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Abstract
 
  In this work we explored proof schemes used by 41 middle school stu-
dents when confronted with four mathematical propositions that demanded 
verification of accuracy of statements. The students' perception of math-
ematically complete vs. convincing arguments in different mathematics 
branches was also elicited. Lastly, we considered whether the students rec-
ognized and identified advantages associated with using justification mod-
els different from their own in order to offer a theoretical account for how 
individuals' proof scheme choice might be impacted by such an exposure.

 
  In mathematics, truths are established via proofs (Balaguer, 2008; Brown, 
2008; Harel & Sowder, 2007; Jaffe & Quinn, 1993; Krantz, 2007; Lakatos, 
1976; Schoenfeld, 1994). Indeed, it is this particular emphasis on proofs 
that sets mathematics apart from all other scientific or analytical disciplines 
(Fawcett, 1995/1938). Krantz (2007) positioned this point well:

The unique feature that sets mathematics apart from other sciences, 
from philosophy, and indeed from all other forms of intellectual dis-
course, is the use of rigorous proof. It is the proof concept that makes 
the subject cohere, that gives it its timelessness, and that enables it to 
travel well.  (p. 1)

 
  Recognizing the vital role of proofs in the discipline and in school math-
ematics (Harel & Sowder, 2007), both the Principles and Standards for 
School Mathematics (NCTM, 2000) and the Common Core State Standards 



- 19 -

(Council of Chief State School Officers, 2010) place tremendous empha-
sis on the need to assist school children in developing their proving skills 
(Boero, 2007; Hanna & de Villiers, 2012; NCTM, 2000; Stylianides, 2007; 
Stylianou, Blanton, & Knuth, 2009). Historically (and currently), in the 
US, a course on Euclidean geometry has served as the main venue for the 
development of students' skills in deductive reasoning with the expecta-
tion that such skills would automatically transfer to other mathematical 
and nonmathematical areas (González & Herbst, 2006; Herbst & Brach, 
2006). This goal, however, remains unfilled. It is recognized that this failure 
might be due to the school treatment of topics in curriculum and instruc-
tion. There is evidence that in many mathematics classrooms proofs and 
the proving process are taught procedurally instead of as a conceptual tool 
for reasoning (Herbst & Brach, 2006; Reid, 2011). As a consequence, stu-
dents tend to view proof as a special "form" of producing written work (e.g 
two-column proof) instead of a viable vehicle for production of reliable 
explanations, or even means for understanding (Chazan, 1993; González & 
Herbst, 2006; Schoenfeld, 1988). Existing literature unanimously suggests 
that when evaluating arguments students seem naturally and insistently to 
prefer empirical reasoning over deductive arguments (González & Herbst, 
2006; Healy & Hoyles, 2000; Tall et al., 2012). Additionally, there is evi-
dence that an understanding of the role of mathematical proofs in estab-
lishing validity of arguments remains underdeveloped at all grade levels 
(Chazan, 1993; Chazan & Lueke, 2009; Harel & Sowder, 1998; Heinze 
& Reiss, 2009; Kuchemann & Hoyles, 2009; Mason, 2009; Waring, 2000; 
Weber, 2001; Schoenfeld, 1988). Careful epistemological analysis, through 
research, on the factors that influence students' proving schemes and ways 
in which individuals' thinking and reasoning might be evolved, is needed so 
as to facilitate the development of a Comprehensive Perspective (Harel & 
Sowder, 2007, p. 1) on learning and teaching proofs (Marrades & Guitier-
rez, 2000). Our research was designed to address this need.
  Grounding our work in Harel & Sowder's (1998) taxonomy of proof 
schemes and Balacheff's (1988) notion of epistemological beliefs as win-
dows to understanding individuals' mathematical actions, in this work we 
examined three issues. First, we elicited the proof schemes used by students 
when verifying validity of statements regarding mathematical relationships 
from four different content areas. Second, we attempted to assess whether 
students' preference for alternative arguments they were offered differed 
from those they themselves had used. Third, we studied students' notions of 
mathematical completeness and convincingness according to the relation-
ships they may have identified. Data collection and analysis was informed 
by four research questions:

1.	 What justification schemes do middle school students use when 
solving problem contexts that require proving?
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2.	 Do middle school students' justification schemes differ according 
to the mathematical content of the task?

3.	 What type of justification scheme do middle school students prefer 
when offered alternative types of validation approach to tasks?

4.	 What is the relationship, from the middle school students' per-
spective, between mathematically complete and mathematically 
convincing arguments, and how may this perspective impact their 
preference of proof schemes?

Proofs and Proof Schemes

  Proofs serve multiple purposes in mathematics. There is consensus 
among scholars of mathematics education and mathematicians that veri-
fication, justification, illumination, and systemization are key functions of 
proofs in mathematics (Bell, 1976; Harel & Sowder, 2007; Krantz, 2007). 
Verification and justification process concerns establishing the truth of 
propositions. Illumination implies that the proof itself conveys insight into 
why a proposition is true. The third function, systemization, is an attempt 
to organize the results into a deductive axiomatic system. More recently, 
de Villiers (2003) noted discovering new theorems, communicating and/or 
transmitting knowledge, and providing intellectual challenge to the author 
of the proof as additional objectives of proofs. Each of these functions is 
recognized to be crucial to school mathematics (Ball & Bass, 2003; Harel 
& Sowder, 2007).
  Despite the critical role of proofs in the discipline, there is overwhelming 
evidence of students' difficulties with producing them. Marrades and Guiti-
errez (2000) noted two specific categories of research on proofs: "descrip-
tions of the students' work when solving proof problems and descriptions of 
students' beliefs when deciding whether they are convinced by an argument 
about the truth of a statement" (p. 89). Indeed, the study of learners' proof 
schemes has a long history and is currently a main stream in didactics of 
mathematics. For instance, Bell (1976) identified empirical and deductive 
as two major modes of justification that students used when working on 
problems that demanded proving. According to his description, empirical 
justification relies on the use of examples whereas deductive justification 
relies on deduction to connect data with conclusions. Bell further cata-
logued students' answers according to the different degrees of completeness 
of checking the statement in the whole (finite).
  Balacheff (1988) coined pragmatic and conceptual as two modes of 
justification prominently used by the students he studied. Pragmatic jus-
tifications are based on the use of examples (or an actions), and concep-
tual justifications are based on abstract formulations of properties and of 
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relationships among properties. He further identified three types of prag-
matic justifications to include: naive empiricism, in which a statement to 
be proved is checked using a few (somewhat randomly chosen) examples; 
crucial experiment, in which a statement is checked in a carefully selected 
example; generic example, in which the justification is based on operations 
or transformations on an example which is selected as a characteristic repre-
sentative of a class. The category of conceptual justifications incudes thought 
experiment, in which actions are internalized and dissociated from the spe-
cific examples considered, and symbolic calculations from the statement, in 
which there is no experiment and the justification is based on the use and the 
transformation of formalized symbolic expressions (See Figure 1).

Figure 1. Proof Schemes of the Arguments in Each Problem

  Balacheff (1988) concluded that while students might experience diffi-
culty with producing proofs, they do show awareness of the necessity to 
prove using logical reasoning. Extending the research of Bell (1976) and 
Balacheff (1991), and drawing from their own empirical data, Harel & 
Sowder (1998) proposed their taxonomy of proof schemes to consist of 
three main categories, i.e. external, and analytical, each of which encom-
passes several subcategories (see Figure 2).
  In particular, external conviction proof schemes include instances where 
students determine the validity of an argument by referring to external 
sources, such as the appearance of the argument instead of its content (e.g. 
they tend to judge upon the kind of symbols used in the argument instead 
of the embedded concepts and connection of those symbols), or words in a 
textbook or told by a teacher. Empirical proof schemes, inductive or percep-
tual, include instances when a student relies on examples or mental images 
to verify the validity of an argument; the prior draws heavily on examina-
tion of cases for convincing oneself, while the latter is grounded in more 
intuitively coordinated mental procedures without realizing the impact of 
specific transformations. Lastly, analytical proof schemes rely on either 
transformational structures (operations on objects) or axiomatic modes of 
reasoning which include resting upon defined and undefined terms, postu-
lates or previously proven conjectures. Harel & Sowder also posited that 
students tend to maintain various understandings about what they are ex-
pected to do when asked to offer a proof, and these understandings might 
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be strongly impacted by personal preference or "orientations" (Schoenfeld, 
2011).
  There is a consensus that in order for students to move towards relying on 
analytical schemes when attempting to validate mathematical statements, 
they need to recognize deductive arguments as convincing statements in-
stead of merely mechanical procedures that need to be followed (Chazan, 
1993; Tall et al., 2012). Despite this shared understanding, research has con-
sistently shown that misconceptions about proofs impede students' capacity 
to recognize this critical feature (Harel & Sowder, 1998; Healy &  Hoyles, 
2000; Herbst & Brach, 2006). Recio and Godino (2001) coined the con-
struct of Personal Explanatory Argumentation Schemes (PEAS) (pg. 97) to 
explain the nature of individuals' reasoning. They characterized PEAS as 
intuitive arguments that individuals use to explain relationships as opposed 
to validating them. Highlighting the experimental, subjective nature of this 
mode of reasoning, they offered that PEAS are deeply rooted in mathe-
matical proofs as individuals first establish conjectures through personal 
schemes and intuitive procedures and then validate them using deductive 
proofs. As such, they cautioned against assuming these personal schemes as 
unimportant or primitive:

Informal proof schemes should not be considered as simply incorrect, 

Figure 2. Proof Schemes and sub schemes (Sowder & Harel, 1998)
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mistaken or deficient, but rather as facets of mathematical reasoning 
necessary to achieve and master mathematical argumentative practic-
es. The analytical arguments, which are characteristic of mathematical 
proofs, are not the sole argumentation practices used by mathemati-
cians to convince themselves about the truth of their conjectures. These 
reasoning procedures are often unfruitful, or even an obstacle, in the 
creative/discovery stages of problem solving processes, in which it is 
allowed and even necessary to implement substantial ways of argu-
mentation in particular, empirical induction and analogy. (p. 93)

  The authors concluded that it is necessary to link the different meanings 
of proof, at different teaching levels, so as to help students develop not only 
the skills but also the rationality required in applying proofs appropriately. 
Such a development demands that both the knowledge of proofs and the 
discriminative capacity to use them be nurtured in curriculum and instruc-
tion, progressively and over time.
  Success in designing instructional programs that enhance knowledge and 
capacity depends largely on the construction of a model of proving process 
that is grounded in a deep understanding of what different student popula-
tions at different stages of their mathematical development, might consider 
as proofs (Stylianides, 2007). The existing models have been built around 
thinking of upper secondary and college students' work, grounded primarily 
in proof-based courses such as geometry, linear algebra, discrete mathemat-
ics and real analysis (Harel & Sowder, 2007).
  Research studies that explain proof schemes used by middle school chil-
dren and/or their proving processes of individuals in more than one subject 
area are rare. Moreover, the existing models have been developed using a 
homogeneous sample from groups enrolled in the same course. As such, the 
students' performance could be attributed to exposure to a particular type 
of instruction or curriculum or common social practices among them. Our 
research was conceived to advance the field (Dreyfus, 2006) by including 
three novel contexts in the study. First, we investigated proof schemes of a 
group of eighth grade students. This particular population is critical since 
the grade band serves as the bridge between informal and formal levels of 
mathematical work of elementary and secondary school. Second, the par-
ticipants were drawn from 19 different middle schools across the state of 
Ohio, suggesting variety in both content and heuristics they may have been 
experiencing at the time of data collection. Third, we examined the students' 
proving processes simultaneously in four different content areas as a means 
to inspect the potential relationship between the content of a problem and 
reasoning scheme that may have been elicited by it. These are described 
more fully in the following sections.
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Method

Date Collection Instrument
  In collecting the needed data for the study we developed a Survey of 
Reasoning (Liu & Manouchehri, 2012), which examined students' skills 
in producing mathematical proofs, their ability to judge validity of alter-
native external justification methods, and their willingness to adopt par-
ticular models of justification when forming mathematical arguments. We 
designed the survey items so as to meet the contents of the theoretical indi-

Figure 3. A sample problem from the Survey of Reasonng
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cators identified by Harel and Sowder's (1998) taxonomy of proof schemes, 
as described below. Due to the fact that a measurement tool was not avail-
able, when we commenced our project we also considered, in our research, 
whether the tool we developed and used was suitable for eliciting middle 
school students' thinking in pertinent areas.

Content of the Survey
  The Survey of Reasoning consisted of four mathematics problems from 
four different branches of mathematics (i.e. number theory, geometry, prob-
ability, and algebra). Each problem consisted of several parts (See Figure 3 
for an example).
  First, the participants were presented with a proposition and asked to 
determine whether they agreed with and were sure about the accuracy and 
completeness of the statement. The options provided for them included: I 
am sure the statement is wrong; I think the statement is wrong but I am not 
sure; I am sure the statement is right; I think the statement is right but I am 
not sure; I can't decide whether the statement is right or wrong. They were 
also asked to offer an explanation for their choice and factors they consid-
ered when evaluating the statement. In the second part, four arguments, 
each embodying a different proof scheme supporting or refuting the same 
statement, were offered. The participants were asked to compare their own 
argument to those given, and to decide whether they preferred any of the op-
tional statements over their own method. Lastly, they reported if they con-
sidered each of the optional arguments as convincing and/or mathematically 
complete. We deliberately chose the terms convincing and mathematically 
complete to evaluate students' "two conceptions of proof" (Healy & Hoyles, 
2000), assuming that when judging the convincingness of an argument the 
students might tend to rely on subjective perceptions, whereas when judg-
ing the mathematical completeness they might refer to an understanding of 
existing mathematical conventions. Table 1 presents a blueprint of the types 
of proof schemes we utilized in the arguments used in each of the problems.

Tablel 1.
Proof Schemes of the Arguments in Each Problem

  We considered two major issues in the development process. First, we 
agreed that the proof schemes in Harel & Sowder's model (1998) are not 
mutually exclusive and a proof may simultaneously engage more than one 
scheme. In cases where the classification was not conclusive we catego-
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rized an argument based on our judgment of the proof scheme that was 
most crucial for development of a convincing argument. For instance, con-
sider Argument 4 in the geometry problem (see Figure 3). On the one hand, 
perceptual reasoning was involved in the argument since a connection was 
made between the ladder scenario and the image of right triangles. On the 
other hand, transformation reasoning was also involved when considering 
the movement of the ladder (hypotenuse). One could recognize the general-
ity of the argument by conceptualizing such a movement. Second, Harel 
& Sowder (1998) suggested a major difference between perceptual and 
transformational reasoning to include whether the problem solver is able 
to initiate the transformation in the argument. Regarding this identifier, we 
considered whether the movement of ladders was a common scene in real 
life and the problem solver simply referred to the scene to support his/her 
argument in the triangle problem, or the problem solver intentionally used 
the movement of the ladder to represent different shapes of right triangles. 
In this particular case, we accepted the latter and classified the argument as 
having a transformational proof scheme. We agreed that regardless of how 
carefully the proof scheme categories might be defined legitimate debates 
surrounding their borderlines may continue to persist. As a result, findings 
of the student should be considered with respect to these flexibilities.

Participants
  The sample consisted of 41 eighth grade students from 19 different urban 
middle schools across the state of Ohio. The students had agreed to par-
ticipate in a mathematics enrichment program offered through the Office of 
Minority Affairs, Young Scholars Program at the Ohio State University as 
an ongoing effort to recruit and prepare students from urban communities 
in STEM related initiative. The enrichment program was developed and 
implemented by the authors. At the time of data collection, approximately 
40% of the participants were enrolled in a course in Geometry. The remain-
ing students were enrolled in either an Algebra I course or in a course titled 
Pre-Algebra. The academic standing of the participants represented the di-
verse middle school population with one notable difference. The children 
enrolled in the enrichment program were from disadvantaged communities 
and considered first generation college attendees in case they ever chose 
to attend college. Their participation in the program was voluntary and no 
monetary compensation was offered to them. As such they served as a rep-
resentative of children enrolled in eighth grade statewide.
  The Survey of Reasoning was administered to all participants on the first 
day of the enrichment program and used as a pre-assessment tool for deter-
mining the nature of their mathematical reasoning skills. The participants 
were given 90 minutes to complete the Survey and allowed to use calcula-
tors if they were inclined to do so. It was reinforced, at the time of adminis-
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tration, that there was no right or wrong answer to any of the questions they 
were asked to answer and that the most important thing, from our stand-
point, was for them to explain their ideas.

Data Analysis Process
  Data analysis followed a three-stage process. First, using Harel and 
Sowder's (1998) taxonomy we coded the participants' responses to the first 
part of each of the survey items. We then identified both the type and the 
frequency of occurrence of a particular scheme that the participants had 
used for each of the problems and then across the four problems. Our analy-
sis focused on categorizing participants' responses according to problem 
type and the contexts used on the survey. Results of the first stage of analy-
sis were used to answer research questions 1 and 2.
  At the second level of analysis, in answering the third research ques-
tion we divided all 16 alternative arguments we had used on the Survey of 
Reasoning into two groups based on their underlying schemes. Each of the 
empirical and the analytical groups consisted of eight arguments. The proof 
schemes of students' preferred arguments were quantified in order to depict 
the potential instructional impact of the given arguments, in particular to 
identify whether the preferred arguments involved more analytical reason-
ing than those created by the participants. At the third level of analysis we 
studied whether the participants' understanding of convincing arguments 
and mathematically complete arguments were consistent with each other. In 
doing so, we assigned a students' judgment of convincingness (SJC) score of 
1 to 3 to each participant's response to the corresponding survey questions 
(e.g., see Question B2.2, Figure 3), where 1, 2, and 3  indicates not convinc-
ing, somewhat convincing, and very convincing, respectively. Similarly, we 
assigned a students' judgment of mathematical completeness (SJMC) score 
of 1 to 4 to each participant's response to the corresponding questions in the 
survey (e.g., Question B2.3, Figure 3), where a lower score indicates the ar-
gument is less mathematically complete as judged by the participant. Level 
of association between the two scores was examined to answer research 
question 4. Findings were further supported by students' explanations to 
their options  (see Figure 4 for a graphical illustration of the phases in data 
analysis).

Figure 4. Data analysis network

Student's judgment
of arguments
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Results

  In this study our goal as to document the validation processes used by 
a group of eighth grade students when determining the accuracy of math-
ematical propositions from four different content areas; to explore whether 
the reasoning schemes that the students preferred, based on examples pro-
vided for them, differed from arguments they themselves had used; and to 
trace the individuals' understanding of the roles and functions of mathe-
matical proofs. Findings regarding each of these goals are discussed below.

Students' Modes of Reasoning
  Table 2 offers a summary of the proof schemes students used and pre-
ferred when working on each of the four problems (Note: "NA" indicated 
that either students did not show any work that might contribute to solving 
the problem or the students didn't offer information that was adequate for 
the analysis). The data suggested that even in the context of the geometry 
problem where students were more likely to use analytical explanations 
than in the other problems, only 11 out of 41 students supported their con-
clusion analytically. This result implied that a majority of students relied 
heavily on reasoning with empirical and external reasoning schemes.

Table 2.
Students' Own Proof Schemes vs. Preferred Proof Schemes

  However, students' tendency to move toward analytical schemes after ex-
amining the alternative arguments was clearly observed in all four content 
areas. The number of students who preferred an analytical scheme argument 
was significantly higher than the number of students who were able to pro-
duce them. Even in the case of the number theory problem, where the shift 
was less obvious as shown in Table 2, 10 students preferred the perceptual 
approaches shown in the argument compared to their own inductive ap-
proach. This hints the notion that students did tend to recognize and endorse 
more general mathematical explanations, even if they could not produce 
them themselves. This finding compels us to propose that if learners are in-
spired by arguments they can understand and find meaningful, there is great 
potential for their transition from one mode of reasoning to others.
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Students' Preference for Argument Scheme
  Table 3 illustrate the proof schemes of the most and the least preferred 
arguments by the participants.

Table 3.
Proof Schemes of the Most and Least Preferred Arguments in Each Problem

  As the data indicated, the participants preferred inductive schemes in the 
number theory problem, while they favored the arguments with analytical 
schemes in the other three contexts. A closer inspection of data however 
revealed additional inconsistencies in the participants' choices. Among the  
15 students who preferred the axiomatic proof of the geometry problem, 
only four considered the axiomatic proof of the number theory problem as 
very convincing, and only three of these four individuals chose this proof as 
their favorite option in the number theory problem. Of the 17 students who 
preferred the axiomatic proof of the algebra problem, only eight believed 
the axiomatic proof in the geometry problem was very convincing, and only 
five of the eight chose axiomatic proof as their favorite argument in the 
geometry problem. Of the 15 students who preferred the inductive proof 
in the number theory problem, only four considered this scheme proof  in 
the geometry problem as very convincing, and only two of the four chose it 
as their favorite option in that context. This finding agreed with results of 
previous studies that suggested that the idea of proof and proving develops 
locally in a specific context instead of globally (Reid, 2011).
  Comparing the reasoning schemes that students used across the four 
problems, significant differences were also detected among choices they 
had made. This difference was most prominent when comparing the partici-
pants' responses to the number theory problem with the ones they produced 
on the other three tasks. In particular, only two students adopted analytical 
approaches in the number theory problems, while about 10 students exhib-
ited analytical reasoning in each of the other problems. This trend suggested 
that the transfer of reasoning skills from geometry to other mathematical 
fields, as expected by curriculum design, may not be automatic. That is, 
students may find it unnecessary to use analytical tools for proving state-
ments outside the subject area of geometry and persist on relying on other 
schemes when reasoning accuracy of statements in different content areas.
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Shifts in Preference: Understanding the Rationale for Choice
  To better understand the motive behind the shift in the students' prefer-
ences, we searched for any potential relationships that may have existed 
between the participants' judgment of convincing arguments and mathemat-
ically complete arguments. Furthermore, we examined whether students 
considered arguments with analytical proof schemes to be more convincing 
or mathematically complete than those with empirical proof schemes.
  Preferred vs. convincing arguments. In conducting the analysis, we first  
examined whether the participants' preferred arguments were also convinc-
ing to them. Each participant offered a SJC score for each preferred argu-
ment. These preferred arguments were rated an average SJC score of 2.94 
out of 3. This high score was not surprising; it seemed natural that students 
would prefer arguments that were convincing to them  (Balacheff, 1991; 
Recio & Godino, 2001). Nonetheless, it was noted that in 10 cases students 
had stated that their preferred arguments were only somewhat convincing 
to them (the 10 cases were detected among seven students and three of 
these students each contributed two cases), implying that students did not 
always favour arguments that they found convincing. The explanations that 
the students provided confirmed that their choices were neither randomly 
nor carelessly made (Recio & Godino, 2001). An illustrative example of 
the tacit thinking behind the students' choices is presented in Figure 5. Note 
that in this explanation the participant clearly indicated that while she "liked 
Argument 1 the best" she had rated it as somewhat convincing. Although the 
student had ranked Arguments 2 and 4 as very convincing, she still favored 
Argument 1. Indeed, she identified this same argument as least mathemati-
cally complete. Such deliberate selection as typical of the entire group's 
rationale for the choices they had made.
  Preferred vs. mathematically complete arguments. We further examined 
whether the participants' favorite arguments were also considered as math-
ematically complete by them. Each participant offered a SJMC score for 
each preferred argument. We calculated the average SJMC score of the ar-
guments that students chose as their favorite and found these arguments 
were rated an average SJMC score of 3.73 out of 4. This result indicated 
that a majority of the participants preferred arguments that they considered 
as mathematically complete. However, we also detected in 14 cases that 
students proposed that their preferred arguments were either the least of the 
second least mathematically complete (these 14 cases were detected among 
10 students and four of them each contributed two cases). An example of 
this type of reasoning is also depicted in Figure 5.
  The high SJC and SJMC scores for students' favorite arguments indicat-
ed consistency among what they preferred, what they considered convinc-
ing, and what they considered mathematically complete for the majority of 
participants. However, cases observed with the remainder of the subjects 
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revealed an inconsistency among their responses to the three questions. 
Such findings implied that neither the convincingness nor the mathemati-
cal completeness of an argument solely determined students' preference of 
arguments.
  Empirical vs. analytical proof schemes. Our analysis in the previous 
section concerned the participants' preferential choices of convincing and 
mathematically complete arguments presented in each problem context. In 
extending this analysis, we examined if the differences in scores could be 
attributed to the arguments' particular scheme (empirical or analytical). All 

Figure 5. An illustrative example of an eighth grader's responses to the Survey of Reasoning
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16 alternative arguments on the Survey of Reasoning were divided into two 
groups based on their underlying schemes (see Table 1 and Figure 2). The 
empirical group and the analytical group each consisted of eight arguments.
  We first computed the average SJC score for all arguments based on the 
entire sample's responses, as illustrated in Figure 6a. Data indicated that the 
participants, most prominently, considered the analytical arguments more 
convincing than the empirical arguments. This result agreed with findings 
of previous studies that posited students are aware of the limitations of the 
empirical arguments  (Healy & Hoyles, 2000). Note that when considering 
only those students who believed an argument was mathematically com-
plete, the between-group difference of SJC scores was largely reduced (see 
Figure 6b). The revised average SJC score for each argument was calcu-
lated based on the responses of those who had marked this argument as the 
most or second most mathematically complete in the follow-up question.

  Schoenfeld (1988) and Chazan (1993) previously reported that students 
in their studies remained unconvinced of validity of statements even after 
generating proofs they had considered as mathematical complete. Our find-
ings suggest a different pattern. That is, in our case, if students found an 
argument to be mathematically complete, they were likely to claim it was 
convincing as well, regardless of its reasoning scheme.
  We further examined whether the students considered analytical argu-
ments more mathematically complete. In doing so, we computed the aver-
age SJMC score for all the arguments of the entire sample, as illustrated in 
Figure 7a. As shown in the graph, the students generally considered the ar-
guments with analytical proof schemes to be more mathematically complete 
than those with empirical proof schemes. We conjecture that aside from the 
content of the argument itself, the appearance of analytical arguments might 

Figure 6. SJC Scores



- 33 -

Figure 7. 

have contributed to students' ranking as well (Harel & Sowder, 1998, 2007).
  Next, we considered whether the arguments that the students had marked 
as convincing were also characterized as mathematically complete. In con-
ducting the analysis, we computed the revised average SJMC score only 
based on data from students who considered this argument as very convinc-
ing. Results (see Figure 7b) showed that although the revised SJMC score 
increased for both groups, the students who were convinced by an analytical 
proof were still more likely to recognize the mathematical completeness 
of the corresponding proof, compared to those who were convinced by an 
empirically based proof. In other words, those students who had consid-
ered an empirically based argument as convincing did not simultaneously 
identify it as mathematically complete. While the participants worked with 
an analytical scheme proof, greater degree of consistency was observed be-
tween their judgment about the argument's convincingness and mathemati-
cal completeness. For instance, 12 students marked Argument 3 (axiomatic 
proof scheme) in the number theory problem was very convincing. Among 
the 12, 10 individuals labelled this argument as the most mathematically 
complete, and two ranked it as the second most mathematically complete. In 
the same context 14 students marked Argument 1 (inductive proof scheme) 
as very convincing, however three of them ranked it as the least of second 
least mathematically complete option. The explanation offered by one of 
the participants (see Figure 8) might shed light on this issue. As illustrated, 
she indicated that both Arguments 1 and 4 (inductive and perceptual proof 
scheme, respectively) were very convincing to her, however she marked 
them as the least and second least mathematically complete arguments, 
since neither one had matched her personal standards of simplicity and 
accessibility (Recio & Godino, 2001). When assessing the mathematical 
completeness, the student had considered appearance, form and indicators 
of the statement (Tall et al., 2012). The existence of a gap (Healy & Hoyles, 
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2000) between what was considered as convincing and what was perceived 
as mathematically complete was clearly demonstrated by our data.

Discussion and Summary

  Our findings offer that the participants in our studies adopted and deter-
mined their preferred reasoning schemes based on the concrete contexts 
with which they worked instead of following a broader uniform scheme 
when approaching tasks that elicited proving from them. This implies that 
the transfer of reasoning skills from one area (typically geometry) to other 
mathematical fields, as expected by current curriculum design, did not oc-
cur. When comparing the reasoning schemes that the students used in con-
structing their own mathematical explanations with those they preferred, 
we observed that the participants were not biased when judging their own 
methods for completeness or accuracy. Indeed, when confronted with al-
ternative argument types they exhibited a tendency to favor those that in-
volved analytical reasoning. The results suggest that a potentially produc-
tive pathway toward building children's proving capacity might be linked 
to their experiences with a wide range of mathematical contexts and not 
limited to geometry (Stylianides, 2007; Tall et al., 2012).

Figure 8. Typical explanation illustrative of the chasm
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  In this work, we also studied the relationship among the arguments that 
the students considered as convincing or mathematically complete and ways 
in which these judgements may have impacted their preference of the ar-
guments. The participants considered the analytical arguments more con-
vincing and more mathematically complete than the empirical arguments. 
Additionally, a gap was detected between what participants considered as 
convincing and those they marked as mathematically complete. In particu-
lar, participants in general considered mathematically complete arguments 
to be convincing; however, they expressed in quite a few cases that a con-
vincing argument might not be mathematically complete. The second phe-
nomenon was particularly evident when they were evaluating arguments 
with empirical proof schemes.
  Our data indicated that students did not always equate convincingness 
with mathematical completeness. Such a perspective could impede the in-
ternalization of the process and the value of mathematical proof. There-
fore, cases that illustrated an inconsistency between the students' perception 
of convincingness and mathematical completeness, though not prevailing, 
were of great concern since they might provide fertile ground for extending 
understanding of why students might have difficulties in learning proofs. 
We noticed from students' explanations that those who offered consistent 
ratings for the convincingness and mathematical completeness of an argu-
ment didn't necessarily understand the meaning of the two indicators. They 
could have simply guessed that they were expected to judge upon the same 
idea and then offer consistent responses. Therefore, the actual gap between 
the two conceptions of proof (Healy & Hoyles, 2000) could be more sig-
nificant than what was depicted by our data. Improvement of the word-
ing and setting of the survey and follow-up interviews might help better 
capture the gap, and we suggest a need to further examine the factors that 
motivate the gap. Up to this point, we observed that students offered differ-
ent reasons to judge the convincingness and mathematical completeness of 
arguments. When explaining their selection of the convincingness levels, 
the students could have considered simplicity and accessibility. When as-
sessing the mathematical completeness, the students might have focused on 
the appearance, form, and indicators. Further investigation of these reasons 
behind students' judgment would contribute to establishing an understand-
ing of factors that might encourage or impede students' perception and ap-
preciation of analytical proofs.

Reflections on the Proof Schemes Model

  Harel and Sowder's (1998) theoretical construct of proof schemes served 
as a valuable analytical tool in our study since it allowed us to detect partici-
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pants' choices and preferences for different types of arguments embedded in 
different tasks. However, our results suggest that a refinement of the model 
is needed  so to accurately link the learners' choices of proof schemes to 
the mathematical content of the tasks that elicit reasoning. Understanding 
the intricacies of such a link enables us to better understand the connec-
tion between the reasoning schemes that learners use and the mathematical 
maturity that might be exhibited in their classes. These points are further 
explained below.
  First, we found that arguments that seemingly embodied the same 
schemes elicited vastly different levels of mathematical maturity from the 
same individuals. The individuals' choices were closely linked to the topic 
in these arguments were used. Consider for instance the empirical proof 
scheme as an example, when a student checked a property for a few cases 
in a number theory problem (say the square of an even number must be di-
visible by 4) and suggested that this property would apply to all (infinitely 
many) cases, one could infer that the student might possess little awareness 
of or skills for generating formal mathematical arguments. However, if a 
student drew a triangle and demonstrated the validity of a conjecture about 
all triangles (say the formula of the sum of interior angles), this approach 
would be likely to be accepted as a valid proof to the standards of second-
ary school mathematics without asking the student to specify why the single 
triangle drawn could count for all others. In this situation it remains unclear 
whether the object that the student had chosen to work with was treated as 
a single case or a generic example (Balacheff, 1988). In presence of such 
ambiguity researchers might not be able to judge whether the generaliza-
tion of a property to a broader domain may have occurred by the individual, 
particularly if the person fails to offer an elaboration using external repre-
sentations accessible to the researchers. Indeed, it is possible that the gen-
eralization might have occurred but not expressed by the students. Even if 
the learner had offered evidence, researchers would rely on accepted con-
ventions in different mathematical areas to decide whether representational 
choice was mathematically complete.
  Second, within the same mathematical area standards for the judgment 
of reasoning schemes could still be different depending on the assumed 
premises. If a student represented an even number by "2n" and deduced 
that the square of an even number must be divisible by 4, it would usually 
be considered as a complete deductive mode of reasoning in a secondary 
mathematics classroom. However, those with an advanced algebra back-
ground could challenge this judgment and argue that such a representation 
(2n) might remain empirical. Another example could be found in the study 
of probability, where a student listed all the elements of the finite sample 
space, counted the cardinality of the event set, and obtained the probability 
of the  event by division. Should this method be considered as an empirical 
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approach? If the answer is yes, then how is this technique different from 
conducting a real experiment and claiming the answer from experimental 
results? If the answer is no, then how much more skill did it require beyond 
listing the cases one by one? What would happen if there were infinitely 
many cases so the students couldn't list them all?
  In order to answer these questions more accurately, we must be more spe-
cific about the standards for the judgment of proof schemes. On one hand, 
the standards must respect the feature and convention of mathematical top-
ics, which calls for a localization of Harel & Sowder's work to establish 
content specific models. On the other hand, the standards must respect the 
problem solver's tool-box (Reid, 2011); what learners may have taken for 
granted or perceived as needed to be achieved when confronted with  prov-
ing tasks. The absence of relevant assessment instruments that capture what 
students know at a particular point and ways that they may understand the 
goal of the task serves as a major obstacle in improving proving instruc-
tion in schools. Additionally, the community's own inclination toward either 
identifying gaps in reasoning or comparing proof reading or proof produc-
ing among novice and experts has provided little insight into learners of 
sense making process, as it pertains to proving and reasoning. Meeting the 
challenge of making mathematical proving skills accessible to all children 
may  indeed demand that researchers adopt new lenses and explore learners' 
potentials as opposed to classifying their thinking according to particular 
conventional rules.
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