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	 There is a need for research in STEM (science, technology, engineer-
ing, and mathematics) teacher education that addresses the challenge 
of building teachers’ pedagogical skills in fostering the development of 
mathematical reasoning in students. The Common Core State Standards 
for Mathematics provide teachers with guidance on how to promote math-
ematical practices that emphasize reasoning and justification through 
problem solving and that encourage an exploration of viable strategies, 
through mathematical modeling and facilitating communication in the 
classroom, to critique mathematical arguments (National Governors 
Association, 2010). For many teachers, these kinds of mathematical 
practices may not be what they experienced as learners, and, therefore, 
it is not clear to them how to engage their students in ways that enact 
the new Standards of Mathematical Practices.
	 As we and others have shown, digital video can be an excellent 
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resource for improving teachers’ skills at attending to students’ math-
ematical reasoning (Borko, Jacobs, Eiteljorg, & Pittman, 2008; Derry, 
Hmelo-Silver, Nagarajan, Chernobilsky, & Beitzel, 2006; Sherin & Han, 
2004; Van Es, 2009; Zhang, Lundeberg, Koehler, & Eberhardt, 2011). 
Video can show the complexity of classroom practice and make student 
and teacher thinking visible (Brown, 1992; Miller & Zhou, 2007). Part 
of what makes video so compelling is the degree of complexity that it 
can convey. It also can provide opportunities for teacher professional 
development by encouraging teachers to focus on teaching and learn-
ing in ways that they would not be able during classroom instructional 
time and by providing virtual experiences that allow detailed studies 
of student thinking (Borko et al., 2008; Miller & Zhou, 2007; Palius & 
Maher, 2011). Several researchers have argued that video can provide 
a context for productive discussion and reasoning about teaching and 
learning (e.g., Borko et al., 2008; Zhang et al., 2011). Derry et al. (2006) 
argue that one of the reasons for the potentially powerful effects of video 
is that it provides opportunities to make connections between theoreti-
cal ideas and real-world practice. A range of pedagogical approaches for 
using video for learning includes lesson study, video clubs, problem-solv-
ing cycles, and problem-based learning (e.g., Borko et al., 2008; Maher, 
Landis, & Palius, 2010; Zhang et al., 2011). 
	 Why, then, has there been relatively little change in instruction that 
fails to recognize the power of student reasoning? One reason may be 
the lack of awareness of the existence of videos of children engaged in 
sophisticated reasoning for use in teacher education. We begin to ex-
plore the question by first examining teacher knowledge about student 
reasoning. Opportunities to study children’s doing and talking about 
mathematics and providing convincing arguments for their solutions 
to problems might not typically be accessible to pre-service teachers or 
to many in-service teachers whose approach to instruction misses op-
portunities to observe how children learn and do mathematics. Video, 
however, holds the promise of providing a window into alternative class-
room settings in which communication, collaboration, and the sharing 
of ideas are the norm. The use of video clips of children thoughtfully 
engaged in doing mathematics, thus, offers a new lens through which to 
view student learning and brings forth a question that guides our work: 
Does teacher study of certain videos improve their ability to recognize 
the variety of forms of reasoning used by the children?
	 We have been conducting research in teacher education using the 
problem-solving tasks and videos from prior long-term research on the 
development of mathematical reasoning in students. This work is part 
of the Video Mosaic Collaborative, which also makes videos, tasks, and 
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related resources available via the Internet (www.videomosaic.org). We 
report the results of quasi-experimental studies conducted over three 
years with pre- and in-service teachers. The underlying hypothesis was 
that a particular video collection can serve as a pedagogical tool for deep-
ening teachers’ awareness of how students’ mathematical reasoning can 
emerge naturally through problem solving when appropriate conditions 
have been established in the learning environment (Maher, 2008). This 
hypothesis is premised on the notion that teachers’ ability to recognize 
children’s reasoning is likely essential for tackling the bigger challenge 
of subsequent change in teaching practice. Thus, we start to address 
that challenge by investigating our hypothesis about the pedagogical 
value of certain videos.

The Video Mosaic Collaborative (VMC)

	 A quarter-century of research on the development of mathemati-
cal ideas and reasoning has yielded a video collection that features 
students engaged in mathematical problem solving across multiple 
content strands in classroom and informal settings (Maher, 2009; Maher 
& Martino, 1996; Mueller & Maher, 2009). The videos are an outcome 
of research that followed the same students over time and that shows 
their making sense of problems and persevering in solving them. The 
students in the videos use appropriate tools and construct personally 
meaningful representations that support them in reasoning abstractly 
and quantitatively (Maher, Powell, & Uptegrove, 2010). The videos also 
illustrate how the researcher, in the role of classroom teacher, facilitated 
interactions among students who worked in small groups, as well as in 
whole-class discussions, in ways that supported students’ articulation of 
mathematical arguments and consideration of whether those arguments 
were convincing as justification for solutions to problem tasks. Multiple 
cameras were used to capture the talk and inscriptions that children 
produced while working on cognitively challenging, yet accessible, tasks 
that allowed them to explore mathematical ideas before receiving formal 
instruction on those topics in their regular school curriculum.
	 Well-documented examples of students’ mathematical reasoning, 
which were initially identified through research conducted by many 
scholars, have now been prepared by VMC and populate a searchable 
database, the Video Mosaic Collaborative. Of particular relevance to 
the research in teacher education reported here are the videos in the 
counting-combinatorics strand, which come from a seminal longitudinal 
study that followed the same group of students from early elementary 
grades through high school and beyond, with follow-up interviews. The 
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tasks and videos have been used in a variety of intervention designs 
with pre-service and in-service teachers at the elementary, middle, and 
secondary levels. We report on the results of the various interventions, 
through which teachers first became engaged as learners, by working 
on the tasks, finding viable arguments, considering the mathematical 
structure, and then studying videos of students’ working on the same 
tasks. The student reasoning from this strand and the collection of tasks 
have been carefully documented (Maher, Powell, & Uptegrove, 2010). 
The video collection, which includes additional content strands, can be 
found in the VMC database (Agnew, Mills, & Maher, 2010).

Theoretical Framework 

	 We ground our work in a theoretical framework that assumes that 
people learn best when actively engaged in interpreting the world (Brans-
ford, Derry, Berliner, Hamerness, & Darling-Hammond, 2005; Palincsar, 
1998). Video can help to provide a bridge that connects prior learning to 
new knowledge. Video allows teachers to have a virtual entrée into the 
world of the classroom (Sherin & Han, 2004). Because video is “not live,” 
it enables one to rewind, re-watch, review, and reflect. In this way, it 
provides teachers with opportunities for analytic thinking that live class-
room observations or clinical interviews cannot. Notably, it can provide a 
shared focal representation for professional development (Borko, Koellner, 
Jacobs, & Seago, 2011). In addition, video offers learners the opportunity 
to discern what is important in a particular situation and can provide a 
basis for comparison with their own lived experiences. In the case of the 
research reported here, video provides opportunities for teachers to see 
that learners are capable of engaging in sophisticated reasoning as they 
develop and apply their new knowledge of mathematics learning to au-
thentic contexts. The use of video in professional development encourages 
the understanding of learning “through careful observation of students 
and their work” (Bransford et al., 2005, p. 79). 
	 The interventions reported here build on the assumption that ob-
servation and analysis of student mathematical behavior can reveal 
learners’ developing knowledge and ability to reason. While we sought 
evidence that teachers can build knowledge about students’ mathematical 
reasoning from studying videos in a facilitated learning context, we also 
point to the potential for transferring what is learned through virtual 
means into attending better to students’ reasoning in live classroom 
environments.
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The Intervention

	 The design of the interventions typically was based on one of two 
models (Palius & Maher, 2011), with variations made to accommodate 
specific learning goals for the population of participants in particular 
university courses, and the interventions shared common features. 
Participants in the experimental classes worked in groups to solve 
counting problems, watched VMC videos of children who were solv-
ing the same problems, and then discussed the variations among the 
teacher and student solutions. Another common feature of interventions 
was the focus on students’ mathematical reasoning, particularly how 
students’ representations and models became tools that they could use 
in trying to express convincing arguments for their solutions. Although 
all intervention enactments used the same basic design, the duration 
of an intervention varied, and course instructors were free to adapt the 
interventions to their specific circumstances; analysis of these adapta-
tions is in progress. All experimental participants worked on the same 
core problem strand and were given a subset of the same VMC videos of 
students’ reasoning to view. In contrast, the comparison classes neither 
worked on the problems nor analyzed student arguments from videos 
as part of their course curriculum. 

Methodology

Participants
	 The participants were 177 pre- and in-service mathematics teach-
ers. The experimental group had 127 participants, and the comparison 
group had 50. The distribution of participants is shown in Table 1. 
Experimental groups included K-5 pre-service teachers, K-8 in-service 
teachers, and pre-service secondary teachers, with corresponding com-
parison groups. 
	 The K-5 pre-service teachers at a private university in New Jersey 
were in classes taught by the same instructor. These classes were se-
lected at random to be designated as experimental or comparison. The 

Table 1
Distribution of Study Participants

Participant Group	 	 	 Experimental 	 Comparison
	 	 	 	 	 	 (n = 127)	 (n = 50)

K-5 Pre-service Teachers	 	 	 47	 	 25
K-8 In-service Teachers	 	 	 54	 	 14
Pre-service Secondary Teachers	 	 26	 	 11
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experimental and comparison K-8 in-service teachers were participants 
from over 20 New Jersey school districts. The pre-service secondary 
teachers were mathematics majors in a state university in New Jersey. 
The comparison groups were drawn from teacher populations similar 
to those of the experimental groups. Four mathematics teacher educa-
tors (MTEs) led the experimental classes; three worked with in-service 
teachers, two of whom also worked with pre-service secondary teachers; 
and a fourth worked with pre-service elementary teachers. Four MTEs 
led the comparison classes, with one instructing in-service teachers, 
one instructing pre-service secondary teachers, and two instructing 
pre-service elementary teachers.

Assessments
	 We were interested in studying the extent to which the study par-
ticipants noticed children’s mathematical reasoning from a specific video 
clip, which was used in all the interventions in the counting strand and 
administered as a pre-test and post-test to both the experimental and 
comparison groups of teachers. The video clip was excerpted from a 
small group interview with four children and the lead researcher. The 
interview was conducted after the children had worked with a partner 
on the task of building towers of a particular height (e.g., 4-tall, 5-tall) 
when selecting from two different colors of Unifix cubes. Children used 
different representations and strategies and had varying ways of justi-
fying the solutions they found. Thus, the purpose of the interview was 
to give the children an opportunity to share their own ways of thinking 
and to hear about what others did to solve the problem. This video was 
useful for assessment because study participants had the opportunity 
to recognize different mathematical arguments, which they were asked 
to describe in detail in an open-ended response. Participants also were 
provided with a transcript of the video, and the assessment prompt in-
dicated that they could refer to the transcript to provide specific details 
about the children’s arguments. Note that this particular video was used 
for only for assessment purposes; it was not used by any MTEs in the 
design of an intervention for an experimental class.

Coding
	 Our research team developed a detailed rubric to code the open-ended 
responses to the video-based assessment on reasoning (see Appendix). 
Each mathematical argument was broken down into its constituent 
features. This allowed us to measure which argument features were 
identified on an individual’s pre-test and post-test and to determine 
how, if at all, what the individual noticed and described might have 
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changed over the course of the intervention. In the video, the children 
discussed the patterns that they could see from modeling, using the 
Unifix cubes, and they used those patterns to support their mathematical 
arguments for convincing one another that their solutions were valid. 
Two arguments took the form of reasoning by cases: Case I consisted 
of five different cases, and Case II, a more elegant argument, used four 
cases. The third argument used inductive reasoning. For the cases ar-
guments, the scoring rubric enabled us to code for which specific cases 
were described by study participants and, thus, whether they partially 
or completely described each of the two arguments by cases. Similarly, 
for the inductive argument, the rubric enabled us to code separately for 
the presence of its two constituent features (i.e., establishing that, with 
two colors of cubes, there are two possibilities for a tower of height one 
and that each tower then has two possible choices for the color of a cube 
to be added on for a tower of height two, and so on). 
	 To illustrate the coding, we provide examples of the written responses 
by Subject A to the pre-assessment and post-assessment. As can be seen 
below, the pre-assessment shows an incomplete description of the in-
duction argument, as it focuses exclusively on presenting a description 
of the numerical patterns mentioned by the children in the video and 
does not specify either of its constituent features. There is no mention 
at all of a cases argument. By contrast, the post-test reveals a complete 
description of the inductive argument and a complete description of the 
Case I argument. It also shows a glimmer of recognition of the Case II 
argument, as seen in the observation, “The others wanted to change her 
pattern,” yet, because what constituted that alternate case (i.e., exactly 
three towers with two blue cubes and one red cube) was not mentioned, 
it could not be coded as complete.

	 Example of Pre-assessment: Subject A 
	 One argument was to start with one cube and to see how many 
towers could be made. Then two cubes were used, and an argument was 
made that you would have four. The child manipulated the cubes and 
decided that three cubes would be eight, and then she tried to use a 
pattern—four would be 12. She followed a pattern but didn’t manipulate 
the cubes and was incorrect.
	 Another argument made was that you start with two blocks high and 
then (2 x 2) make four towers; three blocks high would be 2 x 2 x 2 = 8; four 
blocks high would be 2 x 2 x 2 x 2 = 16. This was a convincing argument.
	 By using the patterns, the students were able to check their solu-
tions. They could see that they showed all the possibilities.
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	 Example of Post-assessment: Subject A 
	 Milin and Michelle were using inductive reasoning to answer the 
tower problem. Both of them reasoned that, each time you added a block 
to the towers, you needed to multiply by 2 because there were only two 
colors. “Towers of one would be two towers; towers of two would be four 
towers because you would take the towers of one and add either a red 
or blue . . . ”
	 Stephanie proved her answers by using proof by cases. “She started 
with no blue, then one blue, then two blues stuck together, then two 
blues apart, then all blue.” Stephanie liked to show a pattern but resisted 
when the others wanted to change her pattern. She had a specific way 
that she wanted to show the towers, but she was able to convince Jeff 
that she had all possible combinations.
	 Ultimately, Jeff was convinced by Milan and Michelle. He would 
clearly state the inductive reasoning they used. All children were able 
to answer additional tower questions without actually building the 
towers.
	 “I am convinced!”

Analysis
	 Video assessment data collected from intervention contexts and 
comparison groups were scored blindly as an aggregated data set. Each 
assessment was coded by two scorers who worked independently, and we 
achieved inter-rater reliability of 90% or greater. Assessment responses 
were scored by the researchers by whether or not the study participants 
provided a complete description for each of the three argument types 
(two different cases arguments and an induction argument). The coded 
data were then analyzed. For analysis purposes, a study participant was 
reported as exhibiting growth on the post-assessment if the participant 
provided a complete description of an argument type that was not in-
cluded in the participant’s pre-assessment.

Results

Comparability of Groups
	 Although we recognize that the different groups of teachers have 
different experiences and content backgrounds, we did not know their 
knowledge of children’s reasoning, as held prior the study. Therefore, 
their pre-assessments were analyzed to determine whether experimental 
and comparison participants were comparable before the intervention. 
Table 2 presents the pre-assessment complete argument description 
rates for the various categories of study participants. Specifically, 22.8% 
of the 127 experimental participants and 24.0% of the 50 comparison 
group participants provided a complete argument description of at least 
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one student solution to the counting task. Of the 127 experimental par-
ticipants, the pre-assessment complete argument rates were 12.8% for 
the K-5 pre-service participants, 23.1% for the secondary pre-service 
participants, and 31.5% for the K-8 in-service teacher participants. The 
pre-assessment complete argument description rates were analyzed 
for the four study subgroups to determine whether experimental and 
comparison participants were comparable before the intervention. A 
contingency table analysis was performed to test the null hypothesis of 
no difference in pre-assessment complete argument description rates for 
the comparison and experimental groups. The data in Table 2 indicate 
that there were no significant differences among groups at the p < 0.05 
level (χ2 (3) = 4.97, p = 0.17). 

Combining Comparison Group Data
	 Table 3 contains the post-assessment growth rates for the three 
subgroups of comparison teachers. The subgroup growth rates varied 
from 0.00 to 0.08, with an overall mean of 0.04. That is, of the 50 par-
ticipants in the aggregate comparison group, only 4% exhibited growth 
on the post-assessment. An ANOVA found that there was no significant 

Table 2
Pre-assessment Complete Argument Descriptions

	 	 	 	 	 Complete Task Descriptions 

Pre-Assessment Participant
Category	 	 	 0	 	 1 or 2	 	 Total

Comparison	 	 	 38 (76.00%)	 12 (24.00%)	   50
Experimental	 	 	 98 (77.17%)	 29 (22.83%)	 127
K-5 Teachers, Pre-service		 41 (87.23%)	   6 (12.77%)	   47
K-8 Teachers, In-service	 	 37 (68.52%)	 17 (31.48%)	   54
Secondary Pre-service	 	 20 (67.92%)	   6 (23.08%)	   26

Overall Total	 	 	 136 (76.84%)	 42 (23.16%)	 177

Table 3
Mean Growth Estimates for the Categories of Comparison Participants

Comparison Subgroup	 n	 Mean Growth	 Lower 95%	 Upper 95% 
	 	 	 	 	 	 	 Estimate	 	 Growth C.I.	 Growth C.I.

K-5 Teachers, Pre-service	 25	 	 0.08		 	 	 0.02		 	 0.25
K-8 Teachers, In-service	 14	 	 0.00		 	 	 0.00		 	 0.22
Secondary Pre-service	 11	 	 0.00		 	 	 0.00		 	 0.26
Combined Comparison 	 50	 	 0.04		 	 	 0.01		 	 0.13
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difference among the comparison subgroups at the p < 0.05 level (F(2, 
47) = 1.02, p = 0.37). Based on the comparability of the post-assessment 
growth rates for the three comparison subgroups of participants, the 
data from all three were combined in the subsequent analysis of the 
growth rate of the three experimental subgroups of participants. 

Experimental versus Comparison Groups
	 The third column of Table 4 contains the post-assessment growth 
rates of the comparison (aggregate) and the three experimental subgroups. 
As seen in Table 4, 51.85% of the K-8 in-service experimental teachers, 
38.46% of the secondary pre-service experimental teachers, and 17.02% of 
the K-5 pre-service experimental teachers exhibited growth on the post-
assessment. This can be contrasted with 4% of the comparison teachers 
who exhibited growth. A logistic regression analysis was performed to 
test the hypothesis of no difference in growth rate of each subgroup of 
experimental teachers in contrast with that of the comparison teachers. 
The analysis indicated that the data provided evidence that the growth 
rate of each of the experimental subgroups exceeded that of the comparison 
group at a significance level that varied from 0.05 to less than 0.0001.
	 As indicated in Table 4, the results of the logistic regression analysis 
are as follows: (a) the K-8 in-service experimental participants have 25.85 
times the odds of growth compared to the comparison participants; (b) 
the secondary pre-service experimental participants have 15 times the 
odds of growth compared to the comparison teachers; and (c) the pre-

Table 4
Growth Rate of the Elementary Pre-service Experimental,
Secondary Pre-service Experimental and In-Service Experimental
versus the Comparison Group 

Study Group	  	 n	 Growth	 Odds	 Odds	 Odds	 χ2(1)	 p
	 	 	 	 	 	 Rate	 Ratioa	 Ratio	 Ratio
	 	 	 	 	 	 	 	 	 	 Lower	 Upper
	 	 	 	 	 	 	 	 	 	 95% CI	 95% CI	  	  

Comparison 		 	 50	 0.0400	 	 	 	 	
Exp. K-8 Teachers,
	 In-service 	 	 54	 0.5185	 25.85	 7.01		 168.13	 17.78	 <0.0001
Exp. Secondary
	 Pre-service 	 	 26	 0.3846	 15.00	 3.50		 104.60	 10.73	 0.001
Exp. K-5 Teachers,
	 Pre-service 	 	 47	 0.1702	  4.92	 1.15		 33.88	 3.78		 0.052

Note. a. Odds of growth of each experimental group divided by odds of growth of com-
parison group.
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service experimental participants have 4.92 times the odds of growth 
compared to the comparison participants. 
	 Table 5 provides a breakdown of the growth rates in the experimental 
group by type of argument. Overall, the K-8 in-service teachers achieved 
the highest growth rate (51.85%), followed by the pre-service secondary 
(38.46 %), and pre-service K-5 teachers (17.02 %). It should be noted 
that both the two cases and inductive argument types contributed to 
the growth rates. A complete argument description of Case Argument 1 
was the leading contributor to growth among experimental participants. 
It is interesting to note that at least 70% of the overall growth rate is 
attributed to the Case Argument 1 for each of the experimental sub-
groups. It is even more interesting to note that, while the overall growth 
rate varied among the three experimental subgroups, nearly 40% of the 
growth rate can be attributed to multiple argument type descriptions 
for each of these three subgroups of participating teachers. 

Conclusions

	 We are encouraged, based on this research, to find growth in both 
pre and in-service teachers and at both elementary and secondary levels, 
in terms of teachers’ identifying students’ reasoning from a video. This 
suggests that interventions using the VMC tasks and videos have the 
potential to help teachers to recognize student reasoning, an important 
goal in the learning and teaching of mathematics. Because the growth 
rates vary, it may be useful to explore what may account for some of the 
differences.
	 We first address the finding that the Case 1 Argument was the 
major contributor to the overall growth rate for all of the experimental 
subgroups. Each of those participants had an opportunity to work on the 
task of building towers of a specified height (i.e., 4-tall, 5-tall, … n-tall) 

Table 5
Growth Rate in Experimental Groups for Each
of the Three Arguments in the Assessment Video 

Argument Type	 	 K-8 In-service	 Secondary	 K-5 Pre-service
	 	 	 	 	 	 Pre-service

Case Argument 1	 38.9%	 	 26.9%	 	 14.9%
Case Argument 2	 13.0%	 	 19.2%	 	   4.3%
Inductive Argument	 24.1%	 	 11.5%	 	   4.3%
Multiple Arguments	 20.4%	 	 15.4%	 	   6.4%

Overall	 	 	 51.85%	 	 38.46%	 	 17.02%
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when selecting from two colors. The task calls for providing a convincing 
argument that all possible towers have been found, which requires using 
some kind of pattern to organize the solution. The use of cases tends to 
arise naturally in the reorganization of data from patterns. The assess-
ment video features a student, Stephanie, who argues strongly for her 
particular organization of cases, namely, the Case 1 Argument. Although 
other students in the video question Stephanie about her organization 
and suggest a more elegant organization, namely, the Case 2 Argument, 
this was not described by as many participants. However, the secondary 
pre-service teachers provided this observation in their response most 
frequently, followed by the in-service teachers. The explanation of an 
inductive argument offered by students in the video was not articulated 
as clearly as was the Case 1 Argument and, thus, required more attentive 
listening to make sense of what the students were trying to say, as they 
elaborated on the pattern that they noticed and why it worked, to explain 
the doubling of the number of towers as their height increased by one. 
We suspect that the in-service teachers’ greater experience in listening to 
children express their mathematical ideas contributed to that subgroup 
of experimental participants’ having a higher growth rate.
	 It is notable that, consistently, the in-service teachers performed 
better. We argue that this occurred, perhaps, due to the particular model 
used in the in-service intervention (Maher, Landis, & Palius, 2010); this 
model enabled the teachers to carry out the tasks with their own students 
and to study the differences in arguments posed by their students. This 
direct feedback was not available to the pre-service teachers, who, as 
novices, have little or no opportunity to work directly with students. The 
better performance by in-service teachers leads us to conjecture that 
the demonstrated ability to understand and explain student reasoning 
via virtual means could lead to an increased capacity to do so in the 
classroom. This is a worthwhile area for future research.
	 The instances of the higher growth rate for the secondary pre-service 
teachers might be explained, in part, by their stronger mathematical 
backgrounds. For example, they out-performed the in-service teachers in 
description of the Case 2 Argument due to their paying greater attention 
to the inelegance of the Case 1 Argument. Not surprisingly, their growth 
rates were higher for all arguments than for those of the elementary 
pre-service teachers. Yet, it is interesting to note that a background as a 
mathematics major was not sufficient to enable the teacher to recognize 
children’s emergent reasoning. Even secondary pre-service teachers had 
room to grow from pre- to post-assessment and improved in recognizing 
more detail in the children’s arguments, even though their intervention 
was of the shortest duration. 
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	 More work needs to be done at the elementary level. Our findings 
show that challenges have been identified (e.g., Ball, Hill, & Bass, 2005) 
and that other researchers have explored ameliorating these challenges 
through the use of video case studies and focused discussions (Borko et 
al., 2008; Llinares & Valls, 2009). With regard to fostering pre-service 
elementary teachers’ recognition of children’s mathematical reasoning, 
it may turn out that working with students as part of the intervention 
could have a substantial payoff. Future research could explore value 
of models that provide opportunities to move from theory and knowl-
edge into direct practice. Perhaps such research could be accomplished 
through small teaching experiments conducted by pre-service teachers 
with students, using the tasks and videos as tools to design interventions 
and study the developing reasoning of the students in both informal and 
formal settings. Further work also could follow some of these pre-service 
teachers into their student teaching practicum to look for sustained ef-
fects that are visible only on a long-term basis. Another worthwhile line 
of research is to investigate the varied details of an intervention (e.g., 
number of tasks, amounts of time spent on face-to-face/online activities, 
individual/class viewing) by instructors as a means to shed more light on 
what underlies the differences in growth rate among treatment groups. 
This work is currently in progress, yet some implications of the research 
presented here are already apparent. 
	 The analysis of the assessment data from interventions in the count-
ing strand, which showed growth rates that range from 17% to 52%, 
as contrasted with 4% for the combined comparison groups, provide 
evidence that these interventions can be effective in helping teachers 
to learn to attend to students’ mathematical reasoning. Further, despite 
the small sample size, we found differences between experimental and 
comparison groups. The positive results from our design research stud-
ies contribute to the literature on mathematics teacher education and 
professional development. That the strongest growth was found among 
the in-service teachers points to the value of an intervention model that 
includes classroom-based task implementation in addition to teachers’ 
problem solving and studying videos of students engaged in solving 
those same tasks. Although our model has activities also used in other 
approaches to professional development, such as problem-solving cycles 
(Koellner et al., 2007), the sequence of activities and the video resources 
used are different. 
	 The VMC videos feature a researcher in the role of a classroom 
teacher who is an expert in facilitating classroom discourse among 
students engaged in cognitively challenging tasks (Palius & Maher, 
2011). Studying these videos, after working on the tasks themselves 
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but before doing classroom implementation, may be particularly use-
ful for teachers who are learning how to align their practices with the 
Common Core State Standards related to mathematical content and 
practices. The VMC videos show students engaged in making sense of 
problems as well as how the teacher fosters the norm of sense making 
in the classroom. These videos also show how students attend to struc-
ture and make use of it in their reasoning as well as how the teacher 
engages students in mathematical discussions to construct arguments 
and critique the reasoning of others. Perhaps of greatest importance 
to mathematics teacher educators is that the resources of the VMC, 
which include statements of problem-solving tasks as well as videos, are 
openly accessible (www.videomosaic.org) and can be utilized broadly in 
courses and professional development programs. Looking more broadly 
at STEM education, the resources, models, and tools that have emerged 
from the VMC research, along with the promising findings from their 
applications to teacher education, give further support to the medium 
of video for use by teacher educators to deepen teachers’ understanding 
of standards-based practices. 

Note
	 The Video Mosaic Collaborative is a research and development project spon-
sored by the National Science Foundation (Award DRL-0822204). We gratefully 
acknowledge the support of the National Science Foundation and note that the 
views expressed in this paper are those of the authors and not necessarily those 
of the NSF.
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Appendix

VMC Studies: Counting Video Assessment Scoring Rubric
Scoring Holistically
	 Study participants watch a video clip from the “Gang of Four” interview with 
the researcher and four 4th graders: Milin, Michelle, Jeff, and Stephanie. In an 
open-ended format, participants respond to a prompt that asks them to describe 
as completely as they can: (1) each example of reasoning that a child puts forth; 
(2) whether or not the reasoning forms a valid argument; (3) whether or not the 
argument is convincing; and (4) why or why not they are convinced. They are 
asked to provide evidence from the interview to support any claims that they 
make, and they are provided with copy of transcript for the video clip.
	 Scoring of an assessment begins by the researchers’ reading the participant’s 
response in its entirety to get a sense of its scope. Then it is reviewed more care-
fully to look for written evidence that supports scoring of particular rubric items. 
Care is taken due to the participant’s being free to express his or her response 
in any desired organization within the open-ended response format. The entire 
response is thus considered, as a participant may respond to one part of the 
assessment instructions in detail and not repeat this detail in response to the 
other parts. The scoring focus is on mathematical reasoning, with less importance 
on the language used to express that reasoning. For instance, a sophisticated 
response may present the name of an argument type and a discussion of it only 
in general form; other responses may use very informal language. What someone 
says in his or her response matters more than how it is expressed.

Argument Forms and Constituent Features
	 Cases Argument 1: Stephanie’s cases argument for towers three cubes high 
that are selected from two colors (blue and red) results in a set of eight unique 
towers. A complete argument includes each of the following cases. Note that 
written responses by study participants may well be fragmentary and use much 
less precise language than the following.

• All blue cubes or no red cubes, resulting in only one tower. 
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• One blue cube and two red cubes, resulting in three unique (differ-
ent) towers. 

• Two blue cubes stuck together and one red cube, resulting in two 
unique towers. 

• No blue cubes or all red cubes, resulting in one tower. 

• Two blue “stuck apart” or separated by one red cube, resulting in 
one tower.

	 Cases Argument 2: An alternate cases argument for towers three cubes 
high that are selected from two colors (blue and red) proposed by several of the 
children. Several of the cases overlap completely with the ones articulated by 
Stephanie. Participants may describe the organization of the third case as bet-
ter (e.g., preferred, more elegant) than the way that Stephanie organized her 
cases, which bifurcated it into the third and fifth cases in the Cases Argument 
1, above.

• All blue cubes or no red cubes, resulting in only one tower. 

• One blue cube and two red cubes, resulting in three unique (differ-
ent) towers. 

• Two blue cubes and one red cube, resulting in three unique (differ-
ent) towers. 

• No blue cubes or all red cubes, resulting in one tower. 

	 Inductive Argument: This argument may be expressed with reference to 
towers of a specific height, as in the two features below. It also may be expressed 
in general form.

• When building towers that are selected from two colors, there are 
exactly two unique towers of height one. With a single position in the 
tower, the one cube can be (say) either red or blue.

• Two unique towers of height one can be used to generate all possible 
towers of height two. For each tower one cube in height, two different 
towers can be built from it. Starting with (say) a red cube in the first 
position, either a red cube or a blue cube can be placed in the second 
position. Similarly, starting with a blue cube in the first position, either 
a red cube or a blue cube can be placed in the second position. The 
resulting four unique towers of height two is double the amount, two, 
that there are of towers of height one. (And so on for n-tall.)


