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Abstract

Learning to read English requires learning the complex statistical dependencies between
orthography and phonology. Previous research has focused on how these statistics are
learned in neural network models provided with as much training as needed. Children,
however, are expected to acquire this knowledge in a few years of school with only limited
instruction. We examined how these mappings can be learned efficiently, defined by
tradeoffs between the number of words that are explicitly trained and the number that are
correct by generalization. A million models were trained, varying the sizes of randomly
selected training sets. For a target corpus of about 3000 words, training sets of 200–300
words were most efficient, producing generalization to as many as 1800 untrained words.
Composition of the 300 word training sets also greatly affected generalization. The results
suggest directions for designing curricula that promote efficient learning of complex
material.
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and machine learning
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Efficiency of learning in experience-limited domains: Generalization beyond the WUG test

Introduction

Generalization—the ability to apply existing knowledge to novel cases—is an
important capacity observed, with varying complexity, in many species (Santolin & Saffran,
2018). Human generalization encompasses a broad range of behaviors, ranging from
generalizations about the properties of three dimensional space to ones based on physical
appearance. The behavioral and neurobiological bases of generalization are a focus of much
research (e.g., Goldberg, 2009; Zhang, Bengio, Hardt, Recht, & Vinyals, 2016).

Generalization is especially important in language acquisition and learning to read.
Children rapidly acquire knowledge that allows them to generalize beyond the limited
sample of utterances they experience (Chomsky, 1965). The classic demonstration is the
WUG Test (Berko, 1958). A child who has learned about plural formation can generalize
to novel cases: one wug, two wugs. Similarly, a beginning reader who has learned
correspondences between spelling and pronunciation can read aloud nonce words such as
NUST and GLORP (Seidenberg & McClelland, 1989). Generalization has traditionally
been taken as evidence for symbolic rules, but it is also observed in neural networks of
varying complexity (Seidenberg & Plaut, 2014; LeCun, Bengio, & Hinton, 2015).

Our research examined generalization from a different perspective, efficiency of
learning. Efficiency is a concern in real-world contexts in which, unlike most machine
learning applications, learning opportunities are constrained.

For example, children’s vocabulary development depends on their time and
context-limited exposure to spoken language, which varies considerably (Hart & Risley,
1995; Gilkerson et al., 2017). The resulting differences in vocabulary size and quality have
an enormous impact on learning to read and other aspects of schooling (Seidenberg, 2017).
Knowledge gaps cannot be closed solely through explicit instruction because there isn’t
sufficient classroom time. The same holds for learning mappings between written and
spoken language. Instruction (“phonics”) is helpful, but only a small subset of patterns can
be taught. In these and other knowledge domains, children learn from relatively limited
data and generalization is paramount.

In the classic WUG test generalization is assessed by performance on nonce forms or,
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in machine learning, withheld words. The exact composition of the examples that support
generalization is not the focus of attention, but is critical in experience-limited domains.
We therefore reformulated the generalization question as follows, using spelling-sound
knowledge as a test case:

• Children need to acquire the ability to generate pronunciations for many written
words (the target set);

• They are explicitly taught the correspondences between orthography and phonology
for a much smaller subset of words (the training set);

• Generalization is assessed in terms of correct performance on untrained items from
the target set, rather than nonce forms. This shifts the focus of generalization to
acquiring real-world knowledge.

The research question is then how the size and composition of the training set affects
generalization to untrained items. Learning is efficient if the ratio between the number of
trained items and the number of generalization items is low. We examined efficiency of
learning as a function of the size of the training set using simple, well-studied models of
learning orthography-phonology correspondences (Seidenberg & McClelland, 1989; Harm &
Seidenberg, 1999). We also examined how efficiency was affected by the composition of a
training set of a given size. The results suggest that it may be possible to structure
children’s reading experiences in ways that promote more efficient learning.

Materials and Methods

Words

The simulations used a set of 2881 monosyllabic English words employed in previous
research (Harm & Seidenberg, 1999). Word length ranged from 2–8 letters and 1–7
phonemes.

Model architecture

The model was a simple feedforward network with an input orthographic layer (102
units), an output phonological layer (66 units) and a single hidden layer (100 units). It was
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structured and trained in standard ways, with weights updated with gradient descent and
backpropagation after accumulating cross-entropy error over all words in the training set.

Orthographic representations were generated as follows. Words were centered on the
vowel (or the first vowel in a digraph), adding empty letters to the onset as necessary. If
the first vowel was followed immediately by a consonant, an empty letter was also added
between them, except in cases where the consonant is voiced as part of the vowel (e.g., the
letter w in SAW). The letter y was treated as a consonant when it began a word and a
vowel otherwise. Finally, empty letters were added to the end of each word, resulting in
orthographic codes of uniform length (14 letters including empty ones).

Each letter was represented by one unit in a 26 element vector, with no units
activated for the empty letter. The 14 vectors were concatenated to represent each word.
To make these representations more concise, they were stacked to create a 2881 × 364
matrix, and all-zero columns were dropped, leaving 102 units.

Phonological word forms were represented using 41 phonemes (26 consonants, 15
vowels). They were aligned on the first vowel, adding empty phonemes at the beginning or
end to produce phonological representations of equal length (10 phonemes including empty
phonemes). Each phoneme was defined by 25 phonetic features (Harm & Seidenberg,
1999). The 10 phoneme by 25 feature vectors were condensed by eliminating nodes for
unused features, resulting in an output layer with 66 features.

The model was implemented using scikit-learn in Python 3.6 using a multilayer
perceptron, and training was executed in parallel using HTCondor (Thain, Tannenbaum, &
Livny, 2005) and computational resources maintained by the Center for High Throughput
Computing at UW Madison.

Model training

One million models were run, each using a set of words sampled randomly without
replacement from the 2881 word target set. Training sets ranged from 100 to 1000 words in
increments of 100, with an equal number of each size.

Each model was trained for 3000 weight updates with a constant learning rate (0.1).
The model was exposed to the whole training set before each update. Each model was then
tested on the untrained remainder of the target corpus to evaluate generalization. An
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output pattern was scored as correct if all unit activations were within 0.5 of their target
state.

Model evaluation

Using all untrained words as the holdout set to evaluate generalization performance
for each model means that the holdout set is not held constant. This is a deliberate design
decision: when a word is explicitly trained, it no longer needs to be generalized to. Training
on exceptional, irregular words may be the only way to accurately produce them—that
explicit training not only develops the model to encode that orth-phon relationship, but
also removes that exceptional word from the generalization set. On the other hand, this
exceptional word may not teach the model anything generally useful. The give and take
between what is in the training set or test set is central to the research question.

An alternative approach is possible, where a single test set is constructed a priori and
used for all generalization. This has the advantage of serving as a true benchmark, but
poses a critical challenge. It requires composing a representative test set that expresses all
relational othographic and phonological structure. Our attempts at dimensionality
reduction on the model representations that map between orthography and phonology for
the full corpus indicate that 50 dimensions are necessary to express 80% of the variance in
that structure. Sampling representatively from that high dimensional space would be
necessary for constructing a useful benchmark test set. The problem of constructing this
test set is the same as the problem of constructing a representative and efficient training
set, and does not have a simple solution.

Results

Training set size and generalization

Figure 1A shows generalization to untrained items as a function of training set size.
Smaller training sets afford more opportunities for generalization, but are less able to
provide representative coverage of the corpus. Increasing the size of the training set
produced diminishing generalization returns. Increasing training sets beyond 500 words did
not yield greater generalization.
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Figure 1 . Reading vocabulary size and generalization ability for increasing training set sizes.
A) The number of accurate generalization peaks at lower training set sizes and B) the rate
of reading vocabulary growth slows. No model trained on a subset of words is capable of
reading all words. C) The ratio of generalization performance and training set size, efficiency,
is highest with training sets with 200–300 words. Dots indicate the mean; dotted lines are
±1SD; solid lines are minimum and maximum values.

Figure 1B shows total number of words correct (trained and generalized). No model
produced correct performance for all words. Some words were only learned if they were
included in the training set; they were never produced correctly by generalization. These
include words with highly atypical spellings and pronunciations such as SIXTH,
DRAUGHT, SCHEME, COUPS, and JINX.

Figure 1C shows an index of training set efficiency, defined as the number of words
correct by generalization divided by the number of words trained. Training sets with 100
words are less efficient than those with 200 words on average and in the limit, indicating
that the larger set captures more of the structure relevant to untrained words. Training
sets of 300 words are somewhat less efficient than those with 200, but after 300 words
efficiency drops rapidly. Taking all three metrics into account, 300 words appears to be a
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Table 1
Mean and maximum generalization
performance over 100k models fit with
each training set size. Ratios divide the
previous descriptive statistic by the
training set size.

Size Mean (Ratio) Max (Ratio)
100 333 3.33 590 5.90
200 889 4.45 1252 6.26
300 1240 4.13 1546 5.15
400 1404 3.51 1634 4.08
500 1469 2.94 1668 3.34
600 1484 2.47 1654 2.76
700 1470 2.10 1618 2.31
800 1438 1.80 1566 1.96
900 1395 1.55 1510 1.68
1000 1344 1.34 1444 1.44

sweet spot (see also Table 1).

Analyses of training environments containing 300 words show that they yielded
reading vocabularies of 1540 words on average (SD = 76.62) and 1846 words at best
(failing to decode 1035). Given that efficiency is a primary concern for early reading
curricula, it is noteworthy that this is 75.5% of the largest reading vocabulary achieved
with any training set (2444 words, achieved after training on 1000 words). Note that this
598 word increase required growing the training set by 700 words. If we subtract the
training set from all reading vocabularies and just focus on words that were generalized to,
the best model trained on 300 words (1546) achieves 92.7% of the maximum amount of
generalization achieved with any training set (1668, achieved after training on 500 words).

These results indicate that nearly all systematic structure relating English
orthography and phonology within our corpus of 2881 monosyllabic words can be learned
from an appropriately constructed 300 word subset. It is possible to establish a reading
vocabulary of over 1800 words based on explicit training on only 300 words, a 6-fold return
on instructional investment. However, achieving this level of performance is highly
dependent on the composition of the training set: the best and worst models trained with
300 words are separated in performance by over 600 accurate generalizations (min: 906;
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max: 1546). Thus, in future work it will be important to understand how properties of
training sets are related to generalization.

What makes a word likely to be correct by generalization

The rates at which individual words were correct by generalization across training
sets varied greatly, forming a roughly bimodal distribution (Figure 2).

Figure 2 . When aggregating over the 100k 300-word model training environments, each
word occurs in many test sets. The proportion of times a word occurs in the test set and is
accurately generalized to corresponds to how difficult that word is to learn. Representative
words belonging to each bin are displayed.

At one extreme are words that are correct by generalization with almost any random
selection of training words; at the other are words that for which generalization is highly
sensitive to training set composition. The former contain spelling patterns and
orthography-phonology mappings that occur more often in this corpus; the latter words
have less common patterns and more idiosyncratic mappings.

Whether a word was likely to be generalized to was related to quantifiable measures
of orthographic, phonological, and relational (mapping) typicality. We examined several
lexical factors that have been employed in previous research:

• Word length: number of letters
• Orthographic neighborhood: number of words whose spelling differs from a word by a

one letter substitution, deletion, or addition (Levenshtein distance < 1).
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Table 2
Correlation among lexical measures. The
bottom row reports the pairwise correlation of
each variable with the probability of
generalization accuracy for each word, defined
as the number of times accurately generalized to
divided by the number of test sets a word
appeared in.

Variable WL ON PN Con.
Word length 1
Orth. neighbors -0.65 1
Phon. Neighbors -0.28 0.35 1
Consistency -0.03 -0.02 -0.02 1
P(accuracy) -0.27 0.47 0.28 0.38

• Phonological neighborhood: number of words with the same rime (e.g., for “must”,
the “ust” words like “dust” and “lust”).

• Consistency: the proportion of words with a given word body (the orthographic
equivalent of the rime) and the same phonological rime (e.g., for GAVE, the
proportion of -AVE words pronounced “ave”; (Plaut, McClelland, Seidenberg, &
Patterson, 1996).

The correlations among these variables, and between these variables and the
probability of accurate generalization, are reported in Table 2. The number of orthographic
neighbors tends to decrease as word length increases (r = -0.65); a similar but weaker
trend applies to the size of phonological neighborhoods (r = -0.28). This is representative
of the English language in general. There is also a moderate relationship between
neighborhood size across modalities, such that words that belong to large othographic
neighborhoods are expected to belong to large phonological neighborhoods (r = 0.35).
That this correlation is not higher demonstrates the asymmetry of structure across the
modalities. The consistency of a word’s pronunciation given its orthography, however, is
uncorrelated with the modality-specific metrics. Words are more likely to be generalized to
if they are short, belong to large phonological and (especially) orthographic neighborhoods,
and have consistent pronunciation given their spelling (Table 2, bottom row).

Given the high correlations among variables, and to gain perspective on how
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jointly-predictive these factors are of the probability of accurate generalization, we
regressed the probability of accuracy over test sets on all four variables in an additive
linear model (no interaction terms). This simple model accounts for 39% of the variance in
generalization accuracy. Of the variables we considered, the consistency metric accounted
for the most unique variance (Delta R squared = 0.15), but orthographic neighborhood size
was a close second (Delta R squared = 0.13). Once accounting for other variables,
phonological neighborhood size and word length did not appreciably improve the model.

These results are broadly consistent with previous research. Effects of spelling-sound
consistency have been observed in many behavioral studies of skilled and beginning readers
(Jared, McRae, & Seidenberg, 1990), and simulated in earlier models that examined
performance over the course of learning many words (Seidenberg & McClelland, 1989;
Plaut et al., 1996). Our results suggest that factors that affected ease of learning in the
earlier models also affect probability of generalization as studied in the present work.

Out of the variables we considered, phonological neighborhood size is the most
studied in the context of word acquisition, where it is understood to influence the order in
which words are acquired (Storkel, 2003). Orthographic neighborhood size is often studied
in terms of performance, specifically visual word recognition and lexical access (Andrews,
1997). It is also negatively correlated with age of acquisition norms, which indicates that
words with more dense orthographic neighborhoods tend to be learned earlier (Cameirao &
Vicente, 2010). Words with consistent orthographic to phonology relationships are also
processed more efficiently (Ziegler, Ferrand, & Montant, 2004).

What makes a good training set?

The word-level features reviewed above give some insight into which words will tend
to be generalized to, and which will not, in the context of any given training set. The
deeper question pertains to the qualities of the training set foster the most efficient
generalization to untrained words in the language. One angle on this question is to
consider that the word-level features are in fact reflective of how the word is situated
relative to the broader linguistic environment. While we did not test this directly, it is
plausible to assume that neighborhood size predicts how likely a word is to be generalized
to. Good training sets are representative of the broader environment. If a neighborhood is
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Table 3
Effect sizes for the regressors that account for
variance in the probability of accurately
generalizing each word. These effect size metrics
are perspectives on the unique variance explained
by each variable. Because of collinearity among
the regressors, the sum of the delta R squared
values will be less than total R squared = 0.39.

Regressor Partial eta sqr Delta R sqr
Word length 0.01 0.00
Orth. neighbors 0.17 0.13
Phon. Neighbors 0.03 0.02
Consistency 0.20 0.15

split across training and test sets, the consequence is that the neighbors in the test set have
representation within the training set. Given that we randomly split our corpus into
training and test sets, there is no guarantee that neighborhoods are efficiently split in this
way. However, words that belong to larger neighborhoods are more likely to be split across
training and test sets by chance, so we might expect that training sets with larger
orthographic and phonological neighborhoods on average will foster more generalization. It
is clear that words with no orthographic neighbors (n = 271) are generalized to far less
often (median probability 0.10) than words with at least one neighbor (median probability
0.56).

Such a crude metric, however, would be largely insensitive to the relative composition
of the two sets. For instance, training sets that contain many words with large
neighborhoods may simply contain all the words belonging to those large neighborhoods.
Such a training set would be unrepresentative of the test set, and unlikely to foster
generalization. What we would rather know is each word’s neighborhood size relative to
the number of its neighbors that also belong to the training set.

On the other hand, orthographic and phonological neighborhood structure is only
helpful to the extent that they are aligned. An orthographic neighborhood populated with
words with irregular and idiosyncratic pronunciations is not likely to foster generalization
on a reading-aloud task. Thus, training sets that have a large and varied collection of
words with consistent pronunciations may be expected to generalize well. While it is easy
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Table 4
Effect sizes for the regressors used to account for
variance in generalization accuracy over the
100,000 models fit to random 300 word training
sets. Generalization was to all untrained words in
the corpus. Because of collinearity among the
regressors, the sum of the delta R squared values
will be less than total R squared = 0.14.

Regressor Partial eta sqr Delta R sqr
Word length 0.002 0.001
Orth. neighbors 0.006 0.005
Phon. Neighbors 0 0
Consistency 0.137 0.136

to determine the mean consistency of a training set, it is less clear how to account for the
variability across consistent relationships and determine the representativeness of such
relationships to the target environment.

We regressed the generalization performance of the 100,000 models trained on 300
word training sets on the mean word length, orthographic and phonological neighborhood
sizes, and consistency over all 300 words in each set. The effect sizes are reported in Table
4. We see that, despite being a very crude measure, mean orth-phon consistency accounts
for about 13.6% of the variance unexplained by the other variables, indicating that item
level characteristics may provide insight on how to construct efficient training sets.
However, the vast majority of variance remains unexplained and provides fertile ground for
continued research.

Discussion

We have established a computational procedure for investigating two aspects of
generalization in learning basic reading skills: how many words need to be learned to
generalize to real English words yet to be learned, and what aspects of reading vocabulary
promote this transfer. Our findings indicate that while printed vocabulary continues to
grow along with the number of words taught, the efficiency of learning does not grow along
with it.
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These findings are relevant to real-world learning conditions. As a human teacher
grows the number of words they would like to teach, the amount of learning time needed
grows along with it. Our findings suggest a trade-off where a smaller number of words
could be taught, increasing efficiency of learning and teaching for sake of near-optimal
generalization capacity. This has potentially important implications for reading education
where there is a need to teach spelling-sound patterns (phonics) but only enough time to
sample from the large set of patterns. Many educators oppose teaching phonics because it
is seen as requiring “drill and kill” amounts of instruction and practice. This may be less of
a concern if, as our results suggest, patterns can be selected in a way that maximizes
generalization.

The problem of maximizing generalization with the smallest possible training set can
be formalized as a machine teaching optimization problem (Zhu, 2015). We have drawn on
this literature by manipulating the learning environment while holding the abilities of the
learner constant, and then performing careful analyses of the outcomes to identify the
factors that contribute to training the most proficient models. In doing so we have
demonstrated systematic relationships between the composition of the training set and
generalization performance that machine teachers may be able to discover and exploit.

These results are empirical; our next step will be to identify properties of words and
word-sets responsible for better generalization both at the word and set-level. As indicated
in our regression model reported, item-wise measures of phonology, orthography, and
especially orth-phon consistency account for non-trivial amounts of generalization error.
Next steps will be oriented towards accounting for more of the variance in generalization
accuracy, and to scale up analyses to model-wise characteristics that promote
generalization. It may also be possible to improve efficiency even further by using training
sets attuned to children’s vocabulary development, and by optimizing the sequence of
learning experiences. Ultimately the aim is to discover the principle axes of the orth-phon
mapping space, and exploit that structure in a theory-driven way to construct idealized
training environments.

The reported models were trained on representations of the orthography with 14
“slots” for letters and tested on phonology with 10 “slots” for phonemes. This has
consequences for learning that are artificial relative to how a child learns to decode
orthography. Most salient is that each slot has an independent set of weights that project
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to the hidden layer. This means that what is learned about letters in one slot is not
necessarily transferred to other slots—once the model has learned to pronounce the
consonant K in the third slot, it will fail to generalize that knowledge when presented with
a K in the fifth slot. This and other limitations of the slot based representation scheme
contribute to our focus (and the focus of the modeling literature, generally) on
monosyllabic words. Monosyllabic words are short and fairly consistent in length with a
single vowel phoneme. After vowel-centering, the limits of using slots are effectively
attenuated in the monosyllabic context, but it is not a solution that scales up. Models of
reading that attempt to reflect more plausible visual processes and accommodate disyllabic
words are needed. The slot-based approach may add some complexity to the decoding
problem while simplifying the “visual” experience of our models.

Though preliminary, these simulations demonstrate that it is possible to be more
efficient with curricula that attend to the number of words taught and the words that are
prioritized in teaching.

References

Andrews, S. (1997). The effect of orthographic similarity on lexical retrieval:
Resolving neighborhood conflicts. Psychonomic Bulletin & Review, 4(4), 439–461. doi:
10.3758/bf03214334

Berko, J. (1958). The child’s learning of english morphology. Word, 14, 150 - 177.

Cameirao, M. L., & Vicente, S. G. (2010). Age-of-acquisition norms for a set of 1,749
Portuguese words. Behavior Research Methods, 42(2), 474-480.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, M.I.T. Press.

Gilkerson, J., Richards, J. A., Warren, S. F., Montgomery, J. K., Greenwood, C. R.,
Oller, D. K., . . . Paul, T. D. (2017). Mapping the early language environment using all-
day recordings and automated analysis. American Journal of Speech-Language Pathology,
26, 248–265.

Goldberg, A. E. (2009). The nature of generalization in language. Cognitive
Linguistics, 20(1), 93 - 127.



EFFICIENCY OF LEARNING 16

Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition, and
dyslexia: insights from connectionist models. Psychological review, 106, 491–528.

Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of
young american children. Baltimore, MD: Paul H. Brookes.

Jared, D., McRae, K., & Seidenberg, M. S. (1990). The basis of consistency effects in
word naming. Journal of Memory and Language, 29(6), 687–715. doi: 10.1016/0749-
596x(90)90044-z

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444. doi: 10.1038/nature14539

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996).
Understanding normal and impaired word reading: Computational principles in
quasi-regular domains. Psychological Review, 103(1), 56 - 115.

Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across
species. Trends in Cognitive Sciences, 22(1), 52 - 63.

Seidenberg, M. S. (2017). Language at the speed of sight: How we read, why so many
can’t, and what can be done about it. New York : Basic Books.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of
word recognition and naming. Psychological Review, 96(4), 523 - 568.

Seidenberg, M. S., & Plaut, D. C. (2014). Quasiregularity and its discontents: The
legacy of the past tense debate. Cognitive Science, 38(6), 1190 - 1228.

Storkel, H. L. (2003). Learning new words II. Journal of Speech, Language, and
Hearing Research, 46(6), 1312– 1323. doi: 10.1044/1092-4388(2003/102)

Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice:
the condor experience. Concurrency and Computation-Practice and Experience, 17(2-4),
323 - 356.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding
deep learning requires rethinking generalization. arXiv.

Zhu, X. (2015). Machine teaching: An inverse problem to machine learning and an
approach toward optimal education. In Proceedings of the twenty- ninth AAAI conference



EFFICIENCY OF LEARNING 17

on artificial intelligence (pp. 4083–4087). AAAI Press. Retrieved from
http://dl.acm.org/citation.cfm?id=2888116.2888288

Ziegler, J. C., Ferrand, L., & Montant, M. (2004). Visual phonology: The effects of
orthographic consistency on different auditory word recognition tasks. Memory &
Cognition, 32(5), 732–741. doi: 10.3758/bf03195863

To cite:

Cox, C. R., Cooper Borkenhagen, M. J., & Seidenberg, M. S. (2019). Efficiency of
learning in experience-limited domains: Generalization beyond the WUG Test. In C.
Freska, A. Goel, & C. Seifert (Eds.), Proceedings of The 41st Annual Meeting of the
Cognitive Science Society (Montreal, Quebec, CAN). Cognitive Science Society.

http://dl.acm.org/citation.cfm?id=2888116.2888288

	Introduction
	Materials and Methods
	Words
	Model architecture
	Model training
	Model evaluation

	Results
	Training set size and generalization
	What makes a word likely to be correct by generalization
	What makes a good training set?

	Discussion
	References

