
Journal of Technology Education  Vol. 17 No. 1, Fall 2005 
 

-35- 

Creativity—A Framework for the Design/Problem 
Solving Discourse in Technology Education 

 
Theodore Lewis 

 
Subjects for which aesthetics and creative performance are critical 

curricular dimensions (such as art, physical education, music, and technology 
education), and which are accommodative of students across the range of 
intelligences (Gardner, 1999) are not readily or completely captured by content 
standards. Therefore content knowledge in these fields that target student 
achievement as conventionally conceived must be complemented by treatment 
of more subjective and elusive goals such as the development of 
connoisseurship, appreciation, or creative insight. With the publication of 
standards for the subject (International Technology Education Association, 
2000), the need for focus upon creativity in technology education has been 
made more urgent than before because of the prominence given to the teaching 
and learning of design. Four of the standards (8, 9, 10, and 11) address design 
directly. Technological design is a medium through which dimensions of 
children’s creative abilities can be stimulated and augmented. This creative 
potential of design teaching can be seen in the work of Druin & Fast (2002), 
where Swedish children who are included in the design of technology reveal 
inventive dispositions in their journaling. It can be seen also in the work of 
Foster and Wright, 2001; Gustafson, Rowell and Guilbert, 2000; Neumann, 
2003; and Parkinson, 2001. 

Arguably, stimulating creative impulses in children through design and 
problem-solving activities is as grand a goal of curriculum as is the achievement 
of particular design-based, measurable outcomes. But how do we get children to 
improve upon the quality of their designs? What makes one design solution 
more elegant than the other? There are no easy answers here because creativity 
does not quite respond to the accustomed inquiry questions that we pose in 
discussion of curriculum, instruction and assessment questions in technology 
education. As Bruner (1962) pointed out, creativity is a silent process which by 
its very nature will not be responsive to the processes ordinarily employed to 
determine content standards. Instead, it requires its own set of questions, 
including examination of its nature.  

This article seeks to stimulate a conversation about the inculcation of 
creativity as an important goal of technology education, and as a concomitant of  
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the goals of the Standards for Technological Literacy. The purpose is to direct 
the attention of the field to an area of the subject that remains under-explored. It 
could be argued that creativity underpins the substantial attention that has been 
devoted within recent times to design and problem solving. But much of this 
attention is implicit rather than explicit. There is a need for design and problem 
solving in technology education to be framed not so much in terms of 
methodologies of engineers, but as opportunities for students to step outside of 
conventional reasoning processes imposed by the rest of the curriculum. 
Creativity has compelling claims to being the anchoring idea in such a 
framework.  

Should a conversation on the creative dimension of technology education 
blossom to the full, the result could be the unearthing of issues and challenges 
that could become the basis of a framework for research (see Lewis, 1999) and 
for re-consideration of technology-based curriculum and instruction. A 
creativity focus augments the content standards thrust by causing us to be 
preoccupied not just with student learning of technological concepts and 
processes, but with what children can learn about themselves by engaging 
technology. The article unfolds by addressing (a) what is creativity, (b) creative 
cognitive processes, (c) schooling and creativity, (d) creativity and technology 
education, and (e) implications for technology education. 

What is Creativity? 
Creativity is not easily defined, because of its unseen character. As Boden 

(1994) points out, inventors often do not know the source of their insight. Still, 
it is possible to discern the creative from the ordinary. Bailin (1994) notes that 
while there has not been universal agreement on what constitutes creativity, 
there are shared beliefs about its nature, as follows (a) that creativity is 
connected with originality—with a break from the usual (b) that the value of 
creative products cannot be objectively ascertained, since there are no standards 
by which new creations can be assessed (c) that beyond products, creativity can 
be manifested in new and novel ways of thinking that break with previously 
established norms (d) that existing conceptual frameworks and knowledge 
schema impose restraints on creative insight, and (e) that creativity is a 
transcendent, irreducible quality. 

An enduring definition provided by Bruner (1962), is that creativity is an 
act that produces “effective surprise” p. 3. Bruner explained that the surprise 
associated with creative accomplishment often has the quality of obviousness 
after the fact. The creative product or process makes perfect sense—once it is 
revealed. For the creative person, surprise, according to Bruner, “is the privilege 
only of prepared minds—minds with structured expectancies and interests” p. 4. 
Bruner identified three kinds of surprise, predictive (such as in theory 
formulation or re-formulation), formal (as in a musical composition where there 
is an elegant reordering of elements), and metaphorical (as in the idea of 
“systems”), where the creativity comes from recognizing commonality across 
disparate elements. 
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Tardif and Sternberg (1988) suggested that it could be fruitful to dissect 
creativity into processes, persons, and products, and indeed, much of the 
research on creativity is framed along these lines. Creative processes take time, 
and include search through a problem space. They may involve transformations 
of the external word, internal representations through analogies and metaphors, 
constant definition and re-definition of problems, applying recurring themes, 
and recognizing patterns. Creative people are governed by internal factors, 
especially personality. They invariably are creative within particular domains, 
such as art, music, or electronics. But across domains creative people share 
common cognitive characteristics such as the ability to think metaphorically and 
flexibly, the ability to recognize good problems in their fields, and the 
willingness to take intellectual risks. 

Composite Nature of Creativity  
A view of creativity around which there has been a growing consensus that 

it is a composite concept, the product not just of individual traits, but also of 
societal and environmental factors. Csikszentmihalyi (1988) offered such a 
view, having proposed that creativity is never accomplished by an individual 
alone, but rather is the product of the interaction of a stable cultural domain that 
will ensure perpetuation of the idea, a supporting institutional framework (a 
field) comprised of the stakeholders and gatekeepers who affect the structure of 
the domain, and an embedded social system. By this way of thinking, 
attributions of what is creative are relative, and grounded in social agreement. 
Lubart (1994) wrote that to be creative is to produce work that is both novel and 
socially useful, and that the less parochial is the context of the accomplishment, 
the more highly creative is the work.  

Creativity and Intelligence 
Whether creativity correlates with or is completely explained by theories of 

intelligence has been a point of issue. The consensus appears to be that creative 
behavior has to be explained outside of the framework of intelligence. And 
indeed, Gardner (1999) has proposed that intelligence resides in a multiplicity of 
human attributes. In a seminal piece, Guilford (1950) suggested that to fathom 
creativity one had to look beyond the normal boundaries of IQ. He contended 
that creativity was not confined to geniuses, but rather, on the principle of 
continuity, it was present albeit in varying degrees, in all humans.  

Feldhusen (1993) wrote that creativity has readying and predisposing 
conditions, one being intelligence, but that while intelligence is an asset, it is not 
a sufficient condition for creative behavior. Sternberg (1985; 1988) has 
contended that creativity overlaps with intelligence, cognitive style, and 
personality/motivation, and that it has socio-cultural as well as experiential 
correlates. While the intellectual dimension of creativity deals with problem 
finding, problem definition and redefinition, and knowledge acquisition, 
personality aspects govern traits such as tolerance for ambiguity and willingness 
to surmount obstacles. 
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Theories of Creativity  
Several strands of theory support inquiry into creativity. Busse and 

Mansfield (1980) suggested seven lines, namely, psychoanalytic, Gestalt, 
associationism, perceptual, humanistic, cognitive developmental, and composite 
theories (such as Koestler’s (1969) bisociation). Houtz (1994) condensed these 
lines into four approaches, namely (a) associationism/behaviorism—connection 
among disparate ideas, and between stimulus and response (especially Mednick, 
1962), (b) psychodynamic, focused on conscious and unconscious thought (thus 
inclusive of the psychoanalytic), (c) humanism, focused on intra-individual life 
forces and motivations, and (d) cognitivism, focused on thinking processes and 
skills. These two categorizations clearly intersect. They provide frameworks for 
inquiry into creativity, and a backdrop for understanding creative processes. 

Creative Cognitive Processes 
Just what are the cognitive processes that yield creative ends? One 

approach to resolution here is to examine the logic of exceptionally creative 
people. In one such study, Cross (2002) used phenomenological methods to 
explore the creative cognitive processes of three exceptional designers from 
different domains of design, and found some commonality in their approaches 
including (1) they relied on first principles both in origination and development 
of concepts (such as adherence to fundamental physical principles or design 
basics), (2) they explored the problem space in a way that pre-structures or 
foreshadows the emergence of design (for example, they may give precedence 
to providing joy to the user), and (3) creative design comes about when there is 
tension to be resolved between problem goals and solution criteria. Using these 
areas of commonality, Cross fashioned a model suggesting that exceptional 
designers take a broad systems approach to design, but they also frame problems 
in distinctive personal ways that seem to issue from their particular 
personalities. 
Also examining the approach of exceptionally creative people, Csikszentmihalyi 
(1996) arrived at his conception of flow, the optimal state of experience that 
yields novelty and discovery. From his observation he too arrived at a systems 
explanation, surmising that creative flow involves feedback that produces 
enjoyment when novelty occurs. When things are going well in the act of 
creating, subjects report their behavior to be almost automatic and unconscious. 
This state of flow seems to be preconditioned by a set of enablers including 
having clear goals, balancing between challenges and skill, merging action and 
awareness, and not fearing failure. 

While much could be learned about creative processes through examination 
of the logic of people who are exceptionally creative, it needs to be remembered 
that creative behavior is not monopolized by the gifted (Guilford, 1950). For 
example, Chomsky (1957) called attention to the routine, flexible use of 
language among humans. Ward, Smith and Finke, (1999) contended that human 
ability to construct an array of concepts from otherwise discrete experiences is 
evidence of our “generative ability.” Generative ability includes cognitive acts 
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such as retrieval of existing structures from memory, forming simple 
associations, transforming existing structures into new ones, analogical transfer, 
and metaphorical thinking. Such abilities, along with conceptual combination, 
divergent thinking, and productive thinking, are processes that must become 
better understood in the technology education community as modes of reasoning 
associated with creative production. Next, these cognitive processes identified 
here are briefly examined. 

Metaphorical Thinking.  
Metaphors are powerful creative tools that allow comparison and 

categorization of materially unlike entities. They involve mapping across 
conceptual domains, from a source domain to a target domain (Glucksberg, 
Manfredi & McGlone, 1997; Lakoff, 1993). An example of metaphorical 
thinking would be the characterization of the Internet as an “information 
highway.” By facilitating description of new situations through reference to 
familiar ones, metaphors allow conceptual leaps (e.g., Glucksberg & Keysar, 
1990). Metaphors bring into play the right side of the brain, which, different 
from the logically oriented left side, is holistically oriented, supportive more of 
the strategic than the tactical, and can facilitate dealing with ambiguity. They 
function at the executive level, subsuming analogies, and relying on the 
principle of association to facilitate connections among unlike entities (e.g., 
Genter & Jeziorski, 1993; Sanders & Sanders, 1984).  

Metaphorical thinking exercises can be employed as auxiliary activities 
supportive of design teaching and learning in technology education. Teachers 
can provide students with prototypic examples of metaphors, then require them 
to conceive of as many as they can.  

Analogical Thinking 
An analogy is a special type of metaphor, its signature being a structural 

match between two domains (Gentner, Brem, Ferguson, Wolff, Markman, & 
Forbus, 1997). Analogical thinking involves mapping of knowledge from a base 
domain to target domain to facilitate one-to-one correspondence. An example 
would be the connection that Rutherford made between the solar system and the 
hydrogen atom (Gentner & Jeziorski, 1993), or the parallelism that can be 
drawn between electric current flow and fluid flow. Analogies are tactical; they 
make possible the solution of a given problem by superimposing upon it the 
solution to a problem in a different domain (e.g., Gick & Holyoak, 1980). Thus, 
airplane flight is analogous to the flight of birds. The spider-web has been the 
basis of design of architectural structure. 

Analogical thinking can conceivably aid design reasoning in technology 
education classrooms, if teachers are able to draw upon particular technological 
examples where the inspiration for the design came from nature. Students can 
readily see the similarity between airplanes and birds. They can learn about the 
stability of structures by studying the foundation of trees. If they are encouraged 
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to conceive of many more such analogical examples, students will thereby be 
engaging in the kind of thinking that is required for solving design puzzles.  

Combinatorial Creation  
Combinatorial creation is a design process in which two or more concepts 

or entities are combined to yield an entirely new product (Wisniewski, 1997). It 
is a creative approach explainable by association or composite theories. In 
nature the combination of hydrogen and oxygen yields water, a unique product 
with properties different from the component gases (Ward, Smith, & Vaid, 
1997). In the commercial world, the combination of two dissimilar products can 
yield a composite novel result. For example, metals are made more resilient by 
alloying. A kite combined with water skis provide a novel recreational vehicle. 
Seeing the novel combinatorial possibilities inherent in two dissimilar objects 
requires creative insight, and uncovering how people reason about combinations 
can be a way to gain understanding of the nature of creativity.  

In the technology education classroom, combinatorial activities could 
become part of the repertoire of the teacher. Students could be asked to arrive at 
designs that are the product of two existing objects or products. They can be 
given thought exercises, the aim of which could be to imagine new products that 
can materialize from combinations of existing ones. 

Divergent Thinking 
Divergent thinking was included by Guilford (1959) as a facet of his 

structure of intellect. In this work, Guilford proposed that intellect was 
composed of thought processes or operations, contents that are the raw material 
of operations, and products that are outcomes of operations. Divergent thinking 
and convergent thinking were included among operations. Convergent thinking 
yields fully determined conclusions drawn from given information. It is 
associated with general intelligence. Divergent thinking yields a variety of 
solutions to a given problem. Guilford (1967) found divergent thinking to be 
composed of four factors, fluency, ability to produce many ideas; flexibility, 
producing a wide variety of ideas; originality, producing novel ideas; and 
elaboration, adding value to existing ideas. Divergent thinking is believed to be 
a characteristic of creative minds (e.g., Baer, 1993; Wakefield, 1992). In 
technology education it squares with approaches to the teaching of design that 
require students to brainstorm and to generate multiple solutions to problems. 

Productive Thinking 
Productive thinking is creative behavior as characterized by Gestalt 

theorists. Wertheimer (1968) applied it to problem solving, suggesting that 
structural features of the problem set up stresses in the solver, and that as these 
stresses are followed up they cause the solver to change his/her perception of 
the problem. The problem is restructured, peripheral features are separated from 
core features, and solutions emerge. Duncker (1945) suggested that the act of 
problem solving involves reformulating the problem more productively. The 
problem solver must invent a new way to solve the problem by redefining the 
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goals and approaching the final solution incrementally via a succession of 
insights. He found that insight occurs in problem solving only when the solver is 
able to overcome a mental block, especially that induced by prior knowledge. If 
the solver thinks of using an object only in the habitual way, where a novel 
approach is required, creativity will be blocked. He referred to this experience-
induced impediment to creativity as “functional fixedness.” If one is accustomed 
to seeing a box used as a container, one may have difficulty seeing the same box 
as a platform (see Mayer, 1995).  

Productive thinking in the technology education classroom would require 
students to restate or restructure problems in ways that make it easier for them to 
begin to see solution prospects. As students deconstruct problems, discarding 
aspects that are not germane to the solution, they are drawn closer to solutions. 
Students could be provided “thinking outside the box” exercises that require 
them to consider multiple uses to which everyday objects or devices can be put.  

Schooling and Creativity  
Schooling is an important aspect of the development of creativity in 

children. Support for such development can begin with a curriculum that takes 
student interest and individual differences, including thinking styles, (Sternberg, 
1990) into account. Especially, the curriculum must account for the multiple 
intelligences among students (Gardner, 1999). We can gain insight into what 
creativity enhancement through the school curriculum might entail by setting 
forth the six resources identified by Lubart and Sternberg (1995) as being 
critical to creative performance as a framework. These “resources” are (1) 
problem definition or redefinition, (2) knowledge, (3) intellectual styles, (4) 
creative personality, (5) motivation to use intellectual processes, and (6) 
environmental context. How can these resources be engaged in classrooms? 

While students with exceptional creative talent would benefit from 
curricula that deliberately include a creativity-oriented component, all children 
stand to benefit when such an approach is taken. Cropley (1997) contended that 
the inculcation of creativity should be a normal goal of schooling, with the aim 
being to help all students attain their creative potential. Children should be 
helped to achieve effective surprise in their work. He outlines a framework of 
ideas around which a creativity-focused curriculum can revolve—one that 
overlaps with Lubart and Sternberg’s resources approach. It includes provision 
of content knowledge, encouraging risk taking, building intrinsic motivation, 
stimulating interest, building confidence, and stimulating curiosity (Cropley, p. 
93). As can be seen here, creativity enhancement must address factors that are 
internal to the student, such as personality and intellectual disposition, as well 
as factors that are external, such as curricular, social, and environmental. 

Domain knowledge features are a key prerequisite of creative productivity 
in the schemas offered by both Lubart and Sternberg (1995) and Cropley 
(1997). There is strong evidence in the research literature indicating that a fund 
of domain knowledge is imperative for creative accomplishment (e.g., 
Simonton, 1988; Csikszentmihalyi, 1996). Cropley (1997) contended that 
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providing such knowledge is one important way in which schools can foster the 
development of creativity. Lubart and Sternberg (1995) write that knowledge of 
the state of knowledge in a domain prevents attempts to reinvent the wheel. 
Nickerson (1999) offered the view that the importance of domain-specific 
knowledge in the forging of creativity is underestimated. He argued that across 
a wide front of domains, including the arts, mathematics, and science, 
acquisition of a solid knowledge base is a precursor of exemplary creativity. He 
wrote:  

One cannot expect to make an impact in science as a consequence of new 
insights unless one has a thorough understanding of what is already known, or 
believed to be true, in a given field. The great innovators of science have 
invariably been thoroughly familiar with the science of their day. Serendipity is 
widely acknowledged to have played a significant role in many scientific 
discoveries; but it is also acknowledged that good fortune will be useful only to 
one who knows to recognize it for what it is. (p.409) 
 
It is necessary to offer a caveat with respect to the importance of domain 

knowledge and it is the contention that prior knowledge could sometimes 
impede creative behavior. As Lubart and Sternberg (1995) pointed out, high 
levels of knowledge can actually stymie creativity. Dunker (1945) referred to 
this possibility of the problem of “functional fixedness” where one is unable to 
break away from normative usage of an item. Weisberg (1999) spoke of the 
tension between knowledge and creativity, suggesting a U-relationship between 
the two that acknowledges both positive and negative transfer of knowledge. 
Still, the fact that prior experience or knowledge could conceivably depress 
creativity is more a caution than an argument against domain-knowledge 
acquisition as a basis of expertise and creativity. Schools must provide children 
with the foundational knowledge supportive of creative insight. 

Beyond provision of domain knowledge, schools can enhance the creativity 
of children if classroom environments support and facilitate risk taking, problem 
posing, individual learning and thinking styles, and intrinsic and extrinsic 
motivation (Jones, 1993; Jay & Perkins, 1997; Lubart & Sternberg, 1995; and 
Cropley, 1997). Some school contexts are more supportive of creative behavior 
than others, and the factors that can militate against creative behavior may be 
both internal and external in character (Jones, 1993). For example, low self-
esteem could inhibit creative effort (e.g., Hennessey & Amabile, 1988). The 
external environment can dampen creativity if it does not reward creative 
behavior, or if it deliberately suppresses it. 

Creativity can be enhanced in the curriculum by providing students more 
opportunity for problem finding, as a precursor to problem solving (e.g., Moore, 
1993). Problem finding has not been given as much prominence in technology 
education as problem solving (see Lewis, Petrina, & Hill, 1998). France & 
Davies (2001) show how questions can be a part of a collaborative process in 
community-based problem solving. Wertheimer (1968) drew attention to the 
importance of problem-finding as a marker of creativity, contending that “Often 
in great discoveries the most important thing is that a question is found. 
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Envisaging, putting the productive question is often more important, often a 
greater achievement than solution of a set question…” p.141. Problem finding 
refers to the way that a problem is conceived and posed, and includes the 
formulating of the problem statement, periodic assessment of the quality of the 
problem formulation and solution options, and periodic reformulation of the 
problem (e.g., Getzels & Csikszenthmihalyi, 1976; Jay & Perkins, 1997). 
Mumford, Reiter-Palmon and Redmond (1994) wrote that problem construction 
contributes to creative problem solving, and that it is a predictor of real world 
creativity. Runco and Chand (1994) examined how individuals decide whether 
problems are worth pursuing, finding that metacognitive evaluation is a key to 
their method.  

Creativity and Technology Education 
Technology education is a special place in the school curriculum where 

creativity can be fostered uniquely. Indeed, the subject is premised upon human 
creativity—on the ingenious ways in which from the time they stood upright, 
human beings have devised ways and means to deal with problems that beset 
them in daily existence to assure their very survival, and ultimately to improve 
the quality of their lives. In the long march across time from river crossings in 
canoes, to space crossings on rocket-powered ships, human beings have along 
the way systematically relied upon their creativity to overcome existential 
obstacles, and with each advance have yielded and stored technological 
knowledge upon which even further advance could be made.  

Early forms of the subject tended to focus upon rehearsing basic overt 
technological processes, such as tool use, and the making of artifacts. As the 
subject has progressed, there has been a retreat from this essentially 
instrumental focus toward one where children are taken behind the scenes of 
human advancement and presented with hurdles that can be overcome only 
through their creative design. This shift of the subject to an earlier place in the 
stage of the process of technological creation, where things are unsettled and 
there is no single right answer, has made the subject almost ideally suited to 
uncovering dimensions of the creative potential of children that would remain 
hidden in much of the rest of the curriculum. While the American content 
standards in science now include technological design as an area of study (see 
National Research Council, 1996), the long tradition of technology education 
gives the latter subject a much greater claim to this content. 

Design 
The strong design focus of the American Standards for Technological 

Literacy offers opportunities for teaching to enhance creativity. What makes 
design so specially suited to the inculcation of creativity in children is its open-
endedness. There is more than one right answer, and more than one right 
method of arriving at the solution. The ill-structured character of design requires 
that students resort to divergent thought processes and away from the formulaic. 
As they do so, their creative abilities are enhanced. But despite the potential 
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here, there are indications in the literature that we still have some way to go 
before creativity becomes a more central feature of the teaching of design in the 
United States and elsewhere. For example, McCormick and Davidson (1996) 
cautioned that in teaching design, British teachers were giving precedence to 
products over process. Others observe that technology teachers in Britain were 
pursuing a formulaic line when teaching design, comprised of stages that were 
often contrary to the natural design tendencies of children (e.g., Chidgey, 1994; 
Johnsey, 1997).  

This tendency toward teaching design as a process that proceeds through 
definable stages is evident in the United States as well, noticeable in the 
Standards for Technological Literacy (International Technology Education 
Association, 2000), which states that: 

The modern engineering profession has a number of well developed methods 
for discovering such solutions, all of which share common traits. First, the 
designers set out to meet certain design criteria, in essence, what the design is 
supposed to do. Second, the designers must work under certain constraints, 
such as time, money, and resources. Finally the procedures or steps of the 
design process are iterative and can be performed in different sequences, 
depending upon the details of the design problem. (p. 90) 
 

Reeder (2001) set forth a set of comparable steps in his description of how 
industrial design is taught at his university, but included is a conceptual 
development stage that involves open-ended, divergent thinking.  

The problem for the field of technology education in the United States and 
elsewhere is that the overt description of the stages of the design process, 
observable when engineers do their work, has become the normative design 
pedagogy. This stage approach runs the risk of overly simplifying what 
underneath is a complex process. Teaching design as a linear stage process is 
akin to arriving at a pedagogy of art by mere narration of the observable 
routines of the artist. It simply misses the point that design, like art, proceeds 
from deep recesses of the human mind. To arrive at a pedagogy of design, there 
is need to get beneath the externals of the process. The key is to recognize 
design as a creative rather than a rationalistic enterprise. 

Roger Bybee, a strong advocate of the new standards for technological 
literacy, wrote that “Technological design…involves cognitive abilities such as 
creativity (emphasis added), critical thinking, and the synthesis of different 
ideas from a variety of sources” (Bybee, 2003, p.26). This creative element 
requires an approach to teaching that gets deeper below the surface.  

We are beginning to see interesting deviations from the normative approach 
to the teaching of design (e.g., Hill & Anning, 2001; Flowers, 2001; McRobbie, 
Stein & Ginns, 2001; Mawson, 2003; and Warner, 2003. One concept being 
explored is “designerly thinking” where a constructivist approach to student 
design approach is taken in an effort to unearth just how students solve 
problems. Flowers suggested that humor in the design and problem solving 
classroom can promote divergent thinking. Arthur Koestler (1969) gave 
credence to humor as an important marker of creativity in his landmark 
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contribution, The Act of Creation. Humor in the creativity-oriented classroom is 
consistent with the view, embedded in leading theories and research, that 
creativity has an affective dimension—that it thrives in environments in which 
intrinsic motivation flourishes. Such environments encourage non-conformist 
thinking and personality types that thrive better in less structured settings (e.g., 
Eysenck, 1997).  

Warner (2003) joins Flowers in pointing out that the tone of classrooms can 
make a difference in the quality of the creations of children. He argued that to 
support creativity in technology education classrooms, teachers must be more 
tolerant of failure. Flowers wrote that “Teachers of design must maintain a 
classroom culture that promotes successes but embraces the learning 
opportunities that failure presents” (p. 10). He drew on research suggesting that 
some kinds of classroom climates, such as those where competition is 
encouraged or where rewards are offered for performance, actually dampen 
creativity (e.g., Hennessey & Amabile, 1988).  

Earlier in this article, generative cognitive processes such as analogical and 
metaphorical thinking, conceptual combination, productive thinking and 
divergent thinking were identified as means by which creative people have 
arrived at novel products. Such processes should be included in the pedagogic 
repertoire of technology teachers. They should be taught to students in design 
classes in technology education, as devices that can be employed in solving 
design challenges. We see an excellent example of the how metaphorical and 
analogical thinking can be infused into the teaching of design in the contribution 
by Reed (2004) on biomimicry; that is, design that imitates nature. Reed showed 
that many scientists and engineers continue to look to nature as they 
contemplate designs and that many industrial products (e.g., Velcro) are inspired 
by nature. 

Design pedagogy can benefit from ideas such as biomimicry, as prompts for 
helping students as they engage in creative search. This pedagogy must also be 
informed by findings emerging from the creativity research literature, especially 
from studies in which expert designers articulate the logics that underpin 
decisions they make and actions they take in the act of designing (e.g., Cross, 
2002).  

Beyond cognitive strategies that are known to yield novel products are the 
concomitant factors that support creativity, notably the importance of domain 
knowledge, problem posing, and problem restructuring. We have learned from 
the literature that domain knowledge is fundamental to creative functioning 
(e.g., Cropley, 1997). And yet, this is an area of the design discourse in 
technology education that receives almost no attention. Creativity cannot 
proceed in a knowledge vacuum. While there is a place for the teaching of 
domain-independent design, where the context is everyday functional 
knowledge, it is necessary that children be challenged with design problems that 
reside in particular content domains, such as electronics, manufacturing, or 
transportation. Children are more likely to arrive at creative solutions when they 
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puzzle over such problems if they are first taught the supporting content 
knowledge. 

Though problem posing ability is an acknowledged marker of highly 
creative behavior (notably Getzels & Csikszenthmihalyi, 1976; and Wertheimer, 
1968), it remains an almost neglected aspect of the technology education 
discourse—a discourse steeped in treatment of problem solving. And yet, as 
Lewis, Petrina & Hill (1998) argued, using principles of constructivist learning 
in support, that we should be as interested in the ability of children to find good 
problems as in their ability to solve problems. There are implications here for 
how we arrive at design problems in our classrooms. Are those problems 
teacher-imposed, or do they originate from the observations of our students?  

Akin (1994) called attention to the creative potential of problem 
restructuring for increasing the creative potential of design. Drawing from 
experiences in architecture he distinguishes between anonymous and signature 
design, and between routine and ill-defined problems. Ill-defined problems are 
not bounded by available design standards. They require “the additional 
functionality of problem restructuring as they cannot be resolved without a 
framework within which problem solving can operate” (p.18). According to 
Akin, within problem restructuring resides great creative potential, capable of 
yielding signature work. This view that problem restructuring engenders 
creativity is consistent with the concept of productive thinking (Dunker, 1945; 
Wertheimer, 1968).  

There clearly is a need in technology education for a more textured 
discourse on the teaching of design than currently exists. Problem posing, 
problem restructuring, analogical and metaphorical thinking, and the use of 
humor are pedagogical devices that belong in an expanded view of how the 
creative aspect of design can be realized. 

Implications for Technology Education 
Unquestionably, the publishing of content standards represents an advance 

for technology education. This article has offered creativity as the framework 
for a discourse on design and problem-solving, and as a complementary 
conversation to that on content standards. In a way, this article constitutes a 
caution to the technology education community that the subject is still a work in 
progress, and that there are aspects of it that are not given naturally to 
rationalistic content-derivation methods. We are at a point where the subject in 
the curriculum from which technology education increasingly takes its cue is 
science, with its exactness; but it may be that we can benefit from alliances with 
other subjects, such as art or music, that have ill-structured aspects, and where 
students are encouraged to use knowledge not for its own sake, but in support of 
thought leading to creative expression. 

Five kinds of implications for technology education are suggested by the 
discussion on creativity that has ensued here, namely (a) implications for 
design/problem solving pedagogy (b) implications for assessment (c) 
implications for professional development, (d) implications for curriculum 
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theorizing, and (e) implications for research. Each is reflected upon briefly here 
as the article concludes. 

Design/Problem Solving Pedagogy 
Despite the centrality of design/problem solving activities to technology 

education, the field has not made strides in finding proven ways in which these 
activities can be taught. One explanation for lack of movement here is that 
insufficient attention has been paid to the role that creativity plays in 
design/problem-solving. A creativity focus allows for inclusion of a wider array 
of auxiliary activities into the pedagogic approach—activities in realms of 
divergent thinking, productive thinking, metaphorical thinking, analogical 
thinking, and combinatorial creations. Much more needs to be done in 
technology education to find approaches that are precursors of successful design 
experiences for children.  

Assessment 
As with pedagogy, assessment of design and problem-solving activities in 

technology education is still a fledgling area. A reason is that the field has not 
worked out measures for helping teachers determine the degree of creativity 
inherent in students’ design-related work. When is the design routine, when 
middling, and when exemplary? This is an area of need. Technology education 
teachers have to be able to distinguish between gradations of creativity and to 
communicate their assessments to students in much the same way that teachers 
of art and music are able to do in their classrooms. There is a clear need here for 
an expanded discourse on assessment in the field that includes the challenges 
inherent in providing feedback to students when the intent is to help them 
improve their designs.  

Professional Development 
Pre-service teacher education programs in technology education ordinarily 

do not include coursework on creativity. Thus, most teachers do not have 
preparation that is sufficient enough to allow them to inject creativity into their 
teaching. Teachers may introduce design/problem solving activities into their 
teaching, but the competence they bring to the classroom is more in the realm of 
the technical than the aesthetic. There is a clear need here for professional 
development activities aimed at helping teachers see possibilities for introducing 
creative elements into the curriculum, and into instruction. 

Curriculum 
In the rich literature on technology education curriculum, creativity is often 

implicitly included, especially where the focus is on design and problem 
solving. But there is an absence of explicit treatment of the topic. This clearly is 
a shortcoming, made more telling by the new focus in the standards, on design. 
Creativity in all of its facets, and as it relates to technology education teaching 
and learning, needs to be a more deliberate focus of the technology education 
curriculum literature.  
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Research 
Creativity has strong claims toward being a foundational area of research in 

technology education. Such research can address a host of pressing needs, 
including methods of assessing creative performance, auxiliary instructional 
activities that are good precursors of student creative performance, professional 
development activities that improve teacher competence in teaching 
design/problem solving, and strategies employed by students as they complete 
creative tasks. 

References 
Akin, Ö. (1994). Creativity in design. Performance Improvement Quarterly, 

7(3), 9-21. 
Baer, J. (1993). Creativity and divergent thinking. Hillsdale, New Jersey: 

Lawrence Earlbaum. 
Bailin, S. (1994). Achieving extraordinary ends. Norwood, New Jersey: Ablex 

Publishing Corporation. 
Boden, M.A. (1994). What is creativity? In M.A. Boden (Ed.), Dimensions of 

creativity (pp. 75-117). Cambridge, Massachusetts: The MIT Press. 
Bruner, J. S. (1962). The conditions of creativity. In H. E. Gruber, G. Terrell, & 

M. Wertheimer (Eds), Contemporary approaches to creative thinking (pp. 
1-30). New York: Atherton Press. 

Busse, T.V & Mansfield, T.V. (1980). Theories of the creative process: A 
review and a perspective. The Journal of Creative Behavior, 14(2), 91-103; 
132. 

Bybee, R.W. (2003). Fulfilling a promise: Standards for technological literacy. 
The Technology Teacher, 62(6), 23-26. 

Chidgey, J. (1994). A critique of the design process in F. Burns (Ed.), Teaching 
Technology (pp. 26-35). London: Routledge. 

Chomsky (1957). Semantic structures. The Hague: Mouton. 
Cropley, A.J. (1997). Fostering creativity in the classroom: General principles. 

In M. A. Runco (Ed.), Creativity Research Handbook (pp. 83-114). 
Cresskill, New Jersey: Hampton Press. 

Cross (2002). Creative cognition in design: Processes of exceptional designers. 
In T. T. Hewett & T. Kavanaugh (Eds.), Creativity & Cognition, (pp. 14-
19), Proceedings of the Fourth Creativity and Cognition Conference, 
Loughborough University, Loughborough, UK,  

Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of 
creativity. In R.J. Sternberg (Ed.) The nature of creativity: contemporary 
psychological perspectives (pp. 325-339), Cambridge: Cambridge 
University Press. .  

Csikszentmihalyi, M. (1996) Creativity: Flow and the psychology of discovery 
and invention. New York: Harper-Collins Publishers. 

 
 



Journal of Technology Education  Vol. 17 No. 1, Fall 2005 
 

-49- 

Druin, A. & Fast, C. (2002). The child as learner, critic, inventor, and 
technology design partner: An analysis of three years of Swedish student 
journals. International Journal of Technology and Design Education, 12, 
189-213. 

Duncker, K. (1945). On Problem-Solving. Psychological Monographs, 58(5), 
Whole No. 270. 

Eysenck, H. J. (1997). Creativity and personality. In M.A. Runco (Ed.) The 
Creativity Research Handbook (pp. 41-66). Cresskill, New Jersey: 
Hampton Press. 

Feldhusen, J. F. (1993). A conception of creative thinking and training. In S. G. 
Anderson, M.C. Murdock, R. L. Firestone & D. J. Trefinger (Eds), 
Nurturing and developing creativity: The emergence of a discipline (pp. 31-
50), Norwood, New Jersey: Ablex Publishing Company. 

Flowers, J. (2001). The value of humor in technology education. The 
Technology Teacher, 50(8), 10-13. 

Foster, P. N. & Wright, M.D. (2001). How children think about design and 
technology: Two case studies. Journal of Industrial Teacher education, 
38(2), 40-64. 

France, B. & Davies, J. (2001). Asking the “right” questions: Identifying issues 
in developing a technological solution. Research in Science Education, 
31(1), 137-153. 

Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st 
century. New York: Basic Books  

Gentner, D. & Jeziorski, M. (1993). The shift from metaphor to analogy in 
Western Science. In A. Ortony (Ed.) Metaphor and Thought (pp. 447-480), 
Cambridge: Cambridge University Press. 

Gentner, D., Brem, S., Ferguson, R., Wolff, P., Markman, A. B., & Forbus, K. 
(1997). Analogy and creativity in the works of Johannes Kepler. In T. B. 
Ward, S. M. Smith & J. Vaid (Eds.), Creative thought: An investigation of 
conceptual structures and processes (pp. 403-459), Washington DC: 
American Psychological Association. 

Getzels, J.W. (1982). The problem of the problem. In R. Hogarth (Ed.) New 
directions for methodology of social and behavioral science; Question 
framing and response consistency (pp. 37-49), San Francisco: Jossey-Bass. 

Getzels, J.W. & Csikszenthmihalyi, M. (1976). The creative vision: A 
longitudinal study of problem finding in art. New York: Wiley. 

Gick, M. L. & Holyoak, K. J (1980). Analogical problem solving. Cognitive 
Psychology. 12(3), 306-355. 

Guilford, J.P. (1950). Creativity. American Psychologist. 5(9), 444-454. 
Guilford, J.P. (1959). Three faces of intellect. American Psychologist, 14(8), 

469-479. 
Guilford, J.P. (1967). The nature of human intelligence. New York: McGraw-

Hill. 
Glucksberg, S. & Keysar, B. (1990). Understanding metaphorical comparisons: 

Beyond similarity. Psychological Review, 97(1), 3-18. 



Journal of Technology Education  Vol. 17 No. 1, Fall 2005 
 

-50- 

Glucksberg, S., Manfredi, D. A. & McGlone, M.S. (1997). Metaphor 
comprehension: How metaphors create new categories. In T. B. Ward, S. N. 
Smith, & J. Vaid (Eds.), Creative Thought: An investigation of conceptual 
structures and processes (pp. 327-350), Washington D.C. American 
Psychological Association. 

Gustafson, B. J., Rowell, P. M., & Guilbert, S. M (2000). Elementary children’s 
awareness of strategies for testing structural strength: a three year study. 
Journal of Technology Education, 11(2), 5-22. 

Hennessey, B.A. & Amabile, T.M. (1988). The conditions of creativity. In R. J. 
Sternberg (Ed.), The Nature of Creativity: Contemporary psychological 
perspectives (pp. 1-38), New York: Cambridge University Press.  

Hill, A.M. & Anning, A. (2001). Primary teachers’ and students’ understanding 
of school situated design in Canada and England. Research in Science 
Education, 31(1), 117-135. 

Houtz, J.C. ( 1994). Creative problem solving in the classroom: contributions of 
four psychological approaches. In M. D. Runco (Ed), Problem finding, 
Problem solving, & and Creativity (pp.153-173), Norwood, New Jersey: 
Ablex Publishing Corporation. 

International Technology Education Association (2000). Standards for 
technological literacy –Content for the study of technology. Reston, 
Virginia: Author. 

Jay, E. S. & Perkins, D. N. (1997). Problem finding: The search for mechanism. 
In M.A. Runco (Ed.) The creativity research handbook (pp. 257-293), 
Cresskill, New Jersey: Hampton Press.  

Johnsey, R. (1995). The design process—Does it exist. International Journal of 
Design and Technology Education, 5(3), 199-217. 

Jones, L. (1993). Barriers to creativity and their relationship to individual, group 
and organizational behavior. In S. G. Isaksen, M. C. Murdock, R. L 
.Firesttein & D. J. Treffinger (Eds), Nurturing and developing creativity: 
The development of a discipline (pp. 133-154). Norwood, New Jersey: 
Ablex Publishing Company. 

Koestler, A. (1969). The Act of Creation. London: Hutchinson & Co. 
Lakoff, G. (1993). The contemporary theory of metaphor. In A. Ortony (Ed.) 

Metaphor and Thought (pp. 202-252), Cambridge: Cambridge University 
Press.  

Lewis, T., Petrina, S., & Hill, A.M. (1998). Problem posing: Adding a creative 
element to problem solving. Journal of Industrial Teacher Education, 
36(1), 5-35. 

Lewis, T. (1999). Research in technology education: Some areas of need. 
Journal of Technology Education, 10(2), 41-56.  

Lubart, T. I. (1988). Creativity. In R. J. Sternberg (Ed.), Thinking and Problem 
Solving (pp. 289-332). New York: Academic Press.  

Lubart, T. I. & Sternberg, R.J. (1995). An investment approach to creativity: 
theory and data, In S. M. Smith, T. B. Ward and R. A. Finke (Eds), The 



Journal of Technology Education  Vol. 17 No. 1, Fall 2005 
 

-51- 

creative cognition approach (pp. 271-302), Cambridge, MA: The MIT 
Press. 

Mawson, B. (2003). Beyond ‘The Design Process”: An Alternative Pedagogy 
for Technology Education. International Journal of Technology and Design 
Education, 13(2), 117-128. 

Mayer, R. E. (1995). The search for insight: Grappling with Gestalt 
Psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson 
(Eds.) The nature of insight (pp. 3-32), Cambridge, Massachusetts: The 
MIT Press. 

Massachusetts Department of Education (2001). Massachusetts science and 
technology/engineering curriculum framework. The Author. 

McCormick, R., & Davison, M (1996). Problem solving and the tyranny of 
product outcomes, Journal of Design and Technology Education, 1(3), 230-
241.  

McRobbie, C. J., Stein, S. J., & Ginns, I. (2001). Exploring Designerly Thinking 
of Students as Novice Designers. Research in Science Education, 31(1), 91-
116. 

Mednick, S.A. (1962). The associative basis of creativity. Psychological 
Review. 69 (pp. 220-232). 

Moore, M. T. (1993). Implications of problem finding on teaching and learning. 
In S. G. Isaksen, M. C. Murdock, R. L. Firestein & D. J. Treffinger (Eds.), 
Nurturing and developing creativity: The development of a discipline (pp. 
51-69). Norwood, New Jersey: Ablex Publishing Company. 

Mumford, M.D.; Reiter-Palmon, R.; & Redmond, M.R. (1994). Problem 
construction and cognition: Applying problem representations in ill-defined 
domains. In M.A. Runco (Ed.), Problem finding, problem solving, and 
creativity (pp. 3-39). Norwood, NJ: Ablex.  

National Research Council.(1996). National Science Standards. Washington 
D.C.: National Academy Press. 

Neumann, K.E. (2003). The importance of redesign. The Technology Teacher, 
63(3), 7-9. 

Nickerson, R. S. (1999). Enhancing creativity. In R. J. Sternberg (Ed.), 
Handbook of creativity (pp. 392-430). Cambridge: Cambridge University 
press. 

Parkinson, E. (2001). Teacher knowledge and understanding of design and 
technology for children in 3-11 age group: A study focusing on aspects of 
structures. Journal of Technology Education, 13(1), 44-58. 

Reed, P. A. (2004). A paradigm shift: Biomimicry. The Technology Teacher, 
63(4), 23-27. 

Reeder, K.J. (2001). An overview of the industrial design curriculum. The 
Technology Teacher, 60(8), 21-23. 

Runco, M.A. & Chand, I. (1994). Problem finding, evaluative thinking, and 
creativity. In M. A. Runco (Ed), Problem finding, Problem solving and 
Creativity (pp.40-76), Norwood, New Jersey: Ablex Publishing 
Corporation. 



Journal of Technology Education  Vol. 17 No. 1, Fall 2005 
 

-52- 

Sanders, D.A. & Sanders, J.A. (1984). Teaching creativity through metaphor. 
New York: Longman. 

Simonton, D.K. (1988). Scientific genius: A psychology of science. Cambridge; 
Cambridge University Press. 

Sternberg, R. J. (1988). A three-facet model of creativity. In R. J. Sternberg 
(Ed.), The nature of creativity: contemporary psychological perspectives 
(pp. 125-147). Cambridge: Cambridge University Press.  

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. 
Cambridge: Cambridge University Press. 

Sternberg, R. J. (1990). Thinking styles: Keys to understanding student 
performance. Phi Delta Kappan, 71(5), pp. 366-371. 

Tardif, T. Z. & Sternberg, R. J. (1988). What do we know about creativity? In 
R. J. Sternberg (Ed), The nature of creativity: contemporary psychological 
perspectives (pp.429-440). Cambridge: Cambridge University Press.  

Wakefield, J.F. (1992). Creative thinking: problem solving skills and the arts 
orientation. New Jersey: Ablex. 

Ward, T.B., Smith, S.M., & Vaid, J. (1997). Conceptual structures and 
processes in creative thought. In T.B. Ward, S.M. Smith, & J. Vaid (Eds). 
Creative Thought, (pp. 1-27). Washington, D.C.: American Psychological 
Association. 

Ward, T. B., Smith, S. M., & Finke, R. A. (1999). Creative cognition. In R. J. 
Sternberg (Ed.), Handbook of creativity (pp. 189-212). Cambridge: 
Cambridge University Press. 

Warner, S.A. (2003). Teaching design: Taking the first steps. The Technology 
Teacher, 62(4), 7-10 

Weisberg R. W. (1999) Creativity and knowledge: A challenge to theories. In R. 
Sternberg (Ed.), Handbook of creativity (pp. 226-250), Cambridge: 
Cambridge University Press.  

Wertheimer, M. (1968). Productive thinking. Chicago: University of Chicago 
Press. 

Wisniewski, Edward .J. (1997). Conceptual combination: possibilities and 
esthetics. In  T.B. Ward, S.M. Smith, & J. Vaid (Eds.) Creative Thought 
(pp.51-81). Washington, DC: American Psychological Association. 

 


