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Abstract
The statistical structure of a given language likely drives our
sensitivity to words’ morphological structure. The current
work begins to investigate to what degree morphological pro-
cessing effects observed in visual word recognition can be at-
tributed to statistical regularities between orthography and se-
mantics in English, without any prior knowledge or explic-
itly coded processes. We trained a simple feedforward neu-
ral network on form-to-meaning mappings for words from an
English educational text corpus. Over the course of training,
we originally examined the network’s processing times for
prime-target word pairs taken from two masked primed lexi-
cal decision studies (Rastle, Davis & New, 2004; Beyersmann,
Castles, & Coltheart, 2012) to determine if the network was
learning similar sensitivities to those seen in human partici-
pants. Results showed no morphological sensitivity to prime-
target pairs with a transparent morphological relationship (e.g.,
teacher → TEACH) or an opaque morphological relationship
(e.g., corner → CORN). To increase power, unique prime-
target pairs from a larger set of studies (10 in total) were added
to the testing set. With the larger testing set, strong trans-
parent morphological priming effects were observed, while
opaque morphological priming was nonexistent. This work
shows that morphological sensitivity can emerge without any
explicit knowledge of morphemes or word structure, and that
opaque morphological priming cannot be explained solely by
feedfoward mapping of existing orthographic-semantic regu-
larities. Preliminary work on a more dynamic and neurally-
plausible model meant to better capture emerging morpholog-
ical processing effects is described.
Keywords: morphological processing; visual word recogni-
tion; neural network modeling

Introduction
Morphologically complex words contain multiple mor-
phemes, or sequences of letters that convey meaning (e.g., un-
kindness = un + kind + ness). More than half of written words
that English-speaking students encounter while reading be-
tween grades 3 and 9 are morphologically complex (Nagy
& Anderson, 1984), indicating there is non-negligible regu-
larity in the mappings that young readers learn from visual
representations of words to their meanings. Decades of stud-
ies show that skilled English-speaking readers are sensitive
to this morphological structure during visual word process-
ing (e.g., Taft & Forster, 1975; Marslen-Wilson et al., 1994;
Beyersmann et al., 2016; see review by Amenta & Crepaldi,
2012). Priming studies, particularly masked primed lexi-
cal decision studies, have found that morphologically-related
primes facilitate target decisions (e.g., “teacher→ TEACH”)
beyond what can be explained by summative effects of ortho-
graphic and semantic similarity (Rastle et al., 2000). Fur-
thermore, even words which only have the appearance of

a morphological relation (referred to as “pseudomorpholog-
ical” or ”morphologically opaque” primes, such as brother
→ BROTH or belly → BELL) facilitate target decisions to
a greater extent than orthographic controls (such as “brothel
→ BROTH”; Rastle, Davis & New, 2004; see also Rastle
& Davis, 2008; McCormick, Rastle & Davis, 2008; Beyers-
mann et al., 2016). Such findings suggest that morphemes
take on a special mechanistic role in the early visual process-
ing of words in a manner beyond what can be attributed to
the semantic and orthographic similarities between morpho-
logically related words, but the exact nature of that role has
been subject to much debate. The primary goal of this paper
is to determine whether the emergence of such morphological
effects, both transparent and opaque, can be demonstrated as
a natural outcome of learning word-to-meaning mappings for
a typical English vocabulary, without the need for additional
information or processing features.

Although morphemes have traditionally been thought of
as discrete units, recent work suggests that a more proba-
bilistic view of morphology might be the most fruitful path
forward for researchers in this area (as noted by Seiden-
berg & Gonnerman, 2000, and reiterated by Hay & Baayen,
2005, and Crepaldi, Marelli, and Amenta, 2019). Blur-
ring morphological distinctions (e.g. morpheme vs. not,
opaque vs. transparent, bound vs. free) helps to highlight
the impact of a morpheme’s frequency and usage in the lan-
guage on how that morpheme is perceived. For example,
Xu and Taft (2015) found that complex words with a higher
base frequency, how often its base appears alone or in other
words, are recognized more quickly for high-transparency
words (EATER is recognized more quickly than FEVER-
ISH) but not for low-transparency words (FAIRY and BAD-
GER are recognized equally quickly; for frequency effects
also see Taft & Forster, 1975; Giraudo & Grainger, 2000;
Davis, van Casterend & Marslen-Wilson, 2003; Beyersmann
& Grainger, 2018). The “diagnosticity” of derivational suf-
fixes (the number of words having a certain suffix that fall
in a given grammatical category, divided by the total number
of words with that suffix) impacts how skilled readers make
decisions about novel words with those suffixes (Ulicheva et
al., 2018). For example,-ICAL is a highly diagnostic suf-
fix for adjectives (nearly all words ending in -ICAL are ad-
jectives), while -Y has low diagnosticity for adjectives, and
this characteristic impacts how humans react to novel words
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with those suffixes across word reading, sentence reading,
and spelling tasks. Plaut & Gonnerman (2000) demonstrated
via neural network simulations that manipulating the degree
of systematicity in form-to-meaning mappings for an artifi-
cial language impacts priming magnitudes between morpho-
logically but not semantically related (i.e., morphologically
opaque) words. Their demonstration provided an explanation
for why opaque morphological effects are found weakly in
English but more strongly in languages with greater seman-
tic transparency of morphologically complex words, such as
Hebrew. Along similar lines, Günther, Smolka, & Marelli
(2019) used compositional distributional models of seman-
tics to confirm that German overall exhibits greater seman-
tic transparency for morphologically complex words than En-
glish, and argued that this characteristic of German explains
its stronger opaque effects relative to those found in English.
All of this work illustrates that the best explanation of be-
havioral effects in morphological processing, and specifically
opaque effects, likely lies with the structure and usage of the
language in which the study is run.

A central question for the view of morphological sensitiv-
ity as a result of a language’s statistical structure is whether
statistics are sufficient (Seidenberg & Gonnerman, 2000, p.
359). In other words, how much of human behavioral effects
related to morphological processing can be explained by the
statistical structure of the language, without needing to intro-
duce additional mechanisms to the process? Note that ”ad-
ditional mechanisms” could refer to the explicit morpheme
identification and word-splitting processes that are often pro-
posed (e.g., Taft & Forster, 1975; Rastle, Davis & New, 2004;
Rastle & Davis, 2008; Beyersmann & Grainger, 2017), or
to gradated and distributed but dynamic and nonlinear pro-
cesses as of yet relatively unexplored. The work presented
here starts to test the sufficiency of language statistics by de-
termining whether the emergence of transparent and opaque
morphological priming effects in English are a direct result of
learning the form-to-meaning mappings of a typical develop-
ing reader’s vocabulary.

Many masked priming studies have been conducted to test
various aspects of transparent and opaque morphological ef-
fects. The stimuli from two such studies were used to test the
networks’ morphological sensitivity: Rastle, Davis & New
(2004), the first study clearly demonstrating opaque morpho-
logical priming in English-speaking adults, and Beyersmann
et al. (2012), a cross-sectional study which aimed to local-
ize the developmental emergence of this effect. Rastle et
al. (2004) reported a masked primed lexical decision study:
adult participants were presented with words and nonwords
and asked to determine if each was word. Prior to the presen-
tation of the ”target” word on which the decision was to be
made, a forward mask (######) was shown for 500 millisec-
onds (ms), followed very briefly (42 ms) by a priming word so
as to not be consciously perceived. Rastle et al. compared the
degree to which lexical decisions were sped up by the masked
prime across three conditions: morphologically transparent,

morphologically opaque, and form-related (i.e., orthograph-
ically related). They found that at this brief prime duration,
opaque and transparent priming effects were equivalent and
greater than orthographic effects, and interpreted this as ev-
idence for rapid visual decomposition of complex words. In
other words, when the word BROTHER is presented, they ar-
gue it is rapidly and automatically decomposed in BROTH
and ER. That segmented representation remains to facilitate
the recognition of BROTH when the prime presentation is too
short for slower-retrieved information to arrive and override
it. Prior studies have shown that such opaque effects don’t
occur at longer prime durations in English (e.g., Rastle et al.,
2000). Beyersmann et al. (2012) conducted a cross-sectional
masked priming lexical decision study with 7- to 9-year-olds,
9- to 11-year-olds and adults, also comparing the reaction
times for transparent, opaque, and form-related pairs. Stimuli
were based on those used in Rastle et al. (2004) but included
more high-frequency words to maximize the number of words
younger participants recognized. They found transparent but
not opaque morphological priming in the two younger age
groups, while opaque priming was present but weaker than
transparent priming in adults. A more recent version of this
study using identical methodology and stimuli but recruiting
participants from a much broader age range (Dawson, Rastle
& Ricketts, 2019) confirmed that pseudomorphological prim-
ing emerges later and more weakly than morphological prim-
ing. Dawson et al. additionally observed that age and word
reading ability measures are both strong predictors of opaque
priming effect size.

In the simulation work described below, we take an ini-
tial step towards explaining the developmental emergence of
transparent and morphological effects found in primed lex-
ical decision studies by investigating to what degree a neu-
ral network trained on a developmentally appropriate English
vocabulary demonstrates similar patterns of performance to
those observed in developing readers. Specifically, we trained
a network to map from visual representations to semantic rep-
resentations of words for a vocabulary based on the Touch-
stone Applied Sciences Association (TASA) corpus of educa-
tional texts (Zeno et al., 1995). We then tested it for morpho-
logical sensitivity and pseudomorphological sensitivity over
the course of training. Neither the visual nor the semantic
representations contained any explicit morphological infor-
mation, and were derived directly from the words’ spelling
and usage. The network was tested on a procedure compara-
ble to priming, using the same prime-target word pairs used in
the Rastle et al. (2004) and Beyersmann et al. (2012) studies.

Simulation

A network was trained to map from orthographic input to a
semantic representation for each word in a vocabulary typical
of a developing English-speaking reader. Following training
the network was tested on stimuli used in previously reported
priming studies (Rastle et al., 2004; Beyersmann et al., 2012),
to determine how well such results can be explained simply
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by exposure and sensitivity to the letter-to-meaning regulari-
ties present in a developmentally realistic collection of writ-
ten words.

Stimuli

The vocabulary presented to the network for training was
drawn from the Touchstone Applied Sciences Association
(TASA) corpus of school texts used from first grade through
the end of high school (Zeno et al., 1995), so as to avoid over-
representing adult-oriented texts which do not accurately re-
flect word frequency distributions during reading acquisition.
The TASA corpus was compiled for the purpose of approx-
imating the frequency with which school-age students en-
counter particular words (e.g., Landauer & Dumais, 1997;
Bhide et al., 2014). Words with more than 8 letters were
removed to account for the fact that longer words may re-
quire multiple fixations to recognize, potentially impacting
the visual processing involved. Any words not also contained
within the American Heritage Dictionary (Watkins, 2000)
were also excluded to account for aberrant words (such as
character names in literature textbooks) and typos. Finally,
the vocabulary was limited to types appearing 30 or more
times within the TASA corpus, resulting in training set of
9,970 words.

To approximate the visual input received when looking at a
word, a variation of the Overlap Model, proposed by Gomez,
Ratcliff & Perea (2008), was used. Letters within a word were
presented as overlapping normal distributions of activation,
as opposed to more common slot-filling approaches to ortho-
graphic representations of words in connectionist models of
reading (e.g. Plaut & McClelland, 1993; Plaut, McClelland,
Seidenberg & Patterson, 1996; Zorzi, Houghton, & Butter-
worth,1998). This more continuous approach to orthographic
representations prevents morphologically related words from
being recognized by identical beginnings. For example, the
first two columns of Figure 1 show that although ”kind” and
”kindly” have the same first 4 letters, there is no simple op-
eration by which to identify morphological relatedness from
their orthographic representations. Additionally, the proba-
bilistic presentation of letters accounts for lower-level word
reading phenomena such as the confusability of adjacent let-
ters (Gomez, Ratfliff & Perea, 2008) which might impact the
ease with which reoccurring subsets of letters are detected.

Unlike in the original overlap model, in which letters closer
to the start of a word had sharper distributions, letters’ distri-
butions in our representations had the same standard devia-
tion of 2 regardless of their position in the word. This was
meant to reflect the visual experience of a novice reader, as
fixating closer to word onset (facilitating greater acuity for
earlier letters) is presumably learned through large amounts
of visual word recognition experience (as suggested by dif-
fering fixation patterns across languages, e.g. Alhama et
al., 2019). The center of each letter distribution was deter-
mined by word length and letter position: spacing between
letters was calculated such that shorter words had slightly

Figure 1: Orthographic representations visualized graphically
(above) and unit-by-unit (below) for ”kind”, ”kindly” and
”keep”.

more spread between their letters than longer words1, and all
words were centered within the 30-unit space. If the same
letter appeared multiple times in a word, the activations from
normal distributions with different centers were summed to
yield the total activation across the units for that letter, with
activation capped at 1.0 (the rightmost column of Figure 1
illustrates this summation for the repeated e in keep).

Meaning representations for words in the training vocab-
ulary were based on GloVe, an algorithm for learning vec-
tor space representations of words using co-occurrence in-
formation from text corpora that has been shown to capture
human performance on semantic judgments well relative to
similar methods (Pennington et al., 2014). Real-valued 300-
dimensional semantic vectors generated from the Common
Crawl internet text corpus were converted to 200-dimensional
binary vectors using a binary multidimensional scaling algo-
rithm (Rohde, 2002). Binary rather than real-valued vectors
were used because it is easier for a network to drive sigmoid
unit activations to extreme values as compared to intermedi-
ate values. The binarization process greatly reduced the di-
mensionality of the semantic representations while preserv-
ing the similarity structure (the pairwise distance matrices for
the real-valued GloVe and binarized vectors were well corre-
lated: r = 0.68, p < .0001). On average 33.61% of units were
active for any word’s semantic representation (SD = 7.27%).

Network Architecture
The LENS neural network simulator (Rohde, 2003) was used
to build, train and test the network, which consisted of 780
input units, two 2000-unit hidden layers, and a 200-unit out-
put layer. Hidden units used a rectified linear unit function

1Letter spacing was calculated as N
l+1 −exp( aN

(l+1)−b ) where N is
the number of units over which the word is represented (30 for this
simulation), l is the length of the word, and the parameters a and b
were set to 1 and 9.1 so as to prevent the longest words from spilling
beyond the available units and to maintain some letter overlap for
short words.
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(in an effort to speed up learning, given the multiple hidden
layers and large example set), whereas the output units used
a sigmoid unit function to avoid over-activation. At the start
of training, all units from one layer were connected unidirec-
tionally to the units of the downstream layer. Additionally,
all units in the output and hidden layers received input from a
bias unit.

Training Procedures
The initial weight values prior to training were somewhat
constrained: weights connecting the bias unit to the hidden
layers were randomly initialized (mean weight value 0.25,
range of 0.1), while weights to the output layer were all set to
-1.0 to aid the network’s suppression of output activation dur-
ing initial training epochs. All other weight values were ran-
domized with a mean of 0 and a range of 0.03. The network
was trained for 16,000 epochs using the delta-bar-delta learn-
ing algorithm, with a learning rate of 5x10−8 and momentum
of 0.8. During training, the error and output unit error deriva-
tives for each example was scaled by that word’s frequency in
the TASA corpus. By the end of training, 99.99% of output
activations were within 0.5 of their targets, and 84.93% were
within 0.3 of their targets. Weight values were saved every
100 epochs up to 1000 epochs, and every 1000 epochs subse-
quently, to allow analysis during multiple phases of training.

Testing Stimuli
The stimuli used for initial network testing were prime-target
pairs used in the masked priming studies reported by Rastle et
al. (2004) and Beyersmann et al. (2012). The Rastle set con-
sisted of 50 morphologically transparent pairs (e.g., teacher
→ teach), 50 morphologically opaque pairs (e.g., corner →
CORN), and 47 form-related pairs, as well as a control pair
with the same target but an unrelated prime for each experi-
mental pair. The Beyersmann set consisted of 34 prime-target
word pairs in each of the same three conditions (although
they referred to these conditions as ”true-suffixed”, ”pseu-
dosuffixed” and ”nonsuffixed”), as well as matched control
pairs. Of these 498 original prime-target pairs, 9 pairs and
their controls were dropped because they occurred in both
studies, 101 pairs and their controls were excluded because
either a related prime or a target word was not present in
the training vocabulary, and 14 unrelated pairs were altered
to use an unrelated word present in the training vocabulary
(selected randomly from the other primes used within that
study). This left 278 prime-target pairs for testing procedures:
47 transparent pairs, 45 opaque pairs, 47 form pairs and 139
matched control pairs. The correlation between word repre-
sentations for each testing pair was calculated to ensure that
intended relations between primes and targets held true for
our representations (see Table 1). A two-way ANOVA with
an interaction term confirmed that orthographic correlations
were significantly higher for related pairs than for controls
(t(2) = 33.04, p < 0.0001) and this difference did not vary
across conditions (ps > 0.25 for both interaction terms). A
similar model with semantic correlations as the dependent

variable and planned contrasts confirmed that semantic cor-
relations were only higher for related relative to control pairs
in the transparent condition (t[2,2] = 17.60, p < 0.0001).

Orthographic Semantic
Condition Related Control Related Control

Form 0.43 0.02 0.04 0.03
Opaque 0.45 0.03 0.04 0.01
Transp. 0.40 0.05 0.40 0.02

Table 1: Mean correlations of prime and target representa-
tions used for network testing. Calculated for both ortho-
graphic and semantic representations.

Testing Procedure
In order to gather settling time data to compare with reac-
tion times, during testing the network was run over multiple
time steps, with all units in hidden and output layers integrat-
ing their inputs incrementally (with a time constant of 0.01).
During each test trial, a particular prime-target pair was pre-
sented to the network. The orthographic representation of
the prime was presented for 100 time steps (or “ticks”), and
activations initiated by this input propagated through the net-
work. Then the orthographic representation of the prime was
replaced with that of the target. The network continued to
run until the average amount of change in output units’ ac-
tivations between two ticks was less than 0.0001 (i.e., until
the network settled to a semantic representation of the tar-
get word). The number of ticks needed for the output units
to settle was recorded and used as the dependent variable in
all analyses. This measure of processing time was used as
a proxy for lexical decision reaction times measured in the
modelled studies. On a single trial, the network could run
for a maximum of 1500 ticks, but this maximum was never
reached. Experimental pairs’ settling times (e.g., teacher →
TEACH) were subtracted from those of their corresponding
control pairs (robbery→ TEACH) to calculate the magnitude
of a priming effect for each item in each condition.

Results
Simulated reaction times (number of ticks to settle to a se-
mantic representation) for the testing stimuli taken from Ras-
tle et al. (2004) and Beyersmann et al. (2012) are shown in
the left panel of Figure 2. Priming magnitudes (prime-target
pair reaction time subtracted from that of the matched control
pair) are shown in the left panel of Figure 3.

A one-way ANOVA was run for testing performance after
1,000, 6,000, 11,000 and 16,000 epochs with priming magni-
tude as the dependent variable and condition as the indepen-
dent variable. Despite showing a numerical trend consistent
with predicted and experimental findings at every training
phase, none of the tests showed a significant effect of con-
dition (for 1,000 epochs: F [2] = 2.03, p = 0.135; for 6,000
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epochs: F [2] = 2.03, p = 0.135; for 11,000 epochs: F [2] =
1.45, p = 0.239; for 16,000 epochs: F [2] = 1.28, p = 0.281).

Network reaction times increased over the course of train-
ing (F [3] = 517.2, p < 0.0001). This of course does not re-
flect the developmental trajectory of lexical decision reaction
times (children tend to respond more slowly than adults) but
is rather an artifact of the testing procedure: as the network
achieves better performance, the semantic representations the
output units settle to are more differentiated (closer to 0 and
1 and farther from 0.5) and thus take longer to reach.

The most likely explanation for the lack of a significant
effect of condition on priming magnitude is low power:
there is only one network performance being simulated with
these testing pairs, compared with dozens of participants in
each experiment. Increasing the power by running multiple,
slightly varied simulations would allow our results to be more
comparable to these studies, but that would require introduc-
ing our own theory of what causes individual differences in
word recognition and lexical decision reaction times. Instead,
power was increased via post-hoc analyses in which prime-
target pairs from 8 other studies were added to the testing
stimuli.

First Author Year Pairs Used Unrelated Listed

Marslen-Wilson 2008 22 No
Jared 2017 114 No

Diependaele 2013 47 No
Feldman 2009 20 Yes

Beyersmann 2016 20 Yes
Li 2017 29 Yes

Rueckl 2008 13 No
Morris 2007 18 No

Table 2: Papers from which prime-target pairs were used for
post-hoc analyses.

Post-hoc analysis: adding more testing pairs
To increase the number of prime-target pairs being compared
during testing, 8 peer-reviewed papers were identified that
(1) included a morphologically transparent, morphologically
opaque, and form/orthographic condition, and (2) listed all
related pairs in the paper itself or supplementary materials.
No nonword stimuli were included. See Table 2 for a sum-
mary of the papers from which prime-target pairs were taken.

All prime-target pairs from these papers were considered
for inclusion in post-hoc analyses. Pairs were not included if
the related prime or the target word were not in the network’s
training vocabulary. If an unrelated prime wasn’t present in
the training vocabulary, it was replaced by a different ran-
domly selected prime from the same paper that was in the
training vocabulary. For papers that did not list their paired
control primes, they were generated by permuting the related
primes and re-pairing them to the targets. Doing this in-

Orthographic Semantic
Condition Related Control Related Control

Form 0.34 0.04 0.05 0.01
Opaque 0.38 0.05 0.04 -0.01
Transp. 0.37 0.05 0.37 0.01

Table 3: Mean correlations of prime and target representa-
tions in extended testing set.

creased the total number of related test pairs from 139 to 422
(170 transparent, 120 opaque, 132 form). All representation
correlation effects described for the previous stimulus set also
held true for the extended set.

Figure 2: Mean number of ticks for experimentally related
prime-target pairs and their matched controls. Error bars de-
note standard error.

Figure 3: Simulated priming effects over training for stimuli
from masked-priming lexical decision studies.

The extended testing pairs were then analyzed using the
same one-way ANOVA analyses, and a significant effect of
condition was found at all four phases of training (all Fs
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> 7.5, all ps < 0.001). Planned contrasts showed a sig-
nificant difference between the transparent and orthographic
conditions at all phases of training (1,000 epochs: t(419) =
4.66, p < 0.0001; 6,000: t(419) = 4.14, p < 0.0001; 11,000:
t(419) = 4.02, p < 0.0001; 16,000: t(419) = 4.66, p <
0.0001), as well as a marginal negative difference between
the opaque and orthographic conditions at all phases of
training (1,000 epochs: t(419) = −1.89, p = 0.060; 6,000:
t(419) = −1.82, p < 0.070; 11,000: t(419) = −1.79, p =
0.074; 16,000: t(419) = −1.73, p < 0.085). In short, after
increasing the number of testing pairs the network showed
transparent morphological effects early and robustly, while
opaque morphological effects do not appear.

Discussion
In this simulation work, we explored whether a simple neural
network trained on a developmental English vocabulary could
capture the emergence of morphological processing effects.
The trained network showed strong transparent morphologi-
cal priming effects when tested on a large stimulus set. This
is the first computational demonstration to our knowledge
that morphological sensitivity can emerge from authentic lin-
guistic stimuli without any explicit knowledge of word struc-
ture being provided. All word representations were generated
from letter strings and co-occurrence-based semantic vectors.
However, the network did not capture the later, weaker in-
crease in opaque morphological priming observed in exper-
iments (e.g., Beyersmann et al., 2012). This suggests that
while the regularities in form-to-meaning mappings can ac-
count some aspects of morphological processing in English,
a more realistic and dynamic model is called for.

It is worth noting explicitly that this simulation is not meant
to be a model of word processing. This is evident from as-
pects of the simulation that depart notably from human per-
formance: response latencies increase instead of decreasing
as training progresses and temporal dynamics such as the re-
versing impacts of orthographic and semantic priming with
increased prime duration are not captured. These differences
are unsurprising given the simple and entirely feed-forward
training imposed on the network, and do not detract from the
central aim of the simulation.

Nevertheless, a more realistic model is likely the best next
step towards understanding these processes. Though still re-
lying on neural networks as the vehicle of learning and pro-
cessing, the authors’ more recent work exploring complex
word reading incorporates neurally plausible recurrent con-
nections (as in Laszlo & Plaut, 2012) and a more naturalistic
and dynamic training environment. With the right combina-
tion of network structure and language environment, such a
neural network model may be ”sufficient” to explain opaque
morphological effects in a manner more easily integrated into
other theories of cognition. Such a model would simultane-
ously provide an account of these processes’ developmental
emergence, which is lacking in the current literature.

The work presented here is unique in training a neural-

network model on an authentic English vocabulary to better
understand the emergence of morphological sensitivity.
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