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Abstract: The paper focuses on analysing grade 12 learner1 errors and the misconceptions in 
calculus at a secondary school in Limpopo Province, South Africa. As part of the analysis the 
paper outlines the nature of mathematics errors and misconceptions. Coding of learners’ errors 
was done through the lens of a typological framework.  The analysis showed that most of the 
errors and misconceptions were due to knowledge gaps in basic algebra. Also noted was that 
errors and misconceptions in calculus were related to learners’ over-dependence on procedural 
knowledge which had no conceptual basis. On the other hand, learners sometimes had sound 
conceptual knowledge for which they had not acquired allied procedural knowledge needed to 
perform in particular questions. Implications of the study to the wider mathematics education 
community are highlighted.  
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Introduction 
Curriculum reform perspectives in mathematics education articulated in many research papers and 
policy documents aim at deepening and increasing each learner’s mathematical learning and 
achievement (National Curriculum Statement (NCS), 1998; National Mathematics Advisory Panel 
(NMAP), 2008). The perspectives suggest shifts from teacher-centred to learner-centred approaches.  
The learner-centred approaches imply that teaching must also be directly responsive to the difficulties 
experienced by learners on the learning platform, such as the mathematical errors and misconceptions 
they experience.  

In a workshop organised for mathematics teachers by the South African Department of Education, 
teachers were required to outline the topics that they found problematic to teach. The teachers revealed 
that among others calculus was one of them. One wonders why to a large extent the teaching and 
learning of mathematics is so difficult and ineffective. To this quest, we suspected that poor 
performance in mathematics is correlated to learner errors and misconceptions.  

The anatomy of learner errors and misconceptions 

Although errors and misconceptions are related, they are different. An error is a mistake, slip, blunder 
or inaccuracy and a deviation from accuracy. According to Riccomini (2005), unsystematic errors are 
unintended, non-recurring wrong answers which learners can readily correct by themselves. 
Systematic errors though, are recurrent wrong responses methodically constructed and produced 

                                                            
1  In this study the terms learner and student are treated synonymously. In practice the term learner is reserved for one who 
studies at  primary or secondary school and student for one older who studies at a higher education institution 
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across space and time. Systematic errors are symptomatic of a faulty line of thinking causing them 
referred to as a misconception (Green, Piel & Flowers, 2008; Nesher, 1987; Riccomini, 2005).  
Characteristically, misconceptions are intuitively sensible to learners and can be resilient to instruction 
designed to correct them (Smith, DiSessa & Roschelle, 1993). Errors are visible in learners’ artefacts 
such as written text or speech. However misconceptions are often hidden from the undiscerning 
observer. Sometimes misconceptions can even be hidden in correct answers (Smith, DiSessa & 
Roschelle, 1993), when correct answers are accidental.  Educators need to listen carefully to determine 
why learners give answers they give so that they can correctly follow learners’ reasoning.  

Statement of the problem  

The application of calculus in solving multitudes of theoretical and practical problems in diverse areas 
of human expertise represents its immense utility. The most crucial courses in higher education are 
calculus driven. Despite the demostrable importance of calculus in the skills development of South 
Africa, Luneta (2008) observed that teachers and learners in South African schools register many 
challenges in dealing with this topic.  

If the claim that learner mathematical misconceptions are persistent, and that they knowledge 
acquisition is true (Smith et al, 1993; Nesher, 1987), what hope could research in mathematical errors 
and misconceptions in calculus give? Most teachers are unaware of mathematical misconceptions held 
by their learners (Riccomini, 2005). As such, they teach mathematics in line with its logical structure, 
quite oblivious of the need to balance the psychological standpoint from which learners ascribe their 
mathematical meanings (Nesher, 1987).  

The purpose of this study was to investigate the errors and misconceptions learners were displaying in 
differential calculus, classify errors and misconceptions learners have in response to calculus questions 
as well as to explain how learner calculus errors link with their misconceptions.   

The research question was: What is the nature of errors and misconceptions that grade 12 learners 
display in responding to questions in differential calculus? 

Theoretical framework and literature review 
Researchers propose different viewpoints of what is of essence in mathematics teaching and learning.  
According to Skemp (1976), the practitioners who ascribe to relational understanding of mathematics 
(RU) believe that the essence of mathematics is “knowing both what to do and why” (p.1).  RU is 
about how mathematical concepts integrate with each other to form a unitary logical structure. The 
most radical proponents of RU assume that mathematics is pure in form and that its applied 
applications are irrelevant to it. Practioners who hold instrumental understanding of mathematics (IU) 
hold that mathematics is a tool for carrying out computations. Scant attention is given to why that tool 
works.  With regards to calculus, IU provides a disjoint superstructure which cannot justify why 
calculus techniques work. We assume that errors and misconceptions in calculus occur in the space 
between learners’ RU and IU of calculus. 

Further, Hiebert and Lefevre (1986) proposed that the mathematical knowledge held by a learner 
could either be procedural or conceptual. They characterize conceptual knowledge as generalisable 
knowledge rich in connections.  Procedural knowledge is regarded as competence of carrying out a 
mathematical task, the know-how of mathematics but and not the know-why. Procedural knowledge is 
usually taught through drill and practice and so can be automated to carry out specific mathematical 
tasks rapidly and efficiently. This speed and efficiency can be misunderstood for conceptual 
understanding. We also argue that calculus errors and misconceptions result if learners fail to build 
procedures from conceptual knowledge. 

Researchers argue which knowledge ought to come first during teaching and learning of mathematics. 
Some for example Rittle-Johnson & Siegler (1998) believe that the knowledge that learners must learn 
first is of no consequence. But Orton (1983) and Vinner (1989) strongly argue that the main problem 
with calculus teaching is that procedural knowledge is taught at the expense of or before conceptual 
knowledge.  

Research on calculus errors and misconceptions 



Learner errors and misconceptions in elementary analysis: A case study of a grade 12 class in South Africa  37 

 
Volume 3 Number 3, 2010 

Research has tried to account for problems faced by students in learning calculus, but that research is 
still inconclusive. Orton (1983) researched on student errors on differentiation and noted that students’ 
procedural knowledge in routine differentiation was adequate; but that students had underdeveloped 
conceptual understanding of the derivative.  Orton indicated that 20% of students in his study confused 
the derivative at a point with the ordinate, or the y- coordinate of the point of tangency.  Also Porter & 
Masingila (2000) observed that while students differentiate and find limits among other techniques, 
they often are not aware, and are often surprised that there are some underlying mathematical notions 
signifying these techniques.  

Ferrini-Mundy & Graham (1994) indicated that students’ understandings of concepts which build 
towards fundamental calculus are mis-understood by most learners. While Porter & Masingila (2000) 
also reported that many students in university calculus classes possess a superficial and incomplete 
understanding of basic calculus concepts that most educators may not be aware of. 

Tall & Vinner (1981), reported that one difficulty in understanding differential calculus was that it 
instituted in learners the sudden transition from the study of the discrete and the finite, to the study of 
the continuous and infinite. Artigue (1996) argued that some advanced calculus French students could 
not comprehend that 0.999 999 999 … (a limit proces) is really equal to 1 (an object). This was due to 
the fact that some students were confounded in viewing the limit as a process as well as an object as 
supported by Dubinsky, Assiala & Cottrill (1997).  

Research methods 
The study was undertaken through qualitative methods. Qualitative research is empathetic, striving to 
capture phenomena as experienced by the research participants themselves (Creswell, 2007).  A 
qualitative methodology suited the study as it concerns in-depth descriptions of processes (Merriam, 
1992) in explaining how learners reason to form errors and misconceptions in calculus. Qualitative 
research is suitable for this study because, it is concerned with the meanings that learners conceived or 
misconceived about calculus concepts. Merriam (1992) argues that achieving a deep understanding of 
specific phenomena and probing beneath the surface of a situation to provide a rich context for 
understanding the phenomena under study is the aim of qualitative research. In this study, qualitative 
methods help us to understand what learners mean when their productions display errors and 
misconceptions in calculus.  

A class of 45, Grade 12 learners at a Limpopo Province rural school who had used especially 
developed calculus teaching materials were given a test to find out the errors and misconceptions that 
learners might still have on the calculus topic. The learners were taught by a part-time post-graduate 
mathematics education student at the University of Johannesburg. There were 26 boys and 19 girls 
whose mean age was 17, 6 years. Selected learners were interviewed to explain errors observed in 
their answers.  

Data presentation and analysis 

We distinguished the types of errors by coding as shown in Table 1. The categories in Table 1 are 
neither mutually independent nor exhaustive.  

Besides we classified errors as on task (OT) or not on task errors (NOT). OT errors are those 
committed when engaging with calculus concepts that were being assessed. NOT errors are those that 
do not directly concern the concepts being tested.  

In analysing responses to each question using Table 2, learners who made similar errors were grouped 
using a capital letter and the question number. For example, A1 (10) represents a group A on question 
1 with 10 learners making similar errors.  The first column of Table 2 names the group of learners, 
column 2; the responses of the group or the response of a learner representing that group. The third 
column explains the errors made while the fourth column codes the error types from 0 to 4 according 
to the typology of Table 1. Errors are also coded as on task (OT) or not on task errors (NOT). On task 
errors were made in directly answering the question. In this study, OT errors are errors made in 
answering the calculus questions. NOT errors were errors made on concepts not directly linked to the 
question. In this study most NOT errors were on algebra. 
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Table 1: Categories of errors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code Description with examples chosen from this study 

0 Non-systematic errors. These are slips, lapses or unintended mistakes. e.g.  To 
show from first principles that if f(x) = -x2, then f’(x) = -2x, some learners wrote 
(x+h) instead of f(x+h) in the difference quorient formulae but proceeded to do 
the proof correctly 

1 Generalisation or transfer errors. These refer to extension of previously 
available strategies in new situations where they do not apply. E.g. 

))(())(()]()([ xg
dx
dxxf

dx
dxgxf

dx
d

= . A learner in the class being 

researched differentiated in brackets and then multiplied the derivatives. This is 
an error of due to procedural extrapolation. 

2 Ignorance of rule restrictions or symbolism. Applying rules to contexts they 
do not apply.  Failure to understand the bounds where a rule applies. 

E.g. If 
x

xy 4−
=  then 

2
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2
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x

xy −
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2

x

x
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dy −

= . 

Here the learner assumes that the square root sign covers all x-4 instead of just x. 
The error occurs when numerator and denominator are differentiated separately.  
This error is due to equation balancing. 

3 Incomplete application of rules E.g. To find the gradient of tangent of  
y = x3 + x2 –5x + 3 at x =2, A learner found the gradient (11) correctly then wrote 
the point as (2,11). The thinking could not proceed from there. 

4 False concepts hypothesized to form new concepts    E.g. to find the x and y 
intercepts of  f(x) = x3 + x2 –5x + 3, a learner wrote  

x3 + x2 –5x + 3 = 3x2 + 3x –5x=0  

and ended there (ideas of differentiation and turning point). The learner assumed 
that differentiation has to do with the intercepts. Perhaps thought turning points 
were intercepts! This is an example of a conceptual error. 
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Table 2: Question by question analysis of errors on the Grade 12 Calculus test responses 

Question 1. Show from first principles that if f(x) = -x2, then f’(x) = -2x 

Learners 
Group 

Exemplar errors 
in the group Interpretation  Code  OT or 

NOT 

A1 (12) Some learners in 
this group wrote 
(x+h) instead of 
f(x+h) in the 
definition of 
derivative 
formulae but did 
everything else 
well. 

Others in this 
group wrote 

0
lim
→h

 

in the formula for 
the derivative, but 
later just wrote 

→h
lim , omitting the 

0. 

Though not penalized, it is a serious error of notation, 
that later hinders appreciating mathematical argument. 
Because of these lapses in notation, learners do not 
fully understand or appreciate the rigor of 
mathematics. Learners may take the notation lightly 
resulting in serious problems later. At the same time it 
may be just a slip. 

 

Although the learners did not write, as h tends to zero, 
zero was used to eventually find the limit, suggesting 
that it may be a slip.  

These errors could also be procedural due to lack of 
understanding mathenatical notation 

O  

 

 

 

 

 

 

 

 

 

 

OT 

 

 

 

 

 

 

 

 

 

B1 (11) A learner in this 
group wrote 
2(x+h)2 for 
f(x+h). Then 
maintained the –2 
to get 

–2x2-2xh-2h2+x2 
simplified to get 
4xh – 2h2.  Then 
factorised h out to 
cancel it; 
substituted 0 
correctly to get a 
limit of 4x. 

There is a 
misconception in 
that the learners 
do not ask 
themselves why 
their answers are 
different from the 
one given.  The 
learners must 
believe that their 
answers are 
correct and the 
one given wrong.    

 Later one worked –2x2 + x2 to get 0, Suggesting that 
they knew from conceptual experience that although 
they clearly saw that the terms do not cancel to get 0, 
they however wrote 0. The misconception here is that 
the learner thinks thought she must get a zero 
whatever, instead of her inspecting her work to find 
out why her expression is not reducing to x terms that 
cancel. 

Learners thus have fixated thinking on a concept. 

 The learners have the correct concepts but are lacking 
in procedure. Again, another learner simplified  
-4x2 -4xh to get 0. This might stem form the need to 
get a 0 when differentiating from first principles, 
despite the fact that data does not show that. This is a 
scenario of working from answers. 

Learners had errors writing –2(x+h) 2  

for (x+h)2. It appears they used the differentiation rule 
already of multiplying by the power and reducing the 
power by 1. Hence the learners just went through the 
motions of differentiating from first principles, such 
learners believe these are just motions not really 
necessary as the answer is already known. (This type 
of thinking should be clarified if such learners are 
interviewed). This lack of diligence makes learning of 
mathematics difficult for learners as they presume 
other explanations as superficial when they are very 
essential.  

 

 

 

 

 

 

1  

 

 

 

 

 

2  

 

 

 

 

 

 

OT 

 

 

 

 

 

OT 

 



40 Kakoma Luneta, Paul J. Makonye 

 
Acta Didactica Napocensia, ISSN 2065-1430 

Question. 2 Differentiate y = (x3 + 1)( x2 - 2), wrt x. 

Learners 
Group Exemplar errors in the group Explanations  Code  OT or 

NOT 

A3(7) Correctly worked out but after 
getting the answer went on to write 

0=
dx
dy

 and the expression of 

0=
dx
dy

 in terms of x equals zero 

Continued to work after getting the 
answer, could have been thinking 
of  using strategies for finding  
turning points  (TPs) 

 

 

1  

 

 

OT 

B3(8) After correctly simplifying the 
original expression to  

x5-2x3+x2-2 said equal to  

x7-2x3-2 = 7x-6x2-2=-7x-6, implying 
that  x5+x2=x7. There was no notation 
for differentiating although it was 
implied.  

Differentiated  

x6-2x3+x2-2 to x8-2x3+2. 

x5 + x2=x7 used the multiplying 
index rule,. 

Differentiated two terms of a 
wrong expression wrongly. 

 

 

 

Others added x6+x2 to get x8 

3  

 

 

 

 

 

1  

NOT 

 

 

 

 

 

OT 

C3(15) Differentiated in the brackets! Outright misconception, failure to 
appreciate the product rule 

2  OT 

Question 3. Differentiate 
x

xy 4−
=  wrt x. 

Learner 

Group 
Exemplar errors in the group Explanation Code 

OT 
or 
NOT 

A4 (12) 

Wrote 1

2
1
2
1

...4

2
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2
1

2
1

2
1
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−

−

−

x

x

x

x
,  but later wrote 

dy/dx=0; others wrote RHS=
2
1

2
1

4

x

x −
.  

Others had 
2
1

2
1

4

x

x −
  differentiated to 

2

4
2
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x
−
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Differentiate numerator 
and denominator 
separately 
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NOT 
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Using difference of two 
squares. 

1  

 

NOT 

 

 

NOT 



Learner errors and misconceptions in elementary analysis: A case study of a grade 12 class in South Africa  41 

 
Volume 3 Number 3, 2010 

y=x2-4,  x
dy
dx 2=  

C4 (8) Some had RHS= 

2
3

2
1

2
1

2
1

2
1

2
1

2
144 xxxx

x

x
+=−=

−
  

.Some had  an answer   44 −= x
x

 

Incomplete application of 
differentiating rule  

Error might be linked to 
the knowledge that 

n
n x

x
−=

1
, where the 

power changes sign if the 
reciprocal is removed. 

1  NOT 

 

D4(3) 

RHS= 2
1

4
1

2
1

2
1

2
1

2
1

444 −−−
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

− xxxx
x

x
 

4
1

2
1

2
1

−−
=− xxx   

misapplying exponents 

2  NOT 

 

E4(4) 
Squared the RHS to get 

x
x 9−

. Some wrote 

x
xx

x
xx

x
x 44)2)(2(4 −−

=
−−

=
−

  

differentiated to x2-82 

Misapplication of 
squaring formula 

Difference of two squares, 
nothing to do with 
differentiation 

2   

1  

NOT 

NOT 

Question 4. Find the turning points of  f(x) = x3 + x2–5x + 3 

Learner 
Group Exemplar errors in the group Explanation Code OT or 

NOT 

A6 (3) Solved for f‘(x) =3 x2+2x-5 to get x=1 
or x=2, then wrote f(1) =-6 and f(2) = -
18. So said TPs are (1,-6) and (2,-18). 

The underlying thinking is correct. 
This was an error of performance in 
failing to factorise 3 x2+2x-5. 

0 NOT 

B6(9) Factorized correctly  

3x2+2x-5=(3x+5)(x-1)=0.  

Wrote 
3
5

=x  or 1. substituted to get 

the points (5/3; 56/2) and (1,0) 

Oversight of writing 
3
5

=x  

instead of  
3
5

−=x  

0 OT 

D6(6) Answers (-5/3;-194/27) and (1;0). Underlying thinking correct but 
performance errors in simplifying 
substitution.  

0 OT 

F6(3) Wrote f(x) = 3x3 + 2x -5+ 3  Divided 
everything by 3 ostensibly to have a 
coefficient of 1 on x2.  

Was thinking of a method for 
calculating limits 

1  NOT 

G6(7) Used intercepts points found in 10.1 to 
substitute to find turning points 

Outright misconception 4 OT 
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Question 5. Find the equation of the tangent of the curve at x = 2  

Learner  
groups Exemplar errors in the group Explanation Code OT or 

NOT 

A8(6) A learner in this group found y co-
ordinate (5) but could not find the 
gradient at x=2, but rather said the 
gradient was –5 and proceeded to use 
it correctly to find the equation of 
straight line 

Had difficulty to conceive that the 
derivative could give him the 
gradient. Must have confusedly 
used the relationship between 
perpendicular lines to get the 
gradient –5 from 5 

2 OT 

B8(3) Found the gradient (11) correctly then 
wrote the point as (2,11). This 
thinking choked the learner who 
could not proceed. 

Misconception 3  OT 

C8(4) Could only find y co-ordinate (5). 
Stopped there 

Incomplete working 3 OT 

D8(8   ) Found y co-ordinate and said it was 
the gradient. Wrote  

y-1=5(x-2) 

 4  OT 

E8(5) Could not simplify substitution to get 
the y value. Got –1 instead of 5. but 
proceeded to do everything else well 

Error of performance in 
substitution 

0  OT 

F8(6) Wrong formula for gradient of line. 
eq Used y  value 

 4  OT 

 

Discussion 

Drawing from the analysis in Table 2, learner achievement in calculus seems to be mainly due to 
knowledge gaps in algebra that forecloses substantial calculus epistemic access. This is due to the fact 
that algebra is the language of calculus.  Difficulties are also due to learners’ lack of knowledge in 
underlying calculus concepts, in which calculus techniques such as differentiation are instrumentally 
understood. 

NOT errors occurred in about 40% of the cases. In the algebra realm, some learners could not add or 
multiply basic algebraic expressions correctly. One implied that x5 + x2=x7 (Learner in Group B3). 

Others wrote 4
1

2
1

2
1

−−
=− xxx  (Learners Group F, Table 2). There was confusion when learners tried 

to use the rules for indices particularly of negative or fractional exponents viz; x

x
21

2 =− or   

2
1

2
1

2
1

2
1
2
1

4
−

−

=
−

x

x

x
x

  (Learner Group A, Table 2). These procedural errors were NOT errors but are 

significant in that they incapacitate progress calculus epistemic access. 

Another wrote (−x)(−x)=−x+x perhaps emanating from the knowledge that (−)(−)=(+) but failing to 
articulate it clearly. Such learners are at cross-roads as they cannot differentiate and integrate 
multiplication of negative numbers and addition involving negative numbers. 
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Other NOT errors were due to difficulty in using the functional notation, for example two learners 
(Learners A & B, Table 2) wrote (x+h) instead of f(x+h), however their working maintained the 
essence of the function notation. This seemingly benign error is critical because if learners do not 
observe notation rigor, they will fail to appreciate the essence of mathematical argument. 

OT errors occurred in 60% of the cases. A learner wrote –2(x+h)2 for f(x+h) (Learner D, Table 2). 
This error shows the learner thinks differentiation from first principles is just a formality as he knows 
the derivative is –2x. The learner’s misconception lies in failure to appreciate the mathematical 
argument, in other words the learner is failing to appreciate the mathematics problem. Such learners 
being far from understanding the mathematical problem itself, would not appreciate the conceptual 
grounding necessary for its solution processes.    

Another set of students (Learner Group G, Table 2) wrote the following on differentiating –x2 from the 

first principle: 
h

xfhxf
h

1)]()([lim
0

++
→ . The first error is quoting the difference quotient as a sum. 

This is an error due to lack of understanding that the derivate is but a gradient; a rise over a run; the 
vertical increase in f over the small x horizontal increase; h. It is caused by a lack of appreciation of 

the geometrical basis of the derivative and instrumental understanding. Some wrote 2

1)(
x

xf =  rather 

than -x2. Later they recovered to work with the correct expression -f(x) = x2 but which is wrongly 
simplified, because of algebraic errors.  

Also, most learners often think that most mathematical processes are linear. This is exemplified by 
learners who differentiate products in brackets or differentiate numerator and denominator separately 
instead of multiplying out the brackets or carrying out the division before differentiating. For instance, 
the working of Learner Group C, Table 2 suggested that (f/g)’ = f’/g’ 

Some students on answering a question that only required them to differentiate a function; 
differentiated correctly but went on to equate the derivative to zero. They mixed differentiation (a 
process) and how to find turning points (an application of the derivative) without consciously being 
aware of what they were doing. It could be that learners have seen the teacher equating derivatives to 
zero while establishing turning points of functions while working of calculus problems for the class. 
The learners are mystified by this; hence they simply imitate equating the derivative to zero without 
appreciating the specific contexts where the derivative vanishes. That way they have a misconception 
as they cannot differentiate between differentiating and how to use differentiation to optimise or 
minimise. 

Learners sometimes had good calculus concepts but their weak mastery of algebra made 
operationalising their knowledge difficult particularly on the topic of turning points. For example one 
learner, in finding the turning points of   

f(x) = x3 + x2 -5x + 3, f ’(x) =  3x2 + 2x-5 = 0; to get x +1, or x+2  

Then wrote turning points (TPs) are (1,-6) and (2,-18). The learner understood that for TPs the 
derivative is zero. Having found the derivate correctly, however, the procedural knowledge of 
factorizing was inadequate leading to wrong answers.  

Some learners used the method of calculating limits on the turning point problem. One learner used 
the co-ordinates for the intercepts to calculate the turning points. Thus we note that while at other 
times learners have sound conceptual knowledge, their inadequate procedural knowledge affected their 
performance. This means that in the teaching and learning of calculus conceptual and procedural 
knowledge do complement each other and that it is crucial to teach them together. 

Some learners displayed insufficient knowledge of calculus terminology such as confusing turning 
points with the axial intercepts. Thus some difficulties are due to non-conflicting but parallel calculus 
conceptual knowledge. 

In the interview some learners at first stuck to their errors but after some probing it became obvious 
that learners possessed both misconceptions and correct concepts on some ideas which to them did not 
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conflict. Further probing helped learners to acknowledge their submerged misconceptions. As a result, 
some learners were able to link their IU and RU and re-consider their misconceptions in new light.  

Conclusion 
This study has highlighted and characterised some misunderstandings displayed by a group of grade 
12 learners in calculus. Their performance in calculus was undermined by weak pre-calculus skills on 
factorisation, directed numbers, solving equations and simplifying indices among others. This 
algebraic incapacity presented clear epistemological obstacles that undoubtedly had a negative impact 
in learning calculus. This position unreservedly implies the need to equip pre-calculus learners with 
solid algebraic skills. Also, learners need to particularly appreciate the geometric/graphical basis of the 
derivative as well as perform calculator-based numerical investigations that enable them internalise the 
notion of the derivative. The gradual and progressive turning of external actions into processes; 
reifying the processes into mathematical objects, that are internalised into schemas, constitute the 
APOS theory (Dubinsky, Assiala & Cottrill, 1997) –  that learning occurs from specific concrete,  
contextual situations to abstract, context free and generic understanding. This theory helps to bridge 
constructivism and pedagogy.  Similarly graphical and calculator-based investigations could be 
regarded as “horizontal mathematisation” (Freudenthal’s, 1991) in a geometric and numerical real 
context that prepares learners for calculus “vertical mathematisation” in an algebraic and abstract 
context.  

The noted errors and misconceptions show that there is structure in the misconceptions learners have 
and that these misconceptions emanate from prior acknowledge as learners attempt to construct 
mathematical meanings (See Table 1).  Learners’ errors are therefore a result of naïve concept images 
that do not measure up to the concept definitions (Tall & Vinner, 1981), characterised by expert 
concepts. The noted errors are of two kinds, fragmented and elaborate (Chi, 2005). An example of an 
elaborate error is that differentiation of composite functions is a linear operation, while an example of 

a fragmented error is that 4
1

2
1

2
1

−−
= xxx . Thus the errors that learners exhibited in their work are 

varied. 

This report recommends that further research be done to 

(a) determine how learner errors and misconceptions in calculus evolve and, 

(b) assess how far competency and performance in calculus can be enhanced if educators target 
the errors and misconceptions that have been identified in their learners and students.  

Such research increases knowledge to enhance powerful calculus teaching and learning.  
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