
VOICE TRAINING AS A KEY COMPETENCE FOR

STUDENTS IN TEACHER TRAINING BENEFITTING

FROM A VIRTUAL REALITY CLASSROOM IN HIGHER

EDUCATION. PART 2 - TECHNICAL IMPLEMENTATION

Dr. Ulrike Nespital 1
Gerald Czerney 2
1, 2 Justus Liebig University, Giessen, Germany

ABSTRACT

The project "Making voice and Presence a Virtual Realistic Experience" is
-

Center for Foreign Language and Occupational Competencies (German: ZfbK) at
the University of Giessen, a teaching concept for student teacher training was
developed that includes both the learning and use of a physiologically sound voice
and offers transfer to professional practice. For this purpose, a virtual classroom
featuring avatars of noisy school children was developed. The teaching concept
includes exercises on breathing, posture, articulation and physiological voice
enhancement at the syllable, word, sentence and text levels, up to spontaneous
speech. Utilizing virtual reality (VR) headsets, student teachers practice these
exercises in a realistic classroom environment under the guidance of a speech
scientist. The ultimate objective is to enable future teachers to naturally and
physiologically modulate their voice in professional settings.

Technical implementation relied on contemporary, agile software
development methodologies. After extensive online research, specific software
tools were chosen for successful project execution. This paper discusses both the
technical approach and the software techniques and tools employed.

Keywords: voice training, virtual reality headset, technical implementation

INTRODUCTION

The objective of this article is to further explain the methodology employed

ribes the implemented software
-by-step realization and progressive

value-added stages.

Furthermore, this article presents the fundamentals of virtual reality
(hereafter abbreviated as VR) and the technical background relevant to the
project. Agile software engineering methods were adopted, with Ian

th edition (2018), serving as the
foundational text [1].

Dr. Nespital evaluated various VR headsets to select appropriate hardware
for the project. The choice fell on Pico Neo 3 Pro [4]. Decisive criteria in favour
of the unit were:

 lightweight construction of the device
 capability to run standalone applications and no need for physical

connections like cables to a remote host

The VR headset operates on an Android operating system, commonly used
by various smartphone manufacturers, which allows for convenient software
installation via APK files.

SOFTWARE ENGINEERING INTRODUCTION

Internet research indicated the absence of any existing software applications
meeting the project's specific requirements, necessitating bespoke software
development. Accordingly, a software development project was planned.

As Sommerville notes in his 2018 publication, software systems, being
abstract and intangible, can quickly become complex, difficult to navigate, and
hence challenging to maintain. To manage this complexity, the use of structured
software engineering methods is essential [1].

The core activities include [1]:

 Software specification: Definitions of the software requirement and
the framework for its deployment.

 Software development: Building the software using one or more
software tools.

 Software validation: Ensuring that the created software corresponds
to the requirements and functions error-free.

 Software maintenance: Further development and refactoring
(revision of the product) of the software in order to adapt it to
changing requirements.

The following product characteristics were considered when planning the
software project [1]:

 Acceptability: The user of the software must be able to operate and
use it comfortably and easily.

 Reliability: The software must be created to be reliable, information
and operationally secure.

 Efficiency: The software shall be designed to be resource efficient
in terms of system resources such as microprocessor utilization and
memory usage.

 Maintainability: The software shall be developed in such a way that
changes can be easily inserted, and the created software can be
easily imported into the target hardware.

SELECTION OF THE PROCEDURE MODEL

Various methods and paradigms exist for software development, often
described in procedure models. Sommerville discusses several such models, two
of which were relevant for our project [1]:

 The Waterfall Model: Encompasses sequential phases such as
software specification, development, validation, and enhancement.

 Incremental Development: Iteratively runs through the steps of
software specification, development, and validation until an initial
product version is satisfactory.

In the Waterfall model, each phase must be completed before the next one
begins. However, in practicality, these phases often overlap. Incremental
development allows for greater flexibility, letting the project adapt to changes in
requirements. Given the project's initial lack of detailed requirements, the
incremental approach was adopted to allow for rapid and flexible responses to any
changes [1].

In incremental development [1], the stages of software specification, software
development, and software validation are executed in similar fashion to traditional
models. However, the focus here is on defining small, manageable software
packages that are individually specified, developed, and validated. Following
each validation step, the project's requirements are re-evaluated based on the
current state of the software, allowing for necessary adjustments

Since only rough requirements were available in this software project, the
incremental approach was chosen in order to react as quickly and flexibly as
possible to changes in requirements.

SOFTWARE SPECIFICATION

The project aimed to create a virtual world featuring a classroom environment
with avatars that can move and produce sound. From this overarching goal, the
following functional requirements were distilled for software implementation:

 Virtual classroom featuring school children avatars
 Activation buttons for avatars
 Sound files and avatar movements triggered upon activation

 VR headset view projection via an external projector
 Reusability of existing development environments and assets
 Application of simple software development methods
 Scalable avatar control
 Quick VR headset update capabilities

Fig. 1. Virtual classroom with avatars and control buttons

Product characteristics should be considered as follows:

Acceptability:

 User-friendly buttons should facilitate avatar activation and
deactivation.

 Avatars must appear lifelike.

Reliability:

 The software should operate without errors.

Efficiency:

 Seamless performance is essential - without the user noticing judder
or anything similar in the VR world.

 Assets and software development tools should be used that incur as
few costs (licensing costs) as possible or are reusable.

Maintainability:

 Changes should be straightforward to implement.
 Audio files should be easily integrated.
 New versions of the software application should be easy to install

on the target hardware (VR headset) without much effort.

SOFTWARE DEVELOPMENT AND SOFTWARE
COMPONENTS

The conception phase took up a significant amount of time, primarily because
the development team consisted of a single individual. As a result, the
responsibility for the feasibility study could not be distributed. Several
development tools were evaluated with the support of various vendors to
determine their suitability for developing the Virtual Reality (VR) environments
needed for the seminars. The feasibility study concluded that Unity VR was the
most appropriate tool for the task. Its ease of learning, coupled with its flexible
graphical and script-based development interfaces, made it an ideal choice.
Additionally, Unity VR allows easy integration of various assets like avatars, their
animations, and sound files all crucial components for our software solution [7]
[2].

Fig. 2. -time 3D development engine

For the VR world's foundation, pre-developed assets like a classroom setting
were purchased from Unity's asset store [7]. These assets included a classroom
environment complete with tables, chairs, and other class-specific utensils.

For the creation of the avatars, the online tool Readyplayer Me [6] was best
suited for our purposes. It is very easy to use, has many options to equip the
avatars with many different accessories. You can customize the avatars' face
shape, hair colors, hairstyles and much more. Additionally, it allows for the
importation of real-person portraits to generate avatars. The created avatars are
fully compatible with the Unity VR development environment and can be easily
integrated therein [7].

For the avatars to move, they must be combined with software extensions
called animations. For linking the avatars with already available animations, the

tool [3] was used. This platform offers a substantial library of animations that can
be associated with avatar-specific files previously imported into the tool. Once
modified, these files are integrated back into the Unity VR environment and can
be paired with one or multiple avatars [7].

For the auditory aspect, sound files were recorded using resources from the
private environment of the authors. These sound files could be easily integrated
into the VR development environment.

A crucial aspect of the feasibility study was the licensing of components.
While many vendors impose fees for commercial, educational, or personal use of
their products, the majority of the tool providers referenced in this project were
amenable to granting complimentary usage licenses. This generosity was largely
because the software was intended for non-commercial educational purposes
within a university setting. The sole exception was the animation vendor, who
imposed a monthly licensing fee. The virtual reality (VR) world assets were
purchased outright, thus eliminating any concerns over licensing for those
particular components. As for the audio files, we ensured compliance with legal
requirements by obtaining signed consent statements from each respective
speaker.

The initial implementation of the software solution equipped participants
with a dynamic training environment. In this virtual setting, users could interact
with various groups of avatars modeled after noisy school children. These avatar
groups were linked to different sources of loud noises, allowing participants to
adjust the noise intensity in a scalable manner. Initially, participants engaged with
quieter avatar groups to establish a baseline for vocal training. As the training
progressed, they had the option to introduce increasingly noisy avatar groups,
adding layers of complexity to the vocal challenges. This approach intensified the
training experience over the course of the seminar. Additionally, participants had
the flexibility to turn off individual avatar groups or all of them simultaneously
via designated "stop" buttons.

Expansion stage 1

To enhance the realism of the virtual environment, we activated a feature
known as "spatial audio," which is natively supported by the Unity development
environment [7]. Once connected to the sound sources within the environment,
this feature dynamically modulates audio levels, making sounds louder as one
approaches and quieter upon moving away.

Expansion stage 2

Feedback collected from student teachers after the first semester revealed a
key shortcoming: although the seminar enabled them to practice vocal modulation

against noisy avatars, the lack of reactive behavior from these avatars led to an
unsatisfactory experience.

To address this issue, we sought a speech recognition solution that could offer
reliable command recognition without significantly taxing the system's
computational resources. Our research identified "Rhino" from Picovoice Inc [5]
as the most fitting choice. The company provided easily comprehensible C# script
examples, which were rapidly integrated into the Unity development environment
for testing [7].

We customized these scripts to meet our specific requirements. Now,
participants can issue vocal commands to the noisy avatars, prompting them to
quiet down. This enhancement has resulted in a more engaging and efficient
training environment for voice modulation.

TECHNICAL LIMITATIONS

During the development and testing phases, we observed that the software's
performance decreased as the number of avatars in the virtual environment
increased, manifesting as black areas within the user's field of vision. Consultation
with Unity's support team [7] revealed that the microcontroller within the VR
headset reached its performance limits under these conditions. Subsequent tests
indicated that a maximum of approximately 20 avatars could coexist within the
same VR environment without performance degradation.

The application largely functions without an internet connection, save for a
brief moment required for the voice recognition software, Rhino, to validate its
authentication code with Picovoice's server [5].

CONCLUSION

Every project typically begins with a vision a goal or an expectation to be
fulfilled. In this case, the vision was to create a virtual environment where student
teachers could train their voices under expert guidance. Thanks to close
collaboration between Dr. Ulrike Nespital, the seminar leader, and Gerald
Czerney, the software engineer, we succeeded in bringing this vision to life.

Extensive online research led to efficient and user-friendly tools, which
significantly simplified the technical execution of the project. Among these, the
incorporation of the voice recognition system marked a significant advancement,
enabling student teachers to gain instant feedback by silencing noisy avatars. It is
crucial to note, however, that expert evaluation from speech scientists remains
indispensable as the system does not assess vocal quality.

The software solution has garnered positive acclaim for its robust
performance, stability, and immersive experience, as evidenced by numerous

commendations received from seminar participants (see Nespital/Czerney article
from the NORDSCI 2023 Conference).

Looking ahead, a promising avenue for further development would be to
implement an algorithm capable of evaluating whether the voice is being used in
a manner that minimizes strain, thereby adding another layer of sophistication to
the training environment.

REFERENCES

[1] Sommerville, I. Software Engineering, 10th edition Germany, 2018;

[2] Theis, T., Einstieg in Unity, Germany, 2017

[3] https://www.mixamo.com/#/

[4] https://www.picoxr.com/de/products/neo3-pro-eye

[5] https://picovoice.ai/

[6] https://readyplayer.me/de/avatar

[7] https://unity.com

