
1 
 

 

EEF Research Paper 

 
No. 003 
May 2019 

 

 

 

 

 

 

 

Author: 

Sean Demack 

 

 

 

 

 

 

 

 

 

 

 

Does the classroom level matter in the design of educational 
trials?  
A theoretical & empirical review.   



2 
 

 

 

 

Author: 

Sean Demack, Sheffield Institute of Education, Sheffield Hallam University 

Email: S.Demack@shu.ac.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

Does the classroom level matter in the design of educational trials? A 

theoretical & empirical review.   

Sean Demack, Sheffield Institute of Education, Sheffield Hallam University. 

 

Summary & Recommendations 

This review was commissioned by EEF in 2018 in order to explore the implications of including or ignoring 

the clustering of pupil-level data within-schools at a class (or teacher or TA) level.   The specific focus is on 

the theoretical and empirical implications for the design of Clustered Randomised Control Trials (CRTs) in 

educational settings within the English education system.  The geographical location is important because 

of the heavy use of within-school academic selection in England .   Setting/streaming creates within-school 

attainment clusters of pupils which act in conjuction with other things (such as 'the teacher') to make 

pupils within one class 'similar' to each other.   This class-level clustering will be a structural reality in the 

data of many educational trials regardless of whether it is acknowledged in the research design.  

Specifically, this will relate to trials with 2+ classes of pupils per year group / school that aim to measure 

the impact of an education programme in terms of pupil-level gains in attainment.  

 

From the examination of equations used to estimate the minimum effect size that could be detected with 

a specified level of statistical significance and power, it is shown that ignoring within-school clustering has 

clear methodolgical implications for the design of educational trials (class level clustering reduces statistical 

precision but this can be ofset through class level explanatory power).   Some empirical patterns are 

examined but these need to be treated with some caution a because of the limited number of studies that 

have included a within school (class, teacher, TA) level in their design and analyses1.  It seems likely that 

one key reason for the limited number of studies that have included a within-school level is the complexity 

and other practical problems that collecting class-level detail brings.   

 

Simply ignoring class-level clustering does not make the problems disappear but will bring hidden bias into 

the design of educational trials and therefore increase the risk of making incorrect conclusions about the 

impact of educational interventions. 

 

                                                      
1 See section 2.  Amongst completed (published) trials, one Dfe funded and three EEF funded 3-level CRTS that randomised at 
the school level and included levels at class (or teacher/TA) and pupil levels are identified.  A further three ongoing EEF funded 
maths trials were identified.    
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The review findings are summarised below. Whilst the theoretical implications are clear, the limited 

number of empirical studies means that the empirical summary points below are purposively general.  

More specific (and numeric) detail can be found in the body of the report. 

 

• Theoretically, if within-school clustering exists but is not accounted for in the design and analyses of 

CRTs this can dramatically and negatively impact on trial sensitivity and statistical power.   

• To distinguish a within-school level in a CRT design, there needs to be 2 or more within-school 

clusters (classes, teacher etc) per school.  In single-form entry schools, the class and yeargroup 

clustering will be identical and possibly indistinguishable from the school level (if only one year 

group is involved). 

• The strength of impact of within-school clustering on sensitivity and power depends on how strong 

this clustering is.    

• From the (very few) empirical studies and known patterns of 'ability' grouping in the wider 

English education system, class-level clustering is likely to be strongest in Secondary 

compared with Primary schools.  Additionally, clustering is likely to be strongest in maths 

compared with other subject areas.  

• Whilst class-level clustering in Primary schools is generally weaker than Secondary schools, 

it should not be regarded as negligible (and therefore ignorable); particularly at KS2.   In KS2 

maths, Dracup (2012) found a quarter of Y5 and a third of Y6 maths lessons were taught in 

'ability' groups.   Whilst this is some way from Y11 maths in Secondary schools (74% taught 

in 'ability' groups), it does illustrate how clustering of attainment data is likely to be of 

impotance for trials used to evaluate interventions involving pupils between Y5 and Y11 in 

England.   

• In the discussion section of this report, some suggested class-level ICC values are provided 

for future cluster trials.  ICC values for different school phases, key stages and subject areas 

are suggested.  These will need to be revised as future 3-level CRTs are published. 

• The use of pre-test covariates can notably improve statistical sensitivity and power, mitigates the 

effects of strong clustering.  Given that 'ability' grouping policies of schools usually draw on pupil 

attainment, it seems likely that the explanatory power at the classroom level will be very high if 

attainment is the outcome (and pre-test).    If it is reasonable to assume that the outcome will 

clustered at the class level, an outcome-only analysis that did not include any pre-test covariate 

explanatory power should be avoided.   
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• To avoid multicolinearity the pre-test covariates should be appropriately centred as specified by 

Hedges & Hedberg (2013):  pupil data centred around their class-level mean; class means around 

around their school-level mean and school means around the overall (grand) mean. 

• Collecting class/teacher identifiers at the start of a trial alone assumes that these pupil groupings 

will remain entact over the course of the trial.  The 'Intention to Treat' (ITT) analyses will be based 

on this sample.   There may be pupil movement (e.g. introduction of ability grouping; movement 

between groups) and teacher complexities (movement between classes, multiple teachers, use of 

TAs) that would not be captured with a single (trial start) data collection.   By collecting this detail 

on multiple occasions, the integrity of the ITT sample can be examined2.  Therefore, it seems 

important to at least collect class/teacher level detail at both start and end of trials (and possibly at 

time points inbetween). 

 

 

The limited number of studies from which to view the empirical realities of class-level clustering (and how 

this is mitigated by covariate explanatory power) leads to the main two recommendation from this review: 

• Research is needed to measure the clustering of attainment data at the class level in England across 

educational phases, year groups, key stages and subject areas - and how this changes over time / 

pupil cohorts. 

• In the meantime … 

• More 3-level CRTs that include a within-school (class/teacher/TA ) level of clustering need to 

be conducted.  This is most critical for trials around Mathematics interventions but also 

seems warranted for other high status subjects such as English and Science.   This is also 

more critical for trials within secondary compared with primary educational phases. 

 

Ideally, a large-scale study would collect class level identifiers for pupils in classes over time for a large, 

randomly sampled number of Primary and Secondary schools.  However, it seems likely that educational 

CRTs will be conducted regardless of such a reliable source.  Further, 3-level CRTs can be used to test out 

processes for collecting this data that are robust and reliable whilst minimising burden on schools and 

teachers (which may result in making a larger scale study more feasible).   

Three reasons for the need for more 3-level CRTs are summarised below:  

                                                      
2 Extreme example, all 'mixed ability' classes at the start, two classes (and teachers of classes) selected per school.   
Setting/streaming introduced across all schools the week after randomisation - leaving original teachers with only a few of their 
original class pupils (and pupils dispersed across all setted classes). 
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• To develop methods for collecting detail on within-school clusters from schools that are 

accuracte, ethical and minimise the burden on schools. 

• To build the empirical evidence base on the nature of within-school clustering of attainment 

(and other) data within the context of the English education system.   This seems to be most 

important to support the design of trials in Secondary schools involving mathematics classes 

but more detail across educational phases, year groups, key stages and subject areas would 

also be valuable. 

• To directly acknowledge the classroom (or teacher/TA) within trial design and analyses.   

 

Undertaking more 3-level CRTs is likely to require notably more resources than if within-school clustering 

was ignored (i.e. 2-level CRTs).   This is because schools are not regularly required to provide class/teacher 

level data for external view and so may not have systems that could easily provide it.  Additionally, around 

the GDPR arrival there has been an increased attention and concern around data security and this may 

make schools less willing/happy to provide it.  Further, teachers are currently rather hidden from external 

statistical scrutiny.  Measures of attainment, destinations, exclusions etc. are commonly presented at a 

school level and can also be accessed (following an NPD request) at the pupil level.   Attaching data to the 

classroom (and associated but not necessarily equivalent teacher) levels may make teachers feel 

vulnerable (and hence reticent to cooperate).  Therefore it seems very important that resource is given to 

develop approaches for collecting details at a class and/or teacher / TA level that are robust, ethical and do 

not serve to burdon schools or teachers.    

 

This first reason is not only about developing systems/practices to minimise school and teacher burdon, 

there are also a number of complexities at the class level that need to be thought through and addressed 

in future designs.  For example, multiple teachers for one class; a single teacher across multiple classes; 

pupil and teacher movement between classes.  These complexities serve to illustrate the distinction 

between the class and teacher (or TA) levels.  The class and the teacher are clearly related but not exactly 

the same and this points towards a need for cross-classified multilevel research designs (Leckie, 2013) if 

the teacher and the class levels are to be disengangled. 

 

Second, a greater number of 3-level CRTs are needed to build evidence of how strongly attainment (or 

other) data is clustered in different subject areas and schooling phases in England.  These studies will also 

provide evidence of the strength of explanatory power for pre-test covariates included at different levels 

(school, class & pupil).    It would also be of value to compare these findings with those found in other 
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countries to provide structural context and to aid the interpretation of other statistics (e.g. PISA, TIMMS).  

Tymms et al. (2015) provide an indication of clustering at the class level during the first year of schooling 

but more detail across the Y0 to Y11 education system is needed - ideally using a random sample of 

schools.   In the meantime, educational trials can be used to help build the evidence base for future 

research and evaluation. 

 

The final reason for needing more 3-level CRTs is to enable the the potential role of the classroom (and 

teacher/TA) to be foregrounded within the impact evaluation of educational trials.   For example, through 

an implementation and process evaluation, data on how teachers engaged with an intervention might be 

collected through teacher surveys and interviews.  In many cases, the theorised causal path for an 

intervention theorises some form of change at a teacher level which leads to a change at the pupil level, 

often within a classroom setting (For example, teacher Professional Development interventions).   Without 

a class or teacher level in the trial design, to bring this data into follow-on impact analyses it is commonly 

aggregated (or averaged) to the school level.  The two-level design therefore systematically excludes the 

possibility of exploring the role of the classroom / teacher in follow-on impact analyses.   Including a class 

level allows this IPE data to be attached at the appropriate level and for designs to include within-school 

(teacher or class level) variation in fidelity to a programme in follow-on impact analyses.   

 

Finally, the practical experiences in collecting details on within-school clustering of attainment data might 

be drawn on for the design of larger scale observational studies that collected attainment data and class-

level identifiers from a large scale random sample of schools.  This future research might begin to record 

the nature of within-school clustering and how this changes over time which would be of value to the 

designers of educational trials.   The widespread use of setting/streaming within the English education 

system has been highlighted by the OECD as an explanation for the relatively low levels of social mobility in 

England compared with other OECD countries (OECD, 2012).  This makes the nature of class-level clustering 

in England of great sociological and educational interest; particularly if cluster patterns relating to 

socioeconomic background, ethnicity, gender, EAL and SEND were open to scrutiny.  
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Introduction  

Cluster Randomized Trial (CRT) designs are inherently multilevel and reflect the hierarchical structure of 

schools and the wider education system.     To capture this multilevel nature, CRTs are commonly analysed 

using multilevel (or hierarchical) linear models (Goldstein, 1987; Snijders & Bosker, 1999; Raudenbush & 

Bryk, A. S., 2002).   It is fairly common for CRT designs and analyses to include a school and individual / 

pupil levels but the inclusion of a within-school level (e.g. class or teacher) is rare.  This might reflect how 

complex and time consuming the collection of class level identifiers is in comparison with collecting detail 

at a school or pupil level.    However, given the widespread use of setting and streaming policies in English 

schools (OECD, 2012; Dracup, 2014; Francis, 2017), it seems reasonable to expect sizable clustering of 

attainment data at a class-level.  Looking at English, Maths and Science lessons in England, Dracup (2014) 

reported higher incidence of lessons taught in 'ability' groups in Secondary (43%) compared with Primary 

schools (12%) with higher use in maths in both Secondary (71% overall, 74% in Y11) and Primary (19% 

overall, 26% in Y5, 34% in Y6)3.  In addition to setting/streaming it seems likely that clustering effects 

related to teachers themselves will exist although it is impotant not to consider class and teacher levels as 

one and the same.  This is because of complexities such as teachers moving between classes (e.g. to teach 

a specific topic), use of multiple teachers and one teacher taking multiple classes.   Therefore, for 

evaluations of education programmes that seek to cause positive change in pupil level attainment via some 

form of 'change' at the teacher and/or classroom level, the lack of a class-level in the CRT design seems like 

a problematic omission; particularly for maths evaluations in Secondary schools.     

 

This paper presents an examination of the methodological and empirical implications of not including a 

class level within CRT designs and impact analyses, and is organised into five sections. The first section 

briefly introduces the research questions; the second section presents a summary of three level CRTs that 

included school, classroom and pupil levels; the third section focuses on EEF maths trials given that this 

subject has the greatest incidence of pupil segregation / setting; the fourth section examines the 

methodological theory of RCT and CRT designs;  the fifth section reflects on the empirical data from the 

second and third sections from a methodological perspective before reflecting more widely about whether 

classroom level 'matters' in the design of educational CRTs. 

 

 

 

                                                      
3 See Table 6 later for a summary of the OFSTED data reported by Dracup showing the percentage of observed lessons that 
grouped pupils by perceived or measured ability. 
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1. Research Questions 

The first time that I observed class level clustering of attainment data was in 2014 within a DfE funded CRT-

centred evaluation of a KS3 Multiplicative Reasoning Project (MRP) that involved 62 English secondary 

schools (Boylan et al., 2015).  The MRP was a Professional Development (PD) programme for maths 

teachers; the aim was for this PD programme to lead to pupil gains in mathematics attainment during a 

single academic year (2013/14) across three pupil year groups (in Y7, Y8 and Y9).   Whilst teachers received 

MRP PD training and materials away from the classroom, it was in classrooms where a new approach and 

materials were used in order to develop pupils mathematical understanding and this was theorised to lead 

to gains in maths attainment.   Therefore, a class level seemed important and the impact of MRP on maths 

attainment4 was evaluated using a 3-level Clustered Randomised Controlled Trial (CRT) design 

(schools<maths classes <pupils) with randomisation at the school level.    In this 3-level CRT trial, at the 

design stage, class level clustering of maths attainment was assumed to be relatively weak compared with 

clustering at the school and pupil levels.  In reality, class-level clustering was found to be much higher than 

clustering at either school or pupil levels.   This had serious implications for the statistical sensitivity of the 

trial design    Specifically, the Minimim Detectable Effect Size (MDES) estimates predicted prior to 

randomisation (that assumed a class level ICC of 0.05) ranged between 0.24 (Y7) and 0.26 (Y9) standard 

deviations.  However, with the much stronger class level ICCs, the achieved MDES estimates actually 

ranged between 0.41 (Y7) and 0.48 (Y9) standard deviations (Boylan et al., 2014; Table 4, p28 and Table 5, 

p31.)     

 

Since the MRP evaluation, I have designed two 3-level CRTs to evaluate the impact of Primary (Y6) school 

teacher PD programmes5.   In both of these CRTs, class level clustering was found to be much weaker than 

was observed with the MRP evaluation.   At the time of writing I am working on a new trial that is 

collecting school and class level data for a CRT centred evaluation of a Secondary maths teacher PD 

programme.    

 

Given the extent of setting and streaming in English schools (Dracup, 2015; Francis, 2017), it is reasonable 

to assume that class level clustering will not be trivial.   Setting/streaming are likely to result in engraining 

sizable attainment clustering at the classroom level; particularly in some subjects (Mathematics) and 

educational phases (Secondary).     

                                                      
4 As measured by the GL Progress in Mathematics assessments. 
5 Jay, T. et al. (2017); Boylan et al., (2018) 
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At the same time, collecting data at the class and/or teacher level brings sizable practical challenges and 

costs and, therefore, perhaps it is best to just ignore clustering at the class level when designing 

educational CRTs.   This paper examines the methodological implications of ignoring class level clustering 

and draws on findings from 3-level trials and EEF maths trials to provide empirical context in order to 

explore whether class-level clustering 'matters' in the design of educational trials.   

 

Research questions 

To examine whether the classroom-level 'matters' in the design of educational trials, four research 

questions are posed. 

1. How many clustered trials in England have included a school and class level6?   

2. How many EEF maths trials have been completed? 

3. What are the methodological implications of ignoring class level in educational CRT  trials?  

4. What are the empirical realities of ignoring class level in educational CRT trials? 

 

RQ1 and RQ2 draw on data collected from EEF and through published reports, protocols, statistical analysis 

plans along with email exchanges from evaluators to summarise key aspects of trials that included both 

school and class levels (RQ1) and all EEF maths trials to date (RQ2).    

 

RQ1 focuses on summarising trials that have randomised at the school level but also included a class level 

in their design and analyses.  A total of nine CRTs are identified, within which are seven 3-level CRTs that 

randomised at the school level and included a within-school class (or teacher or TA) level.  

 

RQ2 focuses on RCTs used to evaluate maths programmes.   Given experiences with MRP and the higher 

likelihood of schools using setting/streaming in maths compared with other subjects (Dracup, 2014), it 

seems likely that class level clustering will be a particular issue for maths trials.   A total of 44 EEF trials are 

identified that have been used to evaluate education programmes with a maths focus and these are 

summarised in this section.  

 

RQ3 draws on methodological theory (Bloom, 1995 & 2006; Bloom et al., 2007; Hedges & Hedberg, 2013; 

Kelsey et al, 2017 and Spybrook et al., 2016) for the design of RCTs and CRTs to examine the implications 

for ignoring class level clustering.    First, equations are used to estimate minimum effect size that 2-level 

CRT and 3-level CRT designs could detect as statistically significant (=0.05) with a specified statistical 

                                                      
6 This focuses predominantly on EEF funded trials but also includes one DfE funded trial. 
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power (commonly 80%; 1-=0.80).  Following this, the equations are used to provide two numerical and 

visual perspectives on how class level clustering influences the statistical sensitivity and power of trial 

design.   

 

RQ4 first reflects on the summary tables for RQ1 and RQ2 to discuss what is known about the empirical 

realities of class level clustering and the methodological implications (from RQ3) that these bring.  Second, 

the findings are reflected on more broadly and discussed within the context of the English education 

system and complexities/challenges in collecting class level detail for educational trials. 

 

To aid reading more technical aspects of the paper, a brief glossary of terms is provided. 
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Glossary 

• Effect Sizes: 

Effect sizes are standardised measures of the mean difference between two groups in units of standard 

deviations that are commonly used to report the impact of an intervention in educational trials. 

Standardising effect sizes is useful for comparing findings across many trials using the same scale/units.  

There are many different effect sizes but the one most commonly used in EEF trials is Hedges g (Rosnow & 

Rosenthal, 2003; Shagen & Elliot, 2004). 

• Minimum Detectable Effect Size (MDES) 

The MDES is the smallest effect size that, if true, can be detected with a specified level of statistical 

significance and statistical power (Bloom, 1995). 

• Statistical Significance 

Statistical significance is a measure of the probability of making a Type I (or false positive) error.  

Specifically, this is the probability of concluding that the observed difference between two groups (in a 

randomised trial or sample) is 'true' when in fact it is 'false'.  This is commonly denoted as alpha () and set 

at a level of 5% or less (𝛼 ≤0.05).  In this case, an estimated effect is declared statistically significant where 

the probability of observing an effect at least as large, under the null hypothesis, is at 5 per cent or less. 

• Statistical Power 

Statistical power is a measure of the probability of correctly concluding a difference between two groups 

and is measured by focusing on minimising the probability of making a Type II (or false negative) error.  

Specifically, this is the probability of concluding that the observed difference between two groups is 'false' 

when in fact it is 'true'.    This (false negative) error is commonly denoted as beta () and set at a level of 

20% or less (𝛽 ≤0.20).  Statistical power is calculated by subtracting this probability from 1 (Power = 1-). 

• Clustering 

Clustering is when data are 'gathered' (or grouped) rather than being randomly distributed at the 

individual level.  In educational trials, clustering might be at a school level.  For example, the attainment of 

pupils within a school might be closer to the mean attainment for their school compared with the overall 

(grand) mean.  One way of examining clustering is to look at how the variance in an outcome variable is 

decomposed at different levels.  Variance in an outcome can be decomposed to be at the school level 

(between schools variance) or at the individual level (within school, pupil level variance).   This paper 

examines clustering effects within schools at the class, teacher or TA levels.  For example, within schools, 

the attainment of pupils in the same maths class might be closer to the mean for their class than the mean 

for their school. 

• Intra-Cluster Correlation Coefficient (ICC)   



13 
 

ICCs are a common way of measuring how the variation in an outcome variable is clustered at different 

levels.  Within a 2-level design (school and pupil), the total variance in an outcome can be decomposed 

into two levels, the proportion of this total variance that is found at the upper (school) level is known as 

the school level ICC.   ICCs can take a value between 0.00 (no clustering at the school level; all of the 

variance in an outcome is found at the student level) and 1.00 (all clustering is at the school level, none at 

the student level) and are sometimes expressed as a percentage.  Within a 2-level design, the proportion of 

variance clustered at the individual pupil level can be calculated: 𝐼𝐶𝐶𝑝𝑢𝑝 =  1 − 𝐼𝐶𝐶𝑆𝑐ℎ  .    At one extreme, an 

ICCsch value of 0.00 would mean that, in relation to a trial outcome, variation would only be at the 

individual pupil level (i.e. 𝐼𝐶𝐶𝑝𝑢𝑝 =  1) and all schools would have the same (aggregated pupil) mean 

outcome score (which would also be equal the overall, grand mean of the trial outcome).  At the other 

extreme, an ICCsch value of 1.00 would mean that, in relation to a trial outcome, variation would only be at 

the school level and that in each school, all pupils would have exactly the same outcome score.    Within a 

3-level design (school, class and pupil), the total variance in an outcome is decomposed into three levels 

and the proportion of this total variance that is found at each level are measured by ICC values.  So, ICCSch + 

ICCclass + ICCpup= 1 (sometimes written as 100%).    The (relative) strength of clustering measured by ICCs at 

one level determines the maximum possible strength of clustering at other levels. For example, when  

𝐼𝐶𝐶𝑠𝑐ℎ =0.10, 10% of the variance is clustered at the school level and therefore the maximum proportion of 

variance that could be clustered at the class and/or individual level will be 0.90 (90%). (Konstantopoulos, 

2007; Eldridge & Kerry, 2012). 

• Covariate Explanatory Power 

Covariate explanatory power is the proportion of variance in an outcome variable that is accounted for by 

variation in one or more covariates and is commonly denoted as R-square (𝑅2).  Within a multilevel design, 

explanatory power can be estimated and measured at multiple levels: In a 2-level design, covariate 

explanatory power might be at the school (𝑅𝑆𝑐ℎ
2 ) or individual pupil (𝑅𝑝𝑢𝑝

2 ) levels.  In a 3-level design, 

explanatory power might be at the school (𝑅𝑆𝑐ℎ
2 ), class/teacher/TA (𝑅𝑐𝑙𝑎𝑠𝑠

2 ) or individual pupil (𝑅𝑝𝑢𝑝
2 ) levels.    
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2. How many clustered trials in England have included a school and class 

level? [RQ1] 

Table 1 summarises six UK educational trials that acknowledged the clustering of outcome data at three 

levels; school, within-school (class, teacher or TA) and pupil level.   Four of the six trials were used to 

evaluate the impact of interventions in primary schools7 with three focusing on KS2.  Only two trials 

evaluated the impact of interventions in secondary schools.   Five of the six trials were funded by EEF with 

one trial funded by the Department for Education (DfE).   Three trials had a clear English language / literacy 

focus, two with a maths focus, one had a maths and English and one focused across English, maths and 

science subject areas. 

There are some examples of 3-level educational CRTs from the USA8 but the focus here is solely UK trials in 

order to best ensure comparability in terms of the structural (education system) context.    

As is apparent, there are very few 3-level trials that have been conducted in England to draw on to provide 

estimates for class level clustering and covariate explanatory power.  Additionally, of the six 3-level trials 

summarised in Table 1, only four actually used a 3-level CRT design that included school level 

randomisation.  The Grammar for Writing KS2 trial and Teacher Observation KS4 trial include a class (or 

teacher) level but in both cases this was within a larger, more complex, design.  A further three 3-level 

CRTs with school level randomisation were identified from protocols and SAPs of EEF maths trials still in 

progress (see RQ2 below).  This results in a total of seven 3-level CRTs with school-level randomisation.   

Therefore caution is needed when drawing on this small group of evaluations for future designs of 

educational trials.   

Table 1 summarises the 3-level CRTs in terms of sample size, strength of clustering, covariate explanatory 

power and reported effect sizes.   Where available, the strength of clustering is shown at three levels 

(school, class/teacher/TA and pupil levels) and four measures of covariate explanatory power (school, 

class/teacher/TA, pupil and total) are shown.

                                                      
7 This includes the Family Skills evaluation in Y0 (Early Years Foundation). 
8 Spybrook & Raudenbush  (2009) identified 5 five 3-level CRTs with school level randomisation and included a class level and 11 
multisite trials with school level randomisation and a class level (Table 2, p302) but do not identify the specific studies. 
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Table 1 Completed 3-level trials that included school, class and pupil level  

                                                      
9 The Family Skills evaluation used the Centre for Evaluation & Monitoring (CEM) BASE Reception Baseline Assessment at both baseline and outcome. See Hussain et al., 2018,  

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/family-skills/  and www.cem.org  
10The Grammar for Writing evaluation used the GL Progress in English (PiE) test as the outcome and predicted KS2 writing level as a baseline covariate.  See Torgerson et al., 2014, 

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/grammar-for-writing/  and www.gl-assessment.co.uk/products/progress-test-in-english-
pte/). 
11 The Dialogic Teaching evaluation used GL Progress Test in English, Maths and Science as outcomes and KS1 test score as the baseline covariate. See Jay et al., 2017; 

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/dialogic-teaching/ and  www.gl-assessment.co.uk/products/progress-test-in-maths-ptm/  
12 The ScratchMaths evaluation used KS2 maths as the primary outcome (Y6 in 2016/17) and developed a measure of Computational Thinking for an interim secondary outcome (Y5 in 2015/16) with KS1 maths used 

as a baseline covariate for both.   See Boylan et al., 2018; https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/scratch-programming/ and www.gl-
assessment.co.uk/products/progress-test-in-maths-ptm/  
13 The Multiplicative Reasoning evaluation used the GL Progress Test in Mathematics (PTiM) for three pupil cohorts (Y7, Y8 & Y9) in the 2013/14 academic year and KS2 maths as the baseline covariate. See Boylan et 

al., 2015; www.gov.uk/government/publications/multiplicative-reasoning-professional-development-programme and  www.gl-assessment.co.uk/products/progress-test-in-
maths-ptm/  

 

Evaluator Intervention name. 
Date (Funder) 

Phase, year group 
& Subject Area 

Outcome(s) Schools /  
classes per school 
/ pupils per class 
 

ICCSch ICCclas

s 

ICCpup School 
R2 

Class 
R2 

Pupil 
R2 

Total 
R2 

Hedges G effect sizes 
(95% CIs) 
 

NATCEN Family Skills9 
2016/17 (EEF) 

EYF Y0, Literacy CEM literacy  102 / 1.7 / 16 0.02 0.15 0.83 0.29 n/a 0.54 n/a +0.01 (-0.03; +0.05) 

York & 
Durham 

Grammar for 
writing 10 
2012/13 (EEF) 

Primary KS2, Y6  
Literacy 

GL PiE Raw 
GL PiE  writing 

 

50 / 2.0 / 20.0 
50 / 2.0 / 20.0 

0.21 
0.26 

0.27 
0.32 

0.52 
0.42 

n/a 
n/a 

n/a 
n/a 

n/a 
n/a 

0.29 
0.29 

+0.10 (-0.09; +0.30) 
+0.10 (-0.09; +0.30) 

SHU Dialogic Teaching11 
2015/16 (EEF) 
 

Primary KS2, Y5 
English, Science & 
Maths 

GL PT English 
GL PT Maths 

GL PT Science 

76 / 2.0 / 15.8 
76 / 2.0 / 16.3 
76 / 2.0 / 16.1 

0.07 
0.06 
0.09 

0.02 
0.04 
0.01 

0.91 
0.90 
0.90 

0.25 
0.67 
0.82 

-0.05 
0.33 
-0.02 

0.43 
0.46 
0.42 

0.41 
0.47 
0.45 

+0.15 (0.00; +0.30) 
+0.09 (-0.04; +0.20) 
+0.12 (+0.01; +0.23) 

SHU ScratchMaths12 
2015/16 & 16/17 
(EEF) 

Primary KS2,  
Y5 & Y6  
Maths 

KS2 Maths  
CT Thinking 

110 / 1.9 / 54.4 
81/2.0/48.8 

0.11 
0.13 

0.01 
0.02 

0.88 
0.87 

0.18 
0.36 

-0.40 
-0.17 

0.51 
0.24 

0.47 
0.25 

0.00 (-0.12; +0.12) 
+0.15 (0.00; +0.29) 

SHU Multiplicative 
Reasoning13,  2014 
(DfE) 

Secondary, KS3,  
Y7, Y8 & Y9 Maths 

GL PTiM12 
PTiM13 
PTiM14 

55 / 2.3 / 18.7 
56 / 2.0 / 18.9 
52 / 2.1 / 18.9 

0.21 
0.27 
0.02 

0.42 
0.47 
0.70 

0.37 
0.26 
0.28 

0.93 
0.88 
0.76 

0.96 
0.88 
0.76 

0.37 
0.16 
0.09 

0.74 
0.69 
0.58 

-0.02 (-0.12; +0.08) 
-0.08 (-0.24; +0.07) 
-0.11 (-0.29; +0.06) 

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/family-skills/
http://www.cem.org/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/grammar-for-writing/
http://www.gl-assessment.co.uk/products/progress-test-in-english-pte/
http://www.gl-assessment.co.uk/products/progress-test-in-english-pte/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/dialogic-teaching/
http://www.gl-assessment.co.uk/products/progress-test-in-maths-ptm/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/scratch-programming/
http://www.gl-assessment.co.uk/products/progress-test-in-maths-ptm/
http://www.gl-assessment.co.uk/products/progress-test-in-maths-ptm/
http://www.gov.uk/government/publications/multiplicative-reasoning-professional-development-programme
http://www.gl-assessment.co.uk/products/progress-test-in-maths-ptm/
http://www.gl-assessment.co.uk/products/progress-test-in-maths-ptm/
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14 The Teacher Observation evaluation used GCSE English and maths (Y11) and developed a KS3 test (Y10) as outcomes and KS2 scores as baseline covariates.  See Worth et al., 2017; 

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/teacher-observation/  
15 The Catch-up numeracy regrant uses a four rather than three level CRT design (Region<School<TA<Pupil) and so this needs to be taken into account when reading the ICC 
statistics.  See https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/catch-up-numeracy-2015/  

NFER Teacher 
Observation14, 
2014/15 & 15/16 
(EEF) 

Secondary 
Maths & English, 
KS4 Y11 

Maths GCSE 
English GCSE 

82 / - / 14 
82 / - / 14 

n/a 
n/a 

0.43 
0.29 

n/a 
n/a 

n/a 
n/a 

n/a 
n/a 

n/a 
n/a 

0.46 
0.34 

+0.10 (-0.49; +0.68) 
-0.02 (-0.50; +0.47) 

University 
of 
Nottingha
m 

Catch-up Numeracy 
Effectiveness re-
grant15 2016/17 
(EEF) 

Primary KS2 
Y3, Y4 & Y5 Maths 

GLPTiM  (8, 9 
&10) 

All - 142 / - / 10 
FSM - 132/-/4 
 

0.25 
0.28 

0.09 
0.06 

0.60 
0.62 
 

n/a 
n/a 
 
 

n/a 
n/a 
 

0.48 
0.45 

n/a 
n/a 

-0.04 (-0.21; +0.13) 
+0.11 (-0.05; +0.27) 

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/teacher-observation/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/catch-up-numeracy-2015/
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Family Skills was a literacy intervention targeted at parents of children for whom English 

was an additional language (EAL) evaluated by NatCen (Hussain et al., 2018).  Using a 3-level 

CRT design, half of the 102 recruited schools were randomised to the intervention group 

and half to a business as usual control groups.  Within intervention schools, parents of EAL 

reception-aged (Y0) children attended up to 11 weekly sessions with external tutors 

employed by the delivery partner.  The efficacy trial ran in the 2016/17 academic year and 

did not find a statistically significant difference in literacy between the intervention and 

control group .  The initial estimated 𝐼𝐶𝐶𝑆𝑐ℎ(=0.11 sds) was higher than the value observed 

(𝐼𝐶𝐶𝑆𝑐ℎ=0.02) and the estimated 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠(=0.05) was lower than the value observed 

(𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.15).   Initial estimates for covariate explanatory power at the school (𝑅𝑠𝑐ℎ
2 =0.20) 

and pupil (𝑅𝑝𝑢𝑝
2 =0.54) levels are given but zero explanatory power was assumed at the class 

level (𝑅𝑐𝑙𝑎𝑠𝑠
2 =0.00).  The observed explanatory power is not reported. 

Grammar for Writing was a teacher PD programme focusing on KS2 writing that was 

evaluated by York and Durham Universities (Torgerson et al., 2014).  The impact of 

Grammar for Writing on English attainment was evaluated using a complex experimental 

design (partial split plot, 3-armed) that included randomisation at both class and pupil levels 

but not school level.  However, the impact evaluation did include ICC estimates for the 

strength of clustering at both class and school levels.  55 schools were recruited to the trial 

and in each school two KS2 classes were randomly allocated to either the intervention 

group or business as usual control group.  Within the 55 intervention classes, pupils were 

randomly selected to receive additional support (whole class plus small group work) or to 

receive the intervention just with the whole class.   The efficacy trial ran in the 2012/13 

academic year and did not find a statistically significant difference in writing between the 

intervention and control group.  Initial estimated 𝐼𝐶𝐶𝑆𝑐ℎ and 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠(both=0.19) were slightly 

lower than the values observed (𝐼𝐶𝐶𝑆𝑐ℎ=0.21; 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.27).   One estimate for predicted 

covariate explanatory power is provided (𝑅𝐴𝑙𝑙=0.70, therefore 𝑅𝐴𝑙𝑙
2 =0.49) but the observed 

value was slightly lower (𝑅𝐴𝑙𝑙=0.54, therefore 𝑅𝐴𝑙𝑙
2 =0.29).   The Grammar for Writing 

intervention is currently being re-evaluated using an effectiveness trial16 which uses a more 

                                                      
16 See https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/grammar-for-writing-
effectiveness-trial  

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/grammar-for-writing-effectiveness-trial
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/grammar-for-writing-effectiveness-trial
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conventional 2-level CRT design with school level randomisation involving 155 primary 

schools and is due to report soon. 

Dialogic Teaching was a teacher PD programme evaluated by Sheffield Hallam University 

(Jay et al., 2017). The Dialogic Teaching intervention emphasised dialogue in the classroom 

with the theory that this would lead to pupil-level gains in language, mathematics and 

science attainment.   Using a 3-level CRT design, half of the 80 recruited schools were 

randomly allocated to the intervention group and half to a business as usual control group.  

Within intervention schools, teachers received PD training and schools were provided with 

classroom resources and loaned video and audio equipment.  The efficacy trial ran in the 

2015/16 academic year amongst Y5 pupils.   The evaluation found that, in Y5, pupils in 

intervention schools attained significantly higher in English and science compared with 

pupils in control schools.  A positive impact was also observed for maths but this did not 

reach statistical significance.  The effect sizes observed for English and science were very 

small (<0.10) and lower than the estimated MDES for the evaluation (0.25 sds) .  Therefore 

whilst a positive and statistically significant effect was observed, the statistical power to 

detect an effect size of 0.10 sds was notably lower than 0.8017.  Initial estimated 𝐼𝐶𝐶𝑆𝑐ℎ and 

𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠(both=0.10) were both slightly higher than the values observed (𝐼𝐶𝐶𝑆𝑐ℎ=0.06-0.09; 

𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.01-0.04).   A single initial estimates for covariate explanatory power was provided 

(𝑅𝐴𝑙𝑙
2 = 0.49).  The observed explanatory power can be calculated from the model tables in 

the report18.  These are shown to differ for the three outcome variables (English, Maths & 

Science) and at the three levels.   Interestingly, it is only in Maths where any class-level 

covariate explanatory power was observed (negative values were found for both English and 

Science).  A recent EEF evaluation round included a re-grant for the Dialogic Teaching 

intervention using an effectiveness trial. 

ScratchMaths was a teacher PD programme focusing on KS2 maths evaluated by Sheffield 

Hallam University (Boylan et al., 2018).   Using a 3-level CRT design, half of the 110 recruited 

schools were randomised to the intervention group and half to a business as usual control 

                                                      
17 To detect an MDES of 0.10 or higher, using the design parameters specified in Table 1 equation 3.0 can be 
used to show that this design had an estimated statistical power that ranged from 0.33 (English) and 0.60 
(Science).  Given that the observed effect sizes<0.10 sds, the actual statistical power for the observed effect 
sizes for Dialogic Teaching will be lower than these estimates. 
18 See Dialogic Teaching report, Appendix F pp59-60. 
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groups.  Within intervention schools, teachers received PD training and schools were 

provided with ScratchMaths classroom resources.  The efficacy trial ran in the 2015/16 and 

2016/17 academic years.  The primary outcome was KS2 maths attainment amongst Y6 

pupils in 2016/17 and an interim secondary outcome was Computational Thinking measured 

at the end of 2015/16 when pupils were in Y5.   The evaluation found no evidence that the 

ScratchMaths intervention resulted in pupil level gains in KS2 maths but did find a 

statistically significant positive impact for the Computational Thinking interim secondary 

outcome19.  Initial estimated 𝐼𝐶𝐶𝑆𝑐ℎ(=0.13) and 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠(=0.07) were both slightly higher than 

the values observed (𝐼𝐶𝐶𝑆𝑐ℎ=0.11; 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.01-0.02).  A single (school level) initial estimate 

for covariate explanatory power is provided (𝑅𝑆𝑐ℎ
2 = 0.59).  Observed covariate explanatory 

power differed for the two outcome variables (KS2 Maths & Computational Thinking) and at 

the three levels.   Interestingly, for both outcomes, a negative explanatory power was 

observed at the class level.  This is perhaps counter-intuitive, but negative R-squares are a 

known phenomenon within multilevel analyses (Recchia, 2010; Lou & Azen, 2013).  For 

example, when an explanatory variable acts in differing directions at different levels.  

Recchia (2010, p8) illustrates this using 'percieved support' as an explanatory variable and 

attainment as an outcome.  At a class or school level, it may be that higher levels of (mean) 

percieved support is associated with higher attainment.  However, at the pupil level it 

higher percieved support may be linked to lower attainment.  

The Multiplicative Reasoning Project (MRP) was evaluated by Sheffield Hallam University 

(Boylan et al., 2015) using a 3-level CRT design.  MRP was a teacher PD programme focusing 

on KS3 maths.   Using a 3-level CRT design, half of the 58 recruited schools were randomised 

to the intervention group and half to a business as usual control group.  Within intervention 

schools, teachers received PD training and schools were provided with MRP classroom 

resources.  The efficacy trial ran in the 2013/14 academic year and involved pupils in Y7, Y8 

and Y9.  The evaluation found no evidence that the MRP intervention resulted in pupil level 

gains in KS3 maths.   The initial ICC estimate for school-level clustering (𝐼𝐶𝐶𝑆𝑐ℎ=0.10) was 

lower than the observed values for Y7 (𝐼𝐶𝐶𝑆𝑐ℎ=0.21) and Y8 (𝐼𝐶𝐶𝑆𝑐ℎ=0.27) but higher than was 

observed for Y9 (𝐼𝐶𝐶𝑆𝑐ℎ=0.02).  The initial estimate for class-level clustering 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠(=0.05) 

                                                      
19 This statistically significant effect size was 0.13 sds, given the design parameters in Table 1, equation 3.0 can 

be used to estimate that the statistical power for detecting this effect size to be (1-=0.44). 
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was much lower than the observed values for Y7 (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.42), Y8  (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.40) and Y9 

(𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.70).  Initial estimates for (total) covariate explanatory power is provided for Y7 

(𝑅𝐴𝑙𝑙
2 = 0.40), Y8 (𝑅𝐴𝑙𝑙

2 = 0.30) and Y9 (𝑅𝐴𝑙𝑙
2 = 0.20) which were all lower than the values observed 

at Y7 (𝑅𝐴𝑙𝑙
2 = 0.74), Y8 (𝑅𝐴𝑙𝑙

2 = 0.69) and Y9 (𝑅𝐴𝑙𝑙
2 = 0.58).  Covariate explanatory power was 

observed to be much stronger at the school (𝑅𝑆𝑐ℎ
2 = between 0.76-0.93) and class (𝑅𝑐𝑙𝑎𝑠𝑠

2 = 

between 0.76-0.96) levels compared with the pupil level (𝑅𝑝𝑢𝑝
2 = between 0.09-0.37).  The 

differences between estimated and observed class-level clustering and covariate 

explanatory power led to a marked reduction in statistical sensitivity which is reflected on 

by the evaluators: 

" The structure of variation is somewhat different to what was anticipated at the 

design stage - with around 50% of the total variation in the (overall) PiM 

outcome variable located at the class-level and 20% located at the school level. 

This leaves 30% of the variation at the individual pupil level…. 

…The notable class level ICC is an indication of how 'similar' pupils are (in terms 

of attainment) within each maths class - in other words, this is an ability 

grouping effect. Ability grouping brings together pupils with similar levels of 

mathematics into 'sets' or 'streams'. It is interesting to observe how this class-

level ICC is much stronger for the Y9 sample (70% of the variation located at the 

class level) compared with Y8 (47%) and Y7 (42%). This may reflect a movement 

to universal or near universal setting by ability group between Y7 and Y9."  

Boylan et al., 2015 p30 

Teacher Observation was a teacher PD intervention that aimed to improve teacher 

effectiveness through structured peer observation evaluated by NFER (Worth et al., 2017).  

A complex experimental design was used to evaluate the impact of Teacher Observation on 

English and maths attainment in Y10 and Y11.  The design included three experiments all 

with multiple levels; two 2-level CRT design were used for a school-level (school and pupil 

levels) and department-level (department and pupil levels) experiments and a 3-level CRT 

design was used for a teacher-level experiment (school, teacher and pupil levels).  The 

Teacher Observation evaluation ran in the 2014/15 and 2015/16 academic years and 
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involved three pupil cohorts20.  The primary outcome for this evaluation was drawn from 

the 2-level CRT design used to evaluate the school level experiment but some details on the 

3-level CRT used for the teacher-level experiment are reported. The evaluation found no 

evidence that Teacher Observation led to a positive impact across all experiments.  Whilst 

Worth et al. (2017) acknowledge that the analysis of the teacher-level experiment included 

a school, teacher and pupil level, estimates for how strongly the outcome variables were 

clustered at three levels are not reported.  An initial estimate for (possibly teacher level or 

teacher and school level combined) clustering is provided (𝐼𝐶𝐶𝑇𝑒𝑎𝑐ℎ=0.075) but the observed 

values were found to be larger for both the maths (𝐼𝐶𝐶𝑇𝑒𝑎𝑐ℎ=0.43) and English (𝐼𝐶𝐶𝑇𝑒𝑎𝑐ℎ=0.29) 

outcomes.  A single initial estimate for covariate explanatory power is provided (𝑅𝐴𝑙𝑙= 0.75; 

𝑅𝐴𝑙𝑙
2 = 0.56) which was higher than the values observed for the maths (𝑅𝐴𝑙𝑙

2 = 0.46) and English 

(𝑅𝐴𝑙𝑙
2 = 0.34).  The differences between estimated and observed teacher-level clustering and 

covariate explanatory power led to reduced statistical sensitivity which is reflected on by 

the evaluators: 

"The discrepancy between the ICC at protocol and analysis stages is due to the 

prevalence of setting."  (Worth et al., 2017 p27) 

Comparing the three primary and single secondary school 3-level CRTs, class level clustering 

seems to be stronger at secondary.  Whilst there are insufficient trials to draw any firm 

conclusions about patterns relating to the subject area for evaluations, the ICC estimates 

from the Dialogic Teaching trial were highest in (KS2) maths (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.04) and lowest in 

science (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.01). 

The MRP trial provides some interesting patterns that seem to have face validity in the 

context of the English education system.  As noted by Boylan et al. (2017), the increasing 

strength of class-level clustering might reflect how the use of 'ability' group setting becomes 

increasingly common in maths between Y7 and Y9.  The link between setting and strength of 

clustering is also made by Worth et al., (2017). 

                                                      
20 Cohort 1 completed Y11 in 2014/15 (GCSE maths outcome).  Cohort 2 were tested at the end of Y10 in 
2014/15 (using a customised test based on KS3 past maths papers) and at the end of Y11 in 2015/16 (GCSE 
maths). Cohort 3 were tested at the end of Y10 in 2015/16 (customised test based on KS3 past maths papers) - 
see Worth et al., 2017 Table 6 p20. 
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Class level clustering relates directly to between-class within-school differences (or 

variance) in an outcome variable.   Therefore, in the context of the English education system 

and widespread use of policies that group pupils into sets or streams (Francis et al., 2017), it 

seems reasonable to assume relatively strong class level clustering and this appears to be 

echoed in the (admittedly sparse) number of trials that have collected data at a class or 

teacher level.    
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3. How many EEF maths trials have been completed? [RQ2] 

Table 2 presents a summary of 44 EEF maths evaluations that included a RCT or CRT impact 

evaluation.  Table 2 is constructed using the EEF website to identify trials under the 

mathematics 'big picture theme' and meta-analysis data provided by Lortie-Forgues (2017).  

The majority of maths trials were in Primary schools (n=28, 64%), particularly the Y3-Y6 KS2 

year groups (n=20, 45%).   14 (32%) maths trials were in secondary schools, particularly the 

Y10 & Y11 KS4 year groups (n=10, 23%). 

26 (59%) of the maths evaluations have completed and the reports are published on the EEF 

website, 13 (30%) are mid-trial or about to report and five (11%) are at the early set-up 

stages.     

Details on the experimental design are available for 40 of the 44 evaluations21.   The 

majority of these have a CRT design (n=34, 85%) but very few have a 3-level CRT design 

(n=6, 15%).   

Of the six 3-level CRTs, one has reported, four are mid-trial and one is in the early set up 

stages.  Dialogic Teaching is the first 3-level EEF maths trial to report22. At the time of this 

paper, ScratchMaths was classed as mid-trial but reported during the review period of the 

paper23.  There are three further mid-trial 3-level CRTs; a re-grant evaluation for Catch-Up 

Numeracy24 , an evaluation of 'Maths in Context25' and an evaluation of 'Diagnostic 

Questions26'.  Finally, I am aware of a 3-level CRT being used to evaluate a secondary (KS3) 

maths intervention but at the time of writing, the protocol for this evaluation has not been 

published27. 

                                                      
21 At the time of writing, details were available for all trials except for four of the five trials at the early (set-up) 
stages.   
22 The Teacher Observation trial discussed above has been classed as a 2-level CRT in Table 2 to reflect the 
design of the first experiment. 
23 see https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/scratch-maths/  
24 See https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/catch-up-numeracy-
2015/  
25 See https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/maths-in-context/  
26 See https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/diagnostic-questions/  
27 See https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/realistic-maths-
education/  

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/scratch-maths/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/catch-up-numeracy-2015/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/catch-up-numeracy-2015/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/maths-in-context/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/diagnostic-questions/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/realistic-maths-education/
https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/realistic-maths-education/
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Table 2: Summary of EEF Maths Evaluations that included an RCT or CRT impact evaluation to date28 

 

Total N= 

Key Stage Impact Evaluation Design 

EY KS1 KS2 KS3 KS4 Post 

RCT with 
within 
school, 
individual 
(pupil) 
level 

2-level CRT designs 3-level CRT 
design. 
School, 
class/teacher & 
pupil levels with 
school level 
randomisation 

sch
o

o
l level 

ran
d

o
m

isatio
n

 

C
lass level 

ran
d

o
m

isatio
n

 

Early/start up trials (no protocol) 5 
 

0 1 1 1 2 0 - - - 1 

Mid trial (protocol / SAP but no final report) 
 

13 
 

0 1 5 1 4 2 0 8 1 4 

Number with final report 26 1 6 14 2 4 0 6 17 2 1 

..Reported a statistically significant impact 7 0 3 2 1 1 0 1 5 1 0 

…EEF identified Promising Projects 8 0 2 5 0 1 0 1 3 2 1 

…Trials with 4 or 5 EEF padlock rating 14 0 4 8 1 1 0 3 10 1 0 

 
Total number with protocol, SAP or final report 

 
44 

 
1 

 
8 

 
20 

 
4 

 
10 

 
2 

 
6 

 
25 

 
3 

 
5 

 

 

 

                                                      
28 Date of writing = October 2018 
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Catch-up numeracy is a PD programme that trains Teaching Assistants (TAs) to deliver one-

to-one sessions with KS2 pupils identified as struggling with numeracy.  The evaluation is 

being undertaken by Nottingham University using a 3-level CRT design with school, teaching 

assistant and pupil levels and randomisation at the school level (Atkins, 2017).  Half of the 

150 recruited schools were randomly allocated to the intervention group and half to the 

control group.  The trial took place in the 2016/17 academic year and is due to report in 

2018.  The Protocol and Statistical Analysis Plan (SAP) for the Catch-up numeracy re-grant 

evaluation provides detail on estimates for assumed clustering and explanatory power at 

the design stage.  Clustering at the school-level (𝐼𝐶𝐶𝑆𝑐ℎ=0.10) is estimated to be twice as 

strong as at the TA-level (𝐼𝐶𝐶𝑇𝐴=0.05).  The school-level explanatory power29 is estimated at 

(𝑅𝑆𝑐ℎ
2 = 0.64).  Allowing the number of pupils-per-TA to vary between 2 and 6, this leads to 

MDES estimates between 0.17 and 0.25 sds.   

 

Maths in Context is a teacher PD programme focusing on improving financial capability30 

amongst KS4 pupils.  The evaluation is being undertaken by Nottingham University using a 

3-level CRT design with school, class/teacher and pupil levels and randomisation at the 

school level (Atkins, 2018).  Half of the 130 recruited schools were randomly allocated to the 

intervention group and half to the control group.  The efficacy trial is taking place in the 

2017/18 and 2018/19 academic years and is due to report in 2020.  The Protocol and 

Statistical Analysis Plan (SAP) for the Maths in Context evaluation provides detail on 

assumptions made for the effects of clustering and explanatory power at the design stage.  

Clustering at the school-level (𝐼𝐶𝐶𝑆𝑐ℎ=0.165) is assumed to be over three times as strong as 

at the class/teacher level (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.05).  The school-level explanatory power31 is assumed at 

(𝑅𝑆𝑐ℎ
2 = 0.49).  With 4 classes of 25 pupils per school, this leads to an MDES estimate of 0.17 

sds.   

 

                                                      
29 This relates to a test, re-test correlation for GL Progress Test in Maths 
30 This is further specified as financial knowledge and understanding applied numeracy and problem solving 
skills. 
31 This relates to the correlation between KS2 maths and GCSE maths at the school level. 
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Diagnostic Questions (DQ)32 is maths software based intervention that focuses on providing 

formative feedback to KS4 pupils and teachers.  The evaluation is being undertaken by Alpha 

Plus and Manchester Met University (Seymour & Morris, 2018) using a 3-level CRT design 

with school, class and pupil levels and randomisation at the school level.  Half of the 180 

recruited schools were randomly allocated to the intervention group and half to the control 

group.  The trial is taking place in the 2018/19 and 2019/20 academic years and is due to 

report in 2021.  From the DQ Protocol, clustering at the school-level (𝐼𝐶𝐶𝑆𝑐ℎ=0.20) is 

estimated to be four times as strong as clustering at the class level (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.05).  

Explanatory power33 is only assumed at the school (𝑅𝑆𝑐ℎ
2 = 0.25) and pupil (𝑅𝑝𝑢𝑝

2 = 0.50) levels 

with zero class-level explanatory power (𝑅𝑐𝑙𝑎𝑠𝑠
2 = 0.00).    With 6 classes of 25 pupils per 

school, this leads to an MDES estimate of 0.17 sds.   

 

From Table 1, four 3-level CRTs with school level randomisation and include a class (or 

teacher) level were identified and with the additional three mid-trial 3-level CRTs, a total of 

seven have been identified.  Six of these seven trials are evaluating teacher (or TA) PD 

programmes that aim to cause pupil-level gains in attainment.   The Diagnostic Questions 

intervention is distinct from all 3-level CRT trials because the intervention (software) is 

targeted directly at pupils (although training of teachers in the best use of the software is 

required).  DQ also targets teachers and parents but the direct link to pupils makes the 

intervention distinctive amongst the 3-level CRT trials.  Amongst the 25 2-level maths CRTs 

with school level randomisation, 88% (n=22) evaluated Teacher/TA PD programmes.   

 

 

  

                                                      
32 From the protocol, the Diagnostic Questions (DQ) intervention has been renamed Eedi but is still named as 
Diagnostic Questions on the EEF website. 
33 This relates to the correlation between KS2 maths and GCSE maths at the school level. 
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4. What are the methodological implications of ignoring class level 

in  educational CRT trials? [RQ3] 

This section begins by briefly considering literature that has discussed effects of ignoring a 

(within-school) level of clustering within multilevel designs.  Following this, the section 

focuses on equations for calculating the MDES for RCT, 2-level CRT and 3-level CRT designs 

to help explore how clustering, covariate explanatory power and sample size impact on 

statistical sensitivity.  

 

Over two decades ago, Hill & Rowe (1996) reflected on findings from the first 15 years of 

multilevel research in education to highlight how variation between classes appeared to be 

far more significant than variation between schools.   Opdenakker & Van Damme (2000) 

used data from the " Longitudinaal Onderzoek Secundair Onderwijs (LOSO)" for an 

observational sample of 2,680 pupils, nested in 150 classes, 81 mathematics teachers and 

46 secondary schools in Flanders, Belgium to illustrate the importance of reflecting the 

complete (4-level; School<Teacher<Class<Pupil) hierarchy in the data for accuracy in 

estimating fixed coefficients, variance components and standard errors.  They warn that 

ignoring an important level can lead to different research conclusions.  Van den Noortgate 

et al. (2005) provide a reanalysis of the LOSO data used by Opdenakker & Van Damme but 

with a restricted 'balanced' sample (of 2 teachers per school, 2 classes per teacher, and 10 

pupils per class) and highlight how ignoring a level has substantial impact on the conclusions 

of multilevel analysis.   Van den Noortgate et al. (2005) conclude that correctly modelling 

the hierarchical structure is vital if variance decomposition is of interest or standard errors 

are used to make inferential conclusions but is of less importance if interest is only in 

estimates of fixed effects.   Education CRTs for efficacy trials do focus on estimating 

coefficients for fixed effects models but also draw on standard errors to assess the level of 

statistical significance and power.   Trammer & Steel (2001) discuss the theoretical 

importance of recognising various levels within spatial analyses using  1991 UK census data.  

Trammer & Steel (ibid) compare variance decomposition statistics for 3-level (Ward, 

enumeration district & individual) and two level (Ward & Individual; enumeration district & 

individual) models using a range of outcomes to empirically illustrate how variation across 

three levels is redistributed to two levels.  Hutchison & Healy (2001) use educational 
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(secondary maths) data to illustrate the redistribution of variance from a 3-level (school, 

class & pupil) to a 2-level (school & pupil) model and note that "the estimated error variance 

of higher level means tend to be too small when the presence of a hierarchy at lower levels 

is ignored" (Hutchison & Healy; 2001 p5).  Moerbeek (2004) compare 3-level and 2-level 

models to illustrate redistribution of the variance of the ignored level and how test statistics 

and statistical power are influenced if a level of nesting is ignored.  Moerbeek (ibid) found 

that ignoring a level of clustering in an analysis had an effect on the variance components 

and that standard errors of regression coefficients may be overestimated which leads to 

lower statistical power to detect a specified effect.   This literature all related to 

observational studies, perhaps reflecting how rare educational RCT designs were until 

relatively recently.   In a critical note about Moerbeek's 2004 paper, Van Landeghem et al. 

(2005) highlight that the findings relating to observational studies will also be relevant to 

experimental studies with random assignment at higher levels in the data but primary 

outcomes measured at lower levels. In their final reflection Van Landeghem et al. (Ibid) 

emphasise practical over theoretical issues 

"With the knowledge available at this moment, it seems more worthwhile to put 

effort into the removal of obstacles preventing the inclusion of a relevant level 

of clustering than to speculate about the consequences of excluding the level 

from the analysis."Van Landeghem et al (2005, p433) 

 

In terms of experimental designs, a key paper from Konstantopoulos (2008) provides 

methods for computing power in 3-level CRT designs and clearly states the importance of 

accurately reflecting data structure in the design and analyses of experiments.   : 

"The appropriate power computations of three-level data structures need to 

include nesting effects at all levels. Similarly, the appropriate analyses of three-

level data need to take into account this multilevel structure, because otherwise 

the standard errors of estimates and statistical tests of such analyses are 

incorrect. Specifically, the standard errors of treatment effect estimates 

(incorrectly) ignoring nesting are typically smaller, which translates to higher 

values of t tests and higher probabilities of finding a significant effect." 

Konstantopoulos, 2008, p85. 
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Konstantopoulos concluded that; sample size at higher cluster levels have a greater impact 

on power34 and that ignoring a level of nesting results in an overestimation of statistical 

power "unless the intraclass correlation of the omitted level is exactly zero" 

(Konstantopoulos, 2008, p22).   

 

In designing RCTs and CRTs it is important to ensure that the design has adequate statistical 

sensitivity to detect the 'effect' of an intervention.  Statistical sensitivity relates to a number 

of things but here the focus is predominantly on statistical power (the probability of 

detecting an effect if one genuinely exists; which is commonly set to be 0.80 or 80% or 

higher) and minimum detectable effect sizes (MDES, the smallest true effect size that can be 

detected as statistically significant with a specified statistical power; Bloom, 1995).      

This section now explores how clustering, covariate explanatory power and sample size 

impact on statistical sensitivity through an examination of equations used to estimate the 

MDES for different trial designs.   

 

Minimum Detectable Effect Size (MDES) Equations 

For comparability it is useful to standardise effect sizes into units of standard deviations 

(Bloom, 1995). Below are standardised MDES equations for a two armed trial for an RCT and 

two CRT designs.  A number of methodological papers discuss 3-level CRT designs (Heo & 

Leon, 2008; Hedges & Hedberg, 2013; Spybrook et al., 2016) but two are drawn on directly 

for the MDES equations 1.0 to 3.0.  The MDES equation for the RCT (1.0) and 2-level CRT 

(2.0) designs are drawn from Bloom (2006) and for the 3-level CRT (3.0) design the equation 

is from Dong & Maynard (2013) and Kelsey et al, (2017).  

 
1.0 

 

𝑹𝑪𝑻 𝒅𝒆𝒔𝒊𝒈𝒏:  𝑀𝐷𝐸𝑆𝑅𝐶𝑇 = 𝑀𝑛′−𝐿′−2√
1

𝑃(1 − 𝑃)
√(

(1 − 𝑅𝑝𝑢𝑝
2 )

n′
)  

 
2.0 

 

𝟐 𝒍𝒆𝒗𝒆𝒍 𝑪𝑹𝑻 𝒅𝒆𝒔𝒊𝒈𝒏:  𝑀𝐷𝐸𝑆2𝐿𝐶𝑅𝑇 = 𝑀𝐾−𝐿−2√
1

𝑃(1 − 𝑃)
√(

ICC𝑠𝑐ℎ(1 − 𝑅𝑠𝑐ℎ
2 )

K
) + (

(1 − ICC𝑠𝑐ℎ)(1 − 𝑅𝑝𝑢𝑝
2 )

Km
)  

 
3.0 

 

𝟑 𝒍𝒆𝒗𝒆𝒍 𝑪𝑹𝑻 𝒅𝒆𝒔𝒊𝒈𝒏:  𝑀𝐷𝐸𝑆3𝐿𝐶𝑅𝑇~ 𝑀𝐾−𝐿−2√
1

𝑃(1 − 𝑃)
 √

𝐼𝐶𝐶𝑠𝑐ℎ(1 − 𝑅𝑠𝑐ℎ
2 )

𝐾
+

𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠(1 − 𝑅𝑐𝑙𝑎𝑠𝑠
2 )

𝐽𝐾
+ 

(1 − 𝐼𝐶𝐶𝑠𝑐ℎ−𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠)(1 − 𝑅𝑝𝑢𝑝
2 )

𝑛𝐽𝐾
 

 

                                                      
34 e.g. the number of classes has a greater impact on power compared with the number of pupils; the number 
of schools has a greater impact than the number of classes. 
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The RCT equation contains five variables and within these are three design parameters 

(Hedges, 2013); total number of individuals/pupils (n'); the proportion of pupils allocated to 

an intervention (P) and covariate explanatory power (𝑅𝑝𝑢𝑝
2 ). 

 

MDES equations are shown for a 2-level and 3-level CRT design.  The 2-level CRT design 

contains eight variables which include six design parameters; number of clusters (schools) 

(K); number of individuals/pupils per school (m35); the proportion of pupils allocated to an 

intervention (P); the school-level Intra-Cluster Correlation coefficient (𝐼𝐶𝐶𝑠𝑐ℎ) and covariate 

explanatory power at individual (𝑅𝑝𝑢𝑝
2 ) and school (𝑅𝑆𝑐ℎ

2 ) levels.  The 3-level CRT design 

contains 11 variables which include 9 design parameters; number of clusters (schools) (K); 

number of classes per school (J), number of individuals/pupils per class (n); the proportion 

of pupils allocated to an intervention (P); the school-level and class level ICCs 

(𝐼𝐶𝐶𝑠𝑐ℎ  & 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠) and covariate explanatory power at individual (𝑅𝑝𝑢𝑝
2 ), class (𝑅𝑐𝑙𝑎𝑠𝑠

2 ) and 

school (𝑅𝑆𝑐ℎ
2 ) levels. 

 

In RCT designs, the number of participants (n', sample size) and individual-level covariate 

explanatory power influence the MDES estimates.  This is also the case for CRTs but with the 

additional complexity that sample sizes and covariate explanatory power are at multiple 

levels (individual & cluster levels).   Additionally, with CRTs, the clustering of outcome data 

at school and class level is also influential. 

 

Drawing on Hedges & Rhoads (2010), it can be useful to reorganise the terms for the 2-level 

and 3-level MDES equations as shown below in equations 2.2 and 3.2. 

2.2 
 𝑀𝐷𝐸𝑆2𝐿𝐶𝑅𝑇~ 𝑀𝐾−𝐿−2 √

1

𝑃(1 − 𝑃)𝐾𝑚
√1 + (𝑚 − 1)𝐼𝐶𝐶𝑠𝑐ℎ − [𝑅𝑝𝑢𝑝

2 + (𝑚𝑅𝑠𝑐ℎ
2 − 𝑅𝑝𝑢𝑝

2 ) 𝐼𝐶𝐶 𝑆𝑐ℎ] 

3.2 
 𝑀𝐷𝐸𝑆3𝐿𝐶𝑅𝑇~ 𝑀𝐾−𝐿−2 √

1

𝑃(1 − 𝑃)𝐾𝐽𝑛
√1 + (𝐽𝑛 − 1)𝐼𝐶𝐶𝑠𝑐ℎ + (𝑛 − 1)𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠 − [𝑅𝑝𝑢𝑝

2 + (𝐽𝑛𝑅𝑠𝑐ℎ
2 − 𝑅𝑝𝑢𝑝

2 ) 𝐼𝐶𝐶 𝑆𝑐ℎ + (𝑛𝑅𝐶𝑙𝑎𝑠𝑠
2 − 𝑅𝑝𝑢𝑝

2 ) 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠] 

 

The t-distribution multiplier is determined by the level of statistical significance (), 

statistical power (1-) and the degrees of freedom calculated from the number of schools 

                                                      
35 This assumes that m does not vary greatly across schools in a study.  If there is great variation in the size of 
clusters across schools it can impact on statistical power.  In these cases, it is suggested that the harmonic 
mean rather than the arithmetic mean is a more precise estimate for 'm' (Lauer et al., 2015). 
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(K) and number of school-level covariates (L).  Given that this is determined only by school 

level factors, this part of the equations would be identical for a 2-level or 3-level CRT design. 

Assuming a balanced design and that the number of pupils per school (m) is the same as the 

number of pupils per class (n) multiplied by the number of classes per school (J) [i.e. m=Jn], 

the √ 4

𝐾𝑚
 term in the 2-level design would also be identical to the (√

4

𝐾𝐽𝑛
 ).term in a 3-level 

design.  Therefore, it is in the last component where the distinction between 2-level and 3-

level CRT designs lies.   Looking more closely at the terms in this third component for 2-level 

and 3-level designs, they both can be seen to contain two sub-components.  The first is 

directly determined from school and/or class level clustering; with increasing strengths of 

clustering leading to higher MDES estimates (and hence lower statistical sensitivity).   The 

second sub-component accounts for the use of covariate explanatory power (in relation to 

school and/or class level clustering). With increasing explanatory power, the impact of 

school/class level clustering on trial sensitivity can be seen to decrease.  This moderating 

effect of covariate explanatory power on how clustering impacts on statistical sensitivity is 

seen most clearly when explanatory power is assumed to be equal at all levels (i.e. 𝑅𝐴𝐿𝐿
2 =

 𝑅𝑠𝑐ℎ
2 =  𝑅𝑐𝑙𝑎𝑠𝑠

2 =  𝑅𝑝𝑢𝑝
2 ). 

 

 2-level 3-level 

3.  The impact of 

clustering on MDES 

1 + (𝑚 − 1)𝐼𝐶𝐶𝑠𝑐ℎ 1 + (𝐽𝑛 − 1)𝐼𝐶𝐶𝑠𝑐ℎ + (𝑛 − 1)𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠 

4…mitigation of 

this impact through 

covariate 

explanatory power 

−[𝑅𝑝𝑢𝑝
2 + (𝑚𝑅𝑠𝑐ℎ

2 − 𝑅𝑝𝑢𝑝
2 ) 𝐼𝐶𝐶 𝑆𝑐ℎ] −[𝑅𝑝𝑢𝑝

2 + (𝐽𝑛𝑅𝑠𝑐ℎ
2 − 𝑅𝑝𝑢𝑝

2 ) 𝐼𝐶𝐶 𝑆𝑐ℎ + (𝑛𝑅𝐶𝑙𝑎𝑠𝑠
2 − 𝑅𝑝𝑢𝑝

2 ) 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠] 

𝐼𝐹 𝑅𝐴𝐿𝐿
2 =  𝑅𝑠𝑐ℎ

2

=  𝑅𝑐𝑙𝑎𝑠𝑠
2 =  𝑅𝑝𝑢𝑝

2  

−𝑅𝐴𝐿𝐿
2 [1 + (𝑚 − 1) 𝐼𝐶𝐶 𝑆𝑐ℎ] −𝑅𝐴𝐿𝐿

2 [1 + (𝐽𝑛 − 1) 𝐼𝐶𝐶 𝑆𝑐ℎ + (𝑛 − 1) 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠] 

 

When 𝑅𝐴𝐿𝐿
2 is zero, the fourth component would cancel completely.  With no covariate 

explanatory power, the impact of clustering (school and class) is at a maximum.    

 

By comparing component 3 for the 2-level and 3-level CRT designs, it can be seen that 

school level clustering has a weighting of (𝑚 − 1) or (𝐽𝑛 − 1) compared with class level clustering 

(𝑛 − 1).  If J>1, m>n and with zero explanatory power, clustering at the school level is given a 

greater weighting (in determining the MDES) compared with clustering at the class level.  
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This usually means that trial sensitivity is more dependent on clustering at the school 

compared with class levels and thus the size of the trial in terms of number of schools 

randomised. 

 

When 𝑅𝐴𝐿𝐿
2 = 0.50, the fourth sub-component would equate to half of the third sub-

component.  Therefore, the overall potential impact of class/school level clustering on trial 

sensitivity is reduced by half.  For a given level of significance, power and sample size, as 

explanatory power increases, MDES estimates decrease (i.e. statistical sensitivity increases).   

As  𝑅𝐴𝐿𝐿
2  approaches 1.00, the effect of clustering at school/class level (along with the MDES 

estimate) will approach zero. 

 

Equations 1.0 to 3.0 can be rearranged so that statistical power or sample size rather than 

MDES is the subject.  For example, for calculating the statistical power to detect a specified 

MDES given other fixed design parameters (sample size, clustering of outcome data, 

covariate explanatory power, balance of design) or to calculate the sample size required to 

detect a specified MDES statistic with a given statistical power and other design parameters 

(clustering of outcome data, covariate explanatory power, balance of design).   

 

From literature and examining equations, it does seem clear that, theoretically, ignoring a 

class level 'matters' if class level clustering of a trial outcome variable is present.   The 

impact on sensitivity brought by class level clustering is usually not as great as the impact 

brought by school level clustering but ignoring class level clustering does have implications.   

Specifically, assuming a 2-level design can result in underestimating MDES statistics (and 

hence falsely overstating the statistical sensitivity of a trial).  The equations also illustrate 

that the impact of class level clustering on trial sensitivity can be mitigated through the use 

of covariate explanatory power and/or by increasing the number of schools and classes per 

school in the trial.   

 

Answers provided by examining equations can be a little abstract to help fully illuminate 

whether class level clustering 'matters' in the design of educational trials.  This paper now 

proceeds to use the equations to provide some numerical and visual illustrations to help 
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explore the inter-relationships between MDES estimates, sample size, statistical power, 

clustering at school and class levels and covariate explanatory power.    

Visualising the impact of class-level clustering and covariate explanatory power on 

statistical sensitivity, power and required sample size. 

Two perspectives are taken; first with a fixed number of (100) schools and second, with a 

fixed Minimum Detectable Effect Sise (MDES) of 0.20 sds. 

 

Perspective 1 - a fixed number of 100 schools:   

The first perspective has a fixed number of (K=100) schools but allows some variation at the 

class (2 to 6 per school) and pupil (10-25 per class; 20-150 per school) levels.  The 

relationship between MDES and class level clustering is examined numerically and visually 

for different strengths of school level clustering and covariate explanatory power.  For 

simplicity, this is first done by assuming the same explanatory power of covariates at all 

three levels (i.e. 𝑅𝐴𝐿𝐿
2 =  𝑅𝑠𝑐ℎ

2 =  𝑅𝑐𝑙𝑎𝑠𝑠
2 =  𝑅𝑝𝑢𝑝

2 ).  Following this, the covariate explanatory power is fixed 

at school and pupil levels s (i.e.𝑅𝑠𝑐ℎ
2 =  𝑅𝑝𝑢𝑝

2 ). but allowed to vary at the class level (𝑅𝑐𝑙𝑎𝑠𝑠
2 ). 

 

Perspective 2 - a fixed MDES of 0.20 sds36 

The second perspective focuses on detecting a specified effect size ( 0.20 sds or higher) as 

statistically significant (p<0.05) with a power of 80% or higher.  2-level CRT designs which 

ignore class-level clustering are compared with 3-level CRT designs that include a class level.  

The impact of class-level clustering is considered in terms of statistical power, the actual 

MDES that could be with a statistical power of 80% or higher and the increase in sample size 

needed in order to detect an MDES of 0.20. 

 

  

                                                      
36 To increase precision, the MDES used here was 0.2049 sds which rounds to 0.20 sds 
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Perspective 1:  100 schools; 

  Relationship between class level clustering and trial sensitivity 

Perspective one focuses on 2-armed 3-level CRTs with school level randomisation and 

balanced (p=0.5) designs.  The total number of schools is fixed at (K=) 100 but the number of 

classes per school and pupils per class has been allowed to vary according to three within-

school sample scenarios summarised below: 

Sa
m

p
le Scen

a
rio

 

P
u

p
ils p

er C
la

ss 

C
la

sses p
er Sch

o
o

l 

P
u

p
ils p

er Sch
o

o
l  

1 10 2 20 

e.g. Evaluations of  targetted interventions (e.g. poor readers) 

or to analyses of pupil subgroups (e.g. gender, FSM) within 

whole-class interventions 

2 25 2 50 

e.g. Evaluations of whole class interventions in two classes of 

a year group - which may be an entire year group for a 2-form 

entry Primary school or a sample of classes in a larger Primary 

or Secondary school 

3 25 6 150 

e.g. This might relate to evaluations of whole class 

interventions across an entire year group (6 classes) in 

Secondary school 

 

Table 3 presents a range of MDES estimates for the three sample scenarios.  In calculating 

the MDES estimates, a two-tailed statistical significance is set at 0.05 (/2=0.025) and 

statistical power at 0.80 (=0.20).   A single primary outcome is assumed.  The number of 

school-level covariates (L) is fixed at two37 which results in a t-distribution multiplier with 96 

degrees of freedom. 

The MDES estimates in Table 3 were calculated allowing ICC values at the school level to 

vary between 0.00 and 0.20 and at the class level between 0.00 and 0.50.  Explanatory 

power of covariates at school, class and pupil levels is allowed to vary between 0.00 and 

                                                      
37 The school level group (intervention or control) identifier and a covariate that correlates with a trial 
outcome. 
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0.81.  For simplicity, the same explanatory power of covariates is assumed for all three 

levels in Table 3.       

 

Table 3:  MDES estimates for sample scenarios 1 to 3 for different strengths of school & 

class level clustering and covariate explanatory power 

• zero covariate explanatory power [Rschool
2 / Rclass

2 / Rpupil
2 = 0] 

School 
level ICC 

Scenario 1 
2 classes of 10 

pupils per school 

Scenario 2 
2 classes of 25 

pupils per school 

Scenario 3 
6 classes of 25 

pupils per school 

Class level ICCs 
 zero (0.00);low (0.05); high (0.20); v high (0.50) 

0.00 0.13; 0.15; 0.21; 0.30 0.08; 0.12; 0.19; 0.29 0.05; 0.07; 0.11; 0.17 

0.05 0.18; 0.20; 0.25; 0.32 0.15; 0.17; 0.23; 0.32 0.13; 0.14; 0.17; 0.21 

0.10 0.22; 0.23; 0.27; 0.34 0.19; 0.21; 0.26; 0.34 0.18; 0.19; 0.21; 0.24 

0.20 0.28; 0.29; 0.33; 0.39 0.26; 0.28; 0.32; 0.38 0.26; 0.26; 0.28; 0.30 

• moderate covariate explanatory power [Rschool
2 / Rclass

2 / Rpupil
2 = 0.49] 

School 
level ICC 

Scenario 1 
2 classes of 10 

pupils per school 

Scenario 2 
2 classes of 25 

pupils per school 

Scenario 3 
6 classes of 25 

pupils per school 

Class level ICCs 
 zero (0.00);low (0.05); high (0.20); v high (0.50) 

0.00 0.09; 0.11; 0.15; 0.21 0.06; 0.08; 0.14; 0.21 0.03; 0.05; 0.08; 0.12 

0.05 0.13; 0.14; 0.18; 0.23 0.11; 0.12; 0.16; 0.22 0.10; 0.10; 0.12; 0.15 

0.10 0.15; 0.17; 0.20; 0.25 0.14; 0.15; 0.19; 0.24 0.13; 0.14; 0.15; 0.17 

0.20 0.20; 0.21; 0.23; 0.28 0.19; 0.20; 0.23; 0.27 0.18; 0.19; 0.20; 0.22 

• very high covariate explanatory power [Rschool
2 / Rclass

2 / Rpupil
2 = 0.81] 

School 
level ICC 

Scenario 1 
2 classes of 10 

pupils per school 

Scenario 2 
2 classes of 25 

pupils per school 

Scenario 3 
6 classes of 25 

pupils per school 

Class level ICCs 
 zero (0.00);low (0.05); high (0.20); v high (0.50) 

0.00 0.06; 0.07; 0.09; 0.13 0.03; 0.05; 0.08; 0.13 0.02; 0.05; 0.05; 0.08 

0.05 0.08; 0.09; 0.11; 0.14 0.06; 0.08; 0.10; 0.14 0.06; 0.06; 0.07; 0.09 

0.10 0.09; 0.10; 0.12; 0.15 0.08; 0.09; 0.11; 0.15 0.08; 0.08; 0.09; 0.11 

0.20 0.12; 0.13; 0.14; 0.17 0.11; 0.12; 0.14; 0.17 0.11; 0.11; 0.12; 0.13 
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With 100 schools and 2 classes of 25 pupils per school (scenario 2), assuming zero covariate 

explanatory power and ICCSch =  0.10, when ICCclass = 0.00, the estimated MDES is 0.19 sds 

(highlighted in Table 3).  This MDES estimate is seen to increase with increasing class level 

clustering; from 0.20 sds when ICCclass = 0.01 to 0.26 sds  when ICCclass = 0.20 and to 0.34 

when ICCclass = 0.50.   In absolute terms, an MDES of 0.19 is an underestimate of between 

0.004 (when ICCclass =0.01) and 0.144 sds (ICCclass =0.50).  In relative terms, an MDES of 0.19 

sd is an underestimate of between 2.0% and 42.6%.      

With moderate covariate explanatory power (RALL
2 =0.49), the estimated MDES is 0.14 sds 

when ICCclass =0.00.  An MDES of 0.14 sds remains until ICCclass =0.03 (MDES=0.15 sds) which 

increases to 0.24 sds when ICCclass =0.50.  In absolute terms, this equates to an 

underestimate of between 0.003 to 0.103 sds; in relative terms, an underestimate of 

between 2.0% and 42.6%.    

When covariate explanatory power is very high (RALL
2 =0.81), when ICCclass =0.00, the 

estimated MDES is 0.08 sds but as class level clustering increases from 0.01 to 0.20, MDES 

estimates increase from 0.09 (when ICCclass. = 0.01) to 0.15 sds (when ICCclass. = 0.50).  In 

absolute terms, a difference/underestimate of between 0.002 to 0.063 sds; in relative 

terms, an underestimate of between 2.0% and 42.6%.    

 

Figure 1a provides a visual representation of Table 3.  MDES estimates (Y axis) are plotted 

against Class ICC values (X axis). Three line graphs are shown for each of the three sample 

scenarios (for three levels of covariate exploratory power; 𝑅𝐴𝐿𝐿
2  = 0.00; 0.49 & 0.81).   On 

each line graph, three lines are plotted that illustrate the relationship between class level 

clustering and MDES estimates for three strengths of school level clustering (School 

ICC=0.05, 0.10 and 0.20).  

Figure 1a highlights the following: 

• Ignoring class level clustering when it exists results in underestimating MDES values (and 

hence overstating the statistical sensitivity of a trial). 

• Use of covariates with high explanatory power mitigates the potential impact of class 

level clustering on MDES estimates. 

• The similarity of the graphs for scenarios 1 and 2 and difference with scenario 3 highlight 

the greater influence of the number of classes per school compared with pupils per class 

on statistical sensitivity / MDES 
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Table 3 and Figure 1a provide an examination of the relationship between class-level 

clustering and statistical sensitivity (MDES).   Table 3 and Figure 1a also show how covariate 

explanatory power mitigates the negative influence of class-level clustering on MDES 

estimates.  However, explanatory power is assumed to be equal at all levels (i.e. 𝑅𝐴𝐿𝐿
2 =  𝑅𝑠𝑐ℎ

2 =

 𝑅𝑐𝑙𝑎𝑠𝑠
2 =  𝑅𝑝𝑢𝑝

2 ).  Figure 1b provides a second visualisation for perspective one and fixes 

explanatory power at school and pupil levels (i.e. 𝑅𝑠𝑐ℎ
2 =   𝑅𝑝𝑢𝑝

2 ) but allows  𝑅𝑐𝑙𝑎𝑠𝑠
2  to vary. MDES 

estimates (Y axis) are again plotted against ICCclass values (X axis).  

Table 4 provides a reference point for Figure 1b. Table 4 presents the MDES estimates for a 

3-level CRT that assumes a class level ICC of 0.00.  A total of nine MDES estimates are 

shown; for each of the three sample scenarios an MDES estimate for three levels of 

covariate explanatory power at school and pupil levels is shown.  For example, with school 

& pupil level explanatory power set at R2=0.49, with 100 schools an MDES estimate of 0.20 

sds is found for scenario 1, 0.19 sds for scenario 2 and 0.18 for scenario 3. 

 

Table 4: MDES estimates assuming zero class-level clustering 

  K=100 schools, P=0.05, School ICC=0.20; =0.05; 1-=0.80 

R2 (School & Pupil levels) Scenario 1 

20 pupils per 

school 

Scenario 2 

20 pupils per 

school 

Scenario 3 

150 pupils per 

school 

R2=0.00 0.28 0.26 0.26 

R2=0.49 0.20 0.19 0.18 

R2=0.81 0.12 0.11 0.11 

 

Figure 1b takes each of the nine MDES estimates in Table 4 and illustrates how they increase 

when the strength of class level clustering is allowed to increase from (𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=) 0.00 to 

0.80.  In each of the nine charts in Figure 1b, three lines are used show the relationship 

between class level clustering and MDES estimates for three levels of class-level explanatory 

power; 𝑅𝐶𝑙𝑎𝑠𝑠
2 =0.00; 0.49 and 0.81. 

For example, when school and pupil level explanatory power =0.00, the MDES estimates 

for scenario 2 (2 classes of 25 pupils per school) begin at 0.26 sds (when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.00, see 
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Table 4) but are seen to increase with 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠 in Figure 1b.  However, the size of increased 

MDES is seen to reduce with increasing strength of class-level explanatory power.  With zero 

class-level explanatory power, the MDES estimate is seen to increase to 0.28 sds when 

𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.05; to 0.29 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.10; 0.32 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.20; 0.38 sds when 

𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.50.  With high class-level explanatory power (0.81), the MDES estimate remains at 

0.20 sds until 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.05; remains at 0.27 sds until 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.26 increasing to 0.29 sds 

when  𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.50. 

When school and pupil level explanatory power =0.81, the MDES estimates for scenario 2 

(2 classes of 25 pupils per school) begin at 0.11 sds (when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.00, see Table 4) but are 

seen to increase with 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠 in Figure 1b.  With zero class-level explanatory power, the 

MDES estimate is seen to increase to 0.15 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.05; to 0.17 sds when 

𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.10; 0.21 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.20; 0.20 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.50.  With high class-level 

explanatory power (0.81), the MDES estimate increases to 0.12 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.01 to 

0.13 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.10; 0.14 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.20; 0.17 sds when 𝐼𝐶𝐶 𝐶𝑙𝑎𝑠𝑠=0.50. 
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Figure 1b illustrates the following: 

• Class-level explanatory power mitigates the impact of class level clustering 

• The number of classes-per-school has a stronger influence on sensitivity compared 

with the number of pupils per class (i.e. it is methodologically preferable to have 

smaller samples across many classes compared with a few complete classes). 

• Class-level explanatory power is particularly important when the number of classes 

per school is relatively small - the extent to which class-level explanatory power 

mitigates the increase in MDES with increasing class-level clustering diminishes with 

increasing numbers of classes. 

It is worth noting that testing a small group of pupils within a class can bring practical and 

ethical problems that might be avoided by testing the whole class.  So, whilst it is 

methodologically preferable to have a small samples of pupils spread across many classes, 

practicality suggests that it would be preferable to test all pupils in many classes - which has 

testing cost implications   

Perspective 2:  Detecting an MDES of 0.20 sds 

The relationship between class level clustering and statistical power 

Assuming a 2-level two-armed balanced CRT design (or a 3-level design where 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠 =

0.00), the sample sizes needed to detect an MDES of 0.20 standard deviations have been 

calculated using equation 2.0 (or 3.0) for different strengths of covariate explanatory power 

and school-level clustering.   

Table 5a below focuses on a 3-level two-armed balanced CRT design with 2 classes of 25 

pupils per school (i.e. scenario 2, 50 pupils per school) and how class level clustering might 

impact on statistical sensitivity and power.  For simplicity, in Table 5a, the same covariate 

explanatory power is assumed at all levels  (i.e. 𝑅𝐴𝐿𝐿
2 =  𝑅𝑠𝑐ℎ

2 =  𝑅𝑐𝑙𝑎𝑠𝑠
2 =  𝑅𝑝𝑢𝑝

2 ) 

• At the top of Table 5a, the number of schools (K) required for an MDES of 0.20 sds 

when 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠 = 0.00  is shown for two strengths of school-level clustering (𝐼𝐶𝐶𝑆𝑐ℎ =

0.05 and 𝐼𝐶𝐶𝑆𝑐ℎ = 0.20).   

• When school level clustering is relatively weak (𝐼𝐶𝐶𝑆𝑐ℎ = 0.05), if class-level clustering 

is ignored, the number of schools needed to detect an MDES of 0.20 varies between 

14 (when 𝑅𝐴𝐿𝐿
2 =0.81) and 54 (when 𝑅𝐴𝐿𝐿

2 =0.00).   
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• When school level clustering is stronger (𝐼𝐶𝐶𝑆𝑐ℎ = 0.20), if class-level clustering is 

ignored, the number of schools needed to detect an MDES of 0.20 varies between 34 

(when 𝑅𝐴𝐿𝐿
2 =0.81) and 164 (when 𝑅𝐴𝐿𝐿

2 =0.00).   

 

Table 5a shows the statistical power for detecting an effect size of 0.20 or higher as 

significant (p<0.05) with a 3-level CRT design when class ICC varies between 0.00 and 0.50 .  

Alongside this are the actual MDES estimates for a 3-level CRT design.  Finally, at the bottom 

of Table 5a, the number of schools that would be needed to detect an effect size of 0.20 sds 

or higher as statistically significant with a power of 80% is shown (and how many more 

schools this is to when class clustering is ignored or not present).  
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Table 5a: Number of schools required for MDES of 0.20 sds or higher. 
Assuming 2 classes of 25 pupils per school.& same explanatory power at school, class and 
pupil levels 
 
K: number of schools required to detect MDES of 0.20 sds ignoring class level  
 
School level ICC of 0.05. 

 
 

R2 Explanatory Power (school, class & pupil levels) 
 
 

Class level ICC Statistical power [actual MDES with 80% power] 

0.00 80% 82% 86% 

0.05 68% [0.24] 69% [0.23] 71% [0.22] 

0.10 58% [0.27] 59% [0.26] 59% [0.25] 

0.20 44% [0.32] 44% [0.31] 42% [0.29] 

0.50 26% [0.43] 25% [0.42] 22% [0.40] 

 

Class level ICC Total number of schools needed [Number additional to K] 

0.05 72 [+18] 38 [+8] 16 [+2] 

0.10 90 [+36] 48 [+18] 20 [+6] 

0.20 126 [+72] 66 [+36] 26 [+12] 

0.50 234 [+180] 120 [+90] 46 [+32] 

 
School level ICC of 0.20. 

 
 

R2 Explanatory Power (school, class & pupil levels) 
 
 

Class level ICC Statistical power [actual MDES with 80% power] 

0.00 80% 80% 82% 

0.05 76% [0.22] 74% [0.22] 71% [0.21] 

0.10 72% [0.23] 69% [0.23] 62% [0.22] 

0.20 65% [0.25] 60% [0.25] 49% [0.24] 

0.50 49% [0.30] 42% [0.30] 30% [0.29] 

 

Class level ICC Total number of schools needed [Number additional to K] 

0.05 182 [+18] 94 [+10] 38 [+4] 

0.10 200 [+36] 104 [+18] 40 [+6] 

0.20 236 [+72] 122 [+38] 48 (+14] 

0.50 344 [+180] 176 [+92] 68 [+34] 

 

K= 54 30 14 

R2= 0.00 0.49 0.81 

K= 164 84 34 

R2= 0.00 0.49 0.81 
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When school level clustering is relatively weak (𝑰𝑪𝑪𝒔𝒄𝒉=0.05)  

A 2-level design that ignored class level clustering (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.00) and zero explanatory power 

(𝑅2=0.00) would need 54 schools to detect an effect size of 0.20 sds or higher as statistically 

significant (p<0.05) with a statistical power of 80% or higher.  Even when class level 

clustering is weak (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.05), the statistical power for detecting an effect size of 0.20 is 

drops to 68%.  54 schools would be able to detect an MDES of 0.24 rather than 0.20 sds; it 

would take an additional 18 schools (K=72) for this design to be able to detect an MDES of 

0.20 sds with 80% power.   If class level clustering was stronger (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.20), statistical 

power for detecting an effect size of 0.20 drops further to 44%; 54 schools would be able to 

detect an MDES of 0.31 rather than 0.20 sds and it would take an additional 72 schools 

(K=126) to detect an MDES of 0.20 sds with 80% power. 

When weak school level clustering (𝐼𝐶𝐶𝑠𝑐ℎ=0.05) but high covariate explanatory power 

(𝑅2=0.81), when 𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.00, 14 schools would be needed to detect an MDES of 0.20sds.  

When (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.05), the statistical power for detecting an effect size of 0.20 drops to 74%; 

20 schools would be able to detect an MDES of 0.22 rather than 0.20 sds and it would take 

an additional 2 schools (K=16) to detect an MDES of 0.20sds with a power of 80%.   If class 

level clustering was stronger (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.20), statistical power to detect an effect size of 0.20 

drops further to 48% and it would take an additional 12 schools (K=26) to detect an MDES of 

0.20 sds with 80% power. 

 

When school level clustering is relatively strong (𝑰𝑪𝑪𝒔𝒄𝒉=0.20)  

A 2-level design that ignored class level clustering (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.00), with zero covariate 

explanatory power, 164 schools would be needed to detect an MDES of 0.20 sds. When 

class level clustering is weak (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.05), the statistical power to detect an effect size of 

0.20 drops to 76%; 164 schools would be able to detect an MDES of 0.22 and it would take 

an additional 18 schools (K=182) to detect an MDES of 0.20sds with 80% power.   If class 

level clustering was stronger (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.20), statistical power to detect an effect size of 0.20 

drops further to 65% and it would take an additional 72 schools (K=236) to detect an MDES 

of 0.20 sds with 80% power. 

With strong school clustering (𝐼𝐶𝐶𝑠𝑐ℎ=0.20) and high covariate explanatory power (𝑅2=0.81), 

if class level clustering is ignored 34 schools would be needed to detect an MDES of 0.20 

sds.  When class level clustering is weak (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.05), the statistical power to detect an 
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effect size of 0.20 drops to 77%.; 34 schools would be able to detect an MDES of 0.21 rather 

than 0.20 standard deviations and it would take an additional 4 schools (K=38) for this 

design to be able to detect an MDES of 0.20sds with 80% power.   If class level clustering 

was stronger (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.20), statistical power for the MDES of 0.20 drops further to 66% and 

it would take an additional 14 schools (K=48) to detect an MDES of 0.20 sds with 80% 

power. 

 

As noted earlier, with increasing school level clustering, the possible proportion of clustering 

at the class and/or individual level decreases.  For example, when school ICC=0.05, ICC 

values at class and/or individual levels could not be greater than 0.95; when school 

ICC=0.20, ICC values at class and/or individual levels could not be greater than 0.80 etc.   

Additionally, the statistical sensitivity for both a 2-level and 3-level design is influenced more 

by school-level compared with class-level clustering.  Therefore, if a 2-level trial is powered 

to account for school clustering, this will provide some protection from the impact of class 

level clustering on statistical sensitivity; the greater this clustering at the school level is, the 

greater the protection it provides. 

The estimates shown in Table 5a include a sizable assumption regarding explanatory power.  

In reality, it is highly unlikely that the same strength of covariate explanatory power would 

be found at all levels.  However, at this point of 'equivalence' (i.e. 𝑅𝐴𝐿𝐿
2 =  𝑅𝑠𝑐ℎ

2 =  𝑅𝑐𝑙𝑎𝑠𝑠
2 =  𝑅𝑝𝑢𝑝

2 ), a 

2-level trial would be powered for this at both school and pupil levels and the inclusion of an 

additional class level with the same explanatory power does not provide additional 

protection against  the impact of class clustering on statistical sensitivity.   However, if 

𝑅𝑐𝑙𝑎𝑠𝑠
2 >  𝑅𝑆𝑐ℎ

2  some additional sensitivity would be gained and if  𝑅𝑐𝑙𝑎𝑠𝑠
2 <  𝑅𝑆𝑐ℎ

2  sensitivity would 

be lost.    

Table 5b looks more directly at how covariate explanatory power at the class-level mitigates 

against the impact of class-level clustering on statistical power, sensitivity and sample size.  

Assuming a school level ICC of 0.20 and 2 classes of 25 pupils per school,  and fixing the 

school and pupil level explanatory power at three levels (0.00, 0.49 and 0.81), Table 5b 

shows the impact of class level clustering and covariate explanatory power on statistical 

power, sensitivity and required sample size. 
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Table 5b: Number of schools required for MDES of 0.20 sds or higher. 
Assuming 2 classes of 25 pupils per school, school ICC=0.20, same explanatory power at 
school and pupil levels . 
Class-level explanatory power allowed to vary between 0.00 and 0.81 
 

School & Pupil level explanatory power = 0.00; K=164 schools. 
R2 Explanatory Power (class level only) 

 
 

Class level ICC Statistical power [actual MDES with 80% power] 

0.00 80% 80% 80% 

0.05 76% [0.22] 78% [0.21] 79% [0.21] 

0.10 72% [0.23] 76% [0.22] 79% [0.21] 

0.20 65% [0.25] 72% [0.23] 77% [0.21] 

0.50 49% [0.30] 62% [0.25] 74% [0.22] 

 

Class level ICC Total number of schools needed [Number additional to K] 

0.05 182 [+18] 174 [+10] 168 [+4] 

0.10 200 [+36] 182 [+18] 170 [+6] 

0.20 236 [+72] 200 [+36] 176 [+12] 

0.50 344 [+180] 252 [+88] 192 [+28] 

 

School & Pupil level explanatory power = 0.49; K=84  schools. 
R2 Explanatory Power (class level only) 

 
 

Class level ICC Statistical power [actual MDES with 80% power] 

0.00 80% 80% 80% 

0.05 70% [0.23] 74% [0.22] 77% [0.21] 

0.10 62% [0.25] 69% [0.23] 74% [0.21] 

0.20 50% [0.28] 60% [0.25] 68% [0.22] 

0.50 31% [0.37] 42% [0.30] 55% [0.24] 

 

Class level ICC Total number of schools needed [Number additional to K] 

0.05 104 [+20] 94 [+10] 88 [+4] 

0.10 122 [+38] 104 [+18] 92 [+8] 

0.20 158 [+74] 122 [+38] 98 [+14] 

0.50 268 [+184] 176 [+92] 116 [+32] 

 

 

 

R2= 0.00 0.49 0.81 

R2= 0.00 0.49 0.81 



47 
 

 

School & Pupil level explanatory power = 0.81; K=34  schools. 
R2 Explanatory Power (class level only) 

 
 

Class level ICC Statistical power [actual MDES with 80% power] 

0.00 82% 82% 82% 

0.05 57% [0.25] 65% [0.23] 71% [0.21] 

0.10 42% [0.30] 53% [0.26] 62% [0.22] 

0.20 28% [0.37] 38% [0.30] 49% [0.24] 

0.50 15% [0.53] 21% [0.41] 30% [0.29] 

 

Class level ICC Total number of schools needed [Number additional to K] 

0.05 52 [+18] 44 [+10] 38 [+4] 

0.10 70 [+26] 52 [+18] 40 [+6] 

0.20 108 [+74] 72 [+28] 48 (+14] 

0.50 218 [+184] 128 [+94] 68 [+34] 

 

With zero school and pupil level covariate explanatory power, 164 schools would be 

sufficient to detect an MDES of 0.20 sds if no class-level clustering were present. With zero 

class-level covariate explanatory power, the relationship between class level clustering and 

statistical power is identical to that shown in Table 5a (falling from 76% when class ICC=0.05 

to 49% when class ICC=0.50).  With high class-level covariate explanatory power (𝑅𝑐𝑙𝑎𝑠𝑠
2 = 0.81) 

this loss of power is reduced (falling from 79% when class ICC=0.05 to 72% when class 

ICC=0.50). 

 

With high school and pupil level covariate explanatory power(𝑅𝑠𝑐ℎ
2 =   𝑅𝑝𝑢𝑝

2 = 0.81) 34 schools 

would be sufficient to detect an MDES of 0.20 sds if no class-level clustering were present. 

With high class-level covariate explanatory power (𝑅𝑐𝑙𝑎𝑠𝑠
2 = 0.81), the relationship between 

class level clustering and statistical power is identical to that shown in Table 5a (falling from 

71% when class ICC=0.05 to 30% when class ICC=0.50).  With zero class-level covariate 

explanatory power (𝑅𝑐𝑙𝑎𝑠𝑠
2 = 0.81) this loss of power is increased (falling from 57% when class 

ICC=0.05 to 15% when class ICC=0.50). 

 

Figure 2a presents three charts plotting the relationship between class-level covariate 

explanatory power (X axis) by statistical power (Y axis).  A chart is shown for three strengths 

R2= 0.00 0.49 0.81 
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of school and pupil level explanatory power (𝑅𝑠𝑐ℎ
2 =   𝑅𝑝𝑢𝑝

2 = 0.00; 0.49 & 0.81).  For each chart, a 

line is shown for five strengths of class-level clustering (𝐼𝐶𝐶𝑐𝑙𝑎𝑠𝑠=0.00 to 0.50).  For example, 

when zero class-level clustering is present, 164 schools are needed to detect an effect size 

of 0.20 sds or higher with a statistical power of 80% or higher (shown by the horizontal line 

in Figure 2a).  If zero class-level explanatory power is assumed, the negative impact of class-

level clustering on statistical power can be seen where each of the six lines cross the Y-axis.  

As class-level covariate explanatory power increases, statistical power is seen to tend 

upwards towards the 80% limit.     

It seems apparent that if a CRT is designed and powered ignoring clustering at the class-

level, gains brought by covariate explanatory power (at school / pupil levels) can be lost by 

an increasing negative influence of class level clustering on statistical power.    

Figure 2a: Class-level R-square (X) v Statistical Power (Y) to detect an MDES of 0.20 sds 

School ICC=0.20 / a=0.05 (two tailed, single outcome) / 2 classes of 25 pupils per school 

 

 

Figure 2b presents three charts plotting the relationship between class-level clustering (X 

axis) by statistical power (Y axis).  A chart is shown for three strengths of school and pupil 

level explanatory power (𝑅𝑠𝑐ℎ
2 =   𝑅𝑝𝑢𝑝

2 = 0.00; 0.49 & 0.81).  For each chart, a line is shown for 

three strengths of class-level explanatory power ( 𝑅𝑐𝑙𝑎𝑠𝑠
2 =0.00; 0.49 & 0.81).  For example, 

when zero class-level clustering is present, 164 schools are needed to detect an effect size 

of 0.20 sds or higher with a statistical power of 80% or higher (shown by the horizontal line 

in Figure 2a).  If zero class-level clustering is assumed, the positive impact of class-level 

explanatory power on statistical power can be seen where the three lines cross the Y-axis.  

As class-level clustering increases, statistical power is seen to tend downwards away from 
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80% - but this drop in power is less when there is high class-level covariate explanatory 

power.    

Figure 2b: Class-level ICC (X) v Statistical Power (Y) to detect an MDES of 0.20 sds 

School ICC=0.20 / a=0.05 (two tailed, single outcome) / 2 classes of 25 pupils per school 

 

 

One practical method that would provide a buffer against the impact of (hidden) class level 

clustering in a CRT design would be to use a higher statistical power for the 2-level design.  

Figure 2c replicates Figure 2b but assumes a statistical power of 90% or higher.  This 

inevitably results in an increase in the required number of schools than would be needed 

compared with 80% statistical power.   Figure 2c shows how doing this would ensure a 

statistical power above 80% up to a particular strength of class-level clustering which is 

determined by how the strength covariate explanatory power.  For example, if zero 

school/pupil level explanatory power and class level clustering is assumed, 216 schools 

would be needed to detect an effect size of 0.20 or higher as significant with a power of 90% 

or higher.  With zero class-level explanatory power, it is not until a class-level ICC of 0.14 or 

higher before power drops below 80%.  With moderate class-level covariate explanatory 

power (𝑅𝑐𝑙𝑎𝑠𝑠
2 =0.49) it is not until a class-level ICC of 0.30 or higher before power drops below 

80%. 
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Figure 2c: Class-level ICC (X) v Statistical Power (Y) to detect an MDES of 0.20 sds assuming 

a statistical power of 90% 

School ICC=0.20 / a=0.05 (two tailed, single outcome) / 2 classes of 25 pupils per school 

 

 

Figures 2a to 2c highlights X things: 

• The impact of class level clustering on statistical power weakens with increasing school 

level clustering.    

• If the sample size of a 2-level CRT sample size is selected with reference to covariate 

explanatory power and, within a 3-level CRT design, the same explanatory power is 

assumed for all levels, the relationship between class-level clustering and statistical 

power is not mitigated further by class level explanatory power.    
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5. Discussion 

From a theoretical perspective, class-level clustering has been shown to 'matter' for the 

design of educational trials in terms of statistical sensitivity, sample size and/or statistical 

power.   If an intervention being evaluated seeks to cause change in pupil level attainment 

through 'something' (e.g. the introduction of teaching materials, new methods and/or 

pedagogue) introduced into classrooms (or in other within-school pupil clusters), failing to 

account for class-level clustering will result in underestimated MDES statistics and/or a loss 

of statistical power for a design to detect a specified MDES.   The loss of sensitivity and 

statistical power grows with increasing strength of class-level clustering can be mitigated 

through the use of covariate explanatory power and/or increasing the size of the trial  

 

Seven 3-level CRTs with school level randomisation and a class/teacher/TA level that have 

been completed or ongoing in England were identified.  To date, only three of these trials 

have reported but two more are due to report in 2019.   This means that the empirical 

evidence base to draw on for the design of 3-level CRTs is currently rather limited.  Research 

has shown how variance structure is dependent on the number of levels included in a 

multilevel design (e.g. Hutchison & Healy, 2001) and that variance from ignored levels of 

clustering is redistributed to other levels.   This means that drawing on guidance/past trials 

for 2-level CRT designs for providing estimates for school-level clustering for 3-level designs 

will be inaccurate.  To improve accuracy, 3-level designs should draw on guidance and past 

trials for 3-level CRTs.   From the limited number of 3-level CRTs conducted, there is a 

suggestion that class-level clustering is stronger in secondary schools compared with 

primary schools and this seems to reflect pervading patterns in the use of setting and/or 

steaming in English schools, and therefore subjects in which settings is most common.    

 

The most striking strength of class-level clustering was observed in the evaluation of the 

Multiplicative Reasoning Project (MRP) amongst Y7, Y8 and Y9 pupils (Boylan et al., 2015).    

The MRP evaluation can be used to illustrate differences in the variance decomposition of 2-

level and 3-level CRT designs that have been noted by Hutchison & Healy (2001) and others.  

Table 6 shows this for the three MRP pupil cohorts and shows variance decomposition and 

ICC values for a 3-level design (school, class & pupil) and when class level is dropped for a 2-
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level design (school & pupil).  The table echoes what has been reported in the literature to 

show how variance in the ignored level (class) is redistributed to both school and pupil 

levels.    

 

Table 6: Variance decomposition & ICC estimates 
  3-level and 2-level CRT designs compared 
  MRP evaluation, outcome = GL PTiM 

 Y7  Y8  Y9  

Original Sample 

Variance decomposition 3-lev 2-lev 3-lev 2-lev 3-lev 2-lev 

School Level 51.6 86.5 67.5 130.6 4.6 89.2 

Class Level 101.3 / 117.7 / 141.1 / 

Pupil Level 89.4 143.0 65.0 119.4 56.2 117.4 

Total 242.3 229.6 250.2 250.0 201.9 206.6 

       

ICCsch 0.21 0.38 0.27 0.52 0.02 0.43 

ICCclass 0.42 / 0.47 / 0.70 / 

ICCpup 0.37 0.62 0.26 0.48 0.28 0.57 

 

 

 Y7  Y8  Y9  

Restricted Sample (Comprehensive schools with 2+ classes of 10+ pupils) 

Variance decomposition 3-lev 2-lev 3-lev 2-lev 3-lev 2-lev 

School Level 1.3 51.4 4.6 86.3 0.0 48.6 

Class Level 110.6 / 154.9 / 120.3 / 

Pupil Level 92.8 150.0 61.1 134.7 51.0 120.8 

Total 204.7 201.4 220.6 221.0 171.3 169.4 

       

ICCsch 0.01 0.26 0.02 0.39 0.00 0.29 

ICCclass 0.54 / 0.70 / 0.70 / 

ICCpup 0.45 0.74 0.28 0.61 0.30 0.71 

 

It seems that whilst the 3-level models clearly show the highest concentration of variance at 

the class-level, when this is ignored the variance is redistributed to both school and pupil 

levels.  Therefore, estimates for ICC values for 3-level designs at both school and class level 

should draw on past 3-level trials rather than assuming the same school-level ICC that might 

be used for a 2-level design.   In order to do this, a larger bank of 3-level CRT trials will be 

needed.   In the meantime, some proposed class level ICC values are given in the next 

section 
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Suggested class-level ICC values 

A range of suggested class-level ICC values are given below - it is important that these  are 

udpdated as the evidence base grows.   Class level ICC values are given for school phases 

and key stages: 

• Within the Primary schooling phase,  
o KS1 - class ICC of 0.05 
o KS2 - class ICC = 0.10 

These can only relate to trials that recruit Primary schools with 2+ classes per year.  It should 

be noted that is is relatively common for Primary schools to have one class per year (single-

form entry).  For these schools it would mean that, within each year group, the class and 

school level would be identical and so a 3-level CRT design is not feasible unless the trial 

involves multiple year groups.   

• Within the Secondary schooling phase,  
o Y7-Y11 Maths - class ICC=0.50 
o Y7-Y11 English/Science - class ICC=0.40 
o Y7-Y11 other subjects - class ICC=0.20 

Class level clustering of outcome data will be a result of setting/streaming and other factors 

such as the teacher(s), classroom environment etc.  It does seem that class level clustering is 

particularly strong in mathematics but this draws on a single CRT with limitions (Boylan et 

al., 2015).  However, given that the cluster pattern seems to reflect what is known about the 

widespread use of setting/streaming in maths in Secondary schools in England, it seems 

wise to assume a class level ICC of 0.50 until evidence suggests otherwise.   

We have less detail on class level clustering in other subjects from educational trials.  

However, Table 7 illustrates how the use of setting/streaming is also widespread in Science 

and English using OFSTED inspection data from 2010.  It seems unlikely that there has been 

a move away from segregating pupils by perceived or measured ability in England in the 

decade since the data shown in Table 6 were collected. Until we have evidence to suggest 

otherwise, it seems advisable to assume a class level ICC of around 0.40 for these subjects. 
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Table 7: Percentage of lessons observed by OFSTED in 2010 that grouped   

  pupils by measured or perceived ability. 

 All Subjects Maths Science English 

Y1 5.9 5.8 1.6 7.8 

Y2 8.2 10.7 1.0 9.4 

Y3 10.4 17.1 1.6 9.9 

Y4 11.0 19.0 1.4 10.0 

Y5 15.2 26.2 1.5 12.3 

Y6 21.7 33.7 3.3 19.4 

Y7 35.1 61.8 45.3 49.4 

Y8 44.2 72.6 63.4 56.7 

Y9 46.6 73.8 64.7 59.0 

Y10 42.5 72.0 65.3 60.7 

Y11 45.0 73.8 64.8 64.8 

     

Primary Phase (Y1-Y6) 11.8 18.6 1.7 11.3 

KS1 (Y1-Y2) 6.9 8.1 1.3 8.5 

KS2 (Y3-Y6) 14.5 24.0 1.9 12.9 

     

Secondary Phase (Y7-Y11) 42.7 70.8 61.5 58.3 

KS3 (Y7-Y9) 42.2 69.2 58.6 55.2 

KS4 (Y10-Y11) 43.6 72.8 65.1 62.6 

Source: https://giftedphoenix.wordpress.com/2014/11/12/the-politics-of-setting/ & https://www.theyworkforyou.com/wrans/?id=2011-

07-20a.340.4&s=%28ability+grouping+schools%29+section%3Awrans+section%3Awms#g340.6  

 

https://giftedphoenix.wordpress.com/2014/11/12/the-politics-of-setting/
https://www.theyworkforyou.com/wrans/?id=2011-07-20a.340.4&s=%28ability+grouping+schools%29+section%3Awrans+section%3Awms#g340.6
https://www.theyworkforyou.com/wrans/?id=2011-07-20a.340.4&s=%28ability+grouping+schools%29+section%3Awrans+section%3Awms#g340.6
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Estimates for school-level ICC values might initially draw on the current evidence from 2-

level trials but given what is shown in Table 6, a greater understanding of how attainment 

(and other) data is clustered at school and class levels will be needed.   

 

Practicalities 

At the start of this review, having struggled to identify 3-level CRTs, I contacted EEF to 

request details on EEF trials that included a class and school level.   The EEF similarly 

struggled to identify 3-level CRTs and sought help/advice from the EEF advisory group.   The 

advisory group responded with some reflections on the problems of obtaining class level ID 

detail: 

“There are limitations with the submitted data for teaching groupings – we 

thought about asking for class IDs, but it is not straightforward. Consider the 

following scenarios 

1. Class/ registration group remains constant for all lessons (e.g. primary 

  school which does not set) 

2. Registration group differs from subject groupings (e.g. tutor group 

  registration in secondary schools) 

3. Class groupings differ for literacy and numeracy lessons (e.g. setting in 

  primary schools – in some cases a primary pupil would be in 3 different 

  “classes”) 

4. Class groupings differ for different subjects (e.g. secondary timetable) 

 

Then you add the complexity of intervention focus (e.g. literacy only, literacy 

and numeracy, whole school) and you can see that collecting the data could be a 

significant burden on schools and evaluators… We decided to abandon the 

attempt.” 

 

These are sizable practical problems and three further complexities can be added here. 

5. When schools introduce setting/streaming during a trial period 

6. Pupil and/or teacher movement between classes 

7. Multiple teachers for one class 
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Having had experience in collecting class level details for four trials, I have some familiarity 

with the 'significant burden' for evaluators noted by the EEF advisory group.   Collecting and 

checking details of classes, teachers and pupil class lists is very time consuming (and hence 

costly).  However, collecting class level detail and in developing good-practice processes will 

bring methodological benefits to trial design in terms of greater accuracy in estimated MDES 

statistics and statistical power.  Further, whilst perhaps pragmatic, ignoring class level 

clustering seems out-of-step within a 'gold standard' evaluation methodology; particularly 

given the extent of policies that Dracup (2014) calls 'within-school selection' and Francis 

(2017) calls 'pupil segregation' practiced in English schools (i.e. setting and streaming).    

 

Setting/streaming 

OECD identified that around a fifth of pupils in the UK are in selective schools but nearly all 

(99%) schools had policies of grouping pupils by measured/perceived 'ability' (OECD, 2012, 

Table 2.2 p57).   Focusing solely on England, Dracup (2014) presented data from 2009/10 

based on English, maths and science lessons observed by OFSTED inspectors and reported a 

greater proportion of lessons taught in 'ability' groups in Secondary schools (43%) compared 

with Primary Schools (12%) and a greater proportion of maths lessons using 'ability' 

grouping through Primary (19% overall; 26% in Y5; 34% in Y6) and Secondary (71% overall; 

74% in Y11) compared with English (11% Primary; 58% Secondary) and Science (2% Primary; 

62% Secondary).   More recently, Francis et al. (2017) reported on the rarity of all 

attainment (or mixed ability) teaching (and entrenched use of 'ability' grouping) in the 

English education system and their difficulties in recruiting Secondary schools that either 

currently practiced mixed ability or were willing to introduce it for a recent EEF-funded 

study into grouping practices (Roy et al., 2018b).   Finally, from data we collected in 2018 

from 119 schools for a 3-level CRT evaluating the impact of a secondary (KS3) maths 

intervention, 106 schools (89%) reported to use setting or streaming within Y7 maths.    

 

OECD highlight that segregation of pupils between schools (fee paying schools & selective 

state schools) and within schools (setting, streaming & banding) are key barriers to equity 

and quality in an education system. 

"The evidence is conclusive: equity in education pays off. The highest performing 



57 
 

education systems across OECD countries are those that combine high quality 

and equity. In such education systems, the vast majority of students can attain 

high level skills and knowledge that depend on their ability and drive, more than 

on their socio-economic background." OECD, 2012 p14. 

 

It is relatively straight forward for designers of educational trials to avoid methodological 

issues that are brought by between-school pupil segregation.  For example, trials might 

decide to only recruit state schools that operate a non-selective (comprehensive) 

admissions policy.  This would help to minimise the strength of clustering in an outcome 

variable at the school level (ICCsch).  Given that the vast majority of state schools are non-

selective, this does not bring too many problems.   However, the entrenched use of within-

school pupil segregation within 'comprehensive' schools means that the methodological 

issues brought by class-level clustering are less easy to side step (seemingly impossible in 

England).   Simply ignoring clustering will not make the problems disappear but will bring 

hidden bias into the design of educational trials and therefore increase the risk of making 

incorrect conclusions about the impact of educational interventions. 

 

Further, ignoring the issue of class-level clustering seems to jar with EEFs mission of 

"breaking the link between family income and educational achievement"(EEF, 2018).  Pupil 

segregation (between and within schools) is not socially neutral and tends to result in the 

sorting (clustering) of pupils along socio-economic, ethnic, gender and SEND lines (Gillborn 

& Mirza, 2000; Kutnick et al., 2005).   Further, it is established that setting and streaming 

does not result in better attainment outcomes for most pupils (Slavin, 1990; Francis, 2017).   

Therefore, pupil segregation seems to be a monolithic obstacle for "breaking the link" 

between income and educational success in England and deserves close attention.  EEF has 

funded two evaluations looking directly at best practice in mixed ability and setting in Y7 

and Y8 maths and English (Roy et al., 2018a & 2018b); both using 2-level CRT designs.  

Unfortunately, these evaluations suffered from either difficulties in recruiting schools 

(mixed ability) or drop-outs (setting) and so more research will be needed.   It seems 

important that evidence used to inform educational policy at a national or school level is 

robust and therefore trial designs should reflect the structure of the system/schools in 

which they take place.   The lack of a class (or teacher) level in the context of such 
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widespread within-school pupil segregation currently serves to undermine the robust 

nature of evidence from educational trials. 

 

Class-level; Teacher-level 

Through this paper, within-school clustering has been referred to as either class-level or 

teacher/TA level clustering.  This was done to reflect how within-school clustering is 

described in evaluation reports and wider literature.   However, it should be noted that 

these two descriptions are not necessarily the same.  For example, one class may be taught 

by multiple teachers and one teacher might teach multiple classes.   Some observational 

studies have looked at both class and teacher level clustering (Opdenakker & Van Damme, 

2000; Noortgate et al., 2004) but no experimental studies with this (4-level) design were 

found.  Given that these are still relatively early time for educational trials in England, future 

designs might explore such a design.   

 

Many of the educational interventions that have been evaluated to date are directly 

targeted at teachers or TAs through professional development (PD) training with the 

hope/theory that this leads to change in the classroom and eventual gains in pupil level 

attainment.  2-level CRTs with just school and pupil levels do not adequately reflect the 

structural realities of teacher/TA PD interventions they used to evaluate.  This paper 

illustrated what this means in terms of statistical sensitivity but 2-level CRTs are also 

problematic when it comes to being able to comprehensively scrutinise findings of impact 

evaluations.   

 

RCT and CRT designs are widely identified as a 'gold standard' for evaluating impact and are 

methodologically unique in being able capture educational effects that have been 'caused' 

by an educational intervention.   However, to unpack the mechanism(s) that led to (cause) 

the observed 'effects', a theory of change is drawn on which commonly will include 

components at teacher and/or classroom levels.   

 

Alongside impact evaluations, Implementation and Process (IPE) evaluations usually gather 

data at these levels in order to help shine some light onto such causal mechanism(s).  

However, with a 2-level CRT design, follow-on impact analyses (e.g. on treatment or CACE) 
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are unable to draw on this data directly and are forced to aggregate class/teacher level data 

to the school level.  This means that for these follow-on analyses, there is no 

acknowledgement of within-school variation (for example, differences in how teachers 

within one school engaged with an intervention and how their classes of pupils experienced 

it).  This structural disconnect seems remarkably imprecise/fuzzy in the robust world of 

RCTs.  3 (possibly 4) level CRT designs would enable data at teacher and/or class levels to be 

included at the appropriate level for follow-on analyses and therefore help to pinpoint 

causal mechanism(s) behind any observed effects. 

 

Conclusions 

So, does the classroom level 'matter' in the design of educational trials?   From a theoretical 

perspective the answer is that if within-school clustering (class/teacher/TA) exists, failing to 

account for this in the design and analyses of educational trials will result in drawing 

inaccurate conclusions about the impact of educational interventions; so yes, the classroom 

level matters.   Empirically, it is not appropriate to draw firm conclusions because only seven 

3-level CRTs have been conducted in England.  However, the patterns observed within these 

few 3-level trials do reflect deeply engrained policies of setting and/or streaming in English 

schools; manifesting in sizable class-level clustering particularly in secondary schools.  In 

primary schools, class-level clustering seems weaker and this reflects more limited use of 

setting here (although Dracup, 2014 did report over a third of KS2 Y6 maths classes took 

place in 'ability' groups in 2010).  Clustering might be weaker in primary, but the practical 

problems of collecting data at the class and teacher level are less acute.  This is because 

primary schools are smaller and there is less variation and movement of teachers (and 

pupils) between classes.  So, in terms of statistical sensitivity, a class/teacher/TA level seems 

less important for evaluations of interventions in primary schools compared with secondary 

schools but the feasibility of collecting class-level details in order to accurately reflect the 

nested structure of schools-teacher/class-pupil is greater in primary compared with 

secondary schools.  Given that a 3-level design brings greater precision for follow-on 

analyses exploring possible mechanism(s) behind observed effects, this seems worthwhile.  

In secondary schools the empirical evidence base is currently limited to a single 3-level CRT 

evaluating a KS3 maths intervention (Boylan et al., 2015).   A second 3-level CRT evaluating a 

KS4 secondary maths intervention is not due to report until 2020.  From experience, I know 
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that collecting class-level detail in secondary schools is more complex than primary.  This is 

because secondary schools are generally larger and there is much greater variation of 

teachers (and pupils) between classes.   However, given that sizable class-level clustering is 

very likely to be a structural reality in secondary schools, it seems highly problematic to 

ignore it.   This is perhaps more acute in some subject areas  where setting/streaming is 

widely practiced (maths, English) compared with other subject areas (history, art).   

 

Complexity in the collection of class/teacher/TA level data and the associated burden on 

schools and evaluators will be most intense now because this is new.  Schools are relatively 

experienced in providing pupil and school level data for external scrutiny but experience in 

providing details at a class level will be more limited.  It seems likely that, within schools, 

variations (in pupil attainment) at a class and/or teacher level will be examined (e.g. by 

heads of departments or schools or MATs) but the reality may be mixed practices across 

schools.  Further, within the context of the aftermath of GDPR and an increasingly 

marketised education system with measured school performance, effectiveness, 

commercial sensitivity and OFSTED, schools may be reticent / unwilling to provide class-level 

detail.  However, in the few 3-level CRTs undertaken, reticence to providing class-level detail 

is not reported.  As more 3-level trials are conducted, evaluators and schools will gain 

experience and this will help to develop approaches which both minimise burden and 

accurately capture the nested structure of schools involved in educational trials.   

 

At this point in time it seems that, theoretically, including a class and/or teacher level into 

trial designs (particularly trials evaluating teacher PD programmes) will result in improved 

accuracy in trial designs but the empirical realities are less clear.  One final point is that none 

of the 3-level CRT trials that have reported so far have included explanatory power at all 

three levels in the final analyses.   Hedges & Hedberg (2013) recommend that an orthogonal 

approach is taken such that the pre-test is centred differently for each level: i.e. School level 

means centred around the overall school-level mean; class level means centred around the 

school level mean and pupil level raw scores centred around the class level mean.  This 

approach ensures that the variables can only account for variance in an outcome at the level 

at which they are included.   This approach may lead to additional gains in explanatory 
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power at school, class or pupil levels (and hence improved statistical sensitivity in the 

design) but this is yet to be seen empirically. 

 

A pragmatic way forward is to encourage and fund more 3-level CRTs in order to build the 

empirical evidence base and use these trials to develop good practice guidance for the 

design, analyses and data collection methods for 3-level clustered educational trials.   This 

would lead to wider benefits for educational research that are tangential to evaluation of 

educational interventions but aligned to EEFs mission; by providing data which can be used 

to examine patterns and practices of grouping/segregating of pupils in schools in England.   

Experiences in collecting this detail might be drawn upon for a larger observational study to 

measure class-level clustering across the English education system. 
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