session 2 how many dots would 

Figure 5: Points Marlon plotted from his table of values for “Another dot pattern.”
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be in the eighth step, he said, “I would just, in this 
case ... I would just add one ... if it was 8 it’d be 9.” 
In session 4, I asked him what he had in mind as 
he noted that step 10 has to have 11 dots. He said, 
“all I’m doing is actually adding a 1 to that and 10 
it’s going to give me 11.” This was a correct descrip-
tion of the mathematics in the pattern. When I 
then asked him to express the same idea using n 
as the step number, however, rather than giving 
the number of dots as n + 1, he reasoned as follows.

I’m just looking at n representing a certain 
number, a pattern and o being the next letter 
in the alphabet. So it’s the same thing as far 
as the numerical pattern. I would assume 
that the letter is going to be in ... alphabetical 
order.

His reasoning was logical and made sense to him, 
but showed that he lacked understanding of the use 
of variables in mathematics. He could describe the 
pattern, but he could not represent it algebraically.

Creating a Function
The teaching experiment was designed in part to 
observe how much Marlon could learn through 
his own investigations. Rather than attempting to 
clear up his misconception through direct instruc-
tion, I wanted to see what he might learn about 
algebraic representations through the use of the 
software. I introduced him to the functions menu 
of the software in the hope that some exploration 
on his part would reveal that f(x) = x + 1 and that 
he could then make the conceptual connections 
between his understanding of the pattern and the 
algebraic representation. After some introductory 
explanation, I encouraged him to try creating some 
functions that used x as a variable. He used the 
technology to graph f(x) = x + 9 and noted that 
“it crosses over the y intersect at 9.” After sketch-
ing that graph on paper, he used the technology 
to graph g(x) = x – 9. Figure 6 shows the sketch 
he made of these two functions based upon the 
technological images.

	 His conversation and gestures as he examined 
these two functions with the technology showed 
his thinking as he compared the graphical and 
algebraic representations.

I notice, okay {running the cursor down the 
graph of f(x)} okay. I notice here’s my -9 here 
{indicating (0,-9)} and this is my positive 
{indicating (-9,0)} okay. My 9 here, okay, as 
you were {moves the cursor to (0,9)} Here’s 
my positive number right here. Here’s my 
negative number right here. {moving the cur-
sor to (0, -9) then veering a little toward the 
right as he goes down} And they’re considered 
what {gesturing with mouse along the graph 
of f(x)} parallel to each other {running the 
cursor down the graphs of both f(x) and g(x)}.

	 He referred to f(x) = x + 9 as his “positive  9” and 
g(x) = x – 9 as his “negative 9.” He was associating 
the y-intercept with the algebraic representations 
of the functions. I was hopeful at this point and 
asked him to create a function that would pass 
through his data points. After some discussion, 
the following took place. Note that because f(x) 
and g(x) had already been defined, the software 
named the new function h(x).

MARLON:  I’m actually – is it value? No. 
What I’m actually doing is trying to put, this 
is h now and I want to get x + 0, {cursor is at 
the origin} Oh no no that’s going to, that’s 
going to be wrong. Um, {cursor is at (1,2)} ... 
2 plus 2. ... If I want this line to go straight 
through here {moving cursor from (0,0) to 
(1,2) to (0,1) to (0,0)} I notice that {to (0,1) to 

continued on page 12

Figure 6: Marlon’s sketch of the 
functions f(x) = x + 9 and f(x) = 
x – 9, based upon technological 
representations.

Figure 7: Some of Marlon’s explorations as he sought to find a function that would pass through the graphed points.
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(0,2)} this is {to (0,0) to (1,0)} this is actually 
one, two {moving cursor from (1,0) to (1,2)} 
so if I go to 1 {he changes the function to h(x) 
= 1} plus 2 {now he has entered h(x) = 1+2}.

	 Consider the knowledge that Marlon had 
demonstrated. He knew that his pattern involved 
adding one to the step number to get the num-
ber of dots. He knew that the x-coordinate of his 
data points represented the step number and the 
y-coordinate represented the number of dots. He 
had observed that functions of the form f(x) = x + b 
were passing through the y-axis at the value “b.” He 
had observed that graphs of that form were parallel. 
The data points were graphed in a line parallel to 
those graphs. In spite of all of this, when asked 
to create a function that would pass through his 
data points, he reverted to a misconception of the 
representations involved. He attempted to create a 
function that would pass through a point (a, b) by 
defining that function using the expression “a + b.”
	 Some of Marlon’s work in this investigation 
is shown in Figure 7 (p. 8). Repeated attempts to 
find the function can be seen in the upper left hand 
corner. The function f(x) = 1 + 2 was intended to 
pass through the point (1,2). The functions g(x) = 8 
+ 9 and h(x) = 8 + 9 were intended to pass through 
the point (8, 9), done twice because at first g(x) was 
out of view and he did not think anything had 
happened.
	 I wanted to draw his attention back to what 
he had been observing, and so I reminded him 
that the parallel functions had used the variable 
x. After further examination of the graph he then 
graphed h(x) = x + 1, and saw that it passed through 
the data points. Marlon noted, indicating the point 
(1, 2) that “it could have been +2” and then said that 
“+2, could have +3, 4 and so on and it would still 
[give] me a parallel line.” To follow up on what he 
was saying and reinforce the idea of the y-intercept 
and the parallel nature of the family of functions, I 
encouraged him to try some additional functions of 
the form f(x) = x + b. His misconceptions continued 
to interfere with his work. The new function he 
created did not pass through his data points, and 
so, rather than observing that the new function 
was parallel, he felt that he had done something 
incorrectly.

MARLON:  I plot a new function and then 
I’m going to say ... x + 2.... {he has plotted 
q(x) = x + 2} Okay, Oop. Okay I did it wrong. 
Alright. I did it wrong {moves his cursor to 
(0,1)}. I should have said x + ... I should have 
said 1 + 2. {he moves the cursor from (0,0) to 
(1,0) to (1,2)} ... 

It’s ... cutting across the 2 {referring to the 
point (0, 2)} instead of actually cutting over 
one plus 2 {indicating (1,2)} it’s actually 

cutting here at (0,2)... Because here’s my x 
and here’s my y {going from (0,0) to (0,2)}. So 
if I actually should have did, if [I] actually ... 
did it right it should have been 1 + 2 and it 
would have been right there {indicating (1,2)}.

He had seen that f(x) = x + 9 crossed the y-axis at 9, 
he had seen that g(x) crossed the y-axis at -9 and he 
had seen that f(x) = x + 1 passed through his data 
points and crossed the y-axis at 1. Nevertheless, he 
still insisted that 1 + 2 should have been the defining 
expression for a function passing through (1, 2) and 
the rest of his data points. He also did not anticipate 
the placement of q(x) = x + 2. His misconceptions 
continued to interfere with his understanding, with 
the technological representations he had seen, and 
the connections he had made. He later stated that 
“x plus 3 would have brought me here {indicating 
(2,3)}. The talk-aloud dialog highlighted the con-
fusion Marlon was experiencing about standard 
algebraic representations and the manner in which 
his misconceptions interfered with his learning.

Discussion
Marlon’s lack of valid internal representations 
of standard mathematical notation interfered 
with his ability to build understanding through 
the use of technology. His journey through the 
study began with evidence of his lack of algebraic 
validity. His misapplication of the FOIL method 
of multiplying binomials was evidence that his 
internal representation of polynomial multipli-
cation lacked sufficient validity and endurance. 
Although he understood and reasoned about 
functional patterns, he was unable to transfer this 
knowledge to standard representations. His lack of 
a conceptual understanding of the standard use of 
variables interfered with his ability to represent the 
number of dots in “Another dot pattern” algebra-
ically. Given that n represented the step number, 
he represented the number of dots using the let-
ter o, rather than n + 1. Marlon did demonstrate 
diligence and perseverance, qualities vital to the 
mathematical success of adult mathematicians. The 
quality of proactive sense making and persever-
ance in problem solving Marlon exhibited might 
be thought of as “mathematical industry.” The 
weaknesses in Marlon’s internal representations 
impeded the progress his mathematical industry 
might have allowed him.
	 Persistent misconceptions about the nature of 
the algebraic representation of a function inhibited 
his ability to extrapolate from the legitimate con-
nection he had made between the graph of f(x) 
= x + b and (0, b). He did not find f(x) = x + 1 

without additional prompting to include x as part 
of the expression. Even after he saw the correct 
representation, it was not enduring. During later 
attempts to pass a function through (1, 2) and (2, 3), 
he reverted back to using f(x) = 1 + 2 and f(x) = 2 + 
3 to serve that purpose. Although he had indicated 
to me that he had seen functional notation before, 
understanding of that notation did not endure. His 
internal representation of coordinate points as a 
horizontal movement plus a vertical movement 
moved in to falsely fill that conceptual gap and 
interfered with his ability to build upon what he 
was experiencing.
	 The data collected highlights his conceptual 
strengths and conceptual challenges as well as 
the way in which those strengths and challenges 
interacted. Marlon’s work analyzing the dot pat-
terns and making genuine connections between 
f(x) = x + b and (0, b) demonstrate genuine intel-
lectual strength. They are in keeping with the first 
mathematical standard of practice described in the 
Common Core State Standards for Mathematics 
(Common Core State Standards Initiative, 2011), 
“Make sense of problems and persevere in solv-
ing them” (p. 6). Perseverance describes Marlon’s 
earnestness and continued efforts to struggle with 
the same ideas. He made some sense of what he 
was seeing in the patterns. He solved the problem 
of the connection between the graphs of f(x) = x 
+ 9 and g(x) = x – 9 by continuing to examine the 
graphs and noting where they crossed the y-axis.
	 Marlon’s mathematical industry is evident 
in the earnest effort he made to make sense of 
“Looking at dot patterns.” He dealt with confu-
sion over one portion of the pattern by focusing 
on another portion of it that he could understand. 
He noticed details about the pattern and created a 
genuinely logical way of thinking about the even 
numbered patterns. Although his suggestion to 
use the letter o to represent the number of dots in 
“Another dot pattern” shows a lack of understand-
ing of algebraic notation, it does show the ability to 
think logically and make sense of things. The issue 
is not his ability to think logically, the issue is his 
ability to think logically using standard discipline 
valued algebraic representations.
	 Marlon tried different approaches when some-
thing didn’t work as he expected. Those efforts to 
progress were hampered by invasive misconcep-
tions regarding standard representations and their 
purposes. The growth in understanding he might 
otherwise have experienced through the use of 
technology was stunted by the lack of validity of 
his internal representations. A conception of f(x) 
= a + b as a way to pass a graph through the point 
(a, b) is not valid in that it does not accurately 
represent what the standard notation f(x) = a + b 
is intended to represent. Concepts were not suf-
ficiently connected to standard representations 
in a way that would promote continued learning. 

continued from page 8
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Such a situation might be described as “conceptual 
barrenness,” in that any conceptual understand-
ing of the representation that may be present is 
insufficient to support mathematical growth. A 
lack of validity in Marlon’s internal representations 
thwarted the growth that Marlon’s mathematical 
industry might otherwise have produced, placing 
him within a discouraging mathematical dilemma.
	 Marlon was employing mathematical indus-
try in a conceptually barren setting. He was able 
to understand the pattern. He was able to state a 
sensible way of describing this pattern. Yet despite 
persistent efforts over several sessions, he was not 
able to transfer all of this genuine understanding 
to a discipline valued standard representation of 
the function, h(x) = x + 1. He needed facilitation 
to find that representation. Even after seeing it and 
the graphs f(x) = x + 9 and g(x) = x – 9, he became 
confused about what happened when he graphed 
q(x) = x + 2. When he considered creating a graph 
to pass through the point (2, 3) he referred to x + 
3. He wondered why q(x) = x + 2 was not passing 
through (1, 2) and described the graph as “hitting 
zero plus two,” referring to the coordinate point 
(0, 2) as a sum. Pervasive misconceptions con-
taminated the representations he was seeing. Such 
contamination slowed his progress and would have 
stopped it without facilitation. Marlon did possess 
worthwhile mathematical industry and conceptual 
understanding of the nature of the pattern, but it 
was very difficult for him to overcome his lack of 
conceptual understanding of the representational 
setting in which he was being called upon to work.

Implications for Research 
and Practice

Marlon’s case demonstrates a dilemma that many 
adult students may be facing: the employment of 
considerable mathematical industry in a conceptu-
ally barren setting that is discouraging to the point 
of defeat in many cases. An increased emphasis 
on conceptual understanding in the formation of 
mathematics education policy could signify an 
important turning point in our nation’s efforts to 
improve the educational experiences of students 
like Marlon. Conceptual understanding had been 
characterized in recent years in many ways. Among 
those characterizations are ideas related to math-
ematical representations, such as the ability of a 
student to connect multiple representations of the 
same idea (Alagic & Palenz, 2006), to visualize ideas 
(Abramovich & Ehrlich, 2007), and to verbalize 
ideas (Alsup & Sprigler, 2003). The ability to connect 
disparate ideas and transfer knowledge to a differ-
ent setting are also vital (Beitzel, Stally, & DuBois, 
2011), as is understanding that situates knowledge 
within a web of related ideas (Van de Walle, 2007). 
Conceptual understanding also includes the ability 
to reason flexibly about problems that are posed 
and make connections to what is already known 

(Engelbrecht, Harding, & Potgieter, 2005). It is 
evidenced by “the ability to cope with higher levels 
of abstraction” (Panasuk, 2010, p. 236), the ability 
to notice and consider analogous situations, the 
ability to represent related ideas coherently, the 
ability to justify reasoning about ideas, and the 
ability to apply ideas appropriately (Common Core 
State Standards Initiative, 2011).

Research Connections
As standards emphasizing conceptual understand-
ing are increasingly incorporated into our K-12 
educational system, stakeholders in postsecondary 
education should take note of the revitalized expec-
tations they must have for their students and the 
pedagogy that should accompany those expecta-
tions. As curriculum and pedagogy are prepared for 
developmental and college mathematics courses, 
attention must be paid to the level of conceptual 
understanding of the mathematical representa-
tions used in those courses students must have in 
order to interact with those representations with 

beneficial industry and enthusiasm. In addition, 
resources must be developed, researched, and field 
tested, to meet the needs of students faced with 
Marlon’s dilemma. Such research and develop-
ment might focus on the following questions: How 
can the conceptual disconnect students experi-
ence when examining standard representations 
be accurately assessed? What curriculums and 
classroom methods can best target the dilemma 
created by a lack of student understanding of stan-
dard mathematical representations? How can those 
curriculums and classroom methods value and 
utilize the mathematical industry students with 
different levels of understanding possess?

Strategies
In order to minimize as much as possible the effects 
of the discouraging dilemma many students face 
teachers can engage in daily formative assessment 
practices to help identify students who are try-
ing to build upon representations of which they 
have little conceptual understanding. Identifying 
such “disconnected” representations can allow 
teachers to locate and direct students to resources 
that might help those students rebuild concep-
tual pathways. Online libraries of resources for 
rebuilding conceptual pathways can be developed 
to provide teachers with an efficient way to locate 
the best tools. Teachers may also wish to provide 
additional help sessions for groups of students 
whom they have observed experiencing similar 

disconnects. Reflective journaling about the nature 
of the difficulty their students are experiencing 
can establish a data source to distinguish various 
disconnects; organized information about the best 
resources available to meet those needs will help 
ensure greater success for future students with 
similar difficulties.
	 Specific strategies for assisting students to 
build a conceptual understanding have been sug-
gested by research. Among those strategies are 
the use of language to precede the use of variable, 
analogies to help students understand algebraic 
situations, and tasks that bring students to higher 
levels of variable usage.
	 Students’ difficulties may be influenced by a 
lack of understanding of variables, thinking of them 
as just “letters” without understanding their role 
(Dias, 2000; Saul, 2001). They may not understand 
that other symbols may be used to represent quanti-
ties, or that some letters used in mathematics are not 
variables, such as the “ f” in the expression f(x). One 
strategy that may help them make the transition to 
using variables and other mathematical shorthand 
properly is to use English words to describe the 
mathematical notation verbally until they get tired 
of writing things out and are motivated to use the 
shorthand: For example, use “the image of 4 by 
the function g”(Dias, 2000, p. 194) as language 
preceding the use of the notation g(4).
	 Students may be working at a lower level of 
algebraic understanding than teachers realize (Saul, 
2001). Students may be solving linear equations by 
trial and error, especially in simpler problems such 
as x + 5 = 8. If asked instead to solve x + 112.57 = 
739.45, students will be more likely to apply inverse 
operations as a tool; they will be forced to consider 
the binary operations involved and the concept of 
“doing and undoing” that are essential to algebraic 
understanding (Driscoll, 1999; Saul, 2001). At the 
highest level of algebraic understanding students 
are able to use variables to represent more complex 
algebraic expressions. Teachers can help students 
progress to this level by asking them to think of 
the more complex expression as “playing the role” 
of the variable (Saul, 2001). They can also replace 
variables with other types of icons or parenthe-
ses that better match their understanding of the 
algebraic variable to replace variables. By using 
such techniques, teachers can help students have 
a better understanding of the role of variables.
	 In addition teachers can ask students to con-
nect abstract ideas to analogous situations that will 
allow students to build a grounded understand-
ing of those ideas (Koedinger & Nathan, 2004). 
For example, when teaching students about the 
mathematical properties of functional relationship, 
as opposed to a mathematical relation that is not 
a functional relationship, the analogy of a mail 
carrier delivering the mail can be used. The set of 
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letters to be delivered is the independent variable 
and the set of mailboxes to which it is delivered is 
the dependent variable (Sand, 1996). Each letter 
must be placed in one mailbox, no single letter 
can be placed in more than one mailbox, but one 
mailbox may receive more than one letter. A map-
ping representation of this situation can be cre-
ated, and this analogy can be extended to multiple 
representations and used as an underpinning for 
discussions of functions.
	 Technology projects can provide students with 
opportunities to build conceptual understanding 
of mathematical representations provided they are 
at the appropriate level and build on the students’ 
current understandings, as Marlon’s work with 
Geometry Sketchpad illustrates.  Under the pres-
sure of time, teachers may not be able to facilitate 
every learning experience for every student at 
this pace, but they can carefully consider what 
knowledge they wish students to build and choose 
targeted activities accordingly. They can narrow a 
technological investigation to one key parameter 
or idea upon which other ideas rest. For example, 
teachers can have students enter data into math-
ematical software similar to Geometer’s Sketchpad 
that can be closely modeled by functions having 
the form f(x) = mx and then ask students to find 
the function of that form that most closely models 
their data. As they investigate with technology, 
students can observe how changes in m affect the 
graph, draw conclusions about the effect of that 
parameter on the graph, and make observations 
about the relationship of that parameter to the data 
modeled. The more students can connect other 
representations with algebraic representations, 
the more solid their understanding of algebraic 
representations will be.
	 As the students become confident in the use 
of technology through one or more teacher led 
technological investigations, they will be more 
likely to use technology independently for their 
own learning needs, and the teacher can assign 
increasingly more independent investigations for 
students to conduct outside of class. One labora-
tory session is enough to build such a technology 
sequence into a one-semester course. Having 
students write brief reports that include copied 
images from their technological work allows the 
instructor to gain insight into their mathematical 
thinking and provides the opportunity to include 
verbal representations in conjunction with stan-
dard mathematical representations. 

Concluding Thoughts
Issues faced by adult developmental mathemat-
ics students are symptomatic of problems found 
throughout mathematics education. Many adult 
students come back to school dreaming of obtaining 

continued from page 13 an education that will change their lives. They enter 
with the ability to quickly learn about and engage 
in valued mathematical standards of practice, val-
iantly persevering in their efforts to make sense of 
things. For many, however, attempts to progress in 
mathematics using those qualities are thwarted by 
the lack of validity of their internal mathematical 
representations and conceptual disconnections 
regarding standard representations. From the 
beginning of the semester, they are asked to employ 
their mathematical industry in a land of meaning-
less representations: continuing in this fruitless 
situation becomes repetitious to the point of the 
defeat and discouragement (Bryk & Treisman, 
2010). Students reflect this frustration by describ-
ing developmental courses as “an insurmountable 
barrier for many students, ending their aspirations 
for higher education” (Bryk & Treisman, p. 19).
	 Marlon’s case study provides a glimpse into 
internal barriers of conceptual misunderstandings 
that impede progress, even for industrious students 
earnestly working to progress in college mathemat-

ics. In order to enhance students’ success in devel-
opmental mathematics, their learning experiences 
must uncover and restructure internal represen-
tations that interfere with an understanding of 
standard mathematical representations. Research 
is needed into the curriculum, resources, pedagogy, 
and andragogy needed to help all students in this 
situation progress with efficiency and effectiveness. 
Students like Marlon who are valiantly attempting 
to succeed deserve nothing less.
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”the intellect.” Further, such an analysis requires tracing some important 
meanings implied by these terms and their interrelationships. 
	 The term intellectual often means requiring the intellect or having or 
showing a high degree of intelligence. The term intellect implies the ability to 
reason or understand or to perceive relationships, differences, and so forth. It 
refers to that part of the mind that knows or understands. It may also imply 
the power of thought, great mental ability, or a high degree of intelligence. 
The terms intelligent or intelligence imply having or showing an alert mind, 
bright, perceptive, informed, clever, and wise. They also generally imply the 
ability to learn or understand from experience, the ability to acquire and 
retain knowledge, and the ability to respond quickly and successfully to new 
situations. And they characteristically imply or presuppose use of the faculty 
of reason in solving problems, directing conduct successfully, and making 
sound judgments (Wiley Publishing, 2007).
	 Note that within these meanings are several important concepts whose 
meanings are essential to understanding intellectual standards: to reason, 
to know or comprehend, and to make sound judgments. “To reason” entails 
the power to think rationally and logically and to draw inferences.  “To 
understand” is the faculty by which one understands, often together with 
the resulting comprehension. It entails superior power of discernment or 
enlightened intelligence. “To make sound judgments” is the ability to assess 
situations or circumstances logically or accurately and draw reasonable 
conclusions. “To know or comprehend” means to have a clear perception or 
understanding of, to be sure of. It entails clear and certain mental apprehen-
sion (Wiley Publishing, 2007).
	 The term intellectual, when integrated with related terms, thus entails 
the use of sound reasoning and judgment in the pursuit of knowledge. It 
typically implies the superior powers of the intellect as well as the ability 
to use one’s mind to make intelligent decisions, to use the faculty of reason 
in solving problems, and directing conduct successfully. Finally, it suggests 
clear perception and the logical drawing of inferences.

The Concept of Intellectual Standards
Taking into account the previous meanings and analysis, we conceptualize 
intellectual standards in the following way:

the standards necessary for making sound judgments or for reason-
ing well, for forming knowledge (as opposed to  unsound beliefs), for 
intelligent understanding, and for thinking rationally and logically.

	 In short, we use the term intellectual standards to mean standards that 
further good judgment and rational understanding. They are essential for the 
mind’s on-going awareness and assessment of the strengths and weaknesses 
in personal thinking and in the thinking of others. Whether focused on the 

inner structure of thought or its global qualities, intellectual standards are 
essential to functioning as reasonable, fairminded persons. However, most 
people rarely seem to reflect upon the standards they use to determine what 
to accept and what to reject. Consequently, and because the fulfillment of 
intellectual standards is not natural to the mind, people tend to use default 
standards, ones that are often highly egocentric and sociocentric. Conversely, 
fairminded critical thinkers recognize the primary role of meeting intellectual 
standards in living a fulfilling, rational life. They therefore routinely work 
to meet these standards. They typically recognize when they, or others, are 
failing to meet them.

Closing
In the next column we will detail some constellations of intellectual standards, 
thereby illuminating the interconnectedness of these standards as well as 
some fine distinctions among them. We will also differentiate between micro 
intellectuals standards and macro intellectual standards, and briefly discuss 
the common human problem of vested interest as a barrier to the adherence 
of intellectual standards. These theoretical distinctions are important, in 
order to help students learn to reason with skill within the disciplines.
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