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Abstract
Many university leaders and faculty have the goal of promoting learning 

that connects across domains and prepares students with skills for 
their whole lives. However, as assessment emerges in higher education, 

many assessments focus on knowledge and skills that are specific to a 
single domain. Reworking assessment in higher education to focus on 
more robust learning is an important step towards making assessment 
match the goals of the context where it is being applied. In particular, 

assessment should focus on whether learning is robust (Koedinger, 
Corbett, & Perfetti, 2012), whether learning occurs in a way that 

transfers, prepares students for future learning, and is retained over time; 
and also on skills and meta–competencies that generalize across domains. 
By doing so, we can measure the outcomes that we as educators want to 
create, and increase the chance that our assessments help us to improve 
the outcomes we wish to create. In this article, we discuss and compare 
both traditional test–based methods for assessing robust learning, and 
new ways of inferring robustness of learning while the learning itself is 

occurring, comparing the methods within the domain of college genetics. 
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	 In recent years, the historical monopoly of universities in higher education has 
been challenged by new entrants, including for–profit universities and massive online open 
courses (Hanna, 1998; Vardi, 2012). This change has brought to the forefront questions about 
what the core goals of higher education are: Is it to train a workforce in specific employable 
skills (Sperling & Tucker, 1997)? Or is it to promote learning that connects across domains 
and prepares students to learn the new skills and disciplines that emerge during their years 
in the workforce (Knapper & Croppley, 2000)? To put it another way, is the goal of higher 
education to learn competencies, or to learn meta–competencies which cut across domains 
(e.g., Buckingham Shum & Deakin Crick, 2012)?

	 While much of the learning that goes on in higher education pertains primarily to 
the content area of the class being taken, students can learn in a specific fashion or in a more 
general fashion. Increasingly, researchers in the learning sciences have presented evidence 
that it is possible to measure whether learning is robust – defined in Koedinger et al. (2012)
as learning that can transfer to related situations (Fong & Nisbett, 1991; Singley & Anderson, 
1989), prepares students for future learning (Bransford & Schwartz, 1999; Schwartz & 
Martin, 2004), and is retained over the long–term (Bahrick, Bahrick, Bahrick & Bahrick, 
1993; Schmidt & Bjork, 1992). 

	 To the extent that creating more robust learning is the primary goal of higher 
education, the way assessment is used may need to change. While some argue for a switch 
to self–assessment (e.g., Boud & Falchikov, 2006), we still see a need for instructor and 
curriculum–led assessment. But there is a challenge for those developing assessments for 
higher education; it is much easier to measure didactic knowledge or concrete skill than to 
measure the type of learning that has been argued for. 

	 Nonetheless, whether learning is robust can be measured. Paper tests measuring 
retention and transfer have been in use for quite some time (cf. Gick & Holyoak, 1983; 
Surber & Anderson, 1975), with paper tests measuring a student’s preparation for future 
learning (PFL) emerging about a decade ago (Bransford & Schwartz, 1999; Schwartz & 
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Martin, 2004). In this article, we discuss examples of this work within the domain of college 
genetics. Increasingly, it is also a goal of assessment in higher education to measure skills that 
cut across domains, such as science inquiry and help seeking (cf. Puncochar & Klett, 2013), 
and to measure robust learning of these skills while learning is ongoing (cf. Linn & Chiu, 
2011). To this end, we will also discuss measures of robust learning that can measure robust 
learning of domain content, but also domain–general skills, in a fashion that is integrated into 
instruction. We discuss these new forms of assessment in terms of the same domain of college 
genetics for understandability; but, as we will discuss, many of the new forms of assessment 
are potentially meaningful domain–general. 

	 These new forms of assessment are based on the emerging methods of educational 
data mining (EDM; Baker & Siemens, in press; Baker & Yacef, 2009; Romero & Ventura, 2007). 
Within educational data mining, the voluminous data increasingly becoming available to 
learners, particularly from online learning environments, becomes a source of information 
that can be used to identify complex learning behaviors and ill–defined or complex skill (cf. 
Kinnebrew & Biswas, 2012; Sao Pedro, Baker, & Gobert, 2012). These data are sometimes 
analyzed by use of knowledge engineering methods, where research analysts identify 
meaningful patterns in data by hand (e.g., Aleven, McLaren, Roll, & Koedinger, 2006), and is 
sometimes analyzed using automated methods such as sequence mining (Kinnebrew & Biswas, 
2012) or classification (Sao Pedro et al., 2012). While knowledge engineering can be similar to 
traditional psychometric approaches for assessment development such as evidence–centered 
design (Mislevy, Almond, & Lukas, 2004), and advanced ECD–based models of complex student 
skill can resemble EDM models developed using automated discovery (see Shute & Ventura, 
2013 for examples), the development methods of EDM and ECD differ, as do their validation. 
Educational data mining methods are often validated by developing the models on one set of 
students and testing them on another; some EDM methods are also validated on data from new 
domains or contexts (Sao Pedro, Gobert, & Baker, 2014) or data from new learner populations 
(Ocumpaugh, Baker, Kamarainen, & Metcalf, 2014). In addition, EDM–based assessments are 
typically validated for agreement with human judgments about a construct’s presence which 
themselves are known to be reliable (Ocumpaugh et al., 2014; Sao Pedro et al., 2014), and 
are based on data features thought by domain experts to be plausibly related to the construct 
of interest (Sao Pedro et al., 2012). In some cases, their internal structure is not considered 
in detail, being too complex for a human analyst to understand without hours of study, but 
that is not true of all EDM–developed models; the models resulting from the EDM process are 
particularly simple for the cases presented in this paper. A full discussion of educational data 
mining methods is outside the scope of this paper, but richer summaries are provided in the 
papers (Baker & Siemens, in press; Baker & Yacef, 2009; O'Reilly & Veeramachaneni, 2014; 
Romero & Ventura, 2007) and the textbook (Baker, 2013). 

	 EDM–based assessment has multiple benefits compared to traditional methods of 
assessment: If the models are designed appropriately, they can be used in real time to make 
assessment during learning and support real time intervention. In addition, since the models 
typically make inferences based on ongoing interaction between a student and online system, 
they can replicate the assessments made by more traditional instruments without needing to 
take the student’s time up with a paper test. See, for instance, Feng, Heffernan, and Koedinger 
(2009), who show that EDM models based on student interaction can accurately predict 
standardized exam scores.

Case Study in College Genetics Tutor
	 In this article, we discuss the potential for assessment of robust learning in higher 
education, both with traditional methods and educational data mining methods, using examples 
drawn from the domain of genetics. Genetics is an important topic because it is a central, 
unifying theme of modern biology and because it provides the foundation for many advances 
in 21st century technology. It is a challenging topic for students, because it depends heavily on 
problem solving (Smith, 1988). Finally, it is a relevant topic because it affords an interesting 
form of superficial learning: Students can develop successful problem solving algorithms that 
are not well grounded in the underlying biology. 

	 We discuss this specifically within the context of work to develop and utilize an e–
learning system for college genetics, the Genetics Cognitive Tutor (GCT; Corbett, Kauffman, 

39Volume Nine | Winter 2014

To put it another way, 
is the goal of  higher 
education to learn 
competencies, or to learn 
meta–competencies which 
cut across domains? 



MacLaren, Wagner, & Jones, 2010). GCT is focused on helping students learn not only 
genetics domain materials, but also the complex abductive reasoning skills needed to make 
inferences within this domain. Abductive reasoning skills involve reasoning “backward” from 
empirical observations (e.g., a daughter of unaffected parents is affected by a genetic trait) to 
an explanation for the observations (each parent must carry a recessive allele for the trait). 
Abductive reasoning skills are an important part of the undergraduate learning experience, not 
just in genetics, but across domains, because they are essential skills in formulating scientific 
knowledge, and in applying such knowledge to diagnostic tasks.

	 Cognitive Tutors are a type of online learning system where students complete 
problems (in genetics or other domains) within the context of activities designed to scaffold 
problem solving skill (Koedinger & Corbett, 2006). The student completes problems within an 
interface that makes visible cognitive steps of the problem solving process visible, and receives 
instant feedback on their performance. Student performance is analyzed in real time according 
to a cognitive model of the domain. If a student’s answer indicates a known misconception, the 
student receives instant feedback on why their answer was incorrect. At any time, the student 
can request help that is sensitive to their current learning context. 

	 GCT has more than 175 genetics problems, divided into 19 modules, which address 
topics in Mendelian inheritance, pedigree analysis, genetic mapping, gene regulation, and 
population genetics. An average of about 25 steps is needed for each of the 175 problems in 
GCT. It has served as supplementary instruction in a variety of undergraduate biology classes 
in a wide range of public and private universities in the United States and Canada (Corbett 
et al., 2010). It has also been used by students enrolled in high school biology classes (e.g., 
Corbett et al., 2013a, 2013b; Baker, Corbett, & Gowda, in press). 

	 The goal of GCT is not just to promote immediate learning of the exact content studied 
within the system, but to promote robust learning as defined above. As such, research during 
the development of GCT focused on assessing robust learning, both after use of the system and 
during use of the system. 

Assessing Robust Learning in College Genetics with Tests
	 Tests historically have been one of the most common methods for assessing robust 
learning. They are clearly the most straightforward way of doing so; for instance, a test can be 
administered immediately at the end of an activity or multiple times during the semester. 

	 The history of research on retention of material, both in research settings and 
classroom settings, has depended heavily on retesting the same material or same skill. This 
has been conducted through classical paper tests (Surber & Anderson, 1975), and in online 
systems such as the Automatic Reassessment and Relearning System, which retests a student 
on material they have learned at increasing time intervals (Wang & Heffernan, 2011).

	 So too, a great deal of the research on whether knowledge is transferrable has depended 
on paper tests, although performance–based measures have also been used in some cases (e.g., 
Singley & Anderson, 1989). And again, while much of the research on preparation for future 
learning has utilized complex learning activities and resources, the assessments have often 
involved paper post–tests, albeit post–tests with learning resources embedded (e.g., Bransford 
& Schwartz, 1999; Chin et al., 2010, Schwartz & Martin, 2004).

	 In several GCT studies, paper assessments of retention, transfer, and PFL were 
administered to study the robustness of student learning. For a selected set of lessons, transfer 
tests and PFL tests were administered to students immediately after they completed use of the 
system. For example, after students completed a lesson on 3–factor cross reasoning, they were 
assigned “gap filling transfer tests” (VanLehn, Jones, & Chi, 1992) where they had to complete 
problems for which a core case in the original formulas they learned did not apply. The problem 
is solvable and most of the students’ problem solving knowledge directly applies; however, the 
student can only complete the task if they can draw on their conceptual understanding of that 
problem solving knowledge to fill in the gap that results from the missing group. 

	 In the preparation for future learning tests, material beyond the current lesson was 
involved. For example, for the PFL test for a lesson on 3–factor cross, students were asked to 
solve parts of a more complex 4–factor cross problem. The reasoning is related to solving a 3–
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factor cross problem, but substantially more complicated, making it unlikely that the student 
could discover an effective solution method during the test. Instead, the test gave the student 
a textual description of the solution method, and then asked them to solve the problem. For 
retention, the same types of problems as seen in GCT were given to students in a paper form, 
but one week later.

	 Students were generally successful on each of these tests. Student performance on the 
test of retention was high (M = 0.78, SD = 0.21), comparable to the immediate post–test that 
covered the same skills as the lesson (M = 0.81, SD = 0.18), and substantially higher than the 
pre–test (M = 0.31, SD = 0.18). Student performance on the PFL test (M = 0.89, SD = 0.15) and 
transfer test (M = 0.85, SD = 0.18) was also high, approximately equal to the immediate basic 
problem–solving post–test (Baker, Gowda, & Corbett, 2011a, 2011b). These results indicated 
that the GCT was generally successful at promoting robust learning.

	 It would be possible to stop at this point, and simply offer that conclusion; however, 
it would be useful to be able to infer the robustness of student learning earlier than after the 
learning episode. Beyond that, it is desirable to be able to infer the robustness of learning during 
the learning episode, when it is easier to intervene. In addition, tests are time consuming to 
administer. As such, the following sections describe our work to infer robust learning in real 
time, and thus these tests were used as the basis for further research.

Inferring Robust Learning in College Genetics with Learning Models
	 A second way to infer robust learning is through the use of automated models that infer 
student skill learning. This method is not specifically tailored to robust learning – it is tailored 
to the learning that occurs in the lesson being studied – but may be successful at predicting 
robust learning as well. There are examples of this type of research going back several years. 
For example, Jastrzembski, Gluck, and Gunzelmann (2006) have used this type of modeling to 
predict student retention of knowledge, within an online learning system teaching flight skills.

	 Within GCT, knowledge is modeled in real time using an algorithm named Bayesian 
Knowledge Tracing (Corbett & Anderson, 1995). Bayesian Knowledge Tracing (BKT) is the 
classic algorithm for modeling student knowledge within online problem solving; it has been 
used in many systems and analyses, cited thousands of times, and performs comparably to or 
better than other algorithms for cases where its assumptions apply (see results and review in 
Pardos, Baker, Gowda, & Heffernan, 2011). 

	 Bayesian Knowledge Tracing can be seen as either a simple Bayes Net or a simple 
Hidden Markov Model (Reye, 2004). Within BKT, a probability is continually estimated for the 
probability that the student knows each skill in the lesson or system. These probabilities are 
updated each time a student attempts a new problem solving step, with correct actions treated 
as evidence the student knows the skill, and incorrect actions and help requests treated as 
evidence that the student does not know the skill. As with psychometric models such as DINA 
(deterministic inputs, noisy and gate; Junker & Sijtsma, 2001), (Junker & Sijtsma, 2001), BKT 
takes into account the possibility that a student may have gotten a correct answer by guessing, 
or may have slipped and obtained an incorrect answer despite knowing the relevant skill. 
However, BKT does not typically account for the possibility that a student may forget what 
they have learned (but see an example where it is extended to do so in Qiu, Qi, Lu, Pardos, 
& Heffernan, 2011), or that a student may have developed shallow knowledge that will not 
transfer between contexts. 

	 Bayesian Knowledge Tracing and its properties are discussed in detail in dozens of 
papers, with the first being Corbett and Anderson (1995). For reasons of space, only a brief 
description will be given here. Bayesian Knowledge Tracing calculates the probability that 
a student knows a specific skill at a specific time, applying four parameters within a set of 
equations, and repeatedly updating probability estimates based on the student’s performance. 
This process is carried out separately for each of the cognitive skills in the domain – there 
are eight such skills in the case of the GCT lesson on 3–factor cross. The model makes the 
assumption that at each problem step, a student either knows the skill or does not know the 
skill. It was originally thought that the model also made the assumption that each student 
response will either be correct or incorrect (help requests are treated as incorrect by the 
model), but it has been shown more recently that extending BKT to handle probabilistic input 
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is very easy (e.g., Sao Pedro et al., 2014). If the student does not know a specific skill, there is 
nonetheless a probability G (for “Guess”) that the student answer correctly. Correspondingly, 
if the student does not know the skill, there is a probability S (for “Slip”) that the student 
will answer incorrectly. When the student starts the lesson, each student has an initial prior 
probability L

0
 of knowing each skill, and each time the student encounters the skill, there is a 

probability T (for “Transition”) that the student will learn the skill, whether or not they answer 
correctly. Each of the four parameters within Bayesian Knowledge Tracing are fit for each skill, 
using data on student performance; there is current debate on which method is best for fitting 
parameters, but several approaches seem reasonable and comparably good (see discussion in 
Pardos et al., 2011).

	 Every time the student attempts a problem step for the first time, BKT updates its 
estimate that the student knows the relevant skill. The procedure is as follows (the relevant 
equations are given in Figure 1):

	 1.) Take the probability that the student knew the skill before the current 	
	 problem step Ln–1 and the correctness of the student response, and re–		
	 estimate the probability that the student knew the skill before the current 	
	 problem step.

	 2.) Estimate the probability that the student knows the skill after the current 	
	 problem step, using the adjusted probability that the student knew the skill 	
	 before the current problem step, and the probability T that the student 		
	 learned the skill on the step.

	 BKT, when applied to data from the GCT, was moderately successful at predicting 
transfer, PFL, and retention test performance (Baker et al., 2011a, 2011b; Baker et al., in 
press). By the end of the student’s use of the tutor, BKT could achieve a correlation of 0.353 
to transfer for new students, a correlation of 0.285 to PFL for new students, and a correlation 
of 0.305 to retention for new students. These levels of agreement were clearly better than no 
agreement, but still far from perfect. However, one positive for this method is that BKT–based 
predictions of robust learning were able to achieve close to this level of performance with only 
a subset of the data (the first 30% in the case of transfer). The performance of the BKT model 
at predicting transfer, as the student completes increasing amounts of the activity, is shown 
in Figure 2. In other words, the full degree of predictive power available from this method 
becomes available when the student has 70% more of the activity to complete. Even when 
prediction is imperfect, it can still be useful for intervention and automated adaptation if it is 
available early in the learning process. 

Inferring Robust Learning in College Genetics with Meta–cognitive 
Behaviors
	 In order to improve upon these models, we next distilled features of the students’ 
interaction with GCT that indicated student behaviors relevant to their meta–cognition. As 
robust learning involves more complex reasoning about material and conceptual understanding 
than simply whether the student can obtain the correct answer or not, we analyzed some of 

Figure 1. The equations used to infer student latent knowledge from performance in  
Bayesian Knowledge Tracing.
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the more complex aspects of student behavior during learning. In doing so, we focused on 
behaviors that were informative about whether the student was demonstrating meta–cognition, 
and their engagement with the material. An example of such behavior might be when the 
software indicates to the student that their response involves a known misconception, and 
explains why the student’s answer was wrong. Does the student pause to think through this 
explanation, or do they hurry forward without thinking carefully? 

	 A set of 18 features reflective of student thinking were distilled from the students’ 
interactions with the learning system, as shown in Table 1. As also shown in the table, 
several of these features were found to be individually predictive of PFL and transfer among 
college students (Baker et al., in press), but only one feature was predictive of retention. 
When combined into an integrated model (which used some but not all of these features, as 
some did not provide additional predictive power once other features were incorporated), 
all three models relied on whether the student sought help when they were struggling, or 
avoided help. The PFL model also relied upon whether the student paused to self–explain 
the hints they received. In addition to help seeking, the transfer model relied on whether 
students made fast actions that did not involve gaming the system (trying to get through 
the material without learning, for example by systematically guessing; cf. Baker, Corbett, 
Koedinger, & Wagner, 2004). 

	 This produced the following models of transfer, PFL, and retention:

Transfer = – 1.5613 * HelpAvoidance(1) + 0.2968 * FastNotGaming(7’) + 0.8272

PFL = 0.0127 * Spikiness(9) – 0.5499 * HelpAvoidance(1) – 5.3898 * LongPauseAfterHint(4) 
+ 0.8773

Retention = – 2.398 * HelpAvoidance (1) + 0.852

	 When applied to new students, the transfer model achieved a correlation of 0.396 
(Baker et al., in press), the PFL model achieved a correlation of 0.454 (Baker et al., in press), 
and the retention model achieved a correlation of 0.410. As such, model performance was 
better than using BKT estimates of student knowledge alone, although only moderately so. By 
contrast, the models of retention based on these features did not improve on the knowledge–
based models. 

In addition, these predictions of robust learning were able to achieve nearly this level of 
performance with only a subset of the data (the first 20% in the case of transfer), moderately 
faster than the knowledge–based models. In other words, the full degree of predictive power 
available from this method becomes available when the student has 80% more of the activity 
to complete, giving plenty of time for interventions designed to improve the robustness of 
learning. The performance of the meta–cognitive model at predicting transfer, as the student 
completes increasing amounts of the activity, is shown in Figure 2.
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Figure 2. Predicting transfer with first N percent of the data. Graph reproduced with minor 
modifications from Baker et al. (2011a).



	 It is useful to know that these measures of meta–cognitive skill are predictive of robust 
learning in the domain of genetics. However, these measures are potentially applicable at 
greater scale than simply a single domain. For instance, the help seeking, help avoidance, 
and self–explanation models used in this analysis were originally developed in the context of 
mathematics (e.g., Aleven et al., 2006; Shih et al., 2008). In these previous papers, these same 
three models were shown to correlate to student learning outcomes. As the exact same models 
can predict learning outcomes both in high school mathematics and in college genetics, our 
current results – in combination with the previous results published by other authors – suggest 
that these models may capture aspects of learning skill that are domain–general. An important 
next step would be to see if these models’ predictions are accurate, for the same student, in 
new domains. Showing that a model predicts learning outcomes in two domains is different 
than showing that a student’s skill is domain general. In one example of this type of research, 
Sao Pedro and colleagues (2014) found that students who demonstrate scientific inquiry skill 
in one science domain are likely to be able to demonstrate the same skill in another domain.

Inferring Robust Learning in College Genetics with Moment–by–Moment 
Learning Models
	 A third method for inferring robust learning in college genetics that was tried is 
moment–by–moment learning models. The moment–by–moment learning model (Baker et al., 
2011) is a distillate of Bayesian Knowledge Tracing that tries to infer not just the probability 
that a student has learned a skill by a certain point in a learning activity, but how much 
they learned at that stage of the activity. This inference is made using a combination of their 
current estimated knowledge, their behavior during the current learning opportunity, and 
their performance in the learning opportunities immediate afterwards. 
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	 The full mathematical details of this model are outside the scope of this paper and take 
up multiple pages, but are given in full in Baker et al.’s (2011) work. In brief, a combination of 
the probability of knowledge at the current time (according to BKT) is combined with data on 
the next two actions, in order to assess the probability of three cases at each time point: The 
student already knew the skill, the student did not know it but learned it at that time, and the 
student did not know the skill and did not learn it. Then, machine learning is used to smooth 
the inferences with additional data on student behavior, including help seeking and pauses. 
The details of the exact model used to do this smoothing in the case of genetics are given in 
Baker, Hershkovitz, Rossi, Goldstein, and Gowda’s (2013) work.

	 Visual analysis of moment–by–moment learning over time indicated that there can be 
very different patterns in different students’ learning, or in the learning of the same student 
for different skills (Baker et al., 2013). Examples are shown in Figure 3. One intuition was that 
certain patterns during the process of learning may indicate more or less robust learning. This 
intuition was supported by analyses where human coders labeled graphs by hand in terms of 
specific patterns, such as plateaus, hillsides, or single–spike graphs, and then these patterns 
were correlated to robust learning outcomes in GCT (Baker et al., 2013). Examples of these 
graphs are shown in Figure 3. Some patterns such as plateaus appeared to be correlated to less 
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Figure 3. Examples of the visual features of moment–by–moment learning graphs studied by data 
coders. The x–axis on these graphs represents the number of problems or problem steps where the 
student has encoundered a specific skill; the y–axis represents the amount of learning inferred to 
have occurred during the problem step, relative to other problem steps. Note that these graphs show 
relative differences in learning rather than absolute amounts of learning, in order to facilitate visual 
interpretation by coders. Graphs reproduced from Baker et al. (2013).



robust learning, whereas other patterns such as hillsides, where the student learns the skill 
quickly upon beginning to use the system, appeared to be correlated to more robust learning. 
These patterns generally held across all three forms of robust learning.

	 Next, attempts were made to automate this process, distilling mathematical features 
of the graphs of learning over time, and building these into models to predict robust learning 
automatically within GCT (Hershkovitz, Baker, Gowda, & Corbett, 2013). The best model 
of PFL involved the area under the graph (an indicator of total learning), the height of the 
third–largest peak (the problem step where the third–most learning occurred), and the relative 
differences both in magnitude and time between the largest peak and the third–largest peak. 
This model achieved a correlation to PFL of 0.532 for new students, a better performance 
than the models based on meta–cognitive behaviors or knowledge. This work has not yet been 
replicated for transfer or retention. However, this model has one disadvantage compared to 
those models. Although it does not require the application of time consuming post–tests, it 
cannot infer the robustness of student learning until the student has completed the learning 
activity, making it less useful for immediate intervention during learning. 

Conclusion
	 In this article, we have discussed multiple ways that robust learning can be inferred 
within higher education. One popular option is post–tests, whether administered online or on 
paper. For summative purposes, tests are likely to remain the gold standard option for some time. 
However, the data from online learning, in combination with educational data mining, provides 
an alternative with some benefits. Post–tests are time consuming to administer, and cannot be 
given in real time (particularly for retention tests, which by definition must be administered at 
a considerable delay). Models that can infer and predict robust learning from learning process 
data can make predictions which correlate to student robust learning outcomes, predictions 
which are available to instructors and for personalization within online learning systems much 
more quickly than paper tests can be available. At some cost to predictive power, predictions 
can be available as early as when the student has completed only 20% of the learning task. 
They can also help us to better understand the processes which lead to robust learning.

	 In our work with the Genetics Cognitive Tutor, we have developed three approaches to 
inferring robust learning: knowledge–based modeling, metacognitive–behavior–based modeling, 
and moment–by–moment–learning–based modeling. The knowledge–based modeling approach 
was simplest to create as it depended solely on a standard model for measuring learning in 
online problem–solving; its performance was, however, the weakest. The approach based 
on modeling metacognitive behaviors required more effort to create; it reached asymptotic 
performance at inferring transfer and PFL after the student had completed 20% of the learning 
activity. Finally, the approach based on the moment–by–moment–learning–model was best at 
inferring PFL, but is not applicable until the student has completed the learning activity.

	 As such, models like the meta–cognitive behavior model are probably most relevant for 
use in automated interventions that attempt to infer which students are at risk of developing 
shallow learning and intervene in real time to enhance their learning. By contrast, models like 
the moment–by–moment–learning model are probably most relevant for informing instructors 
after an activity in which students have not developed robust learning, or for recommending 
additional alternate activities after a student completes an activity without achieving robust 
learning. Either approach is more work during development than simply creating a test; but 
these approaches have the potential to speed up assessment and facilitate giving students more 
rapid learning support. 

	 Beyond their ability to predict tests of robust learning in a specific domain, these types 
of new measures may point the way to new domain–general assessment of student skills. In 
particular, the types of help seeking skills used in the meta–cognitive model have the potential 
to be domain–general, as science inquiry skills have been shown to be (e.g., Sao Pedro et al., 
2014). It is not yet clear whether the moment–by–moment learning model indicators of robust 
learning will also prove general, but this is a valuable potential area for future work.

	 The importance of robust learning for higher education is clear. The goal of an 
undergraduate education is not simply to produce mastery of a known set of skills, or awareness 
of a known set of knowledge, but to prepare students for their future careers, where they will 
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In our work with the 
Genetics Cognitive Tutor, 
we have developed three 
approaches to inferring 
robust learning: knowl-

edge–based modeling, 
metacognitive–behav-

ior–based modeling, and 
moment–by–moment–

learning–based modeling. 



have to be able to transfer their knowledge to new situations and contexts, and where they will 
need to be prepared for future learning, both in the domains they have studied and in the new 
areas that will emerge after they complete their studies.

	 As such, it is important to assess robust learning in higher education, and to support 
students in developing it. The approaches presented here represent a variety of ways that may 
make assessment of robust learning more feasible in the higher education context. 
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