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Abstract: Coach is an activity-based, open computer environment for learning and doing mathe-
matics, science, and technology in an inquiry approach, developed in the last twenty-five years at 
the AMSTEL Institute of the University of Amsterdam. It offers a versatile set of integrated tools 
for data collection, data analysis, modelling and simulation, and for multimedia authoring of 
activities. In this paper, we present the STOLE concept that underpins the design and implementa-
tion of systems like Coach. It is an example of how members from the physics education research 
community came to convergence on tools for doing investigative work and achieved integration of 
tools. Special attention goes further to the mathematical requirements of such a learning environ-
ment and to the computer support of various representations of one and the same phenomenon or 
scientific concept. We also discuss one of the most complicating factors in the implementation of 
an integrated learning environment for mathematics and science, namely that mathematical con-
cepts are not always used the same in these fields. Differences between the use of variables, func-
tions, and graphs in mathematics and physics are briefly discussed, and consequences for the 
design of a general-purpose learning environment are addressed.  
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1. Introduction  
The driving forces behind innovations in mathematics, science, and technology (MST) education take 
many forms. Some of the underpinning views are: 

• Learning is a constructive and situated process that only takes place when the learner is actively 
engaged. In a constructivist view on teaching and learning (cf. Steffe & Gale, 1995), knowledge is 
in fact constructed in the mind of the learner and not transferred from teacher to student. So, the 
main task of the teacher is to create conditions under which an active attitude leads to learning. 

• Learning is a social process. Competencies with regard to collaboration, discussion, sharing of 
ideas and results, reporting, and so on, are important in the students’ preparation for a knowledge 
society. The task of the teacher is to organize sessions where the social processes take place and 
can be practiced. 

• Learning becomes more relevant when it is done in a context. Authentic learning, interpreted here 
narrowly as working on real-world, complex problems, with the goal to come to grips with phe-
nomena through scientific methods, is generally considered to motivate students and to lead to 
better understanding. Thus, the task of the teacher is to give students to opportunity to engage 
inside and outside school in authentic learning activities that match some of Reeves et al’s (2002) 
ten characteristics that constitute authentic tasks. 

• Learning mathematics, science and technology includes not only acquiring theoretical knowledge, 
but also doing and learning about MST (cf. Hodson, 2008, 2009). This requires a contemporary 
outlook on what is going on in MST, not only the issues of decades or centuries ago. Since tools 
play a crucial role in current research and development, this should be reflected in education.  
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In all of the listed views, information and communication technology (ICT) is expected to contribute 
to the improvement of teaching and learning. The development of ICT for MST education is mainly 
driven by a combination of educational research, curriculum development and technological develop-
ment. We envision a scenario of teachers and students using a set of tools for inquiry-based study of 
natural and mathematical phenomena. This set of tools is integrated in one open environment designed 
for a broad educational setting. Openness means that it is  

• a flexible, customisable, multi-purpose system; 
• an environment for solving open problems that need definition, set-up, exploration, data process-

ing and analysis, mathematical modelling, and so on, that is, primarily a cognitive tool; 
• as much as possible free of didactic context or principles, that is, it is less considered as a peda-

gogical tool, but more as a tool for doing mathematics and science. 

This computer learning environment does not only exist in the minds of software designers, but it has 
already been realized to a large extent in the Coach learning and authoring environment (Heck et al, 
2009), which is the result of more than two decades of sustained research and development work at the 
AMSTEL Institute of the University of Amsterdam to improve MST education.  

In this paper we address the design rationale of an integrated set of tools for an inquiry-based approach 
to MST education, illustrate it with the realisation with Coach, and we discuss challenges that design-
ers of computer learning environments face. Regarding the design, we address the following research 
question: What are the requirements for an integrated computer learning environment for MST educa-
tion and do requirements coming from various science fields link up with each other? The contribution 
of this paper to answering this question is design related and theoretical, not empirical. Results on how 
certain requirements have been realised in Coach and results on the benefits of the designed tools 
come mainly from recent explorative design research studies of the authors.   

2. The STOLE concept 
At the introduction of the computer in science education it was predominantly seen as an aid for prac-
tical work and investigations in school lab, so for data logging and computer modelling. Initially this 
meant the use of dedicated, stand-alone programs, but soon the demand for an integration of tools aro-
se. At the beginning of the nineties, it became possible to develop educational software and hardware 
for more general use because of increased insights in the potential of educational software, progress in 
standardization in computer technology, the growing number of computers in schools, and the techni-
cal improvement of the personal computers in terms of speed, memory, and operating system. This 
caused a rethinking of how ICT could facilitate inquiry activities in science and a reconsideration of 
the design of computer environments for science education. Of great importance for the development 
of the Coach environment and other products was an initiative of stakeholders that led to the introduc-
tion of the STOLE concept, which is an acronym for Scientific and Technical Open Learning Envi-
ronment. This concept was further developed and underpins the design and implementation of com-
puter learning environments like Coach until today.  

In short, it started with a vision of a hard- and software environment in which tools for measuring, data 
processing, and modelling are integrated in a single system that supports students’ learning in an 
inquiry-based approach of science education. STOLE focused on essential elements of doing investi-
gative work, which includes the following activities:  

• setting up and controlling experiments; 
• collecting data from experiments; 
• displaying measurement data graphically and analysing data; 
• retrieving information and making hypotheses;  
• proposing, constructing, and testing computer models. 

Other central ideas in the STOLE concept were that 

• students were expected to be actively engaged in realistic investigations using the environment, 
while the teacher would facilitate the learning process; 
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• the environment should reflect innovation in science itself and be suitable for a wide range of 
science experiments, serving many science topics and many teaching and learning approaches, but 
it should be all by itself content-free (that is, the user should be able to add contents);  

• the system would be an integrated collection of tools that could be frequently used during science 
lessons and practical investigations. This goal was also based on the idea that the learning curve of 
becoming accustomed to and proficient with the hard- and software environment should be as 
smooth as possible and follow the ‘learn once/use frequently’ philosophy. 

Software tools selected for STOLE were grouped into functional modules that combined instruments 
needed by a student at a certain stage of a scientific investigation. The student was central in this con-
cept and it should be possible to adapt the environment to the student’s level and to the science cur-
riculum in which the student and his/her teacher participate. The criteria for tool selection were: 

• all the relevant tools (functions) for practical investigations must be included; 
• tools must be selected for functional use in investigations; 
• the environment must be transparent for the data in all the modules in the software package. Users 

should not have to make conversions because of the format of data; 
• it must be possible to exchange data, models, and information between students within and outside 

the school. The environment must also work with data coming from other resources;  
• if a module in STOLE cannot be constructed, then it must be possible to work with other software 

packages and exchange data; 
• it must be possible for publishers to deliver templates, data, models, and information from science 

textbooks that can be processed by students. 

IP-Coach 4, released in 1993, was one of the first implementation of the STOLE concept that was used 
at large scale in science education. The name of the software environment reflects its purpose: IP 
stands for ‘interface program’, which refers to interfacing of sensors to the computer, and Coach refers 
to coaching and support of learning. It consisted of a shell program from which it was possible to 
choose different modules. The functionality of these modules corresponded roughly with activities in 
the several stages of investigations. The modules were grouped into tool environments: 

• the measuring environment (data logging and calibration of sensors); 
• the data processing environment (processing and analysing of data, spreadsheet calculations); 
• the modelling environment (construction of computer models and analysis of simulation results); 
• the control environment (steering and control of actuators) 
• the authoring environment (setting the hard-/software to the need of the teacher/student). 

The introduction of the desktop metaphor for using a computer as a multimedia environment with a 
multitude of linked representations and the introduction of the mouse as the main interaction device 
drastically changed the way of working and learning with computers. Around the same time, a new 
vision on practical work in science education was arising that promoted practical work and research 
projects in which students are engaged in activities that resemble those of ‘real’ scientists (cf. Gott & 
Duggan, 1995; Wellington, 1998; Woolnough, 2000). The changed technological and pedagogical 
circumstances asked for a revision of STOLE. In one sentence of pragmatic nature, the main question 
was how the computer could contribute to learning science, doing science, and learning about science.  

The original STOLE concept did not offer much for the design phase of student-directed practical 
work and research projects. In this phase a student-researcher will need information: (s)he must ana-
lyse the scientific problem, simulate a model, or look up information about work of other ‘research-
ers.’ Thus, the computer is more than only a tool to collect and analyse data; it must also give access to 
information resources and allow the display of information in various formats. The resources may be 
supplied on a CD-ROM or through Internet and they can be in various formats (sound, picture, video, 
digital image, hyperlinked text, and so on). The display of information and the inquiry nature of stu-
dents’ activities ask for multiple linked representations.  

The application area of the computer environment was envisioned to become larger than science 
investigations: The field of technology seemed appropriate for students undertaking design projects in 
which control of models is realized through computer models and programmable microworlds. Thus, 
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the role of data logging with sensors connected to the computer became less prominent than before. 
Focus was more on learning science and technology by practical work and by doing authentic 
investigations or design activities. It was envisioned that it should be possible to fine-tune the whole 
cycle of doing investigations and design work. This meant that a teacher should be able to design a 
sequence of activities for a particular investigation or design, and to organize these activities in a 
project to structure the lesson materials (experiments) for his/her students. This steering of the learning 
process by adapting or authoring student activities and bringing them together in a project is more 
important in lower secondary education than in upper secondary education. At lower secondary level, 
a teacher may not want to put the burden of selecting appropriate displays of information to his/her 
students and (s)he may want to provide information in an informal, qualitative, more visual and/or 
playful way. This is the reason that authoring of multimedia-based activities becomes important too. 
At higher secondary level, students are even expected to author activities themselves: from scratch or 
by selecting tools independently from prior choices made in an activity. In authoring mode one can:  

• insert instructions, notes and text along with images, animations and video clips;  
• add links to relevant Internet pages;  
• predefine experiments and/or prepare a programming environment;  
• set the movies to collect video data; 
• create dynamical models and animations.  

An author of an activity decides about the mode of the students’ use. The modes may range from a 
restricted setting, in which students only have access to a few necessary, unchangeable controls and 
information displays, through a semi-open setting, in which a student can work freely with resources 
that have been preselected by the teacher, up to a fully open mode that allows students to freely use an 
open set of tools. These modes with different levels of openness and adaptability offer the opportunity 
of a suitable learning path for every student to become knowledgeable, skilled, and proficient in using 
the computer for scientific and technological purposes. 

The renewed and extended STOLE concept of an integrated, tool-based environment suitable for an 
inquiry-based approach to science and technology learning, in which students and teachers work with 
multimedia-based activities and create such activities themselves by using a variety of resources, can 
be looked upon as a predecessor of the idea of working in a virtual learning environment. In the next 
section we look briefly at the realisation of this concept in Coach 6 (Heck et al, 2009).  

3. Realisation of the STOLE concept in Coach  
A one-sentence description of the Coach learning and multimedia authoring environment is as follows:  

Coach is a single, activity-based, open computer working environment that is designed for the 
educational setting and that offers a versatile set of integrated tools for the study of natural 
phenomena, mathematics, and technology. 

A closer look at the elements of this description reveals that the environment is meant to 

• aid students in collecting, processing, and analysing various types of data, to provide visualization 
and analysis tools, and to offer opportunities for creating computational models and animations; 

• be universal and applicable in several curricula, in various instruction models, and at many levels 
of education, and be adjustable by teachers to their students’ abilities;  

• transform mathematics and science lessons into learning activities in which students are deeply 
engaged in building up and practicing knowledge, experience, and skills; 

• change the computer into an instrument that allows students to explore real-world phenomena, 
helps them develop deep understanding of mathematical, scientific, and technological concepts, 
and supports communication of students’ ideas and results; 

• involve students in similar activities to what ‘real’ scientists and engineers engage in and thus lead 
to authentic mathematics, science, and technology learning, in which various higher-order think-
ing skills like problem solving, critical thinking, creativity, and connecting contexts with funda-
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mental concepts in math and science are highly valued (cf. Chinn & Malhotra, 2002; Edelson & 
Reiser, 2006; Roth et al, 2008).  

Coach activities are mostly based around the selected tool for collecting, generating, processing, or 
analysing data. Teachers can use ready-made activities or author new activities, and they can organise 
them in projects to structure the lesson materials (experiments) for their students. Activities typically 
contain components of various types: 

• texts with explanations and/or instructions of activities; 
• pictures to illustrate experiments, equipment, and/or context situations; 
• video clips or digital images to illustrate phenomena or to use for measurements; 
• representation of measured data and computed results as graphs, tables, meters, or digital values; 
• models (textual, equations-based, or graphical) to describe and simulate phenomena; 
• programs to control devices and to do mathematical computations; 
• animations to dynamically represent and interact with models of phenomena; 
• links to Internet sites and other external resources for students. 

Three examples are given below, but at this point it is good to realize that all kinds of activities are 
supported in a single computer environment and not in a suite of separate programs. The main advan-
tages of having a single environment instead of a bunch of special purpose software packages are of 
course that students and teachers only need to familiarise themselves with one environment, in which 
components are geared with each other, and that they can grow into their roles of skilled users of the 
system during their learning and teaching. A learn-once-use-often philosophy of educational tools is 
realisable and students may experience the connections between different school subjects through the 
use of a single environment instead of a grab bag of disconnected tools. Another advantage of a single 
environment compared to a software suite is the possibility to easily combine different tools in one ac-
tivity. We refer to (Heck & van Dongen, 2008) for a description of an investigation of muscle activity 
during human gait through synchronous electromyographic measurement and video capture, and to 
(Heck & Bruidegom, 2007) for an example of simultaneous use of measurement with sensors, control 
of a device, and video capture in the context of the pupil light reflex of the human eye. The screen shot 
of a Coach activity in picture 1 shows a design activity at primary school level, which combines 
sensor-based measurement of light intensity with control of actuators (a lamp and a buzzer) through an 
interface with the computer (the €Sense interface). 

Students can gain through measurement and control activities understanding of designing and doing 
experiments, and of the role of technology in daily life. Experiments are quite easily set up, with a 
variety of interfaces supported and a large library of calibrated sensors and actuators available. Experi-
menters can select an appropriate measurement method and a useful measurement setting. The control 
tool window offers several modes of programming with varying levels of difficulty. They are used to 
create and execute programs for automated measurements (for example, an automated pH titration 
system in which a titrator is controlled while measuring with a pH sensor), for manipulation of meas-
urement data (for example, converting voltage signal from a sound sensor to decibels), for control of 
systems such as LEGO® models, and for programming any phenomenon (mathematical, scientific, 
natural, artificial, or whatsoever), such as the intelligent lightning system in picture 1. Control activi-
ties give students the opportunity to create physical artefacts, such as vehicles, line-followers and 
robots, and program them with interesting behaviour. In this way a design project becomes a fun pro-
ject and at the same time students learn a lot about the difficulties that technicians and engineers have 
to overcome in similar work. 
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Picture 1. Screen shot of a Coach activity in which a student needs to design and implement a lightning system. 
 
Picture 2, taken from (Heck et al, 2009), illustrates automated point tracking in the context of a bounc-
ing table tennis ball, recorded with a high-speed camera at a frame rate of 150 fps. For each point of 
interest (here the centre of the ball), the user specifies at the start of the tracking process a template 
around this point that will henceforth be automatically matched in subsequent video frames. Matching 
takes place in a certain moving search area, the size of which is also user-definable. In picture 2, the 
search area around the currently measured point (P1) is visible as a small rectangle.  

 
Picture 2. Video measurement of a bouncing table tennis ball via point tracking. 

 
The video clip on which one measures and the corresponding mathematical representations such as 
graphs and tables are always synchronized in Coach. This means that pointing at a graph or a table 
entry automatically shows the corresponding video frame and that selecting a particular frame high-
lights the corresponding points in diagrams, when scanning mode is on. This makes scrubbing, that is, 
manually advancing or reversing a clip, an effective means to precisely identify and mark interesting 
events in the video clip and to relate them with graphical features. This supports students to transition 
between graphs and physical events and is probably the main reasons for the reported improvements in 
graph interpretation skills due to video analysis activities. 

Another important feature of video analysis activities is that they mimic a technique often used in sci-
ence, for example in movement science. This means that students can act in research projects on body 
motion like real movement scientists: they record video clips of a motion in which they are interested 
with a webcam or digital video camcorder, they measure on these movies and analyse the collected 
data. We refer to (Heck & Holleman, 2003; Heck & van Dongen, 2008; Heck & Ellermeijer, 2009; 
Heck et al, 2010) for illustrative examples, which show that data video and image measurement have 
great potential for studying everyday scenes of motion and for linking mathematics and science with 
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the real world. The user must decide in video activities about many things, like how to make the best 
video recording, how to enable calibration, what and how many points to measure, which coordinate 
system to use, in which frames of the video to measure, and so on. 

The modelling tool in Coach allows students to create and run numerical models, and to compare 
modelling results with experimental data. A text-based, equations-based, and graphical editor is pro-
vided. The first editing mode is programming in a language that is dedicated to mathematics, science, 
and technology education. The last two editing modes support a system dynamics approach that is the 
basis of a graphical aggregate-focused software such as STELLA (www.iseesystems.com) and Power-
sim (www.powersim.no). This type of modeling involves quantities (knowns as levels or stocks) that 
change in time by inflows and outflows. Physical flow and information flow determine the system’s 
behaviour over time. Information flow is best understood as an indication of dependencies or influen-
ces between variables. The variables can be levels, flows, parameters, and auxiliary variables. These 
relations are made explicit as mathematical formulas and graphical or tabular relations. STELLA, 
Powersim and Coach provide a graphical representation in which users can express their ideas about 
the behaviour of a dynamical system; these ideas are then converted into more formal mathematical 
representations. The upper-left panel in picture 3 is an example of a graphical model of a bouncing 
ball in which only gravity is taken into account. It illustrates that the level/flow metaphor of a dynami-
cal system should not be taken literally. On the one hand, the graphical model can be considered as a 
representation at a conceptual level of the system dynamics, where relation arrows indicate dependen-
cies between quantities. On the other hand, the graphical model represents a computer model, which 
provides in many cases an iterative numerical solution of a system of differential equations. Computer 
modeling extends the set of realistic problems that can be solved by students without the need of so-
phisticated mathematics beyond their educational level. Examples are models of yoyos (Heck & 
Uylings, 2005), falling and bouncing objects (Heck & Uylings, 2010; Heck et al, 2009, 2010), alcohol 
metabolism (Heck, 2007), and running by athletes and students (Heck & Ellermeijer, 2009). 

 

Picture 3. A graphical model and animation of the bouncing ball. 
 
Picture 3 is a screen shot displaying a graphical model that implements the bouncing ball, graphs ob-
tained by a simulation run, and an animation built from the model. The mathematical model can be 
improved in many ways (Heck et al, 2009) and this is an interesting practical investigation for 
students. We are of opinion that by looking at various models of the same phenomenon, a critical 
attitude of students is promoted and the importance of theoretical underpinning of a mathematical 
model comes to the fore. Furthermore, by linking modelling directly with experimental work, students 
get the important message that ideally there exists a synergy between theoretical and empirical 
scientific work. Just as empirical science cannot do without theory, theoretical sciences benefit from 
empirical work. 
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4. Multiple representations 
Key feature of the Coach environment is that the tools for data collection, processing and analysis of 
data, modelling and simulation, and so on, are integrated in one system. This is far more than just a 
matter of technology. For us, the theoretical rationale of tool-integration is that the use of multiple ex-
ternal representations is crucial for deep understanding of real phenomena and that this process of 
understanding is promoted when learners are not distracted by technical burdens that could have been 
avoided by the provision of tools that work well together. This view can be underpinned by theoretical 
frameworks such as the Kaput-Goldin representational framework for mathematical cognition and 
learning (cf. Kaput, 1992, 1994; Goldin, 2008; Goldin & Kaput, 1996) and the ‘Rule of Five’ frame-
work on multiple representations (cf. Dick & Edwards, 2008). 

The representations used in a Coach activity are often not static entities, but dynamic elements that are 
linked so that a change in one representation affects the other representations. This is one reason to 
speak about integrated tools (There are more reasons, such as integration of different styles of tool 
use). The underlying idea of having multiple, linked tools available in an activity is that the building of 
conceptual knowledge gains from the use of multiple, linked representations of mathematical, scien-
tific, and physical objects, and that the number of ways to come to a solution of a problem increases. 
Note that we assume here that the students have already learned to use conventional mathematical 
representations like graphs and tables, and that they are already familiar with built-in data processing 
and analysis tools. The environment primarily provides facilities to utilize these representations in a 
study of a phenomenon, to become proficient in using representations and tools, and to learn about the 
strength of using multiple representations in practice. This reflects that in scientific practice heavy use 
of multiple representations is made for describing a phenomenon. Mathematicians and scientists often 
use multiple representations to study problems and to investigate phenomena. They do this because  

• different kinds of information can be conveyed with specific types of representations (for exam-
ple, phenomena with simulations, animations, or video); 

• interaction with multiple representations supports various ideas and processes in problem solving; 
• use of multiple representations promotes deeper, abstract, and general understanding.  

In practice, mathematicians and scientists select those representations that they feel comfortable with 
and that match best with their working style. In our opinion, this must also be reflected in mathematics 
and science education: the main idea is that multiple representations act to enrich the activities from 
which a student gains experience and understanding, and that they serve as a language with which the 
student organises and reorganises experiences about mathematical and scientific phenomena and con-
cepts, hopefully giving the student the opportunity to use representations that match best with his/her 
learning style. Students learn that a single representation system does not suffice for problem solving 
and modelling in the most interesting cases, simply because it cannot cover all aspects of a mathemati-
cal/scientific phenomenon or concept. In other words, multiple representations can support learning by 
allowing for complementary information or complementary roles. For example, tables make infor-
mation explicit, allow quick and accurate read off (of single values), and facilitate pattern recognition. 
In diagrams, a lot of information can be grouped together such that certain aspects of a phenomenon 
(for example, linearity/non-linearity, acceleration/deceleration/constant velocity, etc.) can be quickly 
recognized. A mathematical formula is a compact, but precise way of describing a quantitative rela-
tionship between variables.  

In addition to the complementary roles of multiple representations, students learn that multiple repre-
sentations can offer a source of referential accuracy by providing redundancy and that one representa-
tion can constrain interpretation of another. For example, in the animation example shown in picture 3, 
the animation of the bouncing ball (with the in reality invisible velocity vector) on the right-hand side 
can constrain the understanding of the velocity-time diagram and help the student understand that 
positive and negative velocities mean upward and downward directions of motion, respectively. We 
believe that students’ understanding of instructional content can grow when combinations of repre-
sentations are used, and that multiple representation can support the construction of deeper under-
standing when students relate those representations to identify strengths and weaknesses of particular 
representations and shared invariant features of all representations in use. Furthermore, we hope and 
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expect that a learner who moves from one notation system to another, while comparing and (re) orga-
nizing experiences, finds regularities between the two systems that enable him or her to use one repre-
sentation system to build a stronger concept in another representation system. In general, a person’s 
understanding of a phenomenon, a problem, or a concept is refined the more representations (s)he can 
interact with. Being able to move flexibly across representations and perspectives when the task war-
rants it, knowing or identifying strengths/weaknesses and differences/similarities of various external 
representation systems, and thoughtful decision making about which representation to turn to next 
during a problem solving or modelling activity are personal abilities that must be learned, practised, 
and maintained in an inquiry-based teaching and learning approach to mathematics and science. Prac-
tical investigations and student research projects are in our opinion crucial in giving students first-hand 
experiences, provided that these students have already learned the basics of the external representation 
systems, and contribute to consolidation and solidification of the so-called representational fluency of 
students. Here we have adopted the comprehensive definition of Sandoval et al (2000, p. 6): 

“We view representational fluency as being able to interpret and construct various disciplinary 
representations, and to be able to move between representations appropriately. This includes 
knowing what particular representations are able to illustrate or explain, and to be able to use 
representations as justifications for other claims. This also includes an ability to link multiple 
representations in meaningful ways.”   

Links between several representations help the learner especially when all aspects of a complex idea 
cannot be adequately represented with a single system, which is often the case in learning and doing 
mathematics and science, and when the meanings of actions in one representation system can be illu-
minated by exhibiting their consequences in another representation. This is also why Coach provides 
so many linked representation systems, which are referred to as ‘tool windows,’ because they contain 
not only ‘display notations’ (graph, table of data, …), but also ‘action notations’ (formula, command 
line, action menu, computer programs, …). 

How strong our motivation for using multiple representations in mathematics and science education 
may be, it does not mean that we close our eyes for difficulties associated with using multiple rep-
resentations. The cognitive load is definitely enlarged when multiple representations come into play 
and it has been reported in many research studies (cf. Ainsworth, 2006, 2008) that learners find re-
trieving information from representations, moving between and within representations, and coming up 
with appropriate representations difficult. But we believe that teachers can guide and support their 
students in learning to read and use information from representations and to work effectively with 
multiple representations. We also concur with Kaput (1992, pp. 533-543) that computer technology, 
through the dynamic linking of representations and immediate feedback, can assist students in their 
learning process from concrete experiences to ever more abstract objects and relationships of more 
advanced mathematics and science, and can support visualisation and experimentation with aspects of 
investigated phenomena. Ainsworth (2008) summarised a number of heuristics that could be used to 
guide design of effective multi-representational systems [Between brackets we place labels of the 
connected principle(s) of multimedia learning listed by Mayer (2009)]:  

• minimize the number of representations employed and avoid too similar representations (the 
coherence and redundancy principle); 

• carefully assess the skills and experiences of the intended learners in order to decide on support of 
constraining representations to stop misinterpretation of unfamiliar representations, and to avoid 
unnecessary constraining representations (pre-training principle); 

• select an ordering and sequencing of representations that maximizes their benefits by allowing 
learners to gain knowledge and confidence with fewer representations before introducing more 
(segmenting principle); 

• consider extra support like help files, instructional movies, exercises, and placement of related 
representations close to one another on the computer screen, to help learners overcome the cogni-
tive tasks associated with learning with multiple representations (guided activity principle, 
worked-out example principle, segmenting principle, modality principles, navigation principles, 
spatial and temporal contiguity principle); 
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• consider what pedagogical functions the multi-representational system is designed to support: 
avoid unnecessary time and effort spent by learners on linking between representation (for exam-
ple, by not making representations co-present or by not automatically linking representations), 
make sure that learners understand the representations that constrains interpretation and do not 
overburden learners by making the task of mapping between representations too complex (coher-
ence principle, split-attention principle, spatial and temporal contiguity principles). 

The authoring facilities of the Coach environment that allow teachers to adjust activities to their stu-
dents’ level (for example, on the one hand to incorporate guidance or on the other hand to handle the 
prior knowledge effect), the consistent (semi-)automatic linking between representations within the 
environment, its default suggestion of not using more than four tool windows at the same time on the 
computer screen, the pedagogical organisation of activities in projects, and the user control to pace the 
presentation of the instructional materials (the pacing principle) reveal design choices that are in line 
with the above recommendations.   

Like Kaput (1998), we are of opinion that, with the advent of the computer in mathematics and science 
education, the ‘Rule of Four’ for a context-based approach to the mathematical concept of function, 
which advocates that this topic is treated numerically, graphically, symbolically, and verbally, must be 
extended by a new representation system, namely, that of a materialised phenomenon. This phenome-
non can either be cybernetic – as with screen objects whose movement is controlled by a model, com-
puter program, or mathematical functions  – or physical, as with sensors and with devices linked to a 
computer where their motion is controlled by mathematical functions defined on the computer or by 
control programs. We also categorise video clips or digital images as materialised phenomena. Kaput 
placed the cybernetic and physical phenomena in the heart of mathematics education of change and 
variation. Below we give a more neutral description of the ‘Rule of Five.’  

          \      to 
            \ 
 from    \ 

 cybernetic & 
 physical 
 phenomena 

   situations,  
  verbal 
  description 

tables graphs formulae 

cybernetic & 
physical 
phenomena 

mouse 
interaction describing data dollection

& generation MBL / CBL modelling 

situations,  
verbal 
description 

programming, 
animation  
& control 

rewording measuring sketching modeling 

tables animation 
& control reading data 

transforming Plotting curve fitting 

graphs   re-enacting,  
  LBM interpretation reading off rescaling & 

smoothing curve fitting 

formulae  re-enacting, 
 LBM 

parameter 
recognition computing sketching algebraic 

manipulation 

Picture 4. A table of translation and transformation processes for external representations. 
 
Picture 4 shows a 5×5 table of transitions between and transformation processes within the representa-
tion systems (in fact, the table is a non-exhaustive list of processes). It is an extended version of the 
4×4 table of (Dick & Edwards, 2008, Figure 10.4), which was in turn an augmented version of the 
original version of Janvier (1987, p. 28). Two terms used in the above table need explanation: LBM is 
an acronym of ‘Lines Become Motion’ that is the reverse of MBL (Micromputer-Based Laboratory) 
and refers to the possibility to define functions graphically or algebraically and then drive physical 
phenomena, including cars of tracks (Nemirowsky et al, 1998). In other words, LBM is all about gen-
erating phenomena as opposed to modelling phenomena. In the context of the Coach working environ-
ment this is called a control activity and the generation of a phenomenon is done through (microworld) 
programming. For virtual phenomena (animations), this can be controlled by graphical and tabular 
data as well. To understand why we use the term ‘re-enacting’ in the translation from graphical repre-
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sentations to phenomena, one must first recall what the term ‘enactive’ means. Bruner (1966) distin-
guished the following three modes of mental representation: (1) ‘sensori-motoric,’ also called ‘enac-
tive;’ (2) ‘iconic;’ and (3) ‘symbolic.’ The first mode is representation by action, for example in 
mathematics, by working with Dienes blocks or Cuisenaire rods. In other words, in enactive mode one 
learns from concrete objects and devices, and gradually moves to more genuine mathematical nota-
tions. In LBM the opposite road is taken: one moves from a mathematical representation to an observ-
able motion of concrete objects. Since motion graphs often originate from motions that can be experi-
enced enactively, we called the reverse process of generating motion from graphs ‘re-enacting’. 

Keep in mind that the ‘Rule of Five’ only deals with the main external representations for the concept 
of function and not with all thinkable representations. In addition, different topics in mathematics and 
science may use different external representations such as pictorial representations, concrete or virtual 
manipulatives, aural representations, gestural representations, and others. In the context in which the 
Coach working environment is mostly used, this restriction to or strong focus on external representa-
tions related to the concept of function is in our opinion justified. 

 

Picture 5. The ‘Rule of Five’ and technology-based representational transformations. 
 
Picture 5 illustrates how technology, for example, a computer algebra system, a symbolic calculator, 
or a working environment like Coach, can aid to representational translations and transformations 
when investigating problems that involve the mathematics of change and variation (Note that picture 5 
does not show an exhaustive list of processes). Many of the transformations are today carried out 
through technology outside human minds, autonomously, and in some cases without making visible, 
intermediate steps: a graphing calculator can plot a function, a sensor connected through a measure-
ment panel with a computer may be used to collect data in an easy way, computer algebra systems can 
do formula manipulations. This does not mean that the processes are not under control of humans; 
only, the computations occur outside human minds. Kaput & Shaffer (2002) refer to this as the new 
representational infrastructure of ‘computational media,’ via which we have entered a new stage of 
cognitive development, after episodic (ape-like), mimetic (physical-action-based), mythic (spoken), 
and theoretical (written) stages, and leading to a virtual culture. 

What picture 5 clearly illustrates is that multiple representations of the concept of function offer teach-
ers and students the freedom to choose various starting points or continuation points in approaching a 
mathematical problem that they consider feasible. For example, functions are in the Coach environ-
ment often described by lists of numerical values. This has to do with its origin in science education, 
where working with measurable, physical quantities, which possibly bear a functional relationship, is 
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an important issue. Values of quantities can be obtained in many ways: (1) through (real-time) meas-
urements with sensor; (2) through measurements on a video clip or digital image; (3) by filling out a 
table manually; (4) by importing data from a file or copying from other software; (5) through a com-
puter program; (6) read-off in a graph; and (7) via a mathematical formula. In our opinion, students 
must get acquainted with all of these technology-supported methods in order to get a more complete 
picture of variables and functions, and of their practical value in mathematics, science and technology. 

5. The language of mathematics and science: how to cope with differences in tool design? 
Developers of a versatile computer learning environment that offers integrated tools for mathematics, 
science and technlogy are faced with the following two difficult questions: How to deal with 

1. the versatility of mathematical language and mathematical notation, and in particular, how to deal 
with the variability of the concept of variable in mathematics and science? 

2. the differences in language between mathematics and science? 

The interested reader is referred to (Heck, 2001; Ellermeijer & Heck, 2002) for a thorough discussion 
about these issues. Here we only briefly discuss some differences in use of variables, function, and 
graphs in mathematics and physics. 

The meaning of variable is variable in mathematics 

The first point to make is that in mathematics, the concept of variable is one of the most important 
algebraic ideas. But what makes it hard for secondary school students to understand this concept is 
that the term ‘variable’ has various meanings, depending on the situation in which it is used (cf. 
Schoenfeld & Arcavi, 1988). Even if letters are used for numbers only, different roles of letters in the 
algebraic context can be distinguished (Kücheman, 1981; Usiskin, 1988). It may be 

• an indeterminate, in statements like 2 9 ( 3)( 3)a a a− = − + . 
• an unknown, in equations such as 7a b+ = . 
• a known number likeπ. 
• a variable (generalized) number, e.g., in Nx∈  and in differences like ( 1) ( )f a f a+ − . 
• a computable number like A in the formula 2A rπ= . 
• a placeholder, e.g., in function definitions : 2 1f x x +a or ( ) 2 1f x x= + . 
• a parameter, e.g., as a label in the function definition ( )pf x p x= ⋅  to distinguish several cases. 

• an abbreviation like { }1,2,3V = . 

The fact that it is difficult, if not impossible to rigorously define the term ‘variable’ does not mean that 
one cannot classify the various appearances of variables in mathematics. Ursini and Trigueros (1997) 
distinguished three main uses of variables: variable as unknown, variable as general number, and 
variables in a functional relationship. This resembles the distinction of the three uses of variable made 
by Freudenthal (1983), which is also applicable to parameters: 

• as a polyvalent name, i.e., a name for an object than can take a multitude of values. In the state-
ment that for any real number x we have that 2 0x > , the x does not have a particular value. Solv-
ing the equation 2 2 0x − =  means the x for which it is true. A priori x is indeterminate, a posteriori 
x can take two values; 

• as a placeholder, which denotes the places in an expression where the same object is meant. 
In 2( )f x x= the name x occurs twice, but the symbol is irrelevant: 2( )f α α=  is the same function; 

• as a variable object, i.e., a symbol for an object with varying value. The object can be a physical 
quantity such as time, position, and temperature, or an economic quantity such as price, capital, 
and income. A variable object may be related with others. One speaks of independent variables, 
whose values one is free to choose, and of dependent variables, whose values one can compute 
given the values of the independent variables. The roles of independent and dependent variables 
are often not fixed during a computation. For example, studying the motion of a sprinter, one may 
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on the one hand consider acceleration as a function of time, but on the other hand describe it as a 
function of the velocity of the sprinter. One of the big ideas in calculus, and in mathematics in 
general, is the freedom of choosing independent and dependent variables. 

Another obstacle for many a learner is that mathematical notation has many implicit aspects connected 
with the context in which mathematical expressions is used. For example, what does the symbolism 

( )a x e+  mean? Which of the following meanings would you choose? 

• a generalized number ( )a x e× + . By the way, does e stand for the base of the natural logarithm? 
• the function a applied to x e+ (or do you care that a, used as a function, is usually not in italics). 
• a function in x with parameters a and e. 
• a function in two or more indeterminates. 
• the instruction a applied to the argument x e+ .  

Because of your training and experience, you probably answered that you could not make a choice 
without knowing the mathematical context or the wording used about the expression. However, for a 
secondary school student it takes time and practice to get used to the fact that a variable actually gets 
meaning in mathematics through its use (as indeterminate, as unknown, as parameter, etc.), through its 
domain of values, and through the context in which it is used. By the word ‘context’ in the last sen-
tence we also mean the context of ‘doing school mathematics,’ which has its own conventions. For 
example, the word ‘formula’ has a special meaning in school mathematics and the role of the letters in 
the formula 2y x= is not the same as in the equation 2 0y x− = . The words ‘formula’ and ‘equation’ 
are used to distinguish between the case of a functional relationship between the isolated variable y 
that depends the other variable and the case of a more general relationship between unknowns. For 
students it is important to clearly distinguish between these different notions. A mathematician or 
scientist, however, is much used to ambiguous notations and to applying the same algebraic sym-
bolism for many purposes: 2y x= may stand for an equation, a function definition, an abbreviation of 
the expression 2x , as well as for the process of computing the value of y from the value of x.   

The meaning of variable is variable in physics 

In physics, a variable is most often used as a name for a quantity that can vary (often with respect to 
time) and that in many cases can be measured. Picture 6 lists some of the essential differences in ter-
minology and notational systems between physics and mathematics. We refer to (Ellermeijer & Heck, 
2002) for more details. 

Variables in computers 

In general, a computer variable 

• stores a numerical value or points to an object; 
• may play different roles in a statement, for example in the assignment i := i + 1; 
• may have a special, non-mathematical meaning, for example, a reference to previous results; 
• obey unusual manipulation rules, e.g., ordering of commands or automatic simplification; 
• is often a finite representation of a variable in the mathematical sense. The most complicated rep-

resentation concerns the concept of variable object. In many a computer environment this is either 
a finite indexed list of values or an algorithm expressed in finite terms. 

A user of mathematical and scientific software must be aware of these differences between computer 
variables and variables as they are used in mathematics and science. The differences are not obvious at 
all. In Heck (2001) recommendations were made to teachers interested in using computer algebra sys-
tems in their instructions. 
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Mathematics Physics 
Generalized arithmetic with dimensionless variables 
is used. 

Quantity arithmetic with its own rules and use of 
units is dominant. 

Names of variables are free to choose and changing 
names in an expression does not change its meaning 

A variable is often related with some physics con-
cept and its name is an abbreviation of this notion. 

Irrational numbers like 2 , π and e are important; 
floating-point numbers are without accuracy: 
1.0 = 1.000 

In measurements, only natural numbers and 
floating-point numbers with accuracy occur: 
1.0 ≠ 1.000. 

There is a strong focus on special properties of 
functions, e.g., on asymptotic behaviour. 

Properties and assumptions may rule out parts of 
mathematical interest. 

Words like ‘big,’ ‘small,’ and ‘negligible’ have little 
meaning. 

A small change of a quantity Q is also a quantity 
ΔQ with its own arithmetic. 

Picture 6. Some essential differences between the use of variables in mathematics and physics. 

Different contexts for graphing 
Why do we ask pupils to make graphs? The answer to this question differs from discipline to disci-
pline, but the reasons for using graphs are commonly divided into two classes: Analysis and communi-
cation (Friel et al, 2001). For example, a physics teacher may say that the graph is simply a means to 
an end: plotting graphs helps to interpret measured data. A diagram gives an overview of the measured 
data and from its shape one may get a clue about the possible relationship between the physical 
quantities in which one is interested. In order to better see or verify these relationships all kinds of 
scaling of graphs are at hand, such as (semi-)logarithmic and double-logarithmic plots. Derived 
quantities can be introduced to make the relationship clearer. For science, one could certainly say that 
graphing is not a context-independent skill. Rather, competencies with respect to graph interpretation 
are highly contextual and are a function of the scientists’ familiarity with the phenomena to which a 
graph pertains and their understanding and familiarity with representation practices. The contrast with 
mathematics cannot be bigger: Here, drawing the graph of a function has not much to do with finding 
a relationship between quantities. In most cases, the function is already given by a formula or a table 
of function values, and has nothing to do with a real world context. Other different contexts for 
graphing in mathematics and physics are listed in picture 7. 

 Mathematics Physics 
Graph Represents a single object, viz., a function. 

Main purpose is to give a single view of 
various aspects of a given function. 

Represents a relationship between two 
quantities. Main purpose is to explore or to 
present the relationship between quantities. 

Axes Dimensionless numbers are represented. 
Scaling is by default linear. 

Values of quantities are expressed in a unit. 
Scaling is a matter of choice and may be non-
linear. 

Origin (0,0) is the fixed position. Arbitrary position. 
Plot range In principle infinite Determined by the ranges of the quantities. 
Slope/ 
Gradient 

Dimensionless number having a geometric 
interpretation only. 

Represents the change of a quantity w.r.t. 
another and is again a quantity with a unit. 

Picture 7. Different contexts for graphing in mathematics and physics. 

Graphs in mathematics and physics do not only differ in their construction or purpose; also reading of 
graphs is different and this is reflected in the language that is commonly used. Picture 8 lists some 
differences in language. 

Mathematics Physics 
Tangent line, slope. Gradient, steepness. 
Origin (of coordinate system). Zero (of a quantity). 
Domain and range (of a function). Range (of quantity values). 
Graph of )(xy , x-y graph. v-t diagram, x-t diagram. 
Set of 2-tuples (x,y) Plot of y vs. x 

Picture 8. Different language in mathematics and physics. 
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Consequences for a versatile learning environment 

All these differences do not only contribute to understanding of the problems of transfer between dis-
ciplines, but it also clarifies why the design and implementation of general purpose computer working 
environments is complex and challenging. Details count in the design of a suitable tool environment. It 
is still not clear whether a single environment that meets both the requirements of mathematics and 
science education can be completely realised. Anyway, the international trends are certainly in the 
direction of combining and linking various tool components in one environment. For example, the cur-
rent version of the dynamic mathematics program GeoGebra (www.geogebra.org) combines the func-
tionality of an algebraic tool, a geometry tool, and a spreadsheet. Efforts are made in adding proving 
capabilities to dynamic geometry system (Janičić & Quaresma. 2007; Abánades et al, 2007) and to 
building computer algebra systems on top of proof assistants (Kaliszyk & Wiedijk, 2007).  

6. Conclusion 
The concept of a Scientific and Technical Open Environment (STOLE concept) began about 20 years 
ago, was renewed and turns out to provide to this day a useful framework for the design and imple-
mentation of computer learning environments for inquiry-oriented mathematics, science and technol-
ogy education. Some of the identified key features were discussed in this article in more detail: (i) a 
set of integrated tools for working with data, exemplified by its realisation in the activity-based, 
inquiry-oriented Coach learning environment; (ii) the theoretical framework of multiple dynamically 
linked digital representations, which encompasses benefits and drawbacks of representational multi-
plicity; and (iii) the complexity of the design of a versatile tool-based learning environment regarding 
the variable use of variables and other discipline-specific practices. Our main conclusions are: 

(i) The required tools in a versatile, inquiry-oriented computer learning environment for mathematics, 
science and technology education can be directly linked with identified inquiry processes such as 
problem orientation and data acquisition (experiments with data logging or video measurement), 
data processing and analysis with the purpose of evaluating hypotheses and mathematical models 
(differentiation and integration, function fit, signal analysis,…), and setting up and evaluating 
computer models; 

(ii) One of the key advantages of computer technology is the simultaneous use of multiple digital 
representations. We concur with (Ainsworth, 2006) that multiple representations can complement, 
constrain, and help to construct understanding of a particular phenomenon. We have suggested 
that the ‘Rule of Five’ and the 5×5 table of technology-based, representational transformations 
provide a fruitful framework for teachers and researchers to design and analyse students’ activities 
that involve a multitude of mathematical representations. At the same time, a good advice is not to 
close one’s eyes for potential drawbacks of representational multiplicity such as cognitive over-
load, insufficient learner’s familiarity with representational components and processes, and 
undesired multimedia effects. We are of opinion that an activity-based computer learning 
environment that facilitates teachers to adapt or create (sequences of) activities in accordance to 
their students’ level of experience and that allows application of basic principles of multimedia 
learning (Mayer, 2009) can help to overcome the drawbacks of representational multiplicity; 

(iii) All kinds of demands for a versatile learning environment for mathematics, science and technolo-
gy education hold. Amongst other things, we find it important that the computer environment 
reflects innovation in science itself, helps to bridge the gap between the real-world context and the 
more abstract mathematics and science, provides an integrated set of tools, is open to teacher and 
students, and offers multimedia authoring facilities for the creation of tailor-made activities and 
students’ reports on practical investigation. But designers of computer learning environments are 
seriously confronted with differences between scientific practices. For example, the meaning of 
variable is variable in mathematics and science. This cannot be ignored in software development. 
Contexts for graphing may differ from one discipline to another. However, the biggest challenge 
lies in the differences in language and representational conventions between mathematics and 
science. In one way or another designers must cope with these issues when they try to develop a 
general purpose learning environment. This is very complex task and despite the progress in the 
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understanding of the relevant issues and advances in computer and software technology, it is still 
an open question whether one can simultaneously meet so many requirements for a versatile 
computer leaning environment. However, successes of current systems like Coach in educational 
practice and improvements in tool-based software engineering give hope for the future.  
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