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Title: Symbolizing Algebraic Story Problems: Are Diagrams Helpful? 
 
Abstract: Many people find that solving story problems is challenging. A key source of the 
difficulty is symbolizing problem situations. In two experiments, we tested whether diagrams 
promoted successful symbolization of two-operator story problems, and we tested whether 
diagrams that depicted the integration of operations were more beneficial than diagrams that 
depicted the two operations separately. Findings in the two experiments were similar but not 
identical. Overall, participants were more likely to generate conceptually correct equations—
though not always in integrated form—in the presence of diagrams, and this pattern was driven 
by the beneficial effects of diagrams for participants with lower visuo-spatial abilities. Further, 
participants with more negative attitudes towards mathematics were more likely to generate 
integrated equations with diagrams that depicted the integration of operations. Thus, the effects 
of diagrams varied across subgroups of participants.  
 
Keywords: diagrams, algebra, story problems, symbolization, individual differences, text and 
graphic comprehension  
  



Symbolizing Algebraic Story Problems: Are Diagrams Helpful? 
 

Students frequently encounter story problems in their mathematics instruction. Such 

problems are thought to help students build problem-solving skills and appreciate real-world 

applications of mathematics. Yet many students find story problems challenging (Reed, 1999). 

One key reason is the need to symbolize problem situations. Symbolization typically involves 

“translating” from a more grounded representation (e.g., a real-world situation described in 

words) to a symbolic equation. Given the crucial role of symbolization in mathematical problem 

solving, it is important for both theoretical and practical reasons to identify ways to support 

students’ symbolization. 

In this research, we consider whether diagrams can support people in symbolizing 

problem situations. Specifically, we ask whether diagrams that highlight mathematical relations 

can help people accurately symbolize story problems with multi-operation equations. Past 

research has focused on diagrams as a potential support for problem solving (e.g., Cooper et al., 

2018), but to our knowledge, no research has focused specifically on diagrams and 

symbolization. 

There are inconsistent findings regarding whether diagrams effectively support 

mathematical problem solving. Some studies have reported that diagrams are beneficial (e.g., 

Hegarty & Kozhevnikov, 1999; Hembree, 1992), whereas others have reported that diagrams can 

be detrimental (e.g., Berends & van Lieshout, 2009; Lee et al., 2009). These inconsistencies may 

arise because different types of diagrams support problem solving in different ways. In this 

research, we consider the effects of two different types of diagrams on symbolization of 

algebraic story problems. 



Solving and Symbolizing Story Problems 

Simple story problems can often be solved accurately using informal approaches (see, 

e.g., Gvozdic & Sander, 2020; Koedinger & Nathan, 2004); however, informal approaches often 

fail when applied to more complex story problems (Koedinger et al., 2008). Formal approaches 

typically require several steps, including identifying quantitative elements in the text and 

accurately representing the relations among those elements in symbolic form.  

When asked to symbolize complex story problems, people often have difficulties (e.g., 

Mayer, 1982; Nathan et al., 1992). Heffernan and Koedinger (1997) reported that symbolizing a 

two-operator story problem is more difficult than symbolizing both operations separately, a 

pattern they termed the “composition effect.” They argued that integrating two operations into 

single structure requires substituting a sub-equation into another equation, a process that is 

difficult and error-prone.  

If difficulties in symbolization arise due to the challenges of integrating mathematical 

relations, then external supports for such integration should be beneficial. One potential form of 

support is diagrams that depict the operations and their integration.  

Combining Text and Visual Representations  

A large body of research showcases the benefits of combining text and visual 

representations for performance and learning (e.g., Butcher, 2006; Carney & Levin, 2002; Chu et 

al., 2017; Mayer & Moreno, 2003; Moreno, 2005; Plass et al., 2014). These benefits are the 

empirical basis for the Cognitive Theory of Multimedia Learning (CTML; Mayer, 2005), which 

specifies the conditions under which people learn better from text and visuals combined than 

from text alone. The CTML is based on the assumption that verbal and visual information are 

processed in different subsystems of a limited-capacity system (see, e.g., Chandler & Sweller, 



1991; Paas et al., 2003). According to the CTML, people perform best when relevant information 

is presented in both text and visuals, because they use generative processing to draw connections 

across modalities. Importantly, the CTML holds that the scale of the benefits of visual 

representations should depend on the extent to which they elicit generative processing.  

An alternative theory, the Integrative model of Text and Picture Comprehension (ITPC), 

holds that people construct a unified mental model based on both text and visual representations 

(Schnotz, 2002, 2014; Schnotz & Bannert, 2003; see also Glenberg & Langston, 1992). This 

mental model is continuously updated as information is encoded and processed; therefore, its 

content depends on how people perceive and understand the relations between the text and the 

visual representations. From this perspective, visual representations are not always beneficial 

because different combinations of text and visual representations lead people to construct 

differing mental models, and some mental models are less effective at supporting performance.  

In solving complex story problems, people may attend to certain information in the text 

based on their processing of the visual representations. In line with this view, we propose that 

diagrams that depict different elements of the problem structure should lead people to focus on 

different aspects of the text, and consequently to symbolize the problems differently. In brief, we 

hypothesize that, if integrating operations is a key source of people’s difficulties in symbolizing 

story problems, then diagrams that directly depict this integration should support accurate 

symbolization more than diagrams that depict the operations separately.  

Individual Differences in Use of Visual Representations 

Certain individual differences may also influence how much people rely on visual 

representations and whether they benefit from them. People with weak mathematics abilities find 

symbolizing story problems to be especially challenging (Montague et al., 1991), and as such, 



they may find diagrams particularly beneficial. Indeed, Booth and Koedinger (2012) found that 

low-ability eighth graders performed better on story problems with diagrams than on comparable 

problems presented in text alone. However, other work has shown that visual representations can 

actually be detrimental for people with lower mathematics ability (e.g., Cooper et al., 2018). 

One key to integrating these mixed findings may be whether the visual representations 

include extraneous features, sometimes called “seductive details” (see Rey, 2012). Such details 

may add processing load that is particularly challenging for people with lower mathematics 

abilities, but that is readily handled by those with higher abilities. In the present study, we used 

diagrams without extraneous features, and we investigated whether such diagrams were 

beneficial for participants across a range of mathematics abilities.  

The effects of visual representations may also depend on attitudes towards mathematics. 

Cooper and colleagues (2018) found that people who valued mathematics more highly benefited 

more from diagrams than people who valued mathematics less highly. In the present study, we 

investigate whether participants with varying attitudes towards mathematics reap differential 

benefits from diagrams for story problems.  

We also consider visuospatial ability as a potential moderator of the effects of diagrams. 

Some studies have suggested that people with lower visuospatial ability derive greater benefits 

from visual representations than people with stronger visuospatial abilities (e.g., Vekiri, 2001). 

However, other studies have shown the opposite (e.g., Gyselinck et al., 2002), and a meta-

analysis revealed a moderately stronger advantage of visuals for people with high spatial ability 

than those with low spatial ability (Höffler, 2010). In interpreting these findings, it is important 

to bear in mind that not all visual representations are “created equal”. Complex visual 

representations may require strong visuospatial abilities for successful interpretation, while 



simpler visual representations may be easily accessible, regardless of level of visuospatial 

abilities. In the present study, we investigated whether diagrams that highlight problem structure 

are differentially beneficial for participants with lower and higher visuospatial abilities. 

Research Questions and Hypotheses 

In brief, this study investigated whether diagrams help people successfully symbolize 

multi-operation algebraic story problems, and whether diagrams that directly depict the 

integration of operations support more successful symbolization than diagrams that do not depict 

that integration. To address these questions, we asked participants to symbolize problems either 

with no diagrams, with diagrams that depicted the integration of operations, or with diagrams 

that depicted each operation separately.  

Building on past work, we hypothesized that, overall, participants who received problems 

with diagrams would perform better than participants who received problems without diagrams. 

Further, based on prior work suggesting that texts with different visual representations lead 

people to construct differing mental models (e.g., Schnotz, 2014), we hypothesized that 

participants who received diagrams that directly depicted the integration of operations would 

perform better than participants who received diagrams that depicted the operations separately.   

We also examined whether the effects of diagrams were moderated by individual 

differences in attitudes towards mathematics, visuospatial abilities, and mathematics abilities.  

We addressed these research questions in an experiment with undergraduate participants. 

We chose this participant sample given past work showing that undergraduates continue have 

challenges with algebraic story problems (e.g., Koedinger et al., 2008). We subsequently 

conducted a replication experiment to check on the robustness of our findings. The replication 



experiment also included additional items so we could examine whether the benefits of diagrams 

transferred to later items without diagrams.  

Experiment 1 

Method 

Participants 

Participants were 121 undergraduates (55% female, 45% male; Mage = 19.0 years, SD = 

1.8) from large, public university in the Midwestern United States. Participants volunteered to 

participate in exchange for extra credit in introductory psychology. Per self-report, the sample 

was 71% White, 9% Asian, 6% Black or African-American, 5% Hispanic or Latinx, 1% Native 

American, and 8% multiracial. Most participants (92%) reported receiving their primary and 

secondary education in the US, and most (83%) reported being native English speakers. 

Design 

Participants were randomly assigned to one of three conditions (no diagram, discrete 

diagram, integrated diagram) in a between-subjects design. We also measured three continuous 

individual difference factors: mathematics ability, visuospatial ability, and attitudes towards 

mathematics.  

Materials 

Each participant solved eight story problems, each of which involved two operations 

(division-subtraction or division-addition). All problems used division so as to ensure that 

problems were sufficiently difficult to yield variability in performance. Two were very simple, 

result-unknown problems, in which the solution was the final quantity. The target problems for 

analysis were six start-unknown problems, in which the solution was one of the starting 

quantities.  



The text of each problem was identical across conditions, and it included sufficient 

information for participants to symbolize and solve the problem. Each problem used a different 

cover story; all involved number variables (rather than weight or cost variables; Landy et al., 

2014). The order of the start-unknown problems was randomized; the two result-unknown 

problems were always the third and sixth problems. Operation set (division-addition or division-

subtraction) was randomized within these constraints.  

We used two types of diagrams (see Figure 1). The integrated diagrams directly depicted 

the integration of the operations, whereas the discrete diagrams depicted the operations 

separately.  

---Insert Figure 1--- 

Both types of diagrams are adaptations of “tape diagrams” (Chu et al., 2017; Murata, 2008), 

which represent quantities using rectangles that look like pieces of tape. We adapted the tape 

diagrams to represent the relations between operations more saliently. The diagrams contained 

no extraneous features.  

All study materials, data files and analysis scripts are available on OSF.  

Individual Difference Measures 

Visuospatial ability was assessed using the Paper Folding Test (Ekstrom et al., 1976). 

Each item on this test presents a series of drawings of a square sheet of paper that is folded two 

or three times. The last drawing shows a hole punched in the folded paper. Participants select one 

of five drawings that depicts how the paper would look if unfolded. The test has an internal 

consistency of a = .84, and it demonstrates convergent validity with measures of spatial 

orientation ability and object manipulation ability (Kozhevnikov & Hegarty, 2001).  



Attitudes towards mathematics were assessed using an abridged version of Tapia and 

Marsh’s (2004) Attitudes Toward Mathematics Inventory (ATMI), which includes four 

subscales: (1) self-confidence, defined as belief that one is good or bad at mathematics; (2) 

value, defined as belief that mathematics is useful or useless; (3) enjoyment, defined as liking or 

disliking of mathematics; and (4) motivation, defined as the tendency to engage in or avoid 

mathematical activities. The ATMI has an internal consistency of a = .96 (Majeed et al., 2013).  

Mathematics ability was assessed via self-reports of ACT or SAT mathematics subtest 

scores. For analysis, these scores were converted to percentiles based on the College Board’s and 

ACT’s percentile ranks for college-bound seniors. For participants who did not provide scores (N 

= 8), data were imputed using Multivariate Imputation by Chained Equations (MICE; Van 

Buuren & Oudshoorn, 2000), and the updated data set was made by 10 Gibbs sampling 

iterations.  

Correlations among the individual difference measures are presented in Table 1.   

---Insert Table 1--- 

Procedure 

Participants took part in groups of up to 15 in a campus computer lab. Upon arrival, each 

participant was given the consent document and a booklet of problems. The experimenter read 

the consent document and instructions aloud. After providing consent, participants were 

instructed to open their booklets and begin. The first three pages of the booklet included three 

one-operator practice problems, which were used to familiarize participants with the diagrams. 

All participants, regardless of condition, received diagrams with these practice problems. These 

diagrams did not depict the integration of operations because the practice problems each 

involved only one operation.  



After the practice problems, participants solved the experimental story problems. These 

problems were presented one per page, with the problem in the upper left and, for participants in 

the diagram conditions, a diagram in the upper right. Underneath the story problem, there were 

instructions for participants to (1) write an equation for the story problem, and (2) solve the 

equation and show their work. At the bottom of each page, participants were asked to rate how 

confident they felt about whether they solved the problem correctly. There were no time 

constraints.  

After completing the problems, participants completed the Paper Folding Test and the 

Attitudes Toward Mathematics Inventory on a computer. Finally, participants completed the 

demographic form, which requested information about SAT or ACT math subtest scores. In all, 

the session lasted about 35 minutes.  

Results and Discussion  

Overall, participants were fairly accurate at solving the problems (M = 82% correct, SD = 

23%) and highly confident in their solutions (M = 6.21, SD = 1.11 on a 7-point scale). Because 

our main focus is on symbolization, we do not further consider accuracy or confidence. 

Planned Analyses 

Our primary research question was whether participants’ generation of correct, integrated 

equations varied as a function of condition (control, discrete diagram, integrated diagram) and 

the targeted individual difference factors (mathematics ability, visuospatial ability, and attitudes 

toward mathematics). We used the lme4 package in R (Bates et al., 2015) to construct a 

generalized linear mixed-effects model, using the binomial family and the logit link function. 

The model included two orthogonal contrasts for condition: (1) diagram vs. no diagram (i.e., the 

diagram-general or DG contrast; coded -.67, .33, .33 for no diagram, discrete diagram, and 



integrated diagram, respectively), and (2) discrete vs. integrated diagram (i.e., the diagram-

specific or DS contrast; coded 0, -.5, -.5, for no diagram, discrete diagram, and integrated 

diagram, respectively). The model also included operation set (division-addition [coded as -.5] or 

division-subtraction [coded as .5]) and the interactions of each of the contrasts with each of the 

individual difference factors (mean-centered). 

Our initial model included by-item random intercepts and slopes for the interactions of 

each of the condition contrasts with mathematics ability, mathematics attitudes, and visuospatial 

ability. We also included by-subject random intercepts and slopes for operation set. This full 

model did not converge, so we followed the recommendations of Barr et al. (2013) to achieve 

convergence, first increasing the number of iterations, then removing lower-order random 

effects, then removing covariances among random effects, and finally fixing random intercepts 

to zero.1 The final model and associated statistics are presented in Table 2. To evaluate simple 

effects for significant interactions, we estimated the effect of condition at one standard deviation 

below and one standard deviation above the mean of the relevant individual difference measure.  

---Insert Table 2--- 

We hypothesized that participants would perform better with diagrams than without. As 

seen in Table 2, the diagram vs. no diagram contrast was not significant as a main effect (Figure 

1, Appendix 1); however, it interacted significantly with each of the three individual difference 

factors (Figures 2 – 4, Appendix 1). Tests of simple effects revealed that participants with lower 

math ability performed better with diagrams than without, b = 1.07, c2(1) = 10.12, p = .001, OR 

= 2.91, but the reverse was true for participants with higher math ability, b = -.83, c2(1) = 6.10, p 

= .01, OR = .43. Similarly, participants with lower visuospatial ability performed better with 

diagrams than without, b = .83, c2(1) = 9.23, p = .002, OR = 2.29, but the reverse was true for 



participants with higher visuospatial ability, b = -.65, c2(1) = 4.30, p = .04, OR = .52. Finally, 

participants with more positive attitudes towards mathematics performed better with diagrams 

than without, b = .93, c2(1) = 8.64, p = .003, OR = 2.53, but the reverse was true for participants 

with more negative attitudes, b = -.75, c2(1) = 5.32, p = .02, OR = .47. To foreshadow the results 

of Experiment 2, however, we did not find identical patterns, so we do not discuss these findings 

in detail here. In a later section, we analyze data from both experiments together. 

We further predicted that participants would be more likely to generate correct, integrated 

equations with diagrams that depicted integrated operations than with diagrams that depicted the 

operations separately. Indeed, participants in the integrated diagram condition were more likely 

to generated integrated equations than participants in the discrete diagram condition (see Figure 

1, Appendix 1). However, this contrast was qualified by a significant interaction with 

visuospatial ability (see Figure 3, Appendix 1). Participants with lower visuospatial ability 

performed similarly with both diagrams, b = -.10, c2(1) = 0.11, p = .73; however, participants 

with higher visuospatial ability performed better with the integrated diagram than the discrete 

diagram, b = 1.03, c2(1) = 9.88, p = .001, OR = 2.77. It is worth noting that, for participants with 

higher visuospatial ability, performance in the discrete diagram condition was actually lower 

than in the no-diagram condition. The pattern suggests that participants with higher visuospatial 

ability in the discrete diagram condition may have focused specifically on the separateness of the 

operations, which was saliently displayed in the discrete diagrams, so they were less likely to 

generate integrated equations. Again, however, we did not find identical patterns in Experiment 

2, so we do not dwell on these findings here.  

 
Experiment 2 



Experiment 2 was a preregistered replication of Experiment 1 (OSF preregistration), and 

it also addressed one additional research question. Experiment 1 had revealed beneficial effects 

of diagrams for some subgroups of participants. However, the findings could not address 

whether exposure to diagrams would support performance on subsequent problems without 

diagrams. To address this question, in Experiment 2, we included three transfer items without 

diagrams at the end of the problem set.  

Method 

Participants 

Participants were 123 undergraduates (55% female, 43% male, 2% unreported; Mage = 

18.5 years, SD = 1.99) drawn from the same participant pool as Experiment 1. The data were 

collected in a different semester and at a different time within the semester (Experiment 1: late 

Spring, Experiment 2: early Fall). Per self-report, the sample was 67% White, 22% Asian, 1% 

Black or African American, 3% Hispanic or Latinx, 1% some other race or ethnicity, 4% 

multiracial, and 2% unreported. Most participants (84%) received their primary and secondary 

education in the US and most (83%) were native English speakers. The sample did not differ 

from that for Experiment 1 in percent female, c2(1, N = 242) = 0.07, p = .80, percent native 

English speakers, c2(1, N = 241) = 0.04, p = .84, or percent US-educated, c2(1, N = 242) = 3.17, 

p = .07. Participants in Experiment 2 were slightly younger, on average, than participants in 

Experiment 1 (M = 18.65, SD = 1.32, vs. M = 19.22, SD = 1.86), which is unsurprising given the 

timing of data collection. For participants who did not provide ACT or SAT scores (N = 7), 

missing data were imputed, as in Experiment 1. Correlations among the individual difference 

measures are presented in Table 1.   



Design and Materials 

We used the same design and materials as Experiment 1, with one exception: after the 

initial set of story problems, but before the individual difference measures, participants 

completed a brief distractor task to clear working memory, and they then completed three 

transfer items that did not include diagrams. The task to clear working memory was a letter 

marking task that lasted approximately two minutes. Participants were given an array of 746 

letters and asked to circle all the as. The transfer items were two two-operator story problems 

and one three-operator problem.  

Procedure 

The procedure was identical to that of Experiment 1 except that, after finishing the first 

booklet of problems, participants were given a second booklet that included the letter marking 

task and three transfer problems without diagrams. After completing this booklet, participants 

completed the individual difference measures on a computer. The study lasted approximately 45 

minutes.  

Results and Discussion 

Preregistered Replication Analysis 

As in Experiment 1, participants solved most problems correctly (M = 84%, SD = 24%) 

and they were highly confident in their solutions (M = 6.44, SD = .91 on a 7-point scale). 

Because our main focus is on symbolization, we do not further consider accuracy or confidence.  

Using the same analytic approach as for Experiment 1, we examined whether 

participants’ generation of correct, integrated equations varied as a function of diagram condition 

and the individual difference factors. Table 3 presents model statistics for the initial set of story 

problems. 



---Insert Table 3--- 

We hypothesized that participants would perform better with diagrams than without. As 

seen in Table 2, the diagram vs. no diagram contrast was significant as a main effect (Figure 1, 

Appendix 2), unlike in Experiment 1. Also unlike Experiment 1, the interactions of this contrast 

with visuospatial ability and attitudes toward mathematics were non-significant. The interaction 

with mathematics ability was significant (see Figure 2, Appendix 2); however, the shape of the 

interaction differed from that observed in Experiment 1. In this experiment, participants with 

higher mathematics ability performed better with diagrams than without, b = 1.55, c2(1) = 37.54, 

p < .001, OR = 4.71, and participants with lower mathematics ability performed similarly with 

diagrams and without, b = -.25, c2(1) = 0.93, p = .33. We do not discuss these findings in detail 

here, in favor of an exploratory analysis that combines both samples, presented below.  

We next considered the integrated diagram vs. discrete diagram contrast. Unlike 

Experiment 1, this contrast was not significant, either as a main effect or in interaction with any 

of the individual difference factors.  

Preregistered Analysis: Transfer Problems 

We analyzed the transfer problems to examine whether the effects of diagrams 

transferred to subsequent items without diagrams. We first considered the two-operator transfer 

problems; model statistics are presented in Table 4.  

---Insert Table 4--- 

 We hypothesized that participants who had experience with diagrams would perform 

better on these transfer problems than participants who had not had such experience. The 

diagram-general contrast was not significant as a main effect; however, it interacted significantly 

with attitudes towards mathematics. For participants with more positive attitudes towards 



mathematics, those who had seen diagrams on the initial set of problems did indeed perform 

better on the two-operator transfer problems those in the control condition, b = 1.15, c2(1) = 

5.92, p = .01, OR = 3.16; however, for participants with more negative attitudes, those who had 

previously seen diagrams and those who had not performed similarly,  b = -.52, c2(1) = 1.05, p = 

.31 (see Figure 3, Appendix 2). The diagram-specific contrast was also not significant, either as a 

main effect or in interaction with any of the individual difference factors.   

Next, we considered the more difficult, three-operator transfer problem; model statistics 

are presented in Table 5. Neither the diagram-general nor the diagram-specific contrast was 

significant, either as a main effect or in interaction with any of the individual difference factors.  

---Insert Table 5--- 

Exploratory Analysis of Combined Data from Both Experiments 

Given the differing findings across experiments, we examined whether the samples 

differed in any of the individual difference factors we assessed. Relative to participants in 

Experiment 1, participants in Experiment 2 had higher mathematics abilities (M = 90.25, SD = 

10.68, vs. M = 87.26, SD = 12.77, t(242) = 1.99, p = .04) and more positive attitudes towards 

mathematics (M = 3.46, SD = .74, vs. M = 3.19, SD = .79, t(242) = 2.78, p = .005). The samples 

did not differ in visuospatial abilities (M = 12.21, SD = 3.79, vs. M = 11.68, SD = 3.83, t(242) = 

1.09, p = .275).  

In light of these differences, and in an effort to better understand the findings, we looked 

more closely at participants’ error patterns. In some cases when participants failed to construct 

integrated equations, their responses indicated incorrect symbolization of the conceptual 

structure of the problem. As seen in Table 6, participants sometimes created symbolic equations 

with the wrong operations, created equations that involved distributing incorrectly, or 



misunderstood the problem structure entirely. In other cases, participants’ errors revealed correct 

symbolization of the conceptual structure of the problem, despite not representing that structure 

in an integrated, two-operator equation. As shown in Table 6 for example, participants 

sometimes provided two separate one-operator equations, which, if combined, would yield a 

correct integrated equation, and they sometimes produced one-operator equations that reflected 

their having mentally performed one of the operations (rather than representing that operation in 

the equation).   

---Insert Table 6--- 

Based on this framework, we recoded participants’ responses into three categories: (1) 

correct, integrated equations, (2) conceptually correct but non-integrated equations, and (3) 

conceptually incorrect responses. We then analyzed the combined data from both experiments in 

two steps. First, we examined the likelihood that participants provided conceptually correct 

responses of any sort (i.e., correct, integrated equations or conceptually correct but non-

integrated equations) as a function of experimental condition and the individual difference 

factors. This analysis reveals the role of diagrams in participants’ grasping the conceptual 

structure of the problems. Second, we evaluated the likelihood that, when offering conceptually 

correct responses, participants offered integrated equations. This analysis reveals the role of 

diagrams in participants’ producing integrated equations, given that they demonstrated 

understanding of the problems. For supplemental analyses of these dependent variables for each 

of the experiments separately, and for analyses of the original dependent variables for the 

combined data from both experiments, please see Appendix 3.  

To examine the likelihood that participants provided conceptually correct responses, we 

used the same analytic approach as before, with likelihood of providing a conceptually correct 



response (i.e., a correct, integrated equation or a correct but non-integrated equation) as the 

dependent variable. Model statistics are presented in Table 7. 

---Insert Table 7--- 

The diagram-general contrast yielded a significant main effect. As seen in Figure 2, 

participants in the diagram conditions had a higher probability of producing conceptually correct 

equations than participants who received no diagrams.  

---Insert Figure 2--- 
 

This contrast was qualified by a significant interaction with visuospatial ability. To better 

understand the interaction, we evaluated simple main effects. As seen in Figure 3, participants 

with higher visuospatial abilities tended to provide conceptually correct responses, regardless of 

diagram presence, b = -.01, c2(1) = .003, p = .95, but participants with lower visuospatial 

abilities were more likely to provide conceptually correct responses when diagrams were present, 

b = .66, c2(1) = 13.26, p < .001, OR = 1.93. Thus, diagrams supported participants with lower 

visuospatial abilities in providing conceptually correct responses.  

---Insert Figure 3--- 

We next consider the discrete vs. integrated diagram contrast. This contrast was not 

significant as a main effect (see Table 7); however, it interacted significantly with mathematics 

attitudes. As seen in Figure 4, participants with more positive attitudes were similarly likely to 

provide conceptually correct responses with both diagrams, b = -.29, c2(1) = 1.03, p = .31, but 

participants with more negative attitudes were more likely to provide conceptually correct 

responses when they received integrated diagrams than when they received discrete diagrams, b 

= .77, c2(1) = 8.53, p = .003, OR = 2.16. As seen in Figure 4, for participants with negative 

attitudes, performance in the discrete diagram condition was numerically lower than performance 



in the no-diagram condition, suggesting a possible negative effect of discrete diagrams for those 

with negative attitudes towards mathematics.  

---Insert Figure 4--- 
 

We next considered the likelihood that participants produced integrated equations, given 

that they provided conceptually correct responses. For each participant, we calculated the 

proportion of conceptually correct responses on which they produced integrated equations, and 

we used a linear model to evaluate the likelihood of participants’ producing integrated equations 

as a function of diagram condition and the individual difference measures. Conceptually 

incorrect responses (n = 146 in Experiment 1, n = 157 in Experiment 2) were excluded from this 

analysis. Nineteen participants (n = 14 from Experiment 1, n = 5 from Experiment 2) were 

excluded for not producing any conceptually correct responses.  

Model statistics are presented in Table 8. There were no significant effects of either the 

diagram vs. no diagram or the discrete vs. integrated diagram contrast and no significant 

interactions involving either contrast. The sole significant effect was a main effect of 

mathematics ability, with participants with higher ability being more likely to produce integrated 

equations.  

---Insert Table 8--- 

Taken together, the findings indicate that diagrams supported participants with lower 

visuospatial ability in grasping the conceptual structure of the story problems. Further, the 

integrated diagrams supported participants with negative attitudes in grasping the conceptual 

structure of the story problems more effectively than the discrete diagrams. However, given that 

participants grasped the conceptual structure of the problems, there was no evidence that 



diagrams specifically supported them in generating integrated equations to symbolize that 

structure. 

General Discussion 

In two experiments, we tested whether diagrams promoted successful symbolization of 

two-operator story problems, and we tested whether diagrams that depicted the integration of 

operations were more beneficial than diagrams that depicted the operations separately. In one 

experiment, we also examined whether the effects of diagrams persisted, once the diagrams were 

no longer present. In the following sections, we briefly summarize our main findings.  

Did diagrams promote successful symbolization? 

Our first major goal was to examine whether diagrams could scaffold participants’ 

symbolization of complex story problems. Indeed, participants were more likely to generate 

conceptually correct equations—though not always in integrated form—in the presence of 

diagrams. Importantly, this pattern was driven by the beneficial effects of diagrams for 

participants with lower visuospatial abilities. Participants with higher visuospatial abilities did 

not need the support of diagrams; they tended to produce conceptually correct equations, whether 

or not a diagram was present. 

The two separate experiments yielded mixed findings about whether diagrams 

specifically supported participants’ generation of integrated equations. For this outcome 

measure, we observed beneficial effects for some subgroups in each experiment, and slightly 

detrimental effects for some subgroups in Experiment 1. In the combined analysis, we found no 

evidence that diagrams supported participants in generating integrated equations, given that 

participants grasped the conceptual structure of the problems. Thus, it seems that the primary 

locus of the effect of diagrams was on participants’ generating conceptually correct equations—



which reveal understanding of the conceptual structure of the problems—rather than on 

generating integrated equations, per se.  

The benefits of diagrams for symbolization for participants with lower visuospatial 

abilities were fairly robust, emerging both in the combined analysis and in Experiment 1. Given 

that visuospatial ability involves identifying and imagining visual and spatial relations among 

objects, our data suggest that diagrams supported participants with lower visuospatial abilities in 

understanding the spatial relations described in the problems (e.g., objects being divided into 

groups). For participants with lower visuospatial abilities in the control condition, it may have 

been challenging to imagine these spatial relations.  

We also evaluated whether the effects of diagrams varied depending on participants’ 

mathematics abilities and attitudes towards mathematics. Regarding attitudes towards 

mathematics, we found some evidence in each experiment that diagrams were especially 

beneficial for participants with more positive attitudes. People with more positive attitudes may 

make greater efforts to map between text and diagrams, and they may consequently gain more 

from the presence of the diagrams. Our findings align with those of Cooper et al. (2018), who 

also found that the benefits of diagrams were greater for individuals with more positive attitudes 

towards mathematics. 

Regarding mathematics ability, the data were inconsistent, with conflicting patterns 

across experiments, and no significant interaction of diagram condition and mathematics ability 

in the combined analysis. We suggest that due to their schematic nature, the diagrams we used 

were beneficial for many participants, but due to their complexity, for some participants, the 

diagrams presented an additional cognitive load. Future work is needed to understand the 

conditions under which diagrams serve as a scaffold versus as an additional source of challenge.   



Our main finding—that diagrams supported participants with lower visuospatial abilities 

in grasping the conceptual structure of the problems—aligns with other findings in the literature 

suggesting that diagrams are generally beneficial for mathematical problem solving. Although 

most past studies did not include measures of visuospatial abilities, several studies have reported 

beneficial effects of diagrams on learning and problem solving. For example, Nagashima et al. 

(2020) compared two versions of an intelligent tutoring system for learning about equations, one 

that included diagrams to represent the equations and one that did not. After a set of lessons with 

the intelligent tutoring system, fifth-graders who used the version with diagrams had higher 

scores on a posttest of conceptual understanding. Along similar lines, Chu et al. (2017) found 

that diagrams supported middle-school students in correctly solving symbolic equations. Both of 

these previous studies used schematic diagrams, as we did in the current work. Thus, our 

findings extend prior literature indicating that schematic diagrams can support learning and 

problem solving, by showing that such diagrams also support correct symbolization, at least for 

some subgroups of participants. 

Were diagrams that depicted the integration of operations more beneficial than diagrams that 

depicted the operations separately? 

A second major goal of our work was to examine whether different types of diagrams had 

differential effects. We hypothesized that participants would be more successful at generating 

integrated equations in the presence of the integrated diagram, which directly depicted the 

integration of operations, than in the presence of the discrete diagram, which depicted the 

operations, but not their integration. This hypothesis received limited support. The predicted 

pattern held for participants with high visuospatial abilities in Experiment 1, but it was not 

replicated in Experiment 2. The combined analysis revealed that participants with more negative 



attitudes were more likely to generate conceptually correct equations in the presence of the 

integrated diagram. However, the data pattern suggested that this could be due to a possible 

negative effect of the discrete diagram, rather than a positive effect of the integrated diagram; 

this possibility requires further study. By saliently displaying two separate operations, the 

discrete diagram might have actually discouraged some participants from generating integrated 

equations. Overall, the findings suggest that diagrammatically scaffolding the integration of 

operations may have been valuable for those who were adept at gleaning information from 

visuospatial representations and for those with negative attitudes, who might otherwise not 

engage deeply with mathematics. However, on the whole, there was not strong evidence that the 

integrated diagrams supported participants in integrating operations when symbolizing story 

problems.  

One possible explanation for these findings is that the complex, integrated diagrams may 

have been daunting, especially for participants with lower visuospatial abilities. Given their 

complexity, participants with lower visuospatial abilities may have engaged less with the 

integrated diagrams, so they did not yield benefits over the simpler diagrams. Another possibility 

is that the differences between the two diagrams were not sufficiently great to yield differential 

effects for most participants. In this regard, it is worth noting that both types of diagrams were 

schematic, and the modified tape diagrams were similarly unfamiliar to all participants. 

Did the benefits of diagrams persist once diagrams were no longer present? 

A third goal of our work was to evaluate whether any potential benefits of diagrams 

persisted, once the diagrams were no longer present. In Experiment 2, participants with more 

positive attitudes towards mathematics who had previously solved problems with diagrams 

performed better on text-only two-operator problems than participants in the no-diagram 



condition. However, overall, we found relatively minimal transfer of the beneficial effects of 

diagrams to subsequent items without diagrams. The data suggest that the benefits of diagrams 

are applicable, mainly when diagrams are present. 

Theoretical Implications 

Our findings are compatible with multiple accounts of how text and diagrams are 

integrated. From the perspective of the Cognitive Theory of Multimedia Learning (CTML; 

Mayer, 2005), both the discrete and integrated diagrams likely evoked generative processing, and 

therefore both yielded benefits. According to the Integrative model of Text and Picture 

Comprehension (ITPC; Schnotz, 2002; 2014), both text and diagrams provide information that 

contributes to mental model construction. Relative to the no-diagram condition, participants in 

the diagram conditions had access to more information for building and refining mental models, 

yielding benefits for performance. 

The limited evidence that integrated diagrams were more beneficial than discrete 

diagrams is also compatible with both the CTML and the ITPC. From the perspective of the 

CTML, the integrated diagrams may have evoked more generative processing than the discrete 

diagrams, at least for some participants. From the perspective of the ITPC, participants who 

received the integrated diagrams may have constructed mental models in which the integration of 

the operations was more salient, and this may have supported more effective symbolization. 

The combined analysis suggested that, although both types of diagrams helped many 

participants grasp the conceptual structure of problems, neither diagram helped participants to 

generate integrated equations when symbolizing the problems. Why might this be the case? One 

possibility is that the skills involved in producing integrated equations are not skills that 

diagrams can support. To generate an integrated equation, people need syntactic knowledge of 



algebraic formalisms, and they need to be able to apply this knowledge “on demand.” Diagrams 

can support understanding of story situations, but they cannot help people know, for example, 

how to express the integration of division and subtraction symbolically. 

Our findings highlight the range of factors that contribute to people’s abilities to 

symbolize and to their engagement with diagrams. Our analyses revealed effects involving all 

three of the individual difference factors that we considered, and there are surely other relevant 

factors that we did not consider. For example, participants’ prior experience with tape diagrams 

may have influenced engagement with the diagrams, but we did not measure this experience.  

How can we conceptualize the combined effects of many factors in affecting 

performance? We suggest that the benefits of diagrams depend on the dynamic interaction of 

individual, contextual, and diagram-specific factors (for related arguments regarding children’s 

strategy use, see Alibali et al., 2019). These factors may accumulate—or cancel one another 

out—to influence the likelihood that a given individual relies on a given diagram in a given 

context. Some factors push people towards using diagrams (e.g., positive attitudes towards 

mathematics), and other factors push people away from using particular diagrams (e.g., the 

complexity of the integrated diagram for individuals with low visuospatial abilities). Thus, the 

cumulative likelihood or “risk” of benefiting from diagrams can be conceptualized as depending 

on an accumulation of factors across different levels of analysis (for other work using cumulative 

risk models, see, e.g., Price & Hyde, 2009). 

This perspective highlights two classes of factors that we believe should be distinguished 

in future work: (1) factors that influence people’s tendency to engage with diagrams, and (2) 

factors that influence the nature of the information people glean from diagrams. In the current 

experiments, these two aspects of diagram use are not easily separated. Future studies could 



address this distinction by using eye tracking to evaluate participants’ engagement with diagrams 

or by including tasks that require participants to engage with the diagrams before they 

symbolize.  

Educational Implications 

In practical terms, this dynamic perspective suggests that educators may wish to 

implement activities that encourage or even require students to engage with diagrams, so that 

students who stand to benefit from diagrams can actually reap those benefits. For example, 

students could be asked to label elements of the diagrams that correspond with elements of the 

story problems.  

Our findings further suggest that diagrams may be most useful in situations in which 

discerning mathematical structure is challenging—both in story problems and in the “real 

world”. However, our findings did not show that brief experience with diagrams transferred to 

later performance on problems without diagrams. One subgroup—participants with more 

positive attitudes towards mathematics—did show some beneficial effects of experience with 

diagrams on transfer. On the whole, however, the data suggest that diagrams are most valuable 

when they are available during problem solving.  

Limitations and Future Directions 

This work involved a near-direct internal replication that yielded results that were not 

identical to the initial experiment. Because the two experiments were independent efforts to 

estimate effects (see Morehead et al., 2019), we do not view the inconsistencies as deeply 

problematic. Instead, we view our replication effort as valuable, for three main reasons. First, 

because of the inconsistent results, we identified important differences in two samples drawn 

from what was ostensibly the same population. We suspect that these differences are due to the 



types of students who choose to participate in research for extra credit at different points in the 

semester. Other researchers have also noted such differences (Richert & Ward, 1976; Grimm et 

al., 2016), suggesting caution for those who regularly use extra-credit participant pools. Second, 

our inconsistent results pushed us to dig deeper into our data and to develop a new outcome 

measure—conceptually correct responses—that yielded meaningful results. Third, the 

inconsistent results reveal important information about the robustness and generalizability of our 

findings—information that other scholars should take into account, should they choose to build 

upon this work.   

It is also important to consider constraints on the generality of our results. Both samples 

were made up of undergraduates with fairly strong mathematics abilities. Younger participants or 

participants with less mathematical experience might show different patterns of benefits from 

diagrams. In addition, the specific type of tape diagrams that we used was novel for all 

participants, as we created it for this study. Some participants may have viewed these diagrams, 

especially the discrete versions, as disjointed or artificial, and this may have created barriers for 

structure mapping and interpretation. The findings might not generalize to more familiar diagram 

formats, which might require less effort to interpret. 

More generally, our findings show that the effects of diagrams were not uniform for all 

subgroups of participants. Specifically, the findings suggest that some subgroups of participants 

did not engage deeply with the diagrams. Future work should more closely examine how 

participants attend to diagrams and map between diagrams and text.  

There may also be other individual difference factors that influence how people engage 

with diagrams. For example, participants may vary in their understanding of tape diagrams as 

representations of information, and this understanding may influence their attention to the 



diagrams and their efforts to integrate diagrams and text. Future work should assess participants’ 

knowledge of conventions for diagrams and how this knowledge relates to their use of diagrams 

in problem solving.  

Conclusion 

In sum, understanding how diagrams influence symbolization is a complicated endeavor, 

because performance depends on many factors, including visuospatial ability and attitudes 

towards mathematics. In designing materials to support performance, it is important to consider, 

not only how a provided visual representation may help, but also whom the visual representation 

may help. Although diagrams were not uniformly beneficial, our findings underscore the value 

of diagrams in supporting mathematics performance for many learners, particularly for the 

challenging task of symbolizing integrated equations in complex story problems.   
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Endnote
 

1 Although previously a common practice, it is not recommended to fix random slopes to zero 

because simulations have shown that assuming that all subjects have the same average score on 

the outcome (removal of random intercept) leads to less biased parameter estimates than 

removing the random slopes for the predictors for which a priori predictions were made (Barr et 

al., 2013).   



Tables 
 
Table 1. Correlations among the individual difference factors in Experiment 1 (above the 
diagonal) and Experiment 2 (below the diagonal) 

 1 2 3 
1 Visuospatial ability - 0.44 *** .31 ** 
2 Attitudes towards math 0.40 ** - .61 *** 
3 ACT/SAT percentile score 0.29 *** 0.54 *** - 

 * p < .05, ** p < .01, *** p < .001 
 
Table 2. Final model statistics for Experiment 1, with probability of correct integration as the 
dependent variable 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast .08 (.19) 1.08 .21 .64 

Diagram specific (DS) contrast .46 (.21) 1.58 4.43 .03* 

Math Ability .02 (.01) 1.02 5.65 .01* 

Visuospatial Ability .07 (.03) 1.07 8.13 .004* 

Math Attitudes .52 (.14) 1.68 12.35 < .001*** 

DG*Math Ability -.07 (.02) .93 5.10 < .001*** 

DG*Visuospatial Ability -.19 (.05) .83 9.45 < .001*** 

DG*Math Attitudes 1.06 (.32) 2.87 6.82 .001** 

DS*Math Ability -.02 (.01) .98 .06 .23 

DS*Visuospatial Ability .15 (.06) 1.16 5.10 .01* 

DS*Math Attitudes -.39 (.35) .68 2.83 .27 

Operation Set -.17 (.16) .84 1.02 .31 

* p < .05, ** p < .01, *** p < .001 
 
Table 3. Final model statistics for Experiment 2, with probability of correct integration as the 
dependent variable 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast .69 (.16) 1.99 15.94 <.001*** 

Diagram specific (DS) contrast -.30 (.21) .74 1.82 .15 

Math Ability .05 (.01) 1.05 23.33 <.001*** 

Visuospatial Ability .06 (.02) 1.06 5.82 .01* 

Math Attitudes .08 (.13) 1.08 .12 .55 

DG*Math Ability .09 (.02) 1.09 23.34 <.001*** 

DG*Visuospatial Ability -.03 (.04) .97 .51 .51 

DG*Math Attitudes -.08 (.25) .92 .21 .74 

DS*Math Ability .01 (.03) 1.01 .0013 .73 

DS*Visuospatial Ability .05 (.06) 1.05 .85 .40 

DS*Math Attitudes -.13 (.25) .87 .008 .69 

Operation Set -.15 (.16) .86 .93 .34 

* p < .05, ** p < .01, *** p < .001 



 
Table 4. Final model statistics for the two two-operator transfer items in Experiment 2 where the 
dependent variable was probability of correct integration 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast .31 (16) 1.36 .90 .34 

Diagram specific (DS) contrast .005 (.41) 1.005 .0002 .99 

Math Ability .05 (.02) 1.05 6.58 .01* 

Visuospatial Ability .11 (.05) 1.12 5.85 .02* 

Math Attitudes .44 (.24) 1.55 3.32 .06 

DG*Math Ability .06 (.03) 1.06 2.86 .09 

DG*Visuospatial Ability -.14 (.09) .86 2.10 .14 

DG*Math Attitudes 1.11 (.49) 3.03 5.28 .02* 

DS*Math Ability -.02 (.05) .98 .22 .64 

DS*Visuospatial Ability -.03 (.12) .97 .06 .80 

DS*Math Attitudes -.03 (.63) .97 .004 .95 

Operation Set -.005 (.30) .99 .0003 .98 

* p < .05, ** p < .01, *** p < .001 
 
Table 5. Final model statistics for three-operator transfer item in Experiment 2 where the 
dependent variable was probability of correct integration 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast -.08 (.46) .92 .04 .85 

Diagram specific (DS) contrast .26 (.53) 1.30 .24 .62 

Math Ability .03 (.02) 1.03 1.06 .30 

Visuospatial Ability .28 (.07) 1.32 20.26 <.001*** 

Math Attitudes .24 (.35) 1.27 .46 .50 

DG*Math Ability .03 (.05) 1.03 .37 .55 

DG*Visuospatial Ability -.05 (.17) .95 .11 .73 

DG*Math Attitudes 1.10 (.72) 3.00 2.33 .12 

DS*Math Ability .006 (.08) 1.006 .005 .94 

DS*Visuospatial Ability .06 (.17) 1.06 .10 .75 

DS*Math Attitudes .22 (.90) 1.25 .06 .80 

* p < .05, ** p < .01, *** p < .001 
 
 
 
 
 
 
 
 
 
 



Table 6. Error analysis codes with an example problem 
 
Example problem: Alex has a garden with a certain number of carrots growing in it. He picks all 
the carrots and puts an equal number of carrots in each of four baskets. He then decides to put 
three store-bought carrots in each basket. In the end, every basket has eleven carrots. How many 
carrots were in Alex’s garden to begin with? 
 

Error Type Description Example 

Correct Symbolization of the Conceptual Structure 
(indicates participant symbolized the mathematical relations in the problem) 

Integrated equation 
Participant generates a single equation 

with both operations 

situation model: 
n/4 + 3 = 11 

 
solution model: 
(11 – 3) * 4 = n 

One step solved mentally 
Participant solves one step mentally, 

and produced a one-operator equation 
from a two-operator story problem 

n = 8(4) 

Two equations 
Participant generates two separate one-

operator equations 
11 – 3 = x; 
x * 4 = n 

Incorrect Symbolization of the Conceptual Structure 
(indicates participant did not symbolize the mathematical relations in the problem) 

Wrong operation 
Participant generates an equation that 
generally has one incorrect operation 

4n + 3 = 11 

Distributed incorrectly 
Participant creates an equation that 
incorrectly distributes an operation 

4n + 3(4) = 11(4) 

Misunderstand situation 
Participant generates an incorrect 

solution path from the story problem 
4 (n - 3) = 11 

 
 
 
 
 
 
 
 
 
 
 



Table 7. Final model statistics for the exploratory analysis of combined data from Experiment 1 
and 2 where the dependent variable was probability of correctly symbolizing the conceptual 
structure of the story problem 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast .32 (.14) 1.38 4.99 .02* 

Diagram specific (DS) contrast .24 (.17) 1.27 1.87 .17 

Math Ability .02 (.006) 1.02 13.54 <.001*** 

Visuospatial Ability .09 (.02) 1.09 24.05 <.001*** 

Math Attitudes -.05 (.11) .95 .21 .65 

DG*Math Ability .004 (.01) 1.004 .22 .64 

DG*Visuospatial Ability -.09 (.03) .91 4.92 .02* 

DG*Math Attitudes .34 (.22) 1.40 2.34 .13 

DS*Math Ability .02 (.01) 1.02 .97 .32 

DS*Visuospatial Ability .07 (.04) 1.07 2.16 .14 

DS*Math Attitudes -.70 (.28) .49 6.04 .01* 

Operation Set -.006 (.13) .99 .002 .96 

* p < .05, ** p < .01, *** p < .001 
 
Table 8. Final model statistics for the exploratory analysis of combined data from Experiment 1 
and 2 where the dependent variable was the percent correct integration given a conceptually 
correct response was provided. 

Predictor B (SE) F value p value 
Diagram general (DG) contrast .03 (.05) .40 .53 

Diagram specific (DS) contrast -.01 (.06) .04 .83 

Math Ability .005 (.002) 4.21 .04* 

Visuospatial Ability .01 (.006) 3.78 .05 

Math Attitudes .06 (.04) 2.28 .13 

DG*Math Ability -.0006 (.004) .02 .90 

DG*Visuospatial Ability -.02 (.01) 2.01 .16 

DG*Math Attitudes .002 (.08) .0006 .98 

DS*Math Ability .003 (.007) .17 .68 

DS*Visuospatial Ability -.01 (.02) .37 .54 

DS*Math Attitudes -.04 (.09) .20 .65 

 
 
 
 
 
 
 
 
 
 



Figure Captions. 
 
Figure 1. Sample story problem and corresponding diagrams. Two-operator story problems were 
paired with either (A) discrete diagrams, (B) integrated diagrams, or were presented with no 
diagrams (not shown). 
 
Figure 2. Main effect of the diagram-general contrast of diagram vs. no diagram on the 
probability of correctly symbolizing the conceptual structure of the story problem 
 
Figure 3. Interaction of visuospatial ability and the diagram condition on the probability of 
correctly symbolizing the conceptual structure of the story problem. 
 
Figure 4. Interaction of attitudes towards mathematics and the diagram-specific contrast of 
integrated diagram vs. discrete diagram on the probability of correctly symbolizing the 
conceptual structure of the story problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 1.  
Results from Experiment 1 

 
Figure Captions. 
 

-Insert Fig 1 in Appendix 1- 
Figure 1. Main effect of the diagram-specific contrast of integrated diagram vs. discrete diagram 
on the probability of correct integration. 
 

-Insert Fig 2 in Appendix 1- 
Figure 2. Interaction of math ability and the diagram-general contrast of diagram vs. no diagram 
on the probability of correct integration. 
 

-Insert Fig 3 in Appendix 1- 
Figure 3. Interaction of visuospatial ability and both the diagram-general contrast of diagram vs. 
no diagram, and the diagram-specific contrast of integrated diagram vs. discrete diagram on the 
probability of correct integration. 
 

-Insert Fig 4 in Appendix 1- 
Figure 4. Interaction of attitudes towards mathematics and the diagram-general contrast of 
diagram vs. no diagram on the probability of correct integration. 
 

Appendix 2.  
Results from Experiment 2 

 
-Insert Fig 1 in Appendix 2- 

Figure 1. Main effect of the diagram-general contrast of diagram vs. no diagram on the 
probability of correct integration. 
 

-Insert Fig 2 in Appendix 2- 
Figure 2. Interaction of math ability and the diagram-general contrast of diagram vs. no diagram 
on the probability of correct integration. 
 

-Insert Fig 3 in Appendix 2- 
Figure 3. Interaction of attitudes toward mathematics and the diagram-general contrast of 
diagram vs. no diagram for 2-operation transfer items on the probability of correct integration. 
 

 
 
 
 
 
 
 
 
 



 Appendix 3.  
Supplementary Analyses 

 
Table 1. Final model statistics for the combined data from Experiment 1 and Experiment 2, 
where the dependent variable was probability of correctly symbolizing the conceptual structure 
of the story problem 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast .32 (.12) 1.38 6.66 .009** 

Diagram specific (DS) contrast .09 (.14) 1.09 .38 .54 

Math Ability .02 (.006) 1.02 13.90 <.001*** 

Visuospatial Ability .07 (.02) 1.07 20.00 <.001*** 

Math Attitudes .25 (.09) 1.28 6.83 .008** 

DG*Math Ability .002 (.01) 1.002 .05 .82 

DG*Visuospatial Ability -.13 (.04) .87 12.53 <.001*** 

DG*Math Attitudes .58 (.20) 1.79 8.84 .003** 

DS*Math Ability -.0008 (.02) .99 .003 .96 

DS*Visuospatial Ability .04 (.04) 1.04 1.01 .31 

DS*Math Attitudes -.35 (.23) .70 2.20 .13 

Operation Set -.16 (.11) .85 2.04 .15 

* p < .05, ** p < .01, *** p < .001 
 
Table 2. Final model statistics for Experiment 1, where the dependent variable was probability of 
correctly symbolizing the conceptual structure of the story problem 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast -.06 (.23) .94 .06 .81 

Diagram specific (DS) contrast .68 (.26) 1.97 6.77 .009** 

Math Ability .04 (.01) 1.04 13.03 <.001*** 

Visuospatial Ability .13 (.03) 1.13 20.61 <.001*** 

Math Attitudes -.14 (.18) .86 .62 .42 

DG*Math Ability -.05 (.02) .95 4.50 .03* 

DG*Visuospatial Ability -.11 (.07) .89 2.94 .08 

DG*Math Attitudes .51 (.40) 1.66 1.71 .19 

DS*Math Ability .02 (.02) 1.02 .50 .47 

DS*Visuospatial Ability .16 (.07) 1.17 5.91 .01* 

DS*Math Attitudes -.96 (.43) .38 5.03 .02* 

Operation Set -.08 (.19) .92 .21 .65 

* p < .05, ** p < .01, *** p < .001 
 
 
 
 
 



Table 3. Final model statistics for Experiment 2, where the dependent variable was probability of 
correctly symbolizing the conceptual structure of the story problem 

Predictor B (SE) OR c2 p value 
Diagram general (DG) contrast .69 (.20) 1.99 12.24 <.001*** 

Diagram specific (DS) contrast -.06 (.25) .94 .06 .80 

Math Ability .03 (.01) 1.03 4.15 .04 

Visuospatial Ability .05 (.03) 1.05 3.19 .07 

Math Attitudes -.001 (.16) .99 .0001 .99 

DG*Math Ability .05 (.02) 1.05 5.36 .02* 

DG*Visuospatial Ability -.04 (.05) .96 .61 .43 

DG*Math Attitudes .19 (.30) 1.20 .40 .53 

DS*Math Ability .01 (.04) 1.01 .11 .74 

DS*Visuospatial Ability .01 (.07) 1.01 .02 .89 

DS*Math Attitudes -.18 (.42) .83 .18 .67 

Operation Set .07 (.19) 1.07 .15 .70 

* p < .05, ** p < .01, *** p < .001 
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