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Abstract. The topic “Recurrence relations” and its place in teaching students of Informatics is dis-
cussed in this paper. We represent many arguments about the importance, the necessity and the
benefit of studying this subject by Informatics students. They are based on investigation of some
fundamental books and textbooks on Discrete Mathematics, Algorithms and Data Structures, Com-
binatorics, etc. Some methodological aspects of training to solve problems with applying recurrence
relations are also given. We hope that the considered topics concern also the school teachers in
Mathematics and Informatics and the paper will be useful to them.
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1. Introduction

The topic of recurrence relations (RR) and their solving has not commonly taken place
in teaching students of Informatics in many universities. The same is valid for its pres-
ence in textbooks on Discrete Mathematics and Algorithms and Data Structures. If we
look at the Discrete Mathematics textbooks which are more than 25–30 years old – for
example (Denev et al., 1984; Kuznetsov and Adelson-Velskii, 1980; Yablonski, 1979) –
we shall see that they do not include RR. Almost the same is true for the classic text-
books on Algorithms and Data Structures by Knuth (1969), Aho, Hopcroft and Ullman
(1974), Sedgewick (1983, with Pascal; 1998, with C; 2002, with Java programming).
Knuth (1969, Chapter 1 – Basic Concepts, Part 1.2. Mathematical preliminaries) consid-
ers generating functions only, he does not use the term “recurrence relation” even when
he talks about the Fibonacci numbers. In other cited textbooks RR are used in analy-
sis of the time-complexity of algorithms (mostly of the type “divide-and-conquer”), but
their solutions are not derived, they are simply given. During the last 15–20 years we
can see a trend to the opposite direction – probably because of the increasing impor-
tance of Combinatorics, owing to its links with Computer Science, Statistic and Alge-
bra (Cameron, 1994). The newer textbooks on Discrete Mathematics, such as Ander-
son I. (2001), Anderson J. (2001), Grimaldi (1999), Koshy (2004), Manev (2007), Rosen
(1998), etc. consider RR and their solving. The modern textbooks on algorithms and espe-
cially for algorithms and complexity include this topic (Cormen et al., 1990; Nakov and
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Dobrikov, 2005; Wilf, 1994). Nevertheless there are enough counter examples (Akimov,
2001; Erusalimski, 2001; Garnier and Taylor, 2002). In the last editions of the textbooks
by Sedgewick (1998, 2002) the recurrences, used in analysis of time-complexities of al-
gorithms are not solved, their solutions are simply given again. Maybe this is one of the
reasons for some professors to underrate the topic of RR and to omit it in their lectures.
Other reasons known to us are:

• the politic and the corresponding curriculum in some universities are oriented to
practice. Their students obtain mostly practical knowledge and skills (for almost
anything that the job market needs), instead of “unnecessary” theoretical knowl-
edge. Such politic is attractive for many students, especially when they choose
university or subjects in the first terms of their study;

• the coverage time for Discrete Mathematics (Discrete Structures) course is insuffi-
cient, or the professors pay more attention to other, “more important” topics. Often
such lecturers do not realize the basic role and the importance of RR for some
subsequent courses, the applications of RR in many other subjects, the relations
between them, etc.

In this paper we discuss the reasons why it is important and necessary for the students
of Informatics to study RR, their solving, applications and usage. In Section 2 we just
summarize the basic definitions and methods for solving RR, since this is not the main
goal of the paper – there are many excellent textbooks for this purpose and we mention
some of them. In Section 3 we argue for the necessity of studying RR from the Informatics
students. We point at some facts and arguments in this direction. In Section 4 we represent
some specific methodological aspects of the training in this area.

2. Recurrence Relations

Here we just recall some basic notions and facts about RR and their solving. Gen-
erally said, a recurrence relation, or simply recurrence, for the sequence {an} =
a0, a1, . . . , an, . . . is an equation, which relates the nth term an to certain of the preced-
ing terms ai, i < n, for all integers n � n0, where the integer n0 > 0. The recurrence
relation is called linear, if it expresses an as a linear function of fixed previous terms,
otherwise it is called nonlinear. More precisely:

DEFINITION 1. A kth order linear recurrence relation with constant coefficients is an
equation of the form

an + c1an−1 + c2an−2 + . . . + ckan−k = f(n), n � k, (1)

where c1, . . . , ck are real constants, ck �= 0, and f(n) is a function of n. When f(n) = 0
for all n, the corresponding recurrence relation is called homogeneous, otherwise it is
called nonhomogeneous. The boundary values of the first k terms of the sequence, usu-
ally a0, a1, . . . , ak−1 should be specified. They are called initial conditions of the recur-
rence relation and allow to compute an, for each n � n0 = const – so the recurrence
and the initial conditions determine the sequence {an} in an unique way.
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Further, talking about RR we have in mind linear recurrence relation with constant
coefficients only. The well-known recurrence, given as an example in each textbook is
fn = fn−1 +fn−2 with initial conditions f0 = 0, f1 = 1. This homogeneous RR defines
the sequence of Fibonacci numbers.

2.1. Solving Recurrence Relations

To solve a recurrence relation of the type (1) means to express an in a closed form
as a function of n and (in case of necessity) the initial conditions. A general method
for solving RR is developed, but there are many cases when some simpler methods and
techniques can be applied (Anderson J., 2001; Bogart et al., 2006; Cormen et al., 1990;
Graham et al., 1998; Grimaldi, 1999; Koshy, 2004), for example:

1) The substitution method. This method requires to guess the form of solution in
accordance with the initial conditions. Then the truth of the guess must be proved by
induction, because “mathematical induction is a general way to prove that some statement
about the integer n is true for all n � n0” (Graham et al., 1998, pp. 19; Anderson J.,
2001; Bogart et al., 2006; etc.). Quite knowledge, wit and experience are necessary in
application of this method.

EXAMPLE 1. Let us solve the RR an = an−1 + n − 1 with initial condition a1 = 0.
This nonhomogeneous recurrence represents the number of comparisons needed to sort
an array of n elements by the method bubble sort (or by straight selection); Grimaldi
(1999), Koshy (2004). The corresponding algorithm compares each pair of elements and
there are

(
n
2

)
possibilities to choose such pair. It is natural to assume that an =

(
n
2

)
=

n.(n − 1)/2. We note that this formula corresponds to the trivial cases for n = 1, 2, 3, 4.
Its truth can be proved easily by induction on n. Another, more convenient way to make
the same assumption for an is to start from the initial conditions and to substitute as
follows: a1 = 0, a2 = a1 + 1 = 1, a3 = a2 + 2 = 1 + 2, a4 = a3 + 3 = 1 + 2 + 3, and
so on.

EXAMPLE 2. Let us solve the recurrence an = 2an−1 + 1 with initial condition a1 = 1.
It expresses the number of moves of disks, necessary to solve the Tower of Hanoi puzzle1

for n disks. Following the recurrence we calculate: a2 = 2.1 + 1 = 3, a3 = 2.3 + 1 = 7,
a4 = 2.7 + 1 = 15, etc. So we assume that an = 2n − 1. The proof of this assumption
by induction on n is trivial.

2) The iteration method. This method consists of iterating (expanding) the recurrence,
step by step, applying it to itself. So the RR converts to summation (sometimes product)
of terms depending only on n and the initial conditions. Afterward techniques for evalu-
ating summations, as these demonstrated in Cormen et al. (1990), Graham et al. (1998),

1Proposed by the French mathematician Edouard Lucas in 1883 for 8 disks. It is based on an old legend
about the Tower of Brahma with 64 golden disks on three diamond needles.
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Knuth (1969) are used to obtain the solution. Often sums of terms of arithmetic or geo-
metric series are obtained and the corresponding formulas should be known. When this
method is applied to some recursive algorithms “a recursion tree is a convenient way
to visualize what happens when a recurrence is iterated, and it can help organize the
algebraic bookkeeping necessary to solve the recurrence” (Cormen et al., 1990, pp. 59);

EXAMPLE 3. Let us solve the recurrence an = an−1 + n with initial condition a0 = 1.
It represents the maximum number of regions defined by n lines in the plane2. The re-
currence looks appropriate to guess its solution again (as in Example 1), but we shall
apply and illustrate the iteration method instead. We expand (“unfold”, “unwind”) this
recurrence as follows:

an = an−1 + n = (an−2 + n − 1) + n = an−2 + (n − 1) + n

= (an−3 + n − 2) + (n − 1) + n = an−3 + (n − 2) + (n − 1) + n

= . . . = a0 + 1 + 2 + . . . + (n − 1) + n

= 1 + n(n + 1)/2.

3) The master method is specially developed for solving recurrences which describe
the time-complexity of algorithms, obeying to the “divide-and-conquer” strategy. These
RR have the form T (n) = aT (n/b)+f(n), where a � 1 and b > 1 are integer constants,
and f(n) is asymptotically positive function. Because their importance, the solutions of
this recurrence and the cases when they exist are formulated in special theorems in Bogart
et al. (2006), Koshy (2004), Rosen (1998), Rosen et al. (2000), “The master theorem”
(Cormen et al., 1990).

4) The general method gives the solution of a homogeneous RR of the type (1) by the
following classical theorem (Anderson J., 2001; Chen, 1992; Koshy, 2004; Manev, 2007;
Rosen, 1998; etc.).

Theorem 1. Let

an + c1an−1 + c2an−2 + . . . + ckan−k = 0 (2)

be a kth order linear homogeneous recurrence relation with constant coefficients and
initial conditions a0, a1, . . . , ak−1. The associated with it characteristic equation is

xk + c1x
k−1 + c2x

k−2 + . . . + ck−1x + ck = 0 . (3)

Let the equation (3) has generally s distinct roots α1, α2, . . . , αs (complex in the general
case), where αi has multiplicity mi, i = 1, 2, . . . , s, and m1 +m2 + . . . +ms = k. Then

the solution of the recurrence relation (2) is: an =
s∑

i=1

Pi(n).αn
i , where Pi(n) is a poly-

nomial of n, of degree (mi − 1) and having undetermined coefficients, for i = 1, 2, . . . , s.

2The first who solved this problem is the Swiss mathematician Jacob Steiner in 1826.
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The polynomials Pi(n), i = 1, . . . , s, have k undetermined coefficients generally, which
are determined in an unique way by the initial conditions.

The solutions of the nonhomogeneous RR are determined by the following theorem
(Grimaldi, 1999; Koshy, 2004; Manev, 2007; Rosen, 1998).

Theorem 2. Let

an + c1an−1 + c2an−2 + . . . + ckan−k = f(n) (4)

be a kth order linear nonhomogeneous recurrence relation with constant coefficients,
initial conditions a0, a1, . . . , ak−1, and f(n) is not identically zero. Then the general
solution of (4) is:

an = a(h)
n + a(p)

n ,

where a
(h)
n is a general solution of the associated homogeneous RR (given by Theorem 1),

and a
(p)
n is a particular solution of the nonhomogeneous RR (4).

The form of the particular solution a
(p)
n depends on f(n). A general algorithm for

solving an arbitrary recurrence of the type (4) does not exist (Koshy, 2004), but there are
two special cases:

i) if f(n) = b.αn, b and α are constants, then

a(p)
n = c.n.(n + 1). · · · .(n + m − 1).αn,

where m denotes the multiplicity of α as a root of the characteristic equation and c is
a constant. If α is not a root of the characteristic equation, then m = 0 and therefore
a
(p)
n = c.αn. The constant c is determined by substitution a

(p)
n into the given recurrence;

ii) if f(n) = Q(n), where Q(n) is a polynomial of n of degree d, then a
(p)
n has the

form a
(p)
n = nm.P (n). Here m denotes the multiplicity of the integer 1 as a root of the

characteristic equation (m = 0 when 1 is not a root), and P (n) is a polynomial of n of
degree d, having undetermined coefficient. They are determined by substitution a

(p)
n into

the given recurrence.

More general case, which unites (like linear combinations) the considered cases, i.e.,
f(n) = bn

1Q1(n) + . . . + bn
mQm(n), is considered in Manev (2007). Here bi are dis-

tinct constants and Qi(n) are polynomials of n of degree (di − 1), i = 1, 2, . . . , m.
If we denote αk+i = bi, i = 1, . . . , m, and we consider it as a root of multiplicity di

of the characteristic equation, then the solution of such recurrence gets the form of ho-
mogeneous one, given in Theorem 1. Then, excepting the given initial conditions, more
d1 + . . .+dm initial conditions have to be computed by using the given recurrence. Thus
the solving of such type nonhomogeneous RR reduces to solving of homogeneous one.

Another cases for the type of f(n) and the form of a
(p)
n , which have to be look for,

are given in Grimaldi (1999), Rosen (1998), Rosen et al. (2000).
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Finally we note that after the particular solution is obtained, we use the initial condi-
tions to determine the undetermined coefficients in a

(h)
n , i.e., they are determined in the

end.

Another methods for solving recurrences are based on generating functions, difference
sequences (also called sequences of differences); the annihilator method, etc. (Cameron,
1994; Chen, 1992; Graham et al., 1998; Koshy, 2004; Merris, 2003; Rosen, 1998; Rosen
et al., 2000).

EXAMPLE 4. Let us solve the recurrence an = an−1+n2 with initial condition a1 = 1. It
represents the number of all squares in a square grid of dimension n. We rewrite it as an −
an−1 = n2. Its characteristic equation x−1 = 0 has a root x = 1 of multiplicity 1. So the
solution of the homogeneous recurrence is a

(h)
n = d.1n, where d = const. As we have

noted in the second case, the particular solution has the form a
(p)
n = n1.(an2 + bn + c).

By substitution of a(p) in the recurrence we obtain:

an3 + bn2 + cn − a(n − 1)3 − b(n − 1)2 − c(n − 1) = n2,

an3 + bn2 + cn − an3 + 3an2 − 3an + a − bn2 + 2bn − b − cn + c = n2,

3an2 − 3an + a + 2bn − b + c = n2.

We equalize the coefficients of equal degrees of n in the both sides of last equality and so
we obtain:

3a = 1 ⇒ a = 1/3,

−3a + 2b = 0 ⇒ −1 + 2b = 0 ⇒ b = 1/2,

a − b + c = 0 ⇒ c = b − a = 1/6.

Hence a
(p)
n = n3/3 + n2/2 + n/6 = (2n3 + 3n2 + n)/6 = n(n + 1)(2n + 1)/6 and so

the solution of the nonhomogeneous recurrence is an = d+n(n+1)(2n+1)/6. We use
the initial condition: 1 = a1 = d + 1 ⇒ d = 0 and therefore an = n(n + 1)(2n + 1)/6.

3. Why the Students of Informatics Need to Study Recurrence Relations

We can give many arguments about the necessity, importance and benefit of studying the
recurrence relations and their solving by the Informatics students. The most important
among them are:

1) The recurrences are very powerful tool (sometimes an unique one) for solving
many counting problems, where it is difficult (or impossible) to count the objects by
using the known combinatorial techniques. So the RR and their solving are important
and useful complement to the knowledge in Combinatorics and thence in Probability
theory and Statistics. Not by chance the topic of recurrences and their solving takes an
important place in the known books in Combinatorics (for example, Cameron (1994),
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Comtet (1974), Graham et al. (1998), Hall (1967), Merris (2003), Reingold et al. (1977),
Vilenkin et al. (2006), etc.).

2) The recurrences are connected directly with the recursion, as their names prompts.
Less or more, the RR are used in teaching recursion to students and they are considered
together in some textbooks (Bogart et al., 2006; Koshy, 2004; Rosen, 1998; Wilf, 1994).
The recursive computing of n!, the nth Fibonacci number, etc. are classic examples in
creating recursive functions in each textbook on programming. These functions are built
on the corresponding recurrences (i.e., recursive definitions) in a most natural way. So
they can be used in explanation the execution of recursion and also the inherent key steps,
which it performs: forward steps, reaching the basic case (bottom) of the recursion and
backward steps (optional in some recursions). For example, the recursive calls are deter-
mined by the corresponding recurrence and the forward steps correspond to expanding
the terms of the recurrence as in the iteration method (but it happens automatically, by
pushing stack frames in the program stack). The initial conditions serve as a basic case
of the recursion. The backward steps correspond to computing in an inductive manner –
starting from the initial conditions, if all terms up to the (n − 1)st are computed, then
the nth term will be computed (the topic “recursion and iteration” is important and ex-
tensive, so it needs more attention). The example with the Fibonacci numbers is a classic
one for ineffective recursion. The most convenient way to illustrate and to explain why
this recursion is ineffective is by using the corresponding recursion tree (Cormen et al.,
1990). By it for the efficiency of similar function we can conclude: “Let a recurrence of
type (1) of order k > 1 and its initial conditions be given. A recursive function, which
computes the nth term of the corresponding sequence by recursive calls of itself for each
term in the recurrence is ineffective”. Here is the place to mention two known techniques
for avoiding the ineffective recursion: memoization (when some value is computed, it is
stored in an array to be used every time when the recursion tries to compute it again) and
replacement of recursion by iteration and using a stack in case of necessity (i.e., applying
the bottom-up approach).

3) The recurrences are used in the analysis of complexity of algorithms, mostly re-
cursive. As we mentioned above, the recurrences and the recursion trees are appropriate,
powerful and unique tools for investigation the time-complexity of algorithms, based on
a strategy “divide-and-conquer”.

4) The recurrences are in the foundations of the “dynamic-programming” strategy
and we underline the importance of this fact. The second step of the paradigm of this strat-
egy is “Recursively define the value of an optimal solution” (Cormen et al., 1990), which
means to derive the corresponding recurrence and to prove its correctness. The third step
is “Computing the value of an optimal solution in a bottom-up fashion”, since the key
ingredient, which the optimization problem should have for dynamic programming to be
applicable is overlapping subproblems. This means ineffective recursion, which should
be avoided.

5) The ability to solve recurrences implies more effective solutions of many problems,
related to RR. Often the solutions are formulas in a closed form and so they have compu-
tational complexities of constant type – in a contrast to recursive or iterative computations
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following formula (1). Often this fact is used in problems, given in competitions (tour-
naments, Olympiads) in programming. It also helps to improve the efficiency of some
algorithms, based on dynamic programming.

6) Knowing the linear RR with constant coefficients is a starting point for studying
other recurrences. For example, such recurrences are the recurrence tables (except the
known Pascal’s and Stirling’s triangle, such tables appear in dynamic programming), RR
with coefficients, which are not constant (as in the Catalan’s numbers), the numbers of
Stirling, Bell, Euler, Bernoulli, etc. Such recurrences and techniques for solving them
are considered in Bakoev (2004), Cameron (1994), Graham et al. (1998), Rosen (1998),
Rosen et al. (2000).

7) It is important to point some facts from Computer Science Curriculum 2008: An
Interim Revision of CS 2001, a joint task of the ACM and IEEE Computer Society (ACM
and IEEE Computer Society, 2008). It is not necessary to comment, we just cite the
program in:

• Discrete Structures (DS), Basic of counting contains parts: “Arithmetic and ge-
ometric progressions”, “Fibonacci numbers”, “Solving recurrence relations” and
“The Master theorem”. Three of all four learning objectives are: “State the defini-
tion of the Master theorem”, “Solve a variety of basic recurrence equations” and
“Analyze a problem to create relevant recurrence equations or to identify important
counting questions”;

• Programming Fundamentals (PF), Recursion includes the topics: “The concept
of recursion”, “Recursive mathematical functions”, “Simple recursive functions”,
“Divide-and-conquer strategies” and “Recursive backtracking”. Among the learn-
ing objectives are: “Identify the base case and the general case of a recursively
defined problem”, “Compare iterative and recursive solutions for elementary prob-
lems such as factorial” and “Describe the divide-and-conquer approach”;

• Algorithms and Complexity (AL), Basic Analysis contains the topic “Using recur-
rence relations to analyze recursive algorithms”, and some of the learning objec-
tives are: “Deduce recurrence relations that describe the time complexity of re-
cursively defined algorithms” and “Solve elementary recurrence relations”, and so
on.

So we conclude that the RR and their solving are significant not only to themselves,
they are also an important link between many subjects in teaching the students of In-
formatics – for example Combinatorics, Probability theory and Statistics, Programming,
Algorithms and Data Structures, Complexity of Algorithms, Training for Competitions in
Programming, Numerical Methods (because of the relation with the difference sequences
(Merris, 2003; Rosen, 1998)), and even Differential Equations (because of the analogy in
solving RR and linear differential equations (Cameron, 1994; Rosen et al., 2000; Wilf,
1994)). The theory of RR and their solving is not an unmeaning mathematical one, with-
out real applications. Contrariwise, this theory helps, explains and stays in the base of
many subjects in the area of Informatics. The core of this theory is not large (as we have
seen above) and it is not too hard for the students. So we consider that studying the re-
currences by the students of Informatics is justified and necessary. Hence we can call
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our attention to the question “How to teach recurrences so that the students realize their
importance and become motivated to study them?”.

4. How to Teach Recurrences to the Informatics Students

Here we do not consider the common methodical treatments in teaching Mathematics
and Informatics, we focus our attention on the particular and specific formulations in
teaching recurrences to students of Informatics. We note, that the arguments represented
in the previous section give some of the possible answers to the question. We shall add to
them the following:

1) The topic of recurrences should be taught in relation to other subjects, pointing to
the links between them and to the applications in them. On the other hand, the professors
in subjects mentioned above can demonstrate why and how they use recurrences in the
context of the relationship between the subjects;

2) Only suitable textbooks should be used, where the topic of recurrences is well-
represented – consequently, systematically, with many and well-chosen examples and
problems – as in the textbooks in Discrete Mathematics (Anderson I., 2001; Grimaldi,
1999; Koshy, 2004; Rosen, 1998), the textbooks in Algorithms and Data Structures (Cor-
men et al., 1990; Nakov and Dobrikov, 2005), the textbooks in Combinatorics (Cameron,
1994; Graham et al., 1998; Merris, 2003; Vilenkin et al., 2006), etc. There are examples
in the opposite direction – the textbooks, which just touch the topic, where only prob-
lems of the type “Solve the recurrence ...” are given. They develop technique and skills
for solving hard recurrences only (of higher order, with complex roots, etc.), they do not
contain even one problem to draw up a recurrence. So the students can not realize the
meaning, applications and benefit of the recurrences;

3) The problems for development technical skills for solving recurrences should be
followed by problems for drawing up a recurrence and thereafter its solving. It is im-
portant for the students to know, that “problems that require an answer depending on the
integer n, where the solution to the problem for a given size n can be related to one or
more cases of the problem for smaller sizes” should be solved by recurrences (Rosen et
al., 2000);

4) The problems, which need to draw up a recurrence and thereafter to solve it can be
solved by the following inductive scheme:

• according to the integer parameter n we denote by an the number of objects which
we have to count. For these values of n, which give meaning to the problem we
consider the corresponding sequence, looking for a recurrence for an;

• we compute the initial conditions, i.e., the first terms of the sequence, for which
the problem has a meaning;

• inductive suggestion – we assume that all terms of the sequence to an−1 inclusive,
are known to us;

• we express the relation between an and the previous terms of the sequence and
prove the derived recurrence. Often we reason as follows: “We have (we have
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placed, we have drawn, etc.) n − 1 elements. They form an−1 objects of the type
which we look for and, in accordance with the inductive suggestion, we know
an−1. We add (we place, we draw, etc.) the nth element. How the number of objects
which we look for is changed (increases)?”. Once more we note that our arguments
in deriving the recurrence should have a form of proof. We check whether the re-
currence satisfies the initial conditions;

• we solve the obtained recurrence and check the solution.

The recurrences in the considered examples are obtained in this way. We recommend
the students to master these steps and their application in solving such problems. We
explicitly note that the formation of such manner of thinking and mastering the technique
for solving similar problems help the students in a crucial degree in creating algorithms,
based on the dynamic-programing strategy. The known to us textbooks do not pay the
necessary attention to this important fact;

5) It is relevant to use in teaching a classification of the problems, which need to draw
up a recurrence and thereafter to solve it. Many classifications are possible and each
of them should help the recognition of the problems in order to solve them easily. We
can consider as a successful each classification which helps the students in solving such
problems and in mastering the topic of recurrences, generally. The classification of the
problems, which need to draw up a recurrence and thereafter to solve it is a complex
topic, it has many aspects and can be a subject of another study. To get an idea of this we
just mention some of the many criteria, which can be used in classification:

• the order of the obtained recurrence;
• the type of the obtained recurrence – linear or nonlinear, homogeneous or nonho-

mogeneous, with constant coefficients or not, etc.;
• the area, which the problem concerns – for example, finances (problems for com-

puting compound interest on deposits and credits), biology (problems for com-
puting growth of populations), geometry (problems for counting figures), number
theory (counting partitions or compositions of integers), etc.;

• what should be determined – a certain (nth) term of a sequence, or a sum of some
(or all) terms of a given sequence, or the number of all sequences of a certain type;

• the text of the problem contains characteristic keywords, which require a specific
manner of thinking, or prompt for certain recurrences or fundamental problems –
for example, to have no two consecutive equal elements; or to contain odd/even
number of certain elements, etc.;

• problems for counting in recursively/inductively defined figures – in fractal figures,
or self-similar figures, etc., as in Koshy (2004), Rosen (1998);

• counting problems, related to polygonal (figurate) numbers, as in Bakoev (2004),
Koshy (2004), Rosen (1998), etc.

6) The meaning, which some sequences have is very important aspect in studying
recurrences. The same sequence can have many interpretations. This fact and the topic of
recurrences help in a higher degree to introduce to the students The On-Line Encyclopedia
of Integer Sequences (OEIS), Sloane (2009). This site is maintained by N.J.A. Sloane and
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offers many interesting possibilities. The most important among them are: searching (by
sequence, i.e., by its few consecutive terms, by word, by author, by sequence number, by
keywords, etc.) and contribution to OEIS – to add comments, notes, formulas, program
code, etc. to existing sequences, or to add new sequences. At the beginning of August
2010 the data-base of OEIS contains information about more than 178000 sequences. For
example, the sequence in Example 4: 1, 5, 14, 30, 55, 91, 140, 204, 285, . . . has a number
A000330 in OEIS and it is represented as “Square pyramidal numbers”. Except this, about
20 comments, meanings, interpretations, etc. of it and its terms are given additionally.
Many references, links, citations, formulas, program code, etc. are also given.

5. Conclusions

Here we discussed some aspects of teaching the topic “Recurrence relations” and its
studying by students of Informatics. We also shared the most important of our opinions,
conceptions and experience in teaching recurrences to the students. Of course, many other
aspects, arguments and points of view can be added, a full pedagogical investigation can
also be done. We hope, that the given arguments and facts are enough to aid the professors
in teaching, as well as to motivate the students – about necessity, importance, applications
and the ways of usage – in studying the recurrences.

We also hope that the considered topics can be useful to the teachers in the high
schools, where Mathematics and Informatics are studied intensively. For example, when
the arithmetic and geometric series are studied, it is possible to represent some appropri-
ate first-order recurrences and to explain the relations between them. As an application
of solving square equations it is worth to represent second-order recurrences and to solve
some of them. We consider, that recurrences of first and second order can be used and
applied successfully in training school-teams for competitions in Mathematics or Infor-
matics.
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Rekurentinis s ↪aryšis mokant informacini ↪u technologij ↪u

Valentin P. BAKOEV

Šiame straipsnyje nagrinėjama rekurentinio s ↪aryšio tema ir jos vieta mokant informacini ↪u tech-
nologij ↪u. Straipsnyje pateikiama daugybė argument ↪u, kodėl svarbu, būtina ir naudinga nagrinėti
ši ↪a tem ↪a. Autoriai remiasi diskrečiosios matematikos, algoritm ↪u ir duomen ↪u struktūros, kombi-
natorikos ir kit ↪u knyg ↪u bei vadovėli ↪u medžiaga. Taip pat aptariami keli metodologiniai iškylanči ↪u
sunkum ↪u sprendim ↪u ir mokymo būdai taikant rekurentin↪i s ↪aryš↪i. Šis straipsnis turėt ↪u būti naudingas
ir matematikos, ir informatikos mokytojams.


