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Abstract

Observations and ratings of classroom teaching and interactions collected over time
are susceptible to trends in both the quality of instruction and rater behavior. These
trends have potential implications for inferences about teaching and for study design.
We use scores on the Classroom Assessment Scoring System–Secondary (CLASS-S)
protocol from 458 middle school teachers over a 2-year period to study changes over
time in (a) the average quality of teaching for the population of teachers, (b) the average
severity of the population of raters, and (c) the severity of individual raters. To obtain
these estimates and assess them in the context of other factors that contribute to the
variability in scores, we develop an augmented G study model that is broadly applicable
for modeling sources of variability in classroom observation ratings data collected over
time. In our data, we found that trends in teaching quality were small. Rater drift was
very large during raters’ initial days of observation and persisted throughout nearly 2
years of scoring. Raters did not converge to a common level of severity; using our model
we estimate that variability among raters actually increases over the course of the study.
Variance decompositions based on the model find that trends are a modest source of
variance relative to overall rater effects, rater errors on specific lessons, and residual
error. The discussion provides possible explanations for trends and rater divergence as
well as implications for designs collecting ratings over time.
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Classroom observations, in which observers rate multiple dimensions of teaching

according to established protocols (either live in the classroom or from video record-

ings of lessons), increasingly are being used for both research and teacher evalua-

tions. However, changes in rater severity over time, and changes in teaching quality

over the course of the school year, can lead to time trends in the ratings. Such trends

may create challenges for designing measurement systems that avoid bias and excess

variance in inferences from ratings of classroom instruction. Given the growing use

of these ratings for research and policy purposes, understanding the nature and mag-

nitude of time trends in ratings is critical both for designing measurement systems

with desirable properties and for learning about the nature of teaching.

Rater reliability appears to be a persistent problem with ratings of instruction from

classroom observations. Across multiple studies, variance among raters observing the

same lesson accounted for 25% to as much as 70% of the variance in scores, depend-

ing on the study and the protocol (Bill and Melinda Gates Foundation [BMGF],

2012; Casabianca et al., 2013; Hill, Charalambous, & Kraft, 2012). There are multi-

ple sources for discrepancies among raters. These include variation in severity, or the

extent to which a rater is strict or lenient in his or her scoring (Kingsbury, 1922); halo

effects, which refer to the tendency to apply common scores to multiple measures of

performance or behavior based on positive or negative notions about the individual

being assessed (Thorndike, 1920); central tendencies, or a rater’s tendency to assign

scores in the middle of the score range versus using the full scale when appropriate

(Saal, Downey, & Lahey, 1980); and assimilation, a rater’s tendency to assign scores

that are influenced by scores assigned to units scored previously (Attali, 2011).

Rater error can also arise because raters’ severity levels change over time (rater

severity drift). The literature on scoring written responses including essays, con-

structed responses, and teacher logs, has revealed such changes in individual raters’

severity levels (Braun, 1988; Congdon & McQueen, 2000; Englehard & Myford,

2003; Harik et al., 2009; Hoskens & Wilson, 2001; McQueen & Congdon, 1997;

Myford & Wolfe, 2009; Rowan, Harrison, & Hayes, 2004; Wilson & Case, 2000).

Such rater drift may result from a variety of factors, including experience, additional

training or calibration, or fatigue that develops during the course of the study. Even

when raters receive ongoing training with calibration sessions and frequent feedback,

rating severity still can change over time (Congdon & McQueen, 2000; McKinley &

Boulet, 2004). While these studies have documented the existence of rater drift, they

have not quantified how much this drift contributes to error variance in scores.

Above and beyond rater trends, teaching quality might change during the course

of the school year as a result of teachers’ and their students’ growing familiarity with

each other, changes in the material being covered, and other external influences such

as testing or holidays (Meyer, Cash, & Mashburn, 2012). Identifying such trends is a

first step to increasing our understanding of the nature of teaching and developing

methods to improve it. Like changes in rater severity, systematic changes in teaching

quality over the course of the school year also would have implications for the design

of effective measurement systems.
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Research Questions

The magnitudes and directions of trends in teaching quality and rater severity remain

important questions. Only one study has explored these issues. Casabianca et al.

(2013) identified time trends in scores from 82 algebra classrooms observed by five

raters using the Classroom Assessment Scoring System–Secondary (CLASS-S;

Pianta, Hamre, Haynes, Mintz, & LaParo, 2007). They did not account for other

sources of variance when modeling the trends or estimate how much trends contribu-

ted to various sources of variability. Given the small size of this study, we aimed to

replicate and expand the work of Casabianca et al. (2013) by studying how classroom

observation scores vary as a function of both the day on which lessons occurred and

the day on which scoring of video recordings of those lessons occurred using data

from the Understanding Teaching Quality (UTQ; http://www.utqstudy.org/) project.

The UTQ data include scores on lessons taught by 458 middle school math and

English language arts (ELA) teachers rated by 12 different observers using four dif-

ferent observation protocols.

Using UTQ score data from live observations and video recordings of lessons, we

found evidence that scores varied as a function of both the day that the observed les-

son occurred and the day it was scored. Figure 1 provides an example. It plots the

scores on the CLASS-S by the day of the study on which the scoring occurred. From

Day 1 to 229, raters conducted live observations. From Day 301 to 752, raters scored

video recordings of lessons. The solid lines are smooths of the data. The figure

shows that scores drop off precipitously in the early days of live observation and then

recover after about the middle of the school year. Scores from video recordings of

these same lessons and ones from an additional school year then continue to drift for

the duration of video scoring that occurred after raters had completed live observa-

tions. Because live observation-based scoring occurred on the same date the lesson

occurred, we cannot tell from the figure if the marked trend in live scores is due to

drift in rater severity or changes in teaching quality. Also, although the trends are

notable and appear large enough to introduce systematic errors into inferences, the

figure also demonstrates considerable variability in scores around the trend lines.

Identifying the sources of that variability will be important for assessing the reliabil-

ity of observations from the protocol and for calibrating the contributions of drift in

rater severity and teaching quality to the measurement error of scores. We provide

additional discussion of the figure and the CLASS-S data in later sections.

To accomplish the goals of separating the different trends and other sources of

variance, and gauging their relative magnitudes, we developed a novel model that

we call an ‘‘augmented Generalizability Study (G study) model’’ because it extends

the standard G study model (Brennan, 2001) by modeling variation in scores over

time via smooth functions of time in addition to modeling the contributions of other

facets of the scores (e.g., raters, teachers, classrooms, etc.) to the variability in scores.

Although the model was motivated by the data collection design of the UTQ study,

features of that design are commonplace in the collection of classroom observation
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ratings data over time, and so our model is broadly applicable for modeling sources

of variability in such data.

We apply our augmented G study model to scores on the CLASS-S from the UTQ

study to answer the following research questions:

1. What are the characteristics of both rater and teaching quality trends in the

UTQ study?

2. How much do raters differ in their severity, and do any such differences

change over time?

3. How much do time trends contribute to overall variability in ratings?

In the next sections, we provide details on the UTQ study design and the CLASS-S

observation data. We then develop the augmented G study models and a model-based

Figure 1. Example of trends in classroom observation scores from the UTQ study. Each
panel plots scores from the Classroom Assessment Scoring System–Secondary (CLASS-S)
protocol against the day that the scoring occurred. Solid black lines are smooths of the
scoring data. CLASS-S measures three domains of classroom interactions and there is one
panel for each domain and for the overall score, the average score across dimensions. In the
top panel from left to right are plots for the overall score and Emotional Support and in the
bottom panel are plots for Classroom Organization and Instructional Support. Scores from day 1
to 229 are from live observations made in the classroom and scores from day 301 to 752 are
from video recordings of lessons.
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approach for variance decompositions that can be used to calibrate the contribution of

trends in scores to variability in scores. We then present details of our application of

these models to the UTQ data and our findings about the research questions. Finally,

we discuss implications for classroom observation and scoring in research and prac-

tice, as well as ways to mitigate error from rater drift and instructional trends.

The Understanding Teaching Quality Study and CLASS-S
Data

Sample

The UTQ study took place in middle schools in three large school systems from the

same metropolitan area in southeastern United States. It includes 231 mathematics

and 227 ELA teachers of sixth, seventh, or eighth graders. For each teacher, two les-

sons were studied from each of two classrooms (or sections) of students for a total of

916 classrooms and 1,828 lessons scored.1 Thirty-four percent of the classrooms

were Grade 6, 29% were Grade 7, 36% were Grade 8, and the rest were mixed grade.

The teacher sample was 83% female, 56% non-Hispanic White, 36% Black, and 8%

Hispanic and other race, and teachers in the sample averaged 9.6 years of experience

in the district. On average across classrooms, the percentage of students in a class-

room who were eligible for free or reduced-price meals was 47%, and the percen-

tages who were non-Hispanic Black, non-Hispanic White, and Hispanic were 44%,

34%, and 11%, respectively.

Measures

The UTQ study included ratings on four protocols: CLASS-S; Framework for

Teaching (FFT; Danielson, 2007); Protocol for Language Arts Teaching

Observations (PLATO; Grossman et al., 2010); and Mathematical Quality of

Instruction (MQI; Hill et al., 2008). As noted previously, our investigation of time

trends focuses on CLASS-S but time trends exist in the scores for the other protocols.

Those results are available online on http://ows.edb.utexas.edu/site/jodicasa/supple-

mental-material. The CLASS-S assesses teacher and student interactions in second-

ary classrooms to produce scores describing levels of Student Engagement and 10

additional dimensions of teaching, each related to one of three domains of classroom

interactions: Emotional Support, Classroom Organization or Instructional Support

(Table 1). Raters assign a score between 1 and 7 on each dimension according to

behavioral indicators of the protocol’s specifications. Domain scores are the average

of the associated dimension scores.

Rater Demographics, Training, and Calibration

Twelve teachers (6 math; 6 ELA)2 served as raters for the UTQ study. During the

2-year scoring period, the raters’ primary responsibility was observing and rating for
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the UTQ study. Raters were responsible for rating classrooms on three protocols,

CLASS-S, FFT, and a subject-specific protocol (PLATO or MQI, depending on their

specialty). Only one rater was male and half of them had a master’s degree or higher.

Raters received multiple days of training on each rubric and proved able to score

in agreement with ratings assigned by project staff, or master coders, before starting

classroom or video observations.3 Raters also conducted calibration exercises with

project staff every third week for the entire study period until all scoring was com-

plete.4 In these exercises, raters scored training videos and compared their results

with master codes. Project staff then reviewed the scores with raters and provided

additional training when project observers disagreed with the master codes. Feedback

provided to raters following the calibration exercises was given via conference call or

more often by e-mail, and sometimes, during the later months of the study, no feed-

back was provided. Raters did not need to maintain a specified level of agreement

with the master codes to remain in the study. Across all calibration exercises and

dimensions of the CLASS-S rubric, raters agreed with the master codes on 34% of

their scores and were within one point of the master codes on 82% of scores. Across

the raters, the percentages of scores within one point of the master codes ranged from

76% to 87%.

Data Collection

The UTQ data were collected and scored over approximately 2 years, with approxi-

mately half of the teachers participating in each year. Figure 2 illustrates the timeline

for the UTQ study, which included two full school years. The bottom row of the time-

line gives the calendar months and years for the span of the study. Data collection

began near the start of the 2009-2010 school year. For the duration of that school

year, CLASS-S scores were obtained from live observations of lessons sampled from

all Year 1 study teachers. These lessons were also video recorded. For each teacher,

Table 1. Classroom Assessment Scoring System–Secondary Domains and Dimensions.

Domains Dimensions

Emotional support � Teacher sensitivity
� Regard for adolescent perspectives
� Positive climate

Classroom organization � Negative climate
� Behavior management
� Productivity

Instructional support � Instructional learning formats
� Content understanding
� Analysis and problem solving
� Quality of feedback

Student engagement � Student engagement
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two lessons were observed live and the additional two lessons were video recorded

without receiving a live observation score.

During the summer after the first school year, scoring of video recordings of les-

sons began. This persisted for approximately one more calendar year, during which

additional videos of lessons from the 2010-2011 school year were collected and

scored for the separate sample of teachers who participated that year (the Year 2

teachers). Project staff recorded four lessons for each of the Year 2 teachers also.

The UTQ study had sufficient resources to support double-scoring of 20% of the

videos from both years by two separate raters. Rater assignments to live observations

and videos were balanced so that all raters scored roughly equal numbers of live

observations and scored similar numbers of videos. For video scoring, rater assign-

ments were designed so that typically, four different raters scored the four videos

from each teacher. For live observations, each lesson was divided into segments of

22 minutes. Raters observed instruction for about 15 minutes and took detailed notes

about teacher and student behaviors and interaction patterns. They used the remain-

ing seven minutes to assign scores for each dimension based on the behavioral

anchors provided in the CLASS-S manual. When scoring videos, raters also observed

the classroom in 15-minute segments. At the end of each 15 minutes of observation,

they paused the video and assigned scores for each dimension before moving on to

Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun
2009 2010

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Instructional Day

1 20 40 60 80 100 120 140 160 180 200 220 240 260 280

School Year 1

Scoring Day

Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun Aug Sept Oct
2010 2011

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Instructional Day

300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760

School Year 2

Scoring Day

  First/Last lesson observed & 
  recorded school year 1

  First/Last lesson recorded 
  school year 2

  First/Last day of video scoring

Jul

Figure 2. Timeline of Understanding Teaching Quality (UTQ) study including relationship
between instructional and scoring days. This figure illustrates the 2-year period over which
the UTQ study took place. Instructional days were the number of school days between the
day the lesson occurred and the first day of school that year. Scoring days were the number
of calendar days since the first day of scoring for the study.
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the next segment. Of the 8,283 segment-level records in the UTQ data, our analysis

excludes 31 records because they were incomplete or observation occurred across

multiple days.

Instructional Day and Scoring Day

Given our data collection design, there are two dates associated with each score:

the day the lesson occurred and the day the scoring occurred; both appear in

Figure 2. We measure the day the lesson occurred by the ‘‘instructional day.’’ For

both School Year 1 and School Year 2, the instructional day for a lesson is the

number of school days between the day the lesson occurred and the first day of

school that year. This way, instructional days were on the same scale for both

years. For instance, a lesson that occurred on the 50th school day of School Year

1 or School Year 2 would have an instructional day of 50. Instructional day ranged

from 30 to 172 (median = 110.5) for School Year 1 and 17 to 170 (median = 104)

for School Year 2.

We measure the day the scoring occurred by the ‘‘scoring day,’’ which equals the

number of calendar days since the first day of scoring for the study. Regardless of

whether the lesson occurred in School Year 1 or School Year 2, all scoring days are

on a single continuum from 1, for scores given on the first day of live observation in

School Year 1, to 752, for scores given on the day when the last video was scored in

the summer after School Year 2. Scoring days ranged from 1 to 229 (median = 135)

for the live observations and from 301 to 752 (median = 575) for video ratings.

We designed our assignment of video recorded lessons to calendar dates on which

they were to be scored so that instructional day and scoring day were as unrelated as

possible. The scoring days of Year 1 lessons were effectively uniformly distributed

over the entire window of video scoring. The Year 2 lessons could not have this

degree of randomness because they were being collected in real time during the win-

dow. However, the assignments were such that the scoring days of Year 2 videos

were effectively uniformly distributed on the interval between the date the lesson

actually took place, and the end of video scoring.

As described previously, Figure 1 plots the scores by scoring day. In contrast,

Figure 3 plots them by instructional day. The two figures clearly demonstrate the dif-

ference in the two ways we measure time and the distinct differences in the evolution

of scores on these two scales. As we describe above, scoring day spans from 1 to

752, and when scores are sorted by scoring day, they show distinctly different trends

during the live and video scoring intervals, with large changes during live scoring

and continuing drift during video scoring. The instructional days on which lessons

occurred span from just 1 to 172, and when video scores are organized by instruc-

tional day, scores show a gradual steady decline across the school year. A plot of live

scores by instructional day would be essentially identical to the plot of live scores by

scoring day since live observations occurred simultaneously with the lesson.
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Separating Changes in Instruction From Rater Drift

Because instructional day and scoring day as we have defined them are nearly equiv-

alent during live scoring, with live scores alone we cannot separately estimate the

two trends. However, during the video scoring, instructional day is as unrelated as

possible to scoring day, so that we can cleanly separate the two types of trends by

including both in our model. If we can assume that instructional trends are invariant

to whether scoring occurred live or by video, then the instructional trends estimated

from video scores can be removed from the live scores and any remaining trends in

the live scores can be interpreted as rater drift.

To estimate separate trends for quality of instruction and rater drift during the live

and video scoring, we used a sequential strategy for analyzing the data. We began by

modeling only the video scores where rater and instructional trends can be separated

without the untestable invariance assumption. Also, to improve the precision of the

parameter estimates by pooling data across years, our models assumed that the trends

in teaching quality were the same function of instructional day for video scores from

School Year 1 or 2. We used the models fit to the video data to test whether both

types of trends are present and to estimate their magnitudes in terms of contributions

Figure 3. Plots of raw video scores over instructional day with smoothed trends. In the top
panel from left to right are plots for the overall score and Emotional Support and in the
bottom panel are plots for Classroom Organization and Instructional Support.
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to variance in the video scores. We then applied the models to the combined live and

video data using the common instructional trend assumption to estimate the degree of

rater drift over the entire course of the study. We repeated all our analyses separately

for scores from each of the three domains, as well as an overall score that averages

scores across the 10 dimensions of the domains and Student Engagement.

We now provide details on the model we used to first fit both trends in the video

data, and then to the full data to estimate rater drift in the live scores.

Augmented G Study Models for Time Trends in Classroom
Observations

Each score from an observation in the UTQ data (and other studies) depends on the

quality of teaching that occurred during the lesson and the errors the rater makes

when assessing it. Our goal is to separate these sources of variance from the trends

that also may contribute to error variance in scores. To separate the trends from other

sources we need a model with flexible specifications for trends in instruction and

rater drift, which also models other sources of variability in scores. To make accurate

inferences about trends we must account for the dependencies in scores created by

other sources of variability (Raudenbush & Bryk, 2002).

G studies (Brennan, 2001) are the standard approach for conducting such decom-

positions of variance in scores. Hence, embedding the study of trends in the context

of G studies will be useful for understanding them as sources of error in inferences

about teachers’ classroom interactions. However, drift typically is not part of the

basic G study model, so we now extend the traditional G study model. In other tradi-

tions, our model would be labeled a cross-classified hierarchical linear or mixed

model. The specific terms we include in the augmented G study model are driven by

the design of the UTQ data collection, but the basic framework would be applicable

to similar designs that are commonly used to collect classroom observation data.

A basic G study model (Brennan, 2001) for score Xiclsr designating a rating

assigned according to a rubric based on observation of teacher (i), in a classroom (c)

on a lesson (l), for a segment (several minutes) of the lesson (s) by a rater (r) is

Model 1 : Xiclsr ¼ m + ui + hic + gicl + vicls + br + dir +jicl + eiclsr; ð1Þ

where ui is the teacher effect, hic is the classroom within teacher effect, gicl is the

lesson within classroom (within teacher) effect, vicls is the segment-within-lesson

(within classroom, within teacher) effect, br is the rater effect, dir is the rater-by-

teacher effect, jiclr is the rater-by-lesson effect, and eiclsr is residual error. The effects

are modeled as random and independent of each other and across teachers, classes,

lessons, segments, and raters.

Scheduling idiosyncrasies as well as the double scoring of some videos led to a

sufficient number of instances of the same rater scoring the same teacher on two dif-

ferent lessons so that the rater-by-teacher variance component is well identified.

There were only a very small number of instances where the same rater scored two

320 Educational and Psychological Measurement 75(2)



different lessons from the same classroom, making the rater-by-classroom variance

component only weakly identified and we therefore opted to absorb that term into

the rater-by-lesson term, possibly inflating that term. This does not prevent us from

evaluating the size of drift relative to other sources of variance, but it could limit the

utility of our results for designing some studies.

Given the structure of the UTQ data with lessons occurring on the instructional

day and ratings occurring on scoring day, the augmented G study models incorporate

a teaching quality trend as a function of instructional day and rater scoring trends as

functions of scoring day.

We use B-splines to parameterize the trends. A B-spline is a piecewise polyno-

mial function of degree k. Knot points separate the intervals on which each polyno-

mial is defined, or in other words, they are the points at which two polynomials join

together, and the function is constrained to be continuous at the knot points (Hastie,

Tibshirani, & Friedman, 2009, chap. 5 appendix). B-splines are expressed as a linear

combination of basis functions, pðtÞ0u, where pðtÞ denotes the vector of known basis

functions evaluated at a point t, and u is an unknown vector of parameters. The basis

functions depend on the degree of the polynomial and the location of the knot points.

A variety of trends may be specified with varying levels of k (e.g., k = 3 is a cubic)

and differing numbers of knots. For example, a model using a cubic polynomial with

one knot will use two cubic functions, joined by a knot, to represent the trend. Our

motivation for using B-splines to model trends is that we do not have strong prior

beliefs about what trends should look like and B-splines are flexible enough to cap-

ture virtually any shape, including simple linear trends. We can thus investigate

whether linear or nonlinear trends are more appropriate for the data all within the B-

spline parameterization.

We augment Model 1 to include B-splines for trends as follows. Let ticl equal the

instructional day on which lesson l occurred for class c of teacher i and let ticlr equal

the scoring day on which rater r scored this lesson. We modeled the common trend in

teaching quality for all the teachers as p1ðticlÞ0l, where p1ðtÞ is a vector of piecewise-

polynomial B-spline basis functions and l is an unknown vector of parameters. The

common trend in rater scoring is represented by p2ðticlrÞ0m, where p2ðtÞ is also a vec-

tor of piecewise-polynomial B-spline basis functions, possibly of a different degree

and with different knot points than those used for the teaching quality trend, and m is

an unknown vector of parameters. Adding these terms to Model 1 yields

Model 2 : Xiclsr ¼ p1ðticlÞ0l + p2ðticlrÞ0m + ui + hic + gicl + vicls + br + dir +jicl + eiclsr:

ð2Þ

To simplify model notation, we use the same symbols to denote the facets that appear

in both Models 1 and 2, even though the addition of terms to the model potentially

changes their definitions. The model allows for a common trend across time in rater

severity and variation in severity among raters through the rater main effects, br, but

these deviations from the common trend are assumed to be constant across time in

this model.
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To capture rater drift that might differ across raters, Model 3 augments Model 2

by adding rater-specific trends, p3ðticlrÞ0br, where p3ðtÞ is another vector of

piecewise-polynomial B-spline basis functions, possibly of a different degree, and

with different knot points than those used for the common rater trend, and br is a

random, rater-specific vector of parameters. The rater-specific trend parameters are

independent of all the other effects and across raters.

Model 3 : Xiclsr ¼ p1ðticlÞ0l + p2ðticlrÞ0m + ui + hic

+ gicl + vicls + p3ðticlrÞ0br + dir +jicl + eiclsr ð3Þ

Depending on the complexity of p3ðtÞ, the model allows for substantial flexibility in

the variation across raters in their trends. If p3ðtÞ is a constant, then raters differ from

one another only through a rater-specific but constant deviation from the overall rater

trend, and Model 3 is equivalent to Model 2. If p3ðtÞ contains both a constant and a

linear term, the model allows each rater to have his or her own linear deviation from

the overall trend which could capture features of the rating process such as raters get-

ting more or less similar to one another over time. More complex p3ðtÞ allows for

more complex rater-specific deviations from the overall trend. The model could

include trends in teaching quality for individual teachers, p4ðticlÞ0ui, with random

coefficient vectors, ui. As noted below, we tested such models but they did not fit

our data well because the small numbers of observations for each teacher. We sus-

pect this will be common in practice because studies typically observe teachers on a

small number of occasions.

Model-Based Variance Decomposition for Augmented G Study Models

Among scores from a sample of lessons from a sample of teachers and their class-

rooms with each lesson scored by a rater on a randomly selected day, var(Xiclsr)

equals the sum of the variances of the terms on the right-hand side of Equation 3

(Model 3). The variance components from the random effects determine the variance

of the facets other than the trends (i.e., ui, hic, gicl, vicls, dir, jiclr, and eiclsr).

Because the teaching quality trend, p1ðticlÞ0l, has fixed coefficients, the variance in

it depends only on the variability in when the observed lessons occurred. Similarly,

the variability in the common rater trend, p2ðticlrÞ0m, depends only on the variability

in when the lessons were scored. That is, var p1ðticlÞ0l
� �

¼ l0 var p1ðticlÞ½ �l and

var p2ðticlrÞ0m
� �

¼ m0 var p2ðticlrÞ½ �m:
The variance of the rater-specific trends depends on both the variability in when

the lessons were scored and the variability of the coefficients across raters. Our deri-

vations for the variance yielded

var p3ðticlrÞ0br

� �
¼ tr varðbrÞvar p3ðticlrÞ½ �f g+ p0 var brð Þp; ð4Þ

where tr(V) denotes the trace, the sum of the diagonal elements, of the matrix V

(Searle, 1971) and p ¼ E p3ðticlrÞ½ �. Details are in the online supplemental material.5
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The variance in rater-specific trends decomposes into a rater-specific term,

p0 varðbrÞp, which generalizes the notion of variability in rater severity to cases

where it varies over time, and tr varðbrÞvar p3ðticlrÞ½ �f g; the average of the variability

in the timing of observations among raters.

We let n2
u, n2

h, n2
g, n2

v, n2
d, n2

j, n2
e , equal the variances of the random effects and

error term from Model 3 and V1, V2, V3, and Vb equal the variance–covariance

matrices for p1ðticlÞ, p2ðticlrÞ, p3ðticlrÞ, and br: Then

var Xiclsrð Þ ¼ l0V1l + m0V2m + n2
u + n2

h + n2
g + n2

v + n2
d + tr VbV3

� �
+ p0Vbp + n2

j + n2
e :

ð5Þ

In addition to this overall variance decomposition, Model 3 can be used to provide a

traditional G study variance decomposition at each possible scoring time. For lessons

occurring on ticl¼t� all scored on scoring day ticl ¼ t�

var Xiclsrjt�; t�ð Þ ¼ n2
u + n2

h + n2
g + n2

v + n2
d + p3ðt�Þ

0
Vbp3ðt�Þ+ n2

j + n2
e

since p1ðt�Þ
0l and p2ðt�Þ

0m are common across all the scores. The variance due to

rater-specific trends p3ðt�Þ
0
Vbp3ðt�Þ varies with the scoring day and may be

decreasing, increasing, or staying roughly constant over time.

Results From Fitting the Augmented G Study Model to the
UTQ Data

As noted above when fitting the augmented G study model to the UTQ data, we first

fit the model to the video data to separately estimate trends for instructional day and

scoring day. We then fit the model to the combined live and video score data assum-

ing invariance in the instructional day trends and using the functional form of the

trends selected with the video data. We used the lmer() function in R for linear mixed

models to fit all models (Bates, Maechler, & Bolker, 2013). Because our general spe-

cification of the augmented G study model includes unspecified splines for the func-

tional form of the trends, fitting the model required both selecting a form for the

trend and estimating the model parameters. We first describe our methods for select-

ing the functional form for trends in the video and live data and then describe our

results.

Selection of the Functional Form of the Trends
Video Data. Our general specification of the augmented G study model includes

unspecified splines for the functional form of the trends. We used the UTQ data to

select the functional form for the trends by fitting a sequence of models that are var-

iants of Models 1 to 3 and used both the Bayesian information criterion (BIC;

Schwarz, 1978) and likelihood ratio tests to choose among them. The goals were to

test whether both instructional and rating trends were evident in the data, whether
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those trends appeared to be linear or nonlinear, and whether there was variability

among raters in their trends.

After preliminary analyses and experimentation, we considered seven piecewise

polynomials for the spline bases for each of p1ðticlÞ, p2ðticlrÞ; and p3ðticlrÞ: a constant

(no trend); linear, 0 knots; linear, 1 knot; quadratic, 1 knot; cubic, 0 knots; cubic, 1

knot; and cubic, 2 knots. Importantly, these bases generate trends with complexities

ranging from no trends to simple linear to potentially very nonlinear. Therefore our

model comparisons address not only whether trends are evident in the data, but also

whether those trends demonstrate notable nonlinearities.

We explored 115 different models for the video scoring data that include various

combinations of these bases for p1ðticlÞ, p2ðticlrÞ; and p3ðticlrÞ: The first 49 models

tested all possible combinations of p1ðticlÞ and p2ðticlrÞ with p3ðticlrÞ set equal to a

constant so that there were no random rater-specific trends. The first model, Model

1, set all the bases equal to a constant so that there were no trends. The remaining

models in this group are all versions of Model 2. Six models kept p2ðticlrÞ equal to a

constant and tried the six trend specifications for p1ðticlÞ: The next six models kept

p1ðticlÞ equal to a constant and tried the six trend specifications for p2ðticlrÞ: The last

36 of the 49 models tested the remaining combinations of trends for both p1ðticlÞ and

p2ðticlrÞ: This collection of models allows us to test whether the data demonstrate

average trends in both teaching quality and rater severity, and if so, whether each of

those trends is linear or nonlinear.

We then tested variants of Model 3. First we set p3ðticlrÞ equal to a linear, 0 knot

spline (a simple linear trend, p3ðticlrÞ0br ¼ b0r + b1rticlr) and tested the 36 combina-

tions of trends for both p1ðticlÞ and p2ðticlrÞ: The final set of 36 models again tested

all the combinations of trends for both p1ðticlÞ and p2ðticlrÞ; but for each of these

models we constrained p3ðticlrÞ ¼ p2ðticlrÞ. That is, in the last set of models, the

functional form of the rater-specific and the common rater trends were the same but

each had separate coefficient values. Some of the models in these two groups of 36

overlap, so in total, we fit 66 variants of Model 3.

The 66 variants of Model 3 combined with the 49 variants of Model 2 and Model

1, give 115 total models that we considered for each outcome. For each outcome we

selected the model that minimized the BIC among these 115 variations of the aug-

mented G study models. Smaller values of BIC indicate models that better fit the

data.

We also explored models that included teacher-specific teaching quality trends,

p4ðticlÞ0ui. However, our analyses found models with these additional trends fit the

data less well than Model 2 or 3, so we do not report the results of these models.

Live Observations. When modeling the combined video and live scoring data to test

for rater drift in the live observation scores, we retained the chosen models for

instructional trends and rater trends for the video scoring selected with the video data

and then tested a series of 19 models for rater trends in the live scores. The first

seven models fit the seven alternative bases for scoring day p2ðticlrÞ for the live
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scores with rater-specific trends set to constants (i.e., no rater-specific trends). The

next six models tested the six specifications of trends for average rater trend in live

scores with linear random rater-specific trends such that p3ðticlrÞ0br ¼ b0r + b1rticlr.

The final six models replaced the linear rater-specific trends with random trends that

had the same form as the average trend, or p3ðticlrÞ ¼ p2ðticlrÞ Again, for each out-

come we selected the model with the smallest BIC.

Results From Fitted Models for Trends in Video Scores

Table 2 presents the degree of polynomial and number of knots of the spline basis

from the best-fitting models for the domain and overall scores in the video scoring

data. It also provides the BIC for Model 1 (the basic G study model), three variations

of Model 2 (instructional trend p1ðtÞ only, rater trend p2ðtÞ only, and both trends

p1ðtÞ and p2ðtÞ), and the best-fitting Model 3 (rater-specific trends p3ðtÞ), and com-

pares the best-fitting version of Model 3 to Model 1 with likelihood ratio tests. In all

cases, we find that both instructional and rater trends are present. For each outcome,

a model with trends for both instructional day and scoring day fit better (had smaller

BIC) than models with no trends or models with trends just for either instructional

day or scoring day. These trends were statistically significant (i.e., the likelihood

ratio tests comparing the selected models to Model 1 without trends had p values less

than .05). Also, in all cases, the best-fitting parameterization for the instructional

trend p1ðtÞ was linear with 0 knots.

Consistent with Figure 3, the linear trends for teaching quality were relatively flat

and negative for all outcomes. Over the entire range of observations, teaching quality

as measured by the overall score dropped by 0.19 points or about 35% of a standard

deviation unit in scores. The trend was steepest for Emotional Support. Over the

observation period, scores on this domain dropped by 0.25 points (29% of a standard

deviation unit). The trend was flattest for Classroom Organization, on which scores

dropped by 0.13 points (24% of a standard deviation unit). The drop in scores was

0.19 points for Instructional Support (24% of a standard deviation unit).

Figure 4 presents the best-fitting rater trends to video scores for all four outcomes.

In each of the plots in the figure, the thick black line depicts the common rater trend

in scores. The thin lines are the model estimates of the individual rater-specific

trends; each rater is distinguished by a different type of line (dashed, etc.). The thin

gray horizontal lines indicate the 25th and 75th percentiles of scores. To improve the

visibility of the trend lines, the y-axes have a score range of 2.5, but the location of

the range is shifted up or down for each outcome. The model separated the teaching

quality trend from the rater trend, so that the trend lines represent changes in rater

severity only.

For each outcome, models that included random, rater-specific trends (Model 3)

were preferred by BIC over any model with only a common trend for scoring day

shared by all raters (Model 2). As shown in the figure, for Instructional Support and

the overall score, the common rater trends were linear and decreasing. For Emotional
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Support the best fit is a piecewise linear trend with one knot at scoring day 575, but

the two pieces almost share a common slope. Hence, on average, for each of these

outcomes, raters steadily decreased the scores they assigned throughout video scoring.

The day-to-day changes were not large but across the entire scoring interval the

changes were large, with average scores falling by 0.28, 0.53, and 0.49 points for

overall, Emotional Support, and Instructional Support scores, respectively, or from

about the 75th percentile of the scores to nearly the 25th percentile for each outcome.

For Classroom Organization, the best-fitting model for the common rater trend

was nonlinear (cubic polynomial with 0 knots) with the raters on average increasing

their scores for the first 150 or so days, leveling off, and then increasing again for

about the last 100 days. Again, the day-to-day change in the average scores assigned

by raters is small, but over the 352 days of scoring, these changes reach across much

of the interquartile range in scores.

Variation in the individual rater trends around the common trend can also be seen

in Figure 4. For Classroom Organization, Instructional Support and the overall score

the best-fitting model includes linear, random, rater-specific trends, or

p3ðticlrÞ0br ¼ b0r + b1rticlr. Deviations from the common trends are large and result

Figure 4. Time trend plots for Classroom Assessment Scoring System–Secondary (CLASS-
S) overall and domain scores. In the top panel from left to right are plots for the overall score
and Emotional Support and in the bottom panel are plots for Classroom Organization and
Instructional Support.
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in large notable variation in rater-specific average scores on every day of scoring.

Raters are not converging to the common trends. For the selected model for

Emotional Support, the deviations of each rater’s average scores from the common

trend were piecewise functions of time with one knot.6 This results in pronounced

variation in scores around the common trend. About half of the raters have trends

that are similar in form to the common trend but their overall levels of severity dif-

fer. However, because the rater-specific trends are linear with one knot, some raters’

trends start with increasing scores over time and then change to decreasing scores

after the knot point. Some raters exhibit the opposite trend; their scores start out

decreasing and then change to increasing. Again raters are not converging to a com-

mon average score.

Changes in Rater Variability Over Study Period. Consistent with the variation in rater-

specific trends that is observable in Figure 4, the variance among raters,

var p3ðtÞ
0br

� �
increased as a function of the scoring day, t, during video scoring. For

all four outcomes, variability increases over the scoring period. The greatest increase

is for Instructional Support; the standard deviation in the variance among raters

increases monotonically from a little over 0.3 to 0.45. Over the scoring period, the

standard deviation among raters’ scores on the Emotional Support domain increased

by almost 0.20 and then, at around day 575, decreased but to a level still higher than

its starting point.

Share of Error Variance. Using the model-based variance decomposition described

above, we estimated the contribution of different sources to the variability in the

overall and the domain scores. Table 3 provides the results. The first row of this table

gives the amount of variance attributable to the teacher, which is typically the signal

of interest in classroom observation scores. The overall score had the largest amount,

17%, attributable to teachers; Emotional Support and Classroom Organization had

the second and third highest, and Instructional Support the lowest.

Variance attributable to a trend in the quality of teaching was minimal; it ranged

from 0.3% to 0.7% for all scores. Lesson-to-lesson variability contributed between

7% and 12% to the total variance. The rater trend effects were a larger source of var-

iance for the domains related to instruction (versus classroom organization). Three

percent of the variance was attributable to the common rater trend for the

Instructional Support and Emotional Support domains. Only 2% and 1% of the var-

iance in the overall score and the Classroom Organization scores, respectively, were

attributable to the common rater trend; scores on these domains were relatively stable

over time compared with variability from other sources. The variability due to rater

drift is driven in part by the long duration of scoring for this study. On a day-to-day

basis, rater drift during the video scoring was similar to the change in teaching qual-

ity but because scoring stretched over 15 months it had greater share of the variance.

If raters had completed their scoring in fewer days, rater drift would have contributed

less to overall variance. For example, if raters had completed scoring in the first 180
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days, common rater drift would have accounted for less than 1% of the variability in

scores. This is comparable to the variability due to changes in teaching quality.

Although there is notable variation in the drift among the raters on the CLASS-S

domains, the variance in the rater-specific trend accounts for a relatively small share

of the overall variability in scores, 2% to 4%, depending on the outcome. Again, if

raters had completed scoring in less time, these trends would contribute even less to

the overall variability in scores.

The rater, rater-by-lesson interaction, and residual effects all contributed substan-

tially to the variability in scores. Individually, these sources contributed as much as

31% of the variability in scores. Therefore, while rater drift and time trends in scores

are problematic, the persistent difference in raters and the high level of variation due

to the rater-by-lesson interaction suggests that above and beyond the time trends, the

UTQ raters did not rate consistently when scoring the same lesson and tended to have

different levels of severity.

Results From Fitted Models for Trends in Live Scores

Figure 5 presents the best-fitting trends in rater scores (solid line) for all four out-

comes for the live observations. For each outcome, we find strong support for drift in

the scores. The models with trends in scoring day fit far better than models without

trends. The trends were statistically significant for each outcome. For each outcome

the selected model was Model 2, which includes random rater effects but no random

rater trends. This does not mean there is no variability in the evolution of individual

rater scores during the live observations; however, that variation was not substantial

enough to warrant the extra model complexity over the selected model, given the

limited number of live scores for each rater. A quadratic with one knot trend was the

Table 3. Variance Decomposition Including Instructional and Rater Trends as a Source.

Variance source
Overall
score

Emotional
support

Classroom
organization

Instructional
support

Teacher 17.4 12.3 11.8 9.7
Classroom 1.4 0.4 1.2 1.4
Lesson 10.6 6.9 6.9 11.7
Rater 13.3 31.2 26.6 22.8
Rater 3 Lesson 18.1 12.3 19.7 12.6
Rater 3 Teacher 6.0 5.9 0.0 4.5
Segment 10.6 5.3 7.3 11.1
Residual 17.5 18.7 22.6 20.7
Instructional trend 0.7 0.5 0.3 0.3
Common Rater Trend 1.9 2.9 1.2 2.9
Rater-specific trend 2.5 3.6 2.5 2.3

Note. Variance decomposition results are based on video data only.
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best-fitting parameterization for the rater scoring trend for the overall, Emotional

Support and Instructional Support scores, and a linear with one knot trend was the

best for Classroom Organization.

The selected models reflect the smooth trends in Figure 1. Raters start out giving

high scores but rapidly decrease those scores. About midway through the school-year

they start to increase scores again. The change in scores is quite large, especially for

Instructional Support. Between the start of scoring and the middle of the year, the

decrease amounted to 1.3 points on the seven-point scale or 1.5 standard deviation

units for the scores. The initial drift is smaller for the other outcomes (0.9, 0.7, and

0.5 for the overall score, Emotional Support, and Classroom Organization, respec-

tively). The figure also includes the fitted trend for instructional days for year 1

(dashed line), based on the video scoring. As noted above, these trends are very flat,

especially compared to the very large initial rater drift. The trend in rater scores

Figure 5. Plots of fitted trends for live data. The solid line is the trend in rater scoring and
the dashed line is the trend in instructional day estimated via the video scoring data. In the
top panel from left to right are plots for the overall score and Emotional Support and in the
bottom panel are plots for Classroom Organization and Instructional Support. The
parameterization for the rater scoring trend p2(t) was quadratic with one knot for the
overall, Emotional Support, and Instructional Support scores, and linear with one knot for
Classroom Organization scores. The parameterization for the instructional trend p1(t) was
linear with zero knots (as determined from the video data modeling procedure).
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accounted for 12%, 4%, 5%, and 13% of the variance in the live scores for the over-

all scores, Emotional Support, Classroom Organization, and Instructional Support,

respectively. For Instructional Support, the rater trend accounted for more variance

than the teacher or the lesson, but less than rater variance, the remaining rater-by-

lesson variance, or the residual variance. The variance explained by trends in teach-

ing quality that occurred on the same days as the live observations explained only

from 0.3% to 0.6% of the variance in scores. Hence, in the UTQ live observations,

rater drift is a much more substantial source of error than any systematic variation in

teaching quality.

Discussion

We found significant rater drift in live observation scores and continued drift across

15 months of video scoring that raters conducted after completing live observations

during nearly an entire school year. For all three of the CLASS-S domains, raters ini-

tially gave relatively very high scores when they start live observations before rapidly

adjusting their scoring downward. The changes were large relative to the scale and

the variability in scores. A teacher receiving the average overall score on the first day

of scoring would have received a score of about 0.9 points higher than if she had been

observed teaching equally well on about the 100th day of scoring. That is a drop from

about the 84th percentile of scores to the 43rd. The drift on the individual domain

scores was similarly large.

Rater drift continued during the entire interval of video scoring, even after raters

had made significant adjustments to their scoring during a school year of live obser-

vation. Drift during video scoring was much less pronounced with relatively small

day-to-day changes in scores but, because of the long duration, average scores at the

end of video scoring were notably lower than at the beginning. Our model was suffi-

ciently flexible to fit trends that leveled off, if indeed scoring had stabilized, but such

models did not fit the data well. Instead we chose models with drift throughout the

interval. Moreover, the evolution of scoring varied among raters, so that variability

among raters actually grew during video scoring. This increase occurred even though

raters were substantially divergent at the beginning of video scoring. Raters did not

come to a common agreement on scores nor did they each level off at their own sta-

ble level of scoring.

Teaching quality also drifted across the school year. For all three CLASS-S

domains and the overall score, teaching quality as measured by CLASS-S declined

steadily throughout the school year. However, the declines were modest—across the

entire year, scores dropped about 0.13 to 0.25 score points depending on the out-

come, with the largest decline in Emotional Support and the smallest in Classroom

Organization. The date of the observed lesson could affect scores because of varia-

tion in teaching but much less so than drift in rater scoring via live observations.

These trends occurred in the context of several other substantial sources variability

in scores. For instance, even after accounting for the trends, there was rater-by-lesson
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variability and substantial rater-to-rater variability in the average scores for all out-

comes in both live and video scoring. There was also substantial residual variability

which is primarily the result of raters disagreeing on the score given to a segment of

a lesson. Correcting drift would not remove all the rater variance.

Our augmented G study model facilitated the assessment of the relative sizes

of various sources of error and the contribution of rater drift to them. It also

allowed us to distinguish those sources in order to obtain accurate estimates of the

trends. By modeling the various sources of error, the model provides more accu-

rate inferences than one that ignored the hierarchical structure in the data and

incorrectly treated the scores as independent. The standard G study model would

allow for a decomposition of the variance, but without the additional information

we learned from modeling trends. By modeling the trends, we can identify possi-

ble sources of the variability and potential fixes. For instance, the rapid change in

rater scoring at the start of live observations suggests that raters may need more

practice before scoring and that studies may need to budget for more rater-training

time. We would not know this if we only knew the size of the rater by lesson

variance.

By permitting us to estimate the trends and other sources of variance, the model

also supports evaluating alternative designs for scoring. The primary concern with

drift identified by the model is that teachers who are scored only by raters who are

new to rating would be at an advantage relative to other teachers, and teachers

observed only by raters at their most severe-level of scoring would be at a notable

disadvantage. To avoid this sort of confounding of the rater experience with our

inferences about a teacher, we would need a study in which every teacher is observed

by multiple raters at different levels of rating experience. The UTQ plan for video

scoring, in which all the videos were collected and then scored, allowed for this type

of scoring design and in general, might be preferred for research studies that use

classroom observations (e.g., Measures of Effective Teaching, BMGF, 2012) or in

studies using teacher artifacts such as portfolios and self-report (Martı́nez, Borko, &

Stecher, 2012).

In teacher evaluations, live observations are the standard, often without opportu-

nity for multiple observers. Hence a teacher’s evaluation may be sensitive to the

rater’s level of experience with observations and with the rubric. Evaluations may

also be somewhat sensitive to the time of year in which the observation occurs. In

light of these results, it may be prudent for teachers to be observed at multiple times

of the school year. Also, before consequential decisions are made on the basis of

observations, school systems might want to corroborate scores from observations

using other sources of data or through additional observations made by observers

with varying levels of experience.

Consistent with the literature on text scoring (Congdon & McQueen, 2000;

McKinley & Boulet, 2004), we observed extensive rater drift in the UTQ study,

even though the raters participated in calibration exercises the entire time they

were rating live or from videos. They also continued to drift even after an entire
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year of live scoring experience, and did not become more likely to agree on scores

for the same lesson with more scoring experience. We might ask how this can

occur. Detailed investigation of the calibration data revealed that several raters

consistently disagreed with the master codes. For example, a rater with highly

divergent scoring trends for CLASS-S disagreed with the master scores by 2 or

more points on nearly 24% of calibration scores and, consistent with the drift, the

rater’s errors on calibration exercises were somewhat more common later in the

study. It is clear that providing raters with feedback on their performance can be

insufficient for improving their accuracy. Our data suggest that calibration could

be used to identify raters who are struggling with the protocols, especially if cali-

bration data are tracked across time in a statistical quality control chart (Wang &

von Davier, 2014).

An alternative design using the UTQ-like plan would employ a very large number

of raters so that after all videos (or artifacts) are collected, the duration of scoring

period is not so long that rater drift contributes to error in scores. Still, this would not

resolve the trend that we see in the beginning of scoring where raters have a ‘‘burn-

in’’ period related to the number of observations they have rated (not necessarily

related to scoring days since it depends on how many observations they rated in a

day). Given our observed trends, a design where many inexperienced raters each

score a relatively small number of observations is likely to yield inflated scores. To

avoid the bias in raters’ initial scores, studies may need to allow raters to conduct

scoring for a period of a number of ratings before their scores are considered valid

for use in research or practice. More extensive practice in training may remove this

drift, but we cannot test such a design with our data.

Beyond removing struggling raters, our data do not provide any clear paths to

reducing rater drift. Given rater tendency to be lenient at the start it might make

sense to include real field ratings as part of training. Raters’ initial leniency also

suggests they do not fully comprehend the standards of high-quality classroom

interactions used by CLASS-S. It may take them several observations to reorient

from their a priori beliefs about quality of instruction to the standards and practices

embraced by these protocols. Interviews with raters support this conjecture and

indicate that some raters never gain full comprehension of the protocol standards

(Bell et al., 2014). This may be indicative of the lack of common understanding of

quality instruction among educators noted often in the literature (Gitomer et al.,

2014; Goe, Bell, & Little, 2008) and the emphasis of teachers and principals on

classroom management which raters observe accurately with less drift and much

less variability than almost all other aspects of practice. The problems with rater

accuracy may also be due to the cognitive challenges of assessing so many high

inference dimensions at the same time. Again, think-aloud rating interviews with

the UTQ observers suggest that they struggled with determining the scores for an

observation and that their processes for determining a score differed from those

used by master coders (Bell et al., 2014).
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The trends might be the result of differences in factors other than rater drift that

contribute to scores and are confounded with scoring days. One such potential con-

founder is the demographic composition of participating classes. Classes in the Year

2 sample tended to have lower average prior year test scores, and greater percentages

of low-income and minority students than classes from Year 1. These factors are cor-

related with the observation scores and given that Year 2 classes were more likely to

be scored later in the project, they could be contributing to the downward trend in

scores that we observe. We decided to test this potential confound by adding the

classroom average prior mathematics and language scores and the percentage of stu-

dents who were Black or eligible for free and reduced-priced lunches to Model 2 and

comparing the coefficients for the trends from this model to the corresponding coef-

ficients from Model 2. The results were very similar implying that the trends were

not the result of differences in classroom composition. Additionally, we fit our mod-

els to the Year 1 and Year 2 data separately and found similar results; therefore we

conclude there is essentially no confounding of the effects of demographics and the

effects of scoring day within either year.

Care should be taken when generalizing the findings from the UTQ data. The

study included only 12 raters. These raters conducted massive amounts of observa-

tions (approaching 10,000 scores) over a 2-year period using a rotating system

involving different scoring protocols, which may have yielded different scoring

trends than if raters were responsible for using a single scoring protocol. Several

expressed fatigue with the video scoring. The raters were trained under state-of-

the-art training at the time, but training is rapidly evolving since structured obser-

vations have become key to many teacher evaluation systems. The raters were part

of a research study and did not know the teachers they observed and there were no

consequences for any participants (raters or teachers) from the observations.

Evaluations by principals are made in a very different context and may not show

drift as the scores tend to be less variable and more consistently high than what is

found in research studies (Jawahar & Williams, 1997; Lord & Cole, 1961;

Weisberg, Sexton, Mulhern, & Keeling, 2009). Nonetheless, the UTQ experience

is consistent with other research studies on observations (BMGF, 2012;

Casabianca et al., 2013) and the experience with independent text raters. Rater

drift is likely with observation protocols and studies should be designed to allow

for it. Calibration data should be monitored over time to identify struggling raters

and indicate that raters are not coming to a consensus agreement with master

codes. Detailed study of the sources of such disagreements may suggest strategies

not only to reduce drift in ratings but also to reduce the large rater-by-lesson var-

iance, which profoundly degrades the reliability of the scores as measures of per-

sistent teacher attributes.
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Notes

1. Four classrooms were observed only once during the study due to unresolvable scheduling

conflicts.

2. One rater conducted only live scoring and did not participate in video scoring.

3. Raters were considered able to score if at least 80% of the ratings were within one scale

point of the master codes. The standard of being within one scale point of the master codes

was, at the time of the UTQ study, the same standard used by the CLASS-S developers.

4. Raters were using three scoring rubrics on a rotating system; in the first week a rater may

use CLASS-S, the second week, FFT, and the subject-specific protocol in the third week.

Calibration and retraining for each protocol coincided with this rotating system as well.

5. For supplemental material, please visit http://ows.edb.utexas.edu/site/jodicasa/supple

mental-material

6. The knot location is chosen by the bs() function in the splines R package. When requesting

only one knot, the knot location is the median. For Emotional Support, the knot location is

at scoring day 575.
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