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Abstract 

Analyses that reveal how treatment effects vary allow researchers, practitioners, and policymakers 

to better understand the efficacy of educational interventions. In practice, however, standard 

statistical methods for addressing Heterogeneous Treatment Effects (HTE) fail to address the HTE 

that may exist within outcome measures. In this study, we present a novel application of the 

Explanatory Item Response Model (EIRM) for assessing what we term “item-level” HTE (IL-

HTE), in which a unique treatment effect is estimated for each item in an assessment. Results from 

data simulation reveal that when IL-HTE are present but ignored in the model, standard errors can 

be underestimated and false positive rates can increase. We then apply the EIRM to assess the 

impact of a literacy intervention focused on promoting transfer in reading comprehension on a 

digital formative assessment delivered online to approximately 8,000 third-grade students. We 

demonstrate that allowing for IL-HTE can reveal treatment effects at the item-level masked by a 

null average treatment effect, and the EIRM can thus provide fine-grained information for 

researchers and policymakers on the potentially heterogeneous causal effects of educational 

interventions. 

 

Keywords: Heterogeneous Treatment Effects, Explanatory Item Response Model, Causal 

Inference, Simulation, Psychometrics 
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Modeling Item-Level Heterogeneous Treatment Effects with the Explanatory Item 

Response Model: Leveraging Online Formative Assessments to Pinpoint the Impact of 

Educational Interventions 

 Analyses that explore Heterogeneous Treatment Effects (HTE) are increasingly becoming 

standard in education research, as understanding how and why treatment effects vary is critical for 

the translation of academic research to the implementation of educational interventions (Schochet, 

Puma, & Deke, p. 1). Traditional methodological approaches to HTE such as subgroup analysis, 

moderation (i.e., statistical interaction), reweighting for generalization, mediation, instrumental 

variables estimation, and quantile regression all provide critical insight into the potentially varying 

impacts of an educational intervention, but ignore the most fine-grained perspective on how 

treatment effects may vary within an outcome measure itself. In this study, we aim to expand the 

analyst’s HTE toolkit by proposing and testing a novel application of the Explanatory Item 

Response Model (EIRM; De Boeck & Wilson, 2004) for assessing what we term “item-level” 

Heterogeneous Treatment Effects (IL-HTE). That is, treatment effects may differ not just between 

demographic subgroups or according to some baseline characteristic such as pretest scores, as in 

traditional HTE analysis, but across the various items of an outcome measure, such as an 

educational assessment, manifested by treatment effects that vary at the item level. This 

methodological gap can be addressed with the EIRM because it models individual item responses 

directly rather than as a single summary value such as a sum score or IRT-based ability estimate, 

thereby allowing researchers to assess the presence of IL-HTE and to quantify its explained and 

unexplained sources. 

 The EIRM has been applied primarily to psychometric research questions such as the 

relationship between person or item characteristics and item response patterns (see for example 
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Kim, et al., 2010, which uses an EIRM to assess the predictors of letter-sound acquisition in an 

observational study). However, the EIRM has seen less application in causal inference contexts 

despite its theoretical appeal and its ability to combine measurement (i.e., psychometric) and 

explanatory (i.e., regression) models into a single computational procedure (Briggs, 2008; 

Christensen, 2006; Rabbitt, 2018; Zwinderman, 1991), and we are aware of no methodological or 

empirical studies to date that employ the EIRM to explore IL-HTE. By explicitly modeling IL-

HTE using the novel approach presented in this study, and in some cases, uncovering statistically 

significant item-level treatment effects masked by a null average treatment effect, the EIRM allows 

researchers to gain more fine-grained insight into the efficacy of educational interventions. This 

fine-grained insight in turn allows researchers to contextualize and interpret impact analyses in 

ways that are more actionable for practitioners and policymakers, and ultimately supports the goal 

of more targeted diagnosis and intervention to support student learning outcomes. 

 This study introduces a general approach for conducting IL-HTE analysis within the 

context of a large-scale, cluster-randomized controlled trial that involved third grade students from 

every K-5 elementary school in one of the largest school districts in the United States (k = 110 

schools, n = 7797 students). The RCT tests the efficacy of the Model of Reading Engagement 

(MORE) intervention, which emphasizes thematic lessons that provide an intellectual framework 

for building domain knowledge to help third-grade students connect new learning to a general 

schema and to transfer their learning to novel reading comprehension tasks (see Kim, et al., 2021; 

Kim, et al., 2022 for a detailed description of MORE and prior research results). In the MORE 

intervention, the general schema for the concept of system (i.e., how systems function properly) 

was induced through a 12-day science lesson sequence focused on the topic of human body 

systems. All schools implemented the 12-day lesson sequence on human body systems and were 
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randomly assigned to implement two additional lessons that involved either a double dose of 

science vocabulary and concepts through a read aloud text on the human body system and stem 

cells (control), or social studies extension lessons on collaborative systems focused on how leaders 

collaborated in the Apollo 11 moon mission (treatment). That is, the RCT aimed to test the 

hypothesis that students could leverage the general schema for system through repeated exposure 

to a science topic (i.e., human body systems) and brief exposure to social studies topic (i.e., 

collaborative systems) while reading unfamiliar science and social studies passages to demonstrate 

learning on an online formative reading comprehension assessment. 

The formative assessment included three reading comprehension transfer tasks that varied 

by passage-item type (Near, Mid, and Far transfer passages determined by the number of science 

and social studies words that appeared in the lesson texts) and was administered electronically to 

all third graders in the study. Following the intervention implementation, we provided 

superintendents, principals, and teachers with detailed item- and passage-level information from 

the assessment. Here, we extend the descriptive analyses provided to participants by statistically 

evaluating IL-HTE to assess potential transfer effects on reading comprehension, thus illustrating 

how a novel application of the EIRM can provide immediate, fine-grained, population-level 

evidence of causal impact and can potentially help decision-makers diagnose and intervene to 

support students before the administration of the end-of-grade three reading test, used for high-

stakes accountability purposes (i.e., threat of grade retention and required summer school). The 

full assessment is available in the Online Supplemental Materials. 

 Methodologically, we pursue two aims. First, a data simulation to assess the performance 

of the EIRM in the presence of IL-HTE and the related conceptual issues that arise, and second, 

an application of the EIRM to empirical educational assessment data from the MORE intervention. 
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A replication toolkit is available from the authors for researchers interested in replicating or 

extending the simulation or the analysis of the assessment data.  

The Explanatory Item Response Model (EIRM) 

Because the statistical theory underlying the EIRM has been described extensively in prior 

literature, we provide only a brief review here. Readers interested in further details about the EIRM 

are directed to Wilson, De Boeck, and Carstensen (2008) for a short introduction, De Boeck, Cho, 

and Wilson (2016) for a recent review, and De Boeck and Wilson, (2004) for a book-length 

treatment. For a detailed review of generalized linear mixed models (GLMMs), of which the EIRM 

is a special case, see Stroup (2012). For a practical introduction to fitting the EIRM in R with the 

lme4 package, see De Boeck, et al., (2011). 

The EIRM is a cross-classified multilevel logistic regression model, in which item 

responses are nested within the cross-classification of persons and items. In its simplest form with 

random effects for persons and items, it can be expressed as 

!"#$% &'()!" = 1,- = ." + 0! 	 

."~3(0, 6#
$, 

0!~3(0, 6%!
$ ) 

in which the log-odds of a correct response to item $ for person 9 is a function of person ability ." 

and item easiness 0! (item easiness is the negative of what is often called item difficulty in the Item 

Response Theory literature). The EIRM with no person or item predictors is equivalent to the 

Rasch or One-Parameter Logistic (1PL) IRT model when the item easiness parameters are 

considered fixed. 

An important modelling choice when employing the EIRM is the distinction between fixed 

and random effects for items and persons. In the IRT and EIRM contexts, persons are almost 
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always modeled as random effects, that is, as normally distributed with mean zero and an unknown 

variance, but we have a choice between fixed and random effects for the assessment items (De 

Boeck, 2008). Random effects allow for estimation of the distributions of item easiness or student 

abilities. When referencing, for example, item easiness against the standard deviation of student 

ability, we can better understand the range of difficulties of the items on the test. 

In base form, the EIRM with random person and item effects is commonly called a “doubly 

descriptive” model (Wilson, De Boeck, & Carstensen, 2008, p. 95) as it solely provides estimates 

of the variances of both persons and items without any variables to explain systematic differences 

in person ability or item easiness. The EIRM becomes “person explanatory” or “item explanatory” 

when predictors at the person or item level are added to the model, or “doubly explanatory” when 

both person and item level predictors are included. As such, the EIRM can address research 

questions at the person level (e.g., do older students have systematically higher probabilities of a 

correct response) or at the item level (e.g., are items that assess phonological awareness 

systematically more difficulty than items that assess vocabulary), or both (e.g., do male-female 

performance gaps depend on item type). While the EIRM has primarily been applied to 

observational studies to examine person- or item-level predictors of response patterns, it can easily 

be applied to causal inference contexts, and ultimately to the possibility of examining IL-HTE, by 

including a person-level treatment variable in the model, a possibility to which we now turn. 

Modeling Item Level Heterogeneous Treatment Effects 

We can model IL-HTE by introducing an interaction between item and treatment 

assignment in an EIRM through a random slope term. To illustrate, consider the following two 

models, presented in reduced form: 

Model 1 – Constant Treatment Effect:  
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!"#$% &'()!" = 1,- = :& + :'%;<=%" + ." + 0&! 

."~3(0, 6#
$, 

0&!~3(0, 6%!
$ ) 

Model 2 – IL-HTE:  

!"#$% &'()!" = 1,- = :& + :'%;<=%" + ." + 0&! + 0'!%;<=%" 

."~3(0, 6#
$) 

>
0&!
0'!
?~3 @0, A

6%!
$ B'&

B&' 6%"
$ CD , 

in which )!" is the dichotomous response to item $ for person 9, :& is the log-odds of a correct 

response for a student of average ability to an item of average difficulty, :' is the average treatment 

effect (ATE) across items, ." is a random intercept representing unexplained person ability (as in 

traditional IRT modeling), and 0&! is a random intercept representing item easiness (equivalent to 

the negative of the item difficulty parameter in an IRT context). 

The difference between Model 1 and Model 2 is the random slope, 0'!, that captures the 

deviation between each item’s individual treatment effect and the ATE :', thus allowing for IL-

HTE. Model 2 also allows for correlation between item easiness and item treatment effect size 

(B&'). We can additionally include item-level characteristics interacted with treatment to assess 

systematic treatment variation; the random slopes represent idiosyncratic, or unexplained, 

variation (Ding, Feller, & Miratrix, 2019). In other words, paraphrasing Raudenbush and Bloom 

(2015), the random slopes allow us to learn about the presence of IL-HTE, and treatment by item 

interactions allow us to learn from IL-HTE. 

While IL-HTE could in principle be modeled with the combination of item fixed effects 

and treatment by item interaction terms, the fully fixed effects approach is suboptimal for our 
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purposes for several reasons. First, the effects of item characteristics are not estimable when fixed 

item effects are used because, as item-level covariates, they would be collinear with the item 

indicators. Second, for a fully fixed model, an additional treatment-by-item interaction term would 

be needed for each item, adding complexity to the model, whereas the random effects model 

includes a single variance component for the treatment effect (i.e., the random slope) and is 

therefore more parsimonious. (One could use a fixed-intercept, random slope formation where the 

item effects were fixed but the interaction terms were random, as described in Bloom et al. (2017); 

we do not study this possibility here.) Third, the random effects approach provides a direct 

parameter estimate of the degree of IL-HTE present in the data through variance of the treatment 

coefficient, a parameter of interest that has no analogue in fixed effects analysis. Fourth, shrinkage 

provides more stable estimates of the individual item difficulties and item-level treatment effects, 

an especially important benefit unless dataset sizes are very large. Last, and most important for 

our purposes, the random effects parameterization better matches our focus on IL-HTE as it 

explicitly models items as a source of variability due to taking the test items as being (possibly 

literally) drawn from a pool of potential items.  

That is, at a conceptual level, an item fixed effect model does not take the variability of 

which items are included on a test into account, and therefore the associated uncertainty estimates 

will be relative to the test-specific estimand of the true ATE across the items in the realized test, 

rather than across the (possibly hypothetical) population of items that could have been on the test. 

In other words, when IL-HTE is present, a given draw of items will have its own finite sample 

ATE that differs from that of the population of items due to sampling error. For example, if the 

test happens to include items that are more sensitive to the treatment than other items that might 

have been included, the test-specific estimand would be larger, the point estimate of average 
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treatment impact would tend to be larger, and the fixed-effect estimated standard errors would 

reflect estimation uncertainty relative to the test-specific estimand, not the population average 

estimand. In contrast, the random slope model that allows for IL-HTE would target the mean 

treatment effect in the population of items from which a test is (hypothetically) constructed, and 

the associated uncertainty estimates would incorporate the additional uncertainty of which items 

are selected for a test administration. The contrast between finite sample and population average 

estimands in the EIRM is analogous to fixed and random effect estimators for ATEs in multisite 

trials (Miratrix, et al., 2021, p. 280; Chan & Hedges, 2022) or meta-analysis (Skrondal & Rabe-

Hesketh, 2004, Chapter 9).  

Importantly, the constant effect model, with item random intercepts but no random slopes, 

directly corresponds to the item fixed effect model. In fact, as shown in Miratrix et al. (2021), the 

constant effect model estimates a precision-weighted estimand of the item-level average treatment 

effects, but so long as each student takes the same test, and all items have equal numbers of 

observations, the precision-weighted point estimate of the ATE will exactly coincide with that of 

the fixed-effect model. In other words, ignoring IL-HTE provides inference for the test-specific 

ATE, and ignores any additional uncertainty due to whether the selected test items are 

representative. If there is substantial IL-HTE, ignoring such uncertainty could be misleading as we 

generally are interested in the underlying construct being measured, not whether treatment 

happened to impact students as measured by the specific items selected. Consider, for example, 

that if researchers could somehow a priori select those items known to be more sensitive to the 

treatment, they would obtain a larger measured treatment impact as an artifact of the selected items, 

rather than a truly more effective treatment. 
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Overall, we argue that item random effects with a randomly varying treatment coefficient 

is generally the more appropriate choice for modelling IL-HTE. A fixed effect or constant effect 

model would be preferred when only the finite sample ATE across the specific items of the 

administered test is of interest, such as when the assessment has a fixed set of items across 

replications, and these items are viewed as fully encompassing the scope of what is being 

measured. 

Monte Carlo Simulation 

 To illustrate the ability of the EIRM to account for IL-HTE, we first conduct a simulation 

comparing our two base modeling approaches across a range of contexts. We generate data from 

our IL-HTE model with normally distributed error terms and no correlation between item 

difficultly and item-level treatment impact. We fixed the number of subjects at 500 and the number 

of items at 20 and explored the combination of two varying simulation factors: (1) the average 

treatment effect size on the logit scale (0 and 0.4) and (2) the standard deviation of item-level 

treatment effects (0 for no HTE, 0.2 for moderate HTE, and 0.4 for high HTE). Thus, we employed 

a 2×3 full factorial design examining null and positive average treatment effect sizes fully crossed 

with no, moderate, and high IL-HTE for a total of six parameterizations. Each parameterization 

was replicated 2000 times for a total of 12,000 simulated data sets, in which we generate a new set 

of 20 items according to our parameters and then simulate our experiment using those 20 items as 

our test. We then fit our two EIRMs as cross-classified logistic regression models (i.e., generalized 

linear mixed models with a logit link function and random effects for students and items) using 

the glmer function from the R package lme4 (Bates, et al., 2015) to estimate the model 

parameters for each simulated data set, one constraining the treatment effect to be constant (i.e., 

no IL-HTE), the other allowing for IL-HTE, and collected the model output for further analysis. 
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Empirical Assessment Data 

 For our empirical application, we examine the intention-to-treat (ITT) impact of the Model 

of Reading Engagement (MORE) intervention on third grade reading comprehension from a 

cluster-randomized controlled trial. Our data, collected in the 2021-2022 school year, consists of 

110 schools randomly assigned to treatment and control from a large urban district in the 

southeastern United States (N = 7797 students). We examine dichotomous (correct/incorrect) 

student responses on a researcher-designed reading comprehension assessment containing 30 

multiple-choice items based on three reading passages designed to measure different degrees of 

transfer from the MORE intervention curriculum (i.e., Near, Mid, and Far Transfer passages, with 

varying numbers of words from the MORE lessons). The formative assessment was administered 

online at the end of the MORE intervention, but prior to the high-stakes end-of-year state test.  

The primary substantive research aim was to understand whether students could leverage 

the general schema for system in comprehending novel passages related to social studies topics 

after learning about various human body systems. Thus, we hypothesized that control students 

(who received a double dose of science lessons) and treatment students (who received two social 

studies extension lessons) would perform equally well on the Near Transfer items with only 

science concepts. Furthermore, if treatment students could successfully leverage their vocabulary 

knowledge from the social studies extension lessons while reading the Mid and Far Transfer 

passages, we hypothesized that treatment students would outperform control students on Mid 

Transfer items and potentially also on Far Transfer items. 

As such, we fit four EIRMs to the data, modeling the probability of correct response to 

item i for student j in school k, presented below in reduced form: 

Model 1 – MORE Assessment EIRM 1, No IL-HTE:  
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."(~3(0, 6#
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Model 2 – MORE Assessment EIRM 2, Randomly Varying IL-HTE:  

!"#$% &'()!"( = 1,- = :& + :'%;<=%( + :$F;<%<G%"( +	."( + 0&! + 0'!%;<=%( + H( 

."(~3(0, 6#
$) 
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Model 3 – MORE Assessment EIRM 3, Systematically and Randomly Varying IL-HTE:  

!"#$% &'()!"( = 1,-

= :& + :'%;<=%( + :$F;<%<G%"( + :*I$J! + :+K=;! + :,%;<=% × I$J!
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>
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Model 4 – MORE Assessment EIRM 4, Systematically Varying IL-HTE:  

!"#$% &'()!"( = 1,-

= :& + :'%;<=%( + :$F;<%<G%"( + :*I$J! + :+K=;! + :,%;<=% × I$J!

+	:-%;<=% × K=;! +	."( + 0&! + H( 
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."(~3(0, 6#
$) 

0&!~3(0, 6%"
$ ) 

H(~3(0, 6)$). 

All EIRM parameters are interpreted analogously to those of the simulation models described 

earlier, with addition of the subscript L indexing school membership, a random intercept for school 

(H() to account for the cluster-randomized design, a student-level reading pretest score to improve 

the precision of the estimates (:$), main effects for passage easiness (:*, :+), and passage by 

treatment interactions (:,, :-) to model systematic sources of IL-HTE. Across all EIRMs, we 

assess the statistical significance of the fixed effects via Wald tests (for individual coefficients) 

and likelihood ratio tests (for sets of coefficients such as the passage by treatment interactions), 

and that of the random effects by likelihood ratio tests comparing nested models with and without 

the random effects of interest. 

Results 

Simulation 

 The results of the simulation reveal first that the point estimates for average treatment 

effects for the constant and IL-HTE models are nearly identical (r = 0.998). Analysis of the 

uncertainty associated with the point estimates is more complex. The top panel of Figure 1 

compares the mean of the estimated standard errors (SEs) of the average treatment effect point 

estimates to their true standard errors (i.e., the observed standard deviation of the treatment effect 

point estimates) in a scatterplot, in which we would expect the points to fall on the ) = M identity 

line if the model is well calibrated. We see that the model-based SEs are well calibrated for the 

HTE model, but the model-based SEs for the constant treatment effect model are systematically 

too low when IL-HTE is high, falling below the diagonal identity line. The constant treatment 
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effect model, like a fixed effect model, is not accounting for the additional uncertainty of whether 

the selected test items are representative of the full item bank. 

However, when we instead compare the average estimated SEs to the standard deviation 

of the finite sample ATEs (equivalent to the true finite-sample SEs averaged across the different 

sets of simulated test items), as shown in the bottom panel of Figure 1, we clearly observe that the 

estimated SE of the constant treatment effect EIRM is better calibrated, regardless of the level of 

IL-HTE. Therefore, the choice to allow IL-HTE in an EIRM is not just a statistical issue, but a 

substantive one, and researchers should consider what estimand they intend to target when 

selecting a modeling strategy. 

 

Figure 1. Comparison of Estimated and True SEs of EIRMs with and without IL-HTE 

Top: Item population estimand (IL-HTE) 

Bottom: Test-specific estimand (No IL-HTE) 
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Proceeding under the assumption that the ATE in the population of items is the estimand 

of interest, the practical effect of ignoring IL-HTE when it is present is depicted in Figure 2, which 

provides the estimated false positive rates for each estimation method at each level of IL-HTE. 

The false positive rate increases for the constant effect EIRM as IL-HTE rises, whereas the false 

positive rates are close to the nominal value of 5% when the treatment effect is allowed to vary at 

the item level, indicating that ignoring potential IL-HTE provides unrealistically precise estimates 

of average treatment effects, with systematically underestimated SEs and invalid hypothesis tests. 

These findings are consistent with prior simulation studies on the importance of including random 

coefficients in mixed-effects models more generally (Bell, Fairbrother, & Jones, 2019, pp. 1062-

1065). 

 

Figure 2: Comparison of false positive rates by method based on true IL-HTE 
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Application to MORE Empirical Assessment Data 

 The results of the four EIRMs applied to the MORE intervention data are summarized in 

Table 1. Model 1 shows that the average MORE treatment effect across all reading comprehension 

items is positive but not statistically significant (:' = 0.05, p = 0.53). Without considering the 

possibility of IL-HTE, an analyst might stop at this step and conclude that there is no effect of the 

MORE intervention on student reading comprehension. However, Model 2 shows statistically 

significant and substantively meaningful item-level treatment effect variation, as the SD of the 

randomly varying item-level treatment effect (6%" = 0.05, p < 0.05) is as large as the point estimate 

itself (:' = 0.05) and implies a 95% prediction interval of approximately -0.05 to +0.15 for 

individual item-level treatment effects on the logit scale. Model 3 tests the hypothesis that 

treatment effects systematically depend on the passage type by including the treatment by passage 

3

4

5

6

7

8

0 0.2 0.4
SD of Treatment Effect

Fa
ls

e 
Po

si
tiv

e 
R

at
e 

(%
)

Estimation Method Constant Varying

Means and Monte Carlo 95% CIs
False Positive Rates



RUNNING HEAD: ITEM-LEVEL HETEROGENEOUS TREATMENT EFFECTS 18 

type interaction terms. Results show that while the treatment effects on the Near and Far Transfer 

reading passages are not distinguishable from zero, items from the Mid Transfer passage show a 

significantly larger average treatment effect than the other passage types (:, = 0.07, p < 0.05). 

These results are consistent with the hypothesis that there would be no treatment-control 

differences on the Near Transfer passage but rather that the social studies extension lessons 

provided to treatment students had a positive effect on the Mid Transfer passage items, which 

included science and social studies vocabulary words. We can also assess whether item difficulty 

is associated with sensitivity to treatment. In Model 3, for example, the estimated item easiness 

and treatment effect correlation is large in magnitude (B'$	= 0.55, p = 0.12), suggesting that within 

each passage, the easier items are most responsive to the MORE intervention, though the 

correlation is non-significant due to the small number of items per passage.  

Finally, and with the caveats about cross-model comparisons of variance components in 

the logistic context in mind (Hox, Moerbeek, & Van de Schoot, 2017, pp. 121-128), we see that 

the treatment by passage type interaction effect explains roughly 64% &&.&,
#/&.&*#
&.&,# - of the treatment 

effect variance. Accordingly, Model 4 tests the hypothesis that the treatment by passage type 

interaction explains all IL-HTE by removing the random slope for treatment from the model. A 

likelihood ratio test shows that Model 3, which includes the random slope, is not distinguishable 

from Model 4, which omits the random slope, and therefore we can conclude that the treatment by 

passage type interaction could be capturing all IL-HTE in this data set. Substantively, the MORE 

intervention appears to have its strongest impact on Mid Transfer items, suggesting that even a 

brief exposure to targeted social studies vocabulary words and concepts through read-aloud lessons 

can lead to measurable improvements in reading comprehension that involves those same 

vocabulary words and concepts, particularly when students can access and extend a general 
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schema for system that was taught in previous science and social studies lessons. Such a fine-

grained understanding of the efficacy of the MORE intervention on reading comprehension would 

have been ignored had we not considered the possibility of IL-HTE, or instead had examined a 

single classical test theory or IRT-based summary score. 

 A visualization of the randomly varying item-level treatment effects of Model 2 are 

displayed in the top panel of Figure 3, in which the dashed red line shows the average treatment 

effect, and the points show item-specific treatment effects and 95% CIs on the logit scale and are 

color coded by passage type. Forecasting the results of Models 3 and 4, we can see that the Mid 

Transfer item-level treatment effects (green points) are concentrated on the high end of the 

treatment effect distribution. The bottom panel shows the population average probabilities of a 

correct response as a function of subtest passage type and treatment status based on Model 4, 

confirming that the average treatment-control difference is largest on the Mid Transfer passage on 

the probability scale. 
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Table 1. Results of Explanatory Item Response Models fitted to the MORE Reading Comprehension Assessment Data 

Parameter Model 1: No IL-
HTE 

Model 2: Randomly 
Varying IL-HTE 

Model 3: Systematically 
and Randomly Varying 

IL-HTE 

Model 4: Systematically 
Varying IL-HTE 

Fixed Effects    
Treatment (!!) 0.05 (0.08) 0.05 (0.08) 0.03 (0.08) 0.02 (0.08) 
Treatment x Mid (!")  0.07 (0.03)** 0.08 (0.02)** 
Treatment x Far (!#)  0 (0.03) 0 (0.02) 
Variance Components 
(SDs and Correlations)  

  

Student ("$) 0.63 0.63 0.63 0.63 
School ("%) 0.39 0.39 0.39 0.39 
Item ("&!) 0.58 0.58 0.55 0.56 
Treatment ("&") 0.05* 0.03  
Corr(Item,Treatment) (#!') 0.15 0.55  

 

Note: *p < 0.05, **p < 0.01.  

Likelihood ratio tests revealed that Model 2 was a better fit than Model 1, and Model 3 was a better fit than Model 2, and Model 4 was 

not distinguishable from Model 3.  

Likelihood ratio tests revealed that the item easiness-treatment effect size correlations in Models 2 and 3 were not statistically 

significant.  

Pretest reading scores and main effects for each subtest were included in the model but omitted from the table. 
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Figure 3. Model-Implied Item- and Subtest-Level Treatment Effects 

Top: Randomly Varying Item-Level Treatment Effects Color Coded by Subtest Passage Derived 

from Model 2 

Bottom: Population Average Probabilities of Correct Response by Subtest Passage Type and 

Treatment Status Derived from Model 4 
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Discussion 

 Solely examining the average effect of an educational intervention may provide an 

incomplete picture of the efficacy of that intervention. A traditional statistical approach to 

examining HTE such as moderation or quantile regression attempts to explain variation in 

treatment effects as a function of person-level characteristics, as in moderation analysis, or the 

location of a subject in the conditional outcome distribution, as in quantile regression. While such 

methods are widely used and highly valuable, they ignore the potential HTE that may exist within 

an outcome measure itself. In contrast, the EIRM provides the ability to explore HTE from a new 

perspective, namely, the item level. Because the EIRM models all individual item responses 

directly, researchers can empirically estimate how much IL-HTE exists in the data by specifying 

a randomly varying item-level treatment effect in the model. Researchers can subsequently explore 
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to what extent treatment by item-characteristic interactions systematically explain the IL-HTE, and 

conversely, to what extent IL-HTE remains unexplained. Furthermore, estimates of the correlation 

between item easiness and treatment effect size may be of substantive interest to practitioners and 

applied researchers in understanding how an intervention affects student learning outcomes. 

 The results of this study clearly reveal several practical benefits to using the EIRM to model 

IL-HTE in practice. First, the simulation results show that even when IL-HTE are not present, 

allowing for them in the model does not materially affect the point estimates or standard errors of 

the average treatment effect. Second, when IL-HTE are present but not allowed for in the model, 

the standard errors associated with the average treatment effect are too small, providing an overly 

optimistic estimate of precision resulting in increased false positive rates with respect to the 

population average ATE. Therefore, researchers should test for IL-HTE when employing the 

EIRM to estimate treatment effects because it provides reasonably well-calibrated standard errors 

and false positive rates regardless of the true degree of item-level HTE, unless the researcher is 

interested only in the average treatment effect in the specific set of items on an assessment, in 

which case the constant effect model (or an item fixed effects model) is the appropriate substantive 

choice. Last, the application to the empirical reading comprehension assessment data from the 

MORE intervention showed that a null average treatment effect masked statistically significant 

and substantively meaningful IL-HTE. That is, rather than an ineffective intervention with a null 

effect, the EIRM revealed that MORE is most effective for the items of the Mid Transfer reading 

passage, a precise finding that may have been overlooked using other methods, suggesting that 

researchers should consider the possibility that interventions may differentially affect portions of 

a given outcome measure. 

Limitations and Future Directions 
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 While the potential value of examining IL-HTE through the EIRM is clear, the encouraging 

results of this study may be tempered by its simplifying assumptions. For example, the EIRM is 

typically estimated under the constraints of the One-Parameter Logistic (1PL) or Rasch model, in 

which all items are equally correlated with the latent trait. While the data generating process of 

this simulation was based on a 1PL model, a 1PL approach may not be appropriate for educational 

assessments in which items vary in their discriminations as well as their difficulties. Advances in 

estimation methods such as profile-likelihood (Jeon & Rabe-Hesketh, 2012) have enabled 

exploration of the Two-Parameter Logistic (2PL) EIRM that models item discriminations as either 

fixed quantities to be estimated, as in the mirt (Chalmers, 2012) or PLmixed (Rockwood & 

Jeon, 2018) R packages and the gllamm Stata program (Skrondal & Rabe-Hesketh, 2004), or as 

random variables to themselves be explained by the predictors in both frequentist (Petscher, et al., 

2020, using Mplus; Cho, et al., 2014) and Bayesian paradigms (Bürkner, 2019, using R’s brms). 

Similarly, the same unidimensionality and local independence assumptions of traditional IRT 

analysis also apply to the EIRM, and as such either the preliminary use of exploratory factor 

analysis before EIRM analysis (Petscher, et al., 2020, pp. 15-16) or the use of the multidimensional 

EIRM (De Boeck & Wilson, 2014) is recommended. Finally, application of the EIRM to non-

dichotomous item responses would extend the utility of the EIRM to more diverse assessment 

contexts (Stanke & Bulut, 2019; Bulut, Gorgun, & Yildirim-Erbasli, 2021). 

 A final challenge of the application of the EIRM involves the interpretation of the 

coefficients of the fitted models. In contrast to a more familiar sum score, mean score, or 

standardized effect size, all but the most statistically literate practitioners are unlikely to have well-

developed intuitions for the substantive meaning of treatment effect coefficients on the logit scale 

or the interpretational subtleties of logistic regression more generally (Mood, 2010), issues that 
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are compounded in the EIRM context by the difference between population-averaged (marginal) 

and cluster-specific (conditional) effects introduced by the cross-classified person- and item-level 

random effects of the parameterization (Austin & Merlo, 2017). As such, we suggest the following 

two approaches to make the EIRM results more interpretable. First, the fitted models can be used 

to estimate population-averaged response probabilities (e.g., using the ggeffects R package 

described in Lüdecke, 2018), as depicted earlier in the bottom panel of Figure 3, representing 

overall treatment-control contrasts on the probability scale that are likely to be more interpretable 

to stakeholders such as parents, teachers, or school leaders. Second, analysts can convert the EIRM 

treatment effect coefficient to a Cohen’s d type effect size by the process of “y-standardization” 

(see Breen, Karlson, & Holm, 2018 for the single-level case; see Hox, Moerbeek, & Van de Schoot, 

2017, Chapter 6 for the multilevel case), whereby the logit-scale coefficient !!"#$% is divided by 

the estimated total standard deviation of a postulated continuous variable Y* that could give rise 

to the observed dichotomous response Y, using the following formula 

!&'%( =
!!"#$%
#$(&∗) =

!!"#$%
()*3 + ,+* + ,,!* + ,-*

 

in which 
."
/ = 3.29 is the variance of the logistic distribution, the ,+* and ,,!*  represent the variance 

components of the persons and items, and ,-* is the variance of the fixed effects (i.e., the variance 

of the estimated linear predictor on the logit scale).  

For the IL-HTE EIRM, the random slope associated with the treatment effect implies 

heteroskedasticity between the treatment and control groups (see Steele, 2008, pp. 29-32), with 

variances of 

012(&∗|42514 = 0) = )*
3 + ,+* + ,,!* + ,-* 
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012(&∗|42514 = 1) = 012(&∗|42514 = 0) + ,,#* + 2,01 

Given the unequal variances when IL-HTE is present, we encourage standardizing by the control 

group to obtain a Glass’s 8 type effect size because IL-HTE will increase the variance of the 

treatment group, and therefore effects of otherwise equal magnitude would appear smaller due to 

the increased pooled SD as IL-HTE increases. The estimates from each group could be pooled if 

a Cohen’s d type effect size were strongly desired. 

While adding a layer of procedural complexity for the analyst, y-standardization has the 

advantage of (a) rendering logit coefficients comparable to those derived from linear regression 

with standardized continuous outcomes, (b) enabling comparison of multiple models fit to the 

same data and cross-sample comparisons of effect size (Breen, Karlson, & Holm, 2018), and (c) 

enabling the use of the effect size estimates in meta-analysis, contexts in which scale-free 

generalizability of the estimates is essential. 

Conclusion 

A principal aim of applied intervention research is to understand how far intervention 

effects travel. In this study, we leveraged online assessment data from a large-scale RCT to show 

how the impact of an evidence-based literacy intervention can promote transfer on a formative 

assessment of reading comprehension. In doing so, we simultaneously highlight the unique 

affordances of online assessments and the EIRM in identifying on what assessment tasks 

intervention effects emerge, thus illustrating how large-scale digital formative assessments can be 

leveraged to assess learning outcomes at scale across whole school systems. In sum, applying the 

EIRM to model IL-HTE can reveal a type of treatment impact variation to which other methods 

are blind. Data analysts can use the EIRM with varying item-level treatment effects to provide 

more insight for applied researchers by allowing more nuanced inference about the effects of 
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educational interventions on measured outcomes. In turn, more fine-grained findings will allow 

researchers to make more substantive and policy-relevant claims about intervention impacts, an 

approach that brings scholars one step closer to understanding for whom, under what conditions, 

and, crucially, on what assessment tasks an educational intervention works.  
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