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IDENTIFYING AND ESTIMATING PRINCIPAL CAUSAL
EFFECTS IN MULTI-SITE TRIALS∗

By Lo-Hua Yuan† Avi Feller‡ and
Luke W. Miratrix†

Harvard University†, University of California, Berkeley‡

Randomized trials are often conducted with separate random-
izations across multiple sites such as schools, voting districts, or
hospitals. These sites can differ in important ways, including the
site’s implementation, local conditions, and the composition of in-
dividuals. An important question in practice is whether—and under
what assumptions—researchers can leverage this cross-site variation
to learn more about the intervention. We address these questions
in the principal stratification framework, which describes causal ef-
fects for subgroups defined by post-treatment quantities. We show
that researchers can estimate certain principal causal effects via the
multi-site design if they are willing to impose the strong assumption
that the site-specific effects are uncorrelated with the site-specific dis-
tribution of stratum membership. We motivate this approach with a
multi-site trial of the Early College High School Initiative, a unique
secondary education program with the goal of increasing high school
graduation rates and college enrollment. Our analyses corroborate
previous studies suggesting that the initiative had positive effects
for students who would have otherwise attended a low-quality high
school, although power is limited.

1. Introduction Randomized trials are often conducted at multiple
physical sites, with separate randomizations across, for example, schools,
voting districts, or hospitals (Raudenbush and Bloom, 2015). These sites
can differ in important ways, including the site’s implementation quality,
local conditions, and the composition of individuals. Intuitively, researchers
should be able to leverage such differences across sites to learn more about
the intervention. For instance, if impacts are systematically larger at sites
with higher student attendance, what can we conclude about dosage effects?

∗We gratefully acknowledge funding from the Spencer Foundation through a grant
entitled “Using Emerging Methods with Existing Data from Multi-site Trials to Learn
About and From Variation in Educational Program Effects” and from the Institute for
Education Sciences, U.S. Department of Education, through Grant #R305D150040. The
opinions expressed are those of the authors and do not represent views of the Institute or
the U.S. Department of Education.
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More broadly, what questions can researchers answer using this approach
and what assumptions are required?

This paper explores the use of cross-site variation to estimate causal ef-
fects defined by individual-level post-treatment behavior. Our motivating
example is a randomized evaluation of an alternative high school program
in North Carolina, known as Early College High Schools (ECHS; Edmunds
et al., 2012). ECHS is an innovative approach that aims to increase col-
lege readiness and college completion rates among students typically under-
represented in post-secondary education. Edmunds et al. (2017) find mean-
ingful, positive impacts on a range of key academic outcomes, including
ninth-grade success, high school graduation, and college enrollment. These
positive results raise additional questions about expanding the program. In
particular, is it more effective for certain types of students or in certain
settings?

Our analysis focuses on the quality of the school each student would at-
tend in the absence of the program. In general, we expect to see larger
impacts of ECHS for students who would otherwise attend low-quality pub-
lic schools than for those who would otherwise attend high-quality public
schools. The goal is to assess whether this indeed holds in practice, which
would help guide the expansion of the program. We make this question
precise via the principal stratification framework of Frangakis and Rubin
(2002) and define subgroups, known as principal strata, determined by each
student’s school quality in both the observed treatment condition and the
counterfactual condition. While membership in these endogenous subgroups
is only partially observed, the corresponding causal effects are nonetheless
well defined.

Although principal stratification is a powerful framework for defining
causal effects of interest, estimating these impacts can be elusive (Page
et al., 2015). In the context of multi-site trials, we show that estimation
is possible via a zero correlation assumption: the site-specific distribution
of principal strata (e.g., the proportion of Compliers) is uncorrelated with
the site-specific impacts for these principal strata. This is a very strong as-
sumption, roughly implying that the interaction between randomization and
site indicator functions as a “second instrument” (the first being treatment
randomization) that is predictive of principal stratum membership, but is
uncorrelated with the treatment impact within any stratum. As we argue,
multi-site trials differ from more general stratified randomized trials because
we can appeal to a (super) population of sites. Thus, rather than assume
that certain quantities are constant and equal to zero for all sites, we can
instead assume that these quantities equal zero on average across sites (see
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Kolesár et al., 2015). We describe this zero-correlation assumption in the
context of principal stratification in the ECHS study. We also address esti-
mation and discuss the weaker assumption that zero correlation only holds
conditional on a set of auxiliary covariates.

To the best of our knowledge, this is the first paper that brings together
the otherwise disparate literatures of multi-site trials and covariate restric-
tions for principal stratification. We mention several highly relevant papers,
and explore the connections in more depth in Section 7. First, Reardon and
Raudenbush (2013) outline nine assumptions required to estimate media-
tion (rather than principal stratification) effects via cross-site variation (see
also Raudenbush and Bloom, 2015; Reardon et al., 2014). Second, Kolesár
et al. (2015) explore related questions from an econometric perspective and
consider estimation with “many invalid instruments.” Both Reardon and
Raudenbush (2013) and Kolesár et al. (2015) impose a zero correlation as-
sumption very similar to the one we explore here, though our setup gives
researchers greater flexibility by requiring fewer necessary conditions for
identification and estimation. Third, Jiang, Ding and Geng (2016) discuss
identifying principal causal effects by leveraging results from multiple stud-
ies. They impose the much stronger assumption that these effects are con-
stant (“homogeneous”) across studies (see also Kline and Walters, 2016, for
additional discussion). Many other papers impose restrictions on covariates
to identify principal causal effects, including Jo (2002), Peck (2003), Ding
et al. (2011) and Mealli, Pacini and Stanghellini (2016). Finally, Miratrix
et al. (2018) investigate the same substantive question that we explore here,
but use covariates to sharpen bounds rather than to obtain point estimates.

The paper proceeds as follows. Section 2 describes the multi-site Early
College High School study. Section 3 formulates the principal strata and as-
sociated estimands for ECHS. Section 4 gives the key methodological results,
including identification and estimation. Section 5 extends these results to in-
corporate auxiliary covariates. Section 6 presents the results for the ECHS
study. Sections 7 and 8 discuss connections to other methods and conclude.
The supplementary materials contain implementation details, an extensive
simulation study, and additional discussion of other methods, especially AS-
PES (Peck, 2003).

2. Early College High Schools The Early College High School (ECHS)
Initiative was launched in 2002 with support from the Bill and Melinda Gates
Foundation. The program partners small, autonomous public high schools
with two- or four-year colleges to give students the opportunity to earn an
associate’s degree or up to two years of transferable college credit, as well
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as a high school diploma. Early Colleges are designed to increase college
readiness and graduation rates by exposing high school students to college-
style courses, building students’ confidence in their ability to succeed in a
college environment, and lessening the financial burden of college by giving
students the option to earn college credits while still in high school. These
programs are targeted at individuals generally under-represented in college,
including low income, first generation, and minority students. Early College
programs were oversubscribed at some sites, which then allocated slots to
applicants randomly, creating a de-facto randomized trial.

We analyze data from the Evaluation of Early College High Schools in
North Carolina (Edmunds et al., 2010). This study tracked a sample of 4,004
students who began ninth grade between 2005 and 2010 and who entered
in one of 44 lotteries to gain entry into one of 19 different Early College
programs. These ECHS programs are spread across the state, such that it
was only feasible for a student to enter into a single lottery. Within each
lottery, students were randomized either to receive or not receive an offer
to attend an ECHS. Following Miratrix et al. (2018), we limit our analytic
set to students who could be linked to the North Carolina Department of
Instruction (NCDPI) databank, had school enrollment data in ninth grade,
and had transcript data or End of Course exam data from NCDPI. We subset
our sample to students whose ninth grade school was within 20 miles of their
eighth grade school, under the assumption that a large distance between a
student’s middle and high schools indicates that the student moved between
eighth and ninth grade, and was therefore effectively dropped from the trial.
We also exclude students for whom we do not have complete information on
race, gender, free or reduced-price lunch eligibility, first generation college
student status, and eighth grade math and reading scores. Finally, to avoid
unnecessary technical complications in the main text, we exclude the six
lotteries that have no variability in our outcome measure of interest. We
report the same analysis with all 44 lotteries in the supplement, which yields
nearly identical conclusions.

Given these inclusion criteria, our final ECHS analysis sample consists of
3,477 students (Nt = 2, 021, Nc = 1, 456) across 38 lotteries in 18 ECHS
schools, each with up to 6 cohorts. Throughout, we use the term ‘site’ to
denote a specific lottery rather than a specific school. A key reason for this
choice is that the proportion of principal strata can vary meaningfully within
a school year to year, which complicates school-level analyses.

Outcomes. The North Carolina ECHS data set contains a battery of out-
come measures. Our outcome of interest is a binary indicator of whether a
student is “on track” to complete the Future-Ready Core Graduation Re-
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quirements set by the state of North Carolina at the end of ninth grade.
This measure is based on compelling descriptive evidence that students who
do well in ninth grade are more likely to excel in and graduate from high
school (Allensworth, 2005).1

Covariates. Student baseline covariates include race, gender, free or reduced-
price lunch eligibility, first generation college student status, and standard-
ized eighth grade math and reading scores. Table 1 in the supplementary
materials shows balance checks, stratified by lottery. Early College High
Schools target students who would traditionally not enroll in college, and
several schools in the study gave priority to groups underrepresented in
higher education. As such, the ECHS sample is relatively disadvantaged,
with around half of all students in the lottery eligible for free or reduced-price
lunch. We also see slight imbalances in racial categories, with the treatment
group comprised of more Black/African American students than the control
group. We do not detect imbalance in any of the other baseline covariates.

Student sampling weights. In the ECHS study, students had unequal but
known probabilities of winning a lottery. Some lotteries were more selec-
tive overall. Some lotteries gave certain students higher chances of a slot
for equity reasons. All the calculations we perform on the ECHS data set
use student-level sampling weights that reflect each student’s probability of
entering and winning a lottery based on demographics and other factors. In
particular, we apply the same Hàjek estimator sample weighting approach
discussed and used by Miratrix et al. (2018).

School quality. We label each school in the North Carolina Early College
Study as one of three school types: high-quality public high school, low-
quality public high school, or Early College High School. The high- and low-
quality ratings are based on a composite of school-level measures, includ-
ing achievement metrics, growth, and adequate yearly progress, as tracked
by a centralized State of North Carolina school-report-card system. Schools
classified by the state as “priority schools”, “low performing schools”, and
“schools receiving no recognition” are categorized as low-quality schools.
“Schools making high growth”, “schools making expected growth”, “honor
schools of excellence”, “schools of excellence”, and “schools of progress” are
classified as high-quality schools.2 While the state also rates Early Colleges

1Details of the Future-Ready Core’s requirements for math and English language
reading and writing are at http://www.dpi.state.nc.us/docs/gradrequirements/

resources/gradchecklists.pdf.
2See http://www.ncpublicschools.org/docs/accountability/reporting/abc/

2005-06/execsumm.html for classification details.

http://www.dpi.state.nc.us/docs/gradrequirements/resources/gradchecklists.pdf
http://www.dpi.state.nc.us/docs/gradrequirements/resources/gradchecklists.pdf
http://www.ncpublicschools.org/docs/accountability/reporting/abc/2005-06/execsumm.html
http://www.ncpublicschools.org/docs/accountability/reporting/abc/2005-06/execsumm.html
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Table (1)
Distribution of high school type by treatment status

School type
Treatment Control

(Nt = 2, 021) (Nc = 1, 456)

Early College HS (e) 85.4% 2.7%
High-Quality Public HS (hq) 2.4% 12.4%
Low-Quality Public HS (lq) 12.3% 85.0%

as either low- or high-quality, we treat ECHSs as their own quality category
because an ECHS operates on principles that are distinct from a traditional
public high school and provides students with a unique education environ-
ment that may not be captured by standard school rating measures.

Table 1 shows the distribution of ninth grade students in our data set
across these three school types. In the treatment group, 85.4% of students
attended an ECHS; 2.4% attended a high-quality school; 12.3% attended
a low-quality school. In the control group, only 2.7% percent were able to
cross over and register in an ECHS; 12.4% attended a high-quality school;
85% attended a low-quality school.

3. Setup and estimands We now describe the setup and estimands for
the ECHS study using the principal stratification framework. Let Zi be the
treatment indicator for whether student i is randomly assigned to the active
intervention, i.e., wins the lottery and is invited to enroll in an ECHS. Let
Y obs
i denote student i’s observed outcome, i.e., the student’s on-track status

at the end of her ninth grade academic year. We assume randomization was
valid within each lottery and that lotteries are independent. We also invoke
SUTVA (Rubin, 1980), assuming that there is no interference between units
and that there is one version of each treatment level; this precludes murky
communication of whether someone wins the lottery and is invited to enroll
in an ECHS. With these assumptions, we can then write down the potential
outcomes for student i as Yi(1) and Yi(0), which are student i’s on-track
status depending on whether or not she receives an Early College enrollment
offer. Her observed on-track status is Y obs

i = ZiYi(1) + (1− Zi)Yi(0).
Given this setup, the overall Intent-to-Treat (ITT) effect is therefore

Overall ITT = E[Yi(1)− Yi(0)],

the average impact of the ECHS enrollment offer on students’ on-track sta-
tus. For ease of exposition, we initially regard expectations and probabilities
as being taken over a super-population of individuals, with individuals from
a specific lottery as a random sample of this super-population. We discuss
a corresponding super-population of sites in Section 4.
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Table (2)
The nine possible principal strata in the ECHS study. We assume that strata (A) - (D)
do not exist, leaving five principal strata. The two highlighted cells indicate the strata of

interest.

No ECHS offer (Zi = 0)

Di(0) = e Di(0) = lq Di(0) = hq

ECHS
offer

(Zi = 1)

Di(1) = e
ECHS Always

Taker
Low-Quality

Complier
High-Quality

Complier

Di(1) = lq (A)
Low-Quality
Always Taker

(C)

Di(1) = hq (B) (D)
High-Quality
Always Taker

We can now go beyond the overall impact of randomization using the prin-
cipal stratification framework. Let Di(z) ∈ {e, lq, hq} denote the quality of
school a student would attend if assigned to treatment level Zi = z, where
e, lq, and hq are abbreviations for ECHS, low-quality, and high-quality, re-
spectively. We now define our principal strata Si by the pair of school types
a student would attend if assigned to treatment, Di(1), and if assigned to
control, Di(0).

Table 2 shows the 32 = 9 possible principal strata; rows indicate school
type for students when assigned to treatment and columns indicate school
type when assigned to control. The analysis becomes unwieldy without re-
strictions on the possible principal strata (see, e.g., Page et al., 2015). We
therefore make structural assumptions that imply that strata (A) through
(D) do not exist, which reduces the number of possible strata from nine to
five. First, we assume that there are no Defiers (Angrist, Imbens and Rubin,
1996); that is, there are no individuals who only enroll in ECHS if denied
the opportunity to do so.

Assumption 3.1 (No Defiers, or Monotonicity). There are no individ-
uals with {Di(1) = lq, Di(0) = e} or {Di(1) = hq, Di(0) = e}.

This eliminates strata (A) and (B). To eliminate strata (C) and (D) we
need an additional assumption:

Assumption 3.2 (No Flip-Floppers). There are no individuals with {Di(1) =
lq, Di(0) = hq} or {Di(1) = hq, Di(0) = lq}.
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This assumption states that individuals do not switch the type of non-
ECHS school as a result of the ECHS lottery. Kline and Walters (2016)
refer to this as an independence of irrelevant alternatives assumption. Ap-
plying Assumptions 3.1 and 3.2 leaves five remaining strata: ECHS Always
Takers (eat), Low-Quality Compliers (lc), High-Quality Compliers (hc),
Low-Quality Always Takers (lat), and High-Quality Always Takers (hat),
as shown in Table 2. As we show in the supplementary materials, we can
use these assumptions to identify the distribution of principal strata, πs.

Next, we extend the standard exclusion restrictions (e.g., Angrist, Imbens
and Rubin, 1996) to the three “Always” strata in the more general setup:

Assumption 3.3 (Exclusion restrictions). There is no impact of ran-
domization for individuals in the Always ECHS, Always Low-Quality, or
Always High-Quality strata. That is,

ITTeat = ITTlat = ITThat = 0.

The logic here is identical to the simpler noncompliance setting. That is,
since randomization has no impact on school quality for students in these
groups, we assume that randomization also has no impact on their later
outcomes. Finally, we can decompose the overall ITT effect into stratum-
specific ITTs. Under Assumptions 3.1, 3.2, and 3.3:

Overall ITT = πlcITTlc + πhcITThc + πeatITTeat + πlatITTlat + πhatITThat

= πlcITTlc + πhcITThc.(3.1)

We can simplify this slightly by normalizing by the overall proportion of
Compliers, πlc + πhc :

Overall LATE = ITTc

=
πlc

πlc + πhc
ITTlc +

πhc
πlc + πhc

ITThc

= (1− φ) ITTlc + φ ITThc,(3.2)

where φ = πhc
πlc+πhc

is the proportion of Compliers that have a High-Quality
alternative.

We now have one equation and two unknowns. Without additional re-
strictions, we can only “set identify” the two impacts of interest, ITTlc and
ITThc, as in Miratrix et al. (2018). In the next section, we discuss the use
of cross-site variation to achieve point identification. Other approaches are
possible. First, Feller et al. (2016a) use a Bayesian model-based approach
to estimate similar effects, though Feller et al. (2016b) suggest that such



PRINCIPAL CAUSAL EFFECTS IN MULTI-SITE TRIALS 9

estimates might be unstable. Second, Mealli, Pacini and Stanghellini (2016)
explore the use of multiple outcomes and other covariate restrictions. Fi-
nally, Kline and Walters (2016) identify these effects by imposing restrictions
on the school type selection process.

4. Identification and estimation via zero site-level correlation
We now turn to methods that exploit the multi-site experimental design to
identify causal effects. We introduce the core identifying assumption and
the super-population of sites, and briefly discuss estimation, deferring many
details to the supplementary materials.

4.1. Super-population of sites and the zero correlation assumption We
slightly extend our notation to emphasize the data’s multi-site structure.
Let k = 1, 2, . . . ,K index the K sites of the experiment, where Xi =
k denotes that student i belongs to experimental site k. Let ITTs|k =
E [Yi(1)− Yi(0)|Si = s,Xi = k] be the impact of randomization for princi-
pal stratum s in site k, with LATEk = ITTc|k; let πs|k = P{Si = s|Xi = k}
be the proportion of individuals in principal stratum s in site k; and let
φk = πhc|k/(πlc|k+πhc|k) denote the proportion of Compliers in site k who are
of High-Quality type. Our parameters of interest are the population average
treatment impacts for Low-Quality Compliers and High-Quality Compliers,
ITTlc and ITThc, for all students across all sites.

A key conceptual advance and statistical advantage of the multi-site set-
ting, relative to a setting with a generic categorical covariate, is that we can
envision a super-population of sites from which the K observed sites are
drawn. This is sometimes referred to as a random effects formulation (see,
for example, Kolesár et al., 2015), though we prefer to focus on the exis-
tence of a super-population. Specifically, we assume that we sample sites
represented as triples of parameters

(
ITTlc|k, ITThc|k, φk

)
from an infinite

super-population of sites with mean vector (ITTlc, ITThc, φ) and a 3 × 3
correlation matrix Σ:

(4.1)

ITTlc|k
ITThc|k
φk

 iid∼

ITTlc

ITThc

φ

 ,

Σ11

Σ21 Σ22

Σ31 Σ32 Σ33


Under this interpretation, we extend the single super-population of individ-
uals described in Section 3 to instead have two stages of sampling: first, we
sample a site from an infinite super-population of sites; second, we sample
an individual from the site-specific super-population.
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Given this setup, it is natural to re-frame the main problem in terms of
regression. First, re-write Equation (3.2) separately for each site, re-arrange
terms, and add zero twice to obtain

LATEk = (1− φk) ITTlc|k + φk ITThc|k

= (1− φk) ITTlc + φk ITThc +

(1− φk) (ITTlc|k − ITTlc) + φk (ITThc|k − ITThc)

= (1− φk) ITTlc + φk ITThc + (1− φk) εlc|k + φk εhc|k,(4.2)

where εlc|k = ITTlc|k−ITTlc and εhc|k = ITThc|k−ITThc. Across all K sites,
we therefore have a system of K linear equations:

LATE1 = (1− φ1)ITTlc + φ1ITThc + η1

LATE2 = (1− φ2)ITTlc + φ2ITThc + η2
...

LATEK = (1− φK)ITTlc + φKITThc + ηK ,(4.3)

where we condense the final terms: ηk = (1− φk) εlc|k + φk εhc|k.
This is a bivariate linear regression with no intercept, in which ITTlc and

ITThc are regression coefficients and ηk is the regression error term. Since
we have a super-population of sites, we can identify the causal effects of
interest under the classical assumption that the regression errors, ηk are un-
correlated with the regressors, φk and 1−φk, in the super-population. Specif-
ically, we can identify the regression coefficients under the assumptions that
Cov(εlc|k, φk) = 0 and Cov(εhc|k, φk) = 0, with the additional normalization
that E

[
εlc|k

]
= 0 and E

[
εhc|k

]
= 0; or combining terms, Cov(ηk, φk) = 0

and E [ηk] = 0.

Assumption 4.1 (Zero site-level correlation between principal stratum
distribution and principal causal effects). The site-specific relative share
of High-Quality Compliers is uncorrelated with the site-specific impacts for
High-Quality Compliers and for Low-Quality Compliers.

(4.4) Cov(εlc|k , φk) = 0 and Cov(εhc|k , φk) = 0.

This is equivalent to assuming that Σ31 = Σ32 = 0 in Equation (4.1). In
addition, we require that Var(φk) > 0, that is Σ33 > 0, which is analogous
to the relevancy assumption in standard instrumental variables. We combine
all these assumptions into the following proposition.
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Proposition 4.2 (Identification of principal causal effects via zero site-level
correlation). For a multi-site trial with K ≥ 2 sites, under assumption 4.1,
Var(φk) > 0, and the normalization that E

[
εlc|k

]
= 0 and E

[
εhc|k

]
= 0, the

principal causal effects, ITTlc and ITThc, are identified.

The proof for Proposition 4.2 follows immediately from standard regression
theory.3 Importantly, while these results do not strictly require an underlying
super-population of sites, it is difficult to imagine these conditions holding
for a generic categorical covariate.

In the context of ECHS, the zero correlation assumption states that the
impact of the program on High-Quality Compliers’ ninth grade performance
in a site does not systematically vary according to the relative proportion of
High-Quality versus Low-Quality Compliers in a site; with the same assump-
tion for Low-Quality Compliers. This strong assumption precludes factors
that may differ across sites — such as the average academic preparedness of
incoming ninth grade students — from influencing both the student compli-
ance make-up of a site and the magnitude of impact ECHS has on students
within the site. Intuitively, students who are more academically prepared
might have more resources and support, such that they would attend a High-
Quality public school if they did not attend an ECHS. In addition, students
who enter ninth grade with a stronger academic background might experi-
ence ECHS differently from incoming students who have weaker academic
foundations. To accommodate this kind of scenario, we discuss relaxing the
zero-correlation assumption to hold conditional on covariates, such as prior
academic preparedness, in Section 5.

Finally, it is useful to re-frame this setup in terms of the contrast ITThc−
ITTlc. We can re-write Equation (4.3) to highlight this directly:

(4.5) LATEk = ITTlc + φk(ITThc − ITTlc) + ηk, for k = 1, . . . ,K.

This yields a particularly simple form when there are only two sites, j and
k:

(4.6) ITThc − ITTlc =
LATEj − LATEk

φj − φk
.

This is the slope of a line based on two points. It is also identical in form
to the standard ratio estimator in instrumental variables, which underscores

3These zero correlation and marginal zero expectation conditions are precisely the
moment conditions needed to identify the regression coefficients in a linear regression
model. A stronger assumption often cited for regression is strict exogeneity, which states
that the conditional mean of the error terms given the regressor equals zero, E[εs|k|φk] = 0.
This assumption implies the two moment conditions above, but the reverse is not true;
see Reardon and Raudenbush (2013) for additional discussion in this context.
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the connection to using the interaction of “site by randomization” as an
additional instrument. See the supplementary materials for additional dis-
cussion of restrictions with a binary covariate, including a discussion of the
ASPES approach of Peck (2003).

4.2. Estimation In order to estimate these effects, we begin with an
overly simplistic approach that uses plug-in estimators for the site-specific
moments, L̂ATEk and φ̂k. Let Ŷzd = 1

Nzd

∑
i∈{Zi=z, Dobs

i =d} Y
obs
i be the fi-

nite sample average observed outcome for students assigned to Zi = z with
observed take up Dobs

i = d, and let Ŷzd|k be the corresponding estimate for

students in site k. Ŷz·|k indicates a summation over d; that is, the average
observed outcome for students at site k who were randomized to study arm
z. Let π̂s denote the estimated proportion of individuals in principal stratum
s, with π̂s|k the corresponding estimate for students in site k. (See the sup-
plementary materials for details.) We then estimate the site-specific LATE
as

L̂ATEk =
Ŷ1·|k − Ŷ0·|k
π̂lc|k + π̂hc|k

,

where π̂lc|k + π̂hc|k is the estimated proportion of Compliers in site k. We
can also estimate the relative proportion of High-Quality Compliers in site
k:

φ̂k =
π̂hc|k

π̂lc|k + π̂hc|k
.

With these site-aggregate statistics, we then estimate ITTlc and ITThc via
the regression coefficients from the site-level linear regression,

(4.7) L̂ATEk = βlc (1− φ̂k) + βhc φ̂k + ηk ,

where β̂lc and β̂hc are estimators for ITTlc and ITThc, respectively. Tak-
ing the site-specific estimates, L̂ATEk and φ̂k, as fixed, we can account for
uncertainty with the usual heteroskedastic-robust standard errors for linear
regression (MacKinnon and White, 1985).

Measurement error. The plug-in approach ignores the fact that L̂ATEk
and φ̂k are estimated rather than known. This leads to two key complica-
tions. One complication is that conventional estimates of the standard error
will under-estimate the true sampling variance. Also, the nominal point esti-
mates could be biased; in particular, error in φ̂k will attenuate the estimate of
ITThc−ITTlc. To account for the increased uncertainty due to measurement
error, we therefore propose a straightforward case-resampling bootstrap ap-
proach that randomly samples students with replacement within each site.
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For each bootstrap sample and independently for each site, we re-calculate

L̂ATE
∗
k and φ̂∗k and then estimate ITT∗lc and ITT∗hc via the linear model 4.7.

Finally, we apply standard multiple imputation combining rules (Rubin,
1987) to obtain a single point estimate and standard error for each principal
causal effect.

Extensive simulation studies (see supplementary materials) show that this
procedure has meaningfully smaller RMSE than the naive procedure, but
that bias in the point estimate is still problematic. Many alternatives are

possible, such as a parametric bootstrap, which repeatedly draws L̂ATE
∗
k

and φ̂∗k via a multivariate Normal with means and covariances estimated
from each site. See the discussion in Section 8.

Varying site size. Finally, site sizes typically vary in practice, which in-
troduces additional complications. Specifically, the super-population means
(ITTlc, ITThc, φ) discussed in Section 4.1 correspond to site-level averages.
If all sites have the same number of students, then the average over all
sites equals the average over all students. If site sizes vary, however, we
must choose whether to weight sites equally (site average) or weight indi-
viduals equally (population average). Following Raudenbush and Schwartz
(2017), when sites have different numbers of Compliers, the unweighted lin-
ear model 4.7 estimates the average principal causal effects across sites,
rather than across individuals. If, in addition to the conditions listed in
Proposition 4.2, we also assert that ITTlc|k and ITThc|k are independent
of Nk, the number of Compliers in a site, then the population- and site-
weighted estimates are equal. We return to this issue in the next section.

5. Conditional zero-correlation In practice, we often observe a rich
set of individual- and site-level covariates. While potentially helpful for in-
creasing efficiency, such covariates are particularly useful for relaxing the
unconditional zero correlation of Assumption 4.1. Let Wk be a w-length
vector of site-level covariates, which includes inherently site-level quanti-
ties, such as community type (urban, suburban, rural), as well as aggregate
individual-level covariates, such as percent Free or Reduced-Price Lunch.
We can then relax the zero correlation assumption such that it only holds
conditionally:

Cov (εlc|k , φk |Wk) = 0 and Cov (εhc|k , φk |Wk) = 0 ,(5.1)

with E
[
εs|k|Wk

]
= 0, for s ∈ {lc, hc}. In the context of ECHS, this says, for

example, that among sites of the same community type containing students
of the same average level of academic preparedness, the impact of the ECHS
program on different Complier types does not systematically vary according
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to the ratio of High- to Low-Quality Compliers in a site. In general, to obtain
consistent estimates for the principal causal effects, we want to condition on
confounding factors of compliance and treatment impacts; that is, baseline
covariates that are predictive of the distribution of principal strata in a site,
and, separately, are predictive of the site-specific principal causal effects.

There are several possible estimation procedures that incorporate auxil-
iary covariates under Assumption 5.1. The most straightforward, given our
regression setup, is to include (grand-mean centered) site-aggregate values
of confounders as additional regressors in the site-level linear regression.
Specifically, instead of fitting model 4.7, we fit

(5.2) L̂ATEk = βadjlc (1− φ̂k) + βadjhc φ̂k + γWk + ηadjk .

As above, Wk is a vector of site-aggregate covariate values, which could also
include Nk, the total number of Compliers in site k.

The simple regression-adjusted model, however, restricts the possible treat-
ment effect variation; see supplementary materials for additional discussion.
For example, if we believe a baseline covariate W1,k influences the impact
of ECHS on student on-track status differently for a predominately High-
Quality Complier site compared to a site with mostly Low-Quality Compli-
ers, then we may prefer the interaction adjusted model
(5.3)

L̂ATEk = βintlc (1−φ̂k) + βinthc φ̂k + γ W−1,k + δlc(1−φ̂k)W1,k + δhc φ̂kW1,k + ηintk ,

where appropriate combinations of β̂ints and δ̂s yield estimates of the site-
average impacts.

Finally, when site sizes vary, we can re-weight the regression coefficient
estimates from Eqs. (5.2) or (5.3) to obtain population-average impacts un-
der the assumption that ITTlc|k and ITThc|k are conditionally independent
of Nk, the number of Compliers in a site, given W. For High-Quality Com-
pliers, we have the following weighted average:

(5.4) ÎTT
pop

hc =
K∑
k=1

(
β̂inthc + γ̂ W−1,k + δ̂hcW1,k

) φ̂kNk∑K
k=1 φ̂kNk

,

with an analogous estimate for Low-Quality Compliers.

6. Analysis of ECHS

6.1. Main analysis We investigate the impact of ECHS on the ninth
grade on-track status of High-Quality Complier and Low-Quality Complier
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students. As we discuss in Section 4.1, we initially assume that the aver-
age impact of the Early College program on High-Quality Compliers’ ninth
grade performance is the same, in expectation, across all sites, and does
not systematically vary according to the relative proportion of High-Quality
versus Low-Quality Compliers in a site (with the the same for Low-Quality
Compliers). We then relax this assumption by conditioning on standardized
eighth grade reading score, which is predictive of both the relative propor-
tion of High-Quality Compliers and of on-track percentages in sites.4

As described in the supplementary materials, we estimate impacts without
covariate adjustment, with simple linear adjustment for site-average reading
score, and with an interaction adjustment for site-average reading score.
We account for different site sizes by taking weighted averages of predicted
site-level impacts.

Figure 1 shows scatterplots of the estimated site-specific Complier impacts
of ECHS on proportion on-track versus the estimated relative proportion of
High-Quality Compliers in each site, before and after adjusting for site-
average eighth grade reading score. As the left panel shows, 22 of the 38
sites have an estimated φ̂k = 0, meaning that we estimate that all of the
Compliers at these sites are Low-Quality Compliers. Since the Low-Quality
Compliers are also the much larger group, we therefore anticipate more
precise estimates of ITTlc than ITThc.

Figure 2 shows the corresponding point estimates and 95% confidence
intervals for ITTlc and ITThc. All the point estimates are positive, between
5.7 and 8.5 percentage points. There is no noticeable difference between the
unadjusted versus simple adjusted or interaction adjusted point estimates for
ITTlc; nor is there a meaningful difference between the naive and bootstrap
point estimates. Reading score adjustment has a more noticeable effect on
point estimates for ITThc, with ÎTThc decreasing by about 1.3 percentage
points under both simple linear adjustment and interaction adjustment.

The standard errors for both ÎTTlc and ÎTThc increase slightly under
interaction adjustment, compared to no adjustment or simple adjustment.
For ITTlc and ITThc, respectively, the bootstrap CI for each adjustment

4Eighth grade reading score is also highly correlated with many of the other avail-
able covariates (see also Miratrix et al., 2018). Adjusting for all six available baseline
covariates—student race, gender, free or reduced-price lunch eligibility, first generation
college student status, and standardized eighth grade reading and math scores—yields
meaningfully noisier estimates. An additional complication is that many of these lotteries
are for the same ECHS program over multiple years. In principle, we could restrict the
sample to schools with multiple lotteries and condition our analysis on the specific ECHS
or specify a hierarchical model. In practice, this is infeasible with our limited number of
sites.
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Fig (1) ECHS site-level data. Scatterplots of estimated site-specific Complier
impacts (proportion on-track) versus (left panel) estimated relative proportion of
High-Quality Compliers in a site, and (right panel) estimated residual relative pro-

portion of High-Quality Compliers in a site, after regressing φ̂k on eighth grade
reading score. The size of the points indicate the number of Compliers in a site.
The lines fit to the points correspond to linear regressions with a free intercept;
the y-intercept for each line is an estimate for ITTlc, while the slope of each line
is an estimate for the contrast ITThc − ITTlc. The shaded grey regions are 95%
confidence intervals for the conditional mean outcome.

method is roughly 23% and 40% wider than the CI of the corresponding
naive estimate. This aligns with our simulation study finding that the boot-
strap method produces overly conservative confidence intervals. Although
we do not illustrate the results here, we note that adjusting for any single
baseline covariate produces results that are substantively the same as those
for reading score adjustment. Finally, we assess whether there are meaning-
ful differences between ITThc and ITTlc using the re-parameterization in
Equation (4.5), which is illustrated by Figure 1, in which the y-intercept is
an estimate for ITTlc and the slope for φ̂k is an estimate for the difference
ITThc − ITTlc. We do not find meaningful differences in stratum impacts
for High- vs Low-Quality Compliers.

Overall, we find that the estimated impacts are quite similar for both
Low- and High-Quality Compliers and that these estimates are stable across
different models. Partly because the Low-Quality Complier group is larger,

- - -
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Fig (2) Estimates of principal causal effects. Point estimates and 95% con-
fidence intervals for Low- and High-Quality Complier principal causal effects are
plotted for each estimation method.

we are much more confident that the impact for this group is positive. By
contrast, the estimated impact for High-Quality Compliers is much noisier.
These results are consistent with the bounds in Miratrix et al. (2018).

6.2. Model checking An advantage of using a regression-based approach
is that we can assess key identifying assumptions using standard regression
diagnostics. In particular, the zero site-level correlation between principal
stratum membership and stratum-specific impacts (Assumption 4.1) implies
that E [ηk] = 0 and Cov(ηk, φk) = 0. We can use the fitted residuals from
the site-level regression to assess the evidence against these assumptions,
though power might be limited. Importantly, the zero-correlation assump-
tion is restricted to mean independence of the residual, rather than full
stochastic independence. Thus, we would reject the identifying assumptions
if there is a strong linear association, but would fail to reject even if there
is, for example, meaningful evidence of heteroskedasticity. This approach is
similar in spirit to tests for over-identifying restrictions in IV models (see,
for example, Kolesár et al., 2015).

Figure 3 shows studentized residual plots corresponding to the unadjusted
and simple adjusted linear models (Equations 4.7 and 5.2) fit to the site-
aggregate ECHS data shown in Figure 1. As indicated by the blue best-fit
line for each residual plot, there is no strong positive or negative linear

___ ___11_1___ ___ J IJ _____ ------- -- --- --------- --- -- -------
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Fig (3) Residual plots. Studentized residuals versus estimated proportion of
High-Quality Compliers for the Naive LATE model, where there is no baseline co-
variate adjustment (left panel) and where there is regression adjustment for eighth
grade reading score (right panel). The blue lines are best-fit lines; one with a steep
slope would indicate a violation of the (conditional) zero site-level correlation as-
sumption needed to identify ITTlc and ITThc.

pattern to the residuals, and the means of the residuals for each model
are close to zero. Thus, there is no evidence against the identifying zero
correlation assumptions, Assumptions 4.1 and 5.1. At the same time, the
residual plots clearly invalidate a homogeneity assumption (Jiang, Ding and
Geng, 2016) that the stratum-specific impacts are constant across sites, with
large changes in the conditional variance of the residuals across φ̂k.

7. Connection to other methods Several approaches have the same
setup as what we explore here, but rest on stronger assumptions. First,
we can impose a stronger version of Assumption 4.1 by assuming that av-
erage impacts are constant across sites, rather than equal in expectation
across sites. Specifically, instead of assuming E

[
εlc|k | φk

]
= 0 for all k,

we could instead require that εlc|k = 0 for all k, or, equivalently, that
ITTlc|1 = · · · = ITTlc|K . This clearly satisfies the requirements of Proposi-
tion 4.2, but is stronger than necessary for inference in our setting. Following
the ecological inference literature, we refer to this as the constancy assump-
tion; Gelman et al. (2001) provides a discussion of the constancy versus
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zero correlation assumptions in ecological regression. Jiang, Ding and Geng
(2016) instead call this constancy assumption the homogeneity assumption;
Wang, Zhou and Richardson (2017) relax this assumption by adjusting for
baseline covariates; Kang et al. (2016) leverage this assumption to relax
other requirements on possible effects.

One conceptual advantage of this constancy assumption is that we no
longer need to posit the existence of a (hypothetical) super-population of
sites. Instead, we can imagine sampling from an infinite super-population of
individuals divided into K fixed sites. In fact, we no longer need multiple
sites: the assumption of constant impacts could be applied to a single-site
experiment where we imagine sampling from an infinite super-population of
individuals divided into K fixed levels of any discrete covariate, such as grade
level or racial group. In practice, the estimators for ITTlc and ITThc would
be the same as in Section 4.2, even though the underlying assumption is
much stronger. See, for example, Hull (2018), who presents a similar setup
as ours for a single site quasi-experiment with strata defined by a single
(binary) covariate.5

The zero site-level correlation assumption we pose is also closely related
to an important assumption in the multiple-site, multiple-mediator instru-
mental variables (MSMM-IV) literature. For a multi-site study in which
a treatment may affect the outcome through multiple mediators, Reardon
and Raudenbush (2013) delineate nine assumptions needed to identify the
relevant causal effects using cross-site variation. Of the nine assumptions,
the authors emphasize the critical assumption of between-site compliance-
effect independence, in which the site-average compliance of each mediator
is independent of the site Complier average effect of each mediator. This
independence assumption is a closely related, but slightly stronger, version
of the uncorrelatedness and marginal zero mean error conditions of Propo-
sition 4.2.

Finally, we can re-frame much of the above discussion, such as Assump-
tion 4.1, in terms of site-level means rather than site-level impacts. That
is, we could assume that the site-specific mean outcome of Low-Quality
Compliers assigned to treatment is uncorrelated with the site-specific rel-
ative share of Low-Quality Compliers. We view this as a slightly stronger
assumption than what we propose. For example, it is conceivable that Low-
Quality Complier students generally have less support and fewer resources
that allow them to engage in academic activities, giving them a starting
disadvantage compared to High-Quality Compliers. Thus, in schools with

5The core identifying assumption there is what Hull terms ‘LATE homogeneity’, which
says stratum-specific LATEs are mean independent of the stratifying covariate.
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a larger share of Low-Quality Compliers, students’ academic performance
under no intervention could be poorer, on average, than student academic
performance at schools composed mostly of High-Quality Compliers. This
scenario would violate a zero correlation in site-level means assumption. As-
sumption 4.1, on the other hand, permits control mean outcomes to co-vary
with the relative proportion of Low-Quality Compliers in a site.

8. Conclusion The principal stratification literature largely focuses on
randomized studies where there is only one experimental site. We extend this
framework to the multi-site setting in the context of an evaluation of Early
College High Schools and show how to identify and estimate key principal
causal effects under a strong zero correlation assumption. We relax this
assumption by incorporating auxiliary covariates and explore several issues
that arise in estimation.

There are several directions for future work. The most important is to
explore estimators that appropriately account for measurement error. First,
we could adapt methods from the literature on multi-site, multi-mediator
IV; specifically, Reardon et al. (2014) offer two bias-corrected instrumental
variables estimators that could be extended to principal stratification. Sec-
ond, we could further explore standard measurement error models or fully
Bayesian hierarchical models as a way to simultaneously address both bias
and sampling variance; Bloom et al. (2017) discuss relevant strategies in the
multi-site setting, including under noncompliance.

Finally, it is useful to assess how to incorporate the zero correlation as-
sumption into a broader principal stratification analysis, such as a bounds
approach (Miratrix et al., 2018). Understanding the many possible identi-
fication and estimation approaches is increasingly important as more and
more researchers use the principal stratification framework.
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