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Abstract 
 

This simulation study examines the characteristics of the Explanatory Item Response Model 

(EIRM) when estimating treatment effects when compared to classical test theory (CTT) sum 

and mean scores and item response theory (IRT)-based theta scores. Results show that the EIRM 

and IRT theta scores provide generally equivalent bias and false positive rates compared to CTT 

scores and superior calibration of standard errors under model misspecification. Analysis of the 

statistical power of each method reveals that the EIRM and IRT theta scores provide a marginal 

benefit to power and are more robust to missing data than other methods when parametric 

assumptions are met and provide a substantial benefit to power under heteroskedasticity, but 

their performance is mixed under other conditions. The methods are illustrated with an empirical 

data application examining the causal effect of an elementary school literacy intervention on 

reading comprehension test scores and demonstrates that the EIRM provides a more precise 

estimate of the average treatment effect than the CTT or IRT theta score approaches. Tradeoffs 

of model selection and interpretation are discussed. 

Keywords: Explanatory Item Response Model, causal inference, statistical power, 

simulation, educational measurement 
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Estimating Treatment Effects with the Explanatory Item Response Model 

 When estimating treatment effects in education research, test scores are usually analyzed 

as a single value, calculated from the responses to individual items. Typically, a total correct sum 

score, mean score, or an Item Response Theory (IRT)-based theta score is used. As proposed by 

Wilson and De Boeck (2004), the Explanatory Item Response Model (EIRM), which models the 

item responses directly rather than as single summary value, provides an alternative approach to 

modeling assessment data. The EIRM has theoretical appeal because it capitalizes on all 

available item response information without the need to reduce the multiple item responses to a 

single score for subsequent analysis, which can result in biased parameter estimates due to 

measurement error (Ye, 2016, p. 43-44). Similarly, Briggs (2008) argued that a key benefit of the 

EIRM is the ability to combine psychometric measurement and explanatory regression analysis 

into a single model, in contrast to the more traditional two-step process, in which the 

measurement and explanatory models are independent of one another. Past studies have 

employed the EIRM when the research question is concerned with relationships between fixed 

person and item characteristics and item response patterns (see for example Hartig et al. 2011; 

Briggs 2008; Randall, Cheong, & Engelhard 2011), or the theoretical benefits of modeling item 

responses directly (Zwinderman, 1991; Christensen, 2006). However, in the causal inference 

context, relatively few studies have employed the EIRM when estimating the treatment effects of 

educational interventions (see for example Kim, et al., 2022 for a cluster-randomized trial; 

Rabbitt, 2018 in an instrumental variables context; Stevenson, et al., 2013 for a pre-post study), 

and we are aware of no studies to date that have empirically examined the potential benefits or 

tradeoffs of employing the EIRM in causal inference contexts. 
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The purpose of this study is twofold. First, to determine to what extent the theoretical 

advantages of the EIRM obtain under various simulated conditions of sample size, number of 

items, treatment effect size, the rate of missing item response data, and to what extent differences 

in model performance depend on model misspecification. Second, to determine to what extent 

the results of the simulation are consistent with the application of the EIRM to the estimation of 

treatment effects in an example of empirical educational assessment data. The effects of missing 

item response data are emphasized because missing item responses are treated in contrasting 

ways across the different models and scoring systems. That is, missing item responses are treated 

as incorrect in a sum score approach because a missing value does not add to the sum, ignored in 

a mean score approach because only observed responses are averaged, and shrunken towards the 

mean and weighted by difficulty in an Empirical Bayes IRT theta score, whereas the EIRM 

simply models the available item responses directly. The comparison of these four methods in 

the presence of missing data is intended to complement existing approaches for addressing 

missing item response data, rather than suggest that missing item response data can or should be 

ignored. For example, multiple imputation in IRT (Finch, 2008; Sulis & Porcu, 2017) and full 

information maximum likelihood (FIML; Enders & Bandalos, 2001) are powerful methods for 

addressing missing item response data but are not evaluated here to maintain focus on how CTT 

and IRT-based scoring systems perform in the presence of data that is missing completely at 

random (MCAR), which is theoretically ignorable, or missing at random (MAR), which is not 

(Holman & Glass, 2005), given prior research suggesting that IRT-based methods are more 

robust to missing data (de Bock, et al., 2016). 

In short, this study seeks to answer an important methodological question with 

implications for the applied researcher. That is, under what conditions, if any, do the theoretical 
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advantages of the EIRM obtain, and to what extent are they worth the additional interpretational 

complexity and required computational power when compared to the traditional two-step 

approach? If so, the EIRM provides a potentially powerful method in the analyst’s toolkit, and if 

not, simpler methods can be employed without loss of information.  

Methods for Analyzing Test Score Data 

 Two-Step Procedures. In a two-step procedure, the latent trait of interest is estimated for 

each person and then analyzed as the outcome variable using a standard statistical model such as 

OLS regression (Christensen, 2006, p. 185; Ye, 2016, p. 43). For example, consider the 

following regression model, in which 𝑌! represents an estimated latent trait score and 𝛽" 

represents an average treatment effect: 

𝑌! = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡! + 𝜖! 

𝜖~(0, 𝜎$%). 

The estimated latent trait scores 𝑌! may be generated in a classical test theory (CTT) or item 

response theory (IRT) framework. In CTT, a sum (total correct) or mean score is employed, such 

that the observed score across all items 𝑋& is equal to the sum of the responses Σ&'"
( 𝑋& or the 

mean of the responses "
(
Σ&'"
( 𝑋&. When there is no missing data, the sum and mean scores will be 

perfectly correlated. In IRT, the latent trait estimate, commonly denoted 𝜃, is calculated by 

maximizing the likelihood of 𝜃 given the estimated item parameters (i.e., item difficulty, 

discrimination, and pseudo-guessing). Generally, the IRT approach has been argued to be 

superior because IRT theta estimates are on an interval scale (Jabrayliov, Emons, & Sijtsma, 

2016; Ferrando & Chico, 2007; Harwell & Gatti, 2001), though empirically, differences between 

the CTT and IRT scoring are often found to be minor (Xu & Stone, 2012; Sebille, et al., 2010). 

One potential limitation of the two-step analysis approach is that, regardless of what type of 
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scoring procedure is used to estimate the latent trait, the outcome variable is treated as known 

when it is measured with uncertainty (i.e., measurement error), and therefore, resulting estimates 

may be biased (Embretson, 1996). 

The Explanatory Item Response Model (EIRM). The EIRM is a cross-classified 

multilevel logistic regression model, in which item responses are nested within the cross-

classification of persons and items. In its simplest form with random effects for persons and 

items and without predictors, it can be expressed as 

𝑙𝑜𝑔𝑖𝑡 7𝑃9𝑦!& = 1<= = 𝛽# + 𝜃& + 𝜁! 	 

𝜃&~𝑁90, 𝜎)%< 

𝜁!~𝑁(0, 𝜎*%) 

in which the log-odds of a correct response to item 𝑖 for person 𝑗 is a function of a constant term 

𝛽#, person ability 𝜃& and item easiness 𝜁! (item easiness is the negative of the more familiar item 

difficulty parameter in traditional IRT modelling). The EIRM with no person or item predictors is 

equivalent to the Rasch or One-Parameter Logistic (1PL) IRT model when the item easiness 

parameters are considered fixed. 

Following the taxonomy of Wilson, De Boeck, and Carstensen (2008, p. 95), the EIRM 

with random person and item effects is called a “doubly descriptive” model, as it solely provides 

estimates of the variances of both persons and items without any variables to explain systematic 

differences in person ability or item easiness. The EIRM becomes “person explanatory” or “item 

explanatory” when predictors at the person or item level are added to the model, or “doubly 

explanatory” when both person and item level predictors are included. For example, an EIRM 

could be used to test whether older students have higher performance (person explanatory), 

whether algebra or geometry problems are more difficult (item explanatory), or both (doubly 
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explanatory). For the purposes of this study, we can explore questions of causal inference by 

employing a person explanatory model that includes a person-level coefficient 𝛽" that estimates 

the causal effect of treatment on the log-odds of a correct response: 

𝑙𝑜𝑔𝑖𝑡 7𝑃9𝑦!& = 1<= = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡! + 𝜃& + 𝜁! 	 

𝜃&~𝑁90, 𝜎)%< 

𝜁!~𝑁(0, 𝜎*%). 

 While more complex to interpret due to the cross-classified multilevel structure and logistic 

link function, and more computationally demanding than a CTT-based analysis such as sum or 

mean scores due to the numerical integration required in parameter estimation, the EIRM provides 

a key theoretical advantage in the analysis of test score data. That is, various studies have 

demonstrated that the EIRM deattenuates estimates of regression coefficients, thus counteracting 

the effects of measurement error compared to regression on observed scores (Zwinderman, 1991; 

Christensen, 2006; Briggs, 2008), suggesting that the EIRM may provide a more sensitive test of 

between-group differences such as causal treatment effects. Measurement error is an important 

issue in data analysis, yet strikingly, in some fields, it is barely addressed, with one systematic 

review reporting that only 7% of studies investigated or corrected for measurement error 

(Brakenhoff et al., 2018, in epidemiology). Similarly, while CTT-based scoring approaches such 

as sum scoring are commonly employed, they have long been known to have issues with “adverse 

effects on validity, reliability, and qualitative classification” (McNeish & Wolf, 2020, p. 2287). 

Thus, the EIRM may provide a straightforward way to gain more robust and fine-grained insight 

into intervention effects than other approaches, a hypothesis we now test through simulation and 

application to empirical assessment data. 

Methods 
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Data Generating Process 

The simulation and analytic procedures were implemented in R (R Core Team 2022). In 

total, we simulated 252,000 data sets and applied four analytic models—sum score, mean score, 

One Parameter Logistic (1PL) IRT theta score, and EIRM—to each, for a total of 1,008,000 

results. We provide a detailed replication toolkit containing all R code necessary for researchers 

to replicate or extend the simulation or explore the empirical data application. We employed a 

full factorial design to assess the performance of each model under an array of conditions 

representing what a researcher might encounter including violations of model assumptions to 

probe the limits of the applicability and value of the EIRM under potential misspecification. The 

simulation factors include small, moderate, and large sample sizes (300, 500, 1000), short, 

moderate, and long assessment lengths (10, 20, 40 items), null and positive treatment effect sizes 

(0 or 0.2 standard deviations on the latent trait), a range of missing item response rates (0%, 5%, 

10%, 25%), normal or skewed latent trait distributions, homoscedastic or heteroskedastic 

variances by group (in which the treatment group standard deviation is twice that of the control 

group), and MCAR or MAR missing data mechanisms (in which more difficult items have a 

higher probably of missingness). Missing item responses could represent either unanswered 

questions or items randomly drawn and administered from a larger test bank. The data-

generating process was based a two-group treatment-control design in which items were equally 

correlated with the latent trait (i.e., a 1PL or Rasch model). The null hypothesis rejection rates 

provide false positive rates when the treatment effect is 0, and statistical power when the 

treatment effect is positive. IRT models were estimated with the mirt R package (Chalmers, 

2012), and the EIRM with the glmer function from the lme4 package (Bates, et al., 2014). For 

a tutorial on estimating the EIRM in R, see De Boeck et al. (2011).  
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Estimating Treatment Effects 

 For each simulated data set, we estimated the treatment effect and associated t-statistic, p-

value, and whether the null hypothesis was rejected (at the 5% level, one sided) under four model 

parameterizations listed in Table 1, which includes reference R code for fitting each model. 

[Insert Table 1 here] 

In all models, the parameter of interest is the treatment effect 𝛽", and the errors (𝑒!, 𝜁!, 𝜃&) are 

assumed to be normally distributed with mean 0 and constant variance and uncorrelated with the 

predictors (or other random effects in the case of the EIRM). The models for the sum score, mean 

score, and theta score are identical OLS regression models, and the EIRM is estimated as a 

generalized linear mixed model (GLMM) with a logit link, a random effect for student ability (𝜃&) 

cross-classified with random effects for item easiness (𝜁!). Note that the EIRM is mathematically 

equivalent to a 1PL IRT model with random item difficulties (De Boeck, 2008), and that by 

including the item random effect (𝜁!), we best approximate the data-generating process, as the item 

difficulties were randomly drawn from a normal distribution. Across all models, we assess the 

statistical significance of the treatment effects via standard t-tests for the OLS regression models 

(sum, mean, and theta scores) and Wald tests for the EIRM. 

 Table 2 shows the treatment effect estimates for the four models fit to a single simulated 

data set with 100 subjects, 20 items, a treatment effect size of +0.20 standard deviations on the 

latent trait, a missing item response rate of 10% (MCAR), and a normally distributed and 

homoscedastic latent trait distribution. The coefficients on the treatment effects cannot be 

compared directly as they are all on different scales and cannot be converted to the scale of the 

underlying latent trait (Mood, 2009, pp. 73-74). However, because the data is identical and each 

model attempts to assess the same underlying treatment effect parameter, the t-statistics and p-
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values can be compared directly. In this single simulation, we see that while the differences are 

small, the t is largest and p is smallest for the EIRM, suggesting it may provide more statistical 

power than the alternative approaches. An analysis of multiple simulations will shed light on the 

strength and consistency of this pattern and enable how estimates of bias, standard error 

calibration, false positive rates, and statistical power differ across methods and may depend on 

the various simulation factors.  

[insert Table 2 here] 

Results 

The figures and tables below present the most salient characteristics of the four models in 

terms of (a) parameter bias, (b) standard error calibration, (c) false positive rates, and (d) 

statistical power. Detailed tables in the Online Supplemental Materials (OSM) provide additional 

descriptive statistics across additional combinations of the simulation factors for each of the 

performance metrics. 

Bias 

Because there is no analytic method to convert the model-based treatment effect point 

estimates to the scale of the latent trait underlying the item responses (Mood, 2009, pp. 73-74), 

we can most easily analyze potential bias in the treatment effect coefficient by analyzing the 

simulations in which the true treatment effect is 0, because, while each model is on a different 

scale, the parameter estimates will be proportional to true value of 0 for all models (ibid). Each 

estimate was divided by the standard error times the square root of the sample size so that the 

magnitude of bias could be compared across methods in standard deviation units.  

Figure 1 shows the estimated bias by method according faceted by skewness and 

heteroskedasticity. Overall, bias appears comparable across all methods. When the group 
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variances are homoscedastic, the estimated bias is almost zero, but when the latent trait is both 

skewed and heteroskedastic, there is a downward bias of approximately 0.07 standard deviations 

for all methods.  

[Insert Figure 1 here] 

Standard Error (SE) Calibration 

 To assess the calibration of the SEs of each method, we compare the mean model-based 

(asymptotic) SE to the true SE (i.e., the observed standard deviation of the point estimates) for 

each condition. The model-based SE is expressed as a percentage of the true SE, so that a value 

of 100% would indicate that the model-based SE is identical to the true SE. Figure 2 shows the 

distribution of SE calibration for each method again faceted by skewness and heteroskedasticity. 

We see that under homoscedasticity, the model-based SEs are close to their true values for all 

methods, within about 10 percentage points. Heteroskedasticity results in underestimated SEs for 

all models, though the effects are less pronounced for the EIRM and the theta scores than the 

sum and mean scores. This result suggests that in the presence of heteroskedasticity, either robust 

methods (e.g., the estimatr R package developed by Blair, et al., 2019) or nonparametric 

resampling approaches such as bootstrapping should be employed to obtain accurate SEs. 

[Insert Figure 2 here] 

False Positive Rates 

 Figure 3 shows the average false positive rates for each method again faceted by 

skewness and heteroskedasticity. Following directly from the results of the bias and SE 

calibration figures above, under homoskedasticity, the false positive rates are all extremely close 

to the nominal value of 0.05. In the bottom left quadrant (heteroskedasticity and normality), the 

false positive rates are slightly inflated for the EIRM, theta, and mean scores, and significantly 
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inflated for the sum score. The bottom right quadrant (heteroskedasticity and skewness) shows 

that all methods provide extremely low false positive rates, but this is a function of the 

downward bias on the treatment effect point estimate under these conditions observed in Figure 

1. 

[Insert Figure 3 here] 

Statistical Power 

 The downwardly biased SEs produced by model misspecification would result in inflated 

estimates of statistical power if taken at face value. Thus, we used the true SEs (i.e., the standard 

deviation of the point estimates for each condition) to recalculate the z-statistics and associated 

hypothesis tests for each simulated model, akin to a resampling approach for estimating 

uncertainty that is robust to model misspecification. Figure 4 shows the statistical power for each 

method as a function of the missing item response rate, faceted by skewness, heteroskedasticity, 

and whether the items were missing at random (MAR).  

The absolute and relative statistical power provided by each model varies substantially 

across these eight conditions. For example, in the topmost left plot, when all model assumptions 

are met, the differences between each method are small, but the EIRM and the theta score 

provide slightly more power than the sum and mean scores providing a benefit of about one 

percentage point with complete data. When heteroskedasticity is present, but there is no skew 

and missing data are MCAR, the power advantage of the EIRM and theta scores is substantial, at 

about 10 percentage points. When both skewness and heteroskedasticity are present, the 

downward bias on the treatment effect point estimate observed in Figure 1 reduces power for all 

methods to near floor levels. Furthermore, the performance of the sum and mean scores diverge 

depending on whether the data is MAR or MCAR, with the sum score providing more power 
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under MAR. In sum, there appears to be no single model that performs best across all conditions, 

but rather, the performance of the models is highly dependent upon the degree and kind of model 

misspecification. As such, exploratory data analysis that checks for skewness, heteroskedasticity, 

and MAR data should be conducted prior to model selection and the determination whether to 

use model-based or robust standard errors. 

[insert Figure 4 here] 

Regression Models 

To better understand the divergent patterns of statistical power presented in Figure 4, we 

next fit a series of regression models to examine the precise size and statistical significance of 

statistical power differences each method under the eight conditions of model misspecification 

(heteroskedasticity crossed with skew crossed with MAR). For ease of interpretation, we fit 

separate regression models to each of the eight misspecification conditions rather than include 

three- and four-way interactions in a single model. We used the following multilevel linear 

probability model, 

𝑟𝑒𝑗𝑒𝑐𝑡!& = 𝛽# + 𝛽"𝑚𝑒𝑡ℎ𝑜𝑑!& + 𝛽%𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑒& + 𝛽+𝑚𝑒𝑡ℎ𝑜𝑑 × 𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑒!& + 

𝛽,𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠& + 𝛽-𝑛_𝑖𝑡𝑒𝑚𝑠& + 𝜁& + 𝜖!& 

in which 𝑟𝑒𝑗𝑒𝑐𝑡!& is a 0/1 variable (transformed to 0/100 so coefficients can be interpreted in 

percentage points) indicating whether the null hypothesis was rejected for model 𝑖 in data set 𝑗. 

Each 𝛽 represents the main effect of the variable on power, 𝛽+ captures the interaction between 

estimation method and missing item response rate, 𝜁& is a random effect for each data set to 

account for the fact that multiple models were fit to the same simulated data set, and 𝜖!& is the 

residual error. Due to the bounded nature of the outcome and the non-linearity inherent in power 

analysis (i.e., power has an upper asymptote of 1), we treated all predictor variables as 
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polytomous categories rather than continuous. We employed a linear probability model rather 

than a logistic or probit model for ease of interpretation of the coefficients. (An alternative probit 

model specification with transformed continuous sample size as a predictor is included in the 

OSM as a sensitivity check; all substantive findings are identical as the direction and relative 

magnitude of relevant effects is unchanged). Importantly, because the data-generating process is 

known, the regression coefficients have a causal interpretation. 

The full output of the fitted models is presented in Table 3 and demonstrate several 

insights. First, in the baseline (i.e., appropriately specified) model, with no missing data, the 

EIRM provides a modest but statistically significant benefit to power over the sum and mean 

scores of approximately one percentage point and is not significantly different from the theta 

score. Missing item response rates appear most deleterious to the power of the sum score 

method, reducing power by approximately 2.5 percentage points more than the EIRM when the 

missing item response rate is 25%. When heteroskedasticity is present, the power advantage of 

the EIRM and the theta score over the sum and mean scores is nearly ten percentage points with 

complete data. Interestingly, when the latent trait is skewed, the mean and sum scores provide 

more power than the EIRM or theta score, but again the difference is small. The models that 

include both heteroskedasticity and skew have near floor levels of power due to the negative bias 

encountered earlier. When missing item response data is MAR, the mean score suffers much 

more than the sum score, which is expected in this case because missingness is predicted by 

ability, so the sum score’s implicit treatment of a missing response as “incorrect” provides a 

benefit, but this finding would not generalize to other mechanisms of missingness. In sum, there 

is no single method that provides the “best” approach because model performance is dependent 
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on the degree of misspecification, a finding that again underscores the need for appropriate 

exploratory data analysis. 

[insert Table 3 here] 

Application to Empirical Student Assessment Data 

The results of the simulation show that the performance of each method is dependent 

upon the conditions of the data generating process, with only slight benefits to statistical power 

for the EIRM under appropriate model specification. We conclude the exploration of these 

methods with an empirical data example to determine the extent to which the results of the 

simulation are consistent with a real-world application. We employ a public use file from Kim et 

al. (2022) that explores the causal effect of the Model of Reading Engagement (MORE) literacy 

intervention on 2nd grade students’ content comprehension test scores on a researcher-designed 

reading comprehension assessment. The assessment included three reading passages followed by 

a total of 20 multiple choice items, and the study employed a cluster-randomized design with 30 

schools and 2174 students. The authors assess the intention-to-treat (ITT) effect of the MORE 

intervention by fitting a multilevel model in which the outcome was the standardized sum score. 

The authors then employed an EIRM to test for differential treatment effects depending on the 

reading passage by estimating treatment by passage interaction effects. However, they did not 

use an EIRM to assess the overall treatment effect. 

The MORE assessment data differs in several key respects from the setup of our 

simulations. First, as a cluster-randomized trial, the data have a hierarchical structure with 

treatment assigned at the school level. Second, there is no missing item response data. Third, 

they included a rich set of demographic covariates such as pretest scores, race, gender, SES, and 

other student characteristics to increase the precision of their ITT estimates. 
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In our reanalysis of the MORE study data, we contrast three simplified versions of the 

models fit in the original paper by modeling the outcome as a function of the treatment indicator, 

a reading pretest score, and relevant random effects. The model for the sum score and theta score 

is 

𝑦!& = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡& + 𝛽%𝑝𝑟𝑒𝑡𝑒𝑠𝑡!& + 𝜁& + 𝜖!& 

in which 𝑦!& is the sum or theta score for student 𝑖 in school 𝑗 , 𝛽" is the treatment effect, 𝛽% is 

the pretest reading score, 𝜁& is the random effect for school 𝑗 , and 𝜖!& is the student-level error. 

(We did not fit a model for the mean score because the mean and sum are the same in this case 

because there is no missing item response data.) The EIRM is modeled as 

𝑙𝑜𝑔𝑖𝑡 7𝑃9𝑦!&. = 1<= = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡& + 𝛽%𝑝𝑟𝑒𝑡𝑒𝑠𝑡!& + 𝜃!& + 𝜁& + 𝜈. 

in which 𝑦!&. is the dichotomous item response for student 𝑖 in school 𝑗 to item 𝑘, the other 

parameters are analogous to those of the sum score model, 𝜃!& represents random student ability 

cross-classified with ν., random item easiness. 

Given the dependence of the robustness of each method to the data-generating conditions 

observed in the simulation, we begin with exploratory data analysis to determine to what extent 

the standard parametric assumptions are plausibly met by this data. There is no missing data, so 

the distinction between MCAR vs. MAR is not relevant. In terms of heteroskedasticity, the 

standard deviations of the estimated theta scores for each group are very similar, at 0.79 for 

control students and 0.88 for treatment students, suggesting a nearly homoscedastic error 

distribution. Last, examination of density plots (not pictured) reveals approximately symmetrical, 

unimodal distributions of the estimated theta scores. Thus, the application of the EIRM should 

provide a moderately more powerful and precise estimate of the treatment effect based on the 

pattern of results observed in the simulation.  
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We fit each model and present the results in Table 4. In accordance with the results of the 

simulations under appropriate model specification, we see that while all models reject the null 

hypothesis of zero treatment effect, the EIRM provides the greater t-statistic and lower p-value 

(two-sided). These results are consistent with the benefits of the EIRM in assessing treatment 

effects in empirical data. That is, when item responses are available and model assumptions are 

met, they can be used to generate a modestly more powerful estimate of treatment impact. 

[insert Table 4 here] 

Discussion 

 The results of the simulation study paint a nuanced picture of the tradeoffs of different 

modeling choices. That is, there is no one model that performs best across all metrics in all 

circumstances. Rather, performance is dependent on the extent to which parametric assumptions 

are tenable. That is, when the assumptions of normality and homoscedasticity are met, the EIRM 

provides a modest benefit over sum and mean scores and a negligible advantage over theta 

scores in terms of statistical power. However, this modest benefit comes at the dual costs of 

computational power and interpretational difficulty of the EIRM, and thus the theta score may be 

a better choice for practitioners as it appears to capture most of the benefits of the EIRM but may 

be easier for most practitioners and audiences to interpret. 

 Heteroskedasticity emerged as the most consequential type of model misspecification in 

the simulation, as it induces a downward bias for SEs across all methods, but these effects are 

less severe for the EIRM and the theta scores. As such, in the presence of heteroskedasticity, 

robust or nonparametric methods such as resampling should be employed to obtain accurate 

estimates of uncertainty. Furthermore, when heteroskedasticity and skewness occur 

simultaneously, the downward bias in the treatment effect point estimates across all methods 
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makes inference a challenge generally, suggesting the utility of more flexible models that require 

fewer assumptions. 

Limitations and Future Directions 

With the benefits and drawbacks of the EIRM across a wide variety of conditions now 

clear, there are many areas for potential expansion to other research contexts. For example, 

recent work has explored the potential value of the 2PL EIRM with random item discriminations 

(Petscher et al. 2020, in Mplus; Burkner, 2019, using R's brms) and estimating the 2PL EIRM 

with fixed item discriminations in R in a GLMM framework through the mixedmirt 

(Chalmers 2012) and PLmixed (Rockwood & Jeon 2019) packages, but such models are not 

widely used (see Huang, 2021 for the only published example) and may suffer from accuracy 

issues (Zhang, Ackerman, & Wang 2021). Another line of inquiry could include the 

consequences of heterogeneous treatment effects, such as differential treatment impact on 

different items or types of items. Such effects would be hidden in classical test theory sum or 

mean scores, but they could be modeled explicitly with the EIRM via person-item interactions or 

a treatment effect that varies randomly at the item level (Gilbert, Kim, & Miratrix, 2022). 

Furthermore, a comparison of the performance of the EIRM to that of other methods that 

combine measurement and analysis into a single step, such as structural equation models (SEM) 

with latent variables could provide further insight into the relative strengths and weaknesses of 

such approaches. Unfortunately, at this time, the primary R package for estimating SEMs, 

lavaan (Rosseel 2012), does not support logistic models for binary indicators that would be 

most comparable to the EIRM approach. 

A final challenge of the application of the EIRM involves the interpretation of the 

coefficients of the fitted models, as treatment effect coefficients on the logit scale may be more 
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difficult to explain and justify to practitioners than the more familiar sum or mean score. As such, 

we suggest the following two approaches to make the EIRM results more interpretable. First, the 

fitted models can be used to estimate population-averaged response probabilities (e.g., using the 

ggeffects R package described in Lüdecke, 2018), representing treatment-control differences 

on the probability scale. Second, EIRM treatment effect coefficients can be converted to a Cohen’s 

d type effect size by the process of “y-standardization” (see Breen, Karlson, & Holm, 2018 for the 

single-level case; see Hox, Moerbeek, & Van de Schoot, 2017, Chapter 6 for the multilevel case), 

whereby the logit-scale coefficient 𝛽/01!2 is divided by the estimated total standard deviation of a 

latent continuous variable Y* that could give rise to the observed dichotomous response Y, using 

the following formula 

𝛽3425 =
𝛽/01!2
𝑆𝐷(𝑌∗) =

𝛽/01!2

R𝜋
%

3 + 𝜎)% + 𝜎*!
% + 𝜎7%

 

in which 8
"

+
= 3.29 is the variance of the logistic distribution, the 𝜎)% and 𝜎*!

%  represent the variance 

components of the persons and items, and 𝜎7% is the variance of the fixed effects (i.e., the variance 

of the estimated linear predictor on the logit scale). 

Conclusion 

The Explanatory Item Response Model provides a potentially useful tool for the applied 

researcher in estimating treatment effects, but its applicability may be tempered by the tradeoffs 

involved in its use in diverse contexts. The EIRM can provide a modest benefit to statistical 

power when parametric assumptions are met and missing data is present, and a significant 

benefit to power under heteroskedasticity, but these benefits come at the cost of increased 

computational intensity and interpretational difficulty. Crucially, the performance of the EIRM 

typically only marginally superior to that of the IRT theta score, which appears to provide most 
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of the benefits and is much more straightforward to interpret. When the models are misspecified, 

are not met, the EIRM and theta scores do provide more robust estimates of uncertainty than sum 

or mean scores, but more accurate estimates of uncertainty can also be achieved through other 

means such as robust or nonparametric methods. In sum, when only person-level variables are of 

interest, the benefits of the EIRM appear to be minor and demand a careful consideration of the 

tenability of model assumptions for appropriate use. 
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Table 1 

Statistical models and R code for the four models evaluated in this study: sum score, mean score, 

Item Response Theory theta score, and Explanatory Item Response Model (EIRM) 

 

Analytic Method Statistical Model Sample R Code 
Sum Score 𝑠𝑢𝑚! = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡! + 𝑒! lm(sum ~ treat, data) 

Mean Score 𝑚𝑒𝑎𝑛! = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡! + 𝑒! lm(mean ~ treat, data) 

Theta Score 𝜃! = 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡! + 𝑒! lm(theta ~ treat, data) 

EIRM 𝑙𝑜𝑔𝑖𝑡 7𝑃9𝑌!& = 1<=
= 𝛽# + 𝛽"𝑡𝑟𝑒𝑎𝑡! + 𝜁!
+ θ9 

glmer(response ~ treat + 
(1|person_id) + (1|item_id), 
data, family = “binomial”) 
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Table 2 

Comparison of treatment effect estimates based on four analytic models: sum score, mean score, 

IRT theta score, and explanatory item response model (EIRM) fit to a single simulated data set 

 

Method Estimate SE t-statistic p-value 
Sum Score 0.592 0.221 2.673 0.008 
Mean Score 0.063 0.024 2.578 0.010 
Theta Score 0.391 0.137 2.858 0.004 
EIRM 0.501 0.172 2.913 0.004 

 

Note. Simulation included 500 Subjects, 10 Items, +0.20 Treatment Effect on the Latent Trait, 

10% MCAR item responses. SE = standard error; MCAR = Missing Completely at Random.   
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Table 3 

Multilevel linear probability model statistical power by analytic method 

 

  Baseline Het. Skew Het. & 
Skew MAR Het. & 

MAR 
Skew & 
MAR 

Het. & Skew 
& MAR 

Predictors Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE 

Intercept 45.83 *** 0.90 22.87 *** 0.92 54.61 *** 0.83 5.35 *** 0.40 45.41 *** 0.98 23.59 *** 0.98 51.14 *** 0.89 5.51 *** 0.46 

1 = Mean 
Score 

-0.98 ** 0.31 -9.49 *** 0.44 1.09 *** 0.31 -
2.42 *** 

0.22 -1.11 *** 0.31 -
14.02 *** 

0.51 1.07 *** 0.32 -3.27 *** 0.27 

1 = Sum Score -0.98 ** 0.31 -9.49 *** 0.44 1.13 *** 0.31 -
2.42 *** 

0.22 -0.78 * 0.31 -6.67 *** 0.51 0.58 0.32 -1.71 *** 0.27 

1 = Theta 
Score 

-0.29 0.31 -0.04 0.44 -0.53 0.31 -
0.93 *** 

0.22 -0.16 0.31 -0.38 0.51 -0.51 0.32 -1.16 *** 0.27 

1 = 5% 
Missing 

-1.18 0.92 -0.60 0.96 -1.56 0.85 -0.67 0.42 
        

1 = 10% 
Missing 

0.82 0.92 -1.20 0.96 -2.58 ** 0.85 -0.49 0.42 -1.27 0.93 2.56 ** 0.97 0.27 0.85 0.11 0.46 

1 = 25% 
Missing 

-1.67 0.92 -2.87 ** 0.96 -3.76 *** 0.85 -1.22 ** 0.42 -3.58 *** 0.93 6.62 *** 0.97 -1.93 * 0.85 0.49 0.46 

1 = 500 
Subjects 

16.30 *** 0.76 8.61 *** 0.76 18.48 *** 0.70 0.17 0.33 17.30 *** 0.89 9.02 *** 0.86 18.61 *** 0.81 -0.16 0.39 
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1 = 1000 
Subjects 

40.04 *** 0.76 21.86 *** 0.76 37.50 *** 0.70 0.15 0.33 40.99 *** 0.89 23.47 *** 0.86 38.61 *** 0.81 -0.02 0.39 

1 = 20 Items 5.17 *** 0.76 4.63 *** 0.76 4.78 *** 0.70 0.14 0.33 3.87 *** 0.89 4.54 *** 0.86 4.87 *** 0.81 -0.06 0.39 

1 = 40 Items 7.54 *** 0.76 8.35 *** 0.76 5.88 *** 0.70 1.57 *** 0.33 7.61 *** 0.89 8.46 *** 0.86 8.42 *** 0.81 1.49 *** 0.39 

Mean x 5% 
Missing 

-0.04 0.44 0.58 0.62 -0.07 0.44 0.44 0.31 
        

Sum x 5% 
Missing 

0.16 0.44 0.60 0.62 -1.09 * 0.44 0.47 0.31 
        

Theta x 5% 
Missing 

0.13 0.44 0.09 0.62 0.09 0.44 -0.02 0.31 
        

Mean x 10% 
Missing 

-0.11 0.44 1.53 * 0.62 -0.29 0.44 0.31 0.31 -0.71 0.44 -2.60 *** 0.73 0.58 0.45 -0.22 0.39 

Sum x 10% 
Missing 

-0.91 * 0.44 1.02 0.62 -1.11 * 0.44 0.20 0.31 0.13 0.44 4.47 *** 0.73 0.18 0.45 1.13 ** 0.39 

Theta x 10% 
Missing 

-0.04 0.44 0.04 0.62 0.04 0.44 0.13 0.31 -0.09 0.44 0.20 0.73 -0.09 0.45 0.11 0.39 

Mean x 25% 
Missing 

-0.27 0.44 0.64 0.62 -1.07 * 0.44 0.96 ** 0.31 -1.67 *** 0.44 -
16.80 *** 

0.73 2.42 *** 0.45 -1.69 *** 0.39 

Sum x 25% 
Missing 

-2.64 *** 0.44 0.33 0.62 -3.02 *** 0.44 1.02 ** 0.31 0.67 0.44 13.07 *** 0.73 -1.11 * 0.45 5.64 *** 0.39 

Theta x 25% 
Missing 

-0.13 0.44 0.09 0.62 -0.24 0.44 0.24 0.31 -0.24 0.44 0.76 0.73 -0.16 0.45 0.47 0.39 

Random Effects 
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σ2 215.20 430.06 220.81 109.55 215.34 594.02 232.06 168.23 
τ00 1695.92 id 1623.97 id 1418.03 id 293.32 id 1722.01 id 1515.50 id 1404.71 id 306.46 id 
ICC 0.89 0.79 0.87 0.73 0.89 0.72 0.86 0.65 
N 18000 id 18000 id 18000 id 18000 id 13500 id 13500 id 13500 id 13500 id 

Observations 72000 72000 72000 72000 54000 54000 54000 54000 
* p<0.05   ** p<0.01   *** p<0.001 

 

Note: Reference groups are EIRM, 0% missing data, and 10 test items. Baseline = appropriately specified model. Het = 

heteroskedasticity; MAR = missing at random. 
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Table 4 

Comparison of treatment effect estimates based on sum score, theta score, and explanatory item 

response model (EIRM) analytic methods for the Model of Reading Engagement (MORE) 

literacy intervention data. 

 

Method Estimate SE t-statistic p-value 
Sum Score 0.154 0.069 2.219 0.031 
Theta Score 0.135 0.058 2.332 0.024 
EIRM 0.176 0.074 2.397 0.017 

 

Note. SE = standard error. Mean scores were not included in this table because there were no 

missing item responses and thus are equivalent to the sum scores in this case. 
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Figure 1 
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Figure 2 
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Figure 3 

 

  

skew: 0 skew: 1

het: 0
het: 1

EIRM Mean Score Sum Score Theta Score EIRM Mean Score Sum Score Theta Score

0

3

6

9

12

0

3

6

9

12

Missing Item Response Rate

Fa
ls

e 
Po

si
tiv

e 
R

at
e 

(%
)

Faceted by Skewness and Heteroskedasticity 
Means and Monte Carlo 95% CIs

False Positive Rates by Method



RUNNING HEAD: TREATMENT EFFECTS EXPLANATORY ITEM RESPONSE MODEL          36 

Figure 4 

 

 
 

 

 

 

 

skew: 0 skew: 1

m
ar: 0

het: 0

m
ar: 1

het: 0

m
ar: 0

het: 1

m
ar: 1

het: 1

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

72

74

76

78

72

73

74

75

76

4

5

6

2.5

5.0

7.5

10.0

64

66

68

62

64

66

68

25.0

27.5

30.0

32.5

35.0

37.5

20

30

40

50

Missing Item Response Rate

Po
we

r (
%

)

Method EIRM Mean Score Sum Score Theta Score

Faceted by Skewness, Heteroskedasticity, and Missing at Random (MAR)
Power by Method



RUNNING HEAD: TREATMENT EFFECTS EXPLANATORY ITEM RESPONSE MODEL          37 

 

 

 

 


