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Abstract13

The fit of an item response model is typically conceptualized as whether a given model could have14

generated the data. We advocate for an alternative view of fit, “predictive fit”, based on the model’s15

ability to predict new data. We derive two predictive fit metrics for item response models that assess16

how well an estimated item response model (i.e., a data analysis model) fits the data-generating17

model. These metrics are based on long-run out-of-sample predictive performance (i.e., if the18

data-generating model produced infinite amounts of data, what is the quality of a data analysis19

model’s predictions on average?). The fundamental difference between these metrics is the20

definition of out-of-sample on which they are built, which is complicated by item responses being21

cross-classified within items and persons. Via simulation studies, we show that (1) considering22

persons to be out-of-sample—as psychometricians often do—preferences more parsimonious23

models; (2) that when data is generated from a 3PL model, a 3PL data analysis model tends to24

make better predictions than a 2PL data analysis model with larger sample sizes, lower average25

ability, and lower average discrimination; and (3) that multidimensional models have better26

predictive fit when the correlation between ability factors is lower. We discuss implications for27

cross-validating item response models in practice.28

Keywords: Item response theory; Fit; Prediction; Model comparison; Cross-validation29
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Predictive Fit Metrics for Item Response Models30

Introduction31

A focal point of psychological measurement is item response data generated when persons32

respond to items (e.g., multiple choice items in educational assessments). Item response models are33

statistical models fit to such item response data. As with most statistical models, more and less34

flexible versions of item response models are available. Consider the common family of35

unidimensional models dichotomous item responses: The one-parameter logistic (1PL), the36

two-parameter (2PL) logistic, and the three-parameter (3PL) logistic models. The 1PL model is the37

least flexible, with just a difficulty parameter for each item (Rasch, 1960). The 3PL model is the38

most flexible, with a difficulty, discrimination, and guessing parameter for each item (Birnbaum,39

1968).40

Suppose that data is generated by a 3PL model (i.e., the data-generating model, abbreviated41

“DGM”) and that both a 2PL model and 3PL model are estimated using this data (i.e., data analysis42

models, abbreviated “DAM”). What does it mean for one of these DAMs to “fit” the data? In item43

response theory research literature, fit is most commonly defined by whether the DAM could have44

produced the data (DiTrapani, 2019). For example, the M2 statistic compares the expected45

(according to the DAM) to the observed (by counting the data) moments of a contingency table46

(Maydeu-Olivares & Joe, 2005). Essentially, if these moments are similar enough, then we fail to47

reject lack of fit.1 Similarly, posterior predictive checks use the DAM to simulate data, use48

discrepancy measures to compare that simulated data to the observed data, and then conclude49

whether the DAM could have produced the observed data based on those discrepancy measures50

(Sinharay, Johnson, & Stern, 2006).51

Item response model simulation studies, which are commonly used to guide usage in52

empirical settings, often take a similar view of fit. Luecht and Ackerman (2018) summarize a great53

1 This comparison can also be translated into a goodness-of-fit metric such RMSEA2 (Steiger, 1990).
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many of these simulation studies as following the comparative model fit script, wherein (1) a DGM54

model is chosen (e.g., the 3PL), (2) item and person parameters are specified and item response55

data is simulated, (3) a variety of DAMs are estimated using the simulated data, and (4) those56

DAMs are compared. Luecht and Ackerman (2018) point out that inevitably it is concluded that the57

DAM with the same parameterization as the DGM best fits the data. Going a step further, they58

remark that “one might even conclude that that result is axiomatic, thus eliminating the need to ever59

again again see this type of IRT simulation study published” [p. 66].60

As an example of such a simulation study, consider Kang and Cohen (2007) who evaluated61

the effectiveness of a variety of item response model comparison methods such as AIC and BIC.62

They simulated data via the 3PL DGM, and fit 1PL, 2PL, and 3PL DAMs to the simulated data.63

Finally, and this is crucial, they evaluated a model comparison method’s (e.g., BIC) performance64

according to its ability to choose the 3PL DAM as the best fitting model. Their implicit assumption65

was that, by definition, if a 3PL model generated the data, then a 3PL DAM must best fit the data.66

After all, no other model could have produced the data. One of their conclusions was that BIC67

performed poorly for data generated from a 3PL model because BIC preferred a simpler (than the68

3PL) model. Other research on model comparison methods has used similar logic: Svetina and69

Levy (2016) negatively judged NOHARM, a method for detecting the dimensionality of item70

response data, based on its tendency to find fewer than the data-generating number of dimensions at71

low sample sizes.72

An Alternative Approach to Fit, Predictive Fit73

We have summarized this previous work to illustrate how fit is often conceptualized in the74

item response theory research literature. An alternative approach, which has gained traction in75

statistics and computer science, is predictive fit (Gelman, Hwang, & Vehtari, 2014). The76

fundamental logic of predictive fit is that the model with the best predictions is likely to be the most77

useful. Box (1976) famously wrote that “all models are wrong” [p. 66]. Perhaps less famously,78

Rasch (1960), in the same text that introduced the Rasch model, wrote, “When you construct a79
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model you leave out all the details. . . Models should not be true, but it is important that they are80

applicable” [p. 38]. Indeed, a compelling way to assess how applicable or useful an item response81

model is by the quality of its predictions. Following Gelman et al. (2014), we define the predictive82

fit of an item response model by how well it predicts new data from the DGM. As is common, we83

refer to new data as out-of-sample data, as compared to in-sample data which was used to estimate84

the model’s parameters.85

In operational settings, we cannot know that the data came from an item response model, but86

rather that item response models can characterize the data usefully. The better an item response87

model’s predictions, the better it has characterized the data, and the more we can trust its88

conclusions. Further, we argue that many item response model simulation studies would be more89

valuable if they assessed models according to their predictive fit. The predictive fit view argues that90

it’s better to have a DAM that produces high-quality predictions than it is to have a DAM with the91

same parameterization as the DGM. Accordingly, Kang and Cohen (2007) might have judged92

model selection methods not by their ability to identify the DGM, but instead by their ability to93

select the DAM that makes the best predictions.94

Predictive fit isn’t how fit tends to be thought of in item response theory research literature,95

but it isn’t new either: Lord (1983) argued that the Rasch model should be preferred at small96

sample sizes, even if it is known to be the “wrong” model, precisely because it might offer better97

predictions. Indeed, psychometricians often compare item response models using information98

criterion such as AIC and BIC (Maydeu-Olivares, 2013). Information criterion essentially takes the99

predictive fit view: A penalty is added to the in-sample likelihood in order to be asymptotically100

equivalent to comparing models by predictive fit under a specific definition of the prediction task101

(Shao, 1997).102

Our goal is to forward the predictive fit view by taking a step back and delineating two103

distinct prediction tasks for an item response model. The first prediction task, which we name104

“missing responses”, is to predict the probability of a missing item response. The second prediction105
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task, which we name “missing persons” and is the view that information criterion for item response106

models usually takes, is to predict the probability of all of the responses from a new, randomly107

drawn person. These two prediction tasks correspond to two predictive fit metrics, which we define108

as measures of how well an item response model predicts new data from the DGM.109

We focus on the theoretical case when the DGM is known, such as a simulation study. In this110

case, the predictive fit metrics can be calculated exactly. In particular, when the DGM is known, we111

can directly measure a DAM’s predictive performance on the distribution of data produced by the112

DGM. Conceptually, this is equivalent to using the DGM to simulate an infinite amount of113

out-of-sample data, and then measuring a DAM’s fit to the DGM based on its predictive114

performance for this (infinite) out-of-sample data. Despite our focus on theortical conditions, we115

aim to lay the groundwork for future advances in item response model comparison methods in116

operational settings. In practice, when the DGM is not known, the predictive performance metrics117

can be estimated by hiding part of the data from the model so as to serve as out-of-sample data.118

This is known as cross-validation and it needs to be implemented based on which prediction task119

(and metric) is of interest. For example, Bolt and Lall (2003) implemented a cross-validation120

technique that corresponds to the missing person prediction task, and Bergner et al. (2012)121

cross-validated item response models in a way that corresponds to the missing responses task. We122

proceed by developing the two predictive performance metrics, but we return to the issue of model123

comparison in practice in the discussion.124

Organization. We first describe the two possible prediction tasks which correspond to125

different definitions of out-of-sample for item response data. Second, we derive two predictive fit126

metrics based on these two definitions. Third, we show the behavior and utility of these metrics in127

four simulation studies. We close by discussing implications, including suggestions for model128

comparison in practice.129
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Out-of-sample for Item Response Data130

Let Y represent an observed item response matrix. yi j is an observed dichotomous item131

response where yi j = 1 indicates that the ith person responded correctly to the jth item and yi j = 0132

indicates that they responded incorrectly. Item response theory provides a framework for modeling133

Y . The fundamental building block of item response theory is the item response function (IRF)134

which gives the probability that a person will respond correctly to (or positively endorse) an item.135

The 3PL IRF is commonly used and is specified as136

Pr(yi j = 1) = c j +(1− c j)F(a jθi +b j) (1)

where θi is the ith person’s ability; a j, b j, and c j are the jth item’s discrimination, easiness, and137

guessing parameters respectively; and F is the sigmoid function, F(x) =
ex

1+ ex . The two parameter138

logistic (2PL) and one parameter logistic (1PL) IRFs can be thought of as constrained forms of the139

3PL IRF. The 2PL IRF constrains the guessing parameter c j to 0. The 1PL IRF constrains the140

guessing parameter c j to 0 and the discrimination parameter a j to 1.2141

The goal of predictive fit metrics is to measure how well a DAM predicts out-of-sample data142

from the DGM, but what, exactly, should be considered out-of-sample? Should it be the person, the143

item, or the item responses that are out-of-sample? The fact that item responses are cross-classified144

within persons and items complicates this discussion (Furr, 2017). If entire persons are145

out-of-sample, then in-sample ability estimates are unavailable, meaning that they cannot be used to146

generate predictions. On the other hand, if it is single item responses that are out-of-sample, then147

we can use a person’s responses to in-sample items to generate in-sample ability estimates, but this148

fundamentally changes the measure by which we are evaluating a model’s performance.149

We denote some arbitrary out-of-sample matrix Ỹ . We consider two3 versions of Ỹ , which150

2 Typically, but not always, the specification of the IRF is the Person Ae for each item on an exam. For example, as is

common, we refer to the case where each of the items has a 3PL IRF as a 3PL model.

3 Both involve in-sample items. However, work by De Boeck (2008) proposes random item response models wherein

out-of-sample items are tractable; future work could potentially focus on this case.
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vary based on what is considered out-of-sample.151

The first version of Ỹ comes from in-sample persons responding to in-sample items. We152

denote this out-of-sample matrix as Ỹ MR, with “MR” abbreviating “Missing Responses”. The unit153

of observation for Ỹ MR is the item response. The missing response on the left of Figure 1 shows that154

Person A’s response to item 1 is missing. The DAM’s prediction task is to estimate the probability155

of this missing response. To do so, the DAM can use the other persons to estimate the Item 1’s156

parameters and the other items to estimate Person A’s ability. This logic can be applied to each157

entry Ỹ MR, and therefore Ỹ MR has the same dimensions as Y . Adaptive testing is an application in158

which the Missing Responses prediction task might make sense: The goal of an adaptive testing159

engine is often to next assign an item that the person has a fixed chance (e.g., 50%) of responding160

correctly to. Accordingly, the model that can best estimate these probabilities is most useful.161

The second version of Ỹ comes from out-of-sample persons responding to in-sample items.162

We denote this out-of-sample matrix as Ỹ MP, with “MP” abbreviating “Missing Persons”. The unit163

of observation for Ỹ MP is a person’s vector of item responses. The bottom row on the right of164

Figure 1 represents a new person, Person D, responding to each of the items for the first time. The165

prediction task is for the DAM to estimate the likelihood of all of Person D’s item responses. We166

can use the other persons to estimate item parameters, but we have no way to estimate Person D’s167

ability. As a result, we have to make a prediction about their entire vector of item responses—the168

unit of analysis—by treating ability as a nuisance variable; to do this, we average (i.e., integrate)169

over the distribution, denoted g(θ), from which we assume Person D’s ability originates.4 So that170

Ỹ MP has the same scale as Y , we might consider there to be as many missing persons as there are171

persons in Y . Traditional linear testing is an application in which the Missing Persons prediction172

task might make sense: It is unknown who will walk through the door to take the assessment next,173

and a reasonable goal might be to prefer a scoring model that can best estimate the probability of174

4 This is how marginal maximum likelihood estimation (MMLE) treats ability when calculating likelihood (thus,

“marginal” likelihood) (Baker & Kim, 2004).
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their string of item responses.175

Figure 1. Understanding the two out-of-sample item response matrices, Ỹ MR and Ỹ MP

Predictive Fit Metrics176

We now derive a predictive fit metric for each of Ỹ MR and Ỹ MP. In general, both metrics177

measure how well a DAM predicts all possible out-of-sample matrices that the DGM might178

produce, weighted by their probability of being produced. Both metrics begin with the likelihood of179

a single Ỹ according to a model fit to Y , which we generically denote model(Y ). This is known as180

log predictive likelihood (lpl), which can be thought of as a function that takes Ỹ and a model fit to181

Y as inputs and outputs the log of the likelihood of Ỹ according to that model (Gelman et al., 2014):182

lpl(Ỹ ,model(Y )) = log P̂r(Ỹ |model(Y )). (2)

Metric 1: Expected Log Predictive Likelihood for Missing Responses (ELPL-MR)183

Calculation of lpl for Ỹ MR is relatively straightforward because we can use estimates of184

person abilities so that185

lpl(Ỹ MR,model(Y )) = log P̂r(Ỹ MR|model(Y )) =
I

∑
i=1

J

∑
j=1

log P̂r(ỹi j|ψ̂j , θ̂i) (3)

where yi j is an item response from Y MR, ψ̂j is item j’s vector of parameter estimates from186
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model(Y ), and θ̂i is person i’s vector of ability estimates from model(Y ). The most common item187

response model estimation method, marginal maximum likelihood estimation (MMLE), does not188

directly provide ability estimates, but these are easily obtained using an estimation technique such189

as expected a-posteriori (EAP) or maximum a-posteriori (MAP) estimation after item parameters190

are estimated (Bock, 1983; Casabianca & Lewis, 2015)]. To be concrete, in the case of the191

dichotomous unidimensional 2PL model specification192

lpl(Ỹ MR,model(Y )) =
I

∑
i=1

J

∑
j=1

ỹi j log
(
F(â jθ̂i + b̂ j)

)
+(1− ỹi j) log

(
1−F(â jθ̂i + b̂ j)

)
. (4)

Of course, there are many possible out-of-sample item response matrices Ỹ MR. The measure193

of model performance should be reflective of the true DGM in general, not one particular Ỹ MR. Let194

f (Ỹ MR) represent the data-generating distribution of Ỹ MR. When the DGM is an item response195

model, f (Ỹ MR) includes the data-generating parameters for each item, ψj , and the data-generating196

abilities for each person, θi. The out-of-sample predictive performance metric of interest is197

Expected Log Predictive Likelihood for Missing Responses (ELPL-MR), which is the expectation198

of lpl taken over f (Ỹ MR):199

ELPL-MR(model(Y)) = E
[
lpl(Ỹ MR,model(Y )

]
=
∫ I

∑
i=1

J

∑
j=1

log P̂r(ỹi j|ψ̂j , θ̂i) f (Ỹ MR)dỸ MR. (5)

In essence, ELPL-MR can be thought of as a function that takes a model fit to Y as input and200

outputs the expectation of the log likelihood of Ỹ MR.201

Ultimately, f (Ỹ MR) determines the data-generating probability of each item response. In the202

dichotomous case, let πi, j represent the true data-generating probability of the ith person203

responding correctly to the jth item. Similarly, let π̂i, j represent the probability of the ith person204

responding correctly to the jth item as estimated by the DAM.5 ELPL-MR can then be reduced to205

5 That is, π̂i, j = Pr(yi, j = 1|ψ̂j , θ̂i) and when the DGM is an item response model, πi, j = Pr(yi, j = 1|ψj ,θi).
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ELPL-MR(model(Y)) =
I

∑
i=1

J

∑
j=1

πi, j log(π̂i, j)+(1−πi, j) log(1− π̂i, j). (6)

One way to think about equation 6 is that ELPL-MR is the weighted average of the log206

likelihood, where the weights are determined by the true probabilities. As an example, consider a207

DAM that predicts that an item response will be correct at a rate of 0.8 but the true data-generating208

probability is 0.9. The long-run log likelihood of the item response according to the DAM is209

0.9log0.8+0.1log0.2≈−0.36. Translating back to the probability scale, the long-run likelihood210

is exp(−0.36)≈ 0.70.211

Metric 2: Expected Log Predictive Likelihood for Missing Persons (ELPL-MP)212

We now derive the predictive fit metric for when the prediction task is the vector of responses213

for persons not known to the model as is a row vector, yu, from Ỹ MP. Calculation of lpl for Ỹ MP is214

complicated by the fact that the persons in Ỹ MP are out-of-sample and therefore unobserved in Y ;215

hence, ability estimates are unavailable. However, as is standard in MMLE, we can calculate a216

marginalized likelihood by taking the expectation over ĝ(θ), the distribution of ability as estimated217

by the DAM6 (Baker & Kim, 2004). We begin by calculating the lpl of yu:218

lpl(yu,model(Y )) =
∫

P̂r(yu|θ)ĝ(θ)dθ =
∫ [ J

∏
j=1

P̂r(yu j)|ψ̂j ,θ)

]
ĝ(θ)dθ (7)

Next, we need to account for the data-generating distribution of Ỹ MP, which is captured by219

πu, the probability of a random person from the DGM producing yu. There are U possible response220

patterns (e.g., a dichotomous test with J items has U = 2J possible response patterns). Assuming221

the DGM is an item response model, we calculate πu as follows:222

6 For example, the mirt R package assumes that g(θ) follows a normal distribution by default. When fitting a 1PL

model, the mean is fixed to 0 and the variance is estimated (Chalmers, 2012). When fitting a 2PL model, the mean is

fixed to 0 and the variance is fixed to 1 (these fixed ability parameters are compensated for by free estimation of item

difficulties and item discriminations, respectively).
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πu =
∫

Pr(yu|θ)g(θ)dθ =
∫ [ J

∏
j=1

Pr(yu j)|ψj ,θ)

]
g(θ)dθ . (8)

The out-of-sample predictive performance metric of interest is Expected Log Predictive223

Likelihood for Missing Persons (ELPL-MP), which is the expectation of lpl over each possible yu:224

ELPL-MP(model(Y )) = E [lpl(yu,model(Y ))] =
U

∑
u=1

πu · lpl(yu,model(Y )) (9)

As with ELPL-MR, ELPL-MP can be thought of as a function that takes a model fit to Y as225

input and outputs the expectation of the log likelihood of Ỹ MP. Putting it all together, we arrive at226

??ELPL-MP(model(Y ))=
U

∑
u=1

(∫ [ J

∏
j=1

Pr(yu j)|ψj ,θ)

]
g(θ)dθ

)(∫ [ J

∏
j=1

P̂r(yu j)|ψ̂j ,θ)

]
ĝ(θ)dθ

)
.

(10)

In practice, integrals can be approximated using Gauss-Hermite quadrature (Embretson &227

Reise, 2013).228

Simulation Studies229

To demonstrate the behavior and utility of the two predictive fit metrics, ELPL-MR and230

ELPL-MP, we conducted four simulation studies. The first revisited Kang and Cohen (2007) using231

predictive fit. The second and third both used a 3PL DGM and explored the role different ability232

distributions, sample sizes, and item architectures play in which of the 1PL, 2PL, and 3PL DAM233

have the best predictive fit. The first three simulation studies used exclusively unidimensional (a234

single ability factor); the fourth compared models with varying numbers of factors.235

In each of the simulation studies, we used R for computing (R Core Team, 2019). We used236

the R package, mirt, to fit DAMs using MMLE with the EM algorithm and 61 quadrature points237



IRT PREDICTIVE FIT 13

(Chalmers, 2012). We used custom written functions to calculate ELPL-MR and ELPL-MP for238

each DAM. In particular, we calculated ELPL-MR using equation 6. We estimated abilities using239

both MAP and EAP with the usual standard normal prior. Because results using EAP and MAP240

were nearly identical, we report only results using EAP ability estimates.7 We calculated ELPL-MP241

using equation ??. Integrals were approximated using Gauss-Hermite quadrature with 61 points242

(Embretson & Reise, 2013). We used the suite of R packages known as the tidyverse for data243

wrangling and visualization (Wickham, 2017). Materials to reproduce this paper, including244

functions to estimate ELPL-MR and ELPL-MP, are available at [blinded GitHub link].245

Methods for Simulation Study 1246

In Simulation Study 1, we revisited Kang and Cohen (2007) who evaluated model selection247

methods (e.g., BIC) via their capacity to identify the DAM with the same parameterization as the248

DGM (e.g., a model selection method should choose the 3PL DAM if the 3PL DGM was used). We249

wondered whether the 3PL DAM actually had the best predictive fit in the conditions in which they250

conducted their simulation study. We focused on the six conditions from Kang and Cohen (2007)251

that came from crossing the DGM (1PL, 2PL, or 3PL) and sample size (500 or 1000 persons). In252

each condition, we used 20 items and drew abilities from a normal distribution, θ ∼ N(0,1). We253

used their exact item parameters as reported in Table 4 of Kang and Cohen (2007).8 For the 1PL254

DAM, we set all discriminations to 1 and all guessing parameters to 0. For the 2PL, we set all255

guessing parameters to 0. We conducted 500 “replications” for each condition. A replication256

consisted of the following steps: Simulate data using the DGM; fit a 1PL, 2PL, and 3PL DAM to257

the simulated data; and calculate the predictive performance metrics, ELPL-MR and ELPL-MP, for258

each of the DAMs. We considered the best-fitting model (i.e., the winning model) to be that which259

7 Maximum likelihood ability estimates aren’t feasible because of completely perfect and imperfect response vectors.

Future work might consider alternatives like weighted likelihood estimates (Warm, 1989).

8 These were generated in the original study by randomly drawing difficulties from a normal distribution, b∼ N(0,1),

discriminations from a log-normal distribution, a∼ Lognormal(0,0.5), and guessing parameters from a beta

distribution, c∼ B(5,17).
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has the maximum ELPL-MR or ELPL-MP value. Our hypothesis was that the winning DAM would260

not always have the same parameterization as the DGM, especially at lower sample sizes.261

Results for Simulation Study 1262

Table 1 shows the number of replications in which each DAM won according to both263

ELPL-MR and ELPL-MP. In the conditions with the 1PL or 2PL DGM, the winning DAM always264

shared the DGM’s parameterization. However, for the 3PL DGM, the 2PL DAM often won (i.e.,265

optimally predicted the out-of-sample data). For example, with a 3PL DGM and 500 persons, the266

2PL DAM outperformed the 3PL DAM in 486 out of 500 replications according to ELPL-MR but267

only in 276 out of 500 replications according to ELPL-MP. Under these conditions, Kang and268

Cohen (2007) found that AIC selected the 2PL DAM in 96% if runs, which they interpreted as a269

failure of AIC. Our results show that if the goal is to find the model with the greatest ELPL-MR,270

AIC may actually have been performing quite well.271

The model with the greatest ELPL-MR was often simpler than the model with the greatest272

ELPL-MP, which we take as evidence that ELPL-MR prefers more parsimonious models than273

ELPL-MP. Why is this so? Recall that the difference between ELPL-MP and ELPL-MR is how274

they treat ability. ELPL-MP assumes ability to be coming from a generic distribution, g(θ),275

whereas ELPL-MR actually estimates each person’s ability. As a result, ELPL-MR requires276

estimation of more parameters (item parameters and a parameter for each person) than ELPL-MP277

(just item parameters). Estimation of additional parameters requires increased sample size. When278

we calculate ELPL-MR, we take the additional step of estimating each person’s ability, which279

causes the imperfection in the item parameter estimates to propagate to the person abilities. On the280

other hand, when we calculate ELPL-MP, we just integrate over g(θ) which is much more tolerant281
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of those imperfect item parameter estimates.9282

Table 1

Simulation Study 1 results. We conducted 500 runs and calculated the winning DAM according to

each of ELPL-MR and ELPL-MP.

ELPL-MR ELPL-MP

DGM Persons 1PL 2PL 3PL 1PL 2PL 2PL

1PL 500 500 0 0 500 0 0

1PL 1000 500 0 0 500 0 0

2PL 500 0 500 0 0 500 0

2PL 1000 0 498 2 0 500 0

3PL 500 0 486 14 0 276 224

3PL 1000 0 405 95 0 9 491

Methods for Simulation Study 2283

Simulation Study 1 showed that with the 3PL DGM, the 2PL DAM is frequently best284

according to predictive performance metrics, especially if the number of persons is relatively small.285

Simulation Study 2 builds on this observation by exploring the role of sample size (i.e., number of286

persons) and ability distribution in determining which DAM best fits a 3PL DGM.287

In Simulation Study 2, we used the 3PL DGM, 20 items, and item parameters from Kang and288

Cohen (2007). We conducted 2000 replications, each of which was as follows. We drew the number289

of persons from a discrete uniform distribution, I ∼ unif{100,10000}. We drew abilities from a290

normal distribution, θi ∼ N(µθ ,1), where the mean of that distribution was drawn from a291

9 An alternative way to understand ELPL-MP preferring more flexible models is through the lens of regularization.

Regularization typically counters over-fitting by shrinking parameter estimates (Tibshirani, 1996). In this case,

ELPL-MP treating ability as coming from ĝ(θ) effectively regularizes the likelihood by which the model is judged. As

a result, overfitting is punished less harshly.
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continuous uniform distribution, µθ ∼ unif(−2,2). As before, we simulated data using these292

parameters, fit the 1PL, 2PL, and 3PL DAMs, and determined the best fitting model according to293

ELPL-MR and ELPL-MP.294

Results for Simulation Study 2295

Figure 2 shows the winning DAM for each replication according to ELPL-MP (left) and296

ELPL-MR (right). As in Simulation Study 1, ELPL-MR preferred more parsimonious models as297

evidenced by the 2PL DAM winning more frequently according to ELPL-MR than according to298

ELPL-MP. As anticipated, the greater the number of persons, I, the more likely the 3PL DAM was299

to win. However, the ability distribution is also salient. As µθ increased, the 3PL became less likely300

to win. This is to be expected; guessing plays less of a role for high ability persons, which301

decreases the predictive value of the DAM including a guessing parameter.302

Albeit for a specific set of item parameters, Figure 2 can be read in terms of minimum sample303

requirements for the 3PL DAM. When µθ is less than 0, the sample size at which the 3PL DAM304

tended to outperform the 2PL DAM was somewhat low (≈ 2000) according to ELPL-MP, and it305

was a bit higher according to ELPL-MR. As µθ increased, the relative predictive performance of306

the 3PL DAM decreased quickly, so much so that, for ELPL-MR, the 3PL DAM nearly never won307

when µθ was greater than one.308

Methods for Simulation Study 3309

Simulation Studies 1 and 2 both used item parameters from Kang and Cohen (2007). In310

Simulation Study 3, we simulated item parameters with the goal of understanding how different311

item architectures effect which DAM wins according to ELPL-MR and ELPL-MP. What effect does312

greater item discrimination have? What about item easiness? And what role do different313

magnitudes of guessing behavior play?314

Simulation Study 3 again exclusively used the 3PL DGM. We first created nine conditions315

corresponding to crossing the vector of guessing parameters c (fixed to 0.03, 0.10, 0.25 for all316
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Figure 2. Simulation Study 2 results. Each point corresponds to the winning DAM from one of 2000

replications according to each of ELPL-MP (left) and ELPL-MR (right). A replication consisted of

(1) simulating item response data with a random number of persons and a random mean ability;

(2) fitting a 1PL, 2PL, 3PL DAM to that data; and (3) determining the best DAM according to

ELPL-MP and ELPL-MR.

items) and the sample size (set to 1000, 5000, or 10000 persons). We conducted 1000 replications317

in each condition, each of which was as follows. We drew 20 item easiness parameters from a318

normal distribution, b∼ N(µeasy,1), and we drew the mean of that distribution from a continuous319

uniform distribution, µθ ∼ unif(−2,2). Similarly, we drew 20 item discrimination parameters from320

a log-normal distribution, a∼ Lognormal(µa,0.5), and we drew µa from a continuous uniform321

distribution, µa ∼ unif(−0.5,1.5). Note that µa is the log of the median of the log-normal322

distribution so, for example, when µa =−0.5, the expected median item discrimination is323

exp(−0.5)≈ 0.61. As in Simulation Study 1 and 2, for each replication, we fit the 1PL, 2PL, and324

3PL DAMs and then determined the best fitting model according to ELPL-MR and ELPL-MP.325
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Results for Simulation Study 3326

Figure 3 shows the winning DAM for each replication according to ELPL-MR. Figure 4327

shows the same for ELPL-MP. As with Simulation Study 1 and 2, the 3PL DAM won more328

frequently according to ELPL-MP than ELPL-MR. The role of item easiness was as expected10
329

from Simulation Study 2: As µeasy decreased, the more likely the 3PL DAM was to win.330

As anticipated, the guessing parameter played a prominent role: The 3PL DAM usually won331

when c = 0.25, with the lowest sample size I = 1000 using ELPL-MR as an exception. Our original332

hypothesis was that c = 0.03 was nearly no guessing and consequently the 3PL DAM would not333

perform well. That turned out not to be the case: The 3PL DAM won somewhat frequently even334

when c = 0.03. Turning to discrimination, as µa increased (so that overall item discrimination335

increased), the 2PL DAM performed worse. Although counter-intuitive, consider the following: For336

items with very high discriminations (i.e., nearly Guttman (1974) items), low-ability persons have337

very low probabilities of correct responses under the 2PL without a guessing parameter.338

Methods for Simulation Study 4339

Each of the previous simulation studies looked at models with varying item complexity (e.g.,340

1PL, 2PL, and 3PL) but a fixed single latent ability factor. In Simulation Study 4, we invert our341

focus by always using a 2PL model, but varying the number of latent ability factors. For example,342

the 2-factor 2PL (hereafter 2F 2PL) model is specified as343

Pr(Yi j) = F(a j1θi1 +a j2θi2 +b j)

where, for example, a j2 is the jth item’s loading on the 2rd factor, and θi2 is the ith person’s score344

for the 2nd factor. Our questions are similar as in the previous simulation studies: For example, if345

10 In Simulation Study 2, the item easiness parameters were fixed and we varied the mean of ability. In Simulation

Study 3, the ability distribution was fixed and we varied the mean of the item easiness parameters. The impact is the

same: What matters is the difference between ability and item easiness.
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Figure 3. Simulation Study 3 results for ELPL-MR. Each point in each cell corresponds to the

winning DAM from one of 1000 replications according to ELPL-MR. A replication consisted of (1)

simulating item response data with a fixed guessing, a random mean item easiness, and a random

log median item discrimination; (2) fitting a 1PL, 2PL, 3PL DAM to that data, and (3) determining

the best DAM according to ELPL-MR.

the DGM is a 2F 2PL model, does a 1F 2PL model or 2F 2PL model best fit the DGM at a variety346

of sample sizes according to ELPL-MR and ELPL-MP?347

Accordingly, Simulation Study 4 used exclusively the 2F 2PL DGM. As with the previous348

simulation studies, we consider only 20 items. We conducted 2000 runs, each of which was as349

follows. We drew item easiness parameters from the standard normal distribution, b∼ N(0,1). We350

drew item discrimination parameters independently11 from a log-normal distribution,351

a∼ Lognormal(0,0.5). We drew the number of persons from a discrete uniform distribution,352

I ∼ unif{500,10000}. We drew abilities from a multidimensional normal distribution with mean353

11 In particular, each item’s loading on each factor was independent so that the first item’s loading on the first factor

was independent of its loading on the second factor.
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Figure 4. Simulation Study 3 results for ELPL-MP. Each point corresponds to the winning DAM

from a single replication according to ELPL-MP. A replication consisted of (1) simulating item

response data with a fixed guessing, a random mean item easiness, and a random log median item

discrimination; (2) fitting a 1PL, 2PL, 3PL DAM to that data, and (3) determining the best DAM

according to ELPL-MP.

vector [µθ1 = 0, µθ2 = 0] and covariance matrix

1 v

v 1

. Accordingly, v is the correlation between354

factors and captures the degree to which persons with a high first factor score tend to have a high355

second factor score. For example, if the first factor is addition, and the second factor is subtraction,356

then we might expect v to be high. We can think of v as essentially making dimensionality357

continuous: At v = 1, ability is unidimensional, at v = 0, ability is fully two-dimensional, and at358

v = 0.5, ability is somewhere between one and two dimensional. We drew v from a continuous359

uniform distribution, v∼ unif(0,1).360

Results for Simulation Study 4361

Figure 5 shows the winning DAM for each run according to ELPL-MP (left) and ELPL-MR362

(right). As before, ELPL-MR preferred more parsimonious models, with the 1F 2PL winning363
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slightly more frequently according to ELPL-MR than ELPL-MP. We focus here on the role of the364

correlation between factors, v. In general, as v increased, the 1F 2PL was more likely to win. As365

with Simulation Study 2, we can read these results in terms of minimum sample requirements for366

the 2F 2PL model. Under these conditions, the 2F 2PL was best according to both metrics367

whenever v < 0.5 (at least up to our minimum sample size of I = 500 persons). For greater values368

of v, the 1F 2PL was more often best, especially for lower sample sizes and according to ELPL-MR.369

Lastly, it’s worth noting that the 2F 2PL typically won according to both metrics for v near 0.7 and370

I close to 10,000 persons, which suggests that at large sample sizes it’s possible for multi-factor371

item response models to disentangle highly correlated factors.372
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Figure 5. Simulation Study 4 results. Each point corresponds to the winning DAM from one of

2000 runs according to each of ELPL-MP (left) and ELPL-MR (right). A replication consisted

of (1) simulating item response data with a random number of persons and a random correlation

between two factors; (2) fitting a 1F 2PL and 2F 2PL DAM to that data; and (3) determining the

best DAM according to ELPL-MP and ELPL-MR.
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Discussion373

How should we think about fit in the context of item response data? Previous research has374

frequently defined fit in terms of whether the DAM could have been the DGM (e.g., whether the375

expected contingency table from the DAM is similar to a contingency table of the data). We376

advocated for an alternative view of fit, predictive fit, based on how well a DAM predicts new data377

from the DGM. We derived two predictive fit metrics, ELPL-MR and ELPL-MP, which vary based378

on the meaning of out-of-sample for item responses. We derived these metrics in the artificial case379

in which the DGM is a known item response model as is often the case in item response simulation380

studies. As we describe below, we believe that these predictive fit metrics are useful for evaluating381

item response models in simulation studies; that our results offer guidance with regard to minimum382

sample size requirements for item response models; and that predictive fit metrics can help lay the383

groundwork for future advances in item response model evaluation in practice.384

How should DAMs be evaluated and compared in simulation studies? For example, Kang and385

Cohen (2007) fit both a 2PL and 3PL DAM to data from a 3PL DGM. How should they have386

decided whether the 2PL DAM or the 3PL DAM fit better? They assumed that because the 3PL387

DGM was used that the 3PL DAM must fit better. Based on this assumption, they, for example,388

warned against using a model selection method, BIC, in the conditions in which it frequently389

selected the 2PL DAM. An alternative is to consider predictive fit by determining which DAM390

makes the best predictions for additional data from the DGM. Results from our Simulation Study 1391

demonstrate that in the conditions used in Kang and Cohen (2007), the 2PL DAM frequently392

actually makes better predictions than the 3PL DAM, and therefore has better predictive fit. Thus, it393

is a feature, not a bug, for BIC to select the 2PL DAM in these conditions. Our broader point is that394

predictive fit metrics should be considered in these types of simulation studies, and that using them395

has the potential to fundamentally change the study’s conclusions.396

Our simulation study results also offer guidance on a question of great practical importance:397

Minimum sample size requirements for item response models. A variety of minimum sample size398
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recommendations have been made for the 3PL model: Feuerstahler (2019) suggest at least 5000399

persons, Hulin, Lissak, and Drasgow (1982) suggest at least 1000 persons, and Thissen and Wainer400

(1982) suggest at least 100,000 persons. Despite these recommendations, Feuerstahler (2019)401

reports that “it is not uncommon to see the 3PL” DAM fit to item response data with fewer than402

1000 persons [p. 12]. We believe that a reasonable way to think about the minimum sample size for403

the 3PL model is the sample size at which the 3PL model makes better predictions than the 2PL404

model, which is precisely what our first three simulation studies investigated. Our results indicate405

that the minimum sample size for the 3PL model depends on a variety of considerations, including406

how out-of-sample is defined, the ability of the persons, and the architecture of the items. For407

example, defining out-of-sample according to what we have called “missing responses”, greater408

average person ability, and greater item discrimination are all associated with the 3PL model409

producing relatively worse predictions, and thus greater minimum sample sizes for the 3PL model.410

Still, heuristics can be useful to practitioners: Simulation Study 2 results suggest a minimum411

sample size for the 3PL model of at least 1000 persons according to ELPL-MR and between 500412

and 1000 persons according to ELPL-MP. Simulation Study 4 results demonstrate that the413

minimum sample size requirement for the 2F 2PL model, defined by when the 2F 2PL model makes414

better predictions than the 1F 2PL model, depends greatly on the correlation between factors.415

Perhaps most importantly, we believe that predictive fit metrics can play a valuable role in416

laying the groundwork for future advances in item response model evaluation in practice.417

Psychometricians typically compare item response models using information criterion (e.g., AIC418

and BIC). These methods, which are based on marginalized likelihoods12 (Maydeu-Olivares, 2013),419

can be viewed as approximating ELPL-MP (Stone, 1977). McDonald and Mok (1995) warned that420

AIC and BIC may fail with modest sample sizes or misspecified models. Cross-validation, which421

has fewer assumptions, may be better in these cases. The essential logic of cross-validation is that422

the empirical data is split into a training (in-sample) data and a testing (out-of-sample) data (Stone,423

12 i.e., Ability is treated as a nuisance variable and is integrated over when calculating likelihood.
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1974). The models are estimated using the training data and their performance is evaluated by how424

well they predict the testing data. Bolt and Lall (2003) introduced a marginalized version of425

cross-validation for item response models where half of the persons are randomly assigned to the426

training data and the other half are assigned to the testing data. The training data is used to estimate427

item parameters, and the model fit is evaluated according to the marginalized out-of-sample428

likelihood of the testing data. This method, which we call marginalized cross-validation, can be429

viewed as potentially providing a better estimate of ELPL-MP than information criterion.13
430

Researchers from other fields tend to cross-validate item response models by randomly assigning431

item responses to the training or testing data (Bergner et al., 2012; Wu, Davis, Domingue, Piech, &432

Goodman, 2020). This version of cross-validation can be viewed as providing an estimate of433

ELPL-MR. In general, it seems to be the case that psychometricians tend to evaluate item response434

models using methods that estimate ELPL-MP whereas researchers from other fields use methods435

that estimate ELPL-MR. Our simulation study results show that ELPL-MP preferences more436

flexible models, which suggests that psychometricians may be more likely to choose more437

complicated item response models. Regardless of field, more research is needed to guide IRT438

practitioners in using cross-validation. For example, answers to the following questions will be439

useful: How many folds are necessary in k-fold cross-validation? How much better do estimates of440

ELPL get as more folds are used? Is leave-one-item response-out cross-validation worth the441

computational expense?442

We close with a fundamental question: How should item response models be evaluated and443

compared in practice? Should information criterion, cross-validation where the empirical data is444

split at the person level, or cross-validation where the data is split at the item response level be used?445

We believe that the answer must depend on the purpose of the model. For example, the best model446

comparison method for selecting a model to identify poorly performing items might very well be447

different than that for selecting a model to rank-order persons. In the end, ELPL-MR and ELPL-MP448

13 We view the conditions under and the degree to which this is true as an open research question.

Ben Stenhaug
I made this and below better
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are simply different ways of measuring the predictive performance of an item response model. High449

predictive performance is a desirable property for a model, but it isn’t the only consideration450

(Vehtari, Gelman, & Gabry, 2017). In our view, looking for a connection between predictive fit451

metrics and practical item response model tasks is, perhaps, the most promising direction for future452

research. For instance, we hypothesize that ELPL-MR may be a better predictive fit metric if the453

goal has to do with person abilities, as is typically the case with item response models (Lord, 1986).454

Demonstrating a link between the two could be hugely valuable because, in practice, estimating455

person ability error is difficult, if not impossible, whereas estimating the predictive fit metrics is456

relatively straightforward using methods like cross-validation.457
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