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Abstract 

Colleges have increasingly turned to predictive analytics to target at-risk students for additional 

support. Most of the predictive analytic applications in higher education are proprietary, with 

private companies offering little transparency about their underlying models. We address this 

lack of transparency by systematically comparing two important dimensions: (1) different 

approaches to sample and variable construction and how these affect model accuracy; and (2) 

how the selection of predictive modeling approaches, ranging from methods many institutional 

researchers would be familiar with to more complex machine learning methods, impacts model 

performance and the stability of predicted scores. The relative ranking of students’ predicted 

probability of completing college varies substantially across modeling approaches. While we 

observe substantial gains in performance from models trained on a sample structured to represent 

the typical enrollment spells of students and with a robust set of predictors, we observe similar 

performance between the simplest and most complex models.   
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I. Introduction  

Predictive analytics have become increasingly common in the education sector. Colleges and 

universities use predictive analytics for various purposes, ranging from identifying students who 

might default on their loans to targeting alumni who are likely to give generously to the institution 

(Ekowo & Palmer, 2016). The most common use of predictive analytics, however, is to identify 

students at risk of failing courses or dropping out (Alamuddin, Rossman, & Kurzweil, 2019; 

Milliron, Malcolm, & Kil, 2014; Plak et al, 2019), and to direct various student success strategies 

(e.g., intrusive advising, additional financial aid) to these students. Numerous contextual factors 

have motivated institutions to turn towards predictive analytics. While enrollment rates have 

increased steadily over the last decade and socioeconomic inequalities in college participation have 

narrowed (US Department of Education, 2019), completion rates remain relatively stagnant and 

socioeconomic disparities persist and have widened over time (Bailey & Dynarski, 2011; Chetty 

et al., forthcoming). Students are borrowing a record amount of money to fund their postsecondary 

education -- total student debt now exceeds $1 trillion -- with default rates highest among students 

who drop out before finishing their degree (Bastrikin, 2020; Looney & Yannelis, 2015). In light 

of these trends, state and federal policy makers have put increasing pressure on institutions to 

increase completion rates.   

Despite this increased pressure, at broad-access institutions attended by most undergraduates, 

the level of resources available to invest in completion strategies has declined considerably over 

time as states have reduced their appropriations to public higher education (Deming & Walters, 

2017; Ma et al, 2017). The use of predictive analytics in higher education has the potential to 

increase efficiency in how scarce resources are allocated by targeting students who may benefit 

most from additional intervention. Adoption of predictive analytics strategies has been broad and 
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rapid; a third of all institutions have invested in predictive analytics and collectively spend 

hundreds of millions of dollars on technology that utilizes predictive analytics (Barshay & 

Aslanian, 2019). 

For efficiency gains to be realized from predictive analytics, though, predictions from 

underlying models must be accurate, stable, and fair. However, in most cases researchers and 

college administrators have little to no ability to evaluate predictive analytics software on these 

dimensions, as most predictive analytics products used in higher education are proprietary and 

operated by private. This lack of transparency creates multiple risks for institutions and students. 

Models may vary substantially in the accuracy with which they identify at-risk students, which can 

lead to inefficient and ineffective investment of institutional resources. Furthermore, biased 

models can lead institutions to intervene disproportionately with students from underrepresented 

backgrounds and may reinforce existing psychological barriers that students encounter, including 

feelings of social isolation and anxiety (Walton & Cohen, 2011). 

In this paper, we address the lack of transparency in predictive analytics in higher education 

by systematically comparing two important dimensions of predictive modeling. First, we compare 

different approaches to sample and variable construction and how these affect model accuracy. 

We focus in particular on how two analytic decisions affect model performance: (1) random 

truncation of a current cohort sample to align to the enrollment length distribution of historic 

cohorts and (2) the inclusion of term-specific and more complexly-specified variables (e.g., a 

variable measuring the trend in students’ GPA over time). Second, we investigate how the choice 

of modeling approach, ranging from methods many institutional researchers would be familiar 

with, such as OLS regression and survival analysis, to more complex approaches like tree-based 
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classification algorithms and neural networks, impacts model performance and the stability of 

student predicted scores (i.e., “risk rankings'').  

We examine these features of predictive modeling in the context of the Virginia Community 

College System (VCCS), which consists of 23 community colleges in the Commonwealth of 

Virginia. We have access to detailed student records for all students who attended a VCCS college 

from 2000 to the present. Community colleges serve numerous functions, including targeted skill 

development, broader workforce readiness, terminal degree production, and preparation to transfer 

to a four-year institution. Each of these functions have different potential measures of success. In 

this paper, we focus in particular on the outcome of whether students graduate with a college-level 

credential within six years of initial entry to systematically compare predictive modeling strategies.  

Our analysis yields several primary conclusions. First,      while models are very consistent in 

whether they predict whether a given student graduates, they vary in how they rank a given 

student’s predicted probability of graduating. For instance, among students that the OLS model 

rank in the bottom decile of the probability of completing college, only 60 percent also ranked in 

the bottom decile according to the XGBoost approach. This lack of consistency in student ranking 

holds across the distribution of risk. This result suggests that the notion of relative “risk” is not 

stable and can be quite sensitive to the modeling strategy used. For institutions that use predictive 

modeling to intervene with a targeted subset of students, such as students at greatest risk of 

dropout, different models are likely to identify different students for intervention.  

Second, predictive models that leverage randomly truncated samples, term-specific predictors, 

and more complexly-specified variables have higher performance than models trained on samples 

without truncation or with basic variables (e.g., cumulative credits completed) that may be more 

readily available to higher education administrators and institutional researchers. This suggests 
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there are gains to complexity in sample and variable construction, whether institutions pursue that 

work internally or through an external vendor.      Finally, in terms of modeling approach, we do 

not observe substantial increases in accuracy from more complex models. All models we compare 

have high levels of accuracy in predicting whether a student will graduate or not.       

We contribute to the evidence base on the efficacy of predictive analytics in higher education 

in this paper in several ways. Ours is the first paper of which we are aware that systematically 

evaluates and compares the performance of different sample and variable construction approaches 

and modeling strategies in an applied setting. In doing so, we bring transparency to a practice that 

is increasingly common but frequently opaque in higher education. Our findings also elucidate the 

tradeoffs to common modeling decisions and the contexts in which the expected returns to 

sophisticated machine learning methods (over and above conventional regression-based models) 

are largest. Finally, we discuss important questions around the ethics, cost, and efficacy of using 

predictive analytics that higher education administrators and researchers may want to consider in 

determining their approach to predicting student success.  

 

II. Conceptual Model 

To develop a conceptual model of how administrators at broad-access institutions use 

predictive analytics, we draw on several reports that collectively provide case studies of how 

dozens of institutions have incorporated predictive analytics into their practice (APLU, 2016;  

Burke et al, 2017; Ekowo & Palmer, 2016; Kemplin, Grand, & Ramos, 2018; Paterson, 2019; 

Stark, 2015; Treaster, 2017). In this review, we observe two broad commonalties in predictive 

analytics usage. First, nearly all institutions’ use of predictive analytics is in response to two 

interwoven contextual factors: (1) Increasing pressure on institutions to increase success rates, 
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including shifts in state public financing for higher education towards outcomes-based funding 

allocations; and (2) Declining overall state appropriations towards public higher education, which 

result in institutions have fewer resources to allocate towards college success strategies and 

interventions. These combined factors increase pressure on institutions to target scarce resources 

as efficiently as possible to achieve meaningful improvements in success outcomes. Second, while 

most institutions use data to inform broad institutional practice, the predictive analytics 

applications are primarily geared towards targeting individual student outreach, primarily through 

faculty or advisor intervention. 

Institutions apply predictive analytics across the life cycle of students’ engagement with the 

institution. For instance, predictive analytics have become increasingly commonplace in 

enrollment management and financial aid packaging as broad-access institutions have become 

increasingly reliant over time on tuition as a primary source of revenue. Institutions like Wichita 

State University use models to target recruitment and marketing investments to students most 

likely to apply and matriculate, enroll, and succeed at the institution (Ekowo & Palmer, 2016). 

Institutions like Jacksonville State University and University of Texas - Austin use models to 

inform aid allocations, respectively directing scholarships to students who are predicted to stay 

enrolled at the institution (rather than transfer elsewhere) or to students who are predicted to drop 

out absent additional financial support (Ekowo & Palmer, 2016; Paterson, 2019). 

Institutions also use predictive analytics to identify courses in which academic performance is 

predictive of later success at the institution, and to target interventions to students who are 

predicted to struggle in those courses. For instance, the University of Arizona learned from a 

predictive model that students who earn a C in introduction English composition have a lower 
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probability of graduating, and allocated additional academic supports to such students (Treaster, 

2017).  

By far the most common use of predicted analytics reported in these case studies is to 

identify students at risk of dropping out before completing their degree. Georgia State University 

has received substantial attention for its use of predictive analytics to identify students who were 

struggling academically and to provide them with additional support. Like many other 

institutions that use predictive analytics to identify students at risk of withdrawal prior to 

completion, Georgia State partnered with a private company (EAB) to develop an algorithm 

using student-level administrative data from numerous historic cohorts. Other institutions like 

Temple University developed their own predictive analytics models and “early alert” systems to 

identify at-risk students. Across the institutions featured in the case studies we reviewed, most 

leveraged the “early alerts” generated by predictive models to either trigger proactive outreach 

from academic advisors to students, or to encourage faculty to reach out to students in their 

classes who were struggling to succeed (Ekowo & Palmer, 2016). At some institutions, like the 

University of North Carolina-Greensboro, administrators group students into deciles of predicted 

risk of withdrawal and target more intensive interventions to students with the highest risk 

ratings (Klempin, Grant, & Ramos, 2018).  

These common uses of predictive analytics by administrators at broad access institutions rest 

on the assumption that the underlying prediction models--whether for enrollment management or 

to target student success interventions--are producing student-level risk predictions that are 

accurate, stable, and fair. In the remainder of the paper, we investigate the extent to which these 

assumptions hold across predictive modeling approaches. 

 

III. Empirical Strategy 
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A. Data 

The data for this study come from VCCS system-wide administrative records over the 

summer 2007 through spring 2019 academic terms. These records include detailed information 

about each term in which a student enrolled, including their program of study, courses taken, 

grades earned, credits accumulated, financial aid received, and degrees earned. The records also 

include basic demographic information, including gender, race, and parental education. Finally, 

we observe all credentials awarded by VCCS colleges beginning in 2007. In addition to VCCS 

administrative records, we also have access to National Student Clearinghouse (NSC) graduation 

and enrollment records. NSC data allows us to observe all enrollment periods and postsecondary 

credentials earned at non-VCCS institutions from 2004 onward. 

B. Outcome Variable Definition 

We focus on predicting the probability a student completes any college-level credential 

within six years. For simplicity, we refer to our outcome as “graduation” throughout the paper. 

Based on this outcome definition, 34.1 percent of students in our sample graduated. We choose 

to focus on the outcome of graduation rather than dropout because dropout is more ambiguous 

and difficult to define, particularly in the community college context. For instance, if a student 

leaves for a few semesters, it is unclear whether they “stop out” and plan to return to college at a 

later date or have dropped out with no plans to return. Within our sample, 37.7 percent of 

students leave VCCS for at least one non-summer term and later return to higher education 

(either to VCCS or a non-VCCS institution); 23.3 percent of students leave for at least one full 

year and later return to higher education.  
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While all VCCS credentials are designed to be completed in two years or less if the student is 

enrolled full-time, prior research has shown that only 16 percent of certificate earners and only 

five percent of Associate degree earners graduate within two years (Complete College America, 

2014). We focus on graduation within six years because we consider credential completion from 

both VCCS and non-VCCS institutions, some of which are four-year institutions students 

transfer to after their enrollment at VCCS.  

Sample Construction 

Our sample consists of students who enrolled at a VCCS college as a degree-seeking, non-

dual enrollment student for at least one term, with an initial enrollment term between summer 

2007 and summer 2012 (the last cohort for whom we can observe six years of graduation 

outcomes). We provide additional details on our sample definitions in Appendix 1.  

For each student in our sample, we observe their information for the entire six-year window 

after their initial enrollment term. While in all of our models we use the full six years of data to 

construct the outcome measure, we test two different approaches to constructing model 

predictors. First, using data from students initially enrolled between summer 2007 and summer 

2012, we construct a sample using all information from initial enrollment through the term when 

the student earned his/her first college-level credential, or the end of the six-year window, 

whichever comes first.  The primary concern with this approach to predictor construction is that 

models fitted using all available data for historical cohorts of students may not be generalizable 

to currently enrolled students, whose enrollment spells do not extend to the full six years or to 

credential attainment. Therefore, in our second approach, also using data from students initially 

enrolled between summer 2007 and summer 2012, we construct a historical sample of students 
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using a random truncation procedure that resembles the distribution of enrollment lengths for 

currently enrolled students.  

The first two columns of Table 1 show the distribution of the number of terms since initial 

VCCS enrollment for students enrolled in fall 2012 (the most recent fall term in our sample). In 

the first row, we see that 33 percent of students enrolled at a VCCS institution in fall 2012 first 

enrolled in that term, and their enrollment length is therefore equal to one term. In our second 

approach to predictor construction, we randomly truncate the data in the full sample to resemble 

the distribution of enrollment lengths among fall 2012 enrollees. For example, we randomly 

assign 33 percent of students from the training and validation samples to have an enrollment 

length of one -- in other words, for those students, we only use their first term of data to 

construct their model predictors, regardless of how long they were actually enrolled at VCCS. 

Columns 3 and 4 of Table 1 show the full distribution of enrollment lengths in the truncated 

training and validation samples, which are described below. The modal length of enrollment is 

one term, but there is substantial variation across students. For example, 17 percent of students 

have an enrollment length of four terms. We discuss in more detail the motivation and steps for 

our approach to sample truncation in Appendix 1.  

Our resulting analytic sample consists of n = 331,254 students, which we randomly divide 

into training (90 percent) and validation sets (10 percent).2 The training set is used to construct 

and fine-tune predictive models, while the validation set is held out throughout the model 

construction and tuning process, and is used to evaluate the performance of the final prediction 

model. This division is standard practice in predictive modeling work to ensure that the model is 

evaluated on “unseen” data and therefore free of bias due to model overfitting.3 We further 

discuss the summary statistics of the full analytic sample in Appendix 1. 
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C. Predictor Construction 

In addition to exploring how different sample constructions affect model performance, we 

investigate how the incorporation of predictors with differing degrees of complexity affects 

model performance. We first test models that use simple, non-term-specific predictors most 

readily available to higher education administrators and researchers. These predictors include 

demographic information (e.g., race/ethnicity, parental education) along with a set of cumulative 

measures up to a student’s last observed term (overall or within the randomly truncated 

observation window), such as cumulative GPA and the share of all attempted courses the student 

completed. Second, we examine how model performance changes with the inclusion of 

additional non-term-specific predictors that are more complex to construct, such as the number 

of terms and quality of non-VCCS institutions a student attended before VCCS, and the standard 

deviation of a students’ term GPA in all previous enrolled terms. Third, we investigate how 

model performance is affected by the further inclusion of simple term-specific predictors, such as 

term-specific GPA, credits attempted, and the share of attempted credits earned. Finally, we 

include more complexly specified term-specific predictors, including academic and financial aid 

information such as term-specific credits withdrawn, 200-level credits attempted, the amount of 

financial aid received, and enrollment intensity at non-VCCS institutions. Appendix 2 provides a 

full list of the predictors we test, organized by the sequence in which we test their inclusion in 

the prediction models.  

D. Predictive Models 

We use six different but commonly used estimation strategies in the social and computational 

sciences to predict the probability of credential attainment within six years (Attewell & 

Monaghan, 2015; Hand, Mannila & Smyth, 2001; Herzog, 2006): Ordinary Least Squares 
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(OLS), Logistic Regression, Cox Proportional Hazard (CPH) Survival Analysis, Random Forest, 

Gradient boosted machines (XGBoost) and Recurrent Neural Networks (RNN). 

OLS, Logistic regression, and CPH are models commonly used by researchers in all areas to 

perform predictive modeling tasks, due to their ease of implementation and interpretation. We 

include OLS and Logistic due to user familiarity, fast run times, and high degree of 

interpretability of output.4       

CPH is one the most commonly used methods of survival analysis in the social sciences      

when the goal      is to predict not only whether, but when the likelihood of an event will occur.5  

Although our goal in this paper is to predict whether students will complete college at any point 

within a six year window and not the timing of completion within that window, we include CPH 

among the estimation strategies we compare because survival analysis methods may be familiar 

to institutional researchers who are considering using predictive analytics in higher education. As 

we discuss in further detail in Appendix 3, two limitations should be considered when comparing 

the performance of CPH models to the performance of the other estimation strategies we employ. 

First, we exclude time-varying predictors from CPH models because the assumptions required 

for their inclusion (i.e., for each currently enrolled student, we must impute the values of all 

time-varying predictors in all future, unobserved terms over the six-year window), are extremely 

strong. Nevertheless, it remains possible that model performance would improve with the 

inclusion of time-varying predictors. Second, although survival analysis models can address 

complications associated with time-censored data using alternative approaches to random sample 

truncation (e.g., inclusion of model parameters to account for unobserved heterogeneity), we 

only estimate the CPH model on the randomly truncated sample. We do so because, as the results 

in Table 1 show, applying a model trained on a non-truncated sample of previously enrolled 
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students to generate out-of-sample predictions for currently enrolled students raises questions of 

model generalizability that alternative approaches may not address. In addition, using the 

randomly truncated training sample allows for more interpretable inter-model comparisons since 

our primary predictions from all other models are derived using the randomly truncated sample.      

Compared to OLS, Logistic regression, and survival analysis, tree-based methods (Random 

Forest and XGBoost) and neural network models (RNN) are less commonly used in the field of 

education, in part because they are more complicated to implement.6 However, they generally 

exhibit superior predictive performance because they more easily allow for capturing nonlinear 

and interactive relationships between the outcome and predictors. The basic building blocks of 

tree-based methods are decision trees, which flexibly identify patterns (sometimes quite 

complex) between the outcome of interest and the predictors (Breiman et al, 1984; James et al, 

2013). However, because decision trees are highly sensitive to the sample and set of predictors 

included in building the tree, individual decision trees typically are not generalizable (i.e., they 

do not perform well on unseen data). We address this limitation through the use of two tree-

based ensemble models, Random Forest and XGBoost. We describe additional detail and 

considerations for the implementation of tree-based methods in Appendix 3. 

Neural networks are a class of predictive modeling techniques whose model architecture 

resembles the network of biological neurons. Neural networks make predictions using highly 

complex patterns between inputs and the outcome of interest using a sequential “layering” 

process.  Recurrent Neural Networks (RNN) are a special type of neural network that 

sequentially transmit information of time-dependent inputs through “recurrent” layers.  Although 

RNN models can exhibit strong performance in complicated, sequence-dependent prediction 

tasks, they are especially complex and computationally demanding.  
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As we show below, the most accurate models use the full set of predictors described above 

(i.e., both basic and complex non-term and term-specific predictors). The base models we test 

thus include the full set of predictors.7 For the OLS, Logit, Random Forest and XGBoost models, 

we also rank-order the predictors based on their “importance” -- i.e., their explanatory power in 

predicting the probability of graduation within six years. We provide additional details about the 

predictor importance measures in Appendix 3. 

F. Model Comparison and Evaluation Methods 

Our aim is to compare the accuracy and stability of the predictions generated from the six 

different prediction methods that we tested. To make these comparisons, we calculate five 

evaluation statistics on the validation sample for each model:8 

● C-statistic: a measure of “goodness of fit” of predictive models. Specifically, the c-

statistic is equal to the probability that a randomly selected student who actually 

graduated has a higher predicted score than a randomly selected student who did not 

graduate.  

● Precision: a measure capturing how often a model’s positive prediction is correct. 

Specifically, the precision value is equal to the share of students the model classifies as 

graduates (predicted positives) who actually graduated (true positives), i.e., 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠/𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠.  

● Recall: a measure capturing a model’s ability to correctly classify actual graduates as 

predicted graduates. Specifically, the recall value is equal to the share of actual graduates 

that the model correctly predicts will graduate, i.e., 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠/

𝐴𝑐𝑡𝑢𝑎𝑙 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠.  
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● F1-score: a measure that accounts for the inherent tradeoff between precision and recall 

as the prediction score threshold used to distinguish students classified as graduates 

versus non-graduates changes. Mathematically, the F1-score is equal to the harmonic 

mean of precision and recall (i.e., 2 ∗ [(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)]) and 

ranges from 0 to 1, with higher values denoting stronger model performance. 

● Rank order of predicted scores: Models may have very similar overall performance but 

generate inconsistent predictions for a given student, especially in terms of relative risk. 

For every combination of model pairs, we therefore calculate the magnitude of change 

across each student’s predicted score percentile in model A and model B. We then report 

summary statistics of within-student distributional changes in predictions across models.  

III. Results 

A. Full vs. truncated sample 

We first compare the model performance of the full training sample to the model 

performance using the truncated training sample for models that only include simple non-term-

specific predictors as well as models that include both simple and complex non-term-specific 

predictors.9 We present the results in Figure 1. For all models, we observe an increase of 0.03 - 

0.09 in c-statistic values for the truncated training sample compared to the non-truncated training 

sample. Furthermore, the performance of Random Forest and XGBoost models on the non-

truncated training sample using only simple non-term-specific predictors (Panel A) are 

comparable to the performance of OLS and Logit models on the truncated training sample using 

all the non-term-specific predictors (Panel B).  This suggests that it is possible to achieve strong 

model performance with the simplest approaches to sample and variable construction; however, 

doing so requires more sophisticated modeling approaches.10 We also report the c-statistic values 
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for comparing model performance of different sample construction methods in column 1-4 of 

Appendix Table A1. 

B. Complexity of variable construction 

Having demonstrated the improvement in model performance from using truncated samples 

that more closely resemble current enrolled students, we now turn to assessing the impact of 

model performance when simple versus more complexly-specified predictors are used to predict 

graduation. Figure 2 shows that models that only include 14 basic non-term-specific predictors 

produce relatively informative and reliable predictions. OLS and Logit models generate c-

statistics between 0.81-0.82; the CPH model produces a c-statistic of 0.84, and Random Forest 

and XGBoost models yield c-statistics between 0.85-0.86. However, we observe that adding 

more complexly-specified non-term-specific predictors to the models, for a total of 61 non-term-

specific models, meaningfully improves the performance of all five models. Across all models 

the c-statistic values increase by 0.03 - 0.04. We further examine how adding simple term-

specific predictors that are commonly utilized by institutions, such as the number of credits 

attempted and term GPA, influences model performance. Model performance improves slightly 

across all five models with the addition of basic term-specific predictors, and the OLS and Logit 

models improve most (with increases in c-statistic values of 0.02 - 0.03 versus less than 0.02 

across all other models). Lastly, we examine changes in model performance with the further 

addition of more complexly-specified term-specific predictors, such as the number of 200-level 

credits attempted in each term. Those term-specific predictors result in minimal improvement to 

model performance. The marginal increase in c-statistic value is no greater than 0.002 across all 

six models when complexly-specified term-specific predictors are included in the estimation 

procedure. We conclude that even the simplest variable construction can lead to reasonably 
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informative and reliable predictions of graduation. At the same time, there is value in 

constructing more complexly-specified non-term-specific predictors and simple term-specific 

predictors to optimize model performance. We also report the c-statistic values for comparing 

model performance of different variable construction methods in Appendix Table A1. 

C. Model Accuracy 

In this section, we present three additional model accuracy statistics beyond the c-statistic 

(precision, recall, F1-score) for both graduates and non-graduates to further investigate model 

performance. For this analysis, we compare the performance of “base” models across all six 

modeling choices, all of which are trained and validated on the same randomly truncated samples 

and include the full set of non-term-specific and term-specific predictors (331 predictors). We 

present the results of this analysis in Figure 3. The first set of bars replicates in graphical form 

the c-statistic values reported in Figure 2. The c-statistics are very similar across the six models, 

ranging from 0.884 for the OLS model to 0.903 for the XGBoost model. These fairly high c-

statistics are not particularly surprising, given both the large sample size and detailed information 

we observe about students in the sample. It is somewhat surprising, however, that the c-statistic 

for a basic model such as OLS, which requires no model tuning in the base version, is nearly as 

high as the c-statistic for the XGBoost model, which is much more labor- and computing-

intensive. To put this result in context, within our validation sample of approximately 33,000 

students, the XGBoost model accurately predicts the graduation outcome for 681 additional 

students compared to OLS. The most computationally intensive model, RNN, actually has a 

slightly lower c-statistic than XGBoost.11  

Figure 3 shows that the precision and recall values are also very similar across the six 

models, though the non-graduation precision and recall values are significantly higher than the 
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graduation precision/recall values: graduation precision and recall respectively range from 71-75 

percent and 71-80 percent; non-graduation precision and recall respectively range from 85-89 

percent and 84-87 percent. This difference is driven by the fact that the graduation rate of the 

validation sample is fairly low at 34.1 percent.12 Since the most common use of predicted scores 

in higher education is to identify students who are at risk of withdrawal prior to graduation, we 

expect the non-graduation recall values to be of greatest salience to researchers and college 

administrators developing interventions based on predicted scores. Interestingly, while the 

XGBoost model outperforms the other five models in terms of every other evaluation metric in 

Figure 3, the OLS model has a higher non-graduation recall value than the XGBoost model, and 

the Logistic and XGBoost models have the same recall value.  

Finally, Figure 3 shows the graduation and non-graduation F1-score for both the “graduated” 

and “did not graduate” outcomes. Because there can be a tradeoff between precision and recall, 

the F1-score is used to provide a more consistent comparison of model performance that factors 

in both dimensions of model performance.13 Overall, the F1-scores are highest for the XGBoost 

model. While the graduation F1-score follows a similar pattern to the c-statistic, with the OLS 

model having the lowest F1-score (0.729) followed by the CPH (0.741), Logistic (0.742), 

Random Forest (0.743), RNN (0.758) and XGBoost (0.772) models, we see that the ranking of 

non-graduation F1-Score is slightly different, with Random Forest model performing worst in 

relative terms (0.857), followed by the CPH (0.858), Logistic (0.864), OLS (0.865), RNN 

(0.866) and XGBoost (0.876) models. In practical terms, the difference in non-graduation F1-

scores between the XGBoost and Random Forest models results in 246 fewer actual graduates 

predicted not to graduate in the validation sample (Type I errors) and 520 fewer actual non-

graduates incorrectly classified as graduates (Type II errors).  



 

18 

 

As discussed above, we anticipate researchers and college administrators to be most 

interested in identifying students at risk of not graduating. Therefore, in all subsequent results, 

we report the c-statistic and non-graduation F1-scores associated with each model. However, for 

parsimony, we focus our discussion on the c-statistic values, which are easier to interpret directly 

and with which researchers and college administrators are likely more familiar. 

Taken together, the results thus far demonstrate that the base models perform very similarly 

in terms of how accurately they predict the probability of graduating or not graduating from 

college, despite varying considerably with respect to their computational complexity and 

familiarity to researchers and practitioners.  

D. Consistency of risk rankings 

We now turn to the question of how consistent the base models are in assigning risk rankings 

to students. We first examine in Figure 4 the consistency with which the models rank students on 

the binary outcome of graduating or not graduating. Across model pairs (e.g., comparing OLS to 

Random Forest), we observe high degrees of consistency in whether the models predict that a 

particular student will or will not graduate. For instance, 91.3 percent of students are assigned the 

same outcome when predictions are derived from XGBoost or OLS models. All rates of 

consistency across model pairs exceed 90 percent.  

Still, the high consistency rates we observe in Figure 4 may mask differences in risk rankings 

within the two possible predicted outcomes (graduate or not graduate). We therefore examine in 

Figure 5 the consistency of students’ risk rankings.14 Each density plot in Figure 5 shows a 

comparison between two model pairs. For each plot, the x-axis represents the difference in 

percentile ranking for a given student across the two models. For example, if a student’s 

predicted score was in the 10th percentile in Model A but in the 15th percentile for Model B, 
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then their value would be equal to five. The vertical dotted lines represent the 25th and 75th 

percentiles of the difference in predicted score percentile; the diamonds represent the 10th and 

90th percentiles. The OLS and Logistic models appear to generate the most similar percentile 

rankings for a given student: The 25th and 75th percentiles of the difference in predicted score 

percentile are -2 and 2 percentile points, respectively. Logistic and CPH models also generate 

quite similar percentile rankings, with the 25th and 75th percentiles of the difference in predicted 

score percentile being -3 and 2 percentile points, respectively. However, the differences in 

percentile ranking across all other model pairs are more substantial, with 31 percent of students 

moving at least 10 percentiles, and with 7 percent of students moving at least 20 percentiles. 

Institutions may vary in which students they target for proactive outreach and intervention 

along the distribution of predicted risk. Some colleges may take the approach of targeting 

students at highest-risk, while others may focus on students in the middle of the risk distribution 

if the risk factors for those students are perceived to be more responsive to intervention. In 

Figure 6, and in Appendix Figures A1-A7, we thus compare the consistency with which a given 

student is assigned to each risk decile across model pairs based on their predicted probability of 

graduation. The three panels of Figure 6 examine changes in risk decile assignment across model 

pairs using the bottom, third, and fifth deciles as reference points, respectively. Appendix 

Figures A1-A7 show analogous results using all other deciles as the reference points. To 

illustrate the degree to which risk assignments fluctuate, Figure 6 also reports into which decile 

students not consistently assigned to the bottom decile fall. As the first plot shows, among 

students with OLS-derived predicted values in the bottom decile, 86 percent are also assigned 

predicted values in the bottom decile and 14 percent are assigned values in the second decile 

when predictions are generated by Logistic modeling; the same rate of consistency occurs 
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between Logistic and CPH models. However, discrepancies are more pronounced across all other 

model pairs. We observe the next highest rate of consistency with respect to the OLS and CPH 

model comparison: 78 percent of students predicted to be in the bottom decile by the OLS model 

are predicted to be in the bottom decile by the CPH model, while 21 percent and 1 percent of 

students are respectively assigned to decile two and three based on the CPH model predictions. 

Some model pairs (e.g., Random Forest versus RNN) assign half of students in the bottom decile 

to a different decile. As the second two plots show, when we compare the consistency of 

students’ predicted scores between model pairs using the third and fifth deciles as reference 

points, the share of students assigned to the same risk decile across models is even lower. Taken 

together, the results in Figure 6 and Appendix Figures A1-A7 demonstrate that the relative 

ranking of students based on predicted score is quite sensitive to modeling choice and instability 

is observed along the entire distribution of predicted risk. 

Despite the instability in relative risk rankings, Figure 7 shows that the share of students 

assigned to the bottom and third decile who do not graduate is similar across all six base models. 

This indicates that the models perform similarly well at sorting non-graduates into the bottom 

and third decile of the risk ranking distribution, but which students are assigned to those deciles 

differs. This arises because all the models perform similarly at predicting risk in the bottom third 

of the risk distribution; as a result, we are not able to make value judgments about the differences 

in model-derived risk rankings, despite the non-trivial instability in risk rank ordering across 

models. By comparison, Figure 7 shows that the share of students who did not graduate assigned 

to the fifth decile varies more across the six base models, ranging from 82.9 percent for the Logit 

model to 86.6 percent for the XGBoost model. The differences in model-derived risk rankings 

between the regression models and the more sophisticated prediction methods are partly 
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explained by the increased prediction accuracy of the more sophisticated methods for students on 

the margin of not graduating.  

Part of the movement across risk deciles is also likely attributable to the fact that, while the 

models exhibit similar levels of accuracy, they assign different levels of importance to the 

predictors to generate predictions. Figure 8 shows the degree of overlap of the top 20 percent of 

predictors based on their feature importance across model pairs.15 While the level of overlap is 

relatively high between the regression-based (62 percent) and tree-based models (77 percent), the 

cross-family pairs share fewer than 35 percent of the most important predictors in common. In 

sum, our analysis shows that students’ predicted risk of not graduating can vary meaningfully 

across modeling strategies. For researchers and administrators, this instability means that 

modeling selection can significantly impact which students receive outreach and support if 

resource constraints prohibit colleges from intervening with all students predicted not to 

graduate. We discuss the practical implications of these results in Section IV. 

E.  Models with a reduced set of predictors or a reduced sample size 

As we describe in the empirical strategy section above, we incorporate 331 predictors into 

the base models. Furthermore, after exploring the complexity of variable construction in section 

III.B, we concluded that the performance of models is largely unaffected by the exclusion of 

complexly-specified term-specific predictors from the base models. In Section III.B we also 

showed that models experience more significant reductions in performance when simple term-

specific predictors and complexly-specified non-term-specific predictors are excluded. In 

Appendix 5 we further investigate changes to model performance when restricting the set of 

predictors by examining the stability of risk rankings across the base models and models that 

include fewer predictors. The results of that analysis reveal that excluding predictors that have 
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negligible impact on model performance (such as the complexly specified term-specific 

predictors) only leads to a modest change in the risk rank ordering of students, with the OLS and 

Logistic regression models exhibiting greater stability in risk rankings than other models. We 

also find that excluding all term-specific predictors leads to more significant changes in the rank 

ordering of students, with the tree-based methods exhibiting greater stability in risk rankings than 

the regression methods. The tree-based methods generate more stable risk rankings in this 

context because they exhibit better prediction accuracy than regression methods when term-level 

predictors are excluded from the prediction models.  

We also tested how the base models perform in much smaller settings, limiting the data to 

one medium-sized VCCS college and separately to a 10% random sample of the data.  We find 

that, despite the significant reductions in sample size, models applied to smaller samples perform 

similarly well compared to the base models in larger samples.16 However, once again we find 

that the risk rank ordering of students changes substantially in smaller versus larger samples. 

This is especially true for the tree-based methods. We discuss these results in more detail in 

Appendix 6.  

F. Preliminary investigation of bias in predictive models 

While a full investigation of potential bias within predictive models--and potential strategies 

to mitigate that bias--is beyond the scope of this paper, we do provide a preliminary exploration 

of potential bias given the common concern that predictive modeling in education may be biased 

against subgroups with historically lower levels of academic achievement or attainment (see, for 

example, Ekowo & Palmer, 2016). To illustrate this issue, Figure 9 shows the actual graduation 

rates of students in our validation sample, by gender, race/ethnicity, Pell status, age, and first-

generation status. We see that many historically disadvantaged groups -- including Black and 
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Hispanic students, Pell recipients, first generation college goers, and older students -- have 

significantly lower graduation rates compared to their counterparts. Including these types of 

demographic characteristics in predictive models can result in historically disadvantaged 

subgroups being assigned a lower predicted probability of graduation, even when members of 

those groups are academically and otherwise identical to students from more privileged 

backgrounds.17 Removing demographic predictors is an intuitive approach to addressing concern 

of bias in predictive models; researchers and administrators might reason that, without 

demographic predictors in the model, students with the same academic performance backgrounds 

would be assigned the same predicted score, regardless of race, age, gender, or income. 

Furthermore, some state higher education systems and individual institutions face legal obstacles 

or political opposition to including certain demographic characteristics in predictive models 

(Baker, 2019; Blume & Long, 2014). We therefore examine how excluding demographic 

predictors affects the performance and student-specific risk rankings of the base models.  

Figure 10 compares the c-statistic and non-graduation F1-score values of the base models 

with models that exclude the following demographic characteristics: race/ethnicity, gender, Pell 

eligibility, age, and first-generation status. Despite the strong relationship between these 

demographic characteristics and graduation shown in Figure 9, the accuracy of all the models is 

virtually unchanged (the performance metrics all change by less than one percent) when 

demographic characteristics are excluded. This occurs because many of the non-demographic 

predictors that remain in the model are highly correlated with both student demographic 

characteristics and the probability of graduation. We show this explicitly by identifying the top-

20 predictors in terms of feature importance from the XGBoost model that excludes 

demographic characteristics.18 We then compare the mean values of those predictors for Black 
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versus non-Black students, and for older (age 25 and up) versus younger students. Table 2 shows 

there are large and statistically significant differences between Black and non-Black students and 

between older and younger students across nearly all 20 predictors. For example, in row 2 of 

Table 2, Black students have a cumulative GPA of 2.13 on average compared to 2.63 among 

non-Black students; the difference of 0.51 grade points is significant at the one percent level.19 In 

other words, even when race is not incorporated into prediction models explicitly, the results still 

reflect the factors that drive race-based differences in educational attainment seen in Figure 9. 

While full exploration of potential bias in predictive modeling is beyond the scope of this paper, 

we view this as an important area for further study. We also provide a detailed discussion of the 

effect of removing demographic predictors from base models on the movement of students 

across the distribution of risk rankings in Appendix 5. 

IV. Discussion 

In an era when colleges and universities are facing mounting pressure to increase 

completion rates, yet public funding for higher education is being cut, institutions have embraced 

predictive analytics to identify which students to target for additional support. We evaluated the 

performance of different approaches to sample and variable construction and to different modeling 

approaches to better understand the tradeoffs to modeling choices. Perhaps the most salient finding 

from our analysis is that, for a given student, the notion of “risk” is not stable and can vary 

meaningfully across the modeling strategy used. This instability is most pronounced when 

compared tree-based and neural network modeling approaches, and among students with more 

moderate risk of withdrawal prior to completion. For instance, across model pairs, fewer than 70 

percent of students assigned a risk rating in decile 3 by one model were also assigned to decile 3 

by the other model. 
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The evidence in this study does suggest that institutions would realize important gains in 

model accuracy through thoughtful sample and predictor construction. In general, more 

sophisticated tree-based models differentiate between graduates and non-graduates more 

accurately than simpler regression-based models, although the gains in accuracy are small. More 

complex models also generate student risk rankings whose ordering is more sensitive to modeling 

choices, such as which predictors are included in the models or which institutions or students are 

included in the sample. 

Given these findings, a natural question is under what conditions should colleges consider 

using tree-based versus regression-based models for targeting purposes. In technical terms, our 

results suggest that sophisticated machine learning approaches offer a slight advantage when 

colleges use predictions to target students broadly. The subset of students flagged for intervention 

is not likely to change considerably in those circumstances, even when different modeling choices 

produce moderate changes to student risk rankings. Our results also suggest that the value of using 

tree-based prediction models increases when institutions have limited choice over modeling 

decisions (e.g., due to legal restrictions over the inclusion of student attributes or because of data 

limitations). Alternatively, rank order stability becomes more consequential when colleges can 

only target a small subset of students for additional support; in such cases, we find that OLS and 

Logistic regression models have a comparative advantage. 

There are a broader set of questions that are important for institutions to consider when 

making decisions about using predictive analytics in higher education. Regardless of modeling 

approach, there are numerous important ethical considerations. One relates to the bias issue; as we 

show above, students from underrepresented groups are likely to be ranked as less likely to 

graduate regardless of whether demographic measures are included in the models. On the positive 
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side, this could lead to institutions investing greater resources to improve outcomes for 

traditionally-disadvantaged populations. But there is also the potential that outreach to 

underrepresented students could have unintended consequences, such as reinforcing anxieties 

students have about whether they belong at the institution. This could exacerbate existing equity 

gaps within institutions (Barshay & Aslanian, 2019; Walton & Cohen, 2011). There are also 

important ethical questions around the data elements that institutions incorporate into their 

predictive models, and whether students are aware of and would consent to these uses of data 

(Brown & Klein, 2020). For instance, researchers at the University of Arizona use ID swipes to 

monitor student movement around campus, including when students depart from and return to their 

dorms (Barshay & Alisanian, 2019). While these measures have the potential to contribute 

meaningfully to model accuracy, they raise important issues around student privacy that higher 

education administrators should actively consider.  

A second question is whether the benefits of predictive modeling outweigh the costs. To 

inform this question, we conduct a back-of-the-envelope benefit-cost calculation, which we 

describe in more detail in Appendix 8. In the context of a community college with 5,000 students, 

our estimates of model accuracy imply that using a more advanced prediction method like 

XGBoost would translate into the institution correctly identifying an additional 64 at-risk (i.e., 

non-graduating) students compared to OLS. If realizing this improvement requires the purchase of 

proprietary predictive modeling services, the average cost to colleges is estimated to be 

$300,000.20 This implies an average cost per additional correctly identified at-risk student of 

$4,688. While this is solely a back-of-the-envelope calculation, we believe it nonetheless illustrates 

the importance of higher education leaders critically evaluating whether the gains from more 
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sophisticated approaches to predictive analytics are likely to be greater than what could be realized 

from alternative investments of those resources. 

A final question is whether predictive analytics are actually resulting in more effective 

targeting of and support for at-risk students in higher education. While few studies to date have 

examined the effects of predictive analytics on college academic performance, persistence, and 

degree attainment, the three experimental studies of which we are aware find limited evidence of 

positive effects for at-risk students (Alamuddin, Rossman, & Kurzweil, 2019; Milliron, Malcolm, 

& Kil, 2014; Plak et al, 2019). More research is needed to understand the role of predictive 

analytics in improving institutional performance. One challenge to identifying the impacts of 

predictive analytics on student outcomes is that it is easy to conflate the targeting value of 

predictive modeling with the efficacy of interventions built around its use. The slightly positive or 

null effects found in previous studies may reflect that predictive models convey limited 

information about students upon which institutions can act. Alternatively, even if predictive 

models contain actionable information, coupling data analytics with ineffective interventions 

could conceal the targeting value of predictive analytics. One approach to isolating the targeting 

value of predictive modeling is to examine whether intervention effects vary by model-generated 

predictions. To our knowledge prior research has not examined this question and it merits attention 

in future work. More work is also needed to understand the extent to which predictive modeling 

in higher education suffers from algorithmic bias and whether that diminishes the efficacy of 

predictive modeling for historically underserved groups.  

In conclusion, the findings in this paper reveal that institutional leaders should carefully 

consider the intended uses for predictive modeling in their local context before choosing to invest 

in expensive predictive modeling services.  
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Notes 

1. Among students who earn a credential within 6 years in our sample, 31 percent earn their 

credential from a non-VCCS institution. An additional 18 percent of graduates earn a credential 

from both a VCCS and non-VCCS institution within six years. For our earliest cohort of students 

(those initially enrolled during the 2007-08 academic year), we observe 78.4 percent of all 

eventual degree completions through the last term of data available (spring 2018) within six 

years of initial enrollment. And while a sizeable share of VCCS students intend to transfer to a 

four-year institution before earning their VCCS credential and bachelor’s degrees are typically 

designed to be completed within four years, over half of bachelor’s degree-seeking students take 

more than four years to graduate (Shapiro et al, 2016); time to bachelor’s degree is longer for 

community college transfer students (Lichtenberger and Dietrich, 2017). 

2. 90/10, 80/20, 70/30 are all typical ratios used to split samples into training/validation sets. The 

smaller the validation set, the more likely measurement error will degrade the evaluation of 

model performance. At the same time, a smaller validation set increases the size of the training 

set, which enables development of more informative prediction models. In the context of this 

study, because over 30,000 students are included in the validation sample based on the 90/10 

ratio, the validation sample is sufficiently large for evaluating model performance reliably and 

allows us to include more observations in the training sample to maximize prediction precision. 

3. In other words, all predictive models have the possibility of fitting the training set well but not 

performing equally well on the unseen data, which is caused by the model tendency to pick up 

the idiosyncrasies/noises from the finite training set during the model fitting procedure. So, it is 

necessary to withhold part of the full data as the validation set to avoid overestimating model 

performance. 

4.  OLS, also known as a linear probability model in the context of a binary outcome variable, 

may not conform with all theoretical assumptions of a classification model (e.g., the predicted 

scores are not bound to fall between zero and one).  Still, it is the predictive model that typically 

requires the least computing power and offers the highest degree of interpretability.   

5. Discrete Time Survival Analysis (DTSA) methods would also be appropriate since we observe 

data in term intervals. However, we employ CPH to model graduation as a function of 

continuous time because it is easy to implement, widely used in the field, and from a practical 

perspective, the predictions generated from discrete-time and continuous-time methods are 

virtually identical in most applications (Mills, 2011; Singer & Willett, 2003).      

https://arxiv.org/abs/1801.07593
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6. For example, implementation of these methods requires execution of model tuning and cross-

validation procedures. We follow conventional standards of practice in machine learning for 

tuning and cross-validation and discuss those procedures in detail in Appendix 3.  

7. Following convention, we explored feature selection for the regression and tree-based models 

as a pre-processing step with the goal of removing potentially irrelevant predictors that could 

diminish model performance. However, model performance did not improve as the number of 

predictors decreased in the feature selection routine, which suggests there are essentially no 

noisy predictors present in the full-predictor model. 

8. We provide a more detailed description of each evaluation statistic in Appendix 4. 

9. RNN models are not applicable for this analysis because time-dependent predictors are 

excluded from the models used for testing full versus truncated samples. Furthermore, we do not 

estimate CPH models using the non-truncated sample due to the particular sample construction 

procedures we employed for survival analysis modeling.  We refer the reader to the section on 

CPH modeling in Appendix 3 for further details. 

10. We do not test the comparison of full vs. truncated sample construction for models that 

include term-specific predictors, because when using the non-truncated training sample, there is 

not a reliable and robust way of imputing term-specific predictor values in unobserved terms for 

observations in the validation sample. Furthermore, even though we could apply missing value 

imputation methods to the validation sample, this would not resolve the fact that the distribution 

of enrollment durations for students in non-truncated samples do not resemble those of currently 

enrolled students. As a result, we expect that non-truncated samples with imputed term-level 

predictors would perform worse than truncated samples, as is observed in the case of models that 

only use non-term-specific predictors. 

11. Our hypothesis as to why RNN does not significantly outperform the simpler models in this 

application, while in other applications it often does, is that the average sequence length per 

student (i.e. the number of actively enrolled terms) is too low to benefit from the sequential 

structure of the RNN model.  One-third of students in the training sample have only one time 

step; 60 percent of have fewer than three time steps; and 79 percent have fewer than five time 

steps.  Prior research has found that increased sequence length in the training sample leads to 

improved prediction accuracy of RNN models (Suzgun, Belinkov, & Shieber, 2019; 

Jafariakinabad, Tarnpradab, & Hua, 2019).  

12. Given the relatively skewed distribution of the graduation outcome, we tested whether 

upweighting the observations of actual graduates improved model performance. It did not. 

13. For the same model, precision and recall move in opposite directions as the threshold of 

predicted scores used to categorize students as either at-risk or not at-risk changes. For instance, 

the non-graduation value increases as the threshold increases, because more actual non-graduates 

will be correctly identified. At the same time, non-graduation precision will decrease because the 

higher threshold will predict that more actual graduates will not graduate. For example, the 



 

34 

 

Random Forest model has the lowest value of graduation precision and the middle values of 

graduation recall and graduation F1-score. 

14. In Appendix Table A2, we report Person’s and Spearman’s rank correlation coefficients 

across the models. The correlations range from 0.92 to 0.99, indicating a relatively high level of 

consistency in rank orderings across the models and the full distribution of risk rankings. 

However, as shown in Figure 5, the correlations mask non-trivial differences in percentile 

rankings between model pairs for some students. 

15. Feature importance measures the contribution of each predictor to the construction of 

predicted probabilities. The CPH and RNN models are excluded from the results in Figure 8 

because those prediction methods do not generate feature importance measures. 

16. Due to the pattern of results we observe across the regression and tree-based models, and 

given the substantial time required to fit and fine-tune the RNN models, we did not perform this 

additional analysis for the RNN model. 

17. This source of bias would likely result in students from historically disadvantaged groups 

being more likely to be identified as at-risk of not graduating and targeted for additional 

resources. While that might appear to benefit students from historically disadvantaged groups, 

increased intervention could be detrimental if, for example, outreach from college administrators 

reinforces students’ anxieties about their potential for college success and thus increases their 

probability of dropout (Steele & Aronson, 1995; Walton and Cohen, 2011). More broadly, this 

type of bias would also result in a less efficient distribution of scarce institutional resources to 

support students. 

18. We focus on the top-20 predictors in terms of feature performance from the XGBoost model 

because that model demonstrates the highest overall level of accuracy. 

19. In Appendix Table A3, we further show that there is almost complete overlap (92-94 percent) 

in terms of the predictors with highest feature performance between the base models and models 

that exclude demographic characteristics. This reinforces that excluding demographic 

characteristics makes very little change to the risk levels assigned to different groups of students. 

20. This cost is reported by James Wiley, a technology analyst with Eduventures, in Barshay and 

Aslanian (2019). 
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Table 1: Distribution of enrollment length for fall 2012 

enrollees and truncated training and validation samples 

         

 

Enrollment 

length  

Fall 2012 

enrollees  

Truncated 

training 

sample  

Truncated 

validation 

sample  

 (1)  (2)  (3)  (4)  

         

 1  0.333  0.333  0.3331  

 2  0.0433  0.0433  0.0432  

 3  0.0757  0.0756  0.0756  

 4  0.1696  0.1696  0.1696  

 5  0.0263  0.0264  0.0264  

 6  0.0456  0.0456  0.0456  

 7  0.0973  0.0973  0.0973  

 8  0.0152  0.0152  0.0152  

 9  0.0298  0.0298  0.0298  

 10  0.0591  0.0591  0.0591  

 11  0.01  0.01  0.01  

 12  0.0177  0.0177  0.0177  

 13  0.034  0.034  0.034  

 14  0.006  0.006  0.006  

 15  0.0107  0.0107  0.0107  

 16  0.0225  0.0225  0.0225  

 17  0.0042  0.0042  0.0042  

         

 N  115,413  298,139  33,115  

Notes: enrollment length refers to the number of terms since initial 

VCCS enrollment, including Fall, Spring, and Summer terms, and 

including terms in which the student was not enrolled. The truncated 

training and validation samples include data up through each student's 

randomly assigned enrollment length in order to construct predictors. 

See text for more details. 
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Table 2: Racial and Age differences in the 20 most important features 

             

 Predictor  Black Non-black Difference  Age 25+ Less than 25 Difference  

 Slope of term GPA  -0.169 -0.136 -0.033 *** -0.149 -0.143 -0.007  
 

 Cumulative GPA  2.126 2.631 -0.505 *** 2.801 2.364 0.438 *** 

 

Slope of term-level number of credits 

attempted  
-0.521 -0.504 -0.017   -0.352 -0.581 0.23 *** 

 

% of attempted credits that were 

withdrawn  
0.118 0.086 0.032 *** 0.082 0.1 -0.019 *** 

 

% of attempted credits that were 200-

level courses  
0.197 0.223 -0.026 *** 0.233 0.209 0.025 *** 

 

% of attempted credits that were 

developmental courses  
0.226 0.135 0.091 *** 0.151 0.162 -0.011 *** 

 

% of attempted credits that were 

completed  
0.694 0.81 -0.116 *** 0.843 0.752 0.091 *** 

 Total grant dollars received in first year  2001 1219 781.3 *** 1432 1414 18.31  
 

 

Standard deviation of term-level share of 

attempted credits that were withdrawn  
0.161 0.127 0.034 *** 0.121 0.141 -0.021 *** 

 Credits attempted in first Fall term  9.058 10.064 -1.006 *** 7.979 10.592 -2.613 *** 

 

Standard deviation of term-level share of 

attempted credits that were completed  
0.225 0.164 0.061 *** 0.13 0.2 -0.07 *** 

 Term-level GPA in first Fall term  2.408 2.759 -0.351 *** 3.142 2.494 0.648 *** 

 Credits attempted in first Spring term  9.472 10.154 -0.683 *** 8.406 10.631 -2.225 *** 

 Term-level GPA in first Spring term  2.365 2.724 -0.359 *** 3.166 2.436 0.73 *** 

 Credits attempted in second Fall term  6.24 7.272 -1.032 *** 5.318 7.73 -2.412 *** 

 Term-level GPA in second Fall term  2.344 2.654 -0.31 *** 3.012 2.447 0.565 *** 

 Credits attempted in first Spring term  6.961 6.658 0.304 **  6.333 6.852 -0.519 *** 

 Credits attempted in first Summer term  3.287 2.864 0.423 *** 4.168 2.535 1.633 *** 

 

Total grant dollars received in second 

year  
2603 1394 1210 *** 2213 1445 767.8 *** 

 Term-level GPA in second Spring term  2.473 2.724 -0.252 *** 3.111 2.501 0.609 *** 

             

Notes: this table shows the differences of the top 20 predictors based on feature performance from the XGBoost model. *** p < 0.01, ** p < 

0.05, * p < 0.1 
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Figure 1: Model performance (c-statistic) under different sample construction methods 
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Figure 2: Model performance (c-statistic) under different predictor construction methods 
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Figure 3: Evaluation statistics of the six base models 
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Figure 4: Consistency of students' predicted outcome across base models 

 

 
 

 
Note: this figure shows the share of students who are assigned the same predicted binary outcome (graduate or not graduate) in both Model 1 and Model 2. 
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Figure 5: Distribution of differences across base models in students' risk ranking percentile 

 
Notes: these plots show the distribution of the student-level differences in percentile risk ranking between Model 1 and Model 2. For 

example, if a student's predicted score was in the 15th percentile in OLS but in the 10th percentile for Logistic, then that student would 

contribute a value equal to -5 in the upper left plot (OLS => Logit). The vertical dotted lines represent the 25th and 75th percentiles of 

the difference in percentile risk ranking; the solid diamonds represent the 10th and 90th percentiles.
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Figure 6: Consistency across models in student assignment to decile of risk rankings 

Panel A: First decile of risk rankings 

 
Notes: the first decile of contain the students with a risk ranking percentile between 1-10. Each column of this figure shows the share of students assigned to the 

first decile by Model A that are assigned to given decile by Model B.  
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Figure 6, Panel B: Third decile of risk rankings 

 
Notes: the third decile of contain the students with a risk ranking percentile between 21-30. Each column of this figure shows the share of students assigned to 

the third decile by Model A that are assigned to given decile by Model B.  
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Figure 6, Panel C: Fifth decile of risk rankings 

 
 
Notes: the fifth decile of contain the students with a risk ranking percentile between 41-50. Each column of this figure shows the share of students assigned to the 

fifth decile by Model A that are assigned to given decile by Model B.  
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Figure 7: Percent of non-graduates within the 1st, 3rd and 5th deciles of risk rankings 

 

 
 
Notes: this figure shows the share of students who are assigned to either the bottom decile, the 3rd decile or the 5th decile of predicted scores (and are therefore 

predicted to not graduate by all base models) who actually did not graduate. 
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Figure 8: Commonality of top 20% of important features across base models 

 
Notes: this figure shows the share of predictors that appear in the top 20% of important features in both Model A 

and Model B. 
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Figure 9: Graduation rates by subgroup 

 

 
Notes: based on observed graduation (based on our outcome variable definition) within the validation sample. 
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Figure 10: Evaluation statistics, base models versus models excluding demographic 

predictors 
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Appendix 1: Details about Sample Construction 

(1) Sample definition:  

We define degree-seeking status as being enrolled in a college-level curriculum of study that 

would lead to a VCCS credential (including short-term and long-term certificates and Associate 

degrees). Note that our analysis excludes students who were only enrolled in non-credit bearing 

programs, as these students are not represented in our data. We also exclude students who were 

only ever enrolled at VCCS as a dual enrollment student; for the most part, dual enrollment 

students are not seeking degrees at VCCS and most enroll as a first-time college student after 

high school at a non-VCCS institution. In addition, we exclude students who had completed a 

college credential prior to their initial college-level enrollment at VCCS, as these students have 

already achieved the outcome we are interested in outside the VCCS context. 

(2) Sample truncation method: 

If we used all six years of data to construct predictors, we would expect there are certain 

predictors which are highly correlated with the outcome measure but are not available when 

applying the model to currently enrolled students. For example, the total number of credits a 

student has completed by their sixth year would be highly predictive of graduation, but would 

only be available for students currently in their sixth year. As an illustrative example, for a 

student enrolled in VCCS during their first academic year and for whom a college administrator 

would like to estimate their predicted probability of graduating, the model constructed using all 

six years of data will pick up the fact that this student has no records of enrollment from Year 2 

to Year 6; the model would see this as a strong indication of non-graduation. As a result, this 

student would be assigned a low predicted score regardless of their academic performance in 
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Year 1. In other words, it is likely that the model is unlikely to accurately differentiate between 

students who will eventually graduate from the students who will not, because the model is 

highly dependent on the predictors in subsequent terms which are unavailable for such students. 

As such, a model using all six years of data to construct predictors is not likely to be 

generalizable to a sample of currently enrolled students with varying lengths of enrollment 

history. To mitigate this issue, we apply a random truncation procedure to the sample in order to 

obtain a new sample whose distribution of enrollment lengths is similar to the currently enrolled 

cohort at VCCS.   

The procedure for performing random truncation for the training and validation sample is as 

follows: First we identify the percentage of enrollment lengths for all fall 2012 enrollees 

(assuming fall 2012 is an approximated representation of the currently enrolled cohort at VCCS). 

The starting with the non-truncated sample (this works for both training and validation samples), 

among all students whose last enrolled term at VCCS (during the six-year window) is the 17th 

term since the initial college-level enrollment term, we randomly select a certain number of 

students so that their truncated observation window is 17 terms, and the number is determined 

such that the percentage of students whose enrollment length is 17 after truncation is equal to the 

percentage of fall 2012 enrollees whose number of elapsed terms is 17 since initial enrollment. In 

other words, the students whose last enrolled term at VCCS is the 17th term that are not selected 

in this step will be essentially truncated in later steps. In the next steps, for all students in the 

sample who have not been selected, we first identify those who are enrolled in VCCS during the 

16th term since their initial enrollment, and then randomly select a certain number of students so 

that the percentage of students whose truncated observation window is 16 terms is equal to the 

percentage of fall 2012 enrollees whose number of elapsed terms is 16 since initial enrollment. 
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We repeat this procedure for 15th, 14th, ... , until we end up with the students whose truncated 

observation window is one term. We perform this random truncation procedure from longer 

truncated observation windows to shorter ones instead of the reverse because starting from 

shorter truncated observation windows is more likely to cut the observation windows of students 

who have longer enrollment periods in the historical cohort to very short ones, resulting in 

insufficient number of students who end up having longer truncated observation window to 

match the percentage of Fall 2012 enrollees. 

(3) Summary statistics of the full analytic sample: 

Appendix Table A4 provides summary statistics for our full analytic sample (column 1), and 

then separately for the training and validation sets (columns 2 and 3, respectively). Panel A 

shows basic demographic baseline characteristics of the sample, and Panel B shows the academic 

outcomes of students in our sample. Panel A shows that the average age at initial enrollment for 

our sample is nearly 25 years old. A little over half of the sample are White, one-quarter are 

Black, and the remainder is Hispanic or other races. Female students make up 55 percent of our 

sample. Among students for whom we do observe parental education (57 percent), 

approximately one-third are classified as first-generation college goers. In Panel B, we see that 

the average student in our sample was enrolled at VCCS for nearly five terms, and was enrolled 

at a non-VCCS institution for nearly two terms -- with a little over one-third of students ever 

being enrolled at a non-VCCS institution. Of the 34.1 percent of the sample who graduated 

within six years, roughly half only earned a VCCS degree, while the other half earned a non-

VCCS degree (either with or without also earning a VCCS degree). Among graduates, the 

average time to completion was 9.5 terms, which translates to a little over three years. However, 

this time to degree is highly variable. While we only use the binary outcome for whether a 
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student graduated in our predictive models, we provide descriptive statistics on these other 

outcomes to better illustrate the enrollment and graduation experiences of students in our sample. 

Columns 2 and 3 of Appendix Table A4 show that, as expected due to the large size of both the 

full analytic sample, the randomly selected training and validation samples are nearly identical 

on these baseline characteristics and academic outcomes. 
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Appendix 2: List of all predictors by their type and complexity of construction  

Appendix Table A5 provides the full set of predictor rankings for the OLS and Logistic 

models based on the RFE method, and the feature importance measure for the Random Forest 

and XGBoost models (see Appendix 3 for a description of the RFE method and feature 

importance measure). A lower value in the OLS and Logistic columns corresponds to a more 

important predictor; a lower value in the Random Forest and XGBoost models corresponds to a 

less important predictor. Appendix Table A5 is sorted based on the OLS predictor ranking. 

Appendix Table A6 provides the full set of coefficient estimates for the OLS and Logistic Base 

models.  

Here is an exhaustive list of all of the predictors in our model:  

(1) Simple non-term-specific predictors: 

● Demographic predictors: 

○ Age at initial enrollment term 

○ Gender 

○ Race/Ethnicity: four binary indicators for White, Black, Hispanic, other. 

○ Parents’ highest education level (categorized) 

● VCCS most recent academic predictors: 

○ Percentage of terms enrolled at VCCS through the last term or the end of the 

observation window, whichever comes first 

○ Cumulative GPA  

○ Share of total credits earned ( = credits passed / credits attempted, with credits 

attempted - credits passed = credits failed. Does not account for course withdraw 

and audited courses) 
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○ Average number of credits attempted during each enrolled term at VCCS 

○ Ever received a Pell grant 

(2) Complexly specified non-term-specific predictors: 

● Predictors related to any academic experience prior to student’s initial enrollment term at 

VCCS: 

○ Ever dually enrolled at VCCS prior to initial enrollment  

○ College-level credit hours accumulated prior to initial enrollment term 

○ Cumulative GPA prior to initial enrollment term 

○ Share of total credits earned prior to initial enrollment term -- does not account for 

course withdrawals. 

○ Enrolled in any non-VCCS institutions in the 3 years prior to initial VCCS 

enrollment 

○ Number of “pre-VCCS” terms enrolled at non-VCCS institutions in the 3 years 

prior to initial VCCS enrollment 

○ Seamless enrollee indicator (a student is a seamless enrollee if his/her initial 

enrollment term is in the same academic year as the high school graduation date) 

● Overall non-VCCS predictors: 

○ Ever enrolled in non-VCCS colleges since initial enrollment term 

○ Total number of enrolled terms at non-VCCS (minimum = 0, maximum = 3 * 

number_of_years_in_time_window) 

○ Total number of non-VCCS colleges attended 

○ Non-VCCS institution type ever attended -- combination of sector (public, non-

profit private, for-profit); level (4-year, 2-year) and location (in-state, out-of-
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state). May not be mutually exclusive if the student attended more than one non-

VCCS institution 

○ Admission rates of non-VCCS institutions attended (averaged if attended 

multiple; weighted based on enrollment intensity) 

○ Graduation rates (150 percent of time) of non-VCCS institutions attended 

(averaged if attended multiple; weighted based on enrollment intensity) 

○ 25th and 75th percentiles of the SAT scores (separately for each subject, math and 

verbal) of incoming class of non-VCCS institutions attended (averaged if attended 

multiple non-VCCS institutions, weighted based on enrollment intensity) 

● VCCS most recent academic predictors: 

○ Standard deviation of term proportion of credits earned 

○ Share of total credits withdrawn  

○ Standard deviation of term proportion of credits withdrawn  

○ Share of developmental credits attempted among total credits attempted 

○ Share of 200-level credits attempted among total credits attempted 

○ Trend of term enrollment intensity (term credits attempted) 

○ Trend of term GPA1 

○ Ever repeated a course 

○ Average grants received by all enrolled terms at VCCS 

○ Average subsidized loans received by all enrolled terms at VCCS 

○ Average unsubsidized loans received by all enrolled terms at VCCS 

○ Average other aids received by all enrolled terms at VCCS 

(3) Simple term-specific predictors:2  
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● VCCS term-specific predictors: 

○ Indicator for whether the data in this term are within the student’s randomly 

truncated observation window 

○ Indicator for whether the student was actively enrolled in VCCS or not 

○ Credits attempted 

○ Share of credits earned (does not account for course withdraw and audited 

courses) 

○ Term GPA 

○ Whether or not the student received a Pell grant 

Note: If the data during a term are not “observed” for a student, the value of all of the 

predictors in the above list will be zero. If the student was observed to be not actively 

enrolled in VCCS during a term, then the value of all of the predictors in the above list 

except for the first one will be zero.  

(4) Complexly specified term-specific predictors:3 

● VCCS term-specific predictors: 

o Proportion of credits withdrawn  

o Proportion of developmental credits attempted among credits attempted 

o Proportion of 200-level credits attempted among credits attempted  

o Repeating a previously attempted course in the current term or not 

o Amount of grants received4 

o Amount of subsidized loans received 

o Amount of unsubsidized loans received 

o Amount of other aids received 
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o Degree-seeking or not 

● Non-VCCS term-specific predictors: 

o Attended any non-VCCS institution 

o Total enrollment intensity in non-VCCS institutions. For example, consider a 

student who attends two non-VCCS institutions in the same term. If the student is 

enrolled full-time at the first institution and part-time at the second institution, 

then their term-specific total enrollment intensity will be equal to 1.5 
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Appendix 3: Details about Predictive Models 

(1) Details regarding setting up, fitting and evaluating the CPH models: 

In the CPH model, we define the event to be graduation, and the event time to be the number 

of terms elapsed since the beginning time (t = 0). For students who did not graduate within six 

years since initially enrolled at VCCS, the CPH model has a built-in way of handling those 

observations called right-censoring, which assumes that the event occurs at a future time point 

that is beyond the six-year observation window but the exact event time is unknown. For those 

observations, we define the censoring time as the last term of the six-year observation window 

relative to t = 0. As a result of our definition of the event, the “survival” function of the CPH 

model is interpreted as the likelihood of not graduating through a certain time point since the 

beginning time, while the “hazard” function is interpreted as instantaneous likelihood of 

graduating at a certain time point given the graduation event has not occurred. With this setup, 

the CPH model characterizes the association between the graduation time and the pre-specified 

covariates (predictors). CPH can be constructed either using non-time-varying covariates only, or 

using both non-time-varying and time-varying covariates that allows for incorporating the term-

specific predictors at each time point.    

The simplest and most natural way of defining the beginning time for the CPH model is to 

set the term in which each student initially enrolled at VCCS at the college level as t = 0. 

However, this definition is not feasible because it suffers from some theoretical and practical 

issues given our definition of the outcome of interest in this paper:  

● We do not construct the CPH model that only includes non-time-varying covariates using 

the natural way of defining t = 0, because by doing so we are only able to include a very 
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small number of non-time-dependent predictors (e.g., demographic predictors) which are 

not meaningfully predictive of the outcome of interest. For all term-specific predictors 

(e.g., enrollment intensity of each term) and some other non-term-specific predictors 

(predictors that are not anchored to a specific term but are in fact time-dependent, e.g., 

cumulative GPA through the end of each term) that have been demonstrated to be 

strongly predictive of the outcome, we’re unable to include them in such a non-time-

varying CPH model because the values of those predictors change over time. 

● We do not construct the CPH model that includes time-varying covariates using the 

natural way of defining t = 0, because our goal is to predict a relatively long-term 

outcome, and in particular, the majority of students included in our study sample will be 

those who have enrolled in VCCS for less than 2 academic years. For such students, 

based on the mechanics of the CPH model, it will need to first predict the probability of 

the event occurrence for every single future time point within the six-year observation 

window, and then calculate the cumulative probability. But in order to generate the 

prediction at each future time point, the model with time-varying covariates needs to 

know exactly the values of those covariates at that time point, which are unknown to us. 

So strictly speaking, CPH model with time-varying covariates cannot generate the desired 

predicted score that aligns with our definition of the outcome of interest, for the currently 

enrolled cohort. There are two potential workarounds to tackle this issue: (1) Assume all 

future terms have the same covariates as the last term (the current term); (2) Use the 

mean values of observed covariates at time t in the training sample to “impute” all of the 

unobserved covariate values at time t in the validation/current sample. However, neither 
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method is theoretically or practically sound because they have to make very strong and 

unrealistic assumptions about the unseen data. 

To tackle the issues of using the natural way of defining the beginning time, we devised an 

alternative way of defining the term corresponding to t = 0. In fact, we used the same randomly 

truncated training sample as is used in other base models – the truncated training sample that 

closely resemble the currently enrolled cohort at VCCS in terms of the number of terms that 

elapsed since each student has initially enrolled, and set the last term in the observation window 

as t = 0, and finally set the event time or censoring time relative to that last term. For instance, if 

the observation window for a student in the truncated training sample is the 1st – 5th terms, and 

if the student graduated in the 8th term, then we set the 5th term as t = 0, and the event time to be 

t = 3. As another illustrative example, if the observation window for a student is the 1st – 3rd 

terms, and if the student did not graduate within 6 years, the student is right-censored at t = 15. 

The advantage of using the alternative definition is that all terms during the observation window 

will be t <= 0, so we could construct the predictors in a similar fashion as we did for fitting the 

other base models -- explicitly include all of the non-term-specific and term-specific predictors, 

and treat those predictors as if they are non-time-varying covariates in the CPH model, because 

they only encode the information of each student prior to last term (t = 0).  

Because there is heterogeneity across students included in the training sample in terms of 

how many terms have elapsed since they initially enrolled in VCCS at the college level, and 

students who started VCCS at different times might have different likelihoods of graduating 

within 6 years, we applied stratification to the CPH model, which allows students with different 

enrollment lengths (1-17 terms) to have different baseline hazard functions. 
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To evaluate the performance of the CPH model, we use the same randomly truncated 

validation sample as used in other base models, in order to obtain an “apple-to-apple” 

comparison of model performance. Same as the training sample, for students in the truncated 

validation sample, we set the last term in their observation window as t = 0, and calculate the 

cumulative probability of the event (graduation) occurring during the time period from t = 1 to t 

= 18-n, where n is the number of terms elapsed since they initially enrolled in VCCS. And this 

calculated cumulative probability will be the predicted score for rank ordering students in terms 

of their likelihood of graduation within 6 years, which is in theory comparable to the predicted 

scores generated by other base models. 

In order for the CPH model that uses the alternative way of defining the t = 0 term to work 

properly, it is necessary to apply random truncation to the training data. If we were to use the 

non-truncated data (with the goal of making the sample/prediction construction process as simple 

as possible) and set the last term in the observation window as t = 0, then the t = 0 term will be 

either the one in which the student graduated or the 18th term since initial enrollment at VCCS 

(if the student did not graduate within 6 years). In that case, all events occurred at t = 0, and there 

is no point of using the CPH model, which is designed to make predictions for events that 

occurred at different time points. 

(2) Additional detail and considerations about the tree-based methods: 

     As indicated by the name, a Random Forest includes many decision trees, with each tree 

using a randomly selected subset of the training sample and each node splitting using a randomly 

selected subset of the model predictors. The results are then averaged across all trees to produce 

the final predictions and to evaluate overall model performance. XGBoost, which is a popular 

implementation of gradient boosting, is similar to the Random Forest procedure, except that 
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XGBoost adds decision trees sequentially to the ensemble by growing each new tree based on 

the residual errors of all previous trees. In this way, the predictions generated by XGBoost 

gradually improve as more trees are added. Due to the relatively high complexity of these tree-

based methods, it takes much longer time to fit them than regression models, with XGBoost 

requiring particularly higher computing power because its model fitting procedure cannot be 

parallelized, as is the case with Random Forest. And unlike regression models, tree-based 

methods require fine tuning several key parameters in order to ensure the model is working 

under optimal conditions, which further adds to the computing power and user’s skill set needed 

for model fitting. Because of the ensemble nature of Random Forest and XGBoost, the 

interpretability of those models is lower than regression models; for example, these models do 

not have a direct equivalent to the coefficients that OLS and Logistic estimate. But, as we 

describe below, tree-based methods still provide quantitative measures such as feature 

importance which gives insights into which predictors are playing a key role in predicting the 

outcome. 

(3) Additional detail and considerations about the recurrent neural network model: 

     In each sequential “layer” of analysis, neural networks achieve a higher level of complexity by 

re-combining the information encoded previously. In doing so, a deep stack of layers in certain 

contexts can more accurately capture underlying relationships in the raw data that ultimately 

improve predictive performance. Recurrent Neural Networks (RNN) are a special type of neural 

network models that have achieved state-of-the-art performance in applications with sequential 

data such as natural language processing and time series predictions, by feeding information on 

time-dependent inputs back into “recurrent” layers sequentially (Karpathy, 2015; Che et al, 

2018).  The neural network model we construct in this paper is a modified RNN model that uses 
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recurrent hidden layers to transmit the time-specific predictors and regular hidden layers to 

transmit the time-invariant and most-recent-term predictors, and then merges the two streams of 

hidden layers into a uniform output layer. The specific type of recurrent layer used to construct 

the RNN models in this paper is called a Long Short-Term Memory (LSTM) layer, which is a 

variant of the regular recurrent layer whose internal architecture is designed to overcome the 

technical difficulties (vanishing gradient problem) encountered in the procedure of fitting RNN 

models in practice. 

 

(4) Cross-validation procedure for fine tuning the Random Forest, XGBoost and RNN 

models: 

We randomly partition the training set into n equally sized folds, pick a different fold for 

evaluation every time and fit a model using the other n-1 folds. The evaluation result averaged 

over all of the n folds provides an estimation of how accurate the model is able to predict unseen 

data. During the model tuning phase, we first pre-specify a set of combinations of different 

parameter values, then for every single combination we estimate the corresponding performance 

measure using cross-validation, and finally select the combination of parameter values which 

results in the highest performance in cross-validation. For Random Forest, the tuning parameters 

include the maximum depth of each tree, the total number of trees in the ensemble and the 

number of randomly selected predictors used in node splitting. For XGBoost, the tuning 

parameters include the maximum depth of each tree, the step size shrinkage, the minimum 

number of instances required for splitting a tree node, the fraction of randomly selected 

predictors in node splitting and the total number of trees in the ensemble. For RNN, the tuning 

parameters include the quantities that specify the structure of the model architecture (i.e. the 
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number of each type of hidden layers -- fully connected layers, LSTM layers, etc., number of 

neurons within each hidden layer) as well as the parameters that control the model fitting 

procedure of RNN, such as the dropout rate (the probability of randomly deactivating a neuron 

while training the RNN, used to prevent overfitting) and learning rate (the magnitude for 

updating coefficients values within one training iteration). The Random Forest and XGBoost 

models can easily underfit (poor performance on unseen data as result of failing to adequately 

explain the relationship between outcome variable and predictors) or overfit (poor performance 

on unseen data as a result of picking up the idiosyncrasies or noises in the training data) if the 

tuning parameters are not properly set. For RNN, overfitting is a more predominant issue than 

underfitting. 

The performance measure used in model tuning is the c-statistic, a quantitative metric widely 

used for evaluating models that predict binary outcomes, which is described in detail below. 

Then optimal parameter values identified in this step are used in all subsequent model 

construction and evaluation steps. 

(5) Procedure for choosing the optimal threshold value: 

Because the raw output of predicted models are scores ranging from 0 to 1 which 

approximately represent the likelihood of graduation (the higher the predicted score is the more 

likely the student will graduate), a threshold is needed in order to serve as the decision boundary 

-- if the predicted score of a student is above the threshold, they are predicted to graduate, and 

vice versa. If the threshold value is too low, there is increased risk of failing to identify a 

substantial share of students who will actually not graduate as high-risk students. And if the 

threshold value is too high, it is more likely to incorrectly identify a considerable number of 

students who will actually graduate as non-graduates. To find a reasonable threshold value that 
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strikes a balance between these two considerations, we use a performance measure called F1-

score (described in more detail below). Specifically, we use cross-validation to identify the 

threshold which maximizes the F1-score for each model. 

(6) Details about predictor importance measures: 

For the OLS and Logistic regressions, we use recursive feature elimination (RFE), which 

repeatedly removes the weakest predictor (based on the coefficient values) and then refits the 

model until only one predictor is left. The order of predictors eliminated corresponds to the 

reversed feature importance. For CPH regression, as discussed in Appendix 3. (1), because we 

include a stratification variable into the model in order to account for the heterogeneity of the 

truncated training sample, there are different coefficient estimates for covariates associated with 

each stratum. Therefore, there are no well-defined feature importance measures based on RFE. 

For the Random Forest model, we use the mean decrease in importance (MDI) as the feature 

importance metric to rank order the predictors, which calculates the overall contribution of each 

predictor to improving the prediction accuracy in instances where the predictor is used to split a 

tree node. Similarly, the XGBoost model uses a metric calculated according to the relative 

frequency and depth of each predictor being used in splitting tree nodes to identify feature 

importance. For the RNN model, because the term-specific predictors are constructed in a 

different way from the other five modeling approaches (each term-specific predictor across 

different terms are considered as a whole predictor instead of different predictors), the 

quantitative feature importance measures for the term-specific predictors in RNN will not be 

comparable to those from other models. As a result, we do not explore the RNN feature 

importance in this paper. 
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Appendix 4: Additional details about each evaluation statistic 

C-statistic: A c-statistic score of 0.80 means that when randomly selecting two students -- one 

who actually graduated and one who actually did not -- there is an 80 percent chance that the 

student who actually graduated has a higher predicted score than the student who did not. A c-

statistic of 0.80 is typically considered a sufficient level of accuracy. 

Precision: In other words, a higher precision value translates to fewer Type I errors (false 

positives). We also report the non-graduation precision values, i.e., the proportion of predicted 

non-graduates who actually did not graduate. 

Recall: In other words, a higher recall value translates to fewer Type II errors (false negatives). 

We also report the non-graduation recall values, i.e., the proportion of actual non-graduates who 

are correctly classified as graduates. 

F1: We also report the non-graduation F1-score, which is calculated using the non-graduation 

precision and non-graduation recall values. 

Rank order of predicted scores: Specifically, we examine the distribution of all magnitudes of 

change and the proportion of students who fall into the same quantiles in both models versus 

different quantiles.  
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Appendix 5: Additional tests with reduced set of predictors 

We explore five particular cases for reducing the set of model predictors: (1) excluding 

the complexly specified term-specific predictors; (2) excluding all term-specific predictors; (3) 

only including the simple non-term-specific predictors (4) using feature selection to reduce the 

set of predictors while still maintaining similar performance to the base models; (5) excluding 

demographic predictors. Note that RNN is excluded from all tests except for the case (1) and (5); 

as noted above, RNN is not compatible with our feature selection method, and relies on the time-

dependency of the term-specific predictors. 

(1) Excluding the complexly specified term-specific predictors 

As we have discussed in section III.B, excluding the complexly specified time-specific 

predictors from each base model only results in very small reductions in model performance, 

with the decrease in c-statistics being less than 0.3 percent. In the case of the Random Forest 

models, model performance actually improves slightly when we exclude the complexly specified 

term-specific predictors in the model. Figure A8 also compares non-graduation F1-scores, which 

are also very close between each pair of base models and the model which excludes the term-

specific predictors (within 1.5 percent).  

In Figures A9 and A10, we explore how excluding the complexly specified term-specific 

predictors affects the risk rankings of students based on the model predictions. Figure A9 shows 

the distribution of students according to their absolute change in percentile of predicted scores 

between the base model and the model that excludes the complexly specified term-specific 

predictors. For instance, looking at the first column of Figure A9, we see that 89 percent of 

students’ predicted scores from the OLS model changed by five percentiles or less across the two 
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specifications. We see very similar results for the Logistic, Random Forest, and XGBoost 

models; however, the predicted scores vary more within CPH and RNN. Approximately 16 

percent of students move six or more percentiles across the CPH derived risk distribution when 

using the set of predictors that exclude the complexly specified term-specific ones, and the share 

for RNN is 25 percent. Still, the share of students that experience extreme changes in predicted 

scores remains fairly small. Figure A10 focuses specifically on the proportion of students in the 

bottom, 3rd and 5th decile of the base models that are assigned to the same decile when using the 

set of predictors that exclude the complexly specified term-specific ones. For instance, 89 

percent of students in the bottom decile and 73 percent of students in the 3rd decile remain in 

those deciles across the two OLS model specifications. 

Both Figures A9 and A10 show that excluding the complexly specified term-specific 

predictors has a relatively larger effect on the placement of students in the distribution of 

predicted scores for CPH and RNN, although in absolute terms the amount of variation is 

minimal. We hypothesize that this pattern of results is driven by the fact that for CPH regression5 

and RNN models the relationship between predictors and risk rankings is intrinsically more 

complexly specified than the OLS and Logistic regression in which we do not specify any 

complexly specified variable interactions prior to estimation, so removing certain characteristics 

from CPH and RNN can lead to more dramatic movement in risk rankings. Since tree-based 

models routinely estimate complexly specified relationships between predictors, and predictors 

in decision tree classifications can also be re-used in the construction of tree nodes, removing 

certain predictors from the model could potentially have a significant impact on the sequence of 

nodes within the constructed tree-based models. However, we do not find there is a higher 

degree of risk ranking movement for Random Forest and XGBoost than OLS and Logit. This is 
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probably because the tree-based methods perform feature selection by themselves -- the less 

important predictors will be used in a way that has less impact on the predicted risk rankings 

during the tree growing procedure. And the excluded more complexly specified term-specific 

predictors happen to be the ones of little importance when fitting those tree-based methods.  

(2) Excluding all term-specific predictors 

As we have discussed in section III.B, excluding all term-specific predictors from each base 

model will result in slight but noticeable reductions in model performance. Figure A11 compares 

the c-statistics and non-graduation F1-scores between the base model and the model without 

term-specific predictors. Across all five models, we see a reduction in performance when 

excluding the term-specific predictors, and the reductions in c-statistic values are at least twice as 

large for the regression models compared to the tree-based models. In other words, when 

excluding term-specific predictors, the added gain from a more complexly specified model is 

much more pronounced. Figures A12 and A13 illustrate how removing term-specific predictors 

affects the movement of students within the distribution of predicted scores. Unlike the results 

from the model which excludes the complexly specified term-specific predictors presented 

above, this modeling change results in greater movement with respect to the regression models 

than the tree-based models, although across all models we observe considerable fluctuation in the 

relative risk rankings of students. The share of students that move more than 10 percentiles in the 

distribution of predicted scores with the removal of term-specific predictors ranges from 14 

percent (XGBoost) to 36 percent (OLS) across the five model types. This degree of instability is 

not surprising, given that many of the predictors with highest feature importance in the base 

models are the simple term-specific ones. Models that exclude those variables necessarily rely 

more heavily on other predictors that can generate divergent predictions. The pronounced 
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instability of the OLS- and Logistic-derived risk rankings is also likely explained by the degree 

of performance degradation observed in the regression models. After excluding the term-specific 

predictors, the OLS and Logistic models become much worse at correctly rank ordering students 

compared to the Random Forest and XGBoost models, which translates into larger changes in 

the distribution of predicted scores generated by OLS and Logistic regression. In summary, the 

results of this analysis indicate that the benefits to using tree-based models are more pronounced 

when institutions are constrained in their ability to leverage term-level data to identify at-risk 

students. 

(3) Only including the simple non-term-specific predictors 

As we have discussed in section III.B, only including the simple non-term-specific predictors 

from each base model will result in considerable reductions in model performance. Figure A14 

compares the c-statistics and non-graduation F1-scores between the base model and the model 

with only the simple non-term-specific predictors. Across all five models, we see a reduction in 

performance when excluding the complexly specified non-term-specific predictors and all term-

specific predictors, and the reductions in c-statistic values are more pronounced for the 

regression models compared to the tree-based models. Figures A15 and A16 illustrate how 

removing term-specific predictors and the complexly specified non-term-specific predictors 

affects the movement of students within the distribution of predicted. Compared with Figure A12 

and A13 where risk ranking movement results for models excluding term-specific predictors are 

displayed, we find even more pronounced movement of students within the distribution of 

predicted scores. The share of students that move more than 10 percentiles in the distribution of 

predicted scores with the removal of term-specific predictors ranges from 38 percent (XGBoost) 

to 52 percent (OLS) across the five model types. This is as expected, since removal of certain 
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complexly specified non-term-specific predictors that contribute substantially to model 

performance will force the models to rely more heavily on the simple non-term-specific 

predictors that can generate more divergent predictions. Similar to the results from the model 

which excludes the term-specific predictors presented above, the instability of the OLS- and 

Logistic-derived risk rankings are pronounced than other ones, which can also be explained by 

the fact that the OLS and Logistic models that only include the simple non-term-specific 

predictors have significantly poorer performance in terms of correctly rank ordering at-risk 

students than CPH, Random Forest and XGBoost. Therefore, using a simple variable 

construction approach can substantially influence which students are targeted for intervention. 

(4) Automated feature Selection to maintain model performance 

In addition to manually checking the different variable construction methods that have 

reduced set of predictors, in order to achieve a more parsimonious model, we implement an 

automated feature selection method using penalized logistic regression with a 2-SE rule, which 

reduces the number of predictors from 331 to 147.6 We then estimate each of the five regression 

and tree-based models using the same set of 147 selected predictors. Figure A17 compares 

overall model performance between the full model and the model with 147 selected predictors. 

We observe very small reductions in c-statistics and non-graduation F1-scores (all less than 0.3 

percent) as a result of limiting the predictor set. In the case of the Random Forest models, model 

performance actually improves slightly when we include only the selected predictors in the 

model.7 

We extend the penalized logistic regression method of feature selection to show the 

relationship between the number of predictors in the model and model performance.8 Figure A18 

reports the results from this exploration, with the number of predictors displayed on the x-axis 
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and the corresponding c-statistic from the penalized Logistic model displayed on the y-axis.9 The 

upper dashed horizontal line denotes the c-statistic value for the model using the 2-SE selection 

rule, which crosses the curve at 147 predictors. The lower dotted horizontal line is positioned on 

a c-statistic value of 0.80, which is a common lower-bound benchmark of acceptable model 

performance.  

In Figures A19 and A20, we explore how restricting the model to the 147 selected predictors 

affects the risk rankings of students based on the model predictions. Figure A19 shows the 

distribution of students according to their absolute change in percentile of predicted scores 

between the base model and the model with 147 selected predictors. Looking at the first column 

of Figure A19, we see that 96 percent of students’ predicted scores from the OLS model changed 

by five percentiles or less across the two specifications. We see very similar results for the 

Logistic model; however, the predicted scores vary more within CPH, Random Forest and 

XGBoost. Approximately 12 percent of students move six or more percentiles across the 

Random Forest derived risk distribution when using the 147 selected predictors. Still, the share 

of students that experience extreme changes in predicted scores remains fairly small. Figure A20 

focuses specifically on the proportion of students in the bottom, 3rd and 5th decile of the base 

models that are assigned to the same decile when using the 147 selected predictors. For instance, 

95 percent of students in the bottom decile and 88 percent of students in the 3rd decile remain in 

those deciles across the two OLS model specifications. 

Both Figures A19 and A20 show that using the 147 selected features has a relatively larger 

effect on the placement of students in the distribution of predicted scores for CPH, Random 

Forest and XGBoost, although in absolute terms the amount of variation is minimal. Comparing 

those two figures with Figure A9 and A10 for the risk ranking movement results for the models 
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that exclude the complexly specified term-specific predictors, we find that for OLS, Logit and 

CPH, the variation in risk rankings upon removing the complexly specified term-specific 

predictors is significantly less than removing the predictors which are dropped in the feature 

selection. One possible explanation is that the penalized logistic method of feature selection is 

linear by nature, so it is fairly effective at identifying the predictors to be dropped that have the 

least impact on both the prediction accuracy and the relative risk rankings for generalized linear 

models including OLS, Logit and CPH, while those dropped predictors might not necessarily be 

the least impactful ones for risk rankings generated by tree-based methods.  

(5) Excluding all demographic predictors 

In Figures A21 and A22, we explore how excluding demographic characteristics affects the 

risk level rankings of students based on the model predictions. Similar to the pattern of results 

from the model with 147 selected features, we observe that excluding the demographic predictors 

from the tree-based models (in this case, particularly XGBoost) and especially RNN has a 

significantly larger effect on the placement of students in the distribution of predicted scores 

compared to the regression-based models. Nearly one-quarter of students (XGBoost) and nearly 

one-third of students (RNN) in the bottom decile of scores derived from the XGBoost base 

model fall out of the bottom decile when demographic characteristics are excluded from the 

prediction model. This level of instability arises, despite the fact that only one demographic 

predictor -- age -- is listed among the top-20 predictors with respect to feature importance in the 

XGBoost base model. Similar to our explanation above, we hypothesize that this result is driven 

by tree-based and neural network models’ ability to estimate more complex relationships and 

interactions between predictors. In other words, even though we do not observe meaningful 

changes in overall model performance when demographic characteristics are excluded from the 
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predictor set, removing them has the potential to more significantly alter which students are 

targeted for intervention when predictions are generated with more complex machine learning 

algorithms. 
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Appendix 6: Additional tests for models using smaller samples 

Because we have access to many years of data for the entire system of 23 community 

colleges in Virginia, the training and validation samples we use to construct the base models are 

large. However, it is likely the case that individual colleges with a much smaller number of 

students would want to use predictive modeling to identify at-risk students. We therefore also 

estimated college-specific models for Piedmont Virginia Community College (PVCC), a 

medium-sized community college within the VCCS system. Specifically, we limit both the 

training and validation samples to students who enrolled at PVCC during their last available term 

within their truncated enrollment window. This restriction reduces the training and validation 

samples to 2.4 percent and 2.5 percent of their original size (n = 7,132 for the training sample; n 

= 837 for the validation sample). Note that the graduation rate for PVCC-only validation set is 

slightly higher compared to the base model, 35.7 percent compared to 34.1 percent, respectively. 

In order to compare base model performance to the PVCC only models10, we apply the base 

models built using the full training sample to a validation sample consisting only of PVCC 

students. This provides a more “apples-to-apples” comparison between the two models, because 

each model is being evaluated with the same set of out-of-sample students. Similarly, we 

perform a second analysis using a 10 percent random sample of the training set to build the 

model (n = 29,813), which we then compare to the base model using a 10 percent random sample 

of the validation set (n = 3,312).11 

We report the c-statistic and non-graduation F1-scores for the base models and the 

PVCC-only models in Figure A23. The PVCC-only models perform slightly worse (decrease in 

c-statistic of 1-2 percent; decrease in F1-score of 1-3 percent) but are still very high, ranging 

from 0.898 (Random Forest) to 0.911 (XGBoost); in fact, the c-statistics from the PVCC-only 
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trained models are higher than the overall base models reported in Figure 3. This performance 

for the PVCC-only model is beyond what we expected given a significant reduction in the 

training sample, which is typically accompanied by significantly worse model performance 

(Abu-Mostafa et al, 2012; Banko et al, 2001).  One hypothesis to explain this high level of 

performance is that the PVCC-only model has a more may be due to a more narrowed focus on a 

specific context. In other words, because PVCC students may be more alike than VCCS students 

as a whole, this similarity may improve the models’ ability to predict graduation, which partly 

compensates for the significant reduction in training sample size. However, when we build a 

training sample the same size as the PVCC-only set using a random sample from all 23 colleges, 

and apply it to the PVCC-only validation model, we find similarly high levels of performance. 

Therefore, while we are able to achieve higher accuracy for PVCC students across all training 

sample configurations, this better performance is likely not driven by a more focused context.  In 

Figure A24, we show that model performance is similarly high when we rely on the 10 percent 

random sample to build and validate the prediction models. Taken together, the results in Figures 

A23 and A24 indicate that the value of prediction models are not limited to “Big Data” contexts. 

They can also be leveraged effectively in smaller contexts to target additional outreach and 

support to at-risk students. 

In Figures A25 and A26, we further examine the extent to which the rank ordering of 

predicted scores in the PVCC validation sample changes when predictions are generated using 

the base model versus the PVCC-specific model. Figure A25 reports the distribution of the 

change in predicted score percentiles and Figure A26 reports the share of students in the bottom, 

3rd and 5th decile of base model-derived predicted scores who remain in the same decile when 

scores are based on the PVCC-specific model. We observe significant movement of students 
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along the distribution of predicted scores, most notably with respect to predictions generated 

from XGBoost models. In Figure A25, more than half of students move more than five 

percentiles, and 10 percent of students move more than 15 percentiles between the base and 

PVCC-specific XGBoost models. In addition, Figure A26 shows that nearly half of students 

move out of the bottom decile across the two XGBoost models. Figures A27 and A28 show the 

same results for the 10 percent random sample model. While there is still significant movement 

in predicted scores between the base model and the 10 percent random sample model, 

particularly for the tree-based methods, there is less movement compared to the PVCC-only 

model. These results indicate that relying on a relatively small sample (particularly by focusing 

on a specific college within a system) can significantly alter which students are targeted. We 

hypothesize that this pattern exists due to the sensitivity of predictive models to changes in the 

training data. This is particularly true of tree-based models, which make more complex 

assumptions about the relationship between the outcome variable and predictors. By virtue of 

having more model fitting flexibility, Random Forest and XGBoost models are more sensitive to 

changes in training sample construction than regression models, which rely on simpler 

assumptions about the data. 

In conclusion, the results in Figures A23-A28 show that it is possible for predictive 

models to have similarly high performance in smaller settings. What’s more, we do see that the 

choice of system-wide or institution-level model can significantly impact which students are 

targeted for intervention. However, we caution against too strong interpretation of these results, 

as we only tested one college-specific model; the same pattern of results may not hold for the 

other 22 VCCS colleges, or within a separate state system. 
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Appendix 7: Additional tests for NSC data 

The context of our study is within the community college sector. Many community 

college students attend community colleges with the goal of transferring to a four-year school 

and earning a bachelor’s degree, sometimes without earning a degree from the community 

college before doing so. Indeed, we see that 37.1 percent of our sample transfers to a four-year 

school, 72.8 percent of whom do not earn a degree from VCCS before transferring. For this 

reason, we include information from the NSC data both in constructing our graduation outcome 

and predictors which provide information on student academic experiences outside the VCCS. In 

this section, we test how excluding the NSC data may change the models’ performance and 

behavior. We perform this test because, while NSC data is a fairly commonly used source, not all 

institutions currently have access to this data. NSC data can be costly to obtain and maintain; 

what is more, an institution may only be interested in the outcome of whether a student graduates 

from that institution. Therefore, we investigate how our results differ when removing the NSC 

data entirely from our modeling process. 

The exclusion of the NSC data reduces the number of model predictors from 331 to 274; the 

exclusion also reduces the graduation rate of the sample from 34.1 percent to 23.7 percent. This 

reduction is due to no longer observing true graduation for students who earn a degree outside 

VCCS. As a result of this change in outcome variable specification, we expect three opposing 

forces in terms of the effect on model performance: 

1. Increased model performance because the outcome is measuring a more specific and 

narrowly focused occurrence -- i.e., whether a student earns a degree from a VCCS 

college is likely to be less related to whether a student earns a degree from a non-VCCS 

college. 
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2. Decreased model performance due to additional noise in the model because we can’t 

fully observe graduation. For example, suppose that the students with the best GPAs are 

the most likely to go on to earn degrees at non-VCCS institutions, without necessarily 

earning a VCCS degree before transferring. By re-assigning the outcome for these 

students from “graduated” to “did not graduate”, the relationship between graduation and 

GPA would become distorted. 

3. Decreased model performance due to removing the NSC predictors, which decreases the 

amount of information at the models’ disposal. 

Figure A29 shows that, in terms of c-statistics, all models that exclude all NSC data actually 

perform better than the base model. Specifically, the c-statistic increases by 2-3 percent across 

models, with the largest increase occurring for XGBoost; in fact, the XGBoost model that 

excludes all NSC data has an impressive c-statistic of 0.933. A practical concern regarding 

interpreting these c-statistic results is whether it's an “apple-to-apple” comparison, given that 

there are two different outcome definitions between the base model and the model with no NSC 

data. Therefore, we also compute the c-statistics for both model versions excluding students who 

earn a non-VCCS degree (but no VCCS degree) from the validation sample (results not 

displayed). The c-statistics are still higher for the no NSC data compared to the base model, 

although the differences are smaller than what we see in Figure A29. 

In Figure A29, we also see increases in the non-graduation F1-scores for all models, with the 

increases ranging from 4-5 percent, with the largest increases for the CPH and tree-based 

models. These increases in F1-scores are expected, due to the reduced observed graduation rate 

with the exclusion of the NSC data. Put another way, if there are two models with a similar c-

statistic but one has a lower outcome mean, then that model will mechanically have a higher 
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non-graduation F1-score. Therefore, we conduct a separate test where we compute the F1-scores 

for many random subsamples of the validation set that have the same proportion of graduates and 

non-graduates, separately for the base model and the model excluding NSC data (results not 

displayed). Other than a very small decrease in F1-score for OLS, we find increases from the 

base model to the model with NSC predictors. 

Figures A30 and A31 show the movement of students across the distribution of predicted 

scores from the base models to the no NSC data models. Figure A30 shows that between 32-41 

percent of students move 11+ percentiles when NSC data is excluded from the model. Similarly, 

Figure A31 shows that 40-66 percent of students in the bottom decile in the base model move out 

of the bottom decile when we exclude NSC data. Similar to other results we discuss above, we 

see the greatest movement of students for the XGBoost model. In the context of this particular 

test, it is not very surprising to see these dramatic shifts in the predicted scores percentiles 

because the outcome of interest changed significantly. When we recreate Figures A30 and A31 

using the alternative validation sample tests mentioned above for the c-statistic and non-

graduation F1-score, we find very similar results (not displayed). 

Next, we conduct two additional tests regarding the use of the NSC data. Our first test is to 

remove all of the predictors we constructed using the NSC data. While the information available 

in the NSC data is far more limited than what we observe in the VCCS administrative files, we 

still observe enrollment periods, enrollment intensity, and quality metrics of the non-VCCS 

institutions that students attend. Second, we test how the model performance differs when we 

drop all students who attended a non-VCCS college during their randomly truncated observation 

window. The purpose of this second test is to show how the models may differ when exclusively 

focused on students enrolled at VCCS. This exclusion results in a training sample size of n = 
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281,317 (94 percent of base model) and a validation sample size of n = 31,200 (94 percent of 

base model). Note that this does not exclude students who attended a non-VCCS institution 

outside of their observation window. Because none of the students in these samples attended a 

non-VCCS institution during their observation window, we exclude all non-VCCS predictors 

from this model as well. Figure A32 compares the c-statistics and non-graduation F1-scores 

between the base model and these two additional model variants. We observe very slight 

reductions (1 percent or less across all five models) in the c-statistics for both tests. For the No 

NSC Predictors test, the F1-score decreases slightly (1 percent or less); For the No NSC 

Enrollees test, the F1-score increases slightly (less than 1 percent). 

Finally, Figures A33 through A36 show how the distribution of students’ predicted scores 

changes between the base models and these two model variants. Despite the similarity in the 

model variants, we see that there is still non-trivial movement across predicted score deciles, 

particularly for Random Forest models. For the Random Forest models, nearly one quarter of 

students in the bottom decile in the base model are not in the bottom decile for the test variants. 
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Appendix 8: Details about back-of-the-envelope benefit-cost calculation 

We find that using XGBoost instead of OLS to predict the probability of graduation 

correctly identifies an additional 2 percent of at-risk students who would not graduate in the 

absence of intervention. In order to make these calculations, we set the threshold delineating 

predicted graduates from non-graduates by forcing the graduation rate of the validation sample to 

be the same as the graduation rate of the training sample (34.1%). This alternate method for 

setting the threshold allows for a better comparison of non-graduation recall across models, since 

as we discussed above the recall values can be quite sensitive to the threshold set by optimizing 

the F1-score. 

This estimate differs from the marginal increase of 681 students reported in Section III.C. 

for two reasons: 1) it is based on the size of the average VCCS college, while the latter is derived 

from all 33,000 students in the validation sample, and 2) it only includes the additional number 

of non-graduates correctly identified, while the latter captures both the marginal increase in 

correctly identified graduates and non-graduates. 
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Notes from Appendices:  

1. If there are less than 2 prior terms this value will be missing. If there are exactly 2 prior terms 

then the trend in GPA will be the slope of the difference in term GPA between the two terms. If 

there’re n prior terms (n>=3), we fit a linear regression (the x variable are simply t=1,2,3,…) 

using the most recent 3,4,5,…,n terms respectively, and use the slope of whichever linear 

regression line that has the highest R^2 as the value for trend in GPA. For instance, if there are 5 

prior terms, we fit the slope of term GPA using terms 3-5, terms 2-5 and terms 1-5, and if terms 

2-5 has the highest linear regression R^2, the slope of terms 2-5 will be the value of trend in 

GPA. 

2. When constructing RNN models, for both VCCS and non-VCCS term-specific predictors, we 

organize the values of each predictor in the chronological order (each time stamp corresponds to 

the term in which a student was actively enrolled in VCCS or non-VCCS institutions). Therefore, 

unlike other models where a certain term-specific predictor in different terms will be considered 

as distinct predictors (e.g., term GPA in the 1st Sprint term is a different predictor from term 

GPA in the 2nd fall term), in RNN each term-specific predictor is treated as an object which 

consists of a sequence of its values at all of the different time steps. 

3. We do not create term-specific for the non-VCCS institutional type and quality measures, as 

including these measures would significantly increase the total number of predictors within the 

model, and because few students have relevant data to contribute toward these term-specific 

predictors that differ meaningfully from time-invariant predictors. Specifically, only 6.9 percent 

of students in the training sample and 5.6 percent of students in the validation sample have ever 

attended non-VCCS institutions during their randomly truncated observation windows. 

Furthermore, among such students, only 7.0 percent (for training sample) and 5.9 percent (for 
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validation sample) of them have attended more than one non-VCCS institution during their 

randomly truncated observation windows, we do not create term-specific non-VCCS institutional 

type and quality measure predictors. 

4. Grants, subsidized loans, unsubsidized loans and other aid predictors are constructed based on 

the academic year, as opposed to term. Also, logarithm transformations have been applied to 

those financial aid variables in order to prevent the extremely large values from making the 

model predictions unstable. 

5. For CPH, the predicted outcome needs to be further processed in order to generate risk 

rankings, and the inclusion of the stratification variable increases the complexity of the model by 

one order of magnitude. 

6. Although a 1-SE rule is more frequently used for feature selection, we employ a 2-SE rule to 

push the degree of model parsimony as high as possible without meaningfully losing predictive 

performance. Specifically, from an algorithmic perspective the penalized logistic regression with 

L1 regularization is a variant of the standard logistic regression that appends an additional term 

(a function of model coefficients) to the objective function of the standard model. By increasing 

the magnitude of this additional term (i.e., from 1-SE to 2-SE), it forces the optimal model 

solution to become increasingly sparse. Optimization is achieved by choosing the fewest number 

of predictors that maintain model performance within 2 standard errors of the best-performing 

model specification when no constraints are imposed on the predictor set. Model performance 

did not decrease with the 2-SE rule, which suggests that using the more aggressive rule is 

justified in this case. 
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7. We also tested a second feature selection method called cost complexity pruning of decision 

trees. However, we found that the cost complexity pruning did not perform as well as the 

penalized logistic regression with the 2-SE rule. 

8. Specifically, we gradually increased the tuning parameter at each step and then recorded the 

corresponding number of selected predictors as well as the out-of-sample model performance. 

9. We report the average c-statistic value from a 10-fold cross-validation process. 

10. We do not build the RNN model for the PVCC-only training set primarily because RNN is 

very computationally intensive in terms of modeling fitting and fine tuning, and we did not find 

the performance of other models trained on smaller training samples have any significant 

difference from the base models. And we do not build the CPH model for the PVCC-only 

training set either, as the model fitting procedure runs into a convergence error with such a small 

training sample size and large number of predictors, which is likely caused by the variance of 

certain predictors being too small. 

11. We do not build the RNN model for the randomly selected 10% of the training sample 

primarily because RNN is very computationally intensive in terms of modeling fitting and fine 

tuning, and we did not find the performance of other models trained on smaller training samples 

have any significant difference from the base models. 
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Appendix Table A1: Model Performance Under Different Sample & Predictor Construction Methods 

           

  

Simple non-term-specific 

predictors (14 total)  

All non-term-specific 

predictors (61 total)  

All non-term-specific 

predictors and simple 

term-specific predictors 

(185 total)  

All term-specific and 

non-term-specific 

predictors (331 

total) 
           

  Truncated c-statistic  Truncated c-statistic  c-statistic  c-statistic 

  (1) (2)  (3) (4)  (5)  (6) 

OLS  Yes 0.8105  Yes 0.8513  0.8773  0.8795 

OLS  No 0.7611  No 0.7597     

Logit  Yes 0.8183  Yes 0.8539  0.8816  0.8837 

Logit  No 0.7837  No 0.8038     

CPH  Yes 0.8368  Yes 0.8643  0.8794  0.881 

CPH  No N/A  No N/A     

RF  Yes 0.8516  Yes 0.8841  0.8892  0.8859 

RF  No 0.8163  No 0.8474     

XGBoost  Yes 0.855  Yes 0.8906  0.9024  0.9032 

XGBoost  No 0.8162  No 0.8504     

RNN  Yes N/A  Yes N/A  0.8956  0.8959 

RNN  No N/A  No N/A     
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Appendix Table A2: Cross-model correlation of risk rankings 

        

 Panel A: Pearson correlation coefficient     

  OLS Logit CoxPH RF XGBoost  

 OLS       

 Logit 0.9621      

 CoxPH 0.9362 0.9736     

 RF 0.9157 0.9386 0.9231    

 XGBoost 0.899 0.946 0.9255 0.9518   

 RNN 0.8922 0.9408 0.9193 0.9322 0.9607  

 Panel B: Spearman's coefficient of rank correlation    

  OLS Logit CoxPH RF XGBoost  

 OLS       

 Logit 0.9864      

 CoxPH 0.957 0.9787     

 RF 0.9289 0.9244 0.9151    

 XGBoost 0.9322 0.9436 0.9238 0.9432   

 RNN 0.9256 0.9365 0.9123 0.92 0.9576  
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Appendix Table A3: Share of top 20% 

important features in common, base models 

versus models excluding demographic 

predictors 

     

 Model  

Share of predictors in 

common  

 OLS  0.939  

 Logit  0.924  

 RF  0.939  

 XGBoost  0.924  
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Appendix Table A4: Summary statistics of analytic sample 

        

  Full sample  

Training 

sample  

Validation 

sample  

  (1)  (2)  (3)  

        
Panel A: Baseline Characteristics               

Age at first enrollment  24.64  24.64  24.64  

        
White  55.56%  55.58%  55.38%  
Black  25.71%  25.67%  26.16%  
Hispanic  7.85%  7.85%  7.85%  
Other  8.73%  8.75%  8.52%  

        
Male  44.61%  44.57%  44.95%  
Female  55.39%  55.43%  55.05%  

        
First Generation  19.52%  19.53%  19.47%  
Not First Generation  37.52%  37.48%  37.81%  
Missing Parental education  42.96%  42.99%  42.72%  

        
Panel B: Academic outcomes, within six years of initial VCCS enrollment   

        
Ever enrolled at non-VCCS?  37.09%  37.10%  36.97%  

        
Total terms enrolled        
VCCS only  4.7  4.71  4.69  
VCCS or non-VCCS  6.56  6.56  6.54  
Non-VCCS only  1.94  1.94  1.94  

        
Earned credential?        
VCCS only  17.75%  17.75%  17.73%  
Non-VCCS only  10.44%  10.45%  10.37%  
VCCS and non-VCCS  6.01%  6.01%  6.04%  

        
Time to credential (# terms)        
Mean  9.5  9.5  9.52  
Standard Deviation  4.11  4.12  4.1  

        
N  331,254  298,139  33,115  

        
Notes: total terms enrolled can include up to three terms in a calendar year: Spring, Summer, and Fall. 

For non-VCCS enrollment, we use the enrollment beginning and end dates for each enrollment 

records to determine whether the student was enrolled in a given Spring, Summer, or Fall term. We 

consider all levels of postsecondary credentials, including diplomas, short- and long-term certificates, 
Associate degrees, Bachelor's degrees, and graduate degrees when determining the outcome of 

credential completion. 
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Appendix Table A5: Predictor importance measures for each base model 

Notes: The ranking values in columns (1) and (2) are based on recursive feature elimination (RFE), described in more detail in the text. A lower 

value in columns (1) and (2) indicate a more important feature, with the feature ranked as "1" being the most important. The feature importance 

values in columns (3) and (4) are also described in more detail in the text. A higher value in columns (3) and (4) indicate a more important 

feature. 

           

 Predictor  

OLS 

(ranking)  

Logistic 

(ranking)  

Random 

Forest 

(feature 

importance)  

XGBoost 

(feature 

importance)  

           

 

Weighted average of the 1st quartiles of SAT verbal scores of all 

non-VCCS institutions attended  1  200  0.002037  0.001634  

 

Weighted average of the 3rd quartiles of SAT verbal scores of all 

non-VCCS institutions attended  2  37  0.0023394  0.0013617  

 

Number of cumulative college-level credit hours earned prior to 

initial enrollment at VCCS  3  1  0.0053223  0.008382  

 Number of credit hours attempted in the 2nd summer term  4  2  0.0065079  0.0065135  

 

Weighted average of the 3rd quartiles of SAT math scores of all 

non-VCCS institutions attended  5  97  0.0023282  0.0011423  

 Number of credit hours attempted in the 2nd fall term  6  6  0.0197854  0.0137607  

 

Standard deviation of term-level proportion of earned credits among 

attempted credits since initial enrollment term  7  13  0.0543757  0.0199186  

 Number of credit hours attempted in the 1st summer term  8  15  0.0118768  0.0120132  

 

Number of terms in which student was enrolled in non-VCCS 

institutions prior to initial enrollment term  9  7  0.0169086  0.0100085  

 Number of credit hours attempted in the 6th fall term  10  5  0.0007055  0.0015584  

 

Slope of term-level number of credits attempted through the end of 

observation window  11  14  0.0082708  0.0359185  

 Number of credit hours attempted in the 1st fall term  12  9  0.0182714  0.0200245  

 Cumulative GPA through the end of observation window  13  4  0.0719979  0.0393455  
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 Number of credit hours attempted in the 6th summer term  14  54  8.64E-05  0.0004615  

 Slope of term GPA through the end of observation window  15  12  0.0201959  0.040518  

 Age at initial enrollment at VCCS  16  16  0.0107476  0.0293975  

 

Indicator for whether student repeated a previously taken course in 

the 2nd fall term  17  31  0.0009596  0.0013239  

 

Indicator for whether student repeated a previously taken course in 

the 1st spring term  18  25  0.0006474  0.0007716  

 

Standard deviation of term-level proportion of withdrawn credits 

among attempted credits since initial enrollment term  19  27  0.0265366  0.0210836  

 

Indicator for whether student is actively enrolled in VCCS in the 

6th summer term  20  92  4.89E-05  0  

 

Total enrollment intensity in non-VCCS institutions in the 1st 

spring term  21  8  0.0017681  0.0023678  

 

Indicator for whether student is actively enrolled in VCCS in the 

6th fall term  22  45  0.0004651  6.81E-05  

 Number of credit hours attempted in the 1st spring term  23  26  0.021539  0.0169153  

 

Total enrollment intensity in non-VCCS institutions in the 4th fall 

term  24  52  0.0001913  0.0010894  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 4th fall term  25  89  0.0001277  0.0001286  

 

Indicator for whether student repeated a previously taken course in 

the 2nd summer term  26  68  0.0004559  0.0007035  

 Number of credit hours attempted in the 3rd fall term  27  28  0.0063712  0.0103413  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 5th spring term  28  86  4.26E-05  4.54E-05  

 

Total enrollment intensity in non-VCCS institutions in the 5th 

spring term  29  85  6.76E-05  0.000295  

 

Indicator for whether student repeated a previously taken course in 

the 1st fall term  30  72  0.0004031  0.0004463  

 

Indicator for whether student is actively enrolled in VCCS in the 

3rd fall term  31  34  0.000881  0.0002118  
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 Term GPA in the 3rd fall term  32  112  0.0065446  0.0089645  

 Overall proportion of attempted credits of developmental courses  33  19  0.0223806  0.0248056  

 Logarithm of other aids received in year 6  34  79  7.38E-06  1.51E-05  

 Indicator for data availability in the 6th spring term  35  11  0.0004567  0.0010364  

 

Total enrollment intensity in non-VCCS institutions in the 1st fall 

term  36  38  0.0012021  0.0021258  

 

Proportion of withdrawn credits among attempted credits the 4th 

fall term  37  32  0.001078  0.0030109  

 Number of credit hours attempted in the 4th fall term  38  33  0.0028362  0.0071716  

 

Indicator for whether student is actively enrolled in VCCS in the 

2nd fall term  39  61  0.0052024  0.000522  

 Term GPA in the 2nd fall term  40  62  0.0242318  0.0122099  

 

Overall proportion of withdrawn credits among attempted credits 

since initial enrollment term  41  10  0.0276241  0.0278921  

 

Indicator for whether student is in degree-seeking status in the 6th 

summer term  42  109  5.00E-05  0  

 

Proportion of attempted credits of developmental courses in the 6th 

spring term  43  41  2.35E-05  6.81E-05  

 Number of credit hours attempted in the 4th spring term  44  64  0.0021387  0.005825  

 

Indicator for whether student is actively enrolled in VCCS in the 

4th spring term  45  60  0.0006149  0.0002799  

 

Proportion of earned credits among attempted credits in the 4th 

spring term  46  59  0.0010921  0.0023678  

 Number of credit hours attempted in the 3rd spring term  47  46  0.0040111  0.008261  

 

Indicator for whether student is actively enrolled in VCCS in the 

3rd spring term  48  47  0.000758  0.0002723  

 

Proportion of earned credits among attempted credits in the 3rd 

spring term  49  48  0.0023129  0.0032  

 

Total enrollment intensity in non-VCCS institutions in the 6th 

spring term  50  70  4.48E-06  2.27E-05  
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Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 1st summer term  51  84  0.0001978  8.32E-05  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 6th summer term  52  230  3.89E-06  0  

 

Total enrollment intensity in non-VCCS institutions in the 6th 

summer term  53  231  3.35E-06  0  

 

Total enrollment intensity in non-VCCS institutions in the 3rd 

spring term  54  93  0.0003308  0.0018837  

 

Number of terms in which student was enrolled in non-VCCS 

institutions since initial enrollment term  55  291  0.0024128  0.0030865  

 

Total enrollment intensity in non-VCCS institutions in the 2nd 

spring term  56  81  0.0005321  0.0015735  

 

Total enrollment intensity in non-VCCS institutions in the 3rd 

summer term  57  154  0.0001143  0.0002723  

 

Total enrollment intensity in non-VCCS institutions in the 5th 

summer term  58  56  3.05E-05  0.000174  

 Indicator for data availability in the 4th fall term  59  51  0.0021805  0.0027915  

 Number of credit hours attempted in the 5th summer term  60  75  0.0005323  0.0016492  

 Term GPA in the 5th summer term  61  74  0.0004642  0.0023905  

 

Indicator for whether student is actively enrolled in VCCS in the 

5th summer term  62  76  0.0002217  0.0001135  

 Indicator for data availability in the 6th summer term  63  55  6.25E-05  0.0001059  

 Cumulative GPA prior to initial enrollment term at VCCS  64  98  0.0080178  0.0072246  

 

Indicator for whether student was ever enrolled in VCCS prior to 

initial enrollment term  65  99  0.0020839  0.0002194  

 

Proportion of earned credits among attempted credits in the 4th fall 

term  66  77  0.001509  0.0032076  

 

Indicator for whether student is actively enrolled in VCCS in the 

4th fall term  67  78  0.000694  0.0002269  

 

Proportion of withdrawn credits among attempted credits the 3rd 

fall term  68  73  0.0017939  0.0038808  
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 Indicator for two-year, private, in-state  69  42  4.22E-05  0.0001664  

 Term GPA in the 4th summer term  70  175  0.0012517  0.0033664  

 

Proportion of withdrawn credits among attempted credits the 2nd 

fall term  71  88  0.0030399  0.0038354  

 

Proportion of withdrawn credits among attempted credits the 3rd 

spring term  72  80  0.0013158  0.0027385  

 

Indicator for whether student is actively enrolled in VCCS in the 1st 

fall term  73  115  0.0013982  0.0005144  

 Term GPA in the 1st fall term  74  114  0.027933  0.0161739  

 Number of credit hours attempted in the 5th fall term  75  21  0.0013478  0.0043272  

 

Indicator for whether student is actively enrolled in VCCS in the 

5th fall term  76  22  0.0005746  0.0001513  

 

Proportion of earned credits among attempted credits in the 5th fall 

term  77  23  0.0007349  0.0019518  

 Term GPA in the 1st summer term  78  171  0.0156963  0.0081097  

 Number of credit hours attempted in the 2nd spring term  79  82  0.0100978  0.0119602  

 

Total enrollment intensity in non-VCCS institutions in the 5th fall 

term  80  110  6.34E-05  0.0003253  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 5th fall term  81  111  5.68E-05  3.03E-05  

 

Indicator for whether student repeated a previously taken course in 

the 6th summer term  82  63  1.01E-05  0  

 Term GPA in the 6th summer term  83  66  7.46E-05  0.0001664  

 

Proportion of withdrawn credits among attempted credits the 4th 

spring term  84  69  0.0006341  0.0022317  

 

Indicator for whether student is actively enrolled in VCCS in the 

2nd spring term  85  129  0.0022544  0.0005295  

 Term GPA in the 2nd spring term  86  225  0.0101114  0.0101068  

 

Proportion of earned credits among attempted credits in the 3rd fall 

term  87  35  0.003778  0.0041456  
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Indicator for whether student repeated a previously taken course in 

the 3rd summer term  88  210  0.0003216  0.0007716  

 

Indicator for whether student is actively enrolled in VCCS in the 1st 

spring term  89  116  0.0018176  0.000643  

 Term GPA in the 1st spring term  90  117  0.0233063  0.0146836  

 

Indicator for whether student repeated a previously taken course in 

the 5th fall term  91  39  0.0002442  0.0007338  

 

Proportion of withdrawn credits among attempted credits the 5th 

fall term  92  44  0.000363  0.0013995  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 6th spring term  93  321  4.09E-06  0  

 Number of credit hours attempted in the 5th spring term  94  29  0.0011696  0.0036766  

 

Indicator for whether student is actively enrolled in VCCS in the 

5th spring term  95  50  0.0005534  0.0001664  

 

Proportion of earned credits among attempted credits in the 5th 

spring term  96  49  0.0006023  0.0013239  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 4th summer term  97  90  6.82E-05  0.0001135  

 Indicator for dual enrollment prior to initial enrollment term  98  100  0.0035016  0.0007111  

 Term GPA in the 4th fall term  99  118  0.0025024  0.006748  

 

Proportion of withdrawn credits among attempted credits the 3rd 

summer term  100  155  0.000343  0.0008321  

 

Proportion of earned credits among attempted credits in the 3rd 

summer term  101  135  0.0018354  0.0022922  

 

Indicator for whether student repeated a previously taken course in 

the 6th fall term  102  162  6.60E-05  0.0002118  

 

Proportion of withdrawn credits among attempted credits the 5th 

spring term  103  65  0.0002271  0.0011045  

 

Proportion of attempted credits of developmental courses in the 2nd 

fall term  104  157  0.0023684  0.0030714  
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Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 3rd summer term  105  153  8.76E-05  6.05E-05  

 

Total enrollment intensity in non-VCCS institutions in the 2nd fall 

term  106  130  0.0005256  0.001861  

 Indicator for data availability in the 1st fall term  107  67  0.0017427  0.002678  

 Term GPA in the 2nd summer term  108  259  0.0081105  0.0049324  

 

Weighted average of the 1st quartiles of SAT math scores of all 

non-VCCS institutions attended  109  36  0.0024611  0.0015811  

 Term GPA in the 6th spring term  110  147  0.0003894  0.0005674  

 Number of credit hours attempted in the 6th spring term  111  3  0.0003717  0.0009078  

 Number of credit hours attempted in the 3rd summer term  112  133  0.0021506  0.0048189  

 

Indicator for whether student is actively enrolled in VCCS in the 

3rd summer term  113  134  0.0009306  0.0003782  

 Indicator for Pell-eligible the 3rd summer term  114  120  0.0003491  0.0011726  

 

Indicator for whether student repeated a previously taken course in 

the 2nd spring term  115  172  0.0007519  0.0013466  

 

Proportion of attempted credits of developmental courses in the 1st 

summer term  116  185  0.0020621  0.002852  

 

Proportion of withdrawn credits among attempted credits the 2nd 

spring term  117  113  0.0021369  0.0033589  

 Indicator for not Pell-eligible the 6th summer term  118  149  1.79E-05  6.81E-05  

 Number of credit hours attempted in the 4th summer term  119  20  0.0011096  0.0030789  

 

Indicator for whether student is actively enrolled in VCCS in the 

4th summer term  120  192  0.0005391  0.0003177  

 Indicator for Pell-eligible the 4th summer term  121  121  0.0001843  0.0007262  

 Indicator for Pell-eligible the 4th spring term  122  122  0.0002807  0.0004842  

 

Proportion of withdrawn credits among attempted credits the 2nd 

summer term  123  184  0.000612  0.0012331  

 

Proportion of withdrawn credits among attempted credits the 5th 

summer term  124  102  5.50E-05  0.0003177  
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Total enrollment intensity in non-VCCS institutions in the 3rd fall 

term  125  176  0.0003064  0.001218  

 Indicator for data availability in the 3rd fall term  126  94  0.0016701  0.0032908  

 

Proportion of earned credits among attempted credits in the 4th 

summer term  127  139  0.0007974  0.0016113  

 Term GPA in the 3rd spring term  128  170  0.003931  0.0079281  

 Indicator for data availability in the 5th fall term  129  91  0.0022776  0.0026704  

 

Proportion of withdrawn credits among attempted credits the 4th 

summer term  130  151  0.0001683  0.0004993  

 Overall proportion of attempted credits of 2XX level courses  131  146  0.0221612  0.0276424  

 

Indicator for whether student repeated a previously taken course in 

the 5th spring term  132  106  0.0001527  0.0003102  

 Indicator for not Pell-eligible the 5th summer term  133  108  0.0001338  0.0007262  

 

Indicator for whether student repeated a previously taken course in 

the 4th fall term  134  220  0.0004302  0.0008548  

 

Number of non-VCCS institutions in which student was enrolled 

prior to initial enrollment term  135  96  0.0155781  0.0054014  

 Indicator for not a seamless enrollee  136  216  0.0039405  0.0015357  

 

Total enrollment intensity in non-VCCS institutions in the 2nd 

summer term  137  255  0.0001601  0.0002572  

 Indicator for data availability in the 1st summer term  138  132  0.005825  0.0019896  

 Indicator for data availability in the 1st spring term  139  83  0.001968  0.0017702  

 Term GPA in the 3rd summer term  140  95  0.0025241  0.004017  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 2nd summer term  141  256  0.0001229  7.56E-05  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 1st fall term  142  199  0.0010606  0.0003026  

 

Total enrollment intensity in non-VCCS institutions in the 4th 

summer term  143  143  8.60E-05  0.0004009  

 

Indicator for whether student is in degree-seeking status in the 5th 

spring term  144  103  0.0005411  7.56E-05  
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Overall proportion of earned credits among attempted credits since 

initial enrollment term  145  43  0.0733521  0.0239205  

 Term GPA in the 5th fall term  146  123  0.0011111  0.0041154  

 

Proportion of earned credits among attempted credits in the 1st 

spring term  147  211  0.0144905  0.0059612  

 

Proportion of earned credits among attempted credits in the 1st fall 

term  148  223  0.0156395  0.006695  

 

Indicator for whether student repeated a previously taken course in 

the 6th spring term  149  71  2.86E-05  0.0001135  

 

Indicator for whether student is in degree-seeking status in the 6th 

fall term  150  87  0.0004677  2.27E-05  

 

Proportion of attempted credits of 2XX level courses in the 5th 

spring term  151  159  0.0004565  0.0014449  

 

Proportion of attempted credits of developmental courses in the 2nd 

spring term  152  101  0.001675  0.002973  

 

Proportion of withdrawn credits among attempted credits the 6th 

spring term  153  53  1.89E-05  0.0003177  

 

Proportion of attempted credits of 2XX level courses in the 6th 

spring term  154  310  0.00014  0.0002875  

 

Proportion of attempted credits of 2XX level courses in the 2nd 

spring term  155  173  0.0038408  0.0067858  

 

Indicator for whether student repeated a previously taken course in 

the 3rd spring term  156  145  0.0005605  0.0009456  

 Indicator for two-year, public, out-of-state  157  183  0.0001493  0.0002496  

 

Total enrollment intensity in non-VCCS institutions in the 1st 

summer term  158  275  0.0003255  0.0004917  

 

Overall proportion of earned credits among attempted credits prior 

to initial enrollment term  159  314  0.0034647  0.0011801  

 

Negative of logarithm of the maximum proportion of cumulative 

credits attempted at one VCCS institution  160  150  0.0017449  0.0064832  
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Proportion of attempted credits of 2XX level courses in the 1st fall 

term  161  186  0.004562  0.009078  

 

Proportion of attempted credits of developmental courses in the 1st 

fall term  162  187  0.0052849  0.0082307  

 

Total enrollment intensity in non-VCCS institutions in the 4th 

spring term  163  57  0.0001532  0.0008624  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 4th spring term  164  58  0.0001089  8.32E-05  

 

Weighted average of the 3rd quartiles of SAT writing scores of all 

non-VCCS institutions attended  165  160  0.0022397  0.0007716  

 Indicator for two-year, public, in-state  166  189  9.36E-06  0  

 

Weighted average of the 1st quartiles of SAT writing scores of all 

non-VCCS institutions attended  167  161  0.0022795  0.0011121  

 Indicator for four-year, public, out-of-state  168  202  0.000166  8.32E-05  

 Indicator for four-year, public, in-state  169  201  0.0007089  0.0003253  

 

Number of non-VCCS institutions in which student was enrolled 

since initial enrollment term  170  203  0.0018355  0.0003102  

 Indicator for four-year, private, out-of-state  171  204  0.0002095  0.0002799  

 Indicator for Pell-eligible the 5th spring term  172  166  0.0001631  0.0001513  

 Logarithm of total grants received in year 5  173  167  0.0007315  0.0027007  

 Indicator for Pell-eligible the 5th fall term  174  168  0.0001931  0.0001816  

 

Proportion of attempted credits of developmental courses in the 6th 

fall term  175  224  5.36E-05  0.0004615  

 

Proportion of attempted credits of 2XX level courses in the 1st 

spring term  176  198  0.004517  0.0087905  

 

Indicator for whether student is actively enrolled in VCCS in the 1st 

summer term  177  297  0.0073172  0.0010742  

 Indicator for data availability in the 2nd fall term  178  131  0.0018638  0.0032227  

 Logarithm of subsidized loans received in year 6  179  104  7.71E-05  0.0004615  

 

Indicator for whether student repeated a previously taken course in 

the 3rd fall term  180  222  0.0006736  0.0013012  
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Proportion of earned credits among attempted credits in the 6th fall 

term  181  24  0.0003878  0.000643  

 Term GPA in the 6th fall term  182  163  0.0005399  0.0011953  

 

Proportion of attempted credits of developmental courses in the 2nd 

summer term  183  251  0.0006896  0.0014298  

 

Indicator for whether student is in degree-seeking status in the 5th 

summer term  184  254  0.0002473  8.32E-05  

 Logarithm of other aids received in year 5  185  174  2.35E-05  7.56E-06  

 Indicator for not Pell-eligible the 4th summer term  186  191  0.0002688  0.0005901  

 

Indicator for whether student is in degree-seeking status in the 4th 

summer term  187  142  0.000497  0.0002269  

 

Proportion of attempted credits of 2XX level courses in the 4th fall 

term  188  197  0.0011552  0.0035707  

 Indicator for male  189  180  0.0015069  0.0052879  

 

Indicator for whether student is in degree-seeking status in the 3rd 

spring term  190  188  0.0007852  0.0003177  

 Indicator for Pell-eligible the 2nd summer term  191  193  0.0005147  0.0014071  

 Indicator for Pell-eligible the 1st spring term  192  194  0.0011306  0.0011121  

 

Proportion of attempted credits of 2XX level courses in the 3rd 

spring term  193  219  0.0018173  0.0045844  

 

Proportion of attempted credits of developmental courses in the 1st 

spring term  194  212  0.0042696  0.0067631  

 Indicator for two-year, private, out-of-state  195  266  1.06E-05  0  

 Indicator for not Pell-eligible the 6th fall term  196  306  3.44E-05  1.51E-05  

 

Proportion of attempted credits of developmental courses in the 4th 

summer term  197  141  0.0001668  0.0005295  

 

Indicator for whether student repeated a previously taken course in 

the 4th summer term  198  190  0.0002039  0.0003177  

 Indicator for not Pell-eligible the 2nd summer term  199  215  0.0005181  0.0011499  

 Indicator for Pell-eligible the 3rd spring term  200  214  0.0004002  0.000469  

 Indicator for Pell-eligible the 5th summer term  201  127  6.00E-05  0.0002043  
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Indicator for highest parental education being having earned Post-

Bachelor's degree  202  217  0.0009557  0.0014525  

 

Proportion of attempted credits of developmental courses in the 5th 

summer term  203  312  6.57E-05  0.0001891  

 

Proportion of attempted credits of 2XX level courses in the 5th 

summer term  204  181  0.0002573  0.0006279  

 

Proportion of earned credits among attempted credits in the 2nd 

summer term  205  137  0.0057481  0.0021258  

 

Indicator for whether student changed degree/major program 

pursued  206  209  0.001304  0.0032908  

 

Indicator for whether student was ever enrolled in any non-VCCS 

institutions since initial enrollment term  207  234  0.0016352  0  

 

Weighted average of admission rates of all non-VCCS institutions 

attended  208  105  0.0029963  0.0041229  

 

Proportion of attempted credits of 2XX level courses in the 4th 

spring term  209  243  0.0009676  0.0033135  

 

Proportion of attempted credits of 2XX level courses in the 6th 

summer term  210  233  3.19E-05  6.05E-05  

 Indicator for data availability in the 5th summer term  211  182  0.0017042  0.0016038  

 

Indicator for whether student is in degree-seeking status in the 5th 

fall term  212  169  0.0006306  0.0001362  

 Term GPA in the 4th spring term  213  318  0.0017909  0.0048567  

 Logarithm of unsubsidized loans received in year 1  214  232  0.0015781  0.0053182  

 

Proportion of withdrawn credits among attempted credits the 6th 

fall term  215  18  8.66E-05  0.0006203  

 Indicator for seamless enrollee  216  119  0.0033386  0.001634  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 2nd fall term  217  156  0.0003168  0.0002345  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 3rd fall term  218  177  0.0002051  0.0002269  

 Indicator for data availability in the 3rd spring term  219  179  0.0019378  0.0036539  
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Indicator for whether student is actively enrolled in VCCS in the 

6th spring term  220  138  0.0003464  0.0001286  

 

Proportion of attempted credits of 2XX level courses in the 2nd fall 

term  221  229  0.0100912  0.0068766  

 Indicator for not Pell-eligible the 5th spring term  222  206  0.0001008  0.0001589  

 Logarithm of total grants received in year 4  223  213  0.0014898  0.0050005  

 

Proportion of withdrawn credits among attempted credits the 1st 

summer term  224  221  0.0010582  0.00233  

 Indicator for Pell-eligible the 6th summer term  225  126  6.04E-06  0  

 Indicator for data availability in the 4th spring term  226  148  0.0024147  0.003321  

 

Proportion of attempted credits of developmental courses in the 3rd 

spring term  227  196  0.0008274  0.0016567  

 Logarithm of other aids received in year 1  228  195  0.0003256  0.0010818  

 

Proportion of earned credits among attempted credits in the 6th 

summer term  229  152  5.21E-05  1.51E-05  

 Logarithm of unsubsidized loans received in year 6  230  205  6.96E-05  0.0001589  

 Indicator for not Pell-eligible the 6th spring term  231  311  1.59E-05  4.54E-05  

 Indicator for Pell-eligible the 6th spring term  232  125  6.30E-05  0.0001362  

 

Indicator for whether student repeated a previously taken course in 

the 4th spring term  233  305  0.0003466  0.0007414  

 Indicator for not Pell-eligible the 3rd spring term  234  227  0.0002985  0.0002043  

 Indicator for never Pell-eligible  235  236  0.0009911  0.0012785  

 Logarithm of unsubsidized loans received in year 2  236  237  0.0011712  0.0034799  

 Logarithm of subsidized loans received in year 2  237  238  0.0012819  0.0041456  

 Indicator for data availability in the 5th spring term  238  30  0.0020158  0.0026856  

 Indicator for data availability in the 2nd spring term  239  207  0.0013975  0.0029882  

 

Indicator for highest parental education being having earned 

Bachelor's degree  240  245  0.0008788  0.0015735  

 Logarithm of total grants received in year 3  241  226  0.0024607  0.0074288  

 Indicator for Pell-eligible the 3rd fall term  242  228  0.0004519  0.0005069  
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Indicator for whether student is in degree-seeking status in the 3rd 

fall term  243  262  0.001308  0.0003858  

 

Indicator for whether student is in degree-seeking status in the 1st 

fall term  244  241  0.0019667  0.00146  

 Logarithm of subsidized loans received in year 5  245  252  0.0002841  0.0012255  

 Logarithm of unsubsidized loans received in year 5  246  270  0.0002444  0.0008548  

 Indicator for data availability in the 6th fall term  247  17  0.0007152  0.0009532  

 

Indicator for whether student is actively enrolled in VCCS in the 

2nd summer term  248  296  0.0054352  0.0005749  

 Indicator for data availability in the 2nd summer term  249  264  0.0016355  0.0023527  

 Indicator for Pell-eligible the 1st summer term  250  235  0.0007488  0.0013239  

 

Indicator for whether student is in degree-seeking status in the 6th 

spring term  251  165  0.0002707  6.81E-05  

 

Proportion of attempted credits of 2XX level courses in the 5th fall 

term  252  317  0.000583  0.001861  

 

Proportion of withdrawn credits among attempted credits the 1st fall 

term  253  286  0.0043747  0.0046752  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 3rd spring term  254  208  0.0001982  0.0002875  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 1st spring term  255  246  0.0010923  0.0004842  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 6th fall term  256  292  6.92E-06  0  

 

Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 2nd spring term  257  324  0.0003221  0.0003556  

 

Proportion of attempted credits of developmental courses in the 3rd 

summer term  258  307  0.0003479  0.0006884  

 

Proportion of earned credits among attempted credits in the 5th 

summer term  259  124  0.0003026  0.00087  

 

Proportion of attempted credits of developmental courses in the 5th 

fall term  260  178  0.0002392  0.0006808  
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Proportion of attempted credits of developmental courses in the 3rd 

fall term  261  218  0.0010236  0.0016189  

 

Proportion of attempted credits of 2XX level courses in the 3rd fall 

term  262  290  0.0025481  0.0048643  

 Indicator for not Pell-eligible the 2nd fall term  263  263  0.0005337  0.0004463  

 Indicator for not Pell-eligible the 2nd spring term  264  250  0.0004433  0.0004615  

 

Indicator for whether student is in degree-seeking status in the 2nd 

spring term  265  282  0.0012761  0.0005295  

 Indicator for Pell-eligible the 2nd spring term  266  249  0.0005859  0.0003707  

 Logarithm of total grants received in year 2  267  248  0.0039298  0.0094941  

 

Proportion of earned credits among attempted credits in the 2nd fall 

term  268  144  0.0206284  0.00466  

 Indicator for data availability in the 3rd summer term  269  277  0.0013881  0.0019896  

 Indicator for not Pell-eligible the 3rd summer term  270  300  0.000352  0.0006203  

 

Indicator for highest parental education being having attended 

college  271  268  0.0006914  0.0013012  

 

Indicator for highest parental education being having graduated 

from high school  272  267  0.0008182  0.0016113  

 

Proportion of withdrawn credits among attempted credits the 6th 

summer term  273  107  5.20E-06  7.56E-06  

 Logarithm of total grants received in year 6  274  164  0.0003101  0.0011801  

 Indicator for Pell-eligible the 1st fall term  275  273  0.0011669  0.000817  

 

Indicator for whether student is in degree-seeking status in the 1st 

spring term  276  272  0.001664  0.0011423  

 

Indicator for whether student is in degree-seeking status in the 2nd 

summer term  277  271  0.0035506  0.0009759  

 

Proportion of earned credits among attempted credits in the 2nd 

spring term  278  128  0.0086272  0.0036161  

 Logarithm of subsidized loans received in year 4  279  239  0.0006203  0.0024208  

 Logarithm of unsubsidized loans received in year 4  280  240  0.0005179  0.0014903  

 Indicator for not Pell-eligible the 4th spring term  281  260  0.0001829  0.0002269  
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Proportion of attempted credits of developmental courses in the 6th 

summer term  282  319  3.72E-06  0  

 

Indicator for whether student is in degree-seeking status in the 3rd 

summer term  283  258  0.0008817  0.000469  

 Indicator for White  284  274  0.0012777  0.0046525  

 

Indicator for whether student has ever repeated a previously taken 

course  285  302  0.001666  0.0020425  

 Indicator for not Pell-eligible the 3rd fall term  286  284  0.0003328  0.0003102  

 Indicator for Pell-eligible the 6th fall term  287  265  7.74E-05  3.03E-05  

 Indicator for not Pell-eligible the 5th fall term  288  247  0.0001185  0.0002345  

 Indicator for African American  289  280  0.0017113  0.0038657  

 Indicator for other race/ethnicity  290  279  0.0007103  0.0015206  

 

Indicator for whether student is in degree-seeking status in the 4th 

spring term  291  244  0.0005467  0.000174  

 

Proportion of attempted credits of 2XX level courses in the 6th fall 

term  292  158  0.0002506  0.0006128  

 Logarithm of other aids received in year 4  293  278  3.86E-05  0.0001664  

 Logarithm of other aids received in year 3  294  285  0.0001018  0.0003404  

 

Proportion of attempted credits of developmental courses in the 4th 

fall term  295  299  0.0005448  0.0010591  

 

Proportion of attempted credits of developmental courses in the 5th 

spring term  296  276  0.0001535  0.0004161  

 

Indicator for whether student is in degree-seeking status in the 4th 

fall term  297  253  0.0006222  0.0002194  

 

Proportion of withdrawn credits among attempted credits the 1st 

spring term  298  327  0.0035524  0.0046222  

 

Proportion of attempted credits of developmental courses in the 4th 

spring term  299  242  0.0003484  0.0009381  

 Indicator for not Pell-eligible the 1st spring term  300  261  0.0007035  0.0006355  

 Indicator for not Pell-eligible the 1st fall term  301  294  0.000816  0.0007338  
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Indicator for whether student is actively enrolled in non-VCCS 

institutions in the 5th summer term  302  288  2.98E-05  1.51E-05  

 Term GPA in the 5th spring term  303  257  0.0008146  0.0027083  

 Logarithm of other aids received in year 2  304  323  0.0002382  0.000469  

 Indicator for Pell-eligible the 4th fall term  305  281  0.0003272  0.0002799  

 Indicator for Pell-eligible the 2nd fall term  306  295  0.0007671  0.0004009  

 Logarithm of total grants received in year 1  307  293  0.0047828  0.0186099  

 

Indicator for whether student repeated a previously taken course in 

the 1st summer term  308  301  0.0004583  0.0006052  

 Indicator for not Pell-eligible the 1st summer term  309  289  0.0008587  0.0011574  

 Logarithm of subsidized loans received in year 1  310  298  0.0017186  0.0056662  

 

Indicator for whether student is in degree-seeking status in the 2nd 

fall term  311  322  0.0047448  0.0007641  

 

Proportion of attempted credits of 2XX level courses in the 2nd 

summer term  312  303  0.0020093  0.0026629  

 

Proportion of attempted credits of 2XX level courses in the 3rd 

summer term  313  308  0.0011554  0.0021182  

 

Total enrollment intensity in non-VCCS institutions in the 6th fall 

term  314  140  9.76E-06  7.56E-06  

 

Indicator for whether student is in degree-seeking status in the 1st 

summer term  315  325  0.0057032  0.0019291  

 Logarithm of unsubsidized loans received in year 3  316  329  0.0008147  0.0021712  

 Logarithm of subsidized loans received in year 3  317  315  0.0008846  0.0024435  

 

Proportion of attempted credits of 2XX level courses in the 1st 

summer term  318  313  0.0048933  0.0048567  

 

Proportion of attempted credits of 2XX level courses in the 4th 

summer term  319  287  0.0005797  0.0011877  

 

Indicator for highest parental education being having earned 

Associate's degree  320  326  0.0005131  0.0006279  

 

Proportion of earned credits among attempted credits in the 1st 

summer term  321  269  0.0103658  0.0036766  
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Proportion of earned credits among attempted credits in the 6th 

spring term  322  40  0.0002688  0.0002648  

 

Indicator for highest parental education being having attended high 

school  323  316  0.0003556  0.0003102  

 Indicator for highest parental education being less than high school  324  309  0.0002726  0.0001816  

 Indicator for ever Pell-eligible  325  304  0.0016752  0.0027915  

 

Weighted average of graduation rates of all non-VCCS institutions 

attended  326  331  0.0037802  0.0085106  

 

Indicator for whether student repeated a previously taken course in 

the 5th summer term  327  136  8.61E-05  0.000174  

 Indicator for four-year, private, in-state  328  283  0.0002466  0.0005674  

 Indicator for data availability in the 4th summer term  329  330  0.001463  0.0015357  

 Indicator for Hispanic  330  320  0.000576  0.000991  

 Indicator for not Pell-eligible the 4th fall term  331  328  0.0002346  0.0002269  
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Appendix Table A6: Coefficient estimates from base OLS and Logistic models 

       

 Predictor  OLS  Logit  

       

 

Weighted average of admission rates of all non-VCCS 

institutions attended  -0.022  -0.2076  

   (0.0249)  (0.1849)  

 Indicator for African American  -.0080*  -0.0399  

   (0.0048)  (0.0359)  

 Age at initial enrollment at VCCS  -.0021***  -.0128***  

   0.0000   (0.0006)  

 Indicator for data availability in the 1st fall term  -.0613***  -.5191***  

   (0.0041)  (0.0336)  

 Indicator for data availability in the 2nd fall term  -.0345***  -.3099***  

   (0.0042)  (0.0322)  

 Indicator for data availability in the 3rd fall term  -.0487***  -.4269***  

   (0.0052)  (0.0402)  

 Indicator for data availability in the 4th fall term  -.0422***  -.3992***  

   (0.0067)  (0.0552)  

 Indicator for data availability in the 5th fall term  -.0400***  -.5005***  

   (0.0094)  (0.0919)  

 Indicator for data availability in the 6th fall term  -0.0167  -1.539***  

   (0.0243)  (0.5592)  

 Indicator for data availability in the 1st spring term  -.0511***  -.4925***  

   (0.0038)  (0.0312)  

 Indicator for data availability in the 2nd spring term  -.0241***  -.2309***  

   (0.0043)  (0.0330)  

 Indicator for data availability in the 3rd spring term  -.0261***  -.2614***  

   (0.0055)  (0.0425)  

 Indicator for data availability in the 4th spring term  -.0193***  -.3230***  

   (0.0072)  (0.0590)  

 Indicator for data availability in the 5th spring term  -0.0164  -.3829***  

   (0.0101)  (0.0989)  

 Indicator for data availability in the 6th spring term  -.0827**  -3.307***  

   (0.0416)  (1.1050)  

 Indicator for data availability in the 1st summer term  .0662***  .2687***  

   (0.0027)  (0.0205)  

 Indicator for data availability in the 2nd summer term  .0174***  .0649**  

   (0.0037)  (0.0270)  

 Indicator for data availability in the 3rd summer term  .0108**  0.05  

   (0.0049)  (0.0363)  

 Indicator for data availability in the 4th summer term  -0.001  0.0041  

   (0.0064)  (0.0496)  

 Indicator for data availability in the 5th summer term  -.0159*  -.1890**  
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   (0.0090)  (0.0787)  

 Indicator for data availability in the 6th summer term  -0.0457  -.9738**  

   (0.0342)  (0.4448)  

 

Number of cumulative college-level credit hours earned 

prior to initial enrollment at VCCS  .1104***  .6374***  

   (0.0046)  (0.0317)  

 

Negative of logarithm of the maximum proportion of 

cumulative credits attempted at one VCCS institution  -.0455***  -.3823***  

   (0.0069)  (0.0542)  

 Cumulative GPA through the end of observation window  .0282***  .3257***  

   (0.0012)  (0.0111)  

 

Cumulative GPA prior to initial enrollment term at 

VCCS  .0437***  .2082***  

   (0.0023)  (0.0199)  

 

Indicator for whether student is in degree-seeking status 

in the 1st fall term  -.0119***  -.0828**  

   (0.0044)  (0.0321)  

 

Indicator for whether student is in degree-seeking status 

in the 2nd fall term  0.0041  -0.011  

   (0.0084)  (0.0613)  

 

Indicator for whether student is in degree-seeking status 

in the 3rd fall term  0.0124  0.0528  

   (0.0124)  (0.0919)  

 

Indicator for whether student is in degree-seeking status 

in the 4th fall term  -0.0058  -0.1046  

   (0.0176)  (0.1366)  

 

Indicator for whether student is in degree-seeking status 

in the 5th fall term  0.0181  0.1996  

   (0.0240)  (0.2164)  

 

Indicator for whether student is in degree-seeking status 

in the 6th fall term  0.0302  .9076*  

   (0.0369)  (0.4849)  

 

Indicator for whether student is in degree-seeking status 

in the 1st spring term  -.0095**  -.0637*  

   (0.0048)  (0.0352)  

 

Indicator for whether student is in degree-seeking status 

in the 2nd spring term  0.0123  0.0505  

   (0.0091)  (0.0670)  

 

Indicator for whether student is in degree-seeking status 

in the 3rd spring term  .0369***  .2710***  

   (0.0140)  (0.1051)  

 

Indicator for whether student is in degree-seeking status 
in the 4th spring term  0.0093  0.1462  

   (0.0197)  (0.1570)  
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Indicator for whether student is in degree-seeking status 

in the 5th spring term  0.0405  .4375*  

   (0.0272)  (0.2609)  

 

Indicator for whether student is in degree-seeking status 

in the 6th spring term  -0.0144  -0.3784  

   (0.0491)  (0.6327)  

 

Indicator for whether student is in degree-seeking status 

in the 1st summer term  -0.0037  -0.0084  

   (0.0046)  (0.0318)  

 

Indicator for whether student is in degree-seeking status 

in the 2nd summer term  0.01  0.0359  

   (0.0097)  (0.0707)  

 

Indicator for whether student is in degree-seeking status 

in the 3rd summer term  0.009  0.0555  

   (0.0145)  (0.1076)  

 

Indicator for whether student is in degree-seeking status 

in the 4th summer term  -.0474**  -.3663**  

   (0.0203)  (0.1548)  

 

Indicator for whether student is in degree-seeking status 

in the 5th summer term  0.0238  0.0869  

   (0.0303)  (0.2546)  

 

Indicator for whether student is in degree-seeking status 

in the 6th summer term  0.0742  0.7256  

   (0.0641)  (0.7766)  

 

Overall proportion of attempted credits of developmental 

courses  -.0887***  -.7823***  

   (0.0047)  (0.0428)  

 

Proportion of attempted credits of developmental courses 

in the 1st fall term  -.0471***  -.2581***  

   (0.0035)  (0.0286)  

 

Proportion of attempted credits of developmental courses 

in the 2nd fall term  -.0555***  -.2859***  

   (0.0055)  (0.0443)  

 

Proportion of attempted credits of developmental courses 

in the 3rd fall term  -.0169**  -.1558**  

   (0.0085)  (0.0728)  

 

Proportion of attempted credits of developmental courses 

in the 4th fall term  0.0075  -0.0267  

   (0.0120)  (0.1070)  

 

Proportion of attempted credits of developmental courses 

in the 5th fall term  0.0123  -0.2537  

   (0.0174)  (0.1890)  

 

Proportion of attempted credits of developmental courses 

in the 6th fall term  .0470*  -0.0486  
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   (0.0284)  (0.4395)  

 

Proportion of attempted credits of developmental courses 

in the 1st spring term  -.0310***  -.1864***  

   (0.0036)  (0.0293)  

 

Proportion of attempted credits of developmental courses 

in the 2nd spring term  -.0488***  -.3491***  

   (0.0061)  (0.0504)  

 

Proportion of attempted credits of developmental courses 

in the 3rd spring term  -.0172*  -.2234***  

   (0.0094)  (0.0798)  

 

Proportion of attempted credits of developmental courses 

in the 4th spring term  -0.0061  -0.1507  

   (0.0137)  (0.1243)  

 

Proportion of attempted credits of developmental courses 

in the 5th spring term  0.0055  -0.0327  

   (0.0202)  (0.2169)  

 

Proportion of attempted credits of developmental courses 

in the 6th spring term  .1630***  1.541***  

   (0.0367)  (0.5184)  

 

Proportion of attempted credits of developmental courses 

in the 1st summer term  -.0602***  -.2618***  

   (0.0038)  (0.0294)  

 

Proportion of attempted credits of developmental courses 

in the 2nd summer term  -.0314***  -.1173**  

   (0.0074)  (0.0549)  

 

Proportion of attempted credits of developmental courses 

in the 3rd summer term  -0.0169  -0.0228  

   (0.0111)  (0.0841)  

 

Proportion of attempted credits of developmental courses 

in the 4th summer term  0.0265  .3921***  

   (0.0166)  (0.1299)  

 

Proportion of attempted credits of developmental courses 

in the 5th summer term  -0.0292  0.0495  

   (0.0245)  (0.2288)  

 

Proportion of attempted credits of developmental courses 

in the 6th summer term  0.0094  0.2306  

   (0.0607)  (0.7378)  

 

Indicator for dual enrollment prior to initial enrollment 

term  .0819***  .5289***  

   (0.0062)  (0.0471)  

 

Total enrollment intensity in non-VCCS institutions in 

the 1st fall term  .0883***  .5544***  

   (0.0152)  (0.1089)  
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Total enrollment intensity in non-VCCS institutions in 

the 2nd fall term  .0675***  .4535***  

   (0.0192)  (0.1440)  

 

Total enrollment intensity in non-VCCS institutions in 

the 3rd fall term  .0470**  .3389*  

   (0.0233)  (0.1791)  

 

Total enrollment intensity in non-VCCS institutions in 

the 4th fall term  .1134***  .9896***  

   (0.0317)  (0.2526)  

 

Total enrollment intensity in non-VCCS institutions in 

the 5th fall term  0.0494  0.6455  

   (0.0509)  (0.4439)  

 

Total enrollment intensity in non-VCCS institutions in 

the 6th fall term  -0.0049  0.9195  

   (0.1286)  (1.1850)  

 

Total enrollment intensity in non-VCCS institutions in 

the 1st spring term  .1522***  .9757***  

   (0.0162)  (0.1167)  

 

Total enrollment intensity in non-VCCS institutions in 

the 2nd spring term  .0666***  .4103***  

   (0.0207)  (0.1566)  

 

Total enrollment intensity in non-VCCS institutions in 

the 3rd spring term  .0783***  .6435***  

   (0.0236)  (0.1853)  

 

Total enrollment intensity in non-VCCS institutions in 

the 4th spring term  .0561*  .5784**  

   (0.0338)  (0.2767)  

 

Total enrollment intensity in non-VCCS institutions in 

the 5th spring term  .1019*  0.8043  

   (0.0573)  (0.5385)  

 

Total enrollment intensity in non-VCCS institutions in 

the 6th spring term  0.1897  1.937  

   (0.1591)  (1.6110)  

 

Total enrollment intensity in non-VCCS institutions in 

the 1st summer term  -0.0248  -0.1018  

   (0.0311)  (0.2363)  

 

Total enrollment intensity in non-VCCS institutions in 

the 2nd summer term  -0.0319  -0.1996  

   (0.0327)  (0.2616)  

 

Total enrollment intensity in non-VCCS institutions in 

the 3rd summer term  -0.0441  -0.3922  

   (0.0369)  (0.3004)  

 

Total enrollment intensity in non-VCCS institutions in 

the 4th summer term  0.0343  0.2032  
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   (0.0514)  (0.4177)  

 

Total enrollment intensity in non-VCCS institutions in 

the 5th summer term  0.102  1.601**  

   (0.0855)  (0.7664)  

 

Total enrollment intensity in non-VCCS institutions in 

the 6th summer term  -0.3935  -3.154  

   (0.4372)  (3.7080)  

 

Slope of term-level number of credits attempted through 

the end of observation window  .0040***  .0295***  

   (0.0002)  (0.0019)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 1st fall term  -.0475***  -.2494***  

   (0.0068)  (0.0574)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 2nd fall term  -.1229***  -.6140***  

   (0.0097)  (0.0762)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 3rd fall term  -.1510***  -1.047***  

   (0.0139)  (0.1085)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 4th fall term  -.1218***  -1.012***  

   (0.0194)  (0.1586)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 5th fall term  -.1245***  -1.571***  

   (0.0268)  (0.2599)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 6th fall term  -.1343***  -2.922***  

   (0.0463)  (0.8083)  

 

Indicator for whether student was ever enrolled in any 

non-VCCS institutions since initial enrollment term  0.0361  0.1207  

   (0.0633)  (0.4560)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 1st fall term  0.026  0.2457  

   (0.0184)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 2nd fall term  -.0370*  -0.1723  

   (0.0209)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 3rd fall term  -0.0343  -0.1431  

   (0.0235)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 4th fall term  -.1140***  -0.7583  

   (0.0287)  (33169.0000)  
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Indicator for whether student is actively enrolled in non-

VCCS institutions in the 5th fall term  -.0751*  -0.5053  

   (0.0422)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 6th fall term  -0.0032  -0.2205  

   (0.0937)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 1st spring term  -0.0138  -0.0606  

   (0.0190)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 2nd spring term  -0.0066  0.0622  

   (0.0219)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 3rd spring term  -0.0191  -0.1537  

   (0.0238)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 4th spring term  -.0540*  -0.4024  

   (0.0305)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 5th spring term  -.0927*  -0.6526  

   (0.0477)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 6th spring term  -0.0757  -0.7234  

   (0.1170)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 1st summer term  .1071***  0.6111  

   (0.0236)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 2nd summer term  0.0277  0.1924  

   (0.0248)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 3rd summer term  .0679***  0.5505  

   (0.0263)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 4th summer term  .0728**  0.5676  

   (0.0342)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 5th summer term  0.0062  -0.2665  

   (0.0508)  (33169.0000)  

 

Indicator for whether student is actively enrolled in non-

VCCS institutions in the 6th summer term  0.2056  1.761  

   (0.2091)  (33169.0000)  

 

Indicator for whether student was ever enrolled in VCCS 

prior to initial enrollment term  -.1350***  -.9144***  
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   (0.0094)  (0.0887)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 1st spring term  -.0306***  -.1482***  

   (0.0067)  (0.0558)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 2nd spring term  -.0551***  -.2043**  

   (0.0105)  (0.0819)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 3rd spring term  -.1260***  -.8852***  

   (0.0155)  (0.1221)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 4th spring term  -.0954***  -.8105***  

   (0.0217)  (0.1832)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 5th spring term  -.1282***  -1.661***  

   (0.0305)  (0.3123)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 6th spring term  0.0406  0.5  

   (0.0678)  (1.3430)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 1st summer term  -.0342***  0.0325  

   (0.0067)  (0.0527)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 2nd summer term  -.0279**  0.0383  

   (0.0119)  (0.0888)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 3rd summer term  -.0670***  -.4387***  

   (0.0172)  (0.1309)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 4th summer term  -0.0284  -0.1063  

   (0.0240)  (0.1900)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 5th summer term  -.1221***  -1.203***  

   (0.0352)  (0.3248)  

 

Indicator for whether student is actively enrolled in 

VCCS in the 6th summer term  -.2012**  -2.094*  

   (0.0856)  (1.1070)  

 

Slope of term GPA through the end of observation 

window  .0419***  .3188***  

   (0.0009)  (0.0076)  

 

Weighted average of graduation rates of all non-VCCS 

institutions attended  -0.0012  -0.0924  

   (0.0251)  (0.1916)  

 Logarithm of total grants received in year 1  -0.0005  -0.0029  
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   (0.0004)  (0.0031)  

 Logarithm of total grants received in year 2  .0017***  .0159***  

   (0.0005)  (0.0037)  

 Logarithm of total grants received in year 3  .0023***  .0236***  

   (0.0007)  (0.0052)  

 Logarithm of total grants received in year 4  .0026***  .0246***  

   (0.0009)  (0.0073)  

 Logarithm of total grants received in year 5  .0051***  .0310***  

   (0.0013)  (0.0115)  

 Logarithm of total grants received in year 6  0.0019  0.0455  

   (0.0027)  (0.0283)  

 Indicator for Hispanic  0.0002  0.012  

   (0.0052)  (0.0387)  

 

Overall proportion of attempted credits of 2XX level 

courses  .1170***  .6265***  

   (0.0053)  (0.0376)  

 

Proportion of attempted credits of 2XX level courses in 

the 1st fall term  -.0570***  -.2892***  

   (0.0040)  (0.0287)  

 

Proportion of attempted credits of 2XX level courses in 

the 2nd fall term  -.0209***  -.1402***  

   (0.0040)  (0.0286)  

 

Proportion of attempted credits of 2XX level courses in 

the 3rd fall term  -.0120**  -0.0344  

   (0.0049)  (0.0355)  

 

Proportion of attempted credits of 2XX level courses in 

the 4th fall term  -.0305***  -.2075***  

   (0.0064)  (0.0479)  

 

Proportion of attempted credits of 2XX level courses in 

the 5th fall term  -0.0135  -0.0058  

   (0.0090)  (0.0734)  

 

Proportion of attempted credits of 2XX level courses in 

the 6th fall term  -0.0072  .2614*  

   (0.0151)  (0.1471)  

 

Proportion of attempted credits of 2XX level courses in 

the 1st spring term  -.0499***  -.2491***  

   (0.0038)  (0.0270)  

 

Proportion of attempted credits of 2XX level courses in 

the 2nd spring term  -.0463***  -.2702***  

   (0.0042)  (0.0301)  

 

Proportion of attempted credits of 2XX level courses in 

the 3rd spring term  -.0286***  -.1470***  

   (0.0054)  (0.0390)  
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Proportion of attempted credits of 2XX level courses in 

the 4th spring term  -.0236***  -.1073**  

   (0.0073)  (0.0547)  

 

Proportion of attempted credits of 2XX level courses in 

the 5th spring term  -.0427***  -.2639***  

   (0.0105)  (0.0876)  

 

Proportion of attempted credits of 2XX level courses in 

the 6th spring term  -.0496**  0.0276  

   (0.0202)  (0.2280)  

 

Proportion of attempted credits of 2XX level courses in 

the 1st summer term  0.0032  -0.0127  

   (0.0038)  (0.0268)  

 

Proportion of attempted credits of 2XX level courses in 

the 2nd summer term  -0.0035  -0.0229  

   (0.0047)  (0.0338)  

 

Proportion of attempted credits of 2XX level courses in 

the 3rd summer term  -0.0035  -0.0187  

   (0.0063)  (0.0460)  

 

Proportion of attempted credits of 2XX level courses in 

the 4th summer term  -0.0028  -0.0344  

   (0.0088)  (0.0650)  

 

Proportion of attempted credits of 2XX level courses in 

the 5th summer term  -.0261**  -.2371**  

   (0.0129)  (0.1026)  

 

Proportion of attempted credits of 2XX level courses in 

the 6th summer term  -0.0265  -0.1248  

   (0.0334)  (0.3157)  

 Indicator for male  -.0347***  -.2515***  

   (0.0014)  (0.0105)  

 Indicator for two-year, private, out-of-state  -0.03  0.1082  

   (0.0554)  (0.4727)  

 Indicator for two-year, private, in-state  .0858**  1.068***  

   (0.0361)  (0.2711)  

 Indicator for two-year, public, out-of-state  -.0683***  -.3718*  

   (0.0249)  (0.1942)  

 Indicator for two-year, public, in-state  -0.0544  -0.3501  

   (0.0501)  (0.3675)  

 Indicator for four-year, private, out-of-state  -0.0354  -0.1734  

   (0.0234)  (0.1835)  

 Indicator for four-year, private, in-state  -0.001  0.081  

   (0.0235)  (0.1844)  

 Indicator for four-year, public, out-of-state  -.0435*  -0.1942  

   (0.0237)  (0.1850)  

 Indicator for four-year, public, in-state  -.0419*  -0.2149  
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   (0.0236)  (0.1849)  

 

Number of terms in which student was enrolled in non-

VCCS institutions since initial enrollment term  -0.0123  -0.0675  

   (0.0138)  (33169.0000)  

 

Number of non-VCCS institutions in which student was 

enrolled since initial enrollment term  0.0093  0.0468  

   (0.0178)  (0.1414)  

 Indicator for other race/ethnicity  -0.0076  -.0744*  

   (0.0051)  (0.0380)  

 Logarithm of other aids received in year 1  0.0017  .0166*  

   (0.0012)  (0.0087)  

 Logarithm of other aids received in year 2  0.0005  0.001  

   (0.0015)  (0.0113)  

 Logarithm of other aids received in year 3  -0.001  -0.0055  

   (0.0021)  (0.0157)  

 Logarithm of other aids received in year 4  0.001  0.011  

   (0.0033)  (0.0244)  

 Logarithm of other aids received in year 5  -0.0049  -0.0446  

   (0.0050)  (0.0388)  

 Logarithm of other aids received in year 6  0.0142  0.1148  

   (0.0089)  (0.0768)  

 Indicator for not Pell-eligible the 1st fall term  0.0059  0.0382  

   (0.0037)  (0.0283)  

 Indicator for not Pell-eligible the 2nd fall term  .0133***  .0589*  

   (0.0046)  (0.0333)  

 Indicator for not Pell-eligible the 3rd fall term  0.0089  0.0411  

   (0.0063)  (0.0455)  

 Indicator for not Pell-eligible the 4th fall term  0  0.0048  

   (0.0084)  (0.0619)  

 Indicator for not Pell-eligible the 5th fall term  0.0081  0.1163  

   (0.0120)  (0.0942)  

 Indicator for not Pell-eligible the 6th fall term  -.0335*  -0.0414  

   (0.0197)  (0.1909)  

 Indicator for never Pell-eligible  .0152***  .1146***  

   (0.0033)  (0.0243)  

 Indicator for not Pell-eligible the 1st spring term  -.0063*  -.0693**  

   (0.0036)  (0.0269)  

 Indicator for not Pell-eligible the 2nd spring term  -.0211***  -.1352***  

   (0.0049)  (0.0358)  

 Indicator for not Pell-eligible the 3rd spring term  -.0275***  -.1604***  

   (0.0068)  (0.0494)  

 Indicator for not Pell-eligible the 4th spring term  -0.0125  -0.0898  

   (0.0094)  (0.0695)  

 Indicator for not Pell-eligible the 5th spring term  -.0239*  -.2028*  
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   (0.0133)  (0.1070)  

 Indicator for not Pell-eligible the 6th spring term  -0.0331  -0.055  

   (0.0246)  (0.2594)  

 Indicator for not Pell-eligible the 1st summer term  0.0041  .0368*  

   (0.0030)  (0.0219)  

 Indicator for not Pell-eligible the 2nd summer term  .0270***  .1473***  

   (0.0045)  (0.0322)  

 Indicator for not Pell-eligible the 3rd summer term  .0104*  0.0309  

   (0.0061)  (0.0448)  

 Indicator for not Pell-eligible the 4th summer term  .0306***  .1885***  

   (0.0086)  (0.0638)  

 Indicator for not Pell-eligible the 5th summer term  .0626***  .4629***  

   (0.0123)  (0.0995)  

 Indicator for not Pell-eligible the 6th summer term  0.0488  0.2634  

   (0.0298)  (0.2758)  

 Indicator for Pell-eligible the 1st fall term  -.0083**  -0.0228  

   (0.0034)  (0.0272)  

 Indicator for Pell-eligible the 2nd fall term  -0.0055  -0.029  

   (0.0043)  (0.0321)  

 Indicator for Pell-eligible the 3rd fall term  -.0107*  -.0944**  

   (0.0058)  (0.0432)  

 Indicator for Pell-eligible the 4th fall term  -0.0045  -0.0443  

   (0.0077)  (0.0602)  

 Indicator for Pell-eligible the 5th fall term  -.0311***  -0.1517  

   (0.0111)  (0.0942)  

 Indicator for Pell-eligible the 6th fall term  -0.0088  -0.1521  

   (0.0219)  (0.2319)  

 Indicator for ever Pell-eligible  0.0021  -0.0226  

   (0.0033)  (0.0262)  

 Indicator for Pell-eligible the 1st spring term  -.0191***  -.1448***  

   (0.0031)  (0.0245)  

 Indicator for Pell-eligible the 2nd spring term  -.0162***  -.1194***  

   (0.0043)  (0.0317)  

 Indicator for Pell-eligible the 3rd spring term  -.0388***  -.2671***  

   (0.0058)  (0.0430)  

 Indicator for Pell-eligible the 4th spring term  -.0503***  -.4082***  

   (0.0078)  (0.0602)  

 Indicator for Pell-eligible the 5th spring term  -.0492***  -.3123***  

   (0.0113)  (0.0965)  

 Indicator for Pell-eligible the 6th spring term  -0.0317  -.5164**  

   (0.0233)  (0.2618)  

 Indicator for Pell-eligible the 1st summer term  .0209***  .1542***  

   (0.0042)  (0.0302)  

 Indicator for Pell-eligible the 2nd summer term  .0506***  .2820***  
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   (0.0062)  (0.0439)  

 Indicator for Pell-eligible the 3rd summer term  .0686***  .3992***  

   (0.0085)  (0.0613)  

 Indicator for Pell-eligible the 4th summer term  .0724***  .4434***  

   (0.0116)  (0.0858)  

 Indicator for Pell-eligible the 5th summer term  0.0234  .2728**  

   (0.0170)  (0.1376)  

 Indicator for Pell-eligible the 6th summer term  -0.034  -0.656  

   (0.0462)  (0.5180)  

 

Indicator for highest parental education being less than 

high school  -0.0022  -0.0191  

   (0.0050)  (0.0376)  

 

Indicator for highest parental education being having 

attended high school  -0.0022  -0.0139  

   (0.0039)  (0.0308)  

 

Indicator for highest parental education being having 

graduated from high school  -.0103***  -.0661***  

   (0.0020)  (0.0158)  

 

Indicator for highest parental education being having 

attended college  -.0114***  -.0623***  

   (0.0022)  (0.0174)  

 

Indicator for highest parental education being having 

earned Associate's degree  -0.0027  -0.0076  

   (0.0030)  (0.0225)  

 

Indicator for highest parental education being having 

earned Bachelor's degree  .0126***  .0776***  

   (0.0022)  (0.0161)  

 

Indicator for highest parental education being having 

earned Post-Bachelor's degree  .0262***  .1568***  

   (0.0027)  (0.0194)  

 

Number of terms in which student was enrolled in non-

VCCS institutions prior to initial enrollment term  .0435***  .2494***  

   (0.0010)  (0.0071)  

 

Number of non-VCCS institutions in which student was 

enrolled prior to initial enrollment term  .0121***  .1549***  

   (0.0027)  (0.0195)  

 

Indicator for whether student changed degree/major 

program pursued  .0230***  .1491***  

   (0.0019)  (0.0140)  

 

Overall proportion of earned credits among attempted 

credits since initial enrollment term  .0872***  1.025***  

   (0.0055)  (0.0541)  

 

Proportion of earned credits among attempted credits in 

the 1st fall term  -.0469***  -.1903***  
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   (0.0048)  (0.0443)  

 

Proportion of earned credits among attempted credits in 

the 2nd fall term  .0109*  .2357***  

   (0.0060)  (0.0510)  

 

Proportion of earned credits among attempted credits in 

the 3rd fall term  .0684***  .7291***  

   (0.0082)  (0.0687)  

 

Proportion of earned credits among attempted credits in 

the 4th fall term  .0672***  .8746***  

   (0.0111)  (0.0973)  

 

Proportion of earned credits among attempted credits in 

the 5th fall term  .0541***  1.086***  

   (0.0158)  (0.1591)  

 

Proportion of earned credits among attempted credits in 

the 6th fall term  .0437*  2.325***  

   (0.0263)  (0.4055)  

 

Overall proportion of earned credits among attempted 

credits prior to initial enrollment term  -.0355***  0.0048  

   (0.0099)  (0.0846)  

 

Standard deviation of term-level proportion of earned 

credits among attempted credits since initial enrollment 

term  -.1980***  -1.079***  

   (0.0061)  (0.0616)  

 

Proportion of earned credits among attempted credits in 

the 1st spring term  -.0564***  -.2389***  

   (0.0047)  (0.0433)  

 

Proportion of earned credits among attempted credits in 

the 2nd spring term  0.01  .2599***  

   (0.0067)  (0.0559)  

 

Proportion of earned credits among attempted credits in 

the 3rd spring term  .0491***  .5801***  

   (0.0093)  (0.0771)  

 

Proportion of earned credits among attempted credits in 

the 4th spring term  .0669***  .8999***  

   (0.0129)  (0.1147)  

 

Proportion of earned credits among attempted credits in 

the 5th spring term  .0688***  1.273***  

   (0.0189)  (0.2018)  

 

Proportion of earned credits among attempted credits in 

the 6th spring term  -0.0023  1.244**  

   (0.0353)  (0.5664)  

 

Proportion of earned credits among attempted credits in 

the 1st summer term  -0.0024  -.0942**  

   (0.0056)  (0.0466)  
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Proportion of earned credits among attempted credits in 

the 2nd summer term  .0351***  .1550**  

   (0.0087)  (0.0655)  

 

Proportion of earned credits among attempted credits in 

the 3rd summer term  .0500***  .3745***  

   (0.0120)  (0.0920)  

 

Proportion of earned credits among attempted credits in 

the 4th summer term  .0568***  .4836***  

   (0.0168)  (0.1351)  

 

Proportion of earned credits among attempted credits in 

the 5th summer term  0.0137  .4875**  

   (0.0248)  (0.2380)  

 

Proportion of earned credits among attempted credits in 

the 6th summer term  -0.0119  0.5392  

   (0.0637)  (0.7711)  

 

Indicator for whether student repeated a previously taken 

course in the 1st fall term  -.0191***  -.0857***  

   (0.0036)  (0.0284)  

 

Indicator for whether student repeated a previously taken 

course in the 2nd fall term  -.0230***  -.1154***  

   (0.0021)  (0.0158)  

 

Indicator for whether student repeated a previously taken 

course in the 3rd fall term  -.0060**  -.0304*  

   (0.0025)  (0.0185)  

 

Indicator for whether student repeated a previously taken 

course in the 4th fall term  -.0084**  -0.0311  

   (0.0034)  (0.0259)  

 

Indicator for whether student repeated a previously taken 

course in the 5th fall term  -.0142***  -.0998**  

   (0.0049)  (0.0421)  

 

Indicator for whether student repeated a previously taken 

course in the 6th fall term  0.0119  0.06  

   (0.0083)  (0.0894)  

 

Indicator for whether student has ever repeated a 

previously taken course  -.0082***  -0.0238  

   (0.0026)  (0.0201)  

 

Indicator for whether student repeated a previously taken 

course in the 1st spring term  -.0182***  -.0764***  

   (0.0026)  (0.0205)  

 

Indicator for whether student repeated a previously taken 

course in the 2nd spring term  -.0113***  -.0583***  

   (0.0024)  (0.0179)  

 

Indicator for whether student repeated a previously taken 

course in the 3rd spring term  .0057*  .0595***  
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   (0.0030)  (0.0223)  

 

Indicator for whether student repeated a previously taken 

course in the 4th spring term  -0.0026  0.0038  

   (0.0041)  (0.0318)  

 

Indicator for whether student repeated a previously taken 

course in the 5th spring term  0.0101  .1368**  

   (0.0062)  (0.0543)  

 

Indicator for whether student repeated a previously taken 

course in the 6th spring term  0.0135  .4157***  

   (0.0125)  (0.1452)  

 

Indicator for whether student repeated a previously taken 

course in the 1st summer term  0.0012  0.0135  

   (0.0038)  (0.0278)  

 

Indicator for whether student repeated a previously taken 

course in the 2nd summer term  -.0121***  -.0796***  

   (0.0038)  (0.0275)  

 

Indicator for whether student repeated a previously taken 

course in the 3rd summer term  -0.0066  -0.0307  

   (0.0049)  (0.0360)  

 

Indicator for whether student repeated a previously taken 

course in the 4th summer term  -0.0012  0.0254  

   (0.0068)  (0.0516)  

 

Indicator for whether student repeated a previously taken 

course in the 5th summer term  0.0002  0.1105  

   (0.0098)  (0.0833)  

 

Indicator for whether student repeated a previously taken 

course in the 6th summer term  0.0393  0.3929  

   (0.0257)  (0.2474)  

 

Weighted average of the 1st quartiles of SAT math 

scores of all non-VCCS institutions attended  0  -0.0003  

   (0.0003)  (0.0026)  

 

Weighted average of the 3rd quartiles of SAT math 

scores of all non-VCCS institutions attended  .0007***  .0050***  

   (0.0002)  (0.0019)  

 

Weighted average of the 1st quartiles of SAT verbal 

scores of all non-VCCS institutions attended  0.0005  0.0024  

   (0.0004)  (0.0033)  

 

Weighted average of the 3rd quartiles of SAT verbal 

scores of all non-VCCS institutions attended  -.0010***  -.0052**  

   (0.0003)  (0.0025)  

 

Weighted average of the 1st quartiles of SAT writing 

scores of all non-VCCS institutions attended  .0006*  .0058*  

   (0.0004)  (0.0030)  
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Weighted average of the 3rd quartiles of SAT writing 

scores of all non-VCCS institutions attended  -0.0006  -.0054*  

   (0.0004)  (0.0031)  

 Indicator for not a seamless enrollee  -.0244***  -.1367**  

   (0.0072)  (0.0577)  

 Indicator for seamless enrollee  .0233***  .2009***  

   (0.0072)  (0.0582)  

 Logarithm of subsidized loans received in year 1  -0.0004  -0.0032  

   (0.0004)  (0.0031)  

 Logarithm of subsidized loans received in year 2  .0019***  .0127***  

   (0.0006)  (0.0044)  

 Logarithm of subsidized loans received in year 3  0.0003  0.0015  

   (0.0008)  (0.0057)  

 Logarithm of subsidized loans received in year 4  -0.0017  -.0153*  

   (0.0010)  (0.0079)  

 Logarithm of subsidized loans received in year 5  -0.0012  -0.0129  

   (0.0015)  (0.0119)  

 Logarithm of subsidized loans received in year 6  -0.0035  -.0750***  

   (0.0024)  (0.0247)  

 Number of credit hours attempted in the 1st fall term  .0115***  .0756***  

   (0.0002)  (0.0017)  

 Number of credit hours attempted in the 2nd fall term  .0113***  .0638***  

   (0.0003)  (0.0023)  

 Number of credit hours attempted in the 3rd fall term  .0100***  .0678***  

   (0.0004)  (0.0033)  

 Number of credit hours attempted in the 4th fall term  .0098***  .0772***  

   (0.0006)  (0.0047)  

 Number of credit hours attempted in the 5th fall term  .0091***  .0893***  

   (0.0009)  (0.0075)  

 Number of credit hours attempted in the 6th fall term  .0072***  .1097***  

   (0.0014)  (0.0134)  

 Number of credit hours attempted in the 1st spring term  .0109***  .0689***  

   (0.0002)  (0.0018)  

 Number of credit hours attempted in the 2nd spring term  .0065***  .0367***  

   (0.0003)  (0.0026)  

 Number of credit hours attempted in the 3rd spring term  .0058***  .0386***  

   (0.0005)  (0.0037)  

 Number of credit hours attempted in the 4th spring term  .0078***  .0557***  

   (0.0007)  (0.0055)  

 Number of credit hours attempted in the 5th spring term  .0070***  .0747***  

   (0.0010)  (0.0089)  

 Number of credit hours attempted in the 6th spring term  .0036*  .0997***  

   (0.0020)  (0.0237)  

 Number of credit hours attempted in the 1st summer term  .0059***  .0343***  
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   (0.0003)  (0.0024)  

 

Number of credit hours attempted in the 2nd summer 

term  .0039***  .0219***  

   (0.0005)  (0.0040)  

 

Number of credit hours attempted in the 3rd summer 

term  .0040***  .0289***  

   (0.0008)  (0.0059)  

 

Number of credit hours attempted in the 4th summer 

term  .0045***  .0302***  

   (0.0011)  (0.0086)  

 

Number of credit hours attempted in the 5th summer 

term  .0079***  .0697***  

   (0.0017)  (0.0139)  

 

Number of credit hours attempted in the 6th summer 

term  .0178***  .1642***  

   (0.0045)  (0.0419)  

 Term GPA in the 1st fall term  .0349***  .1716***  

   (0.0011)  (0.0090)  

 Term GPA in the 2nd fall term  .0344***  .1510***  

   (0.0015)  (0.0118)  

 Term GPA in the 3rd fall term  .0203***  .0928***  

   (0.0021)  (0.0163)  

 Term GPA in the 4th fall term  .0184***  .0991***  

   (0.0029)  (0.0227)  

 Term GPA in the 5th fall term  .0108***  .0950***  

   (0.0042)  (0.0355)  

 Term GPA in the 6th fall term  -0.0085  0.0244  

   (0.0070)  (0.0726)  

 Term GPA in the 1st spring term  .0287***  .1423***  

   (0.0011)  (0.0094)  

 Term GPA in the 2nd spring term  .0152***  .0334**  

   (0.0017)  (0.0131)  

 Term GPA in the 3rd spring term  .0152***  .0605***  

   (0.0024)  (0.0181)  

 Term GPA in the 4th spring term  .0057*  0.0017  

   (0.0033)  (0.0261)  

 Term GPA in the 5th spring term  0.0013  0.0194  

   (0.0049)  (0.0425)  

 Term GPA in the 6th spring term  -0.0143  0.0887  

   (0.0092)  (0.1093)  

 Term GPA in the 1st summer term  .0242***  .0739***  

   (0.0014)  (0.0104)  

 Term GPA in the 2nd summer term  .0085***  0.0158  

   (0.0021)  (0.0156)  

 Term GPA in the 3rd summer term  .0146***  .0833***  

   (0.0030)  (0.0221)  
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 Term GPA in the 4th summer term  .0151***  .0676**  

   (0.0042)  (0.0318)  

 Term GPA in the 5th summer term  .0230***  .2098***  

   (0.0063)  (0.0527)  

 Term GPA in the 6th summer term  0.0221  .2957*  

   (0.0161)  (0.1620)  

 Logarithm of unsubsidized loans received in year 1  -.0020***  -.0117***  

   (0.0004)  (0.0033)  

 Logarithm of unsubsidized loans received in year 2  -.0022***  -.0130***  

   (0.0006)  (0.0046)  

 Logarithm of unsubsidized loans received in year 3  -0.0003  -0.0001  

   (0.0008)  (0.0061)  

 Logarithm of unsubsidized loans received in year 4  0.0014  0.0118  

   (0.0011)  (0.0084)  

 Logarithm of unsubsidized loans received in year 5  0.0012  0.0062  

   (0.0015)  (0.0126)  

 Logarithm of unsubsidized loans received in year 6  0.002  0.0202  

   (0.0026)  (0.0259)  

 Indicator for White  -.0144***  -.0924***  

   (0.0047)  (0.0347)  

 

Overall proportion of withdrawn credits among 

attempted credits since initial enrollment term  -.1284***  -1.239***  

   (0.0062)  (0.0585)  

 

Proportion of withdrawn credits among attempted credits 

the 1st fall term  -.0167***  -0.05  

   (0.0054)  (0.0496)  

 

Proportion of withdrawn credits among attempted credits 

the 2nd fall term  -.1033***  -.5981***  

   (0.0056)  (0.0488)  

 

Proportion of withdrawn credits among attempted credits 

the 3rd fall term  -.1035***  -.6981***  

   (0.0067)  (0.0574)  

 

Proportion of withdrawn credits among attempted credits 

the 4th fall term  -.1125***  -1.046***  

   (0.0086)  (0.0806)  

 

Proportion of withdrawn credits among attempted credits 

the 5th fall term  -.0814***  -1.007***  

   (0.0122)  (0.1324)  

 

Proportion of withdrawn credits among attempted credits 

the 6th fall term  -0.0262  -1.611***  

   (0.0198)  (0.3322)  

 

Standard deviation of term-level proportion of withdrawn 

credits among attempted credits since initial enrollment 

term  -.1455***  -1.185***  
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   (0.0077)  (0.0730)  

 

Proportion of withdrawn credits among attempted credits 

the 1st spring term  -0.0058  -0.0097  

   (0.0052)  (0.0475)  

 

Proportion of withdrawn credits among attempted credits 

the 2nd spring term  -.0640***  -.3777***  

   (0.0059)  (0.0500)  

 

Proportion of withdrawn credits among attempted credits 

the 3rd spring term  -.0844***  -.6183***  

   (0.0076)  (0.0651)  

 

Proportion of withdrawn credits among attempted credits 

the 4th spring term  -.0815***  -.7604***  

   (0.0103)  (0.0967)  

 

Proportion of withdrawn credits among attempted credits 

the 5th spring term  -.0635***  -.8166***  

   (0.0151)  (0.1685)  

 

Proportion of withdrawn credits among attempted credits 

the 6th spring term  0.0421  -0.7067  

   (0.0268)  (0.5016)  

 

Proportion of withdrawn credits among attempted credits 

the 1st summer term  -.0253***  .1406***  

   (0.0059)  (0.0490)  

 

Proportion of withdrawn credits among attempted credits 

the 2nd summer term  -.0598***  -.2129***  

   (0.0077)  (0.0583)  

 

Proportion of withdrawn credits among attempted credits 

the 3rd summer term  -.0683***  -.3082***  

   (0.0102)  (0.0770)  

 

Proportion of withdrawn credits among attempted credits 

the 4th summer term  -.0517***  -.2524**  

   (0.0139)  (0.1107)  

 

Proportion of withdrawn credits among attempted credits 

the 5th summer term  -.0518**  -.4122**  

   (0.0210)  (0.1987)  

 

Proportion of withdrawn credits among attempted credits 

the 6th summer term  0.009  -0.6603  

   (0.0475)  (0.5415)  

       

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1 
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Figure A1: Consistency across models in student assignment to the second decile of risk rankings 

 
Notes: the second decile of contain the students with a risk ranking percentile between 11-20. Each column of this figure shows the share of students assigned to 

the second decile by Model A that are assigned to given decile by Model B.  
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Figure A2: Consistency across models in student assignment to the fourth decile of risk rankings 

 
Notes: the fourth decile of contain the students with a risk ranking percentile between 31-40. Each column of this figure shows the share of students assigned to 

the fourth decile by Model A that are assigned to given decile by Model B.  
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Figure A3: Consistency across models in student assignment to the sixth decile of risk rankings 

 
 
Notes: the sixth decile of contain the students with a risk ranking percentile between 51-60. Each column of this figure shows the share of students assigned to 

the sixth decile by Model A that are assigned to given decile by Model B.  
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Figure A4: Consistency across models in student assignment to the seventh decile of risk rankings 

 
Notes: the seventh decile of contain the students with a risk ranking percentile between 61-70. Each column of this figure shows the share of students assigned to 

the seventh decile by Model A that are assigned to given decile by Model B. 



 

 132 

Figure A5: Consistency across models in student assignment to the eighth decile of risk rankings 

 
 
Notes: the eighth decile of contain the students with a risk ranking percentile between 71-80. Each column of this figure shows the share of students assigned to 

the eighth decile by Model A that are assigned to given decile by Model B.  
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Figure A6: Consistency across models in student assignment to the ninth decile of risk rankings 

 
 
Notes: the ninth decile of contain the students with a risk ranking percentile between 81-90. Each column of this figure shows the share of students assigned to 

the ninth decile by Model A that are assigned to given decile by Model B.  
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Figure A7: Consistency across models in student assignment to the tenth decile of risk rankings 

 
 
Notes: the tenth decile of contain the students with a risk ranking percentile between 91-100. Each column of this figure shows the share of students assigned to 

the tenth decile by Model A that are assigned to given decile by Model B. 
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Figure A8: Evaluation statistics, base models versus models that exclude the complexly 

specified term-specific predictors 
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Figure A9: Student-level differences in risk ranking percentile, base models versus models exclude the complexly specified 

term-specific predictors 

 

 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, XGBoost, or RNN), the share of students whose risk ranking 

percentile changes by a certain amount between the base model and the model excluding the complexly specified term-specific predictors. These changes in risk 

ranking percentiles are measured in absolute value.  
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Figure A10: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus models that exclude the complexly 

specified term-specific predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, XGBoost, or RNN), the share of students assigned to the 5th decile 

(top row), 3rd decile (middle row) and bottom decile (bottom row) by the base model who are also assigned to the same deciles in the model excluding the 

complexly specified term-specific predictors. 
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Figure A11: Evaluation metrics, base models versus models excluding all term-specific 

predictors 
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Figure A12: Student-level differences in risk ranking percentile, base models versus models 

excluding all term-specific predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the model 

excluding term-specific predictors. These changes in risk ranking percentiles are measured in absolute value.  
 

 

 

Figure A13: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models excluding all term-specific predictors 

 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in the model excluding term-specific predictors. 
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Figure A14: Evaluation Statistics, base models versus models that only include the simple 

non-term-specific predictors 
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Figure A15: Student-level differences in risk ranking percentile, base models versus models 

that only include the simple non-term-specific predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the model that 

only includes the simple non-term-specific predictors. These changes in risk ranking percentiles are measured in 

absolute value.  
 

 

 

Figure A16: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models that only include the simple non-term-specific predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in the model that only includes the simple non-term-specific 

predictors.  
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Figure A17: Evaluation statistics, base models versus models with 147 selected predictors 
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Figure A18: Relationship between c-statistic and number of predictors, using penalized 

Logistic feature selection 

 
Notes: this figure shows the relationship between the 10-fold cross-validation c-statistic (y-axis) and the number of 

predictors left in the model, as a result of a stepwise increase in the tuning parameter of the penalized logistic feature 

selection process. Specifically, we slightly increased the tuning parameter so that the model becomes gradually more 

selective of which predictors to keep in the model. The upper dashed horizontal line denotes the c-statistic values for 

the model using the 2-SE selection rule, which crosses the curve at 147 predictors. The lower dotted horizontal line 

is positioned on a c-statistic value of 0.80, which is a common lower-bound benchmark of acceptable performance. 
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Figure A19: Student-level differences in risk ranking percentile, base models versus models 

with 147 selected predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the model with 

147 selected predictors. These changes in risk ranking percentiles are measured in absolute value.  
 

 

 

Figure A20: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models with 147 selected predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the bottom quartile or decile in the model with 147 selected predictors. 
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Figure A21: Student-level differences in risk ranking percentile, base models versus models 

excluding demographic predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, XGBoost, or RNN), the 

share of students whose risk ranking percentile changes by a certain amount between the base model and the model 

excluding demographic predictors. These changes in risk ranking percentiles are measured in absolute value.  

 

 

 

 

Figure A22: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models excluding demographic predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, XGBoost, or RNN), the 

share of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the 

base model who are also assigned to the same deciles in the model excluding demographic predictors.  
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Figure A23: Evaluation statistics, base models versus PVCC-only models 
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Figure A24: Evaluation statistics, base models versus 10% random sample models 

 

 
Notes: we use the 10% random validation sample to compute the evaluation statistics for both the base models 

(using the full training sample) and the 10% random sample models. 
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Figure A25: Student-level differences in risk ranking percentile, base models versus PVCC-

only models 

 
Notes: this figure shows, within a given model type (OLS, Logistic, Random Forest, or XGBoost), the share of 

students whose risk ranking percentile changes by a certain amount between the base model and the PVCC-only 

model. These changes in risk ranking percentiles are measured in absolute value. In calculating these differences, we 

use the PVCC-only validation sample for the base models as well as the PVCC-only model.  

 

 

 

 

Figure A26: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

PVCC-only models 

 
Notes: this figure shows, within a given model type (OLS, Logistic, Random Forest, or XGBoost), the share of 

students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in PVCC-only model. In calculating these differences, we use the 

PVCC-only validation sample for the base models as well as the PVCC-only model.  
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Figure A27: Student-level differences in risk ranking percentile, base models versus 10% 

random sample models 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the 10% random 

sample model. These changes in risk ranking percentiles are measured in absolute value. In calculating these 

differences, we use the 10% random validation sample for the base models as well as the 10% random sample 

model.  
 

 

 

 

Figure A28: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 10% 

random sample models 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in 10% random sample model. In calculating these differences, we 

use the 10% random validation sample for the base models as well as the 10% random sample model. 
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Figure A29: Evaluation statistics, base models versus models excluding NSC data 
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Figure A30: Student-level differences in risk ranking percentile, base models versus models 

excluding NSC data 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the model 

excluding all NSC data (both in the construction of predictors and the outcome of interest). These changes in risk 

ranking percentiles are measured in absolute value.  
 

 

 

 

Figure A31: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models excluding NSC data 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in the model excluding NSC data (from predictor construction and 

outcome definition).  
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Figure A32: Evaluation statistics for base models, models excluding NSC predictors, and 

models excluding NSC enrollees 
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Figure A33: Student-level differences in risk ranking percentile, base models versus models 

without NSC predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the model 

excluding NSC predictors. These changes in risk ranking percentiles are measured in absolute value. 
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Figure A34: Student-level differences in risk ranking percentile, base models versus models 

without NSC enrollees 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students whose risk ranking percentile changes by a certain amount between the base model and the model 

excluding NSC enrollees. These changes in risk ranking percentiles are measured in absolute value.  
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Figure A35: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models excluding NSC predictors 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in the model excluding NSC predictors.  
 

 

 

 

 

 

Figure A36: Consistency of 1st, 3rd & 5th deciles of risk rankings, base models versus 

models excluding NSC enrollees 

 
Notes: this figure shows, within a given model type (OLS, Logistic, CPH, Random Forest, or XGBoost), the share 

of students assigned to the 5th decile (top row), 3rd decile (middle row) and bottom decile (bottom row) by the base 

model who are also assigned to the same deciles in the model excluding NSC enrollees.  
 

 

 

 

 

 


