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Abstract

This paper estimates a dynamic model of college enrollment, progression, and gradu-
ation. A central feature of the model is student effort, which has a direct effect on class
completion and an indirect effect mitigating risks on class completion and college persis-
tence. The estimated model matches rich administrative data for a representative cohort
of college students in Colombia. Estimates indicate that effort has a much greater impact
than ability on class completion. Failing to consider effort as an input to class completion
leads to overestimating ability’s role by a factor of two or three. It also promotes tuition
discounts based on a pre-determined student trait—ability—rather than effort, which can
be affected through policy, thus limiting higher education’s potential for social mobility.
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1 Introduction

It is old wisdom among peasant farmers that a cow does not just give milk; rather, the farmer
needs to milk the cow every day to extract the milk. Similarly, college students do not obtain
a degree just by attending college. Even a highly able student needs to exert some effort to
attend classes, study, do homework, and take exams in order to pass classes and graduate.
Raising a country’s stock of college graduates therefore requires more than college subsidies to
expand enrollment; it requires policies to encourage student effort. Since student effort is hard
to observe and measure, much of the literature has focused on the role of ability and credit
constraints as key drivers of college enrollment, progression, and graduation.

This paper uses a structural model and indirect inference to assess the role of effort in a
dynamic model of college enrollment, progression, and graduation using Colombian data.1 Latin
American countries are an excellent case study because their higher education enrollment rates
have grown rapidly in recent years, rising from 23 to 52 percent between 2000 and 2017. Since
only 14 percent of their working age population has completed higher education, Mincerian
returns are high—104 percent on average relative to a high school diploma (Ferreyra et al.,
2017). Such high returns should attract many individuals to higher education, yet liquidity
constraints and the lack of credit markets have severely limited access.

Our structural model incorporates key aspects of students’ decisions to attend and graduate
from college. Two critical drivers of educational outcomes are the role of student effort and the
presence of extreme borrowing constraints.2 The model features a heterogeneous population
of high school graduates who vary in student ability (or academic preparation for college) and
parental resources; for some students, the combination of low parental resources and extreme
borrowing constraints renders college inaccessible. To graduate, a college student must complete
a set number of classes in a given time. Each year she chooses the number of classes she expects
to complete and chooses effort according to this target. She also faces shocks which might
prevent her from completing a class (performance shock) or from remaining enrolled (dropout
shock.) Therefore, student effort has a direct effect on class completion and an indirect effect
mitigating risks to class completion and college persistence. These shocks vary across students
and over time, and are related to the student’s past performance in order to capture the notion
that good past performance facilitates good future performance. Labor market wages, in turn,
depend on educational attainment (high school graduate, college dropout, college graduate)
and experience.

The dynamic model is estimated using Simulated Method of Moments, and captures ob-
served patterns for Colombia’s high school class of 2005. In this class, a staggering 70 percent
of students come from low-income families and only 32.3 percent of students enroll in college
within five years. Among those who attend college, only 46 percent graduate—mostly late.
Student ability plays a large role in year 1-survival but a lesser role in subsequent performance.

1Our paper relates to a large literature estimating sequential schooling models under uncertainty, with seminal
contributions by Keane and Wolpin (2001), Eckstein and Wolpin (1998), and Keane (2002). This literature
models college enrollment, performance, and college outcomes, and uncovers structural parameters based on
students’ observed choices during college.

2The conventional view is that, in the absence of credit market frictions, college enrollment should be positively
correlated with ability and uncorrelated with parental resources (Cameron and Heckman, 1998, 1999; Carneiro
and Heckman, 2002). Lack of family resources, limited opportunities to work during college, and missing credit
markets for student loans are clear impediments to college access in countries such as Colombia.
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The speed at which students accumulate the completed classes required for graduation (hence-
forth, “cumulative performance” or “cumulative classes completed”) is highly persistent. As a
result, early performance is a strong predictor of final outcomes.

The estimates indicate that effort has a much greater impact—about ten times larger—than
ability on class completion. If effort were not modeled, ability’s role would be overestimated by
a factor of two or three. Moreover, a specification without effort does not fit the variation in
classes completed or college outcomes among students and over time. In other words, it does
not capture the fact that some low-income, low-ability students perform well, or that some
high-income, high-ability students do not.

These findings have critical policy implications. When effort is not considered, policies to ex-
pand college access tend to alleviate credit constraints—by targeting low-income students—or
promote positive selection—by targeting high-ability students. While alleviating credit con-
straints can help students enroll in college, it will not necessarily help them graduate without
specific effort incentives. Targeting high-ability students, in turn, rewards students with a prede-
termined trait which they cannot affect during college—a strong academic preparation—rather
than promoting a choice they can control during college—a high effort level. Given the crucial
role of effort in college outcomes, college subsidies that do not promote it can only produce
disappointing results in terms of human capital accumulation and the ensuing social and inter-
generational mobility that highly unequal societies—such as those in Latin America—typically
seek through higher education.

Our findings are in line with a growing literature that attempts to measure the contribution
of effort to academic outcomes. Some papers exploit a direct or indirect measurement of effort.
For example, Zamarro, Hitt, and Mendez (2019) use data from the Program for International
Student Assessment (PISA) to show that different effort measures explain about a third of
observed cross-country test score variation. Stinebrickner and Stinebrickner (2004) rely on
time-use surveys to estimate the effects of study time on grades. Ariely et al. (2009) show that
providing incentives can help the average student improve her test performance. Beneito et
al. (2018) provide evidence that the tuition increase implemented by Spanish colleges in 2012
boosted student effort. Ahn et al. (2019) model student effort in response to instructor grading
policies. Other papers use a complementary approach that exploits random assignments to
peers to identify the contribution of effort. Stinebrickner and Stinebrickner (2008) present
causal evidence of effort on academic performance using the fact that students are assigned at
random to their first-year roommates. Similarly, Mehta, Stinebrickner and Stinebrickner (2019)
explore the effects of peers’ study time on college outcomes.3 We contribute to this growing
literature by embedding effort in a structural model of college outcomes.

A novel contribution of our paper is the role of effort in mitigating college risk. The idea
that higher education is risky is not new (i.e., Levhari and Weiss, 1974; Altonji, 1993; Akyol
and Athreya, 2005), but the recent availability of college transcript data in the U.S. has helped
estimate the role of risk in student performance. Hendricks and Leukhina (2017, 2018) find that

3A related body of research explores the role of learning or acquiring information throughout college as a
mechanism to explain outcome variation among students. In this literature, which includes Arcidiacono (2004),
Arcidiacono et al. (2016), Ozdagli and Trachter (2011), Stinebrickner and Stinebrickner (2014), and Trachter
(2015), students learn about their ability and preferences for college or specific majors as they accumulate
college experience. Similar to these papers, students in our model adjust their expected graduation probability
based on classes completed and choose effort accordingly.
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college transcripts reveal substantial and persistent heterogeneity in students’ credit accumula-
tion rates that are strongly related to graduation outcomes, and that more than half of college
entrants can predict whether they have at least an 80 percent graduation probability. Stange
(2012) finds that the large uncertainty faced by college students makes them place a high value
on the ability to drop out at any point rather than pre-commit to completing all graduation
requirements. Our paper is similar to these in the use of administrative data to track students’
performance, but different in that the risks associated to class completion or college persistence
are not fully exogenous—as in these papers—but depend on an endogenous choice—student
effort. In our model, students can exert effort in order to mitigate their uncertainty. We de-
velop a measure of anticipated student uncertainty and estimate its response to student effort.
The estimated elasticity of anticipated uncertainty with respect to effort is negative and large
at -2.34. By responding to greater risk with greater effort, students are self-insuring against
uncertainty while also enhancing their class completion and college performance.

The rest of the paper is organized as follows. Section 2 describes data sources, institutional
environment, and key data aspects. Section 3 presents the model, and Section 4 describes the
estimation strategy and results. Section 5 explores the role of effort in relation to ability, policy
implications of omitting effort, and interactions between effort and risk. Section 6 concludes.

2 Data and Stylized Facts

This section begins with a description of our Colombian data sources and institutional envi-
ronment; further details can be found in Appendix A.1. It then presents key stylized facts on
college enrollment, dropout rates, academic performance, and college outcomes.

2.1 Data Sources and Institutional Environment

Our data consists of student- and program-level information drawn from three administra-
tive datasets: Saber 11, SPADIES, and SNIES. Saber 11 contains students’ test scores at the
national mandatory high school exit exam (also named Saber 11) as well as self-reported socioe-
conomic information. Saber 11 is a standardized test that measures a student’s preparedness
for higher education, reflecting not only her talent but also the quality of her primary and
secondary education. We use it as a measure of student ability, which we define as academic
readiness for higher education. Family income is reported in brackets defined relative to the
monthly legal minimum wage (MW), equal to 381,000 Colombian pesos (COP) in 2005 (US$ 1
= 2,321 COP in 2005). All monetary values are expressed in COP of 2005.

SPADIES tracks higher education students throughout college. It records the students’
program, number of classes attempted and passed per semester, and graduation or dropout
date. It does not record which specific classes were attempted, or the grades obtained. SNIES
contains program- and institution-level information, including field of study and tuition.

To analyze college enrollment, we focus on the 2005 cohort of high school graduates. We
calculate deciles and quintiles of their ability distribution; in what follows, deciles and quintiles
always refer to this distribution. For consistency with the model, we classify students into
“student types” defined by combinations of student ability and family income brackets. Table
A1 shows the distribution of student types in this cohort. While a remarkable 70 percent of
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high school graduates come from the lowest two income brackets, less than 5 percent come from
the top one. Not surprisingly, income and ability are strongly and positively correlated.

For our analysis of final outcomes and academic progression, we focus on students from
the 2006 college entry cohort that enroll in five-year bachelor’s programs within five years of
finishing high school. Since every program requires a different number of classes for graduation,
we normalize the requirement to 100 classes for every program to facilitate exposition. We
assume that students are required to complete the same number of classes (20) every year. For
a given year, we use the term “classes completed” (or “performance”) to denote the number
of classes completed in that year, and use “cumulative classes completed” (or “cumulative
performance”) for the total number of classes completed over all years, up to (and including)
that one. To graduate on time, the student should complete the on-track requirements of 20,
40, 60, 80, and 100 cumulative classes completed by the end of years 1 through 5, respectively.

It is useful to classify students into tiers based on their cumulative performance relative to
the corresponding year’s on-track requirement. Tiers 1 through 4 correspond to students who
complete the following percentage of the year’s on-track requirement: 95 percent or more for
tier 1; (85,95] percent for tier 2; (65, 85] percent for tier 3; and 65 percent or less for tier 4 (see
Table A2 for further details on tier classification).4 Importantly, a student can change tiers
over time—catching up to a higher tier or falling behind to a lower one.

2.2 Stylized Facts

The data has distinctive features that our model seeks to capture. We describe them below.

Fact 1: Students of higher income or ability are more likely to enroll in college.
Although the overall enrollment rate is 32 percent, enrollment rates vary widely among student
types (Table 1), and rise with income and ability.5 On average, the enrollment gap between
the highest and lowest income brackets is about 50 percentage points (pp), similar to the gap
between the highest and lowest ability.

Fact 2: Dropout rates are high, particularly for low-ability students in year 1.
Similar to enrollment rates, dropout rates vary widely across student types (Table 2). Condi-
tional on income, higher ability students have lower dropout rates; the average dropout rate
gap between the highest and lowest ability quintiles is about 25 pp. Dropout rates vary less by
income, suggesting that family resources might affect enrollment more than dropout decisions.

Dropout rates are far from uniform over time. As Figure 1 shows, over a quarter of college
students (half of all dropouts) drop out in year 1, and the first two years account for about
70 percent of all dropouts. Only 45.7 percent of students from our entry cohort graduate—
15.1 percent graduates on time (in five years) and 30.6 percent graduates late (in 6-8 years).6

Ability is a strong predictor of final college outcomes (on-time graduation, late graduation, year-
1 dropout, year-2 dropout, later dropout.) High-ability students are more likely to graduate,

4For example, consider a student who accumulates 16, 35, 42, 50, and 60 classes by the end of years 1 through
5 respectively. This amounts to 80 (=16/20), 88 (=35/40), 70, 62.5, and 60 percent of the corresponding
on-track requirements. Thus, the student falls in tiers 3, 2, 3, 4, and 4 in years 1 through 5 respectively.

5For comparison, in the U.S. the enrollment rate of individuals ages 16-24 who finished high school in 2005 and
started college right away (rather than within five years) is 44.6% (Source: Digest of Education Statistics).

6For comparison, in the U.S. 59.2 percent of students from the 2006 cohort graduated within six years—39
percent on time (in four years), and 20.2 percent late ˙Source: Digest of Education Statistics.
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Table 1: Enrollment Rates by Income and Ability.

Income Ability quintile
Bracket 1 2 3 4 5 Total

5+ MW 32.85 44.14 58.87 69.23 83.85 73.38
3-5 MW 28.71 39.75 48.41 62.99 79.24 62.03
2-3 MW 20.34 28.72 36.96 48.03 67.88 43.50
1-2 MW 13.94 18.36 23.85 33.84 54.22 28.05
<1 MW 9.05 12.67 17.20 26.56 43.93 17.67

Total 13.43 19.15 26.20 38.93 63.74 32.29

Source: Calculations based on SPADIES and Saber 11 for 2005 high school graduates.
Notes: Each cell reports percent of high school graduates from a given income bracket and ability quintile
who enrolled in a bachelor’s program between 2006 and 2010. Income is reported in brackets; MW = monthly
minimum wage. Ability is reported in quintiles of the standardized Saber 11 scores; quintile 1 is the lowest.

Table 2: Dropout Rates by Income and Ability.

Income Ability quintile
Bracket 1 2 3 4 5 Total

5+ MW 81.36 65.83 61.48 52.13 39.04 44.73
3-5 MW 74.23 69.44 62.21 57.86 43.77 51.33
2-3 MW 68.54 67.58 63.73 57.68 46.53 55.09
1-2 MW 71.59 66.64 62.21 57.66 50.56 57.82
<1 MW 69.04 67.95 61.34 55.94 50.30 58.71

Total 70.99 67.44 62.37 56.96 45.84 54.36

Source: Calculations based on SPADIES for students from the 2006 entry cohort (first semester).
Notes: Each cell reports the percent of students from a given income bracket and ability quintile who drop
out of their bachelor’s program. A student is classified as a dropout if she does not graduate within eight
years. Income is reported in brackets; MW = monthly minimum wage. Ability is reported in quintiles of
standardized Saber 11 scores. Quintile 1 is the lowest.

whether on time or late (Figure 2), whereas low-ability students are more likely to drop out,
particularly in year 1.

Fact 3: Cumulative performance varies more within than across abilities.
Figure 3’s panel a shows average number of classes completed by ability quintile in year 1. The
thick black line depicts the average over all students, whereas the color lines depict averages
among students conditional on their final outcome. The figure shows that high-ability stu-
dents complete more classes, on average, than low-ability students in year 1, but also shows a
pattern repeated every year: average classes completed vary little across abilities—overall and
conditional on final outcomes—but greatly within abilities. Conditional on ability, by the end
of year 1 on-time graduates complete more classes than late graduates, who in turn complete
more classes than dropouts. In other words, the number of classes completed—as early as in
year 1— is a powerful predictor of final outcomes. This point is further illustrated in Figure
3’s panel b, which classifies students at end of the first year into performance tiers and shows
their final outcomes conditional on those tiers. Students in the year-1 top tier are indeed more
likely than others to graduate. Performance is persistent, as discussed in the next stylized fact.

Fact 4: Cumulative performance is highly persistent over time.
To further analyze persistence, Figure 4 depicts, for every year, a student’s probability of
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Figure 1: Dropout Timing.
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out by college year.

Figure 2: College Outcomes by Ability.
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attaining each of four outcomes—same-tier persistence, dropout, catch up (to a higher tier),
and fall behind (to a lower tier)—by year’s end conditional on her previous year’s performance
tier.7

Same-tier persistence rises over time (panel a), partly because dropout rates fall over time
(panel b). Although low-performing students are more likely than others to drop out, students
from all tiers face a non-zero dropout probability. Some students move across tiers by catching
up or falling behind (panels c and d). Higher-performing students are more likely to catch up
and less likely to fall behind than others, yet all students face a non-zero probability of falling
behind. Despite transitions among tiers, a student in one of the top three tiers is most likely
to remain in it the following year. Reaching year 5 does not guarantee graduation. Although
most students in the top three tiers graduate (Figure 6), and most tier-1 students graduate on
time, most students in the bottom tier do not graduate.

Fact 5: Cumulative performance becomes more concentrated over time.
As low-performing students drop out over time, the distribution of cumulative performance
becomes more concentrated at the top tiers. Panel a of Figure 5 shows the distribution of
students across performance tiers at the end of year 1 by ability quintile. Although top-tier
performance is most likely for the highest-ability students, performance varies greatly within
ability quintiles, and a sizable fraction of students from every quintile performs at the middle
tiers. Because of this “thick middle,” cumulative performance varies little, on average, across
abilities, echoing Fact 3. Similar patterns hold for year 5 (panel b), although by then all

7For example, a student who finished the first year in tier 2 has second-year probabilities of persistence, dropout,
catch up, and fall behind equal to 29, 14, 20, and 39 respectively. Beginning in year 5, students can also
“transition” into the graduation outcome.
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Figure 3: First-Year Classes Completed and College Outcomes.
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Notes: In panel a, each color represents a college outcome. The green line, for instance, shows the average
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on time. The thick black line does the same for all students regardless of college outcome. In panel b, the
graph shows the percent of students from a given performance tier by the end of year 1 that attain each college
outcome. For the first year, tier 1 corresponds to 19+ classes completed; tier 2 to [17, 19); tier 3 to [13, 17);
and tier 4 to [0, 13).

performance distributions are mostly concentrated in the top three tiers because many bottom
performers have already dropped out. Further, in both years the performance distribution of
low-ability students has more dispersion than that of high-ability students.

Fact 6: Higher-ability students attempt a higher number of classes.
Although a student cannot fully control her performance, she can control the number of classes
she attempts in a given year, which is informative of her intended effort. As Figure 7 shows,
on average students attempt fewer than the 20 required classes and, on average, high-ability
students attempt more classes than low-ability students. We will return to these facts when
discussing identification of our empirical model.

Taking stock. The data shows that higher ability and higher income students are more
likely to enroll in college. Conditional on enrolling, lower ability students are substantially
more likely to drop out, particularly in year 1. Through this channel, ability serves a strong
predictor of graduation. Ability, however, is not a strong predictor of cumulative performance.
Cumulative performance varies little, on average, across abilities, yet varies widely within abil-
ities. Further, it is highly persistent over time—students who start on track are more likely to
remain on track, less likely to fall behind, and more likely to catch up should they fall behind.
As a result, cumulative performance is highly predictive of final outcomes. Our model seeks to
capture these data features.
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Figure 4: Tiers of Cumulative Classes Completed: Transitions Throughout College.
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Figure 5: Tiers of Cumulative Classes Completed by Ability.

0

10

20

30

40

50

60

P
er

ce
n

t

1 2 3 4 5

Ability quintile

Tier 1 Tier 2&3 Tier 4

0

10

20

30

40

50

60

P
er

ce
n

t

1 2 3 4 5

Ability quintile

Tier 1 Tier 2&3 Tier 4

a. Year 1 b. Year 5
Source: Calculations based on SPADIES for students from the 2006 entry cohort (first semester).
Notes: For students of a given ability quintile who start year 1, panel a shows their classification into tiers of
cumulative classes completed by the end of the year. Panel b does the same for students beginning year 5.

9



Figure 6: Graduation by Year-5 Cumula-
tive Classes Completed.

0

20

40

60

80

100

P
er

ce
n

t

Tier 1 Tier 2 Tier 3 Tier 4

Graduation rate On−time graduation rate

Source: SPADIES. Students belong to the 2006 entry
cohort (first semester).
Notes: The figure refers to students who start year
5 and classifies them into tiers based on their cumu-
lative classes completed by the end of the year. For
each tier, the blue bar shows the percent of students
who graduate, and the green bar shows the percent
of students who graduate on time, relative to all the
tier’s graduates.

Figure 7: Average Number of Classes At-
tempted in Year 1, by Ability.
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3 Model of College Effort

We model a representative cohort of high school graduates who differ in ability, family income,
and idiosyncratic preferences for college enrollment, and choose whether to enroll in college or
enter the labor force as high school graduates. College graduation requires completing a set
number of classes. The combination of ability, effort, and performance and dropout shocks
determines class completion and college outcomes. Students can mitigate the risk posed by
these shocks by being on track with classes completed. In the labor market, wages depend on
educational attainment (high school graduate, college graduate, or college dropout) and work
experience. Students can only enter college at the end of high school; once they leave, they
cannot return.

It is important to clarify what “ability” and “effort” capture in the model. Ability refers
to academic readiness—not innate ability—and therefore captures pre-college elements such as
high school quality and home environment. It is predetermined at the time of college enrollment
and remains fixed during college. Effort, in contrast, is chosen by the student every year during
college. It represents all student inputs that can change over time and are costly to the student,
such as quantity and intensity of study time. Exerting greater effort may not mean studying
longer but rather more effectively. The critical point is that effort is costly, particularly for
students with lower academic readiness (who may not have been given the appropriate study
skills, for example). Further, the model captures the notion that, by choosing high effort,
low-ability students might perform at the same level as high-ability students who choose low
effort.
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3.1 Student Types and Preferences

High school graduates differ in ability, θ ∈ {θ1, θ2, . . . , θnθ
}, and parental resources received if

they enroll in college, y ∈ {y1, y2, . . . , yny}. The combination of ability and parental resources
defines the student’s type j = 1, 2, . . . , J , with J = nθ × ny. For simplicity we refer to y as
“income.” Students receive y only if enrolled in college; otherwise they earn a labor market
wage as explained below.

A period, t, is equal to a year (and an academic year during college). For college students,
instant utility depends on consumption, c, and study effort, e. Effort cost is heterogeneous
across students and depends on ability. The instant utility at t is U(ct, et, θ) = u(ct)− g(et, θ).
Function U satisfies u′ > 0, u′′ < 0, g1, g11 > 0, g2 < 0, and g12 < 0. Thus, effort cost is
increasing and convex, and total and marginal effort costs are lower for higher-ability students.
Once the student leaves school and joins the labor force, utility depends only on consumption.
The discount factor for all individuals is β > 0.

3.2 College Decisions

We model college as a multi-period, risky investment. To graduate, students must complete a
required number of classes, hgrad. Students must spend at least five years in college in order
to graduate, and cannot exceed eight. We use three concepts related to number of classes per
year. First is x̄, the annual number of classes required to graduate on time. Second is qt, the
expectation formed by the student, at the beginning of the year, of how many classes she will
complete (henceforth, “target.”) The target can be greater or smaller than x̄, and drives the
student’s effort choice. Third is xt, the actual number of classes completed in the year, which
is a function of the student’s effort, ability, and intervening luck. It can be greater or smaller
than qt because of “good” or “bad” luck, respectively.

In the data, we do not observe a student’s target; rather, we observe the number of classes
she attempts, which is neither x nor q. Since tuition is often constant regardless of the number
of classes taken in Colombia, students usually attempt the maximum allowed number of classes
even if they do not expect to complete them—namely, their target might be lower than the
number of classes taken. We model the target rather than the number of classes attempted
because a student’s target determines her effort. In estimation we use data on the number of
classes attempted, which serves as an upper bound for q.

3.2.1 College Technology

Let ht denote the cumulative number of classes completed up to the end of t, or ht =
∑t

n=1 xn.
Students start college with h0 = 0, and by the end of year 1 attain h1 = x1. While enrolled,
students complete classes in t according to the following production function:

xt = H(θ, et, zt) x. (1)

The function describes the number of classes completed, xt, as a multiple of the annual require-
ment for on-time graduation, x. The scalar H(.) is a function of ability, effort, and a shock
to classes completed (or performance shock), zt > 0. We assume H is non-negative and can
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be lower or greater than one, implying that the student can complete more or fewer classes
than the annual requirement. We also assume that, when the student supplies zero effort, she
completes zero classes: H(zt, θ, 0) = 0. The shock zt, drawn from a continuous distribution
known to the student, includes a random i.i.d. component as well as a component that de-
pends on her ability, number of cumulative classes completed up to the beginning of t, and year.
The shock’s dependence on past cumulative classes completed seeks to capture the observed
persistence and allows students to affect their future “luck” by completing more classes in the
current period. The shock’s dependence on ability reflects that ability may be correlated with
other, unobserved elements that may systematically affect “luck.”8

If the student knew zt when choosing effort, then choosing et would be equivalent to choosing
classes completed, xt. Since, as explained below, the student chooses et before zt is realized,
choosing effort is equivalent to choosing a target, qt, where qt = E(xt). Thus,

qt = E[H(zt, θ, et)] x. (2)

Assuming H(·) is linear on zt so that it can be expressed as H(zt, θ, et) = ztH̃(θ, et), target and
effort are functions of E(zt):

qt = E(zt)H̃(θ, et) x and et = H̃−1
e [θ, qt/(E(zt) x)]. (3)

Meanwhile, the actual number of classes completed, xt, is a function of the effort chosen given
the target, and of the realized zt. Cumulative classes completed by the end of the year, ht, is

ht = ht−1 + xt. (4)

3.2.2 The Student’s Dynamic Optimization Problem

The student faces a sequential problem. We distinguish between the pre-graduation years,
when she cannot yet graduate, and the graduation years, when she is eligible to graduate. We
divide every year into two sub-periods. In the first sub-period, the student chooses her target
number of classes and hence effort. At the end of it she receives the performance shock, which
determines her actual number of classes completed. In the second sub-period, she graduates if she
has accumulated the required number of classes; otherwise she draws a shock that determines
whether she will remain in college the following year or drop out (“dropout shock”). Thus,
as long as she has not completed her graduation requirements, the student draws two shocks
per year—one to classes completed in the year and another to college continuity. The two
shocks are endogenous in the sense that they depend on cumulative performance, which in turn
depends on past effort. In a given year, the student’s state vector is (t, ht−1, θ, y). Figure B1
summarizes the timing of events and decisions, described in detail below.

Pre-graduation years (t = 1,...,4). During these years, students have not yet completed the
required number of classes for graduation, or ht < hgrad. In year 1, all students start with zero
cumulative classes completed and are heterogenous only in their type. Since students of a given

8For example, lower ability students may choose less selective programs than their more able counterparts, or
may have lower levels of the non-cognitive skills necessary to succeed in college. In the first case, E(z) would
be higher for lower ability students; in the second case, it would be lower. In our estimation we let the data
identify the sign of the relationship between E(z) and θ.
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type may receive different performance shocks during the year, they may complete a different
number of classes during the year. As a result, from year 2 onward students are heterogenous
not only in their type but also in the number of cumulative classes completed with which they
begin the year, ht−1.

During these years, at the beginning of the first sub-period the student chooses et, and
at the end zt is realized and determines the number of cumulative classes completed for the
year, ht ≥ ht−1. In the second sub-period the student receives the dropout shock, ddropt =
{0, 1}, which determines whether she will remain in college next year or drop out, respectively.
The probability that this shock would lead her to drop out is a function of her cumulative
performance up to that point, ht, as well as her type and college year:

Pr(ddropt = 1 | zt) = p̃d(t, ht, θ, y). (5)

We assume that the student must drop out if her progress is too slow. If she accumulates
less than a pre-specified number of classes completed, hdrop

t , she must drop out, or p̃d(t, ht <
hdrop
t , θ, y) = 1. If, in contrast, she has completed x̄ classes each year and is on track for on-

time graduation, her dropout probability is very low: p̃d(t, tx̄, θ, y) ≈ 0. In general, p̃d depends
negatively on cumulative performance and, when choosing effort, the student internalizes its
impact on future dropout shocks.

If the student drops out, she joins the labor market the following year as a college dropout
and receives the corresponding wage; the value of dropping out is V drop(t+1). Meanwhile, the
value of remaining in college is V coll(t+ 1, ht, θ, y).

Graduation years (t = 5,...,7). The first sub-period is similar to that of the previous years.
In the second sub-period, students who have fulfilled the graduation requirements, ht ≥ hgrad,
graduate and enter the labor market, whose value is V grad(t+1), the following year. Remaining
students draw the dropout shock to determine whether they will remain enrolled.

Terminal year (t = 8). This is the last year that the student can spend in college. By the
end of it, only two outcomes are possible: the student graduates if h8 ≥ hgrad, or drops out
otherwise. Continuation values are equal to V grad(9) and V drop(9) respectively.

We can now present the student’s dynamic optimization problem from the first subperiod of
each college year:

V coll(t, ht−1, θ, y) = max
et

{
U(ct, et, θ) + βEz

[
1{t≥5}Pr

(
ht ≥ hgrad

)
V grad(t+ 1) +

Pr
(
ht < hgrad

) [
p̃d(t, ht, θ, y)V

drop(t+ 1) +

(
1− p̃d(t, ht, θ, y)

)
V coll(t+ 1, ht, θ, y)

] ]}
,

(6)
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s.t. ct = y − T (t, ht−1, θ, y)

ht = ht−1 + xt

xt = H(zt, θ, et)x

ct > 0.

Here, the argument of Ez[·] is the continuation value function. Variable T (·) is tuition, constant
regardless of the target, qt. We write T (·) in general form as the policymaker could make it vary
by year, cumulative classes completed, ability, or income. In our baseline and data, however, it
varies only by y (see Section 4.1 below). For low-income students tuition might exceed income,
which would violate the ct > 0 constraint and make enrollment unfeasible. Note the severe
credit constraint: students cannot borrow to pay for tuition nor can they save.9 The policy
function for optimal effort, e∗(t, ht, θ, y), solves the dynamic problem defined in (6).

3.3 Workers

An individual can join the labor force after graduating from high school or college, or after
dropping out from college. The worker’s optimization problem, written in recursive form, is

V m(t) = max
ct

{u(ct) + βV m(t+ 1)}, (7)

s.t. ct = wm
t ,

where V m(t) is the value function of a worker with educational attainmentm = {hs, grad, drop},
denoting high school graduate, college graduate, and college dropout respectively.10 The
worker’s wage, wm

t , is specific to educational attainment and varies with t to allow for returns
to experience.

3.4 College Enrollment Decision

To decide whether or not to enroll in college, a high school graduate compares the expected
payoff of two choices—going to college, and joining the labor force as a high school graduate.
The enrollment decision is a discrete choice problem, where the payoff associated to each option
is the sum of three components. The first component is the expected value of either going
to college, V coll(t = 1, h0 = 0, θ, y), or entering the labor force as a high school graduate,
V hs. The second component is a type-specific preference for college enrollment, ξj = ξ̃(θj, yj).
This captures unmeasured elements—such as parental familiarity with college—that might vary
across types and affect a student’s propensity to enroll in college (we normalize the unobserved
preference for joining the labor force as a high school graduate to zero for all types.) The

9We do not model student’s decision to work during college because our administrative data does not record this
information. Further, data from Colombia’s National Survey of Time Use (ENUT ) reveals that high-income
college students are more likely to work during college than their lower-income counterparts, suggesting that
the primary motivation to work is not necessarily to pay for college (details available upon request). For a
model of student workers, see Garriga and Keightley (2007).

10We assume that workers consume all their earnings and do not have access to credit markets, which is an
accurate representation of developing economies. Since wages rise with experience and workers discount the
future at the interest rate, they have no incentives to save.
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purpose of this second component is to help us match college enrollment rates by student type;
it varies across—but not within—student types.11 The third component is a choice-specific,
idiosyncratic shock for each individual, ϵhs and ϵcoll, corresponding to working as a high school
graduate or enrolling in college, respectively. This component varies within and across types,
and helps us match the fact that not all individuals of a given type make the same choices. We
assume that ϵhs and ϵcoll are iid and distributed Type I Extreme Value with a scaling factor of
σϵ.

The individual chooses to attend college if

V coll(1, 0, θj, yj) + ξj + σϵϵ
coll

Value of going to college

≥ V hs + σϵϵ
hs

Value of working as a high school graduate
(8)

As a result, the probability of college enrollment for an individual of type j is

P coll(θj, yj) =
exp{(V coll(1, 0, θj, yj) + ξj)/σϵ}

exp{(V coll(1, 0, θj, yj) + ξj)/σϵ}+ exp{V hs/σϵ}
, (9)

Its complement, P hs(θ, y) = 1−P coll(θ, y), is the probability of joining the labor force as a high
school graduate. Since P coll varies by ability, θ, and parental transfer, y, predicted enrollment
rates vary across student types.

4 Empirical Implementation and Estimation

In this section, first we describe the computational implementation, estimation strategy, and
identification of our model. Next, we present parameter estimates and goodness of fit evidence.

4.1 Student Types, Tuition, and Workers

Student types. To construct student types for our computational implementation, we start
from the empirical distribution by ability and income of the 2005 cohort of high school gradu-
ates. The distribution, shown in Table A1, classifies high school graduates by ability quintile
and family income bracket. We refine this distribution to work with ability deciles instead of
quintiles. To construct the θ values, which must range between 0 and 1, we standardized the
Saber 11 test scores and normalize them between 0 and 1.12 The 5th, 15th, ...95th percentiles
of the distribution of normalized scores are our θ values. To construct the parental transfer
values, y, we face the obstacle that our administrative data reports income in brackets rather
than levels. In order to assign students in each income bracket a monetary transfer value, we
turn to an external data source—Colombia’s 2005 household survey data (SEDLAC)—which
reports household income and size. We classify households in the survey into the same income
brackets as in our administrative data, and calculate average per-capita household income by
bracket. This measure of disposable income by household member is our proxy of parental

11This component is analogous to the product mean utility modeled by Berry et al. (1995), which allows them
to match observed market share. See Appendix C for further details.

12The normalized test score is calculated as (sts − min(sts))/(max(sts) − min(sts)), where sts denote the
standardized test score.
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transfers for college students, y. The first two columns of Table A3 show the mapping between
income brackets and the resulting parental transfer levels. The final distribution of ability
and parental transfers, Φ(θ, y), includes J = 50 student types and features a positive, strong
correlation between θ and y.

Tuition. Student-level data on actual tuition expenses is not available in our administrative
data. Therefore, we estimate the tuition paid by students of a given y as the average annual
tuition paid by students from the corresponding income bracket at public institutions.13 Table
A3 shows the estimated tuition paid by parental income bracket. As the table shows, aver-
age per-capita household income (our proxy for parental transfer) varies greatly across income
brackets, but tuition varies much less. Although public institutions provide income-based tu-
ition discounts, the highest-income individuals pay proportionally less than their lower-income
counterparts: their per-capita income is about twenty times as large than that of the lowest-
income individuals, yet their tuition is only 2.5 times as large.14

Workers We use Colombia’s household survey (SEDLAC) to compute average wages by edu-
cational attainment and experience in 2005. Returns to education are substantive. For workers
aged 18-60, the average wage of a college graduate, a college dropout with at least two years
of complete college, and a college dropout with up to one year of complete college is 160, 58,
and 28 percent higher than the average wage of a high school graduate, respectively (see Table
A4).15 Returns to experience are also large. Among college (high school) graduates, the average
wage of experienced workers is 35 (29) percent higher than the average wage of inexperienced
workers. Consistent with the data, we assume that the returns to experience of college dropouts
are the same as those of high school graduates.

Time periods in the model map onto students’ and workers’ ages. For example, t = 1
corresponds to age 18, whereas the end of work life in period t = 48 represents age 65. Regardless
of her educational attainment or when she joined the labor force, the individual accrues returns
to experience (or becomes “experienced”) beginning at age 35 (t = 28). College students can
drop out and join the labor force after the initial college year starting at age 19 (t = 2.)

13We use tuition at public institutions because there is always a public institution that the student can attend.
Modelling the choice of college type (public or private) is beyond the scope of this paper. We estimate average
tuition at public institutions using SNIES and SPADIES.

14In Colombia, as in other countries, parental resources matter greatly to college enrollment even controlling
for ability. This provides strong evidence for credit constraints limiting college access, as discussed in a large
literature. Lochner and Monge-Naranjo (2011) develop a model that helps explain the rising importance of
family income for college attendance in the U.S. even in the presence of credit markets. Solis (2017) finds
that relaxing credit constraints in Chile had a positive impact on enrollment and college years completed,
particularly for low-income students. Although Colombia is a large developing economy, the market for
student loans is very limited, covering only 7 percent of students in 2003 (ICETEX 2010).

15This creates, in effect, four college attainments: high school, college, some college (one year), some college
(two or more years). The two “some college” categories correspond to college dropouts. We work with two
rather than one dropout category because their wages are quite different and can hence affect dropout timing.
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4.2 Functional Forms

Production function of classes completed. The technology to complete classes, H(zt, θ, et),
has constant returns to scale in ability and effort:

xt = xH(zt, θ, et) = xzt(θ
αe1−α

t ), (10)

where α ∈ (0, 1) is the elasticity of classes completed with respect to ability. Consistent with
the model, we set the required number of classes per year, x̄, to 20 classes, and the minimum
number of classes required for graduation, hgrad, to 98 (rather than 100, since in the data some
students graduate with slightly fewer than 100 classes, perhaps due to measurement error).

Performance shock. The shock that determines “luck” in class completion, zt, is parameter-
ized with a flexible functional form:

zt = exp{− exp{−(κ0 + κ1d1 + κhh̃t−1 + κθθ + (σ + σ1d1 + σθθ)νt)}}, (11)

where h̃t−1 is a measure of past cumulative number of classes completed, with h̃t−1 = ln(ht−1) for
every t > 1 and h̃0 = 0 for t = 1. The terms associated with d1 allow the shock distribution to be
different in year 1, when d1 = 1, than in other years. The shock depends on an iid component,
νt, drawn from the uniform distribution U(0, 1). The functional form in (11) ensures that the
shock is bounded, zt ∈ (0, 1), for any combination of parameter values and for all h̃, θ ∈ R.
Importantly, all the parameters in (11) affect both the mean and variance of zt. In Section 4.5
we discuss the effect of h̃t−1 and θ on this mean and variance at our parameter estimates.

Dropout shock. The functional form for the probability that the dropout shock forces the
student to drop out depends on student characteristics characteristics (ability and income),
college year, and cumulative performance:

p̃d(t, ht, θ, y) =
exp{δ(t, θ, y) + πh̃t}

1 + exp{δ(t, θ, y) + πh̃t}
, (12)

where δ(t, θ, y) is a year-, ability- and income-specific fixed effect, and h̃t measures cumulative
performance up (and including) to the current academic year. The student internalizes the effect
of effort on the likelihood of a good cumulative performance through a higher h̃t, which decreases
the dropout probability. The shock’s dependence on individual characteristics captures the fact
that shocks outside the student’s control, which might force her to drop out, are more likely
for some students than others. For example, low-income students may be more likely to drop
out when a family member suffers an adverse health shock or losses a job, as they may need to
work in support of the family or care for other members.

The specification in (12) is flexible, and encompasses the exogenous dropout probability as
a special case. This can be calculated by evaluating p̃d(t, ht, θ, y) at π = 0, and is the dropout
probability for students of a given type even if cumulative performance does not affect dropout
chances. It is exogenous because it is independent of effort. For example, low-income, low-
ability students may have a high exogenous probability in year 1—perhaps due to little parental
guidance to navigate the transition to college—yet a lower one in subsequent years.

Preferences. The preference specification for college students assumes separability of con-
sumption and effort allowing different curvatures for each one. Formally,
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U (c, e, θ) =
c1−ρ − 1

1− ρ
− µ

eγ

(1 + θ)k
, (13)

where the curvature with respect to consumption and effort is represented by ρ and γ, respec-
tively.16 This formulation allows student ability, θ, to shape the marginal cost of effort with a
scope determined by k. Workers’ preferences are a special case of students’ preferences, setting
µ = 0, and are given by

u(c) =
c1−ρ − 1

1− ρ
. (14)

The discount factor is set to β = 0.04, which corresponds to an implicit real discount rate
of 4 percent. The parameter σϵ, which is the scaling factor of the Type I Extreme Value
distribution of idiosyncratic preferences for college and work, is set equal to 1.

4.3 Estimation Strategy

The model does not have a closed-form solution and requires a numerical algorithm (described
in Appendix C) to solve the dynamic optimization problem for a given set of parameters,
Θ̃ = (Θ, ξ, δ), where

Θ = (ρ, µ, γ, k, α, κ0, κ1, κh, κθ, σ, σ1, σθ, π) (15)

is the vector of parameters common across individuals; ξJ×1 contains the type-specific unob-
served preferences for college, ξj (see equation (9)); and δ(J∗8)×1 contains the exogenous dropout
probability fixed effects, δ(t, θj, yj), for the J types and 8 years (see equation (12)).

We estimate the model using Simulated Method of Moments (SMM).17 Our estimation
searches for the value of Θ whose predicted moments, M̂(Θ), best match the observed ones,
M. Formally, the SMM parameter estimates solve the following problem:

argmin
Θ

(M̂(Θ)−M)′W−1(M̂(Θ)−M), (16)

where Θ is a 13×1 vector of parameters, M and M̂ are 585×1 vectors of sample and predicted
moments, respectively, and W is a diagonal weighting matrix whose diagonal contains the
standard error of the sample moments. We compute numerically the predicted values, M̂, for
every value of Θ.

The 585 moments we match are listed in Table 3. They capture aggregate and distributional
patterns associated with the stylized facts listed in Section 2.2: final college outcomes; dropout
rates; academic progression and class completion; persistence; and target number of classes.
Note that enrollment rates are matched by construction and are not a moment targeted in
estimation (see Appendix C.4 for further details.)

16When students enroll in college, we assume they receive a government stipend equal to 1, 000, 000 COP in
order to guarantee a sufficiently high consumption after paying tuition, particularly for the lowest-income
students. In reality, this stipend can be viewed as the multiple subsidies (to transportation, food, and so
forth) provided by Colombia’s government to college students.

17The estimation of δ and ξ is nested within the model solution for a given of value of Θ, in the spirit of Berry
et al. (1995). See Appendix C for further details.
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Table 3: Moments Matched in Estimation.

Number of
Data aspect Moments Moments

Dropout rates Dropout rate by year. 8
Dropout rate by ability quintile and income. 25
Dropout rate by ability decile. 10

College outcomes College outcomes by ability quintile. 25
Fraction of students that graduate by year (years 5-8). 4

Cumulative classes
completed

Average number of cumulative classes completed by
year, ability quintile, and college outcome.

140

Average number of cumulative classes completed by
year and ability decile (years 1-5).

50

Distribution of students into tiers of cumulative classes
completed, by year.

24

Distribution of students into tiers of cumulative classes 75
completed, by ability quintile and year (years 1-5).

Transition probabilities Pr(tier Y in t+ 1|tier X in t) for years 1-7. 112

Pr(ddropt = 1|tier X in t) for years 1-8. 32

Target number of classes Average target number of classes by ability decile and
year.

80

Total 585

Source: Own estimation.
Notes: Moments per year are computed for years 1-8 unless otherwise specified. Tiers are 1-4, based on
cumulative classes completed. Under “College outcomes,” outcomes include on-time graduate, late graduate,
drop out first year, drop out second year, drop out after second year. Under “Cumulative classes completed,”
which are calculated by year, outcomes include on-time graduate (until year 5), late graduate, drop out this
year, drop out later (until year 7); “this year” and “later” refer to the year under consideration. Under
“Transition probabilities”, t refers to the year; tiers X and Y are 1,...,4. Observed data for target number
of classes is average number of classes attempted by the corresponding students.

4.4 Identification

A critical challenge is identifying the role of ability, effort, and performance shocks in the pro-
duction of classes completed. For a given student type, we observe its ability by construction.
Section 2.2 shows that average classes completed varies little by ability but greatly within abil-
ities, suggesting that ability alone cannot explain the observed variation in classes completed.
Similarly, college outcomes vary substantially within abilities as well. These data features cre-
ate a role for the non-ability determinants of performance in our model, namely effort and the
performance shock. Model assumptions and functional forms help to separately identify the
roles of these two elements. Below we provide more intuition for identification by describing
each parameter’s role in the model—namely, how parameter changes affect model predictions
and therefore the fit of the data. Section 5 complements this discussion.

Effort (et): If effort had no role in the number of classes completed (α = 1) or were costless
(µ = 0), then all students would take the required number of classes per year. The fact that
students take, on average, a lower number of classes than required (see Section 2.2) indicates
that effort does have a role in classes completed and helps identify µ. An increase in µ leads to
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lower targets, effort, and number of classes completed. It also leads to lower college enrollment—
particularly for low-income students, who have a lower consumption than others to compensate
for a given effort. Speed of accumulation of classes completed, as well as transitions among tiers
over time, helps identify γ. A high γ penalizes high effort levels and makes it costly to catch
up. The fact that higher ability students take more classes, on average, than their lower-ability
counterparts indicates they have lower effort costs and identifies k. An increase in k raises the
variance of average target, effort, and classes completed across abilities.

Performance shock (zt): In the data, average number of classes completed varies widely
within abilities. Some of this variation can be explained by income, as the model predicts
that, conditional on ability, effort varies by income. Nonetheless, income alone does not explain
all the within-ability variation of classes completed. The remainder of this variation, then,
is explained by the performance shock, z. Since θ is between 0 and 1, we restrict z to this
range to pin down the scale for effort. An increase in κ0 makes shocks more favorable for all
students, thus raising the number of classes completed and lowering dropout rates across the
board. Parameter κ1 is an intercept shifter that makes the scale of z comparable across years.
An increase in κθ makes the expected shock relatively more favorable for high-ability students
and raises the dispersion in average classes completed and college outcomes across abilities.
Parameter σ is identified by the overall variation of classes completed conditional on ability,
whereas σθ is identified by the greater variation of classes completed among low- than high-
ability students (see Section 2.2.) The higher overall variation of classes completed in year 1
relative to other years identifies σ1. After year 1, κh is identified by the persistence of students
in their performance tiers.

Ability (θt): Given the role of effort and performance shocks in the production of classes
completed, the variation of average classes completed across abilities identifies α. This variation
rises with an increase in α.

Other parameters: An increase in ρ raises the aversion to consumption variations over time
and decreases the propensity to college enrollment. It also lowers the speed of class accumulation
and increases time-to-degree. Finally, the sensitivity of dropout rates with respect to current
classes completed, conditional on student income and ability, identifies π.

A sufficient condition for local identification is full rank for the matrix of first derivatives
of the moments’ predicted values with respect to the parameter vector when evaluated at the
true parameter point. The evaluated matrix at the estimated parameters has full column rank.

4.5 Parameter Estimates

Table 4 shows the estimates for the 13 parameters common across individuals, Θ. A key
parameter is the elasticity of classes completed with respect to ability, α, which ranges between
0 and 1. The estimated α is low (0.085), consistent with the low variation in average classes
completed across abilities. As a result, the estimated elasticity of credits completed with respect
to effort (1− α) is high (0.915). Since our ability measure captures college academic readiness
rather than innate ability, these estimates indicate that student effort has a much greater role
(about 10 times larger) than college academic readiness in class completion. A direct implication
of these estimates is that, in order to affect human capital accumulated and classes completed,
tuition subsidies must seek to affect effort rather than target high-ability students.
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The estimated preference curvature with respect to effort, γ, is equal to 4.73. This indicates
a very high marginal cost of effort—exceeding typical quadratic costs—which prevents large
catch-up efforts. The estimate of the parameter relating effort cost and ability, k, indicates
that effort cost has a strong, negative relationship with ability. When k = 0, effort cost is the
same for all abilities, whereas when k = 1 effort cost falls with ability, at a decreasing rate.
Our estimate of 1.23 yields the same qualitative pattern as k = 1 but with an even greater gap
in effort cost among high- and low-ability students.

The estimate for ρ, equal to 0.882, indicates that students have a high tolerance to con-
sumption changes over time (or a high intertemporal elasticity of substitution), which raises
their willingness to attend college and gives them a lower risk aversion.

Table 4: Parameter Estimates.

Parameter Symbol Estimate

Utility function
Consumption curvature ρ 0.882
Effort weight µ 0.062
Effort curvature γ 4.727
Effort cost w.r.t. ability k 1.225

Number of classes completed
Elasticity w.r.t. ability α 0.085

Performance shock
Constant κ0 -4.207
Year 1 shifter κ1 3.534
Persistence component κh 1.304
Ability component κθ 0.407
Std. dev. of iid shock σ 1.789
Std. dev. of iid shock - Year 1 shifter σ1 0.317
Std. dev. of iid shock - Ability shifter σθ -1.282

Dropout shock
Cumulative performance component π -2.951

Source: Own estimation.

To interpret the parameter estimates related to the performance shock, z, we consider their
implications on the shock’s mean and variance. According to the estimates, E(zt) is higher
for students with higher past performance. In other words, good past performance creates a
future “good luck” and good future performance, helping us match the persistence patterns
observed in the data. In addition, low-ability students have higher E(zt) and V ar(zt) than
high-ability students. Their (slightly) higher mean of z is consistent with the observed fact
that low-ability students enroll in less selective (and presumably less demanding) programs
than their abler counterparts.18 Together with effort, this higher mean helps us match the
good performance and graduation of some low-ability students. The greater shock variance for
low-ability students, in turn, helps us match their greater performance variance.

From a student’s perspective, an important question is whether future “luck” depends more
on ability or past performance. To examine the relative impact of past performance and ability

18We measure program selectivity as the average Saber 11 test score of the program’s students. We find a
negative correlation between student ability and program selectivity. Results are available upon request.
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on z given our estimates, we consider two hypothetical students. Student A is much more able
than B, with ∆θ = θA − θB = 0.22. This is a large ability difference, equal to the difference
between the 55th and the 5th ability percentile, or between the 95th and the 75th percentile.
Student A has an additional advantage over B, because by the beginning of t she has completed
one more class than B. Since A is abler than B, her E(zt) should be lower, yet because she has
completed more classes, her E(zt) should be higher. Based on our estimates, having completed
that one additional class gives her the same E(zt) as B’s, even though B is much less able. In
other words, E(zt) is much more sensitive to ht−1 than to θ. This makes z highly persistent
and more dependent on something the student can control—her performance—than on ability,
which she cannot control. Once again, the policy implication is clear in favor of seeking to
affect effort—rather than targeting ability—through tuition subsidies.

Another important question, for a student, is how effort (through its impact on cumulative
effort) affects the dropout risk. The estimated value for π, equal to -2.95, indicates that an
additional class completed by the end of the year, on average, decreases the probability of
dropping out by about 5 pp, or approximately 10 percent of the sample average dropout rate.
Since p̃d(·) has a logistic functional form, this marginal effect is stronger for students with
intermediate values of the dropout probability rather than values close to zero or one.

How important is the exogenous dropout risk component relative to the endogenous one in
the dropout probability? Recall that our full set of parameter estimates includes the dropout
probability fixed effects in Equation (12), δ̂(t, θ, y). To illustrate the relative magnitude of
π̂ and δ̂(t, θ, y), consider the average number of additional classes that a student from the
second ability quintile (“Q2 student”) must complete to attain the same dropout probability
as a student from the top ability quintile (“Q5 student”). In year 1, she must complete more
than 4 additional classes—20 percent of the annual requirements—reflecting a high exogenous
dropout probability. In year 5 she only needs one additional class completed, as the Q2 students
reaching year 5 are approximately on par with Q5 students. The important point is that, early
on, low-ability students face a high exogenous dropout probability, which they can only counter
through high initial effort or favorable performance shocks.

4.6 Goodness of Fit

The estimated model fits the data well and replicates the patterns described in Section 2.2. In
terms of graduation, the model matches closely the observed overall graduation rate (45.64 per-
cent) with a predicted rate of 45.02 percent. The model replicates the distribution of dropouts
by academic year (Table 5). In both the observed and predicted data the dropouts in the first
two (three) years account for 70 (78) percent of all dropouts.

The observed and predicted distribution of dropout rates across student types are pre-
sented in Table 6. The model is consistent with the observed patterns, whereby low-ability and
low-income students are more likely to drop out. Further, the model captures the academic
progression patterns observed in the data. Table 7 shows that the model replicates the observed
patterns of persistence, drop out, catch-up, and fall-behind.

As shown in Figure 8, the model fits extremely well the distribution of college outcomes by
ability. As a result, the observed on-time graduation rate of 15.1 percent is predicted perfectly,
and the observed fraction of 2005 high school graduates that complete college (14.7 percent) is
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Table 5: Goodness of Fit: Dropout by Academic Year.

Year Observed Predicted
1st 27.41 27.92
2nd 10.38 10.43
3rd 4.77 4.94
4th 2.7 2.83
5th 2.61 2.81
6th 2.74 2.92
7th 2.48 1.94
8th 1.28 1.19
Total 54.36 54.98

Source: SPADIES for observed data; fitted values for predicted data.
Notes: Table shows the observed and predicted percent of students who drop out each year.

Table 6: Goodness of Fit: Dropout Rates by Income and Ability.

Ability quintiles
Income Observed values Predicted values
Bracket 1 2 3 4 5 Total 1 2 3 4 5 Total

5+ MW 81.4 65.8 61.5 52.1 39.1 44.7 84.4 67.8 63.4 51.9 40.7 46.7
3-5 MW 74.2 69.4 62.2 57.9 43.8 51.3 81.6 68.3 62.2 57.3 44.4 52.5
2-3 MW 68.5 67.6 63.7 57.7 46.5 55.1 70.8 67.5 61.9 60.1 44.4 55.6
1-2 MW 71.6 66.6 62.2 57.7 50.6 57.8 69.9 66.5 60.9 56.2 46.9 56.7
<1 MW 69.0 67.9 61.3 55.9 50.3 58.7 69.6 66.3 58.6 53.7 46.2 57.5

Total 71.0 67.4 62.4 60.0 45.8 54.4 71.3 66.9 61.0 56.6 44.8 55.0

Source: Source: SPADIES for observed data; fitted values for predicted data.
Notes: Values are expressed in percentages (%). Income is reported in brackets; MW = monthly minimum
wage. Ability is reported in quintiles of standardized Saber 11 scores. Quintile 1 is the lowest.

predicted closely (14.5 percent). Further, the model captures the progressive concentration of
students in the upper tiers over time (Figure 9).

The model replicates the wide variation in classes completed within abilities as well as the
low variation across abilities (see Figure D1), and the patterns of class completion by year and
ability as well as conditional on final college outcome (see Table D1.)19 Finally, Figure D2
shows the average predicted target and average number of classes taken by the student. Recall
that the latter is theoretically an upper bound for the former (see Section 3.2.) As such, our
average predicted target is lower than the average observed number of classes. Overall, then,
our model fits the data well and allows us to further investigate the role of effort in college
outcomes.

19When evaluating the fit of individual moments, note that, by using a weighting matrix in (16), moments with
a greater number of underlying observations—such as those from early years, or for higher-ability students—
attain a better fit.
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Table 7: Goodness of Fit: Transitions Among Tiers of Cumulative Classes Completed.

Observed values Predicted values
Year 2 Year 3 Year 4 Year 5 Year 2 Year 3 Year 4 Year 5

Persistence
Tier 1 64.33 79.78 86.98 79.89 63.70 75.80 75.10 74.30
Tier 2 28.67 39.23 51.47 57.76 22.80 38.40 53.70 60.10
Tier 3 34.94 49.44 60.94 69.04 35.10 59.20 71.20 78.80
Tier 4 29.67 45.75 57.87 58.59 37.10 42.50 60.70 76.00

Dropout rate
Tier 1 12.16 4.03 1.75 0.71 11.60 4.20 3.00 2.20
Tier 2 14.43 6.50 3.25 1.52 16.20 6.40 4.60 3.00
Tier 3 23.02 12.30 7.29 4.02 25.10 9.20 7.00 5.20
Tier 4 54.23 41.95 28.24 24.24 55.20 50.70 35.20 21.40

Prob. of Catch up
Tier 3 to Tiers 1 & 2 18.10 20.42 20.61 19.63 26.60 20.30 13.10 9.40
Tier 4 to Tiers 1 & 2 4.26 0.55 0.22 0.14 0.82 0.00 0.00 0.00

Prob. of Fall behind
Tier 1 to Tiers 3 & 4 11.01 5.41 2.54 1.66 4.30 1.20 0.30 0.00
Tier 2 to Tiers 3 & 4 36.8 28.77 17.70 18.40 26.00 25.60 22.80 24.40

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Every cell shows the observed and predicted percent of students of a given tier who persist in the
same tier, drop out, catch up, or fall behind for years 1-5 (patterns are similar for years 6-8; not shown.)

Figure 8: Goodness of Fit: College Out-
comes.
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Figure 9: Goodness of Fit: Tiers of Cumu-
lative Classes Completed, by Year.
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5 The Role of Effort and the Implications of Omitting it

In this section we investigate the role of effort in college outcomes. We begin by showing
moments of the distribution of student effort in the baseline (i.e., the model evaluated at the
parameter estimates). To highlight the role of effort, we compare our model with another
one which does not include effort, and quantify the bias in production functions estimated
on administrative datasets, which usually do not include effort measures. We conclude by
investigating the relationship between effort and uncertainty.

5.1 Effort Across Students and Over Time

Our baseline model allows us to retrieve the (simulated) effort of every student in each college
year, which in turn allows us to characterize effort over time and across students. Figure
10 shows some moments of the effort distribution by year, conditional on the student being
enrolled. The solid line depicts average student effort. On average, this is relatively high in
years 1 and 4. In year 1, students work hard to complete classes and mitigate the dropout risk,
which is highest that year. In year 4, they increase effort in order to graduate. For the students
that do not graduate on time, average effort drops after year 5 because they do not have, on
average, many classes left. The solid dash lines show the 10th and 90th percentile of the effort
distribution, and illustrate the overall effort variation among students, particularly after year
5. Similarly, the standard deviation of effort (bottom series in the chart) is somewhat limited
in the first five years, but nearly doubles after the first batch of students graduates. While this
figure includes all students, regardless of whether and when they graduate, patterns are similar
for on-time graduates.

Figure 10: Predicted Effort by Academic Year
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To further examine the variation of effort across students and over time, Table 8 uses
simulated data from the model to show correlates of student effort based on reduced-form
regressions. In the model, a student’s optimal effort in a given year is the solution of the
dynamic optimization problem in (6). It is a function of the student’s ability, income, target
number of classes, cumulative classes completed up to that year, expected shock to classes
completed, and graduation probability. Thus, in Table 8 the dependent variable is log student
effort. All regressions control for college year and student income. Column 1 controls for target
number of classes, whereas columns 2, 3, and 4 control for variables that determine target and
effort—past cumulative classes completed (proxied by average classes completed per year in
past years), expected dropout probability, and expected shock to classes completed. Column 1
shows that higher ability students exert lower effort than their less able counterparts, whereas
column 2, 3, and 4 show the opposite. The reason for the opposing results is that column
1 shows the effect of ability controlling for target, by which higher ability students need less
effort for a given target, whereas the other columns show total ability effects—including those on
target choice—by which higher ability individuals choose more demanding targets and therefore
higher effort levels.

Table 8: Correlates of Effort Choice.

(1) (2) (3) (4)

ln(ability) −0.015∗∗∗ 0.076∗∗∗ 0.107∗∗∗ 0.067∗∗∗

(0.003) (0.003) (0.003) (0.003)
ln(target) 0.787∗∗∗

(0.004)
ln(average classes completed) −0.173∗∗∗

(0.008)
ln(expected dropout probability) 0.022∗∗∗

(0.000)
ln(expected shock to classes completed) −0.159∗∗∗

(0.006)
Constant −1.537∗∗∗ 1.019∗∗∗ 0.764∗∗∗ 0.519∗∗∗

(0.011) (0.018) (0.003) (0.006)

Adj. R2 0.766 0.285 0.557 0.286
Num. obs. 127,044 127,044 127,044 127,044

Source: OLS estimation using model’s simulated baseline values.
Notes: The dependent variable is ln(effort), or ln(e∗t ) in the model. An observation is a student-year. Ability
is θ, the target is qt, and cumulative classes completed is h̄t−1. Expected shock to classes completed is E[zt];
it varies across students and over time. Expected dropout probability is E[p̃d(t, ·)] as calculated by the
individual prior to the realization of zt. All regressions include year and income fixed effects (not shown).
Standard errors (in parentheses) are clustered by student. * p < 0.10, ** p < 0.05, *** p < 0.01.

Column 2 shows that students with better past performance exert less effort. This is the
outcome of a direct and indirect effects of past performance on effort, both moving in the same
direction. Because of the direct effect, students with better past performance are closer to
completing graduation requirements and need less effort. Because of the indirect effect, they
expect better shocks to classes completed and a lower dropout probability, both of which make
effort less necessary (columns 3 and 4). The effects of past performance illustrate the importance
of a strong beginning: high-performing students in the early years can expect better “luck” in
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the future, which eliminates the need for a costly catch-up. Columns 3 and 4 show that students
exert effort to compensate either for a high expected dropout probability or negative “luck” in
class completion. As these elements vary across students and over time, students vary in their
effort choices, giving rise to the effort variation captured by our simulated data.

5.2 What if the Model did not Include Effort?

One way of investigating the role of effort is estimating a model without effort as an input
in the production function, and comparing it with our baseline model. To do so, we replace
H(zt, θ, et) = zt(θ

αe1−α
t ) in (10) with H(z̃t, θ)=z̃tθ

α. This is a standard technology in the
literature, where academic progression is entirely determined by student ability, θ, and shocks,
z̃. This formulation is a special case that results from setting the weight on effort in (10),
(1− α), equal to zero.

To estimate the no-effort model, we postulate two flexible specifications that allow for dif-
ferent levels of heterogeneity in class completion among students. The first specification is
similar to a general class of models that do not include effort at all, and assumes a homoge-
neous productivity for all students and years, which is calibrated to the overall average effort
in the baseline. This yields z̃t = zte

1−α. The second specification is akin to adding (year,
student type) fixed effects to models with no effort, thereby assuming a heterogeneous produc-
tivity factor that varies across (student type, year) combinations. For a given (student type,
year) combination, this factor is calibrated to the baseline average effort for that combination,
or z̃(t, θ, y) = zte(t, θ, y)

1−α. In both specifications, the zt shock still varies across individual
students and over time.20

The parameter estimates and objective function values for these specifications and the base-
line model are presented in Table 9. Not surprisingly, the specification with heterogeneous
productivity factors fits the data better than that with homogeneous factors. However, both
specifications fit the data worse than the baseline model, as the objective function value—which
measures the distance between the observed and predicted data—rises 5-8 times relative to the
baseline. In other words, the worsening of the data fit due to omitting effort from the model
cannot cannot be solved by adding (student type, year) fixed effects to a no-effort model.

Removing effort from the production of classes completed places greater weight on ability
and the performance shocks. The value for α increases to 0.21-0.26, yielding an elasticity of
credits completed with respect to ability that is 2.5-3 times larger than the baseline’s. Since
higher ability students have lower effort costs and exert greater effort, the no-effort model fully
attributes to ability an effect that is mediated, at least partly, by effort. As for the performance
shock, in the no-effort model the implied E(z) rises steeply with ability, thereby amplifying
ability’s role, and z becomes more dispersed in an attempt to match within-ability performance
variation (see Figure 11.) Moreover, the estimate for the risk aversion parameter, ρ, becomes
twice as large to reflect that students, who can no longer mitigate risk through effort, behave
as if they were more risk averse.

As we saw above, the no-effort models provide a worse fit of the data than the baseline
model. Although they predict the overall graduation rate quite well (at 45-47 percent), relative
to the baseline model they over predict the variation of college outcomes across abilities. As

20In ((11)), the νt values for every student and year are the same as in the baseline model.
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Table 9: The Role of Effort: Parameter Estimates with and without Effort.

Baseline No Effort
Parameter Symbol With Effort 1. Homog. Prod. 2. Heter. Prod.

Utility function
Consumption curvature ρ 0.882 1.722 1.702
Effort weight µ 0.062
Effort curvature γ 4.727
Effort cost w.r.t. ability k 1.225

Number of classes completed
Elasticity w.r.t. ability α 0.085 0.260 0.206

Performance shock
Constant κ0 -4.207 -4.440 -4.478
Year 1 shifter κ1 3.534 2.765 2.781
Persistence component κh 1.304 1.206 1.257
Ability component κθ 0.407 1.473 1.395
Std. dev. of iid shock σ 1.789 3.196 3.016
Std. dev. of iid shock - Year 1 shifter σ1 0.317 0.450 0.178
Std. dev. of iid shock - Ability shifter σθ -1.282 -0.005 -0.045

Dropout shock
Cumulative performance component π -2.951 -2.557 -2.644

Objective function value 8.929 69.524 44.019

Source: Own estimation. The baseline model includes effort. “Homog. Prod.” and “Heter. Prod.” denote
the no-effort specifications with homogeneous and heterogeneous productivity factors, respectively. See
the text for a description of these specifications.

shown by Figure 12’s panel a, they make the dropout rate fall more steeply with ability and
the on-time graduation rate rise much faster than the baseline model. This is a consequence
of over estimating the role of ability in class completion. Similarly, the no-effort models over
predict performance variation across abilities but under predict it within abilities (compare
Figure 12’s panel b with Figure 5’s panel a). As a result, the no-effort models over predict the
academic performance and on-time graduation of high-ability students, and under predict it for
low-ability students.21

Modeling effort, then, allows us to match the fact that some low-ability students perform
better (due to effort) than predicted by their ability while some high-ability students perform
worse (due to lack of effort) than predicted by their ability. The no-effort specifications are able
to replicate the observed aggregate graduation rate well, but not the variation of outcomes across
student types and over time. This has serious distributional implications—in order to raise the
achievement of low-ability or low-income students, modeling it correctly is a critical first step. It
also has stark policy implications. When only ability and luck matter to performance, selection
might be the policymaker’s only tool to raise the fraction of college students—subsidizing, for
instance, the highest-ability students. When effort matters, in contrast, a new tool appears

21Due to space limitations, in this figure we compare the baseline model to the no-effort specification with
heterogeneous productivities, but the conclusions hold for the other no-effort specification as well. Since the
baseline model fits well the distribution of students across performance tiers, we compare this prediction from
the no-effort model directly to the observed data. Similar patterns arise when comparing predictions for
subsequent college years.
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Figure 11: The Performance Shock in the Baseline and No-Effort Specifications.
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Figure 12: Effort and Model Predictions.
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for the policymaker—affecting student behavior—and a new set of subsidies, based on student
performance rather than income or ability, become relevant.

5.3 Estimations Using Administrative Data: The Omitted Effort
Bias

Despite the importance of effort in performance, in general administrative data sets do not
provide effort measures. Our insights from the no-effort models indicate that, when these
data sets are used to estimate the relationship between classes completed and ability through
linear regressions, lack of effort measures might bias the estimates upwards. One advantage of
our structural model is that it recovers the variables—effort and shocks—not observed in the
administrative data, allowing us to measure the size and direction of the omitted effort bias.

In Table 10, the dependent variable is log classes completed, ln(xt). We regress it on log
ability using observed data in column 1 and simulated data in columns 2-4. The coefficients on
log ability in columns 1 and 2 are very close, as expected from our good fit. In both cases, log
ability explains about 20 percent of the variation in log classes completed.

Table 10: Classes Completed Per Year.

Actual data Simulated Data
(1) (2) (3) (4)

ln(ability) 0.166∗∗∗ 0.156∗∗∗ 0.090∗∗∗ 0.085∗∗∗

(0.015) (0.005) (0.005) (0.000)
ln(effort) 0.854∗∗∗ 0.915∗∗∗

(0.004) (0.000)
ln(shock to classes completed) 1.000∗∗∗

(0.000)
Constant 2.060∗∗∗ 2.748∗∗∗ 2.197∗∗∗ 2.996∗∗∗

(0.012) (0.004) (0.004) (0.000)

R2 0.213 0.204 0.518 1.000
Num. Obs. 123,101 127,044 127,044 127,044

Source: OLS estimation using SPADIES for actual data and model’s baseline predictions for simulated data.
Notes: Dependent variable is ln(classes completed per year), or ln(xt) in the model. An observation is a
student-year; years 1-8 are included. Ability is θ, effort is e∗t , and shock to classes completed is zt. All
regressions include year fixed effects (not shown). Standard errors (in parentheses) are clustered by student.
* p < 0.10, ** p < 0.05, *** p < 0.01.

The simulated data allows us to expand column 2’s specification in order to gauge the
relative roles of effort, performance shocks, and ability. By adding effort (column 3), we are
able to explain an additional 30 percent of the variation in classes completed. As expected, we
explain the full variation in classes completed when we also add the performance shock (column
4), with a coefficient on log ability equal to our point estimate for α. Further, in column 4 effort
and the shock account for 47 and 52 percent of the variation in classes completed, respectively,
leaving a mere 1 percent explained by log ability. In other words, in our simulated data almost
the whole variation in classes completed is due to effort and performance shocks.

Consistent with our estimates from the no-effort specifications, the regressions that do not
control for effort (in columns 1 and 2) overestimate the coefficient on log ability almost by a
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factor of 2. In other words, regressions using administrative datasets, which typically lack effort
measures, are likely to overestimate the role of ability in academic performance. Policies based
on these biased estimates might place too much weight on a fixed student trait—ability—rather
than a student choice—effort—that could, in principle, be affected through policy.

5.4 Effort and Uncertainty

The typical rationale for tuition subsidies is that students face financial constraints which
prevent them from undertaking an investment with positive net present value. Our model
highlights another, novel rationale: college students face investment uncertainty. They are
uncertain about their ability to complete classes and remain enrolled in college due to shocks
that might be particularly important in developing economies, where a family health shock or
job loss often force students to leave college.

In light of this uncertainty, an important question is whether student effort can mitigate
it. We define a measure of anticipated uncertainty and assess whether effort reduces it. Our
measure of anticipated uncertainty for student i at the beginning of period t is the coefficient
of variation of her college payoffs:

CVit =

√
Varz

[
Ṽ coll(t, hit−1, θ, y; zit, e∗it)

]
Ez

[
Ṽ coll(t, hit−1, θ, y; zit, e∗it)

] , (17)

where the right-hand side is the ratio between the standard deviation and expected value of
college payoffs, evaluated at the student’s optimal effort, e∗it. Given e∗it, the randomness in
Ṽ coll(·) comes from the performance and dropout shocks, z and ddrop respectively, associated
with effort via cumulative classes completed. Anticipated uncertainty varies across students
and college years and, most importantly, depends on student optimal effort.22

We compute this measure using our simulated baseline data, and investigate the relationship
between effort and anticipated uncertainty. A simple regression of anticipated uncertainty
on optimal effort would suffer from endogeneity because optimal effort would appear in both
sides of the regression. Our model, however, provides an instrument for effort. Since e∗it is
a function of the state variables, t, hit−1, θi, and yi, we instrument for effort using the state

22In ((6)), the value function V coll(t, ht−1, θ, y) is calculated for the student’s optimal effort, e∗t , while taking
expectation over zt. We can also define the college payoff from any effort and realization of zt as

Ṽ coll(t, ht−1, θ, y; zt, et) = U(ct, et, θ) + β

[
1{t≥5}Pr

(
ht−1 +H(zt, θ, et) x̄ ≥ hgrad

)
V grad(t+ 1)+

Pr
(
ht−1 +H(zt, θ, et) x̄ < hgrad

) (
p̃d(t, ht−1 +H(zt, θ, et) x̄, θ, y)V

drop(t+ 1)+

(
1− p̃d(t, ht−1 +H(zt, θ, et) x̄, θ, y)

)
V coll(t+ 1, ht−1 +H(zt, θ, et) x̄, θ, y)

)]
.

(18)

It then follows that the denominator of ((17)), Ez[Ṽ
coll(t, ht−1, θ, y; zt, e

∗
t )], is indeed the value function,

V coll(t, ht−1, θ, y).
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variables (see Table E1 for first-stage results), and run the second-stage regression reported
in Table 11. Estimates indicate that, in our baseline model, effort indeed lowers anticipated
uncertainty, with a negative and large elasticity of -2.34. Student effort, therefore, is highly
effective at mitigating performance and dropout risks. In other words, students can mitigate
their investment uncertainty by exerting greater effort. By incentivizing student effort, tuition
subsidies have the potential of lowering students’ investment uncertainty.

Table 11: Anticipated Uncertainty.

Dependent variable
ln(Anticipated risk)

ln(effort) −2.340∗∗∗

(0.089)
ln(average classes completed) −1.767∗∗∗

(0.043)
Constant −0.772∗∗∗

(0.068)

Num. obs. 116,761

Source: 2SLS estimation using model’s simulated baseline values.
Notes: The dependent variable is ln(anticipated risk), or ln(CVit) for the baseline. An observation is a
student-year. Upper 5% tail of uncertainty has been trimmed. Effort is e∗it, instrumented with the following

variables: classes completed, year, income, and ability fixed effects. ln(average classes completed) is h̃it−1, as
defined in the model. The regression includes year fixed effects (not shown). Standard errors (in parentheses)
are clustered by student. * p < 0.10, ** p < 0.05, *** p < 0.01.

6 Conclusions

Just as cows do not give milk, neither do colleges give degrees. Without student effort, class
completion and college graduation are simply not possible. In this paper we have developed
and estimated a dynamic model of college enrollment, performance, and graduation. A central
piece of the model, student effort, has a direct effect on the completion of classes and an indirect
effect mitigating risks on class completion or college persistence. We have estimated the model
using rich administrative data from Colombia. According to our estimates, effort has a much
greater impact than ability on class completion. Failing to model effort as an input to class
completion leads to overestimating the role of ability by a factor or two or three. In terms of
policy, it leads to subsidizing college for low-income or high-ability students rather than based
on student performance, which is highly dependent on student effort.

Similar to other investments, college is risky. Our model highlights that effort provides
an insurance against performance and persistence risks. As a result, policies that incentivize
effort not only promote better student performance; they also promote an insurance against
the inherent uncertainty of this investment.

A critical message from our paper is that, given the quantitative importance of effort to
college outcomes, tuition subsidies that do not promote effort will not yield the human capital
accumulation or intergenerational mobility that disadvantaged students and their families long
for. Along these lines, Ferreyra et al. (2022) apply the model developed in this paper to
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study alternative free college policies, including universal, targeted (by income or ability), and
performance-based free college. At this time of severe fiscal constraints for many countries
yet heightened expectations of individual and social progress, the time is ripe to build human
capital policies based on the wisdom that cows do not give milk; you need to milk them.
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Appendix

A Data

A.1 Students and Graduation Requirements

We use data from Colombia in the early 2000s. At that time, 80 percent of higher education
students attended bachelor’s programs (lasting four to six years), while the remaining 20 percent
attended two- or three-year programs (akin to associate’s degree programs in the U.S). For
several decades now, Colombia has implemented a mandatory high school exit exam, Saber 11.
This is a standardized test covering multiple academic fields that measures academic readiness
for higher education. We average scores over fields and standardize the average by semester-
year.

To study academic progression and college outcomes, it is customary in the literature to
focus on students from the same college entry cohort who study programs of the same duration.
We focus on the 2006 college entry cohort of students who pursue five-year programs. These
students, however, may have finished high school at different times. This is because, in Colombia
in the early 2000s, only 10 percent of high school graduates would enroll in college right away
but about a third would do it within a five-year window. Using this window therefore provides a
more accurate enrollment rate. Since the composition of high school cohorts is relatively stable
during the early 2000s, we view the 2005 cohort of high school graduates as representative
of cohorts from the 2000-2005 period, and use it to study college enrollment decisions. We
therefore use data from the 2005 high school cohort to study college enrollment decisions, and
from the 2006 college entry cohort to study college academic progression and outcomes.

The 2005 high school cohort comprises 415,269 students ages 15-22 who took Saber 11 in
2005. We classify a student as having enrolled in college if she did so between 2006 and 2010.
The 2006 college entry cohort of students pursuing five-year programs includes 27,344 students.
Five-year programs capture about three-quarters of enrollment in bachelor’s programs. Dropout
rates and academic progression correspond to the student’s first program in higher education.
Some students drop out in the first semester, without completing the corresponding academic
year. Since a period in our model is a school year rather than a semester, for those students
we impute a number of classes completed in the dropout year equal to twice their number of
classes completed in their last semester. This imputation is reasonable because, in their dropout
year, second-semester dropouts complete approximately twice as many classes, on average, as
first-semester dropouts.

Since we do not observe the number of classes that the student in a given program must
complete in order to graduate, we assume it is equal to the average number of classes completed
by the program’s graduates, which we do observe. This number varies across programs. To
facilitate calculations and exposition, we normalize the total number of classes required by a
program to 100. This allows us to describe academic progress in terms of the cumulative number
of classes completed by the student at given time. This is, of course, equivalent to describing
academic progress in terms of the percent of cumulative classes completed relative to the number
of required classes. For example, if a program’s graduation requirement is 50 classes, completing
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10 classes is equivalent to completing 20 percent of the graduation requirements and, in our
normalization, equivalent to completing 20 classes. Lacking data on how many classes students
are supposed to complete per year, we assume it is the same (20 classes) across the five years.
This assumption is supported by the data, which shows that students who graduate on time
complete classes at a fairly uniform pace.

A.2 Tables

Table A1: Family Income and Ability Distribution of High School Graduates.

Income Ability quintile
Bracket 1 2 3 4 5 Total

5+ MW 0.21 0.31 0.48 0.90 3.15 5.05
3-5 MW 0.88 1.08 1.37 1.94 3.43 8.69
2-3 MW 2.72 2.94 3.30 3.69 3.95 16.60
1-2 MW 8.47 8.99 9.16 8.69 6.64 41.95
<1 MW 7.95 6.89 5.80 4.58 2.49 27.71

Total 20.23 20.21 20.11 19.80 19.65 100.00
Source: Calculations based on Saber 11. The distribution refers to 415,269 high school graduates from 2005.
Notes: Family income is reported in brackets; MW =monthly minimum wage. Ability is reported in quintiles
of standardized Saber 11 scores. Quintile 1 is the lowest.

Table A2: Cumulative Performance Tiers: Lower Bound by Year.

Tier Year 1 Year 2 Year 3 Year 4 Year 5

Tier 1 19 38 57 76 95
Tier 2 17 34 51 68 85
Tier 3 13 26 39 52 65
Tier 4 0 0 0 0 0

Required cumulative classes 20 40 60 80 100

Source: Own classification.
Notes: This table shows the lower bound number of cumulative classes completed for each tier, by year. For
a given year, tiers are defined relative to the required number of cumulative classes completed (equal to 20,
40, 60, 80, and 100 in years 1 through 5, respectively). Tier 1: 95 percent of the requirement or more; Tier
2: (85, 95] percent; Tier 3: (65, 85] percent; Tier 4: 65 percent or less. For example, in year 2 (when 40
cumulative classes are required), the tier lower bounds (expressed in cumulative classes completed) are as
follows: 38 classes = 0.95 × 40 for Tier 1; 34 classes = 0.85 × 40 for Tier 2; and 26 classes = 0.65 × 40 for
Tier 3.
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Table A3: Family Income and Tuition.

Income Avg. Per-Capita Avg. Per-Capita
Bracket Household Income (y) Tuition (T )

5+ MW 21,027,690 2,195,972
3-5 MW 9,191,642 1,826,386
2-3 MW 5,337,010 1,177,543
1-2 MW 2,952,288 978,690
<1 MW 1,119,633 855,493

Source: Calculations based on Saber 11 and SEDLAC (household surveys) for average per-capita household
income; SNIES and SPADIES for annual tuition. Income and tuition are expressed in Colombian pesos
(COP) of 2005.
Notes: Since Saber 11 provides income brackets rather than actual income, we use SEDLAC (household
surveys) data on household income and size to calculate average per-capita income for households in a given
bracket; this is our proxy for parental transfer or income (y). To calculate average tuition by bracket, we
average over the tuitions paid by student from the corresponding income bracket at public institutions. MW
= monthly minimum wage. Both income (y) and tuition (T ) are expressed in annual terms.

Table A4: Average Hourly Wage by Age Bracket and Educational Attainment.

Age bracket
18-60 18-22 23-35 36-60

College graduates 6,308 3,636 5,305 7,171
HS graduates 2,424 1,845 2,213 2,864
College dropouts; completed 1 year or less 3,091 2,349 2,897 3,619
College dropouts, completed 2 years or more 3,824 2,459 3,340 4,451

Source: Household surveys for Colombia (SEDLAC); year 2005.
Notes: Wages are expressed in Colombian pesos (COP) of 2005. Calculations include males and females
who work. Attainment reflects an individual’s highest completed level of schooling.
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B Model timeline

The figure below summarizes the timing of events and student decisions:

Figure B1: Summary of Timing of Events and Individuals’ Decisions

Enrollment
Decision
(t = 0)

{
College

Labor force

College
(t = 1:4)


State i. Choice ii. Classes iii. Accumulated iv. Dropout v. Payoffs

(t, ht−1, θ, y) et completed classes shock ddropt V drop(t+ 1)

shock zt completed ht V coll(t+ 1, ht, θ, y)

College
(t = 5:7)



State i. Choice ii. Classes iii. Accumulated iv. Dropout v. Payoffs

(t, ht−1, θ, y) et completed classes shock ddropt V drop(t+ 1)

shock zt completed ht V coll(t+ 1, ht, θ, y)

V grad(t+ 1)

College
(t = 8)


State i. Choice ii. Classes iii. Accumulated iv. Dropout v. Payoffs

(8, h7, θ, y) e8 completed classes shock ddrop8 V drop(9)

shock z8 completed h8 V grad(9)
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C Computation and Estimation

In this appendix we first summarize the computational solution of the model, and then provide
detail on its main steps.

C.1 Solving the Model: A Summary

Recall that the state vector is (t, ht−1, θ, y). We discretize the state space for a total of 40,400
points. We simulate N = 100,000 high school graduates from the empirical distribution of
ability and income (or parental transfer), Φ(θ, y). For each simulated high school graduate,
we draw one i.i.d. shock per year, {νit}8t=1. These shocks enter the performance shock, z (see
equation (11) in the main text). For a given simulated high school graduate, these shocks are
the same across parameter vectors during estimation.

Among the simulated high school graduates of a given type, a fraction of them receives a
college enrollment shock equal to 1 and enrolls in college (thus becoming the “simulated college
students”); the fraction is equal to the type’s observed college enrollment rate.

To compute the model’s predictions for a given value of Θ, the algorithm proceeds as follows:

1. For each point in the state space, use backward induction to solve for the sequence of opti-
mal efforts (the policy function) and the value function, e∗(t, ht−1, θ, y) and V coll(t, ht−1, θ, y)
respectively.

2. For each simulated college student, and for every year she is enrolled, combine her opti-
mal effort with the corresponding νt shock to determine the performance shock and the
probability of dropping out, p̃d(t, ht, θ, y). Draw the binary dropout shock; the shock is
equal to 1 with probability p̃d(t, ht, θ, y).

3. Based on step 2, aggregate the simulated dropout decisions to obtain a predicted dropout
rate for each of the 400 (t, θ, y)-combinations.

4. Find the vector δ that minimizes the distance between the predicted and observed dropout
rate for each (t, θ, y)combination, using the contraction mapping algorithm described in
Appendix C.3.

5. By comparing the value of going and not going to college for each type, V coll(1, 0, θ, y)
and V hs, respectively, find the type-specific college enrollment shock, ξj, that renders the
type indifferent between going and not going to college. Further details are provided in
Appendix C.4.

Solving steps 1-5 of the dynamic optimization problem for 100, 000 simulated high school
graduates and 40, 400 states takes approximately 8 minutes in a 1.4 GHz Intel Core i5 processor.
Since the model does not have a closed-form solution, in estimation the problem must be solved
anew for each value of Θ. The estimation of δ and ξ is nested within the model solution for a
given of value of Θ, in the spirit of Berry et al. (1995), as described in Appendix C.3.
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C.2 Further Details on Model Solution

The solution of the dynamic problem for a given value of Θ involve three steps: calculating
the value of working by educational attainment, solving for the policy and value functions, and
simulating college students.

Calculating the Value of Working by Educational Attainment Since we solve the
student’s dynamic programming problem by backward induction, we begin by calculating the
final value of the individuals’ finite horizon problem. We calculate the value of the future
discounted payoffs of working as a college graduate, high school graduate, college dropout with
one year of college, and college dropout with two or more years of college. In the timing of the
model, t = 1 when the individual is 18 years old, at which point she either starts college or
joins the labor force as a high school graduate. The value of working as a high school graduate
since t = 1 onward is

V hs =
L∑

t=1

βt−1u(whs
t ), (19)

where whs
t is the average wage for a high school graduate in year t, and L is retirement age

(65 years old, or L = 48). For this and the other educational attainments, we allow the wage
to vary over time to incorporate returns to experience (which accrue after age 35, that is for
t > 17). Similarly, the value of working as a college dropout who has completed n years of
college is

V drop(n+ 1) =
L∑

t=n+1

βt−n−1u(wdrop
t ), (20)

where wdrop
t is the wage received by this individual in year t. Finally, the value of working as a

college graduate who took n years to graduate is:

V grad(n+ 1) =
L∑

t=n+1

βt−n−1u(wgrad
t ), (21)

Solving for the Policy and Value Functions Since the state vector, (t, ht−1, θ, y), has
four elements, we build two-four dimensional grids—one for the policy function, e∗(t, ht−1, θ, y),
which contains the optimal effort choice by state, and another for the optimal payoffs, V coll(t, ht−1, θ, y),
associated with e∗(t, ht−1, θ, y). The grid includes 8 points (years) for t, 101 points for h (to
represent 0, 1, 2, . . . , 100 credits completed), ten points (ability deciles) for θ, and five points
for y, for a total of 40,400 points.

We use backward induction to solve the Bellman equation for each period. Starting from
the last year of college, t = 8, when students must either graduate or drop out, the Bellman
equation is:

V coll(8, h7, θ, y) = U(c8, e8, θ)+βEz

[
Pr
(
h8 ≥ hgrad

)
V grad(9)+Pr

(
h8 < hgrad

)
V drop(9)

]
. (22)

By choosing e8 to maximize V coll for every state (8, h7, θ, y), we solve for the policy and value
functions, e∗(8, h7, θ, y) and V coll(8, h7, θ, y).
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Moving backwards to t = 7, we proceed analogously:

V coll(7, h6, θ, y) = U(c7, e7, θ) + βEz

[
Pr
(
h7 ≥ hgrad

)
V grad(8)+

Pr
(
h7 < hgrad

) (
p̃d(7, h7, θ, y)V

drop(8)+

(
1− p̃d(7, h7, θ, y)

)
V coll(8, h7, θ, y)

)]
,

(23)

where the year-8 payoffs, V grad(8), V drop(8) and V grad(8, ·), are already known. We continue
this procedure for t = 6, . . . , 1 in order to complete the calculation of e∗(t, ht−1, θ, y) and
V coll(t, ht−1, θ, y) for all possible states.

We use the resulting policy function, e∗(t, ht−1, θ, y), whenever we need to retrieve a student’s
optimal effort during estimation or baseline calculations. In addition, we use the resulting value
function at t = 1, that is, V coll(1, 0, θ, y), to calculate the value of enrolling in college. This is to
be compared with the value of joining the workforce as a high school graduate, V hs, following
equation (8).

Simulating College Students Recall that a student type j is given by a (θj, yj) combination.
We have J = 50 types. For each type, let P coll(θj, yj), equal to the actual, observed share of
individuals of that type that enrolls in college. Note that P coll(θj, yj) varies across types, as
illustrated by Table 1. Consider individual i who belongs to type j. For each simulated
individual, we draw a binary variable, denri , to determine whether the student goes to college
or not. More specifically,

denri =

{
1, i goes to college, with probability P coll(θj, yj)

0, i does not goes to college, with probability 1− P coll(θj, yj)
(24)

Simulated students who receive denri = 1 are those who enroll in college. In other words, the
proportion of simulated students of a given type who receive denri = 1 is the same as the
proportion of actual students of that type who enroll in college.23 For students who do not
enroll in college, the value function is V hs. For those who enroll in college, we simulate classes
completed and dropout shocks as described below.

For t = 1, we use the policy function, e∗(1, 0, θj, yj), corresponding to every student type
j. Since all students start at t = 1 with zero accumulated credits, h0 = 0, the policy function
assigns the same effort to all students of a given type j. Then, we draw the iid shock νi1 for
each student; this, in turn, yields a value for the zi1 shock. The combination of the student’s
ability, effort, and zi1 shock yields the number of completed credits by the end of the year, hi1.
Because of the z shock, individuals of a given type may attain different values of h.

For student i, we use the realized hit to establish whether the student drops out before the
second period. The student receives a draw of the binary variable ddropit ; if the draw is equal to
1, she drops out. The probability that ddropit = 1 is a function of student type, year, and average

23For a large number of simulations such as ours, this is asymptotically equivalent to simply assigning denri = 1
to a fraction of simulated students of a given type equal to the type’s observed enrollment rate.
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performance up to (and including) the corresponding year:

ddropit =

{
1, i drops out of college, with probability p̃d(t, hit, θj, yj)

0, i continues in college, with probability 1− p̃d(t, hit, θj, yj)
(25)

where p̃d is defined as in (12) in the main text.

Another binary variable, dgradit , indicates whether a student graduates. The graduation
requirement is hgrad = 98 rather than 100 because some students in the data graduate with
fewer than 100 classes. Whenever t ≥ 5 and hit ≥ hgrad, we set dgradit = 1 and ddropit = 0. In
other words, a student in year 5 or beyond who has completed at least 98 credits is no longer
subject to the dropout risk and automatically graduates. In addition, a student who reaches
t = 8 without having completed at least 98 classes cannot graduate (dgradit = 0) and must drop
out (ddropit = 1).

The final outcome of the simulation is a “dataset” with N = 100,000 simulated high school
graduates, some of whom enroll in college. For those who enroll, we obtain their simulated
number of classes completed by year and final college outcome (graduation or drop out), along
with their graduation or dropout year. This dataset mimics the observed student-level admin-
istrative data.

C.3 Estimation of Fixed Effects in the Dropout Probability

We now describe the estimation of the time- and type-specific fixed effects that enter in the
dropout probability, δ(t, θ, y). This estimation is nested within the estimation Θ because it
must take place for every possible value of Θ.

From the simulation of college students described above, we compute the predicted dropout
rates by year and student type. By definition, this is the predicted fraction of students of type
j who drop out in every t, or p̂dropjt = fd(δ(t, θ, y); Θ). We compare these predicted rates with

the observed ones, denoted by pdropjt , and compute a measure of the distance between them.

For each pair of predicted and observed dropout rates, we calculate the fixed effects δ(t, θ, y)
that minimize this distance. We do this through an iterative contraction mapping, in the spirit
of Berry et al. (1995). While Berry et al. (1995) uses a contraction mapping to find the
unobserved product characteristics that make predicted market shares for each product equal
to their observed counterparts, we search for the time- and type-fixed effects that bring the
observed the dropout rates as close as possible to their observed counterparts for each period
and student type.

Formally, we use a contraction mapping algorithm to find the vector δ = [δ(t, θ, y)]J(8)×1

that fulfills the following condition:

∥fd(δ; Θ)− pdrop∥ ≤ ϵd, (26)

where ϵd is our chosen tolerance level. Below are the algorithm steps; recall that they are
conditional on a given parameter point, Θ:

1. Establish an initial guess for the fixed effects vector, δ(0).
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2. Solve the dynamic optimization problem (see Appendix C.)

3. Compute the predicted vector of drop out rates fd(δ(0); Θ) = p̂drop.

4. Using the observed drop out rates, compute the updated fixed effects vector, δ(1), as
follows:

δ(1)(t, θj, yj) = ln

(
pdropjt

fd(δ(0)(t, θj, yj); Θ)

)
. (27)

5. Using δ(1) as the new initial guess, repeat steps 1 through 4 until either condition (26) is
satisfied or a predetermined maximum number of iterations are completed.

For some parameter values, the algorithm may not be able to meet (26) due to model non-
convexities. For instance, dropping out at t = 8 in the model is a deterministic function of
the number of credits completed. However, in the data we observe some individuals graduate
without having completed all credits, likely due to measurement error in number of classes
completed. Another non-convexity arises because students in the model must meet a minimum
number of cumulative credits per period, hdrop

t in order to remain enrolled. In the data, in
contrast, some students remain enrolled even though they do not meet this requirement.

C.4 Recovering Type-Specific Preferences for College Enrollment

Recall that ξj = ξ̃(θj, yj) is the type-specific unobserved preference shock for enrolling in college.
For a given value of Θ, we recover it as follows. As described above, we compute the value
function, V coll(·), for every state (t, ht, θ, y). This allows us to compare the value of going to
college, V coll(1, 0, θj, yj), with the value of working as a high school graduate, V hs. Thus, ξj
takes on the value that makes the predicted probability of enrolling to college be equal to the
observed one. Under the assumption that σϵ = 1 (see Section 4.2), we solve for ξj in equation
(9):

ξj = ln

(
P coll(θj, yj)

1− P coll(θj, yj)

)
− (V coll(1, 0, θj, yj)− V hs). (28)
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D Goodness of Fit: Additional Evidence

Table D1: Goodness of Fit: Cumulative Classes Completed by Year.

Year 1 Year 2 Year 3 Year 4

Observed Predicted Observed Predicted Observed Predicted Observed Predicted

Ability quintile
1 13.9 15.7 31.7 32.7 49.3 51.4 67.2 68.3
2 14.5 16.3 32.3 33.3 49.8 52.0 68.2 69.9
3 15.3 16.5 33.0 33.6 51.2 52.8 69.2 70.6
4 15.6 16.0 33.6 33.1 52.0 52.3 70.3 70.6
5 16.6 17.4 34.5 35.5 52.9 54.3 71.8 72.0

On-time graduate 20.5 20.7 41.2 41.5 62.0 62.0 82.8 82.1
Late graduate 18.0 19.4 35.4 37.8 52.5 55.4 70.1 72.0
Dropout later 15.8 14.9 30.4 29.0 44.5 42.9 59.3 53.9
Dropout this year 10.9 13.2 23.8 21.7 36.4 37.5 46.4 55.6

Total 15.8 16.7 33.8 34.2 52.1 53.2 70.6 71.0

Year 5 Year 6 Year 7 Year 8

Observed Predicted Observed Predicted Observed Predicted Observed Predicted

Ability quintile
1 83.9 83.1 88.8 90.4 93.6 91.3 96.0 92.2
2 85.7 85.7 91.3 92.0 95.3 92.3 97.2 91.6
3 85.9 86.6 91.5 92.9 95.8 93.1 98.0 94.3
4 87.1 86.9 92.7 92.6 96.6 92.3 98.4 90.5
5 88.6 87.6 94.0 93.3 97.6 93.5 99.0 91.4

On-time graduate 99.0 99.5
Late graduate 86.6 87.1 95.6 96.8 98.3 98.4 98.9 99.3
Dropout later 72.4 64.4 78.5 68.8 82.7 75.7
Dropout this year 69.7 64.5 84.5 77.3 86.2 76.7 88.2 81.5

Total 87.5 86.9 93.0 92.8 96.8 92.9 98.5 91.6

Source: SPADIES for observed data; model simulations for predicted data.
Notes: The table shows the observed and predicted cumulative number of classes completed by year—overall, by ability quintile, and by
final college outcome. Ability quintile 5 is the highest. (%).
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Figure D1: Goodness of Fit: Cumulative Classes Completed by Ability Decile and Year.
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Source: SPADIES for observed data; model simulations for predicted data.
Note: For each year, the panels depict observed and predicted cumulative number of classes completed by ability
decile. Figures correspond to students who begin each year.

Figure D2: Goodness of Fit: Target Number of Classes by Ability Decile and Year
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Source: SPADIES for observed values; model’s own simulations for predicted values.
Note: Observed values correspond to the average number of classes attempted; predicted values correspond to
average target number of classes as defined in the model.
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E Anticipated Uncertainty

Table E1: Determinants of Effort.

Dependent variable
ln(Optimal Effort)

ln(average classes completed) −0.060∗∗∗

(0.013)
Income 1-2 MW −0.001

(0.003)
Income 2-3 MW −0.008∗∗

(0.003)
Income 3-5 MW 0.001

(0.003)
Income 5+ MW −0.031∗∗∗

(0.003)
Year=2 0.090∗∗

(0.039)
Year=3 0.099∗∗∗

(0.037)
Year=4 0.036

(0.038)
Year=5 −0.014

(0.037)
Year=6 −0.256∗∗∗

(0.037)
Year=7 −0.289∗∗∗

(0.034)
Year=8 −0.321∗∗∗

(0.039)
Ability Q2 0.007

(0.006)
Ability Q3 0.035∗∗∗

(0.005)
Ability Q4 0.055∗∗∗

(0.005)
Ability Q5 0.107∗∗∗

(0.005)
Constant 0.707∗∗∗

(0.005)

R2 0.226
Num. obs. 116,761

Source: First-stage of 2SLS estimation based on model’s predicted baseline values.
Notes: The dependent variable is ln(optimal effort), or ln(e∗t ). An observation is a student-year. Upper 5%
tail of risk has been trimmed. Independent variables are state variables at t. Ability is θ; income is y; year is
t; average classes completed is h̄t−1. The regression includes year fixed effects (not shown). Standard errors
(in parentheses) are clustered by student. * p < 0.10, ** p < 0.05, *** p < 0.01.
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