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Abstract

In this study, we explored the potential for machine scoring of short written
responses to the Classroom-Video-Analysis (CVA) assessment, which is designed to
measure teachers’ usable mathematics teaching knowledge. We created naı̈ve Bayes
classifiers for CVA scales assessing three different topic areas and compared
computer-generated scores to those assigned by trained raters. Using cross-
validation techniques, average correlations between rater- and computer-generated
total scores exceeded .85 for each assessment, providing some evidence for conver-
gent validity of machine scores. These correlations remained moderate to large when
we controlled for length of response. Machine scores exhibited internal consistency,
which we view as a measure of reliability. Finally, correlations between machine
scores and another measure of teacher knowledge were close in size to those
observed for human scores, providing further evidence for the validity of machine
scores. Findings from this study suggest that machine learning techniques hold prom-
ise for automating scoring of the CVA.
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The classroom-video-analysis (CVA) instrument is an assessment designed to measure

teachers’ usable teaching knowledge, that is, the knowledge that mathematics teachers

are able to access and use in a classroom situation. Initial empirical evidence for the topic

of fractions suggests that CVA scores, which are based on teachers’ written analyses of

short video clips of classroom instruction, are reliable and valid, predicting instructional

quality and student learning (Authors, 2008; Authors, 2010; Authors, 2012). This is

encouraging news for a field in which measures that predict outcomes of interest have

been hard to come by (Darling-Hammond & Baratz-Snowden, 2007; Hill & Ball, 2004;

Hill, Schilling, & Ball, 2004). Despite the promising results, however, wider use of the

CVA scales has been limited due to the costly and labor-intensive process required to

score teachers’ written responses (Hill, Ball, Sleep, & Lewis, 2007).

In the current study, we explored the feasibility of machine scoring as an alternative

method of scoring teacher responses. Using human-scored responses from three differ-

ent CVA assessments (on fractions, ratio and proportions, and on variables, expressions

and equations), we created naı̈ve Bayes classifiers. The behavior of the resulting classi-

fiers was then examined in multiple ways. First, we compared the scores produced by

these classifiers to those that were assigned by human raters. Second, we used cross-

validation techniques (explained below) to explore the generalizability of the perfor-

mance our classifiers. Third, we compared the size of correlations between human and

computer scores to correlations between human scores and the length of responses. In

this context, the correlation with length-of-response provided a lower bound perfor-

mance criterion for our classifiers. Fourth, we computed the internal consistency of both

human and machine scores. Finally, to further explore the validity of the computer-

generated scores, we related them to scores from another measure of teacher knowl-

edge, the Mathematics Knowledge for Teaching instrument. The strength of association

was then compared to the strength of association for human-generated scores.

It is not our assumption that, to be useful, machine-generated scores must produce

results that are always completely in alignment with human scores. Indeed, one of

the most intriguing possibilities is that machine-generated scoring might produce

results that complement those produced by human scorers (Attali, 2011, 2013). This

requires, however, that we have a clear understanding of the behavior of our machine

classifiers, and how that behavior is similar and different from that of human raters.

The above analyses provide that assessment, and it is that examination that is the

heart of the work reported herein.

The CVA Approach to Measuring Usable Teaching Knowledge

Teaching is a complex activity that requires teachers to interpret classroom events in

real time in order to make instructional decisions that benefit student learning. This
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requires not only that teachers have many different kinds of knowledge but also that

they are able to access and use their knowledge in the classroom. The CVA approach

is focused on measuring this usable knowledge because it is the knowledge most

likely to directly affect instruction and student learning. To approximate as much as

possible a real classroom situation, the approach uses authentic video clips of mathe-

matics instruction, presented online, that teachers are asked to view and then analyze

in writing.

Under the CVA approach teachers’ short, written analyses of the observed teach-

ing events are taken to reflect their usable teaching knowledge and scored according

to four different, yet related rubrics that address key aspects of instruction (Cohen,

Raudenbush, & Ball, 2003; Pauli & Reusser, 2011 ). Teachers who are able to pro-

duce more sophisticated analyses of the observed teaching episodes and who thus

receive higher scores have greater usable teaching knowledge. CVA items are not

designed to assess narrow and prespecified content knowledge, and there are no

expected right or wrong answers in the traditional sense. This is in contrast to more

typical short-answer items that focus on assessing particular content knowledge and

are designed to elicit a fairly closed-ended correct answer (Brew & Leacock, 2013).

Recent Progress in Automated Text Scoring

Over the past decade considerable progress has been made in the development and

application of automated text analysis techniques for scoring of written and spoken

text, with much of the work being focused on essays (Shermis & Burstein, 2013;

Shermis, Burstein, Higgins, & Zechner, 2010). Current systems can produce scores

more quickly and reliably and at a lower cost than trained human raters (Topol,

Olson, & Roeber, 2010). A growing number of studies have demonstrated close

agreement between human- and machine-generated scores (Shermis & Burstein,

2013). However, some caution is necessary in interpreting these results; a simple

stance, in which machine scorers are understood as merely replicating the work of

human raters, is not justified (Attali, 2013).

Automated scoring is currently being employed in real-world niches that capitalize

on its strengths while minimizing the impact of its weaknesses. Computer-generated

scores are now routinely used to score essays in low-stakes testing situations or to

provide instructional feedback (Shermis & Hammer, 2012). In contrast, high-stakes

tests such as the SAT, GRE, or GMAT use computer-generated scores in conjunction

with human–rater-assigned scores, either by combining both kinds of scores (essen-

tially treating the computer algorithm as a second rater) or by using machine scores

as a control for human scoring (Zhang, 2013).

The success of automated scoring has been found to depend on the nature of the

material, the amount of text that can be analyzed to determine the score, and the fea-

tures to be scored. In a large-scale study by Shermis and Hammer (2012), computer

algorithms were found capable of producing essay scores that closely corresponded

to rater-assigned scores. For source-based essays (i.e., essays based on specific
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information made available at the time of writing) computer scoring algorithms out-

performed human raters, though automated scoring was slightly less accurate for

free-form essays. Similarly, human scores on rubrics that address overall style, qual-

ity, and correctness of an argument or character development showed lower agree-

ment with machine scores, presumably because they rely more heavily on

understanding the meaning of the written text, and less on rubrics that address struc-

tural features of the composition, grammatical correctness, or word choice (Attali,

2013; Shermis & Hammer, 2012).

Less is known about the feasibility of machine scoring for short answer items.

Short answer items pose a different set of challenges than essays for the obvious rea-

son that the amount of text that can be analyzed for scoring is small—usually not

more than a few sentences. Furthermore, this challenge is likely to be heightened for

certain types of short-answer items, particularly those that are more open-ended in

nature. It is perhaps for this reason that much of the work on short answer items has

concentrated on items that assess content knowledge (Brew & Leacock, 2013). In

these cases, a particular type of analysis that makes use of Latent Semantic Analysis

(LSA) has been the method of choice. First, the concepts and ideas that represent a

correct response can be captured in terms of one or more ‘‘model’’ or ‘‘best’’

answers, usually specified a priori during the item writing phase (Brew & Leacock,

2013). Responses are then scored by essentially comparing them, using LSA, to the

model answers. LSA is a vector space method that can be used to evaluate the simi-

larity of passages of text. It is thus most useful when model answers exist to which a

response can be compared (Berry, Dumais, & O’Brien, 1995; Deerwester, Dumais,

Furnas, Landauer, & Harshman, 1990; Foltz, Gilliam, & Kendall, 2000; Foltz,

Laham, & Landauer, 1999; Landauer, 2003).

High correlations between machine- and human-assigned scores using LSA (rang-

ing from r = .88 to r = .97) have been reported for a variety of item formats that are

more closed-ended in nature, including written and spoken summaries, research

syntheses, and short answers, indicating greater agreement between computer and

trained rater than between any pair of trained raters (Streeter, Bernstein, Foltz, &

DeLand, 2011). Streeter et al. (2011) sum up this situation by observing that

as with human scoring, the accuracy of automated scoring depends on several factors,

including task clarity and well-designed training data. For automated scoring systems, the

degree of constraint expected in the constructed responses is somewhat more important

than it is with human ratings. (p. 3)

Taken together, these examples indicate clearly that good results can be obtained

with the proper resources and expertise both in the instrument and the classifier

development but that the results depend on the nature of the material to be scored and

the type of rubric to be applied. Hence, a central question of this work is whether

teachers’ short, written analyses in CVA assessments are suitable for automated scor-

ing, and whether the CVA rubrics are of the sort amenable to automation. Although

we did not find any studies that specifically explored automated scoring of short
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answers in response to video clips with an associated prompt, both the short answer

item format and the source-like nature of the video clips appeared to hold promise for

developing well-functioning scoring classifiers, whereas the relative open-endedness

of the prompt might introduce challenges for automation, including the particular

classification techniques used.

Overview of the Approach

To automate the scoring of open-ended text responses, we leveraged techniques from

computational linguistics and machine learning. As suggested above, an approach

that one might employ would be to craft model answers—both good and bad—and

then to compare responses to those models. Given the open nature of the CVA tasks,

we judged that this was not a profitable direction in which to proceed. Instead, we

used an approach that can learn from human raters, while itself making few assump-

tions about what makes a good or bad response.

To do so, we conceptualized the scoring of responses as a problem of supervised

text classification (Sebastiani, 2002). Supervised text classification algorithms are

used, for example, to label web pages according to a set of thematic categories (e.g.,

as being about sports, politics, or health) or to label e-mail messages as ‘‘spam’’ or

‘‘not spam.’’ Our goal in this case is to classify (or ‘‘label’’) text samples into the

scoring categories that are specified by our rubrics.

Supervised text classification starts with a set of reference texts that have previ-

ously been labeled. This reference set is used to train the automated classifier, which

can then be employed to label previously unlabeled responses. In our case, where the

labels are scores, we started with a set of teacher responses that have been scored

manually by trained raters.

Given this specification of our task, there exists a wide range of techniques that

could be employed. Although most of these approaches are based solely on analyses

of word frequencies in the text to be classified, the way those frequencies are used

can vary greatly. Typically, a choice of technique is made both heuristically (which

techniques seem likely to work based on theoretical analysis as well as previous

experience with similar problems) and empirically (which techniques give the best

results in the current situation). To further narrow the space of possible choices, we

decided to start as simply as possible, adding more complex methods only when they

appeared to offer a clear advantage. This approach makes it possible for us to better

understand why and how our classifiers give the results that they do. Starting simple

also provides a baseline against which the performance of more complex methods

could be evaluated.

Weighing these considerations led us to settle on the creation of naı̈ve Bayes clas-

sifiers. A naı̈ve Bayes approach (Lewis, 1998; Zhang, 2004), such as the one we

employ here, is based on statistical associations between text classifications and word

frequencies, which are collected from a human-scored reference set. Naı̈ve Bayes has

the benefit that, in comparison with discriminative approaches such as logistic
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regression, it has been shown to perform well with relatively small amounts of data,

as is the case in the present work (Ng & Jordan, 2002). Furthermore, some of our

early efforts that made use of naı̈ve Bayes showed promise. Finally, as we show later

in this article, naı̈ve Bayes has a conceptual simplicity that makes it possible under-

stand, in some numerical detail, precisely how the automated classifiers arrive at

labels for a specific case.

Like all these methods of automated classification, naı̈ve Bayes cannot be used

‘‘off-the-shelf’’ without some exploration and adjustment. In addition, once an

approach is selected, some tinkering is required to fine-tune the analysis. For exam-

ple, it is not uncommon to find that removal of certain words prior to classification

may improve scoring accuracy.

In this study, we used automated text analysis algorithms to address the following

research questions:

1. How similar are machine scores and human scores? We used Cohen’s quad-

ratic weighted Kappa and measures of correlation to indicate agreement and

correspondence between computer-produced and rater-assigned scores.

Although it is important to investigate the similarity between human and

machine scores, we do not interpret this similarity as implying that we must

think of machine scores as replicating human scores.

2. Do machine scores exhibit internal consistency? Treating clips as items, we

computed Cronbach’s alpha as a measure of internal consistency for machine

and human scores. We viewed this as a measure of one type of reliability.

3. Is there evidence for criterion-related validity of the machine scores? We

examine if the relationship between computer-generated scores and an exter-

nal criterion (another measure of teacher knowledge) is comparable to the

relationship observed between that criterion and human scores.

Method

Instrument Description

We used data from three different CVA assessments. We analyzed responses from

238 mathematics teachers who had analyzed 13 video clips of the CVA fraction

assessment, another 238 teachers who had completed the ratio and proportion (RP)

assessment also consisting of 13 video clips, and 249 teachers who had responded to

14 video clips of the CVA assessment on variables, expressions, and equations

(VEE). These data were collected as part of a larger instrument development study,

and the samples might be considered relatively small for developing automated

classifiers.

To elicit teachers’ usable teaching knowledge, we showed them a series of video

clips of actual classroom situations and then asked them to ‘‘analyze how the teacher

and the student(s) interacted around the mathematical content.’’ Teachers typed their

responses into a web form. Although the analysis prompt was originally not designed
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with automated scoring in mind, we had aimed to focus teachers’ responses on key

aspects of the teaching and learning process. We intentionally did not try to constrain

which particular aspects in the video clips teachers might address because we

expected those to vary depending on teacher knowledge.

We rated teachers’ responses to the video clips according to four different, yet

related rubrics, each consisting of three categories. The rubrics indicated the degree

to which each response: (a) analyzed the mathematical content (MC) and (b) student

thinking (ST) depicted in the video clip, included (c) suggestions for improving (SI)

the observed teaching episode, and (d) analyzed the observed teaching episode in

depth (DI). A response was rated as falling in the lowest category (a score of 0) when

it did not refer to the mathematical content or student thinking, or did not provide

any suggestions for improvement. A score of zero on the depth of interpretation rub-

ric (DI) was assigned when the response provided a descriptive account of the clip

without interpretation, or if the response contained broad judgments that were not

substantiated.

A response was rated as falling in the middle category (a score of 1) when the

mathematical content was addressed in descriptive ways (e.g., by referring to the par-

ticular mathematical problem at hand), when student thinking was addressed either

by providing assessments of student thinking that might be substantiated by observed

student actions (e.g., I don’t think the student understood because every time the

teacher asked a question he did not answer until the teacher reworded the question in

such way that the correct answer was obvious) or when general pedagogical sugges-

tions for improving the teaching episode were provided (e.g., the teacher should have

waited longer to give the student the opportunity to think about his answer). For the

DI rubric, a score of 1 was assigned when the response contained some interpreta-

tion, for example, in the form of a substantiated judgment or included several uncon-

nected interpretive points.

A response was rated as falling in the highest category (a score of 2), when the

mathematical content depicted in the video clip was analyzed in depth by extending

the mathematics beyond what was shown in the video clip (teachers did not receive

any credit for incorrect math), when student thinking was analyzed in direct relation

to the mathematics being worked on, and when suggestions for improvement were

based on the specific mathematics of the teaching situation. Finally, the highest score

on the DI rubric was assigned when teachers provided an in-depth analysis that con-

nected different interpretative points to form a coherent argument.

As part of the original instrument development study, interrater reliability was

evaluated before scoring began and at midpoint to control for rater drift. Initial inter-

rater reliability estimates ranged from 79% to 91% direct agreement between each

rater and a master, with midpoint estimates computed between pairs of raters being

close. The values suggest that raters assigned scores to teacher responses with a rea-

sonable degree of consistency. Having good interrater agreement is an important pre-

requisite to develop well-functioning automated classifiers because subsets of the

manually scored responses serve as training texts in the classifier development.
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In Table 1, we provide two authentic teacher responses to one video clip and

explain their scoring based on the four different rubrics. Later, we use the first exam-

ple response to illustrate how the automated scoring works in detail. In the video clip

the teacher assists a student during an independent work phase in which students cre-

ate several equivalent fractions for a given fraction. The teacher reminds the student

of the example they had worked out together as a class, pointing out that they had

used the ‘‘Giant 1’’ (i.e., a fractional representation of 1) to either multiply or divide.

After creating a few equivalent fractions together, the teacher leaves the student to

finish the work.

Data Description

Across all three topic areas and all four rubrics, scores of ‘‘0’’ and ‘‘1’’ were much

more frequent (between 80% and 90% of all scores) than scores of ‘‘2’’ (between 7%

and 12%, depending on topic and rubric). The score distributions reflect our rubric

constructions, where scores of 2 intentionally identify teachers with greater expertise.

As shown in Table 2, for two of the rubrics—mathematical content and depth of

interpretation—the distributions of scores were similar and fairly stable across the

three topic areas: approximately 45% of responses were scored as ‘‘0,’’ 45% as ‘‘1,’’

and 10% as ‘‘2.’’ Score distributions of the suggestions for improvement rubric were

also fairly stable across topic areas. About two thirds of teacher responses did not

include any suggestions for improvement, roughly 20% included general pedagogical

suggestions, and another 10% made very specific mathematically based suggestions.

For the student thinking rubric, the distribution of scores differed by topic area.

For the Fraction assessment, the score distribution was similar to those observed for

the other rubrics, but for the RP and VEE assessments there were almost twice as

many 0s than there were 1s and only a small percentage of responses were scored as

‘‘2.’’ One possible explanation for these differences is that teachers were more famil-

iar with student thinking and understanding around fractions and hence better able to

analyze student thinking in the fraction video clips, whereas their knowledge of stu-

dent thinking about RPs and VEE was less developed. Across all topics, few teachers

analyzed student thinking within the specific context of the mathematics shown in

the clip.

These patterns generally held when we examined score distributions by clip, but

there was also some variation among clips. For each of the topic areas there were sev-

eral clips that produced relatively more 0s and fewer 1s and 2s (e.g., Clip 3 for VEE,

or Clip 3 for RP), possibly a sign that those clips were more difficult to analyze, or

perhaps just less engaging to teachers. Other clips appeared easier to analyze, produc-

ing relatively more 1s and 2s (e.g., Clip 8 of RP).

Based on the way we defined our scoring rubrics, we had fewer manually scored

reference texts for some rubrics and rubric categories than others, which might affect

the performance of our classifiers.
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Naı̈ve Bayes Models

In this section, we present a brief introduction to naı̈ve Bayes text classifiers in the

context of our CVA teacher responses before providing additional details on some of

the specifics of our analyses. For simplicity, we will only illustrate the workings of

text classification for a single rubric; extending this simplified model to the four

CVA rubrics is straightforward.

The input to our analysis was a collection of text responses, each paired with the

score it had been given by a human rater on a particular rubric. As a first step, each

teacher response was reduced to a compact representation in terms of a set of ‘‘fea-

tures,’’ in our case, words that appeared in the response. Second, a machine learning

algorithm was applied to inductively train a classifier based on associations between

features (i.e., words) and scores.

In reducing our responses, we used a simple ‘‘bag of words’’ approach, in which

all information about word order is discarded. This means that each text response

was reduced to a list of the words that appeared somewhere in the response. Clearly,

this is a dramatic simplification. Nonetheless, across a wide range of applications it

Table 2. Average Percentage of Responses per Category Aggregated Across Rubrics and
Clips by Topic.

Fractions Variables, expressions, and equations Ratio and proportions

0 1 2 0 1 2 0 1 2

Rubrics Rubrics Rubrics

MC 45.76 43.30 10.94 MC 45.28 46.29 9.79 MC 39.98 48.59 11.43

ST 48.57 44.53 6.90 ST 60.61 33.09 6.29 ST 50.62 36.36 8.55

SI 67.99 22.83 9.18 SI 68.10 17.57 7.19 SI 66.42 17.01 12.28

DI 37.63 50.34 12.03 DI 51.75 36.64 11.60 DI 46.41 39.97 10.14

Clips Clips Clips

1 50.56 40.37 9.07 1 56.46 36.59 6.95 1 50.84 38.88 10.29

2 50.58 37.74 11.68 2 59.51 34.27 6.22 2 62.32 30.74 6.94

3 55.42 37.65 6.93 3 60.75 32.00 7.25 3 72.12 44.11 8.77

4 51.21 35.08 13.71 4 53.41 35.73 10.85 4 53.81 33.69 12.50

5 44.61 44.31 11.08 5 64.90 29.57 5.53 5 55.98 34.93 9.09

6 56.43 35.13 8.44 6 55.80 34.90 9.30 6 51.79 39.71 8.49

7_a 38.69 37.93 23.38 7 60.91 31.86 7.23 7 54.93 32.45 12.62

7_b 48.89 38.33 12.78 8 61.89 28.31 9.80 8 42.77 39.62 17.61

8 46.97 46.39 6.64 9 52.11 35.56 12.32 9 60.14 28.26 11.59

9_a 54.86 40.35 4.79 10 54.98 33.89 11.14 10 54.21 36.06 9.74

9_b 51.83 43.46 4.70 11 56.85 36.54 6.61 11 31.73 57.69 10.58

10 49.35 45.37 5.28 12 51.84 37.62 10.54 12 56.34 36.60 7.06

11 50.43 41.13 8.44 13 54.53 34.07 11.40 13 54.31 33.01 12.68

14 57.45 29.93 12.62

Note. MC = mathematical content; ST = student thinking; SI = suggestions for improvement; DI = depth

of interpretation.
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has been found that bag-of-words approaches give good results (Apte, Damerau, &

Weiss, 1994; Dumais, Platt, Heckerman, & Sahami, 1998; Lewis, 1998; Sebastiani,

2002).

Once the text responses had been reduced, they were fed (along with their associ-

ated rubric scores) into the machine learning algorithm, which then produced a clas-

sifier model. As noted earlier, the particular algorithm we employed is called naı̈ve

Bayes. Naı̈ve Bayes is simple enough that we can provide a nearly complete descrip-

tion here. To begin, note that our goal is to produce a classifier model that can be

given a word list as input, and can produce a score as output. More specifically, in

the case of naı̈ve Bayes, we want our classifier to be able to calculate a probability

for each score C (i.e., 0, 1, 2), given the list of words (w) contained in a response,

and then select the score with the highest probability.

PðCijw1 & w2 & w3 . . .Þ:

Although we cannot directly extract probabilities of this sort from training data,

we can estimate the overall probability for each score and each word—P(Ci) and

P(wj)—simply by computing the fraction of responses in which they occur. Similarly,

we can easily estimate the probability of each word, given a certain score, P(wj | Ci),

by counting the fraction of responses scored Ci which contain the word wj. Finally, if

we assume that the probability that a given word will appear in a response is indepen-

dent of the other words that appear, we can use Bayes Theorem to compute the prob-

abilities that are of interest:

PðCijw1;& w2;& w3 . . .Þ=
P Cið Þ

Q
j P fjjCi

� �

Q
k PðfkÞ

,

where the subscripts j and k both range over all the words in a response. Thus, to

build a naı̈ve Bayes classifier, we use a set of scored text data to estimate the prob-

abilities P(Ci), P(wj), and P(wj | Ci), and then use these probabilities to determine the

score for a new, unscored teacher response.1

In the approach outlined above, all the various probabilities are estimated from sta-

tistics gathered from a set of scored samples. In practice, one could manually adjust

any of the values that are obtained. For example, the base probability of each code,

P(Ci), could be adjusted based on human judgments about the relative probability of

the code. We did not adjust values in this manner, in part to avoid problems of over-

fitting, an issue that is discussed below.

This approach is called ‘‘naı̈ve’’ because it assumes that given a code, the prob-

ability that a word will appear in a response is independent of the other words that

appear. Clearly, this assumption is false in our case. However, some investigators

have reported reasonable success in applying naı̈ve Bayes, even when the indepen-

dence assumption is clearly false. When the amount of data to be analyzed is small,

the limitations of naı̈ve Bayes seem to be less problematic, and there is therefore less

motivation to employ more complex methods (Kohavi, 1996; Lewis, 1998).
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Our Analysis Procedure

The analysis begins with all the scored data for one rubric and one of the topics stud-

ied (e.g., DI for fractions). These data are then randomly divided into two parts: the

data from 75% of participants is placed in a training set, and the data from the

remaining 25% of participants is placed in a test set. Next, the responses in the train-

ing set are reduced to unordered word lists. These word lists, along with their associ-

ated scores, are then used to train a naı̈ve Bayes classifier, as described above.

After the classifier is trained, data from the test set are then used to evaluate the

performance of the classifier model. Each new response is converted to a word list

and then input into the classifier model, which outputs a score for the response. These

scores can then be compared with the scores given by human raters or evaluated in

other ways. Because the results of this evaluation may vary based on how the data are

divided into training and test sets, we used cross-validation techniques. For each topic

we randomly drew 50 subsamples from our entire set of manually scored responses to

train our classifier and averaged the results. Rerunning the analysis in this way has

the additional benefit that it allows us to see whether the performance of the classifier

is sensitive to particular features of the training and test sets. This, in turn, can help us

understand how our results are likely to generalize to new data. The average cross-

validated performance of the classifier based on the 50 runs may be taken as an esti-

mate of the expected performance of a classifier trained with all our data, should that

classifier be applied to new data collected in the future.2

In some applications, it is deemed prudent to include a held-out sample, a subset of

the data that is reserved until an automated scorer is deemed complete and ready for pub-

lication. The advantage of employing a held-out sample is that it reduces problems of

overfitting, in which a classifier is too narrowly tuned for the data at hand. For the present

application, however, using a held-out sample seemed less feasible given the compara-

tively small samples that were available for developing our classifiers. As noted below,

we have been careful to avoid the sort of excessive tuning that could lead to overfitting.

The description in the preceding paragraphs omitted a few critical details. First,

when reducing each response to a word list, not all words are actually included. The

final list is constructed as follows. To start, the algorithm looks across all responses

for a given clip and compiles a complete list of all the words that appear in any of the

responses for that clip—a vocabulary. Next, words that are very common but unlikely

to differentiate responses in a meaningful way are put on a stop list and removed from

the vocabulary. Our stop list included, for example, common words such as and, the,

and or, and also some less common words that appeared in virtually every one of our

responses (e.g., teacher). Finally, our vocabulary is further reduced to include only

the 100 most frequently occurring words that remain.

Clearly, there is some art, and some trial and error, involved in the construction of

the final word list. But we were also careful not to make choices that were too finely

tuned to particularities of our data source, to avoid problems of overfitting. For example,

we used the same stop list across all topics and clips and did not engage in extended tin-

kering so as to maximize the behavior of our classifiers with our unique data set.
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A related issue is the specificity of our classifiers. Clearly, we must build a sepa-

rate classifier model for each rubric. However, if it were possible to build one classi-

fier model that could work across all topics and clips, there would be some important

benefits. First, in the present work, we would have more data available for training,

since we could pool the data across all clips. More profoundly, a general classifier

could be applied to new clips and topics without additional training. However, a more

general classifier is likely to be less accurate, since it cannot make use of features

unique to individual clips and topics.

In the end, we settled on a hybrid approach, one that produces unique classifiers

that are somewhat tuned for individual clips but that nonetheless capitalizes on the

availability of additional data. To do this, we build a vocabulary by looking at all the

responses to a particular clip. We then used this restricted vocabulary to extract fea-

ture sets from the entire set of responses associated with a particular topic area to

train the classifier model. The result is that the classifier for a given clip can learn

about which words tend to be associated with certain codes. But it does this without

the distraction of words that do not tend to appear to responses to the particular clip.

The Mathematics Knowledge for Teaching (MKT) Instrument

As part of the original instrument development study, teachers had completed another

measure of teacher knowledge, the MKT instrument in addition to the CVA assess-

ments. The MKT instrument consists of multiple-choice items that measure different

aspects of teacher knowledge that have been identified to be important for effective

teaching through a job analysis approach.

For each of our three CVA assessments, we created a custom set of MKT items

matched to the topic of our CVA scales. All three MKT scales consisted of 15

multiple-choice items, but some of the items in each scale were testlets, that is, a sin-

gle stem was associated with two or more questions, resulting in a de facto larger

number of items. Hence, the maximum score on the fraction MKT scale was 18, the

maximum score on the RP scale was 27 and 35 on the VEE scale. All three scales

were internally consistent as measured by Coefficient alpha (.77 for fractions, .84 for

RPs, and .89 for VEE), which indicated that items measured a common dimension.

In the original instrument development study, we had observed correlations of

medium to large size between teachers’ total and subscores on the CVA assessments

and their scores on the respective topic matched MKT scales. In this study, we used

the MKT scores to explore whether correlations based on computer-generated scores

were similar in size and comparable to those observed for rater-assigned scores.

Results

We present results from this study in three sections. In the first section, we show in

detail for one example response how scoring is determined using one of our naı̈ve

Bayes classifiers. In the second section, we present results detailing the relationship
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between machine- and human-generated scores across the 50 randomly chosen sub-

sets of manually scored reference texts. Here, we provide two different kinds of

information. We report average correlations (Pearson product-moment and Spearman

rank-order) between human- and computer-based total and subscores to evaluate the

stability of teachers’ relative standing across both scoring methods. Most of the time

we are interested in these kinds of scale summary scores because we use them to

either rank order teachers or to relate them to other scores or quantities of interest.

We also report the weighted squared kappa statistic that represents the agreement

between machine and human scores for ordinal data beyond chance agreement,

aggregated across clips. In the third section, we report correlations between human-

and computer-based total and subscores with another measure of teacher knowledge

to explore whether machine scores produce correlations comparable in size to those

observed for rater-assigned scores.

Looking Inside the Black Box of Machine Scoring

In Table 3, we show how one of our classifier models computes the best (most prob-

able) scores for a single response to the clip described in Table 1, which is about cre-

ating equivalent fractions. The probability of each score is computed by beginning

with the base probability of that score for a given rubric, which serves as an empirical

prior, and then modifying that probability based on the specific words that appear in

the given response. For example, Table 3 shows that the base probabilities for the

mathematical content rubric for this clip are 46% for a score of 0, 42% for a score of

1, and 12% for a score of 2. This reflects the fact that given all reference set responses

for this clip, scores of 0 were slightly more common than a score of 1, whereas a

score of 2 was somewhat rare. In adjacent columns to the left in Table 3, we present

the corresponding log likelihood values. Because log likelihood values can simply be

added (rather than multiplied), it is easier to recognize the contribution of any particu-

lar value to the overall probability of a score.

After the classifier computes the probability of each score, it selects the score

associated with the highest probability. For the example as shown in Table 3, a score

of 1 is selected for the mathematical content rubric, since this score is associated with

the highest probability (97%). A score of 1 is also most likely for student thinking

(93%) and depth of interpretation (94%) whereas the response receives a score of 0

on the suggestions for improvement rubric (77%). For this example response, which

is machine scored in perfect agreement with the rater-assigned scores (presented ear-

lier), the probabilities associated with the final scores are very high, providing strong

statistical evidence. However, one can imagine that for some responses two or even

all three scores might have probabilities that are close, so that the selected final score

is based on weaker probabilistic evidence, which might be one possible source of dis-

agreements between machine and human scoring.

To better understand how the presence of specific words was contributing to each

category score, we listed relevant words that were part of our example response
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along with their probabilities and log likelihood values. Like the base probabilities,

probabilities associated with individual words were obtained by analyzing the manu-

ally scored reference texts in the manner described above. As shown in Table 3, our

example response contained the following relevant words: asking, equivalent, find,

fractions, giant, know, like, questions, understood. To obtain the final probability for

each MC score, the naı̈ve Bayes classifier adds the respective log likelihood values

for all relevant words that were part of the response text to the corresponding cate-

gory base score. In addition, the classifier modifies the probability based on the

words that do not appear in a response, since the absence of a word can also provide

information as to the likelihood of a given response. For readability, we collapsed

the contribution of all these not-present words to a single row in Table 3. Thus, the

probability of an MC score of 0 is computed by summing 21.108 + (24.347) +

(211.088) + (24.488) + (24.898) + (29.503) + (25.307) + (23.327) + (23.3) +

(24.898) + (26. 032) = 258.296.

The respective log likelihood values for scores 1 and 2 were obtained in the same

way, resulting in values of 242.189 for a score of 1 and 247.187 for a score of 2.

These values, converted into probabilities yielded the final values of 0.00, 0.97, and

0.03 shown in Table 3 (after being normalized).

For this example, the computer-assigned scores matched the rater-assigned scores

perfectly, but this was not the case for all responses. Next, we provide results on

machine–human score agreement by rubric and topic.

Computer-Rater Agreement

Our first research question asks: How similar are machine scores and human scores?

To answer this question, we aggregated the data at multiple levels, and we employed

a number of measures. Our data set includes teacher responses to a total of 40 differ-

ent video clips representing three different topic areas, each scored according to four

rubrics.

Each CVA assessment uses multiple clips to assess a teacher’s knowledge within a

given topic area. Thus, the most important information is not how a teacher scored on

individual clips; it is the aggregate score across the multiple clips that make up the

assessment. Therefore, in comparing human and machine scoring, it was less impor-

tant for us to determine whether human and machine scores matched for individual

clips. We wanted to know if the computer’s aggregate scores for a teacher, averaged

across clips in an assessment, correlated with the aggregate human scores.

For the first set of results shown in Table 4, we display Pearson product-moment

and Spearman rank-order correlations between machine and human raters both for

total scores and subscores. These results are all computed by averaging across 50

cross-validation trials, as described above. We reasoned that if average correlations

between rater and computer-generated scores exceed .80, an argument can be made

for the convergent validity of machine scores with human scores. We also report

averaged quadratic weighted Kappas as another measure of agreement between
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human and computer-generated scores. We computed these averages by pooling

exact agreement information across clips within assessments. Again, the results are

averaged across 50 cross-validation trials.

Table 4 shows three noteworthy results: Across all three topic areas, average cor-

relations between human- and machine-generated total scores as well as for three of

the four subscores (mathematical content, student thinking, and depth of interpreta-

tion) were around or greater than .80. (They ranged from.77 to .91.) This suggests

that machine total scores and subscores measure a construct that is strongly related to

the usable teaching knowledge construct measured by rater-assigned scores. Average

correlations between computer-generated and rater-assigned scores for the sugges-

tions for instructional improvement rubric were somewhat lower for all three assess-

ments (between .49 and .69) with greater variation between different runs, indicating

that performance of the classifiers depended to a larger degree on the particular train-

ing and testing subsamples. Maximum correlations were either approaching or at .80,

whereas minimum correlations were as low as .19.

The reported quadratic weighted kappa values provide a measure of agreement

beyond chance, weighting disagreements between nonadjacent categories more heav-

ily than disagreements between adjacent categories. Similar to the correlations,

Table 4. Average Correlations for Total and Rubric Subscores and Average Weighted
Quadratic Kappas Aggregated Across Clips by Topic.

Kappa quadratic Pearson correlation Spearman correlation

M Min Max SD M Min Max SD M Min Max SD

Fractions
Total 0.51 0.43 0.57 0.03 0.88 0.81 0.94 0.03 0.89 0.81 0.94 0.03
LI 0.56 0.46 0.65 0.04 0.83 0.72 0.94 0.05 0.83 0.67 0.94 0.06
MC 0.64 0.57 0.72 0.03 0.87 0.79 0.93 0.03 0.87 0.78 0.93 0.04
SI 0.37 0.26 0.50 0.05 0.65 0.43 0.80 0.09 0.64 0.43 0.80 0.10
ST 0.43 0.33 0.52 0.04 0.77 0.64 0.89 0.05 0.77 0.63 0.90 0.06

Ratio
Total 0.51 0.41 0.58 0.04 0.86 0.79 0.94 0.03 0.86 0.77 0.95 0.04
LI 0.56 0.44 0.65 0.05 0.83 0.71 0.92 0.05 0.82 0.68 0.92 0.05
MC 0.64 0.55 0.70 0.03 0.90 0.85 0.93 0.02 0.90 0.85 0.94 0.02
SI 0.36 0.22 0.51 0.06 0.54 0.26 0.80 0.11 0.51 0.28 0.80 0.11
ST 0.47 0.33 0.55 0.04 0.81 0.67 0.90 0.04 0.81 0.70 0.88 0.05

VEE
Total 0.55 0.48 0.62 0.03 0.89 0.81 0.97 0.03 0.91 0.83 0.96 0.03
LI 0.63 0.52 0.71 0.04 0.88 0.79 0.94 0.04 0.87 0.74 0.93 0.05
MC 0.62 0.55 0.69 0.03 0.86 0.80 0.92 0.03 0.86 0.76 0.93 0.04
SI 0.43 0.28 0.54 0.05 0.69 0.44 0.83 0.07 0.60 0.32 0.76 0.10
ST 0.46 0.36 0.55 0.05 0.82 0.67 0.90 0.05 0.83 0.74 0.91 0.04

Note. LI = Depth of Interpretation; MC = Mathematical Content; SI = Suggestions for Improvement; ST =

Student Thinking; VEE = Variables, Expressions, Equations.
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Kappa values varied more across rubrics than across topics with consistently higher

values for the mathematical content (.62 to .64) and the depth of interpretation (.56

to .63) rubrics and total scores (.51 to .55), indicating moderate to substantial agree-

ment according to guidelines proposed by Landis and Koch (1977). Kappa values for

the suggestions for improvement and student thinking rubrics (.36 to .43 and .43 to

.47, respectively) were lower and indicated fair to moderate agreement. The Kappa

statistic is sensitive to the prevalence of observed frequencies and some argue that it

underestimates agreement for categories with higher frequencies, which makes inter-

pretation of kappa values less clear.

Next, we compared correlations between scoring rubrics for each set of scores.

Between-rubric correlations based on rater assigned scores ranged from .6 to .8 across

topics, indicating that the four rubrics measured unique yet related aspects of usable

teacher knowledge. The respective correlations based on machine scores were consis-

tently higher across topics, ranging from .8 to .9, which suggests more redundancy,

possibly a function of our efforts in the development phase to keep the classifiers

more general.

Finally, in Table 5, we compare our human–machine correlations to the perfor-

mance of a measure based solely on the number of words in a response. As noted

elsewhere, length of response tends to be highly correlated with human scores (Attali,

2013). Overall, our classifiers do better than an analysis based solely on number of

words, although improvements are variable and sometimes greater (e.g., for MC and

SI) other times smaller (DI and ST).

We also computed partial correlations between computer- and rater-generated

scores controlling for length of response to investigate whether the machine scores

were related to the rater-assigned scores above and beyond response length. These

correlations are shown in Table 6. Partial correlations remained moderate to large in

size, indicating that a considerable part of the shared variance between human and

Table 5. Correlations Between Human Scores, Length of Response (Number of Words),
and Machine Scores by Rubric and by Topic.

Variables, expressions,
and equations (VEE)

Ratios proportions
(RP)

Fractions
(F)

Human
scores

Total #
words

Machine
scores

Total #
words

Machine
scores

Total #
words

Machine
scores

Total score .793** .885** .871** .891** .845** .926**
LI score .878** .887** .914** .861** .846** .920**
MC score .594** .833** .758** .916** .805** .901**
SI score .636** .741** .547** .658** .700** .777**
ST score .726** .777** .855** .876** .658** .778**

Note. N(VEE) = 49; N(RP) = 52; N(F) = 45. LI = Depth of Interpretation; MC = Mathematical Content;

SI = Suggestions for Improvement; ST = Student Thinking.

**p \.01.
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machine scores is independent of response lengths. Again, the only exception is the

depth of interpretation rubric for the RP CVA, where the partial correlation is small

and statistically not significant, indicating that length of response is confounded with

the classifier’s performance.

Overall, our results suggest some validity of the machine scores if rater-assigned

scores represent the standard. Although the machine scores only reflect the occur-

rence of sets of words in teachers’ responses, rank-ordering of teachers regardless of

scoring method is fairly stable. Furthermore, our classifiers produced scores that mea-

sured more than simply length of response, while our results also raised some con-

cerns about redundancy of scoring rubrics for machine scores.

There is some evidence supporting the generalizability of our algorithms across

topic areas and potentially new CVA assessments. Results across all measures of

agreement were fairly stable across the three CVA assessments, which might suggest

a similar performance of scoring algorithms if additional CVA assessments that cover

new content areas were to be developed, provided the clip selection process, the anal-

ysis prompt, and the rubrics, remain the same.

Internal Consistency of Human- and Machine-Generated Scores

To obtain some measure of reliability of our machine scores, we computed coeffi-

cient alpha as an indicator of internal consistency. Treating the video clips as items,

we added rubric scores by clip to evaluate the degree to which our clips measured

the same construct. For computer-generated scores internal consistency ranged from

.90 to .95 depending on CVA assessment, suggesting that the clips measured a single

construct or latent dimension. For rater-assigned scores, internal consistency was

slightly lower, ranging from .89 to .93. Internal consistency estimates for the mathe-

matical content, student thinking, suggestions for improvement, and depth of

Table 6. Partial Correlations Between Human and Machine Scores After Controlling for
Length of Response.

Machine scores

Human scores Fractions RP VEE

Total score Correlation .722** .503** .648**
LI score Correlation .679** .173 (p = .225) .497**
MC score Correlation .699** .794** .791**
SI score Correlation .471** .436** .791**

p value .000 .000 .004
ST score Correlation .625 .489 .409

Note. df (F) = 42; df (RP) = 49; df (VEE) = 46. LI = Depth of Interpretation; MC = Mathematical Content;

SI = Suggestions for Improvement; ST = Student Thinking; VEE = Variables, Expressions, and Equations.

**p \ .01.
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interpretation rubric were .87, .84, .80, .81 for rater-assigned scores. Respective esti-

mates for computer-generated scores were higher, possibly an artifact and a conse-

quence of the higher between-rubric correlations we observed for machine scores.

Values for the RP and VEE assessment were comparable.

Relating Computer- and Human-Based Scores to Another Measure of
Teacher Knowledge

Next, we related computer-generated and human-assigned scores to another measure

of teacher knowledge, the MKT instrument, to investigate the criterion-related valid-

ity of the machine scores. Table 7 reports correlations from a single scoring run.

Table 7 shows that, across all topic areas, correlations between computer-

generated scores and the MKT were similar in size to those obtained for rater-

assigned scores and the MKT, indicating that the relationships were stable regardless

of scoring method. The results provide further evidence for convergent validity of

the machine scores.

Discussion

In this study, we have explored the potential for automating the scoring of teachers’

short, written responses to the CVA assessment, an innovative and promising assess-

ment of teachers’ usable teaching knowledge in mathematics. Teachers’ scores on the

assessments, when assigned by trained human raters, were reliable and for the topic

of fractions predicted teachers’ own teaching and their student learning. Machine

scoring capabilities might ultimately make the assessments more practical to use and

allow us to study the usefulness of the CVA approach more comprehensively.

As a first exploration of automated scoring, we constructed naı̈ve Bayes text clas-

sifiers, using human-labeled responses as training data. We then set out to study the

behavior of the resulting classifiers in multiple ways. Several interesting findings

emerged from our study.

First, our results provided some evidence for the convergent validity of the

machine scores with rater-assigned scores. Average correlations were around or

above .80, for total scores and three of the subscores (mathematical content, student

thinking, and depth of interpretation), for all three CVA assessments. We take this as

indicating that the two scoring methods measure related constructs. Human–machine

score agreement based on weighted quadratic Kappas was mostly moderate to sub-

stantial depending on the scoring rubric. We also found that our machine scores

assessed more than length of response, which is known to be strongly related to

human scores, adding to the evidence for the convergent validity of computer-

generated scores.

Correspondence between machine and human scores for the suggestions for

improvement rubric was somewhat lower. This might be due to the fact that the anal-

ysis prompt did not explicitly ask teachers to provide suggestions, resulting in fewer
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overall suggestions, which left this rubric less well-defined. Although words such as

‘‘should, would, could, might’’ may serve as clear markers for making suggestions,

they seem to have been too infrequent overall to be consistently included in the 100

most frequent word lists. In fact, for the fraction clip for which we illustrated auto-

mated scoring in detail for one authentic teacher response, only the word ‘‘could’’

was included among the 100 words included in the analysis. As noted by Streeter et

al. (2011), task clarity is an important factor for machine scoring, just as it is for

other types of assessments; in our case, revising the analysis prompt accordingly

might increase the number of suggestions in teacher responses. Similarly, adding rel-

evant indicator words to the list might improve our classifier performance.

We also examined the redundancy between rubrics for the two scoring methods.

For human scoring, the between-rubric correlations ranged from .6 to .85, suggesting

that the rubrics capture unique, yet related aspects of the usable teaching knowledge

construct. In contrast, correlations for machine scores ranged from .8 to .94, indicat-

ing more redundancy. This might be related to the use of our ‘‘hybrid’’ approach,

which leveraged the data across clips when creating the classifier for each clip.

Future work needs to explore whether more clip specific classifiers might improve

scoring accuracy of CVA responses and better preserve the uniqueness of each

rubric.

Second, we found some evidence for the reliability of machine scores. Using clips

as items, we computed a single score for each clip by adding the individual rubric

scores and estimated internal consistency of the clips as a measure of reliability. We

obtained coefficient alpha values ranging between .90 and .95 depending on topic,

indicating that clips within each assessment measured the same construct. These val-

ues were similar to the values we obtained for rater-assigned scores (.90 to .93). A

careful analysis of the actual score distributions needs to examine whether the high

internal consistency of machine scores is an artifact of less overall variance for

computer-generated scores across clips.

Third, correlations between computer-generated scores and scores from another

measure of teacher knowledge, the MKT Instrument, were comparable in size to

those based on rater-assigned scores. The results provide further evidence for the

convergent validity of machine scores. Although this might not be surprising given

the high correlations between machine and human total scores, it represents another

piece of evidence supporting the use of the machine scores as indicators of usable

teaching knowledge.

In this study, we focused on the properties of summary scores, which aggregated

scores across clips, because these aggregate scores are typically used in assessment

contexts to rank-order teachers, or to identify their particular strength and areas for

improvement. However, we did observe some interesting variation across clips in the

behavior of our classifiers. For example, for some clips, the scores given by our clas-

sifier more closely matched those given by human raters. There are a number of fac-

tors that might lead to this different performance across clips. The leveraging of data

across multiple clips might have more adversely affected some clips than others. In
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addition, clip quality (i.e., variation in stimulus strength across video clips), clip con-

tent, and the amount of measurement error in human scores for each clip, are other

important factors. In the next phase of our work, we believe that a close analysis of

this differing performance across clips will help us better understand how our classi-

fiers function, and why they give the results they do. Ultimately, it may help us

improve our current classifiers, and it might suggest that other classification

approaches would be fruitful to explore.

At this point, it is too early to make any predictions about what roles automated

scoring might play in the future design and deployment of the CVA assessments. It is

possible that automated analysis might one day be used, in some circumstances, with-

out any human scoring. Even if this is not the case, it seems likely that automated

analysis can profitably be used as a complement to human analysis of the CVA, one

that provides slightly different information. A larger question is whether our findings

will translate to other kinds of more open-ended short answer items. We believe that

the results reported here at least suggest that even a simple ‘‘bag of words’’ approach,

can produce promising results, and thus suggest that further work in this area might

be fruitful.
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Notes

1. This brief account omits some subtleties. A small number (in our case, 0.5) is added to the

count of responses scored Ci, which contain the word wj so that P(wj | Ci) is never zero. In

addition, our computation includes the probabilities associated with words in the larger

corpus that do not appear in a response.

2. Our use of repeated sampling validation rather than k-fold validation was dictated by the

relatively small size of our corpus. For each topic area, we had responses from less than

250 teachers. We felt that a workable number of responses in the test set would be about

50. Thus, if we used k-fold validation we could only average 5 ‘‘folds’’ of the data.
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