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Abstract
 
  The recommendation to study statistical variation has become prevalent 
in recent curriculum documents. At the same time, research on teachers' 
knowledge of variation is in its beginning stages. This study investigated 
prospective teachers' knowledge in regard to a specific measure of statisti-
cal variation that is new to many curriculum documents: the mean abso-
lute deviation (MAD). Seventy-six prospective teachers participated in the 
study. Participants exhibited various procedural and conceptual character-
istics in their thinking about the MAD. The majority were able to success-
fully select and carry out a procedure for computing the MAD. However, 
some had difficulty dealing with procedures for absolute deviations, and 
others confused the procedure for the MAD with the procedure for a dif-
ferent descriptive statistic. Conceptually, participants offered a variety of 
interpretations of the MAD, with some demonstrating deep understanding 
of the measure and others demonstrating shallower understanding or mis-
conceptions. Those who demonstrated the strongest conceptual knowledge 
of the MAD also exhibited sound procedural understanding, suggesting that 
the two types of knowledge are intertwined in the process of fully under-
standing the measure.

  Statistical variation has become widely acknowledged as an important 
object of study for school curricula because of the role it plays in statistical 
thinking. Cobb and Moore (1997) argued that the discipline of statistics 
exists because of the "omnipresence of variability" as seen in situations 
such as variation among individuals and repeated measurements. Wild and 
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Pfannkuch (1999) expanded on the notion of the omnipresence of vari-
ability, stating, "Variation is an observable reality. It is present everywhere 
and in everything. Variability affects all aspects of life and everything we 
observe. No two manufactured items are identical, no two organisms are 
identical or react in identical ways" (p. 235). Garfield and Ben-Zvi (2008) 
argued that the study of variability should permeate statistics curricula, 
and that understanding variability is necessary for learning the concepts 
of distribution and statistical inference. Such observations about variability 
in relation to statistical thinking are reflected in its central role in various 
curriculum documents (Aliagea et al., 2005; Franklin et al., 2007; National 
Governors Association for Best Practices & Council of Chief State School 
Officers, 2010).
  An important part of  the study of statistical variation is its quantification. 
Statisticians have developed several measures to quantify the variability of 
data, such as the range, interquartile range, and standard deviation. In this 
report, I focus primarily on one particular measure: the mean absolute de-
viation (MAD). It is the mean distance between the individual data values 
in a data set and the mean of the data set. Recommendations to include the 
MAD as an object of study in middle school curricula are relatively new 
(Franklin et al., 2007, National Governors Association for Best Practices & 
Council of Chief State School Officers, 2010). A primary rationale for its in-
clusion in middle school curricula is that the MAD can serve as a precursor 
to the study of standard deviation at the secondary or college level (Kader 
& Mamer, 2008). The mathematical structure of the MAD is similar to that 
of standard deviation, but does not require calculations of squares or square 
roots. Because of this, the MAD might provide a more intuitive introduction 
to the idea of measuring the typical distance data values are from the center 
of a distribution.
  The recent inclusion of the MAD in middle school curricula raises ques-
tions about teachers' knowledge. Sanchez, da Silva, and Coutinho (2011) 
observed that research on teachers' understanding of variation is scarce. 
They identified an urgent need for further research in this area. The need to 
understand teachers' knowledge of the MAD is particularly pressing at this 
time, as many sixth and seventh-grade teachers in the U.S. are now required 
to teach it as part of the Common Core State Standards (National Governors 
Association for Best Practices & Council of Chief State School Officers, 
2010). In order to support teachers in implementing instruction related to 
the MAD, it is optimal for teacher educators and researchers to be able to 
anticipate reasoning patterns and potential difficulties teachers may have 
with the idea. The current scarcity of relevant research makes it difficult for 
them to do so. This study thus aims to fill a gap in the literature by helping 
to characterize teachers' knowledge of the MAD.
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Procedural and Conceptual Knowledge of
Mean Absolute Deviation

  One risk of introducing a new idea such as the MAD to school curricula 
is that teachers may opt to portray it in strictly procedural terms. For ex-
ample, in the U.S., mathematics instruction is often best characterized as the 
process of repeating and applying procedures of low complexity, demon-
strated by the teacher (Jacobs et al., 2006). Bakker (2004) observed a simi-
lar phenomenon in statistics classes, noting that students seemed to have 
been drilled to calculate measures such as mean, median, and mode and 
produce displays such as bar graphs without understanding how these tools 
could be profitably used in statistical analysis. He argued that well-rounded 
statistical understanding consists not only of procedural knowledge, but that  
conceptual knowledge is needed as well. Similarly, it has been argued that 
teachers need both conceptual and procedural knowledge if they are to help 
their students learn with understanding (Kilpatrick, Swafford, & Findell, 
2001; Ma, 1999).

Defining Conceptual and Procedural Knowledge
  Systematic study of teachers' conceptual and procedural knowledge re-
quires working definitions for the two knowledge types. Hiebert and Lefe-
vre  (1986) offered the following influential definitions:

Conceptual knowledge is characterized most clearly as knowledge that 
is rich in relationships. It can be thought of as a connected web of 
knowledge, a network in which the linking relationships are as promi-
nent as the discrete pieces of information. Relationships pervade the 
individual facts and propositions so that all pieces of information are 
linked to some network (p. 3).
Procedural knowledge...is made up of two distinct parts. One part is 
composed of the formal language, or symbol representation system, 
of mathematics. The other part consists of the algorithms, or rules, for 
completing mathematical tasks (p. 5).

These definitions helped provide common language for discussing the two 
types of knowledge as they came under investigation by researchers.
  Star (2005) suggested revisions to the Hiebert and Lefevre (1986) defini-
tions. Star took issue with using the descriptor "rich in relationships" only 
for conceptual knowledge. He argued that procedural knowledge in some 
instances is also rich in relationships and connections, citing examples 
of procedural thinking that call for comprehension, flexibility, and criti-
cal judgment. Star believed that using the Hiebert and Lefevre definitions 
encouraged researchers to view procedural knowledge as a lesser degree 
of knowledge rather than a distinct knowledge type. By not restricting the 
"rich in relationships" descriptor to conceptual knowledge. Star hoped to 
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encourage more research on the nature of procedural knowledge. Star be-
lieved that the issue of knowledge type and knowledge quality needed to be 
disentangled to encourage more research focusing on the nature of proce-
dural knowledge and its development.
  Baroody, Feil, and Johnson (2007) formulated a response to Star's (2005) 
reconceptualization of procedural knowledge. They agreed with Star that 
both procedural and conceptual knowledge were important objects of study, 
and that procedural knowledge should not automatically be equated with 
shallow rote knowledge. They disagreed, however, on the nature of deep 
procedural knowledge. Baroody et al. argued that deep procedural knowl-
edge comes about through connections to conceptual knowledge. Star (2007) 
responded that framing deep procedural knowledge in terms of conceptual 
knowledge once again encourages the field to view procedural knowledge 
as a lesser form of knowledge not worthy of study in its own right, stating, 
"procedural knowledge is valuable in and of itself, not solely because of its 
connections with and integration to conceptual knowledge" (p. 134). Star 
believed that carving out a distinct niche for procedural knowledge rather 
than framing it solely in terms of a secondary role to conceptual knowledge 
would encourage research foregrounding procedural knowledge.
  The present study draws upon points of agreement between Star (2005) 
and Baroody et al. (2007) in the notions of conceptual and procedural 
knowledge it employs. Specifically, it attempts to avoid entanglement of 
the issues of knowledge quality and type by allowing for the possibility 
that procedural runs on a continuum from shallow to deep, and that the 
same holds for conceptual knowledge. Both types of knowledge are consid-
ered important because of their necessity to well-developed teacher content 
knowledge (Kilpatrick et al., 2001; Ma, 1999). The question of whether 
deep procedural knowledge must be grounded in conceptual knowledge, 
a point of disagreement between Star and Baroody et al., is left to be ad-
dressed by empirical data gathered during the study. As Baroody et al. noted, 
their disagreement with Star's view is best addressed empirically. Although 
the present study does not aim to completely settle the disagreement, it can 
continue toward its resolution within the specific context of prospective 
teachers' conceptual and procedural knowledge of the MAD.

Procedural and Conceptual Knowledge for the MAD: An Example
  Given the foregoing discussion of conceptual and procedural knowledge, 
it is worthwhile to consider what each type of knowledge may look like 
within the context of the MAD. Consider the following set of scores from 
a test: 75, 82, 86, 90, 97. A procedure for computing the MAD would be as 
follows:

1.	 Compute the mean of the distribution: 
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2.	 Determine the absolute values of the deviations from the mean: 
	 |75 - 86| = 11; |82 - 86| = 4; |86 - 86| = 0; |90 - 86| = 4; |97 - 86| = 11
3.	 Compute the sum of the absolute deviations (SAD): 
	 11 + 4 + 0 + 4 + 11 = 30
4.	 Divide the SAD by the number of values in the distribution: 30 ÷ 5 = 6.

Jacobs et al. (2006) categorized problems as "high complexity" if they con-
tained two or more sub-problems and required more than four decisions 
by students. They found high complexity problems to be rare in the U.S. 
mathematics lessons they studied, "accounting for averages of 7% of the 
problems per lesson in 1995 and 6% in 1999" (p. 17). According to the 
Jacobs et al. definition, the MAD procedure is of high complexity because 
it contains of two sub-problems (computing the mean and computing the 
SAD) and requires several steps to complete. Hence, learning the procedure 
for the MAD is likely to pose a substantial challenge for students because 
of its unusually complex nature.
  As with many other procedures, it is conceivable that students could mas-
ter the procedure for computing the MAD without understanding the sig-
nificance of the measure. Mokros and Russell (1995), for example, demon-
strated that students may know the algorithm for computing the arithmetic 
mean without understanding that the mean provides a measure of the center 
or typical value in a data set. An analogous situation could occur for the 
MAD: students might master the algorithm without understanding that the 
MAD is a measure of the typical distance data values in a given distribution 
lie from the mean of the distribution. Kader and Mamer (2008) described 
another potential aspect of conceptual knowledge of the MAD. They noted 
the importance of realizing that the SAD can be sufficient for comparing 
variability in two data distributions that have the same number of values, 
but that it often breaks down when data sets have different numbers of val-
ues. The SAD might suggest more variability in a given data set simply 
because it has more values, but the MAD accounts for differences in sizes 
of data sets by dividing by the number of values in the sets.

Method

Participants
  The study participants were enrolled in my undergraduate statistics 
course for prospective PreK-8 teachers (Groth, 2012, 2013a). The course 
was designed to build participants' statistical knowledge for teaching 
(Groth, 2013b), which encompasses both subject matter knowledge and 
pedagogical content knowledge (Hill, Ball, & Schilling, 2008). The MAD 
was an important object of study during the course because it appears in the 
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Common Core State Standards for grades 6 and 7. This meant that several 
participants would be likely to teach the MAD directly to children after 
completing their teacher preparation programs. I believed that even those 
who would not directly teach it would benefit from studying it by gaining 
what Hill et al. (2008) called "horizon knowledge," that is, knowledge of 
what they were preparing children to study in later years. Data for this study 
were gathered during four different semesters that I taught the course. The 
total number of participants was 76, consisting of 67 females and 9 males. 
Participants' consent was obtained to use the work samples included in this 
report, and pseudonyms are used in place of real names in connection with 
the work samples.

Procedures
  Each semester of the course included instruction on the procedural and 
conceptual characteristics of the MAD. To introduce the idea of statistical 
spread or variability, I asked participants to use their own strategies to de-
scribe the spreads of distributions They were then asked to compare their 
strategies for measuring spread with formal measures, including range, in-
terquartile range, MAD, and standard deviation. An activity described by 
Garfield and Ben-Zvi (2008) was then used to analyze characteristics of the 
MAD in detail. In the activity, participants used horizontal bars to represent 
deviations from the means of data sets. The MAD was then portrayed as 
the average bar length. After completing the in-class activities, participants 
were assigned Kader and Mamer's (2008) teacher-oriented article on de-
scribing center and variability in distributions. The article included a dis-
cussion of computing the MAD and an explanation of why the MAD should 
be used rather than the SAD when comparing different-size groups.

Instrument
  After reading the Kader and Mamer (2008) article, participants respond-
ed to the following task:

Construct two different sets of data that have the same mean. The data 
sets should have different numbers of values. Compute the SAD and 
MAD for each set of data. Show your work. Explain what the SAD and 
MAD tell you about the sets of data.

The task was part of a set of writing prompts designed to help participants 
engage with the pedagogical content knowledge and subject matter knowl-
edge elements of assigned readings from teacher-oriented journal articles 
(see Groth, 2012 for the full set of prompts). This particular prompt was 
designed primarily to elicit participants' subject matter knowledge by ask-
ing them to demonstrate what they had learned in class and by reading 
the assigned article. The prompt allowed for demonstrating of procedural 
knowledge by asking for computations of SAD and MAD, and it allowed 
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for demonstration of conceptual knowledge by asking for interpretations of 
the two measures within the content of a particular data set.

Data Analysis
  The great degree of qualitative participant-to-participant variation ob-
served as the MAD task was completed provided the impetus to compile 
the data from each semester of the course and analyze responses carefully 
against one another. To being the formal qualitative analysis, I loaded re-
sponses for all participants into Atlas.ti (Muhr & Friese, 2004). Initially, 
open coding (Corbin & Strauss, 2008) was used to allow codes enough 
flexibility and malleability to succinctly capture the essence of the knowl-
edge displayed in the responses. Each response was tagged with descriptive 
qualitative codes to capture evident procedural and conceptual character-
istics. Once a set of codes had been developed to describe the procedural 
and conceptual characteristics of the data, codes with similar characteris-
tics were clustered into conceptual categories (Miles & Huberman, 1994). 
Initially, codes were grouped into the two board categories of "conceptual 
understanding" and "procedural understanding." As code clusters were re-
fined, it was possible to identify additional clusters within the two broad 
categories. The qualitative analysis thus resulted in a cross-case analysis 
that identified salient conceptual and procedural thinking patterns in par-
ticipants' responses.

Results

  Characteristics of participants' knowledge of the MAD are sorted into two 
categories below: procedural and conceptual. This organizational scheme is 
not meant to imply that the characteristics reported in each category are 
strictly procedural or strictly conceptual. It is often difficult to neatly sepa-
rate the two types of knowledge. Instead, the organizational scheme used 
below sorts the characteristics into categories based on which of the two 
types of knowledge they most strongly exemplify.

Procedural Knowledge
  Sixty-four of the 76 participants chose a correct procedure for calculating 
the MAD. Of these 64 participants, 11 made minor computational errors 
when carrying out the procedure (e.g., subtracting or dividing incorrectly). 
One correct procedure was to calculate the SAD and then divide it by the 
number of values in the data set, as illustrated in the Kader and Mamer 
(2008) article that had been assigned. Jenny's response, show in Figure 1, 
is illustrative.
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Another correct procedure involved identifying the value of the SAD apart 
from calculating the MAD, as illustrated in Katie's work in Figure 2.

Figure 1.
Jenny's response to the MAD task.

Figure 2.
Katie's response to the MAD task.
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Although the type of response shown in Figure 2 implicitly includes a cal-
culation of the SAD as a step in determining the MAD, it explicitly attends 
first to calculating the average of the absolute deviations. The value of the 
SAD is provided as somewhat of afterthought, likely included to satisfy the 
requirements of the stated task rather than to show an important part of the 
MAD procedure.
  Participants selecting incorrect algorithms exhibited a wide spectrum of 
thinking. Seven participants stated that the SAD is obtained by summing all 
of the values in a data set. Angie, for example, wrote  the two data sets {1, 9, 
3, 7} and {3, 12, 2, 6, 3, 1, 10, 3} along with the formula "SAD = The total 
sum of the given data." She then applied her formula to the two data sets to 
obtain a SAD  of 20 for the first and 40 for the second. A related procedural 
error was to calculate the MAD by calculating the mean of the data. All 
five of the participants making this error had also determined the SAD by 
summing the values in their data sets. The two participants who computed 
the SAD by summing the data values but then computed the MAD correctly 
were among those who computed the SAD apparently just to fulfill the re-
quirements of the task rather than identifying it as a step in computing the 
MAD. The first portion of Candace's response was illustrative:

The two sets of data that we are going to look and it and solve are: 3, 
10, 17 and -5, 15, 20...The SAD for the first set of data is thirty because 
when you add up all the numbers, the value is thirty. To calculate the 
MAD for the first set of data is you find the mean, and then subtract 
the mean number from your set of data values, finally you add up those 
numbers and divide by 3, which gives you your MAD. The MAD for 
your first set of data is 4.3.

Unlike most of the responses that over-simplified the SAD procedure to 
summing data values, Candace's response includes attention to deviation 
from the mean in computing the MAD.
  There were three participants, like Candace, who made procedural errors 
in computing the SAD and MAD while still showing evidence of taking 
deviation from the mean into account. Sally wrote that the SAD and MAD 
were sets of deviations, and did not condense the deviations to a single val-
ue. For one of her data sets, she wrote  {1, 3, 3, 3, 5}, calculated the mean of 
the data to be three, and then calculated the set of absolute deviations from 
the mean to be {2, 0, 0, 0, 2}. She identified the set of absolute deviations 
as both the MAD and the SAD of the data set. Betty's work was similar to 
Sally's in that she identified the set of absolute deviations to be the SAD, but 
different from Sally's in that Betty chose a correct procedure for computing 
the MAD. Edna was similar to Sally in that she identified the MAD as the 
set of absolute deviations, but different in that she calculated the SAD to 
be the number of points in the original data set. Although Sally, Betty, and 
Edna recognized the need to compute absolute deviations from the mean, 
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they did not consistently coordinate those computations with an algorithm 
for summarizing the absolute deviations with a single value.
  Some of the participants who did summarize typical absolute deviation 
with a single value exhibited other types of procedural errors. Annie used 
deviations rather than absolute deviations in computing the MAD. As a re-
sult, when she summed the deviations, she obtained zero and concluded that 
the MAD was zero as well. Ryan computed the SAD by counting the num-
ber of values in the data set that did not have the same value as the mean. 
Nonetheless, he computed the MAD correctly because he did not think of 
the SAD as an intermediate step in its algorithm. The importance of devia-
tion from the  mean was acknowledged in Annie's and Ryan's responses 
even through inconsistencies with the conventional algorithms for the SAD 
and/or MAD were left unresolved.
  Others whose algorithms for the SAD and MAD were incorrect appeared 
to confuse the procedures for computing SAD and MAD with algorithms 
for other measures of variability. Alice subtracted the low value from the 
high value in each of her data sets. Doing so gave her a value of 1 for the 
first data set and a value of 2 for the second. She then concluded that the 
SAD and MAD were greater for the second data set without using a correct 
algorithm for either one of them. Stephanie also focused on the high and 
low values in her data sets, but added them together rather than subtracting 
the smallest from the largest. She believed that adding these values pro-
duced the SAD, and she divided the SAD she computed by the number of 
values in each data set to compute the MAD. It appears that both Alice and 
Stephanie attempted to apply the algorithm for a different measure of vari-
ability, the range, to the computation of the SAD and MAD. The range was 
not the only measure of variability whose algorithm was misapplied. In two 
cases, participants used the algorithm for the MAD to compute the SAD. In 
another case, one participant, Laura, appeared to be trying to use the algo-
rithm for standard deviation to compute the SAD, since she squared each 
deviation from the mean, added the squares together, and then computed 
the square root of the result. The fact that range and standard deviation were 
also introduced as measures of variability in class may have contributed to 
the selection of the incorrect algorithms for SAD and MAD in such cases.

Conceptual Knowledge
  One of the main conceptual learning goals for the course in which the 
participants were enrolled was to understand that the MAD is unique among 
other measures of variability because it provides a measure of typical abso-
lute deviation from the mean. When asked to explain what the MAD tells 
about the data, 31 of the 76 participants described it in terms of a measure of 
typical or average distance from the mean. All 31 of these participants were 
also among those who had employed a correct algorithm for computing 
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the MAD. Jenny's and Katie's explanations for the meaning of the MAD, 
shown in Figures 1 and 2, are illustrative. Jenny spoke of the MAD in terms 
of average variation, and Katie described it as a typical deviation after com-
pleting the appropriate calculations to determine the absolute deviations.
  Several participants who spoke of the MAD as a measure of variation 
gave less thorough explanations of what it measures. Five stated that it mea-
sures variation from the mean without specifying that it measures typical 
variation. Kelsey, for example, gave the following analysis after calculating 
the MAD for the two data sets she had invented:

The MAD of the data set tells us that data set 1's data points deviate 
further from the mean than data set 2's data points. The data is data set 
1 is more spread out than data set 2's data.

Another ten participants spoke of the MAD only as a measure of variation 
without mentioning variation from the mean at all. Deborah, for example, 
stated, "The SADs and MADs show you how much variability there is in 
a data set. The higher number the SAD and MAD are the more variability 
there is." One of the participants who did not attend to variation from the 
mean, Patricia, also used categorical data for one of her invented data sets 
and attempted to compute its MAD and SAD by using category frequencies. 
Patricia's other data set, however, consisted of quantitative data for which 
she correctly calculated the MAD. All but one of the 15 respondents who 
spoke of the MAD as a measure of variation in these less precise ways used 
a correct algorithm to determine the MAD.  The only one of the 15 who did 
not select a correct algorithm at some point was Edna, who believed the 
MAD to be a set of absolute deviations rather than a single value. Although 
such responses were correct in characterizing the MAD as a measure of 
variation, they did not have the same conceptual depth as those specifically 
identifying the MAD as a measure of typical distance from the mean.
  Another of the conceptual learning goals for the course was to understand 
that the MAD is more useful than the SAD when comparing groups that are 
not the same size. Only six of the participants mentioned this conceptual 
characteristic of the MAD in responding to the task. Jenna was among these 
six students, and her work is shown in Figure 3. After computing the SAD 
for each data set she invented, she concluded that the set with more values 
had more variation. However, after computing the MAD, she realized that 
the MAD accounts for different-sized groups and changed her explanation 
accordingly, stating at the end of her response, "Obviously the set with more 
values will have the greater sum of differences. The MAD makes up for 
this difference." Part of the reason for the lack of attention to the MAD's 
usefulness for comparing unequal groups appears to be that when 29 of the 
participants invented their data sets for the task, they made the data sets the 
same size, even through the task asked for data sets of different sizes. Mak-
ing the data sets have the same number of values took away an opportunity 
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to reflect on the relative usefulness of the SAD and MAD for comparing 
different-size groups.

  Not all participants who invented two data sets of different sizes, how-
ever, had strong conceptual explanations of the  relationship between the 
MAD and SAD. Four participants expressed the belief that the data set with 
the larger SAD automatically has more variation. An example of this is 
shown in Tim's work in Figure 4.

Figure 3.
Jenna's response to the MAD task.

Figure 4.
Tim's response to the MAD task.

After computing the SADs for his two invented data sets to be the same, 
Tim concluded they had the same amount of variability because the SADs 
were the same. Then, after computing a lower MAD for the data set with 
more data values, he stated that the data values in that set differed less from 
the mean on average. This seemingly created a conflict between his inter-
pretations of the meaning of the SAD and MAD, but he left the conflict un-
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resolved. Tim's response stands in contrast to that of Jenna (Figure 3), who 
ultimately recognized that the MAD is better suited to compare variability 
when dealing with data sets of different sizes.
  Some additional aspects of the relationship between the MAD and SAD 
proved to be difficult for participants to construct. One participant, Diane, 
computed the MAD using the algorithm for the median, computed the SAD 
with the algorithm for the MAD, and then wrote, "The MAD tells the me-
dian and the SAD is the average of how far away each point is from the me-
dian." Two participants said that if the SAD is larger in a data set, the MAD 
will be larger as well. Both of these participants created data sets with the 
same numbers of values and computed the MAD and SAD correctly, so this 
perceived relationship between the MAD and SAD held for the examples 
they had invented. The did not think beyond their examples, however, to 
test the viability of the generalization they had made. Another seven partici-
pants made no conceptual distinction between the MAD and SAD when in-
terpreting them. One of these participants was Alice, who used an incorrect 
algorithm for the MAD. After computing the SAD by subtracting the lowest 
value in each set from the highest, and then dividing the difference by two 
to compute the MAD, she concluded, "The MAD tells me that data set B is 
more spread out from the mean, and therefore more spread in general. The 
SAD shows me the same, data set B is more spread." Some of those mak-
ing no distinction between MAD and SAD had used correct algorithms to 
compute them. Marcy, for example, correctly computed the measures but 
then made no distinction in her interpretations of them, stating, "The SAD 
and MAD are ways to assess the degree of variation in data from the mean."
  The meanings of MAD and SAD were also occasionally confused with 
meanings of other descriptive statistics. Both Diane and Annie interpreted 
the MAD to have the same properties as the median. Both also used in-
correct algorithms for the MAD. As mentioned earlier, Diane simply used 
the algorithm for the median to compute the MAD. Annie used deviations 
rather than absolute deviations to compute it, and hence computed a MAD 
of zero. To interpret the zero value for the MAD, Annie stated, "Since the 
mean average deviation [sic] is 0, it means that about half of the numbers 
in the data set were above the mean and about half were below it." Another 
participant, Nancy, computed the MAD and SAD correctly but then made 
an incorrect generalization from the results of her computation in interpret-
ing the measures. She stated, "Although the data sets are very different, the 
average deviations from the means are very similar. The same mean in the 
data set allowed for the MADs to be similar although the SADs themselves 
were twice the difference." Nancy's interpretation suggested that data sets 
with similar means tend to have similar MADs as well, rather than focusing 
on the MAD as a measure of average distance between the points in the data 
set and its mean.
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Discussion

  Figure 5 is a diagram summarizing common pathways participants took 
in solving the MAD task. Each node on the left side of the diagram rep-
resents a procedural knowledge characteristic, and each node on the right 
represents a conceptual knowledge characteristic. Procedural knowledge 
nodes show both correct and incorrect algorithms employed in responding 
to the first portion of the task. Conceptual knowledge nodes show degrees 
of conceptual understanding as well as misconceptions exhibited when par-
ticipants were asked to interpret the meaning of MAD and SAD in the sec-
ond portion of the task. The three conceptual knowledge nodes at the top of 
the right column suggest the possibility of deep conceptual knowledge of 
MAD (i.e., interpreting it as an indicator of typical distance from the mean) 
as well as shallower conceptual knowledge (i.e., describing the MAD as 

Figure 5.
Common pathways taken in solving the MAD task.
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a more generic measure of variation). The arrows between the procedural 
and conceptual knowledge nodes represent pathways taken by participants 
in responding to the task. The thickness of each arrow roughly represents 
the relative frequency with which the indicated pathway was taken by par-
ticipants
  One salient feature of Figure 5 is that the most heavily traveled path 
taken in responding to the task was to use a correct algorithm for the MAD 
and then to exhibit strong conceptual understanding in interpreting it (31 
of the 76 participants). Furthermore, the only participants exhibiting strong 
conceptual knowledge of the MAD were those who had first used a correct 
algorithm to compute it. Fourteen others who had selected correct algo-
rithms exhibited lesser degrees of conceptual understanding, but at least 
did not show signs of outright misconceptions about the meaning of the 
MAD (although some did not identify the MAD as being more useful than 
SAD when comparing different-size groups). Those who did select incor-
rect algorithms were generally those who misinterpreted the meaning of the 
statistic (the one exception to this pattern was Edna's response, as described 
earlier). These data add a dimension to the discussion about the relationship 
between conceptual knowledge and procedural knowledge taken up by Star 
(2005) and Baroody et al. (2007). Star and Baroody et al. debated the ques-
tion of whether deep procedural knowledge must be grounded in conceptual 
knowledge. The data from the present study suggest a different, but related 
question: In the case of the MAD, is strong conceptual knowledge neces-
sarily grounded in strong procedural knowledge? If so, this provides strong 
support for Star's contention that more research foregrounding procedural 
knowledge is necessary.
  To address the question of the relationship between conceptual and pro-
cedural knowledge in the case of the MAD, it can be helpful to re-examine 
the algorithm for the MAD in addition to the empirical data that have been 
generated. The MAD algorithm draws attention to the computation of the 
mean of the distribution as well as the distances of data points from the 
mean. These computations may provide significant cues about the mean-
ing of the MAD, as past research has shown that it is often not natural for 
students to think of statistical variation in terms of distance from the mean 
(delMas & Liu, 2005). At the same time, a degree of conceptual understand-
ing is required in thinking of the mean as a measure of center and thinking 
of subtraction and absolute value as measuring distances. The MAD algo-
rithm then directs students to compute the arithmetic mean of the distances 
from the mean of the distribution, prompting students toward understanding 
the MAD as a one-number summary of variation in the distribution. Con-
ceptual knowledge again plays a supporting role in this step of interpreta-
tion, as students must understand the mean as a measure of typical value to 
appreciate the MAD as the typical distance from the mean. Hence, it seems 
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that conceptual knowledge and procedural knowledge are intertwined in 
understanding the MAD much in the manner described by Kilpatrick et al.  
(2001). Nonetheless, it is impossible to interpret the meaning of the unusu-
ally complex procedure for the MAD if one is not familiar with the proce-
dure itself, which would seem to explain why those who most successfully 
interpreted it in this study had also first demonstrated the ability to execute 
the procedure.
  It should be noted that an argument for the importance of procedural 
knowledge in attaining conceptual knowledge of the MAD does not im-
mediately imply that instruction should consist of practice with procedures 
before conceptually-oriented problems are posed. The failure of such a 
teaching pattern to build students' understanding has been well-documented 
(Mack, 1990; Pesek & Kirshner, 2000; Wearne & Hiebert, 1988). A more 
plausible implication is that it is worthwhile to help students unpack the 
unusually complex procedural structure of the MAD while also attending 
to the conceptual subtleties involved in interpreting it. This sort of careful 
analysis of the MAD algorithm could provide a strong basis for helping 
students develop the ability to interpret the conceptual meaning of the mea-
sure. If the algorithm is examined in this manner rather than treated merely 
as a means to the end of computing a "correct" answer, then studying the 
algorithm may provide a basis for developing conceptual understanding, 
since the algorithm contains a great deal of information about the meaning 
of the measure.

Conclusion

  The present study begins to fill the void in the literature in the area of 
teachers' understanding of the MAD. The results reported should help other 
teacher educators anticipate some of the patterns of thinking they will en-
counter among the prospective teachers they serve. Additionally, the results 
may help predict patterns of thinking likely to be present among children, 
as it has been observed that teachers' knowledge of statistics is often not 
much different from that of their students (Groth & Bergner, 2006; Jacobbe 
& Horton, 2010; Leavy, 2006). The similarity between teacher and student 
knowledge of statistics is likely to be amplified even more in the case of the 
MAD, as it is simultaneously a new object of study for both teachers and 
students in many school contexts. As we chart instructional pathways for 
helping students and teachers attain conceptual understanding of the MAD, 
the importance of procedural knowledge of the MAD should not be over-
looked. Procedural knowledge and conceptual knowledge are deeply inter-
twined in the case of the MAD, and procedural knowledge may ultimately 
provide a basis for deep conceptual understanding of the MAD.



- 67 -

References

Aliaga, M., Cobb, G., Cuff, C., Garfield, J., Gould, R., Lock, R., et al 
(2005). Guidelines for assessment and instruction in statistics educa-
tion (GAISE): College report. Retrieved from http://www.amstat.org/
education/gaise

Bakker, A. (2004). Reasoning about shape as a pattern in variability. Sta-
tistics Education Research Journal, 3(2), 64-83. Retrieved from http://
www.stat.auckland.ac.nz/~iase/serj/SERJ3%282%29_Bakker.pdf

Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). An alternative reconcep-
tualization of procedural and conceptual knowledge. Journal for Re-
search in Mathematics Education, 38, 115-131.

Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. 
American Mathematical Monthly, 104, 801-823.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research (3rd ed.). 
Thousand Oaks, CA: Sage.

delMas, R., & Liu, Y. (2005). Exploring students' conceptions of the stan-
dard deviation. Statistics Education Research Journal, 4(1), 55-82.

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & 
Scheaffer, R. (2007). Guidelines for assessment and instruction in sta-
tistics education (GAISE) report. Alexandria, VA: American Statistical 
Association.

Garfield, J. B., & Ben-Zvi, D. (2008). Developing students' statistical reason-
ing: Connecting research and teaching practice. New York: Springer.

Groth, R. E. (2012). The role of writing prompts in a statistical knowledge 
for teaching course. Mathematics Teacher Educator, 1,23-40.

Groth, R. E. (2013a). A day in the life of a statistical knowledge for teaching 
course. Teaching Statistics, 35(1), 37-42.

Groth, R. E. (2013b). Characterizing key developmental understandings 
and pedagogically powerful ideas within a statistical knowledge for 
teaching framework. Mathematical Thinking and Learning

Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers' con-
ceptual and procedural knowledge of mean, median, and mode. Math-
ematical Thinking and Learning, 8, 37-63.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in 
mathematics: An  introductory analysis. In J. Hiebert (Ed.), Conceptual 
and procedural knowledge: The case of mathematics (pp. 1-28). Hills-
dale, NJ: Erlbaum.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical 
content knowledge: Conceptualizing and measuring teachers' topic-
specific knowledge of students. Journal for Research in Mathematics 
Education, 39, 372-200.

Jacobbe, T., & Horton, R. M. (2010). Elementary school teachers' com-



- 68 -

prehension of data displays. Statistics Education Research Journal, 
9(1), 27-45. Retrieved from http://www.stat.auckland.ac.nz/~iase/serj/
SERJ9%281&29_Jacobbe_Horton.pdf

Jacobs, J. K., Hiebert, J., Givvin, K., Hollingsworth, H., Garnier, H., & 
Wearne, D. (2006). Does eighth-grade teaching in the United States 
align with the NCTM Standards? Results from the TIMSS 1995 and 
1999 video studies. Journal for Research in Mathematics Education, 
37, 5-32.

Kader, G., & Mamer, J. (2008). Statistics in the middle grades: Understand-
ing center and spread. Mathematics Teaching in the Middle School, 14, 
38-43.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Help-
ing children learn mathematics. Washington, DC: National Academy 
Press.

Leavy, A. M. (2006). Using data comparison to support a focus on dis-
tribution: Examining preservice teachers' understandings of distribu-
tion when engaged in statistical inquiry. Statistics Education Research 
Journal, 5(2), 89-114. Retrieved from http://www.stat.auckland.
ac.nz/~iase/serj/SERJ5(2)_Leavy.pdf

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, 
NJ: Erlbaum.

Mack, N. K. (1990). Learning fractions with understanding: Building on 
informal knowledge. Journal for Research in Mathematics Education, 
21, 16-32.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd 
ed.). Thousand Oaks, CA: Sage.

Mokros, J., & Russell, S. J. (1995). Children's concepts of average and rep-
resentativeness. Journal for Research in Mathematics Education, 26, 
20-39.

Muhr, T., & Friese, S. (2004). User's Manual for ATLAS.ti 5.0. Berlin: AT-
LAS.ti Scientific Software Development GmbH.

National Governors Association for Best Practices & Council of Chief State 
School Officers. (2010). Common core state standards for mathemat-
ics. Retrieved from http://www.corestandards.org/

Pesek, D. D., & Kirshner, D.  (2000). Interference of instrumental instruc-
tion in subsequent relational learning. Journal for Research in Math-
ematics Education, 31, 525-540.

Sánchez, E., da Silva, C., & Coutinho, C. (2011). Teachers' understanding 
of variation. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching 
statistics in school mathematics − Challenges for teaching and teacher 
education (pp. 211-221). Dordrecht: Springer.

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for 
Research in Mathematics Education, 36, 404-411.



- 69 -

Star, J. R. (2007). Foregrounding procedural knowledge. Journal for Re-
search in Mathematics Education, 38, 132-135.

Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful 
mathematics instruction: Testing a local theory using decimal numbers. 
Journal for Research in Mathematics Education, 19, 371-384.

Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical in-
quiry. International Statistical Review, 67, 223-265.




