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Abstract

Single-case designs (SCDs) are a class of research methods for evaluating the effects of

academic and behavioral interventions in educational and clinical settings. Although visual

analysis is typically the first and main method for primary analysis of data from SCDs,

quantitative methods are useful for synthesizing results and drawing systematic

generalizations across bodies of single-case research. Researchers who are interested in

synthesizing findings across SCDs and between-group designs might consider using the

between-case standardized mean difference (BC-SMD) effect size, which aims to put results

from both types of studies into a common metric. Currently available BC-SMD methods

are limited to treatment reversal designs with replication across participants and

across-participant multiple baseline designs, yet more complex designs are used in practice.

In this study, we extend available BC-SMD methods to several variations of the multiple

baseline design, including the replicated multiple baseline across behaviors or settings, the

clustered multiple baseline design, and the multivariate multiple baseline across

participants. For each variation, we describe methods for estimating BC-SMD effect sizes

and illustrate our proposed approach by re-analyzing data from a published SCD study.

Keywords: single-case design; effect size; between-case standardized mean difference;

multiple baseline design
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Between-Case Standardized Mean Differences: Flexible Methods for

Single-Case Designs

Meta-Analysis of Single-Case Designs

Single-case designs (SCDs) are a class of research methods for evaluating the effects

of academic and behavioral interventions in educational and clinical settings (Horner et al.,

2005). Researchers using an SCD measure outcomes repeatedly over time, within and

across distinct treatment conditions or phases (such as baseline and intervention phases),

for each of several cases (Gast & Ledford, 2018). Inferences about treatment effects for

each case are drawn by comparing the data series of outcomes in the baseline phase(s) with

the pattern in the treatment phase(s), with each case serving as its own control. In other

words, SCDs are designed to assess whether there is a functional relation between the

implementation of a treatment and a change in the targeted outcome.

SCDs are important and frequently used within certain areas of education and

psychology, including applied behavior analysis, school psychology, and early childhood

special education (Barton et al., 2016; Kratochwill & Levin, 2014). The designs are

attractive in such settings because they can be applied with a small number of

participants—even with only a single participant—and because they allow for adaptation,

modification, and individualization. Due to their flexibility, SCDs are particularly useful

for investigating interventions for individuals with low incidence disabilities. Because SCDs

provide a rigorous method for evaluating the causal impact of interventions, they are

well-suited for enhancing our knowledge about what works, for whom, and under what

conditions (Skinner et al., 2013).

Multiple baseline designs are the most common type of SCD (Barker et al., 2013;

Shadish & Sullivan, 2011). Multiple baseline designs involve collecting data across several

cases, which may represent different individuals, groups of individuals, or a single

individual observed in different settings or for different behaviors. For example, in a
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multiple baseline design across participants, baseline data are collected for several

participants, and treatment is introduced to one participant after observing a stable

baseline phase. Treatment is introduced to another participant once a change in

responding is observed for the first participant, and this process is repeated across all

participants. The defining feature of all multiple baseline designs is that treatment is

introduced at several different time points for different cases. This staggered introduction

ensures that treatment is not confounded by contemporaneous changes in the environment,

thus protecting against common history threats (Gast et al., 2018).

Visual analysis is typically the first and main method for primary analysis of data

from SCDs (Kratochwill et al., 2010, 2021). According to commonly used guidelines, visual

analysis of SCD data should investigate six features of the data: level, trend, variability

within phases, immediacy of the treatment effect, overlap in data series, and consistency of

data patterns between or across phases (Horner et al., 2005; Kratochwill et al., 2010). If

those features are consistent with hypothesized changes in the outcome, then a functional

relation is established between the treatment and the outcome. Although visual analysis is

viewed as a necessary first step in determining whether functional relations are present in

primary analysis of individual studies, it does not provide a clear means for quantifying the

magnitude of treatment effects or for synthesizing findings from multiple studies that

investigate conceptually similar interventions. Consequently, there is interest in using

quantitative methods to synthesize results and draw systematic generalizations across

bodies of single-case research.

Meta-analyses have been used to synthesize findings across SCD studies in order to

provide a firmer basis for generalization about effects of intervention, thus informing

identification of evidence-based practices for policy and decision-making (Pustejovsky &

Ferron, 2017). Meta-analyses involve summarizing findings from individual studies using

quantitative indices, called effect size measures, that describe the magnitude and direction

of intervention effects. In addition to providing summaries of findings across studies,
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meta-analyses can be used to characterize the extent of variation in effect sizes and to

identify systematic predictors of effectiveness.

A variety of effect size measures have been proposed for SCDs (Moeyaert et al.,

2018; Pustejovsky & Ferron, 2017). For example, in SCD studies published in school

psychology journals, the most frequently reported effect size indices are non-overlap

measures (Radley et al., 2020), including the percentage of non-overlapping data (PND,

Scruggs et al., 1987), percentage of all non-overlapping data (PAND, Parker et al., 2007),

non-overlap of all pairs (NAP, Parker & Vannest, 2009), and baseline-corrected Tau

(Tarlow, 2017). These non-overlap statistics summarize intervention effects for each case by

measuring the degree of non-overlap between baseline and intervention phases. However,

some commonly used non-overlap measures such as PND and PAND are sensitive to

incidental procedural characteristics of the study’s design. Some also lack known sampling

distributions, which limits their utility for meta-analysis of SCDs (Pustejovsky, 2019).

Other common indices include the within-case standardized mean difference (WC-SMD,

Busk & Serlin, 1992), which describes changes in treatment relative to the within-case

variability in the outcome, and the log response ratio (Pustejovsky, 2018), which describes

treatment effects in terms of proportional change from baseline. All of these indices are

case-specific measures that provide a quantitative summary of the intervention effects for

each individual case within a single-case study. Thus, they are on metrics specific to SCDs

and not directly comparable to effect sizes from between-group experimental designs.

Between-case standardized mean difference

The standardized mean difference (SMD), often referred to as Cohen’s d, is the most

widely used effect size measure for quantifying treatment effects in between-group designs.

It can be defined as the difference between the population mean outcome if every

participant received treatment and the population mean outcome if nobody received

treatment, standardized by the standard deviation of the outcome if nobody received



FLEXIBLE METHODS FOR SINGLE-CASE DESIGNS 7

treatment (Hedges, 2008). In the context of simple between-group experimental designs,

the SMD is often estimated using the difference in the mean outcomes between the

experimental group and the control group, scaled by the square root of the pooled sample

variance of the outcome measure, although other estimators are also used for more complex

designs (Taylor et al., 2021). For instance, Wright et al. (2012) conducted a randomized

controlled trial to examine the effects of video-based self-evaluation package on use of

general or specific praise among Head Start teachers. The authors randomly assigned 51

Head Start teachers to an immediate self-evaluation, delayed self-evaluation, or control

group. Teachers in the immediate or delayed self-evaluation experimental groups received

training in identifying praise, evaluated their videotaped performance, and wrote goals for

improving use of praise, while teachers in the control group did not receive such training or

self-evaluation package. Although not reported in the article, SMD effect sizes can be

calculated by taking the difference in the average frequency of praise statements between

the experimental groups and the control group after the intervention was implemented for

3 days. The SMD effect size estimates would describe the effects at Day 3 of implementing

the self-evaluation package.

The between-case standardized mean difference (BC-SMD) for SCDs is an effect size

metric that is theoretically comparable to a standardized mean difference from a

between-group design performed with the same population, the same intervention, and the

same outcome measures. For example, Grasley-Boy et al. (2021) used a multiple baseline

across participants to examine the effects of targeted professional development and

performance feedback on use of behavior-specific praise among elementary school teachers.

Considering its similarity with Wright et al. (2012), the researchers here could, in principle,

have conducted a between-group experimental design to study the effects of this

intervention by 1) randomizing participating teachers to either receive the intervention or

continue with their usual practice and 2) assessing frequency of behavior-specific praise for

each participating teacher after some period of time (cf. Simonsen et al., 2020; Wright et
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al., 2012). Grasley-Boy et al. (2021) reported a BC-SMD of 1.93 (SE = 0.38) standard

deviations (Grasley-Boy et al., 2021, p. 9), which can be interpreted in the same way as

the SMD from a between-group study on the same topic.

The BC-SMD effect size was initially developed for reversal designs with replication

across participants (Hedges et al., 2012) and multiple baseline designs across participants

(Hedges et al., 2013). These initial developments were limited by some restrictive

assumptions, including that baseline data are stable without trends, that trends do not

exist during the treatment phase(s), and that treatment effects do not vary across cases.

To resolve these limitations, Pustejovsky et al. (2014) introduced a more general

framework based on hierarchical linear models that allow linear or polynomial time trends

and heterogeneous treatment effects across cases. Under this framework, SCD data are

modeled at both the within-case and between-case levels, and a BC-SMD effect size is

calculated as the mean difference between outcomes from different treatment conditions,

standardized by the square root of the sum of within- and between-case variance

components. Standardizing in this way puts the mean difference on the same scale as the

SMD from a between-group experiment.

Because of its theoretical comparability, the BC-SMD effect size provides a way to

describe intervention effects in terms more familiar to researchers who predominantly use

group designs (Shadish et al., 2015; Shadish, 2014). For interventions that are evaluated

using both single-case and group designs, the BC-SMD might also provide a means to

compare intervention effects across design types. Thus, use of BC-SMDs can enrich

research syntheses and evidence-based practice reviews by allowing for inclusion of evidence

from SCDs that might otherwise be omitted (Shadish et al., 2015). Due to these

advantages, BC-SMD effect sizes have been applied in several recent meta-analyses of

single-case research (e.g., Babb et al., 2021; Losinski et al., 2017; Shin et al., 2020).

Furthermore, the What Works Clearinghouse recently adopted the BC-SMD as a metric for

summarizing findings from SCD studies (What Works Clearinghouse, 2020). The What
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Works Clearinghouse’s adoption of BC-SMDs is controversial, with scholars criticizing the

approach for de-emphasizing visual analysis and limiting eligibility to SCDs for which

BC-SMDs can be calculated (Kratochwill et al., 2021; Maggin et al., 2021). To date,

BC-SMD methods have only been formally developed for two of the numerous types of

SCDs that are used to investigate functional relations. Developing methods for other

variations of SCDs would help to alleviate this problem, both for the What Works

Clearinghouse’s work and for the broader field.

Novel extensions for the BC-SMD effect size

The BC-SMD methods described in Pustejovsky et al. (2014) apply to multiple

baseline designs across participants. In this paper, we will show that the same general

framework can also be applied to several more complex forms of SCDs, including the

replicated multiple baseline across behaviors or settings, the clustered multiple baseline,

and the multivariate multiple baseline design across participants We recognize that these

designs are less common than the multiple-baseline across participants design. Yet, they

offer an approach to increase the methodological rigor or are well-matched to how

interventions are conducted in schools and other applied settings. Extending the BC-SMD

to these designs may therefore assist school psychologists and other researchers in the effort

to document what works, for whom, under what conditions.

Our first extension is for the replicated multiple baseline design across behaviors or

settings, where a multiple baseline design is conducted using cases comprised of different

behaviors or settings from a single participant, and the entire design is replicated across

multiple participants. This type of design is more rigorous than the multiple-baseline

across participants design because it affords both intra-participant and between-participant

replication (Gast et al., 2018). As an example, Thiemann and Goldstein (2001)

investigated the effects of written text and pictoral cues supplemented by video feedback

on the social communication of five students with autism. For each student, baseline data
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were collected on several behaviors and intervention was introduced across those behaviors

at staggered time points. This process was replicated across five students. As we

demonstrate, these data can be modeled with a three-level hierarchical structure with

measurements at the first level, behaviors at the second level, and students at the third

level. In this design, replication across participants is required for establishing the

theoretical comparability between SCDs and between-group designs.

Our second extension is for the clustered multiple baseline design, in which each

case is comprised of multiple individuals, such as a small group, classroom, or school, and

where outcomes are measured on individuals within each group. Many school-based

interventions targeting academic skills (e.g., reading comprehension) or social-behavioral

outcomes are implemented in small group formats, making this design useful for examining

academic interventions under naturalistic conditions. For example, Bryant et al. (2018)

evaluated the effects of an intensive mathematics intervention for second grade students

with severe mathematics difficulties. The study included 33 second grade students from 12

groups in 5 schools. The intervention was implemented at the group level. In this example,

the data can be modeled with a three-level hierarchical structure with measurements at the

first level, participants at second level, and groups at the third level. For purposes of

quantifying treatment effects, explicitly modeling this type of clustered structure (rather

than ignoring the clustering structure or aggregating the data to the group level) is more

consistent with how the intervention was implemented.

Our third extension is for the multivariate multiple baseline design across

participants, where treatment effects are investigated in an across-participant design for

several distinct outcome measures. This type of design is useful when studying the effects

of multi-component interventions that target related academic skills (e.g., reading rate and

reading accuracy) or social-behavioral interventions targeting both engagement and task

completion. For example, Calder and colleagues (2020) used such a design to investigate

the effects of an explicit grammar intervention for nine children with developmental
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language disorder across several different outcomes, including expressive morphosyntax

production and grammaticality judgements. This data structure can be described as

having multivariate outcome measures at the first level, with participants at the second

level. The data can be modeled by allowing for correlation among outcome measures

collected at each time point, as well as for heterogeneous variances across outcome

measures. Extending the BC-SMD to this design would allow researchers to estimate the

effect of an intervention on each dependent variable in a single model rather than running

multiple, separate analyses, while ignoring the correlation between outcome measures.

Because these three variants of the multiple baseline design are especially relevant

for SCDs conducted in school settings, it would be useful to have methods for effect size

estimation that can be applied to such designs. Thus, the purpose of the present study is

to extend the framework of Pustejovsky et al. (2014) and demonstrate how to calculate

BC-SMD effect sizes for these three variations of the multiple baseline design. For each

variation, we propose a modeling approach, define a BC-SMD effect size, and develop

methods for estimating the BC-SMD. We illustrate our proposed approach to each design

by re-analyzing data from a published SCD study.

The current study contributes to the literature in at least two respects. First,

although Pustejovsky et al. (2014) proposed a general framework for defining and

estimating BC-SMD effect sizes based on hierarchical linear modeling, no methodological

research has examined how to apply this framework to more complex SCDs, such as the

three variations of the multiple baseline design that we have described. We provide an

initial demonstration of how to apply the general methods to each variation, thus

contributing to the further development of design-comparable effect sizes. Second, these

novel demonstrations provide a template for calculating BC-SMD effect sizes in more

complex designs, making it possible to include them in meta-analyses and thereby

enriching evidence-based practice reviews.



FLEXIBLE METHODS FOR SINGLE-CASE DESIGNS 12

In the sections that follow, we first review the general BC-SMD framework

described in Pustejovsky et al. (2014). We then demonstrate how to extend the existing

BC-SMD methods to handle the three variations of multiple baseline designs in terms of

model specification and effect size calculation. For each variation, we demonstrate the

application of the methods using data from a published SCD study. In the final section, we

discuss implications, limitations, and directions for future research.

General Methods

Pustejovsky et al. (2014) proposed methods for estimating BC-SMD effect sizes for

data from across-participant multiple baseline and multiple probe designs. The methods

entail first estimating a hierarchical linear model (HLM) on the data, then using the

estimated model parameters to calculate an effect size estimate. A design with multiple

participants is required in order to be able to estimate the degree of between-participant

variation in the outcome, which is needed for estimating an effect size in the same metric

as the SMD from a between-group design. Pustejovsky et al. (2014) conceptualized and

demonstrated the approach based on a two-level hierarchical linear model, which allows

modeling time trends within each phase as well as variation in the level, trends, and

treatment effects across participants. However, this same effect size estimation strategy can

be applied to hierarchical models with more complex structure, such as three-level models

or multivariate models, so long as they still include between-participant variation in the

outcome. Before illustrating how to extend the methods to more complex SCDs, we first

review the framework for specifying the BC-SMD effect size and the general estimation

strategy used by Pustejovsky et al. (2014).

In general terms, the BC-SMD effect size is defined by first identifying an

appropriate model for the single-case design data, then using that model to consider a

hypothetical between-group design conducted with the same population of participants, the

same intervention, and the same (or similar) outcome measurement procedures. If the
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model for the single-case design is well-specified, then one can use it to estimate the effect

size that would be identified in the hypothetical between-group study.

For the first step, we focus on using hierarchical linear models because of the

hierarchical structure of SCD data, where outcome measurements are nested within each

case. Consider a multiple baseline design across participants. At the first

(within-participant) level of the HLM, outcomes for each participant can be modeled as a

function of an intercept and a treatment indicator. The intercept represents the average

outcomes in the baseline phase and the slope for the treatment indicator represents the

treatment effect for each participant. This first-level model specification can be extended in

many ways, such as by including an intercept, a treatment indicator, a time variable, and

an interaction between treatment indicator and time. In such a model, the treatment effect

for a participant is then a combination of the immediate change in the outcome measures

and the additional change across time. At the second (between-participant) level of the

model, one or more of the first level coefficients can vary across the higher level units. For

example, the average outcomes in the baseline phase might vary from participant to

participant. The treatment effects might also differ for different participants or the changes

in the outcome across measurement occasions might vary across participants. As we

demonstrate in subsequent sections, SCD data with more complex structure can be

modeled by replacing the two-level HLM with a more flexible model that captures not only

how outcomes change as a function of time and treatment phase but also how these

relations vary across higher level units.

Model specification

In general, HLMs (including two-level models and more complex models) have two

distinct sets of parameters: fixed effect parameters, which describe the average relation

between the outcome and a set of predictors, and random effects variance components,

which describe how the outcomes vary around their predicted levels (see Snijders & Bosker,
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2011, Chapters 6, p.94–108). Specification of an HLM entails making choices about both

components of the model. In the context of models for multiple baseline designs, one needs

to decide whether to include baseline time trends, change in the time trends from baseline

to treatment phase, along with the treatment indicator, in the fixed part at the first level

of the model. As for the random part, one needs to consider whether the lower-level

parameters vary across higher level units. Considering that various models might be

specified for SCD data and that different specifications would lead to different effect size

estimates, we suggest researchers use theory and disciplinary knowledge to guide the model

specification. Additionally, we recommend researchers also use visual analysis for

identifying potential models and conduct preliminary analyses for model comparison (Baek

et al., 2016; Moeyaert et al., 2020). Such preliminary analyses might include visual

inspection of the model’s predicted values, likelihood ratio tests comparing nested models,

or examination of model fit statistics such as the Akaike information criterion (AIC) or

Bayesian information criterion (BIC).

Effect size parameter

Having arrived at an appropriate model, the remaining question is how to define the

hypothetical between-group study. To fully operationalize this, we will need to specify

when treatment would first be initiated and when follow-up outcome assessment would

occur in the hypothetical study. Let A denote the time point immediately before the start

of treatment, and let B denote the time point at which outcomes would be measured in

this hypothetical study. The SMD effect size then represents the effect at time B of

introducing treatment after time A. In multiple baseline designs, the BC-SMD describes

the same effect and is calculated by taking the difference between the model’s predictions

of the average outcome at time B if treatment were to be introduced after time A and the

average outcome at time B if treatment were never introduced. This difference is scaled by

the square root of the total variance in the outcomes at time B if treatment were never
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introduced (Pustejovsky et al., 2014). Although an actual multiple baseline study involves

staggered intervention start points and multiple repeated measurements, all of the required

quantities still correspond to components of the model for the multiple baseline data.

Given an appropriate model and a hypothetical between-group design, we can use

HLM model parameters to define the BC-SMD effect size parameter. Pustejovsky et al.

(2014) showed that a BC-SMD effect size can be defined in terms of the fixed effect

parameters and variance component parameters of the model. Letting γ1, γ2, ..., γP denote

the P fixed effect parameters and θ1, θ2, ..., θR denote the set of R variance components, the

BC-SMD effect size parameter δAB can be represented as

δAB =
∑P

a=1 paγa√∑R
b=1 rbθb

. (1)

In this expression, p1, ..., pP are constants that determine how to weight each of the fixed

effects parameters to calculate the effect size. Likewise, r1, .., rR are constants that

determine whether to use each of the variance components—including the random effects

variances and covariances, the variance structure parameters, and the level-1 error

variances—for calculating the effect size. These constants depend on the hypothetical

experimental features, A and B, as well as on the form of the data model.

Selecting A and B

The selection of times A and B can influence the magnitude of BC-SMD effect size

estimates when baseline time trends vary across participants or when time trends differ in

magnitude between the baseline and intervention phases (Valentine et al., 2016). In a

between-group design, the study intake time will typically be somewhat arbitrary, and so

the same holds for the choice of initial starting time A for the hypothetical design under

consideration. The default choice for A in the scdhlm web application (Pustejovsky et al.,

2020a) is the last measurement occasion of the shortest baseline phase across cases, and we

recommend following this convention unless one has an explicit justification for doing
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otherwise. We also note that this choice of time point is at least broadly consistent with

the logic of SCD, which emphasizes that cases should have stable baseline phases before

introducing the intervention phase (Gast et al., 2018).

Follow-up time B should ideally be chosen by following the precedents of previous

research that uses similar interventions for the same population–either from between-group

designs or SCDs. In the context of meta-analyses, researchers can also examine the typical

intervention durations used in the included studies and choose a follow-up time based on a

common benchmark duration. If no convention or guideline is available, researchers might

use the default choice of B in the scdhlm web application (Pustejovsky et al., 2020a), which

corresponds to the shortest treatment duration across cases. This default is designed to

limit the extent of extrapolation. In models where the choice of time-points matters,

researchers can and should conduct sensitivity analyses to further investigate the extent to

which BC-SMD effect size estimates are influenced by time A and B. We comment further

on the choice of time A and B in the Discussion.

Estimation

Estimation of the BC-SMD effect size entails first estimating the parameters of the

model, along with their sampling variances, then substituting the estimates for the

corresponding model parameters, and finally making a small-sample correction

(Pustejovsky et al., 2014). Following typical practices for estimating HLMs, the unknown

variance component parameters (θ1, ..., θR) can be estimated using restricted maximum

likelihood (REML) techniques. The sampling variance-covariance matrix of the variance

parameters can be approximated with the inverse of the expected Fisher information matrix

based on REML estimators (Gilmour et al., 1995). The fixed effect coefficients (γ1, ..., γP )

are then estimated using weighted least squares, treating the variance component estimates

as if they were known. The sampling variance-covariance matrix of the fixed effect

coefficients can be approximated based on the variance component estimates.
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The BC-SMD effect size in Equation (1) is estimated by replacing the fixed effect

parameters and the variance component parameters with the corresponding estimators

from the fitted model. However, this effect size estimator may be biased if it is based on a

small number of cases, as typically found in SCDs. Pustejovsky et al. (2014) proposed a

small-sample correction to obtain a less-biased estimator, which involves approximating the

sampling distribution of the estimator by a t distribution with degrees of freedom given by

a Satterthwaite approximation. Let γ̂1, ..., γ̂P and θ̂1, ..., θ̂R denote the REML estimators of

the fixed effects and variance components, respectively. Let C(γ̂a, γ̂b) denote the estimated

sampling covariance between fixed effect estimates γ̂a and γ̂b; let C(θ̂a, θ̂b) denote the

estimated sampling covariance between the variance component estimates θ̂a and θ̂b. The

bias-corrected effect size estimator gAB is given by

gAB = J(ν) ×

P∑
a=1

paγ̂a√√√√ R∑
b=1

rbθ̂b

, (2)

where J(ν) =
(
1 − 3

4ν−1

)
and ν is the Satterthwaite degrees of freedom given by

ν =
2
(

R∑
a=1

raθ̂a

)2

R∑
a=1

R∑
b=1

rarbC(θ̂a, θ̂b)

(Pustejovsky et al., 2014). An approximate standard error for the effect size estimator gAB

is

SEg = J(ν)

√√√√ νκ2

ν − 2 + g2
AB

(
ν

ν − 2 − 1
J(ν)2

)
, (3)
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where

κ =

√√√√√√√√√√
P∑

a=1

P∑
b=1

papbC(γ̂a, γ̂b)

R∑
b=1

rbθ̂b

.

A (1 − α) symmetric or asymmetric confidence interval (CI) for the effect size estimator

gAB can be constructed using a central or noncentral t approximation, respectively (see

Pustejovsky et al., 2014 for details).

These general estimation methods can be applied to estimate BC-SMDs from

designs more complex than the multiple baseline designs across participants. To do so, we

will first need to identify appropriate models for each design, then determine how the fixed

effects and variance component parameters of those designs should be combined in

calculating a BC-SMD. This second step is essentially the question of what values to use

for the constants p1, ..., pP and r1, ..., rR. In the following sections, we demonstrate these

steps for several types of multiple baseline designs that have more complex features.

Replicated Multiple Baseline Across Behaviors or Settings

One common type of multiple baseline design is the multiple baseline across

behaviors or settings. In this design, cases correspond to different behaviors or behavior

sets (or to the same behavior in different settings) of a single participant or group of

participants (Gast et al., 2018). Baseline data are collected on each of the behaviors and

intervention is introduced for each behavior at a different point in time. Although this

design can be conducted with only a single participant, it is common to report replications

of the same design across several participants. In a replicated multiple baseline across

behaviors or settings, we can calculate a BC-SMD that reflects the average intervention

effect across behaviors and across participants. Just as with other types of designs,

replication across participants is necessary here so that between-participant variation in the

outcome can be estimated and comparability with the effect size from a between-group
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design can be achieved.

Thiemann and Goldstein (2001) used a replicated multiple baseline across behaviors

to examine the effectiveness of visually cued instruction on social communication of five

children with autism and social deficits. For each participant, treatment was implemented

at a different time for each of four social communication behaviors: contingent responses,

securing attention, initiating comments, and initiating requests. Two behaviors, initiating

comments and initiating requests, were combined and examined as one behavior set for

Casey and John due to low initiations in the baseline phase. The outcome variable was

frequency of occurrence of these social communication behaviors over a 10 minute social

activity, coded using a 15-s whole interval system. Our analysis excludes the data of two

behaviors for two participants, which were collected in the baseline phase only. Data for

the five participants are displayed in Figure 1, with the data for each participant depicted

using a distinct color.

Model specification

In order to estimate a BC-SMD effect size from a replicated multiple baseline across

behaviors, we must first identify a model for the observed data. Generally, data from these

designs can be described by a three-level hierarchical model, with outcome measurements

at level 1, behaviors at level 2, and participants at level 3. For purposes of illustration, we

will discuss effect size estimation using a relatively simple specification that still captures

the primary features of the data from Thiemann and Goldstein (2001).

We used visual inspection of the data to inform our model specification. For the

within-participant level (i.e., level 1) of the model, we need to consider whether to include

time trends in the baseline phase or intervention phase. Figure 1 shows that both baseline

and treatment phase are relatively stable for most behaviors of most participants, especially

for Casey, Greg, and Ivan. Thus, we will tentatively assume that there are no systematic

time trends in the baseline phases nor changes in time trends from baseline to treatment
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phase. For the between-participant level (i.e., level 2), we need to consider whether the

level 1 parameters vary across cases. Visual inspection suggests that both the average

outcomes in the baseline phase and the changes in the average outcomes in the treatment

phase seem to vary across behaviors within participants and across all five participants.

Therefore, we use a model that includes random effects for both of these components.

Let Ytsi denote the outcome measure at time t for behavior, setting, or series s for

participant i, where t = 1, . . . , N , s = 1, . . . , Si, and i = 1, . . . , m. Let Tsi denote the

time-point after which treatment is introduced for series s for participant i, and let

I(t > Tsi) be a dummy variable equal to 0 during the baseline phase and to 1 during the

treatment phase. Based on our preliminary visual inspection of the data, we specify a

model without time trends. The model for the outcome measurements in series s of

participant i can therefore be expressed as:

Ytsi = π0si + π1siI(t > Tsi) + etsi, (4)

where π0si is the average level of the outcome for series s of case i in the absence of

treatment and π1si is the change in the outcome measure in series s for case i upon

introduction of treatment. Because outcomes are measured repeatedly over time for each

case, it might be considered implausible that the errors are independent. Following the

convention for analysis of SCD data, we assume that the error term etsi has mean zero,

variance σ2, and first-order auto-correlation ϕ (i.e., a first-order auto-regression process).

To complete the model specification, we need to determine how the parameters of

Equation (4) vary across series and across participants. Based on visual analysis, we allow

both π0si and π1si to vary across series. That is, the model allows for random variation

across series in the intercepts and treatment effects of each participant. This can be
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expressed as the level-2 model

π0si = β00i + r0si, π1si = β10i + r1si, (5)

where β00i represents the average outcome across series for participant i in the absence of

treatment and β10i is the average change in the outcome measures after the introduction of

treatment to participant i. We assume that the level-2 error terms r0si and r1si are

multivariate normally distributed with mean (0, 0)′ and covariance matrix Ω =

ω2
0 ω10

ω10 ω2
1

.

Finally, considering that the five participants have different levels of disability and

communication skills, we assume that the average series-level outcome measures may vary

across participants, and that the average series-level treatment effects vary across

participants. These assumptions are expressed by the model

β00i = γ000 + u00i, β10i = γ100 + u10i, (6)

where γ000 is the overall average level of outcome measures in the absence of treatment and

γ100 is the overall average treatment effect across series and across participants. We assume

that the between-participant error terms u00i and u10i are multivariate normally distributed

with mean (0, 0)′ and covariance matrix T =

τ 2
0 τ10

τ10 τ 2
1

.

We emphasize that the model given in Equations (4) through (6) is not the only

possible specification for a replicated multiple baseline across behaviors or settings. In

practice, the analyst will need to choose a model to capture the important features of the

data. For instance, in other replicated multiple baseline design studies, it is possible that

the data demonstrate time trends during the baseline or intervention phases. In such cases,

the model could be expanded by adding a time variable and an interaction term between

the treatment indicator and time at the first level of the analytic model. One would then

need to consider whether the added first level coefficients vary across behaviors or across
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participants. We demonstrate models that involve time trends in examples presented in

subsequent sections. Another possibility is that, for some single-case studies, the

assumption that treatment effects vary across behaviors or participants might not apply.

Here, one could modify the model by assuming that the treatment effects are constant

across behaviors or across participants. Generally, we recommend researchers using visual

analysis to guide the initial model specification and then conduct preliminary analyses,

including information criteria and likelihood ratio tests, to reach an appropriate model

specification. We also recommend that researchers conduct and report sensitivity analyses

to investigate the extent to which effect size estimates vary across different plausible model

specifications.

Effect size definition

Given a model specification, a BC-SMD can be defined by considering a hypothetical

between-group design in which the treatment is introduced after time A and outcomes are

measured at time B. We assume that this hypothetical design would involve recruiting

participants from the same population as those who took part in the single-case design,

sampling a specific behavior or setting for each participant, and assessing the outcome for

that behavior or setting. With this procedure, the numerator of the BC-SMD effect size

represents the average effect of intervention, taken across behaviors and across participants,

and the denominator of the BC-SMD includes the variation in the outcome across

participants and across behaviors at a fixed point in time, in the absence of treatment. For

the model given in Equations (4) through (6), the effect size parameter corresponds to

δAB = γ100√
τ 2

0 + ω2
0 + σ2

. (7)

The supplementary materials include a formal derivation of (7). Because the model in

Equation (4) assumes stable baseline and treatment phases, the effect of the treatment is

constant and the variation in the outcome is stable across time points. Consequently, δAB
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does not depend on hypothetical time-points A or B for this particular model specification.

Effect size estimation

In order to calculate the BC-SMD in Equation (7), we need to set the P constants

for fixed effect parameters and R constants for variance components in Equation (1). Based

on the hierarchical model in Equation (4) to (6), the fixed effect parameters are the overall

average outcome in the baseline phase γ000 and the overall average treatment effect γ100.

Thus, the constants for the fixed effect parameters are p1 = 0 and p2 = 1. The numerator

of the BC-SMD is then calculated as ∑2
a=1 paγa = γ100. The variance components are the

between-participant intercept variance τ 2
0 , the between-participant covariance between

participant intercept and treatment effect τ10, the between-participant treatment variance

τ 2
1 , the between-series intercept variance ω2

0, the between-series covariance between the

average outcome and treatment effect ω10, the between-series treatment effect variance ω2
1,

the auto-correlation ϕ, and the within-series residual variance σ2. The R constants for the

variance components are thus r1 = r4 = r8 = 1 and r2 = r3 = r5 = r6 = r7 = 0 so that√∑8
b=1 rbθb =

√
τ 2

0 + ω2
0 + σ2. Substituting the REML estimates for the fixed effect

parameters and variance components and applying Equation (2) and (3) gives the small

sample bias-corrected BC-SMD effect size estimate and standard error.

We used the nlme package in R (Pinheiro et al., 2019) to fit the hierarchical model

and obtain the REML estimation for fixed effect parameters and variance component

parameters. As shown in Table 1, the overall average treatment effect is γ̂100 = 11.052 scale

points and the total variation is τ̂ 2
0 + ω̂2

0 + σ̂2 = 42.896. We used the g_mlm() function in

the scdhlm R package (Pustejovsky et al., 2020b) to calculate the BC-SMD effect size, the

associated standard error, and the confidence intervals. The unadjusted BC-SMD is

estimated as δ̂AB = γ̂100/
√

τ̂ 2
0 + ω̂2

0 + σ̂2 = 1.687 standard deviations. After applying the

small sample corrected degrees of freedom, the adjusted BC-SMD is gAB = 1.659 standard

deviations, with a standard error of 0.306. A 95% symmetric CI for the adjusted effect size



FLEXIBLE METHODS FOR SINGLE-CASE DESIGNS 25

Table 1
Model Estimates for Thiemann and Goldstein (2001) Data

Parameter Est SE

Variance Components
Between-participant var (τ̂ 2) 7.655 8.409
Participant-treatment cov (τ̂10) -6.523 7.344
Participant level treatment var (τ̂ 2

1 ) 5.559 9.846
Between-series var (ω̂2

0) 9.104 5.147
Series-treatment cov (ω̂10) 0.058 5.055
Series level treatment var (ω̂2

1) 14.492 9.820
Auto-correlation (ϕ̂) 0.078 0.059
Within-case var (σ̂2) 26.136 2.074
Total variance (τ̂ 2

0 + ω̂2
0 + σ̂2) 42.896 9.036

Fixed Effects
Intercept (γ̂000) 6.062 1.523
Treatment (γ̂100) 11.052 1.614

Effect Size
Unadjusted (δ̂AB) 1.687 0.311
Adjusted (gAB) 1.659 0.306
Degrees of freedom (ν) 45.070
Constant (κ) 0.246

Log likelihood
Log likelihood -1129.597

is [1.043, 2.276] using the symmetric t approach. The adjusted BC-SMD effect size

estimate indicates that the average outcome in the treatment condition is 1.659 standard

deviations above the average outcome in the baseline condition. This effect size can be

interpreted as the average treatment effect that would be expected in a hypothetical

between-group design where participants were first sampled, behaviors were then sampled

for each participant, and outcomes were assessed at some (arbitrary) follow-up time.

Clustered Multiple Baseline Design

A second variation is the clustered multiple baseline across participants, in which

each case is comprised of a group, such as students in a small group, classroom, or school,

and where the intervention is implemented at the group level. In other words, the
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intervention is introduced at different points in time for different groups while participants

in the same group receive the intervention at the same time. Outcome data are collected at

the individual level within each group. The structure of this design is analogous to a

between-group, cluster-randomized experiment, in which intact groups of participants are

assigned to receive an intervention or control condition. Just as in a cluster-randomized

experiment, we seek to estimate a BC-SMD for the overall average effect of intervention

across groups, accounting for the clustered nature of the intervention assignment process

(Hedges, 2007; Taylor et al., 2021).

We illustrate the effect size estimation process using data from Bryant et al. (2018),

who investigated the effects of an intensive mathematics intervention for second grade

students with severe mathematics difficulties using a clustered multiple baseline design.

The design involved 33 students from 12 groups in 5 schools. The intensive mathematics

intervention was implemented for each group of students at the same time in one school

but at different times for different schools. For each student, outcomes were measured with

Texas Early Mathematics Inventories-Aim Check (TEMI-AC, Texas Education

Agency/University of Texas System, 2009) during the baseline and intervention phases. In

the primary study report, the authors aggregated student data to the group level for

purposes of visual analysis and effect size calculations, which is a common practice with

data from clustered multiple baseline designs. However, in order to examine the variability

of the intervention effects across students and across groups, we use a model based on the

raw, student-level data, without aggregation.1 In this re-analysis, we exclude the

maintenance phase data and focus on the difference in the outcomes between baseline

phase and intervention phase. Student-level data are displayed in Figure 2.

1 The primary study authors shared the student-level raw data with us for this re-analysis.
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Figure 2
Clustered multiple baseline design data from Bryant et al. (2018).
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Model specification

For estimating a BC-SMD effect size from a clustered multiple baseline design, we

first need to specify a model that describes the observed data. In general, an appropriate

hierarchical model for the clustered multiple baseline design will need to include levels for

time-points nested within participants, for participants nested within groups, and for the

groups to which treatment times are assigned. In order to estimate the overall average

intervention effect across students and across groups for the Bryant et al. (2018) study, we

use a three-level hierarchical model, with outcome measurements at the first level, students

at the second level, and groups at the third level.2

Based on Figure 2, at the first level of the model, the baseline and treatment phase

data seem to exhibit upward time trends and changes in the time trends between different

treatment conditions for most students. At the second level of the model, the average

outcome levels in the baseline phase, the baseline time trends, and the changes in time

trends at the first level seem to vary across students (i.e., the second-level units) within the

same group. Take the data from the first group in the first school as example. First, it is

apparent that outcome levels differ for the three students. Second, one student’s baseline

data show no time trend while the other two students’ baseline data indicate upward time

trends but with different slopes. Third, it seems reasonable to conclude that the changes in

the time trends from baseline to treatment phase vary across three students, with increase

for one student and decrease for the other two students. At the third level of the model, it

seems plausible that the average outcome levels vary from group to group. For instance,

the average outcome values in the second group of school 4 or in the first group of school 5

are above 90 while the average outcome in the first group of school 1 is below 60. It is

2 In this study, groups of students are actually nested within schools, which could be represented in the
model as a further level (groups nested within schools). We ignore this aspect of the data for simplicity of
illustration and because the limited number of groups within each school (ranging from one to four) makes
it difficult to separate school-level variation from group-level variation. Thus, we use a three-level model
specification.



FLEXIBLE METHODS FOR SINGLE-CASE DESIGNS 29

difficult to decide whether other level-2 coefficients vary across groups based on visual

analysis. We conducted preliminary analyses and the results supported the assumption

that they are constant.

Let Ytij denote the outcome measure at time t for student i in group j, where

t = 1, . . . , N , i = 1, . . . , mj, and j = 1, . . . , J . Let Tj denote the time after which treatment

is implemented for all students in group j. Let I(t > Tj) be a dummy variable for

treatment assignment, which equals 0 during the baseline phase and equals 1 during the

treatment phase. Both the visual inspection described above and further preliminary

analysis (see Section S2.1 of the supplementary materials) suggest that there might be time

trends during the baseline phase and treatment phase for some students. We therefore use

a three-level model that includes linear time trends in each phase and where time is

centered at time C. The first-level model for the outcome measurements of student i in

school j is then

Ytij = π0ij + π1ijI(t > Tj) + π2ij(t − C) + π3ij [(t − Tij) × I(t > Tj)] + etij, (8)

where π0ij is the average level of outcome at time t = C in the absence of treatment and

π2ij is the linear change in the outcome per session in the absence of treatment. The π1ij

represents the immediate change in the outcomes for student i in group j when treatment

is introduced and π3ij is the additional change in the outcome per session due to the

implementation of treatment. Considering the repeated measurement of outcomes over

time and conventions for statistical analysis of SCDs data, we also assume that the residual

term etij has mean zero, variance σ2, and first-order auto-correlation ϕ.

Second, based on the visual analysis, we assume that the student-specific parameters

π0ij, π2ij, and π3ij vary across students. Thus, the second-level model can be expressed as

π0ij = β00j + r0ij, π1ij = β10j, π2ij = β20j + r2ij, π3ij = β30j + r3ij, (9)
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where β00j represents the average student-level outcome measures in group j in the absence

of treatment and β20j is the average change in the outcome per session across students in

group j in the absence of treatment. The coefficient β10j represents the average

student-level immediate change in the outcome measures after the introduction of

treatment in group j and β30j is the additional average change in the outcome per session

due to the treatment in group j. We assume that these error terms (r0ij, r2ij, r3ij)′ are

multivariate normally distributed with mean (0, 0, 0)′ and covariance matrix

Ω =


ω2

0 ω20 ω30

ω20 ω2
2 ω32

ω30 ω32 ω2
3

 .

Third, we assume that the average student-level outcome measures vary across

groups but that the average time trends are equivalent across the groups. The third-level

model is then given by

β00j = γ000 + u00j, β10j = γ100, β20j = γ200, β30k = γ300, (10)

where γ000 is the overall average level of outcome and γ200 is the overall average change in

the outcome per measurement occasion, in the absence of treatment. The parameter γ100 is

the overall average immediate change in the outcome after the introduction of treatment

and γ300 is the overall average additional change in the outcome per session due to the

treatment. The error term u00j is the deviation from the overall average outcome from the

average outcome in group j and we assume that u00j ∼ N(0, τ 2).

The model in Equations (8) to (10) is just one of many possible specifications that

account for the data structure of a multi-level multiple baseline design. For data series that

demonstrate different patterns in terms of the average outcome level, time trends, or

variability, one might consider a different model specification. For example, if the data do
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not exhibit baseline and intervention time trends at the individual level, one could remove

the time variable and the interaction term between treatment and time in Equation (8).

One might add or remove random slopes at the second or third level of the model based on

the data pattern or knowledge of how individual participants were grouped. Considering

the complexity of model specification, we expect that researchers will need to draw on

theoretical knowledge of the intervention and outcome, visual analysis of the SCD data,

and statistical strategies for model selection for determining an appropriate model.

Effect size definition

Based on our selected model specification for clustered multiple baseline design, a

BC-SMD can be defined by considering a hypothetical cluster-randomized experiment

where the treatment is assigned at the group level. We assume that the treatment is

introduced after time A and outcomes are measured at time B. In such a hypothetical

design, a standardized mean difference effect size would typically be defined as an overall

average effect at follow-up time B, scaled by the total variation in the outcome at time B

in the absence of treatment (Hedges, 2007). In our model specification, the numerator of

the effect size corresponds to the initial average effect γ100 plus the additional change in the

outcome due to treatment over the time from A to B, γ300(B − A). The denominator of

the effect size includes the variation across groups, the variation across participants within

groups, and idiosyncratic within-participant variation as of time B. Thus, the BC-SMD

effect size corresponds to the combination of the model’s parameters

δAB = γ100 + γ300(B − A)√
τ 2

0 + ω2
0 + 2(B − C)ω20 + (B − C)2ω2

2 + σ2
. (11)

Section S2 of the Supplementary Materials includes a formal derivation. Note that the

denominator of Equation (11) depends on the follow-up time B because the model includes

baseline time trends that vary across students (see Equation (9)). If time is centered at

constant B by setting C = B, the effect size simplifies to
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δAB = [γ100 + γ300(B − A)] /
√

τ 2
0 + ω2

0 + σ2.

Effect size estimation

Just as with the replicated multiple baseline design across behaviors, we need to

determine the P constants for fixed effect parameters and R constants for variance

components in Equation (1) in order to calculate a BC-SMD for the hierarchical model

that we have specified. Based on the model specification in Equation (8) to (10), the

constants for the fixed effect parameters are p1 = 0, p2 = 1, p3 = 0, and p4 = B − A, so

that the numerator of the BC-SMD is ∑4
a=1 paγa = γ100 + γ300(B − A). The variance

components include the group-level intercept variance τ 2; the student-level variances and

covariances ω2
0, ω20, ω2

2, ω30, ω32, ω2
3; the auto-correlation ϕ, and the within-student

residual variance σ2. The R constants for the variance components are r1 = r2 = 1,

r3 = · · · = r8 = 0, and r9 = 1, so that the denominator of the BC-SMD can be calculated

as
√∑9

b=1 rbθb =
√

τ 2 + ω2
0 + σ2. Substituting the REML estimates for the fixed effect

parameters and variance components and applying the small sample correction gives the

bias-corrected BC-SMD effect size estimate and standard error.

We used the REML estimates of the fitted model to calculate BC-SMD effect size.

We set the hypothetical treatment time to A = 4, which corresponds to the last

observation of the shortest baseline phase of any of the groups. We set the hypothetical

follow-up time to B = 21 so that the effects size estimate represents the effect of

B − A = 17 days of mathematics intervention, which corresponds to the length of the

shortest treatment phase of any of the groups. We centered the trends at day C = 21 to

simplify the effect size calculation. As shown in Table 2, the numerator of the unadjusted

effect size is the average treatment effect at measurement session 21, calculated as

γ̂100 + γ̂300(21 − 4) = −0.222 − 0.794 × 17 = −13.721. The denominator of the unadjusted

effect size is a linear combination of the variance components at session 21, calculated as

(τ̂ 2 + ω̂2
0 + σ̂2) = 3.975 + 559.647 + 59.075 = 622.698. Thus, the unadjusted BC-SMD is
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Table 2
Model Estimates for Bryant et al. (2018) Data

Parameter Est SE

Variance Components
Between-group var(τ̂ 2) 3.975 43.148
Between-student var (ω̂2

0) 559.647 181.119
Student-trend cov (ω̂20) 16.498 7.175
Student level trend var (ω̂2

2) 0.778 0.352
Student-Trt. × Trend cov (ω̂30) -18.049 7.850
Student level Trend-Trt. × Trend cov (ω̂32) -0.814 0.380
Student level Trt. × Trend var (ω̂2

3) 0.886 0.417
Auto-correlation (ϕ̂) 0.328 0.103
Within-student var (σ̂2) 59.075 4.256
Total variance (τ̂ 2 + ω̂2

0 + σ̂2) 622.698 177.012
Fixed Effects

Intercept (γ̂000) 93.146 5.038
Treatment (γ̂100) -0.222 1.311
Trend (γ̂200) 1.346 0.235
Trt. × Trend (γ̂300) -0.794 0.244

Trt. effect after 21 days
(

P∑
a=1

paγ̂a

)
-13.721 4.743

Effect Size
Unadjusted (δ̂AB) -0.550 0.215
Adjusted (gAB) -0.533 0.208
Degrees of freedom (ν) 24.750
Constant (κ) 0.190

Log likelihood
Log likelihood -1947.094

δ̂AB = (γ̂100 + 17 × γ̂300)/
√

τ̂ 2 + ω̂2
0 + σ̂2 = −.550 with a standard error of .215. The

small-sample adjusted BC-SMD is very similar, gAB = −.533, with a standard error of .208

and a 95% CI based on symmetric t approximation of [-0.962, -0.104]. The adjusted

BC-SMD effect size estimate means that the average outcome of participants across groups

in the treatment condition at time B is .533 standard deviations below the average

outcome in the baseline condition. It represents the average effect at time 21 of introducing

treatment after time 4 in a hypothetical between-group cluster-randomized experiment
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where each group of participants was assigned to receive an intervention or to a control

condition.

Although visual inspection of the data suggests a model with varying intercept

across students and groups and varying time trends and treatment-by-trend interaction

across students, we conducted sensitivity analyses using several other model specifications.

One alternative model was based on assuming stable baselines without time trends.

Another assumed that baseline time trends and treatment-by-time interactions were

constant across participants and across groups, rather than allowing them to vary as in

Equation (9). Full sensitivity analyses results are presented in Section S2.1 of the

Supplementary Materials. We used the AIC, BIC, and likelihood ratio tests for model

comparison. All of these indicators suggested that the model specified in Equation (8) to

(10) fit the data best, which is consistent with the visual inspection. The BC-SMD effect

size estimates based on the models assuming no baseline time trends were positive, with

bias-corrected estimates of about 0.60. In contrast, estimates based on models allowing for

linear time trends in the baseline and intervention phases were all negative, with values

ranging from −0.766 to −0.533. The sensitivity of the BC-SMD estimates from this study

highlights the degree to which effect size estimates from SCDs are contingent on modeling

assumptions, as well as the importance of using visual inspection and domain knowledge to

inform model specification.

As a further sensitivity analysis, we also estimated effect sizes after aggregating the

student-level data to the group level (as done in the primary study report). We then

calculated the BC-SMD effect size based on a hierarchical model for the aggregated

measurements nested within 12 groups, using the simpler two-level approach described by

Pustejovsky et al. (2014). Supplementary Materials Section S2.2 include complete results

from this analysis. The small sample bias-corrected BC-SMD effect size estimate based on

a model with similar specification as the three-level model was −0.951 (SE = 0.435, 95%

asymmetric CI: [-1.834, -0.215]). The estimate based on the aggregated data has the same
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negative sign as those based on the student-level data, but was substantially larger in

absolute magnitude. Analyzing the aggregated data reduces the scale parameter in the

denominator of the BC-SMD and thus overstates the intervention effect.

Overall, our effect size estimates indicate that the intensive mathematics

intervention, as implemented in this study, has a detrimental average effect on student

math performance based on models that account for linear time trends, but a beneficial

average effect based on models that assume baseline stability. In the original paper, the

authors calculated NAP effect sizes, which indicated no overlap for most of the groups.

The NAP estimates suggest a positive intervention effect, consistent with the BC-SMD

effect size estimates without assuming time trends. However, based on the visual analysis

and model comparisons, we put greater stock in the effect size estimates based on models

that include time trends.

Multivariate Multiple Baseline Design Across Participants

A third variation of the multiple baseline design is the multivariate multiple baseline

across participants, where a multiple baseline across participants is applied to evaluate the

intervention effects for not just one, but several, distinct outcome measures. Like other

multiple baseline designs, this design involves staggering the introduction of intervention,

so that different participants receive intervention beginning at different points in time. The

unique feature of the design is that it involves collecting multiple outcome measurements at

each time-point for each participant. As a result, the outcomes may be correlated, leading

to dependence in the effect size estimates.

With currently available methods for estimating BC-SMDs, data from a

multivariate multiple baseline design could be analyzed by fitting separate models for each

of the outcome measures. This approach amounts to treating the study as several distinct

multiple baseline designs across participants, even though the designs all involve the same

participants and interventions and all take place concurrently. We instead propose a
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different approach, which entails analyzing all of the data within a single model that allows

for dependence across outcome measurements. We can then estimate multiple BC-SMD

effect sizes from the model (i.e., one effect size per outcome) and assess not just the

standard errors of each estimate, but also the covariance among the effect size estimates.

Using a single, multivariate model has several potential advantages, which are

similar to the advantages of multivariate methods in other contexts (Snijders & Bosker,

2011, Chapter 16, pp. 282-288). First, applying one single model provides a way to account

for the correlations between pairs of the distinct outcome measures, which is useful if the

effect size estimates are all going to be analyzed in a meta-analysis. Second, because the

correlations among outcome measures are taken into account, the approach allows us to

make comparisons of effect sizes across outcomes, such as estimating a difference between

two effect sizes. Third, using a single model allows the model to borrow information across

outcomes, potentially leading to more precise estimates than those generated from using

separate models for each outcome.

Calder et al. (2020) is an example of a multivariate multiple baseline across

participants. The authors examined the effects of an explicit grammar instruction

intervention on expressive morphosyntax (i.e., conjugation of past tense verbs) and

grammaticality judgement for nine children with developmental language disorder. The

nine participating students were randomly assigned to three distinct intervention starting

points. Therefore, the intervention was introduced at different times across participants

but at the same time for each of the outcomes measured on a given participant. The

authors assessed expressive morphosyntax and grammaticality judgements for both trained

and untrained verbs.3 We analyze the data on untrained verbs to provide effect size

measures describing more generalized effects of intervention. We used a bivariate model,

where two outcome measures were percentage correct on expressive morphosyntax (i.e.,

3 The researchers also assessed the expression and grammaticality judgement of third-person singular verbs
and possessive ’s as an extension and a control for the past tense verbs, respectively. For purposes of
illustration, we limited the analysis to outcomes for the target behavior of past tense marking.
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past tense production on untrained verbs) and grammaticality judgements about

grammatical and ungrammatical sentences with untrained past tense verbs. The raw data

are displayed in Figure 3, with columns corresponding to two distinct outcome measures

and rows corresponding to different participants. For purposes of analysis, we organized

the raw data in a long format where each row includes the outcome-specific response for

one measurement occasion of one participant (Pustejovsky et al., 2020b).

The multivariate multiple baseline across participants reported by Calder et al.

(2020) served as a pilot study for a larger, between-group randomized control trial of the

same intervention (Calder et al., 2021). Outcomes in the between-group design included

expressive morphosyntax and grammaticality judgement measures, just as in the

multivariate multiple baseline design. Outcomes were assessed at the conclusion of a ten

week intervention. The existence of such a between-group design provides further

motivation for estimating BC-SMD effect sizes from Calder et al. (2020).

Model Specification

Generally speaking, to estimate a BC-SMD effect size based on a single hierarchical

model for the data from a multivariate multiple baseline across participants, the model will

describe the repeated measurements (nested within participants) at the first level and

participants at the second level and will allow for the dependence among distinct outcomes.

For the within-participant level (first-level) of the model, we first need to decide whether

the baseline phase and treatment phase data indicate systematic time trends. Figure 3

indicates that baseline and treatment time trends appear to be present for most

participants. For example, for the expressive morphosyntax outcome, P1, P3, P9 seem to

indicate a downward trend while P4 and P8 appear to have an upward trend in baseline,

and most participants appear to have an upward trend in the treatment phase. For the

grammaticaltiy judgement outcome, P8 and P6 seem to demonstrate a downward trend in

the baseline phase and intervention phase, respectively.
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Figure 3
Multivariate multiple baseline design across participant data from Calder et al. (2020).
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At the between-participant level (second-level) of the model, we need to make

assumptions about whether the within-participant level coefficients vary across

participants. Visual inspection suggests that the intercept and time trends in the baseline

or intervention phase vary across participants. Second, we need to determine whether the

baseline level of the outcome, treatment effects, and time trends are different for different

outcome measures. The data in Figure 3 demonstrates different baseline levels, changes in

percent correct, or baseline and intervention time trends across two outcome measures.

Third, we need to consider the correlation structure among the two outcome measures at

each point of time, as well as the heterogeneity for different outcome measures. The two

outcome measures (expressive morphosyntax and grammaticality judgement) might be

correlated because they were measured based on a common sample of participants and they

both tested the participant’s underlying understanding of past tense marking. However, the

within-participant error variance might vary across outcomes because they were measured

with different procedures. Thus, we use a model that allowed for correlation between two

outcome measures and heterogeneous within-participant error variances across outcomes.

Based on the visual analysis above and further preliminary analysis (see Section

S3.1 of the supplementary materials), we fit a two-level model that allows for different

baseline levels, treatment effects, and time trends in the baseline and intervention phase

across outcome measures for each participant, and for varying intercept and baseline time

trends across participants. Let Y 1
ti and Y 2

ti indicate the percentage correct on the expressive

morphosyntax and grammticality judgement of untrained verbs, respectively, for

participant i at time t, where t = 1, . . . , N and i = 1, . . . , m. The model for the k-th

outcome for participant i at time t is

Y k
ti = βk

0i + βk
1iI(t > T k

i ) + βk
2i(t − C) + βk

3i

[
(t − T k

i ) × I(t > T k
i )
]

+ ek
ti, (12)

where βk
0i represents the average level of the k-th outcome for participant i at time t = C in
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the absence of treatment. The βk
1i represents the immediate change in the k-th outcome for

participant i due to the implementation of treatment. The coefficient βk
2i is the linear

change in k-th outcome per measurement occasion for participant i in the absence of

treatment and βk
3i is the additional change in the k-th outcome per measurement occasion

for participant i after introducing the treatment. Finally, (e1
ti, e2

ti)
′ is the vector of

within-participant residuals of the two outcomes, where we assume that the errors have

means of zero and variance-covariance matrix Σ =

 σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

, where σ2
1 and σ2

2

represent the unique within-participant error variances for the expressive morphosyntax

and grammaticality judgement errors, respectively, and ρ12 is the correlation between the

within-participant errors.

At the participant level, we specify the model as

βk
0i = γk

00 + rk
0i, βk

1i = γk
10, βk

2i = γk
20 + rk

2i, βk
3i = γk

30, (13)

where γk
00 represents the average level of the k-th outcome across all participants in the

absence of treatment; γk
10 is the average immediate change in the k-th outcome due to

treatment, which is assumed to be constant across participants; γk
20 is the average change

in the k-th outcome per measurement occasion; and γk
30, is the time-by-treatment

interaction, or average additional change in the k-th outcome as a result of treatment,

assumed to be constant across participants. Finally, we assume that (rk
0i, rk

2i)′ follows a

multivariate normal distribution with mean (01 . . . 0k, 01 . . . 0k)′ and covariance matrix T.

To simply the notation, we present the covariance matrix T for this example as follows:

T =

T00 T02

TT
02 T22

 ,
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where

T00 =

 τ 1
00 τ 1,2

00

τ 1,2
00 τ 2

00

 , T02 =

τ 1,1
02 τ 1,2

02

τ 2,1
02 τ 2,2

02

 , T22 =

 τ 1
22 τ 1,2

22

τ 1,2
22 τ 2

22

 ,

and where τ k
pq denotes the variance or covariance between the errors rk

pi and rk
qi that pertain

to outcome k = 1, 2 and where τ k,l
pq denotes the covariance between the errors rk

pi and rl
qi for

different outcomes, so k = 1, 2 and l = 3 − k.

The model specification in Equation (12) and (13) is based on visual inspection of

the raw data from this particular example of a multivariate multiple baseline across

participants. One could change some of the model aspects to account for the properties of

a different study that used the same design. For example, we may allow β1ik or βk
3i to vary

across participants. In other applications, we might assume a homogeneous

within-participant variance so that Var(ek
ti) = σ2 and Cov(ek

ti, el
ti) = σ2ρkl, or use a different

correlation structure among outcome measures. In addition to the model specification

strategies discussed in the previous applications, we recommend developing models for the

multivariate multiple baseline design across participants by selecting a specification that

fits each of the outcomes individually, then considering how to combine the specifications

into a common model.

Effect size definition

For estimating BC-SMD effect sizes for distinct outcome measures in the

multivariate multiple baseline across participants, we consider a hypothetical

between-group design where participants were randomly assigned to control and

intervention groups, intervention were introduced after time A, and responses for each

outcome measure were collected at time B. The BC-SMD effect size for the k-th outcome

measure is defined as the mean difference in the k-th outcomes at time B if the treatment

were introduced after time A versus if the treatment were never introduced, scaled by the

square root of the variation in the outcomes for k-th measure at time B if the treatment
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were never introduced. The BC-SMD effect size for the k-th outcome measure based on the

model specifications in Equation (12) and Equation (13) is therefore

δk
AB = γk

10 + γk
30(B − A)√

τ k
00 + 2(B − C)τ k

20 + (B − C)2τ k
22 + σ2

k

.

(see Supplementary Materials Section S3 for a formal derivation). When time is centered

on constant B by setting C = B, the BC-SMD effect size for outcome k simplifies to

δk
AB = γk

10 + γk
30(B − A)√

τ k
00 + σ2

k

. (14)

Because the effect sizes are defined based on a single model encompassing multiple

outcomes, we will be able to borrow information across outcomes in order to estimate each

effect size, as well as to estimate the sampling covariance among the effect sizes.

Effect size estimation

To calculate the BC-SMD effect sizes defined in Equation (14) using the parameters

of the hierarchical linear model, the P constants for fixed effect parameters and R

constants for variance components need to be determined for each outcome. According to

the model specification in Equation (12) and (12), the fixed effect parameters are the

outcome specific average in the absence of treatment (γ1
00, γ2

00), the average immediate

change for the k-th outcome (γ1
10, γ2

10), the average change in the k-th outcome per

measurement occasion (γ1
20, γ2

20), and the additional change for the k-th outcome

(γ1
30, γ2

30). Thus, for the expressive morphosyntax outcome, the P constants are p1
3 = 1 and

p1
7 = B − A with other constants equal to 0. For the grammaticality judgement outcome,

the P constants are p2
4 = 1 and p2

8 = B − A with others equal to 0. The numerator of the

BC-SMD is thus calculated as ∑8
a=1 p1

aγ1
a = γ1

10 + γ1
30(B − A) for the expressive

morphosyntax, and ∑8
a=1 p2

aγ2
a = γ2

10 + γ2
30(B − A) for the grammaticality judgement.

The variance components are the between-student intercept variance for expressive
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morphosyntax (τ 1
00), the between-student covariance of outcome specific intercepts (τ 1,2

00 ),

the between-student intercept variance for grammaticality judgement (τ 2
00), the

between-student covariance of expressive morphosyntax trend and intercept (τ 1,1
02 ), the

between-student covariance of expressive morphosyntax trend and grammticality

judgement intercept (τ 2,1
02 ), the between-student covariance of grammaticality judgement

trend and expressive morphosyntax intercept (τ 1,2
02 ), the between-student covariance of

grammaticality judgement trend and intercept (τ 2,2
02 ), the outcome specific between-student

trend variance (τ 1
22, τ 2

22), the between-student trend covariance between two outcomes

(τ 1,2
22 ), the within-student correlation between two outcomes (ρ12), and the within-student

variance for expressive morphosyntax (σ2
1) and for grammaticality judgement (σ2

2). Thus,

for the expressive morphosyntax outcome, the R constants are r1
1 = r1

12 = 1 with other

constants equal to 0. For the grammaticality judgement outcome, the R constants are

r2
3 = r2

13 = 1 with others equal to 0. The denominator of the BC-SMD effect size is thus√∑13
b=1 r1

b θ1
b =

√
τ 1

00 + σ2
1 for expressive morphosyntax and

√∑13
b=1 r2

b θ2
b =

√
τ 2

00 + σ2
2. We

estimated the BC-SMD effect sizes using the REML estimates from the fitted hierarchical

model and applied the small sample correction for obtaining bias-corrected BC-SMD effect

sizes and standard errors for each outcome measure.

Table 3 reports the model estimates and standard errors for the expressive

morphosyntax and grammaticality judgement outcome (in columns). Following the default

in the scdhlm web application, we set A = 5 because it was the last measurement occasion

of the shortest baseline phase. We set B = 14 because it corresponded to the shortest

treatment duration across participants and because it was similar to the ten-session

intervention examined in the subsequent between-group design by Calder et al. (2021).

The effect size estimates thus represent the effect of B − A = 9 sessions of the intervention.

We centered time at C = 14 to simplify the effect size calculation. The numerator of the

unadjusted effect size is calculated with γ̂k
10 + γ̂k

30(14 − 5) for the k-th outcome measure.

The denominator of the unadjusted effect size is calculated with (τ̂ k
00 + σ̂2

k). Thus, the
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Table 3
Model Estimates for Calder et al. (2020) Data.

Expressive
morphosyntax

Grammaticality
judgement

Parameter Est. (SE) Est. (SE)

Variance Components
Between-student var (τ̂ 1

00, τ̂ 2
00) 314.007 (174.175) 66.218 (42.621)

Student level cov btw exp and (τ̂ 1,2
00 ) 78.923 (66.609)

Cov btw exp-trend and (τ̂ 1,1
02 , τ̂ 2,1

02 ) 23.891 (14.809) 7.825 (6.176)
Cov btw grm-trend and (τ̂ 1,2

02 , τ̂ 2,2
02 ) 6.455 (7.093) 6.523 (4.457)

Trend var (τ̂ 1
22, τ̂ 2

22) 2.294 (1.457) 0.697 (0.523)
Trend cov btw exp and (τ̂ 1,2

22 ) 0.743 (0.663)
Corr between exp and (ρ̂12) -0.14 (0.088)
Within-student var (σ̂2) 234.333 (29.75) 134.412 (17.056)
Total variance (τ̂00 + σ̂2) 548.34 (175.989) 200.629 (45.05)

Fixed Effects
Intercept (γ̂00) 22.041 (10.852) 55.038 (6.772)
Treatment (γ̂10) 0.999 (5.296) -1.512 (3.869)
Trend (γ̂20) 0.203 (1.02) 0.274 (0.668)
Trt. × Trend (γ̂30) 3.827 (1.106) 0.108 (0.79)

Trt. effect after 14 sessions
(

P∑
a=1

paγ̂a

)
35.442 (11.017) -0.539 (7.561)

Effect Size
Unadjusted (δ̂) 1.514 (0.56) -0.038 (0.548)
Adjusted (g) 1.454 (0.538) -0.037 (0.537)
Degrees of freedom (ν) 19.416 39.668
Constant (κ) 0.47 0.534

Log likelihood
Log likelihood -1161.705 -1161.705

unadjusted effect size is estimated as δ̂k
AB = (γ̂k

10 + 9γ̂k
30)/(τ̂ k

00 + σ̂2
k) for the k-th outcome

and δ̂1
AB = 1.514 for expressive morphosyntax and δ̂2

AB = −.038 for grammaticality

judgement. The small-sample adjusted effect size is g1
AB = 1.454 with a standard error of

.538 for expressive morphosyntax and g2
AB = −.037 with a standard error of .537 for

grammaticality judgement. A symmetric 95% CI is [0.329, 2.579] for expressive

morphosyntax and [-1.124, 1.049] for grammaticality judgement. The adjusted BC-SMD
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effect size estimate for the expressive morphosyntax indicates that the average outcome in

the treatment condition at time B is 1.454 standard deviations above the average outcome

in the baseline condition. It describes the treatment effect at time B = 14 of introducing

treatment at time A = 5 in a hypothetical between-group design. The adjusted effect size

estimate for grammaticality judgement can be interpreted the same way.

We also estimated BC-SMD effect sizes by analyzing the data for each outcome

separately. The Supplementary Section S3.3 reports results for each outcome. When using

separate models, the biased corrected BC-SMD effect size estimates are g1
AB = 1.423 (SE =

.544) for expressive morphosyntax and g2
AB = −.113(SE = .636) for grammaticality

judgement. For the expressive morphosyntax, the standard error of the bias-corrected

BC-SMD from the separate model is similar to (slightly greater than) the corresponding

standard error from the multivariate model. However, for the gramaticality judgement, the

standard error of the bias-corrected BC-SMD in the separate model is about 18% greater

than that of the single model. This illustrates that the multivariate model can provide

more precise effect size estimates than the separate models.

In Supplementary Materials Section S4, we provide mathematical details about how

to estimate the sampling covariances among BC-SMD effect size estimates, which are

needed for assessing the uncertainty of differences between effect sizes and when including

the effect size estimates in a meta-analysis. The sampling covariance between two BC-SMD

effect size estimates in this example is −0.01, implying a correlation of −0.05. The negative

correlation between the BC-SMD effect size estimates is due to the negative correlation

between within-participant errors of the two outcomes. Although the BC-SMD effect size

estimates are similar in the single multivariate model and the separate models and the

correlation between two BC-SMD estimates is small, we still prefer the results based on the

single multivariate model, given the general advantages discussed in the previous context.
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Discussion

Pustejovsky et al. (2014) proposed a general framework for defining and estimating

BC-SMD effect sizes for across-participant multiple baseline designs. In practice, some

SCDs have a more complex data structure, to which the methods described in Pustejovsky

et al. (2014) cannot be readily applied. In the current study, we discuss the model

specification, BC-SMD effect size definition, and estimation methods for three extensions of

the multiple baseline design, and we demonstrate their application with data from

published SCD studies. First, in designs that involve replicating a multiple baseline across

behaviors or settings for several participants, BC-SMD methods can be used for estimating

an average effect size across behaviors and across participants. Second, in the clustered

multiple baseline design where participants are nested within groups and full groups are

assigned to staggered intervention starting times, BC-SMD methods can be used to

estimate an overall average BC-SMD effect size that is in the metric of the SMD effect size

from a hypothetical cluster-randomized trial conducted with the same groups of

participants (cf. Hedges, 2007). In contrast to applying previously proposed methods to

group-level aggregated data, our approach models individual-level data in order to account

for within-group and between-group variation in the outcomes. Third, in the multivariate

multiple baseline design across participants, we describe an approach that models

dependence across several distinct outcome measures, so that multiple effect sizes can be

defined and estimated based on a common model. We can also estimate the sampling

covariances of the effect size estimates, which is useful for meta-analysis of multivariate

effect sizes.

We have focused on extending the BC-SMD framework to three further variations of

the multiple baseline design. However, the BC-SMD framework is not limited to these

specific designs, and the same principles can be applied to other types of designs that

researchers might use in practice. For example, researchers might use a multiple baseline

across behaviors and replicate the design across participants nested in classrooms or
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schools. In such a design, a BC-SMD effect size could be estimated by fitting a four-level

hierarchical linear model. As another example, researchers might use a clustered multiple

baseline design but collect several related outcome measures. In such a design, our

modeling approach could be further extended to handle both the multi-level structure and

the multivariate outcomes.

Model specification

In extending the BC-SMD framework to these more complex cases, our primary

focus has been on how to define and estimate effect sizes, given an appropriate model

specification. A major outstanding challenge for applying this framework (and for

modeling of SCD data more generally) is how to choose a model specification for a given

application (Li et al., 2021). In the hierarchical models we have applied, one needs to

determine which of the lower-level parameters of the model vary across higher level units.

Different model assumptions can result in different fixed effects or variance components

estimates, leading to different BC-SMD effect size estimates. In the applications we have

reported here, we have used visual inspection to guide the main aspects of model

specification. We also recommend starting from a simple and constrained model, then

relaxing some of the constraints, and conducting model comparison. Researchers might use

information criteria for model comparison. However, the asymptotic approximations

behind information criteria might be violated in SCDs due to the small number of top-level

units (Gurka, 2006), or different comparison criteria might not be consistent. Thus, in

using such criteria, it is important to ensure that statistical analyses are consistent with

visual inspection and knowledge of the population and intervention under study. As in any

quantitative analysis, it is critical for researchers using BC-SMD effect sizes to be explicit

about the model specification and selection process and, when possible, to provide

theoretical rationales for their choices.
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Defining effect sizes

Another challenge for applying the BC-SMD framework is deciding which variance

components should be used for scaling the effect size and which treatment times and

follow-up times should be used for defining the effect size. Because the treatment effects

are standardized with a scale parameter that includes the residual variance at the first level

and the variance components at the second or higher levels of the hierarchical model,

further judgment is needed for choosing an appropriate combination of variance

components. In the context of conducting a meta-analysis of several multiple baseline

designs, we recommend considering the features of all included studies and, to the extent

possible, making modeling choices that are consistent across studies. For instance,

researchers could examine the range of treatment phase lengths across all included studies

and choose treatment and follow-up time-points so that the hypothetical treatment

duration corresponds to a typical treatment duration (e.g., near the middle of the range).

Researchers can also augment their calculations with sensitivity analysis based on longer or

shorter treatment durations, where the range of durations examined is informed by the

range of follow-up times observed across studies. Of course, all of this requires that the

timing of measurement occasions is defined in a clear and consistent fashion across the

included studies. Improvements in the reporting of measurement occasion timing and

related aspects of primary studies (Ledford et al., 2022) would facilitate better integration

in research synthesis.

As another example, consider a clustered multiple baseline design where students

are nested within schools, and where the BC-SMD could be defined by including the

school-level variance components. If treatment is at the school level across most included

studies, then we can include the school-level variance when calculating BC-SMD effect sizes.

However, if most of the other included studies involve implementing an individual-level

treatment in a single school, then the school-level variance cannot be estimated in those

studies. In order to maintain comparability with these other studies, we would recommend
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calculating a BC-SMD effect size for the clustered multiple baseline design that does not

include school-level variance. Regardless of which variance components are used in the

effect size, improvements in open data practices (Cook et al., 2021; Ledford et al., 2022)

would facilitate effect size calculations for clustered multiple baseline designs.

In the clustered multiple baseline design example, we found that the BC-SMD effect

size estimate based on the two-level model for the aggregated data was much larger than

the estimate based on the three-level model for the raw data without aggregation. This is

because the two-level model based on aggregated data had smaller variation that was used

in the denominator of the effect size parameter, resulting in over-estimated BC-SMD effect

size estimates. This over-estimation can be substantial–especially when group sizes are

large. Thus, researchers would ideally use the raw data for model specification and effect

size estimation. However, it might be difficult to access the raw data. In that case, it is

theoretically possible to apply a correction to the effect size estimates of the aggregated

data to receive the effects that would have been obtained if the analyses were based on the

individual data. In between-group designs, this correction is a function of group size and

intra-class correlation (see Chapter 3, Snijders & Bosker, 2011, pp. 17–26). In fact, the

correction factor is larger for larger group sizes and larger intra-class correlation. The exact

form of the correction factor for the clustered multiple baseline design is provided in the

Section S2.3 of the supplementary materials. Although this correction is theoretically

feasible and can be used for adjusting effect size estimates based on aggregated data, it

requires empirical evidence about the intra-class correlation of the outcome, which might

not be available in practice. Therefore, we strongly recommend researchers share raw data

for clustered multiple baseline designs.

With the extension of BC-SMD methods to these variations of multiple baseline

design, it is worth considering how to conduct meta-analysis of SCDs that involve different

types of multiple baselines, especially when both individual-level and clustered multiple

baseline designs are included in a meta-analysis. Researchers could include the BC-SMD
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effect sizes from both variations 1) if the individual level data is available and BC-SMD

effect sizes are estimated based on a three-level model that accounts for clustering in

clustered multiple baseline design, or 2) if the individual level data is not available but the

aggregation correction can be estimated and applied to effect size estimates in clustered

multiple baseline design. Additionally, we recommend that researchers conducting

meta-analyses of single-case designs use moderator analysis to further investigate

differences in effect size for different types of SCDs.

Limitations

The BC-SMD methods that we have described are limited in several respects that

are important to consider. First, the BC-SMD effect size index describes an average

intervention effect across cases (e.g., participants) but does not reflect the change in the

outcome within each individual participant (Odom et al., 2018). Because of its theoretical

comparability to SMD effect sizes for group designs (which also describe an average effect),

the BC-SMD effect size can be used in the research synthesis that includes both single-case

and group design studies. However, if the aim of a synthesis is to examine variation in the

outcome within each case or individual participant, to examine individual-level predictors

of effects, or to summarize results for a review comprised exclusively of SCDs, researchers

might it advantageous to use other methods, such as within-case effect sizes that describe

individual-level intervention effects (Moeyaert et al., 2018; Pustejovsky & Ferron, 2017) or

raw data synthesis methods (Moeyaert et al., 2017; Van den Noortgate & Onghena, 2008).

Secondly, the BC-SMD effect size is defined based on hierarchical linear models that

assume Gaussian errors. The assumption of Gaussian errors might work reasonably well for

typical academic outcomes, but can be a poor approximation for some outcomes in the

form of frequency counts or percentage durations—particularly when the baseline level of

the outcome is near zero. If the distributional assumptions of the model are violated, the

variance component estimators may be biased (Declercq et al., 2018), leading to bias in the
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BC-SMD effect size estimator and in its standard error. Further research is needed to

understand the robustness of current models to non-Gaussian error distributions and to

determine design-comparable effect sizes can be defined and estimated for designs where

Gaussian hierarchical linear models are not appropriate.4

Third, the estimation methods that we have applied are based on approximations

that may not hold with very small samples of cases. For the two-level models described in

earlier work on the BC-SMD, simulation evidence indicated that the methods provide close

to unbiased effect size estimates even with a very limited number of cases, although

accurate estimation of standard errors required more cases (Pustejovsky et al., 2014). The

sample sizes in the three applications that we have presented are relatively large in terms

of the number of participants or groups. Further investigations of small-sample

performance and minimum sample size guidelines are needed for the multi-level models

that we have applied in these more complex forms of multiple baseline designs. It may also

be fruitful to investigate other estimation strategies, such as using model selection

algorithms (Li et al., 2021), Bayesian methods (Swaminathan et al., 2014), or

between-series estimators (Ferron et al., 2014; Joo et al., 2021).

Fourth, the BC-SMD methods require multiple participants for estimating the

between-participant variation that is used in the definition and estimation of BC-SMD

effect sizes. A minimum of three participants was recommended for the treatment reversal

design with replication across participants or multiple baseline designs, but more

participants might be needed for more complex model specification (Valentine et al., 2016).

The three-level BC-SMD approach applies to replicated multiple baseline across behaviors

or settings with multiple participants, or clustered multiple baseline design that includes

multiple participants, or multivariate multiple baseline design across multiple participants.

Given the model complexity in these variations, more participants are preferred for more

4 This poses a particular challenge for multivariate models involving outcomes that might have different
error structures, such as when one outcome can be modeled using Gaussian error distributions but another
outcome should be modeled using a Poisson distribution for frequency counts.
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precise estimation of effect sizes.

Finally, although we have extended the BC-SMD methods in Pustejovsky et al.

(2014) to more complex multiple baseline designs, there remains a need for methods that

can be used with other types of SCDs, such as multi-element designs, alternating

treatments designs, adapted alternating treatment designs, and repeated acquisition

designs (Kirby et al., 2021), as well as to hybrid designs such as multiple baseline designs

with embedded treatment reversals or alternating treatment phases. Recent work has

examined inferential methods and graphical representations for alternating treatment

designs (Manolov et al., 2021), but these methods focus on the individual case level and do

not provide a summary effect size in the same metric as a group design. Extensions for

such designs are a valuable direction for further work because the designs are commonly

used in classroom setting to compare multiple treatments (Kazdin, 2011).

Conclusion

One of the major concerns over use of the BC-SMD for summarizing findings from

single-case studies was that doing so leads to exclusion of evidence from experimentally

valid designs, purely due to the technical requirements of the effect size estimation methods

(Kratochwill et al., 2021; Maggin et al., 2021). The methods that we have described

provide a way to estimate BC-SMD effect sizes for a broader range of single-case designs

than was previously possible. These designs are well-aligned to how interventions are

conducted in schools, and the replicated multiple baseline across behaviors design provides

a more rigorous evaluation of an intervention by incorporating within-participant

replication. The proposed extensions should mitigate concerns over the technical

limitations of BC-SMDs at least partially, although the methods still require data from

multiple participants. This is an inherent constraint required to achieve comparability

between the effect sizes derived from SCDs and those from between-group designs. At the

same time, estimation of BC-SMD effect sizes requires careful model building and can be
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sensitive to the assumptions made, especially those regarding time trends and whether

trends and treatment effects vary across cases. Furthermore, it requires the analyst to be

specific about the form of the hypothetical between-group design for which the effect size is

defined. The aspects of the methods arise inherently because the BC-SMD aims to provide

a common metric with standardized mean differences from between-group designs.

It is worth recognizing that the BC-SMD effect size is just one metric, among many

others, for quantifying the intervention effects from single-case studies. There will certainly

be situations where the limitations of using between-case effect sizes outweigh their

advantages. It is critical that researchers select an appropriate effect size based on the

context and purpose of their work.

Data and Replication Materials

Raw data from all of the examples presented in the paper and R code for replicating

all reported analyses are available on the Open Science Framework at https://osf.io/8eucf.
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