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Abstract

Recently, over 40 states in the United States adopted the Common Core 
State Standards for Mathematics (CCSSM) which include standards for 
content and eight standards for mathematical practices. The purpose of this 
study was to better understand the nature of young children's mathematical 
practices through an exploratory examination of the practices of a group 
of second-grade students engaged in several mathematical tasks focused 
on rational number concepts. Twenty-five second-grade students completed 
three fraction tasks in structured clinical interviews. The interviews and 
student work were analyzed using an interpretational analysis to examine 
the data for constructs, themes, and patterns that were useful in explaining 
children's mathematical practices. The results reveal that children used a 
variety of mathematical practices during the interviews to respond to the 
mathematical problems presented. Children's mathematical practices were 
both a product that they used to solve the mathematical situations, and a 
process that was developing during the interactions of the interview. The 
findings lead to new insights about how mathematical practices develop and 
what promotes their development.

A decade ago, the RAND Mathematics Study Panel  (2003) identified 
mathematical practices as highly important and suggested that a better 
understanding of the nature of mathematical practices had the potential to 
have significant impacts on the improvement of student learning. One par-
ticular concern of the panel was that mathematical practices are often left 
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implicit in curriculum and standards documents, which can lead to them 
being overlooked during instruction. Another concern was that there were 
many unanswered questions about mathematical practices, which has led to 
them being misunderstood by teachers and curriculum developers.

In 2010, the Common Core State Standards for Mathematics  (CCSSM) 
brought mathematical practices to the fore by laying out eight Standards for 
Mathematical Practice (National Governor's Association Center for Best 
Practices, 2010). These practices are: a) make sense of problems and per-
severe in solving them; b) reason abstractly and quantitatively; c) construct 
viable arguments and critique the reasoning of others; d) model with math-
ematics; e) use appropriate tools strategically; f) attend to precision; g) look 
for and make use of structure; and, h) look for and express regularity in 
repeated reasoning. The CCSSM note that "The Standards for Mathemati-
cal Practice describe varieties of expertise that mathematics educators at all 
levels should seek to develop in their students" (National Governor's As-
sociation Center for Best Practices, 2010, p. 6). In the CCSSM documents, 
descriptions are provided for each of the eight mathematical practices. But 
what do mathematical practices "look like" when students are employing 
them during mathematical tasks? Are there some mathematical practices 
that are more common or well-developed in children from an early age and 
other mathematical practices that take a great deal of time and experience to 
develop? While there are large bodies of research focused on specific math-
ematical content domains  (e.g., number operations, fractions, geometry), 
there are virtually no studies that place emphasis on examining students' 
mathematical practices as defined in the CCSSM. The present study sought 
to begin the conversation on the CCSSM's Mathematical Practices that 
are employed by children during mathematical tasks. The purpose of this 
study was to better understand the nature of  young children's mathematical 
practices through an exploratory examination of the practices of a group of 
second-grade students engaged in several mathematical tasks focused on 
rational number concepts.

Mathematical Practices as Product and Process

Our theoretical framework for this study was based on the idea that math-
ematical practices may be thought of as both a product and a process (Li, 
2013). By being in the form of a product, we mean that children's math-
ematical practices may be well-developed and usable by the child; their 
mathematical practices may be in a well-formed state that can be accessed 
and employed like a tool for solving different types of problems. However, 
it is important to note that this "product" that may be employed during one 
mathematical task is constantly being reformed and reshaped by the indi-
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vidual in preparation for the "product" that is used during the next math-
ematical task. By mathematical practices being in the form of a process, 
we mean that children's mathematical practices are in a constant state of 
formation. This means that their mathematical practices are developing and 
changing while students are engaged in mathematical tasks and a new or 
revised mathematical practice may emerge as a result of engaging in each 
subsequent mathematical task.

Mathematical practices, either in their product or process modality, can 
be developed and can be developing through Piaget's (1972) idea of reflec-
tive abstraction. Reflective abstraction is identified as the mechanism of 
the development of intellectual thought and a key mechanism involved in 
learning (Dubinsky & Lewin, 1986). Similarly, we believe that mathemati-
cal practices develop and are shaped by reflective abstraction. Reflective 
abstraction was first introduced by Piaget to describe "the construction of 
logico-mathematical structures by an individual during the course of cogni-
tive development" (Dubinsky, 1991, p. 95). While Piaget's use of reflective 
abstraction often focused on examples of children learning mathematics, 
we propose that reflective abstraction is also an important part of children's 
development of mathematical practices.

Piaget (1972, 1980, 1985) distinguished reflective abstraction from em-
pirical abstraction. For example, empirical abstract is derived from external 
experiences with objects which can lead to some knowledge about the com-
mon properties of those objects. In contrast, reflective abstraction results 
when a child forms a generalization that is constructive. While empirical 
abstraction deals with objects, reflective abstraction deals with action by 
drawing properties from mental or physical actions. These ideas can also 
be related to the development of students' mathematical practices. Take for 
example the CCSSM mathematical practice of "using appropriate tools stra-
tegically." A student using a particular mathematical tool  (e.g., a protrac-
tor) or a particular mathematical action (e.g., measuring an angle) will gain 
some knowledge about the properties and processes involved in that activity  
(empirical abstraction). However, to develop the mathematical practice of 
"using appropriate tools strategically" requires mathematical practices ab-
stracted from mathematical activities and reflection on those activities, with 
mathematical practices becoming formed and developed through reflection 
on the use of those practices in mathematical activity (reflective abstrac-
tion). This means that to form a generalization that is constructive about 
the mathematical practice of "using appropriate tools strategically" students 
will undergo many experiences where they are using many different types 
of tools, they will find that some tools work better than others for particular 
types of mathematical situations, and they will begin to recognize the ben-
efits of strategic tool selection. All of these processes (and many more) that 
come together for the individual will be involved in the process of develop-
ing this mathematical practice.
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The idea of both the developed (product) and the developing (process) 
mathematical practice is most closely aligned with constructivist and em-
bodied approaches to mathematical thinking and learning (Davis, Maher, & 
Noddings, 1990). For example, Nemirovsky, Kelton, and Rhodehamel (2013) 
propose that "mathematical learning consists of transformations in learners' 
lived bodily engagement in mathematical practices" (p. 376). Similarly, Cle-
ments and Sarama (2007) suggest that children actively and recursively con-
struct knowledge. Aligned with these ideas, we suggest that children actively 
and recursively construct mathematical practices. Clements and Sarama's 
theoretical framework of hierarchic interactionalism is a synthesis of previous 
theoretical frameworks that represents the interaction of innate competencies, 
internal resources, and experience. In this theoretical framework, Clements 
and Sarama propose that "Mathematical ideas are represented intuitively, then 
with language, then metacognitively..." (2007, p. 464). We suggest that math-
ematical practices progress in a similar fashion ─ first intuitively, then with 
language, then metacognitively. Clements and Sarama describe hypothetical 
learning trajectories for children's construction of mathematical concepts. 
Just as there are hypothetical learning trajectories for learning within particu-
lar mathematical domains, there may be hypothetical learning trajectories for 
learning mathematical practices within or across mathematical domains. Just 
as learning particular mathematical content follows a hypothetical learning 
trajectory, the development of mathematical practices may also follow a simi-
lar type of learning trajectory. And just as reflective abstraction is important in 
the development of mathematical learning trajectories, reflective abstraction 
may also be key to children's developmental trajectories for mathematical 
practices (von Glasersfeld, 1995).

Until recently, there has been very little focus on the examination of stu-
dents' mathematical practices. However, in 2013 Li proposed a conceptual 
framework for observing the status of mathematical practices and evalu-
ating the growth of mathematical practices. In Li's framework, there are 
three overarching themes that underlie the mathematical practices that one 
would expect of learners. These include: (a) the level of learner engage-
ment and commitment; (b) the learner's employment and development of 
knowledge, skills and strategies; and (c) the internalization and habituation 
of the mathematical practices. As Li (2013) notes, "...learner's mathematical 
practices exhibit a  process-product duality: they make up both a means to 
and an end of mathematics learning and understanding" (p. 62). Therefore, 
in Li's framework, mathematical practices can be developing (a process) or 
developed (a product).

In the present study, we focus on Li's second theme underlying the mathe-
matical practices by examining the learner's employment of knowledge, skills 
and strategies. Li (2013) includes in this category such actions as logical rea-
soning, justification techniques, applying knowledge, problem solving, and 
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reasoning. We believe that this theme allows us to see children's mathematical 
practices in process (as they are forming their mathematical practices) and 
children's mathematical practices in product form (as they are employing a 
mathematical practice with which they are confident and knowledgeable).

The Current Project

The purpose of this project was to better understand the nature of young 
children's  mathematical practices. We chose to examine children's mathe-
matical practices using tasks in the domain of rational numbers. We selected 
rational numbers for our tasks because the Rational Number Project has a 
long history of research in this domain with well-developed tasks and in-
structional materials and sequences (Behr, Lesh, Post, & Silver, 1983; Behr 
& Post, 1992; Cramer, Wyberg, & Leavitt, 2008). Researchers in this domain 
have posited five subconstructs of rational number knowledge: part-whole re-
lations, ratios, quotients, measures, and operations (Kieren, 1980), and three 
partitioning schemes have been identified (Lamon, 1996): (a) halving ─  an 
early developed partitioning action (Pothier & Sawada, 1983), (b) dealing ─ 
a primitive form of partitioning which generates equal shares by distributing 
in a cycle fashion until all shares are given out (Davis & Pitkethly, 1990), and 
(c) folding or splitting ─ where the number of pieces grow with the number 
of folds (Confrey, 1998; Kieren, Mason & Pirie, 1992).

We also know a great deal about young children's conceptions of the frac-
tion ½ (Hunting, Davis, & Pearn,1996), and 3- and 4-year-olds' understand-
ing of continuous and discrete quantities involving the fractions ½, ⅓, and 
¼ (Hunting & Sharpley, 1988). For example, 4-year-olds can think about 
the whole or about the parts, but they cannot think about the two concepts 
simultaneously. This mental action requires the ability to perform two men-
tal actions simultaneously as in the conservation of a whole partitioned into 
parts (Kamii & Warrington, 1999). This base of knowledge in the domain 
of rational numbers makes it an excellent site for the study of the CCSSM's 
mathematical practices within the domain. The following overarching re-
search question guided our inquiry: What is the nature of second grader's 
mathematical practices (as defined in the CCSSM) during mathematical 
tasks that include a simple quantity, a discrete quantity, and three conflict-
ing empirical models of one-half?

Methods

Participants
The participants in this study were 25 second-graders (one age 7, 22 age 

eight, two age nine) from two intact classes in a small rural elementary 
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school in the southern United States. There were 15 females and 10 males; 
17 African American an eight Euro American children. The children rep-
resented a range of abilities, as identified by their teachers. The children 
volunteered for the study, and parent permission was obtained. The children 
participated in the interviews during the spring of the academic year. The 
children had little formal instruction in rational number concepts, which 
allowed the focus of their responses to be based on the contextualized ques-
tions rather than on procedures learned during school instruction.

Procedures & Instruments
One way to examine children's mathematical practices is through inter-

action with others through verbal and nonverbal communication, as sug-
gested by Vygotsky (1978) when he proposed that higher mental processes 
first occur on the social plane (i.e., between people). Therefore, the pri-
mary data collection instrument was a structured clinical interview protocol 
that was used in one-on-one interviews with each participating child. The 
structured clinical interview allowed students opportunities to explain their 
own mathematical ideas (Goldin, 2000). Providing children an opportunity 
to represent a mathematical problem in a way that is meaningful to them 
helps them to organize their thinking, making the problem more accessible. 
Each interview was audio taped, photographed, and documented through 
field notes and children's work samples. Children's responses to the tasks 
were transcribed along with the interviewer's notes on children's problem 
solving behaviours. The interviewer photographed children's work and col-
lected work samples, including drawings and writings. Data for analysis 
included the transcripts, children's written and photographed work, and the 
interviewer's notes.

The interviews took place in the children's classrooms while other in-
structional activities were being completed by the classroom teachers, with 
the exception of two interviews that were conducted in the hallway right 
outside the classroom. The interviews included a series of structured ques-
tions followed by open-ended questions to probe for more information on 
the children's thinking. One researcher conducted all of the interviews. 
Prior to the interviews, the researcher had several formal and informal in-
teractions with the children and their teachers during classroom teaching ac-
tivities; therefore, the children knew and had interacted with the researcher 
prior to the project. By having the same person administer the interviews, 
each child essentially participated in the "same interview." This procedure 
leads to increased replicability of the interview itself, and a basis for draw-
ing inferences from observations during the interview (Goldin, 1997).

Problem Solving Tasks and Materials
The content of the interviews focused on the part-whole subconstruct, 
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which is based on the ability to partition a continuous quantity or a set of 
discrete objects into equal parts. Children were presented with three types of 
problems: (a) a simple continuous quantity (region models including circles 
and squares), (b) a discrete quantity (set models using counters), and (c) a task 
using three conflicting empirical models of one-half. Tasks were posed ver-
bally using contextualized questions. The children were presented with mod-
els for partitioning the continuous (region models) and discrete (set models) 
quantities. The design of the interview tasks followed the recommendations 
for instruction in the Rational Numbers Project (Cramer, Behr, Post, & Lesh, 
1997; Cramer, Behr, Post, & Lesh, 2009). Tasks were developed with the be-
lief that children can solve a wide range of unfamiliar problems when they are 
able to represent the problems with objects, actions, and familiar situations 
(Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993). We classified our 
tasks as easy, medium, and hard based on the expectations for Grade 2 in the 
CCSSM. These classifications are described below.

Task #1: A simple continuous quantity (region models including circles 
and squares). Children were asked to divide a circle region and a square 
region into ½, ⅓, and ¼. Based on the Grade 2 CCSSM, second-grade stu-
dents should successfully complete all aspects of Task #1, therefore, we 
rated questions from this task as "easy."
 Task #2: A discrete quantity (set models using counters). An important 
milestone for children's numerical development is understanding how to 
decompose numbers (Van de Walle, 1990). Children were given set models 
with 12 counters and with seven counters and asked to divide the counters in 
half. Based on the Grade 2 CCSSM, second-grade students would not have 
learned the fraction content of Task #2. However, students would have ex-
perience "pairing objects or counting them by two's" (National Governor's 
Association Center for Best Practices, CCSSM 2.OA.3, p. 19). These skills 
would help second graders solve the set model task with 12 counters, so we 
rated this task as "medium." Second grade students have experience iden-
tifying and pairing wholes and identifying fractions, but the CCSSM does 
not explicitly include mixed numbers until Grade 4. To divide the seven 
counters, identifying three pieces plus half of a piece is "medium" difficulty, 
while correctly naming the outcome "three and a half" was rated as "hard.

Task #3: A task using three conflicting empirical models of one-half.
Children were asked to generalize the concept of ½ across different models. 
They were shown a paper circle cut in half, a paper square cut in half, and 
12 counters divided in half from the previous tasks. The interviewer asked 
the children to name each of the pieces. After the children responded that 
each piece was "one-half," the interviewer asked, "These models do not 
look the same . . . Why are all of the models called one-half?" The aim of 
this task was to promote reflective abstraction through children general-
izing the concept of one-half in the face of conflicting empirical models. 
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Based on the Grade 2 CCSSM, second-grade students should identify the 
half as part of a whole for each model ("medium" difficulty), but may not 
be expected to generalize across the three models  ("hard").

We placed materials, including pictures of circles and squares, one set of 
fraction circles, crayons, scissors, cut-outs of circles and squares, 12 two-
color counters, and extra paper and pencil, on the interview table. Children 
received materials for some tasks (e.g., shading or drawing a fraction por-
tion on paper). For other tasks, children could select any of the materials on 
the interview table to provide an explanation. The interviewer proceeded 
through the tasks on the protocol and asked follow-up questions to encour-
age children to explain their thinking. Interviews ranged from 25-45 min-
utes depending on the length of each child's responses. From these interac-
tions  we identified children's mathematical practices.

Data Analysis
Interview transcripts were read and coded separately by three inde-

pendent readers using an interpretational analysis to examine the data for 
constructs, themes, and patterns that were  useful in explaining children's 
mathematical practices  (Gall, Borg, & Gall, 1996). Researchers coded 
mathematical practices from the transcripts using a modified constant com-
parative method to identify behaviours and verbalizations that indicated the 
practices (Strauss, 1987). Themes were used to develop emic (those that 
were derived directly from the children's own words) and etic (those that 
were inferred from the children's responses) categories  (Maxwell, 1996).

Microsoft Excel PivotTables were used to summarize, organize and sort 
categories of data, allowing the researchers to cross-reference and group 
large amounts of data in a summary format for ease of comparison and 
interpretation. There were nine main category codes for the interview tasks 
and these were shorthanded with the following abbreviated titles: Task 1a) 
Region:Circle:Half, 1b) Region:Circle:Third, 1c) Region:Circle:Fourth, 1d) 
Region:Square:Half, 1e) Region:Square:Third, 1f) Region:Square:Fourth; 
Task 2a) Set:12:Half, 2b) Set:7:Half; and, Task 3) Conflicting:Half.  Over-
all, five of the CCSSM Mathematical Practices were employed in these 
children's interviews (National Governor's Association Center for Best 
Practices, 2010, pp. 9-10).

Results

The results that follow present a brief summary of the overall accuracy of 
the group on each of the interview tasks. Following this brief summary, we 
present examples from the transcripts that reveal the mathematical practices 
that students employed during the interviews.
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Overall Accuracy
Table 1 summarizes the overall percentage of the 25 students who were 

successful on each portion of the interview tasks. Some tasks contained 
only an "easy" portion (e.g., Task 1a to Task 1f), while other tasks contained 
portions with more than one level of difficulty (e.g., Task 2b and Task 3). 
Students seemed to have the most difficulty dividing a circle region and a 
square region into thirds. In contrast 100% of the children were successful 
dividing a circle region, a square region, and a set of 12 counters in half. 
Over half of the children (56%) said that a square region could be divided 
in half in more than one way. Children's high levels of accuracy on most of 
the tasks allowed us to delve more deeply into the mathematical practices 
that the children used in their explanations.

Mathematical Practices: Task #1 with a Simple Continuous Quantity
(Region Models)

During Task #1, children divided circle and square region models into 
halves, thirds, and fourths. Pictorial representations of children's common 
solutions appear in Figure 1, showing children's facility at modelling the 
fraction amounts. Children who had difficulty with the "thirds" division 
often drew two parallel lines or divided the circle into fourths and said to 
ignore one of the pieces (see e.g., 1.b.2). Students said it was difficult to 
draw because thirds "was an odd number" or because they "had never seen 
one like that before." The comments showed that children were reasoning to 

Table 1: Students' Overall Percent Accuracy by Question Difficulty on Three Mathematical 
Tasks

Note: na indicates "not applicable," meaning no portion of the task was in this category.
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find a solution. Four students, who drew two parallel lines in an unsuccess-
ful attempt to divide the circle region into thirds (see e.g., 1.b.2.), were able 
to use the same two parallel lines to successfully divide the square region 
into thirds (see e.g., 1.e.1).

During the square region tasks, children divided squares into ½, ⅓, and ¼ 
by drawing lines and coloring the amounts. Students said the square could 
be divided in half in more than one way (see e.g., 1.d). Once again, these 
comments showed children's reasoning abilities. Some children had diffi-
culty and divided the square into three unequal parts ─ one half and two 
fourths (see e.g., 1.e.2) ─ or they told the interviewer that the square could 
not be divided into thirds. They said it was difficult to draw because they 
could not "get the pieces to be the same size." When children are unable to 
divide a region into the specified quantity, it is known as nonexhaustive dis-
tribution, and is very common for children of this age. Comments about the 
importance of the pieces being the same size reveal children's understand-
ing of equivalence and their attention to precision.

The most prominent mathematical practices in children's responses dur-
ing Task #1 were modelling with mathematics (referring to models) and 
attending to precision. Children's reflections on familiar models allowed 
them to respond to the tasks with confidence; while children who could not 
access a familiar model had difficulty with the task. The following inter-
view excerpts with four different children reveal students modelling with 
mathematics.

Figure 1: Most Common Region Model Responses

Successful Unsuccessful

Region:Circle:Half

Region:Circle:Third

Region:Circle:Fourth

Region:Circle:Half

Region:Circle:Third

Region:Circle:Fourth

1.a

1.b.1

1.c

1.d

1.e.1

1.f

1.b.2

1.e.2
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Interview Task #1 Example #1
Interviewer: Can you shade one-third in the next circle?
Student: (draws third of a circle accurately and shades one-third of the 
circle)
I:  How did you know to draw it like that?
S:  I know how to draw this one because my dad works for Mercedes.

Interview Task #1 Example #2
I: Let's say that we had this big cookie and we were going to share it 

between the four of us. How would you take your pencil and divide it 
to show fourths?

S: (draws fourths of a circle accurately)
I:  And shade in your piece.
S: (shades in one-fourth of the circle); I though about an X.
I:  You thought about an X?
S:  And a circle around the X to make four.

Interview Task #1 Example #3
I:  Do you know other ways that you might cut the square in half?
S:  Like a sandwich (child uses a diagonal hand motion).

Interview Task #1 Example #4
I:  What do you know about fractions?
S:  Well, some come in halves.
I:  Can you show me what you're talking about when you say some come 

in halves? (hands the child paper and pencil)
S:  (child draws a circle with a line down the middle)
I:  So you drew a circle and you put a line in it. What does that mean?
S:  A half.
I:  What part is the half?
S: This part here (pointing to half of the circle) and the other part too  

(pointing to the other half of the circle).
I:  What if someone said to cut it into thirds and three people would share it?
S:  It would look kind of like a peace sign. It wouldn't be exactly equal 

though.

As these examples from the interviews show, familiar models (eg., a 
sandwich, a peace sign, or a Mercedes emblem) played an important role in 
these young students' ability to model with mathematics. When the children 
were asked for a generalization that explained how to divide a circular or 
square region in half, they gave responses that fell into four categories: (a) 
use of text-based definitions, (b) the idea of two pieces, (c) use of the word 
"half" to describe the concept half, and (d) a focus on equality (see Table 2). 
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Six children used one category in their explanation, and 19 children used 
more than one category in their explanation. As the summary in Table 2 
shows, a majority of the children (18 of 25) were able to reason abstractly 
and construct a viable argument that focused on the concept of equality.

Mathematical Practices: Task #2 with a Discrete Quantity (Set Model)
During Task #2, children divided a set of 12 counters and a set of seven 

counters in half. The interviewer contextualized the tasks by asking children 
to think of the counters as pieces of candy to be shared between two people. 
Pictorial representations of children's common solutions appear in Figure 2. 
Overall, children's responses included spontaneous and prompted distribu-
tions (or systematic cyclic procedures) and nonsystematic procedures.

When second-graders divided 12 counters in half (Figure 2.a), responses 
focused on: (a) properties of the number (such as its "evenness," or that 
six plus six equals twelve), and (b) distribution or systematic cyclic proce-
dures (such as dealing cards, "one for you, one for you, and one for you"). 
Examples of responses that focused on properties for the number included 
comments such as "This is even," "Because six plus six equals twelve," and 
"Because I know what's twelve take away six". Examples of responses that 
focused on prompted distributions included, "You get one and I get another 
one and I get another..." and "One, one, two, two, three, three, four, four, 
five, five, six, six" as the children distributed the counters. These responses 
show a variety of mathematical practices including making sense of the 
task, attending to precision, and reasoning quantitatively.

When second-graders divided seven counters in half, five children im-
mediately told the interviewer to divide the seventh counter in half (Figure 
2.b.3). The interviewer's follow-up questions encouraged the other children 
to persist and divide all seven counters in half. One child suggested remov-

Table 2: Children's Responses When Asked How to Partition a Circle or Square Region

“...the bottom number shows how many parts are in the
circle...and the top number tells us how to shade.”

The word “half” to
describe half
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Figure2: Pictorial Representations of Most Common Set Model Responses

ing a counter (Figure 2.b.1) and giving the "piece of candy to someone 
else," and another suggested adding one counter (Figure 2.b.2.), both op-
tions that would produce an even number of counters. These solutions were 
all based on children's notions of "equal parts." Seven of 20 students used 
the terminology "three and a half" to correctly name the half portion.

The most prominent mathematical practices in children's responses dur-
ing Task #2 were attending to precision, reasoning quantitatively, and mak-
ing sense of problems and persevering in solving them. Their responses 
used words, drawings and hand gestures that communicated the importance 
that each half of the counters needed to be exactly equal. They reasoned 
aloud about what "half" would mean quantitatively for the given amounts 
of twelve and seven counters, showing a solid understanding of the concept 
of equivalence. Their mathematical practices were most evident when the 
children attempted to divide seven counters in half. The following interview 
excerpts with five different children reveal these practices.

Interview Task #2 Example #1
I:  Let's pretend that you were sharing between two friends and they 

should get the same because they want to share.
S:  Oh... (makes chopping motion and cutting sound)
I:  What does that mean when you went like that?
S:  Split it (pointing to the seventh counter).
I:  Split it?
S:  Right in the middle
I:  Then how many would this friend get?
S: Four (the child calls the half-counter piece the fourth piece)
I: And how many would this friend get?
S: Four (the child calls the half-counter piece the fourth piece)

Interview Task #2 Example #2
I: What would happen if we just had seven pieces of candy and we had 

to share? How could we make half?
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S: Okay, we could half the piece of candy in half.
I: What do you mean? Do you have three and I have three?
S: Mm-hmm (nodding head yes). And then we will have four if we half 

it. You will get a piece and I will get a piece.
I: So you will have four... (moving four counters toward the child) and 

then how will I have four?
S: Now we will half this piece... (moving one counter away from the four 

in front of the child). One half. Three wholes and one half.

Interview Task #2 Example #3
I: What's a way that we could share it (referring to the 7 counters/pieces 

of candy)
S: Break it.
I: What do you mean 'break it'?
S: Oh...okay (child grabs paper and begins drawing a circle with a line to 

divide it in half)
I: What are you drawing there?
S: A circle.
I: A circle. What does a circle mean?
S: That's that cherry candy.
I: And what does the line mean?
S: That's where you break it. Like, this is my half and that's your half. 

(child points to the two halves of the circle drawn on the paper)
I: So if we each get half of this (pointing to the child's drawing) and we 

also get these (referring to the six counters), then how many candy do 
we each get?

S: Three and a half.

Interview Task #2 Example #4
I: What happens if we have seven counters and we were going to share 

those in half? How would you share those?
S: (moves three counters to self and three counters to interviewer; picks 

up the seventh counter) That's a leftover one. You could break it in 
half.

I: What do you mean?
S: If it was like a cookie or something, you could break it in half.
I: Oh, okay.
S: And then we could both have three and a half.

Interview Task #3 Example #5
I: What would you do if we have seven pieces and we were going to 

share it so you get half and I get half?
S: Three (child pulls three counters toward herself)
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I: Any my half would be?
S: Three (child pushes three counters to the interviewer)
I: What about this one? (pointing to the seventh counter)
S: Cut it in half.
I: What do you man?
S: Cut it down the middle and it would be two halves. I get a half and you 

get a half.
I: Then how many pieces would you have?
S: Three half.

As these interview examples reveal, although each child's language for 
three-and-a-half is still developing, they are all reasoning quite well quan-
titatively. Additionally, their drawings, verbalizations and hand gestures 
show that they are attending to precision when they explain "half" as two 
equal parts. In Interview Example #3, #4, and #5 we can see the children 
using tools strategically in their explanations when one child (#3) sponta-
neously grabs the paper and begins drawing an explanation and two other 
children (#4 and #5) begin moving the counters during the explanation.

Mathematical Practices: Task #3 with Conflicting Empirical Models
of One-Half

During Task #3, children were presented with three conflicting empirical 
models of one-half and asked to generalize the concept across the different 
models. The interviewer showed the children the items from the previous 
tasks (a circle cut in half, a square cut in half, and the 12 counters divided 
in half), and posed the following dilemma: All of these pieces are called 
one-half...These models do not look the same...Why are all of the models 
called one-half? This question prompted the children to reason abstractly 
construct viable arguments, model with mathematics, and use appropriate 
tools strategically.

Overall, children's explanations for Task #3 were categorized in terms of 
the justification schemes identified by Sowder and Harel (1998) and adopted 
for elementary children by Flores (2002). (See Table 3.) These justifications 
included (a) externally-based proof schemes, (b) empirical proof schemes, 
and (c) analytic proof schemes. Children were placed in one category based 
on their most salient responses. Most children could be sorted into one cat-
egory, with the exception of two students unable to articulate a proof.

There was a fairly even distribution of the children among the three jus-
tification categories. In the category of external justification schemes, chil-
dren relied on information they had seen before, like an outside source of 
knowledge such as teacher, a parent, or a textbook. Children who provided 
empirical justification schemes constructed arguments based on specific 
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examples. They focused on a procedure that applied to a specific problem 
or situation, and often provided a separate explanation for each task that did 
not generalize to all models. Children who provided analytical justification 
schemes offered a more generalized explanation of the concept of one-half 
that applied to all three models (circle, square, counters).

There were a variety of mathematical practices in children's responses 
during Task #3, including reasoning abstractly, constructing viable argu-
ments, modelling with mathematics, and using appropriate tools strategi-
cally. For example, the following interview excerpts with four different 
children demonstrate their abstractions and justifications for why different 
shapes and objects can all be called "one-half."

Interview Task #3 Example #1
I: We took the cookie (a paper circle) and we cut it in half; and we took a 

piece of cake (a paper square) and we cut it in half. So we said this was 
half (pointing to the half circle) and this was half (pointing to the half 
square). But they don't look the same. How can they both be called 
half?

S: Well, they're both, like, they're, there was two pieces, like we cut this 
pieces, um, two pieces that would make one half.

I: So this is called half...
S: (child interrupts interviewer) We...because you because it's out of one 

piece into two pieces.
I: Why...
S: (child interrupts interviewer) Are you saying because why did I do it?
I: No, no, I'm saying why do we call it the word 'one-half'?
S: Because, like...Let me use these things for an example (child grabs 

eight crayons)
I: Okay.

Table 3: Children's Justifications for Three Empirical Models of One-half

Circle and square are half “because I cut it up into two halves”
and candy is half because “I gave you six and I gave myself six.”

All of the models are called half because “each piece is the same
size as the other.”
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S: Like we got...Let me see if I can think something out (counts the eight 
crayons). Like, I got this...all of these things are just one big chicken 
nugget put together.

I: One big chicken nugget put together?
S: Yeah (laughs)...and then we just split it. Like, this is the chicken nug-

get cutter and we just split it into two pieces (separates four crayons 
and four crayons), and you know two pieces is half.

Interview Task #3 Example #2
I: You told me that this is half of a circle and this is half of a square, what 

is half of the candy? (referring to the 12 counters)
S: It's half of a rectangle
I: Half of a rectangle? What do you mean?
S: This is a rectangle (child pushes the counters together to form a three 

by four rectangular array)... but when you split it in half it's two rect-
angles. (Child spontaneously draws a rectangle on a piece of paper.) 
I messed up (Child draws a second rectangle on the piece of paper.) 
(See Figure 3.)

I:  So why did you draw this rectangle?
S: Because that's a rectangle (child points to the 12 counters in the three 

by four rectangular array).
I: Oh...okay...
S: When you divide it in half (child draws a line down the middle of the 

third rectangle that she drew on the piece of paper) it's not a rectangle, 
it's half a rectangle.

I: So when we take this (pointing to the 12 counters in the three by four-
rectangular array) in two pieces like this (pointing to the child's pic-
ture of a rectangle with a line down the middle) it's half a rectangle?

S: It has like six pieces here and six pieces here (child moves the two 
groups of six counters onto the rectangle that she drew on the piece of 
paper).

As Examples #1 and #2 show, the children spontaneously used tools and 
models to help the interviewer understand what children were visualizing 
about the 12 counters. The children wanted the interviewer to understand 
that they saw the counters as a whole (e.g., chicken nugget  or rectangle) 
and that they were relating that whole to the two region models as wholes 
(circle region and square region).

Interview Task #3 Example #3
I: My question is, let's take a look at all of the things we have here (refer-

ring to a paper circle and paper square cut in half and a group of 12 
counters in half). This is a half of the circle, and this is a half of the 
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square, and this is a half of the candy, right? Why are they all called 
half when they don't look the same?

S: Because the circle is the same piece (puts half paper circle on top of 
other half paper circle), the square is the same piece (puts half pa-
per square on top of other half paper square), and these are the same 
pieces (puts half of counters on top of other half of counters), because 
I took all of the pieces  of candy and set them on top of each other and 
they would equal the same.

I: Why aren't they called something different? Why are they each called 
one-half?

S: Because we cut them into halves.
I: What do you mean?
S: That these two are going to be the same (referring to the circle halves). 

They are going to be the same because this piece came from that piece 
(referring to the two circle halves) and that piece came from that piece 
(referring to the two square halves) and these from these (referring to 
the two groups of six counters each that she stacked on top of each 
other).

Interview Task #3 Example #4
I: This piece is called half (referring to the half paper circle), and this 

is called half (referring to the half paper square), an this is half of 
the candy (referring to half of the counters). Even though they are all 

Figure 3: Child's drawing to explain 12 counters as a "rectangle."
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called one-half, they look different.
S: This is red (referring to half of the counters) and this is white (refer-

ring to the half paper circle) and this is white (referring to the half 
paper square).

I: But look at how the shapes are ... this is just a piece of a circle and this 
is just a piece of a square and this is a bunch of circles. How can they 
all be called one-half?

S: Because you have two and they're cut. So that's a half and you have 
two of these (referring to the paper square and paper circle).

I: But there are six counters there... how can...
S: (child interrupts interviewer) They're not the same... but why they're 

all the same is because..., like this is two (touching the two circle 
halves with two hands), two  (touching the two square halves with two 
hands), two (touching the two groups of six counters with two hands). 
They all have two parts. They all have partners.

I: They all have partners?
S: This is his partner...his partner...his partner (child matches up two half 

paper circles, two half paper squares, and two groups of 6 counters by 
pushing them together).

As Examples #3 and #4 show, the children tried to get the interviewer to 
understand the ideas that from one whole comes two one-half portions and 
two halves make one whole. As the interview examples from Task #3 show, 
children were reasoning abstractly and constructing a viable argument to 
explain why each different model was called one-half. In the last example 
(Example #4), when the child says "They're not the same..." the child is 
referring to the objects not being the same empirically; this is the empirical 
one-half. Next the child says, "but why they're all the same is because... 
they all have two parts." Here the child is referring to the abstract one-half. 
This example shows distinctly how the child is reflecting on the question 
to generalize ideas. This shows children's ability to see structual-similarity 
relationships, even though the examples of one-half are presented as dis-
similar objects (Alexander, White, & Daugherty, 1997).

In task #3, children restructured their thinking to develop one method 
or concept for all models. An example of this response was when a stu-
dent explained that all of the models were called one-half because "each 
piece is the same size as the other." The child in Example #2 drew a rect-
angle around the 12 counters to explain to the interviewer how to think of 
the set of counters as a whole. These analytical justifications demonstrated 
students' ability to generalize explanations that fit all of the models, dem-
onstrating flexibility in understanding how to define a whole, and show-
ing the ability to reason abstractly. Children's verbalizations and gestures 
demonstrate perceptual reasoning, in which the child is able to abstract the 
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similarity among the representations of one-half and draw inferences about 
the meaning of one-half. Children's reasoning and justifications show that 
they have abstracted the concept of one-half.

Discussion

The purpose of this study was to better understand the nature of young 
children's mathematical practices through an exploratory examination of 
second-grade students engaged in several mathematical tasks. The results 
demonstrate that young children have and are developing mathematical 
practices from an early age. This exploration has brought us some new in-
sights about children's mathematical practices, but it also leaves us with a 
variety of questions for future inquiry. Below we submit these insights as 
questions for future research.

Insights about How Mathematical Practices Develop
Mathematical practices are both a product and a process. The interviews 

show that children's mathematical practices are a product that they employ 
to solve the mathematical tasks. An example of this might be when the child 
adds or subtracts a counter to make the counters an even number in an effort 
to make sense of the task. Because the child has a well-establish idea of that 
would make sense, they use a sense-focused response in their explanation. 
The interviews also show that children's mathematical practices are a pro-
cess that is developing and changing as they are solving the mathematical 
tasks. An example of this might be when the child employs different strate-
gies (e.g., drawing or moving objects) to support their argument. This may 
show the process of developing mathematical practices such as learning to 
give evidence to make their argument more viable to the interviewer.
 Children come to school with a foundation of mathematical practices 
that are inchoate. Clements and Sarama (2007) describe children's prema-
thematical and general cognitive competencies and dispositions as "initial 
bootstraps" (p. 465). They describe these abilities in young children as 
supporting and constraining the development of mathematical knowledge, 
when experiences interact with the child's inborn capabilities. Throughout 
all of the tasks, students used concrete objects or pictures to conceptualize 
and make sense of tasks posed in the interviews. Students had access to 
manipulatives and space to illustrate, using them to demonstrate splitting 
the whole into equal parts in concrete and pictorial representations. Even 
without prompting from the interviewer on the set model tasks, students 
often mentioned cutting or dividing the last object to share it evenly. Provid-
ing tasks in a contextualized way helped children to make sense of the tasks. 
Perhaps children's mathematical practices are also in this initial bootstraps 
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form and children's experiences allow their mathematical practices to de-
velop beyond this initial form.

The development of mathematical practices may follow a hypothetical 
trajectory similar to mathematical learning trajectories. Just as Clements 
and Sarama (2007) have proposed that children's learning of mathemati-
cal concepts follows a hypothetical learning trajectory, the development of 
each mathematical practice may also follow a hypothesized path of learn-
ing. For example, very young children seem to intuitively know the impor-
tance of constructing a viable argument. They have had many non-mathe-
matical experiences in which they have constructed a successful argument 
for family members long before they come to school. The development of 
constructing viable arguments begins prior to school and prior to formal 
school mathematics. Specific skills of constructing an argument are refined 
and, then, during schooling, children learn to apply this to the argument of 
a mathematical position or proof. Over many years of school mathematics 
children have multiple opportunities to develop and refine their expertise in 
the process of constructing a viable argument. Perhaps there are trajectories 
for learning each of the mathematical practices.
 Different mathematical practices may be related to different points along 
the child's developmental trajectory. Our interviews in this study elicited 
six of the eight CCSSM Mathematical Practices. One explanation could 
be that the mathematical practices that children employ are connected with 
greater emphasis at different points along the child's mathematical develop-
ment. Additionally, these practices may develop at different rates for differ-
ent learners. This emphasis may be similar to the emphasis of mathematics 
content outlined in the NCTM content standards (NCTM, 2000).  In this 
document, NCTM proposed that some of the mathematical content stan-
dards that students learn will be taught with increasing emphasis across the 
grade levels and some standards will be taught with decreasing emphasis 
across the grade levels. For example, in the NCTM Standards, Number & 
Operations, Measurement, and Data Analysis & Probability generally de-
crease in emphasis, and Algebra and Geometry standards generally increase 
in emphasis between Kindergarten and Grade 8. In our study we did not ob-
serve examples of two of the CCSSM Mathematical Practices: look for and 
make use of structure and look for an express regularity in repeated reason-
ing. Perhaps there is a greater emphasis on some practices over others dur-
ing different points of development, with some practices more prominently 
used by children in earlier grades and other practices used rarely by younger 
children but developing and increasing over time among older children.
Insights about What Promotes the Development of Mathematical Practices
 Mathematical tasks promote the development of mathematical practices. 
The children were not taught the mathematical practices that they used dur-
ing the interviews. Children's mathematical practices emerged and devel-



- 75 -

oped during the interviews. One explanation for this occurrence is that the 
mathematical tasks, themselves, promoted the development of children's 
mathematical practices. Perhaps when children engage in a particular type 
of mathematical task, and this task is repeated, engagement in the task helps 
the child to develop different mathematical practices that can be used across 
a variety of mathematical situations.

We know from the literature on design-based research that excellent 
well-developed tasks promote mathematics learning (Diefes-Dux, Hjalmar-
son, Miller, & Lesh, 2008). Additionally Rau, Aleven, and Rummel  (2009) 
suggest that multiple graphic representations of fractions, presented con-
secutively, can aid students' understanding of fractions, especially when 
combined with self-explanation. These examples and others point to the 
importance of presenting children with tasks that provide some cognitive 
dissonance. For example, children often have difficulty developing propor-
tional reasoning skills, particularly with discrete units (Boyer, Levine, & 
Huttenlocher, 2008). Comparing the conflicting models was more challeng-
ing, as students were simultaneously presented with continuous and discrete 
wholes. Forcing children to examine conflicting models and to talk about 
this with an interviewer prompts more generalized understandings of con-
cepts (Buschman, 2001). Perhaps excellent well-developed tasks promote 
mathematical practices.

Questioning promotes the development of mathematical practices. Dur-
ing the interviews, there were often responses provided by the children that 
could be characterized as surface answers. In these surface answers, the chil-
dren rarely employed their mathematical practices. However, when the inter-
viewer used follow-up questioning strategies, the children often employed a 
mathematical practice to respond to the interviewer and to think more deeply 
about the mathematics that was being discussed. Perhaps specific questioning 
techniques prompted mathematical practices, such as when the interviewer 
asked the children to explain something or asked the children to show the 
interviewer what they meant by a response. For example, Armstrong and No-
villis Larson (1995) found that fourth, sixth, and eighth grade students who 
participated in clinical interviews discovered mathematical ideas as they con-
structed their responses to the interview questions.

Research has shown that students sometimes react to the context in which 
the question is posed. In this study, the interviewer often suggested that 
students think of the models as cookies, cakes, or candy, and students some-
times used this language in their explanations. In other instances, students 
suggested models such as apples or chicken nuggets to share, making their 
own real-world connections. Other studies support questioning in relatable 
contexts as a way to help hold students' interest while demonstrating the 
usefulness of the mathematics concepts (Barnes & Venter, 2011; Turtiainen, 
Glignaut, Els, Laine, & Sutinen, 2009). Perhaps the right questioning pro-
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motes children to employ and develop their mathematical practices.
Specific mathematical tasks and follow-up questions may align with spe-

cific mathematical practices. During the analysis of children's interviews it 
seemed that there were particular mathematical tasks and follow-up ques-
tions that promoted some mathematical practices more than others. For ex-
ample, when children were asked to partition region models and to divide 
12 and seven counters in half, this prompted children to focus on being 
precise in their partitioning. When children were presented with the three 
conflicting empirical models in the third task, this prompted them to focus 
on constructing a viable argument. When the interviewer's question asked 
the child to explain something more clearly, this promoted greater preci-
sion. Or when the interviewer asked the child to show what the child meant, 
this prompted the child to model with mathematics.

The tasks that we chose for these interviews clearly elicited six of the 
eight CCSSM Mathematical Practices with the children in our study. For 
example, when children were asked to divide seven counters in half this 
specific task seemed to elicit the mathematical practice of making sense of 
the problem; then the interviewer's repeated follow-up questions seemed 
to elicit children to persevere in solving the problem. When the task re-
quired students to make significant attempts to understand the problem, use 
concrete objects or pictures to conceptualize and solve the problem, and 
determine if the problem and the solution makes sense, this involved self-
explanation, which is trying to make sense of a concept by forming one's 
own explanation (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Rau et al., 
2009). Perhaps types of mathematical tasks and questions are more aligned 
with the type of mathematical practice that gets developed.

Certain mathematical practices may be more difficult to develop than 
others. Perhaps there are some mathematical practices that children devel-
op easily, while other practices are only developed with a great amount of 
experience and support. For example, reasoning abstractly and quantita-
tively requires that students understand quantities and their relationships 
in a problem. They must be able to decontextualize and contextualize, un-
derstanding the meaning of the quantities and flexibly reason to represent 
their thinking about a problem. This can be difficult for students to develop, 
as Lee, Brown, and Orrill (2011) found that even teachers often struggle to 
flexibly develop and apply fraction knowledge and strategies.

Constructing viable arguments and critiquing the reasoning of others in-
volves students' abilities to justify their solutions, as well as construct and 
evaluate conjectures. Nicolaou and Pitta-Pantazi (2010) state that justifica-
tions "provide an insight into students' understanding of fractions" (p. 3). 
Throughout the interview tasks, some students struggled to mathematically 
justify their answers, even when successfully modelling the given fraction. 
The interview tasks did not require manipulating symbolic representations 
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of fractions in a decontextualized manner but some students showed de-
veloping contextualization skills. For example, one student explained a re-
sponse to one fourth of a circle in Task 1 by saying, "the bottom number is 
four; that tells me how many pieces are in the whole thing." Students also 
referred to equal or fair portions in all tasks, though explanations in tasks 
involving set models mostly focused on operational thinking using counting 
by twos or adding six and six to make twelve (Mack, 1995). Researchers 
report that whole number knowledge can be used effectively to develop 
fraction knowledge by connecting key conceptual understandings between 
the two number systems (Olive, 1999; Steffe, 1992, 2002; Steffe & Olive, 
1996, 2010). Perhaps some mathematical practices are more difficult to de-
velop and children need more help developing some of the mathematical 
practices than others.

Conclusion

Children's problem solving strategies develop in the toddler and pre-
school years and allow children to solve problems of increasing complexity 
(Clements & Sarama, 2007). These developing strategies can lead to math-
ematical practices that become polished and refined for specific purposes 
in later mathematics development. The children in this study employed six 
mathematical practices in response to our tasks. For example, students used 
their understanding of whole numbers for discrete quantity tasks for mak-
ing sense of problems. Students used both empirical evidence and analytical 
thinking to construct arguments. When modeling with mathematics, stu-
dents were able to model different representations of one-half and created a  
variety of models on their own. Students reasoned by making connections 
among the three conflicting models. Attending to precision proved difficult 
for children as they struggled to use their knowledge of dividing a circle 
or square in half and apply it to dividing a circle or square in thirds; as 
when the child recognized that the responses of a "peace sign" would not 
be precise. And children using tools strategically was evident when they 
spontaneously grabbed paper and pencil to draw an explanation or began 
moving counters to clarify their thinking to the interviewer. These results 
demonstrate that the children in this study had a foundation of mathematical 
practices that they developed from formal and informal experiences, and 
that they were able to apply these practices to the mathematical tasks in this 
study. However, our investigation has left us asking many more questions 
than when we began. Perhaps ending with a number of questions is a good 
place to begin to understand the complexity of students developing math-
ematical practices and teachers developing them in their students.
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