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Abstract 

Single case experimental designs are an important research design in behavioral and medical 

research. Although there are design standards prescribed by the What Works Clearinghouse for 

single case experimental designs, these standards do not include statistically derived power 

computations.  Recently we derived the equations for computing power for (AB)k designs. 

However, these computations and the software code in R may not be accessible to applied 

researchers who are most likely to want to compute power for their studies. Therefore, we have 

developed an (AB)k power calculator Shiny App 

(https://abkpowercalculator.shinyapps.io/ABkpowercalculator/) that researchers can use with no 

software training. These power computations assume that the researcher would be interested in 

fitting multilevel models with autocorrelations or conduct similar analyses. The purpose of this 

software contribution is to briefly explain how power is derived for balanced (AB)k designs and 

to elaborate on how to use the Shiny App. The app works well on not just computers but mobile 

phones without installing the R program. We believe this can be a valuable tool for practitioners 

and applied researchers who want to plan their single case studies with sufficient power to detect 

appropriate effect sizes. 

Keywords: Single case experimental designs; single case designs; power analysis; software; 

effect size 
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ABkPowerCalculator: An App to Compute Power for Balanced (AB)k Single Case 

Experimental Designs 

Empirical studies require wise design choices that are guided by validity and statistical 

considerations. Single case experimental designs (SCEDs) are often useful in behavioral and 

medical research where randomization or collecting large samples might not be feasible or even 

appropriate. Some instances include psychiatric illnesses, autism spectrum disorders, behavioral 

disorders, comorbid conditions, and rare diseases (e.g., Au, Sauer-Zavala, King, Petrocchi, 

Barlow, & Litz, 2017; Hackett & Aafjes-van Doorn, 2019). Such small sample size scenarios 

often lead to possible underpowered studies. Therefore, an important consideration while 

planning SCEDs involves calculating power and sample size to procure sufficient data for 

conducting quantitative analyses to detect statistical significance when present.  

 Blackston Chapple, McGree, McDonald, and Nikles (2019) investigated power for 

aggregated N-of-1 trials (which are special cases of SCEDs) using simulations. However, this 

simulation study was restricted by the number of data conditions and the type of N-of-1 design 

was unspecified. Moreover, this does not provide a SCED researcher easily accessible 

information to compute the power for their own study. Bouwmeester and Jongerling (2020) 

designed a shiny app to compute power for ABAB, multiple baseline, and replicated ABAB and 

multiple baseline designs. However, this app does not consider a design-comparable effect size 

that account for small samples and autocorrelations and consider the within-case nature of 

SCEDs such as Hedges, Pustejovsky, and Shadish (2012, 2013). Several authors have estimated 

power for randomization tests for SCEDs using simulations which is yet another technique to 

estimate power (Levin et al., 2018, 2021; Michiels et al., 2020). Percha, Baskerville, Johnson, 

Dudley, and Zimmerman (2019) and Senn (2019) proposed power computations for N-of-1 
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designs. But, none of these have used design-comparable effect sizes, neither have they 

considered autocorrelations in their computations.  Perhaps one of the most comprehensive 

studies in this area is the one by Wang and Schork (2019) which derived power based on 

distribution functions and considered autocorrelations. The only concern with this study is that 

they considered a within-subjects standardized mean difference effect size which is not 

appropriate for synthesizing SCED effects.  

Addressing all these disadvantages, we derived power for balanced (AB)k designs with 

autocorrelations considering the design-comparable effect size (Hedges et al. 2012) in our recent 

paper (Hedges, Shadish, & Natesan Batley, 2022).  The one drawback of this study is that it 

considers balanced designs with equal number of observations in the baseline and intervention 

phases. The k in an (AB)k design represents the number of repetitions of the AB phase. For 

instance, in an ABAB design k = 2.  They showed that design comparable SCED effect size has 

the maximum impact on power followed by the number of subjects and then the number of phase 

reversals. That is, administering a treatment over 20 AB phases with 5 observations per phase 

yields more power than administering a treatment over 5 AB phases with 20 observations per 

phase although the total number of observations is the same for both cases. Previously mentioned 

power studies did not consider design-comparable effect size and in these studies 

autocorrelations had a large impact on power. However, in their computations, autocorrelations, 

the number of time-points per phase, and intraclass correlations had a smaller but non-negligible 

impact on power.  

Although their study provides an essential framework for computing power for (AB)k 

designs, these computations require significant programming skills. In their previous paper they 

provided a link to an R code on their Github site. However, it is not common for SCED 
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practitioners who are subject experts in autism spectrum disorders, speech disorders, trauma 

research, medical research, or behavioral research to work through a moderately complex R 

program. Therefore, we created a Shiny App 

(https://abkpowercalculator.shinyapps.io/ABkpowercalculator/) that can be easily accessed and 

used by practitioners with little training. For more experienced programmers who want to work 

further on the code, the R code for this app is available on the Github site 

(https://github.com/prathiba-stat/ABk-power/blob/main/ABk-Shiny.R). 

Model  

Suppose that the Yij are normally distributed and that the data series for each individual i 

is weakly stationary within each phase with first order autocorrelation 𝜑𝜑.  Specifically, if there 

are n observations in each phase for each individual, the statistical model for the jth observation 

which occurs in the pth phase is 

 Yij = 0.5[1 + (–1) (p–1)]μC + 0.5 [1 + (–1)p] μT + ηi + εij,  i = 1, …, m;  

j = n(p – 1) + 1, …, pn; p = 1, …, 2k. 

In the expression εij is normally distributed. The expressions in square brackets just assure that, 

in odd numbered phases (baseline phases), the coefficient of μC is one and the coefficient of μT is 

zero and that in even numbered phases (treatment phases), the coefficient of μT is one and the 

coefficient of μC is zero.  The variable p is binary and takes the value of 1 for baseline and 2 for 

treatment phases. Thus, for example, the statistical model for the first (baseline) phase, where p = 

1, is 

Yij = μC + ηi + εij, i = 1, …, m; j = 1, …, n, 

and the statistical model for the second (treatment) phase, where p = 2, is 

 Yij = μT + ηi + εij, i = 1, …, m; j = n + 1, …, 2n. 

https://abkpowercalculator.shinyapps.io/ABkpowercalculator/
https://github.com/prathiba-stat/ABk-power/blob/main/ABk-Shiny.R
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Here μT – μC represents the shift between baseline and treatment periods.  We assume that 

individuals are independent and that the individual effects ηi are independently normally 

distributed with variance τ2. We assume that the εij have variance σ2 and first order 

autocorrelation 𝜑𝜑 within individuals. Therefore, the other assumption that the time series is 

weakly stationary implies that the covariance of Yij with Yi(j+t) depends only on t. The intraclass 

correlation is defined as the ratio of the variance between groups to the total variance. We refer 

the reader to the technical details of how this effect size is corrected for small samples and 

applied to ABAB type designs as described in Hedges et al. (2012). In essence, the design 

comparable effect size is a standardized mean difference effect size that corrects for small 

sample cases and considers autocorrelation and intraclass correlation in its computation. The 

interpretation of this effect size is like that of Cohen’s d except that the effect sizes in SCEDs 

tend to be much larger than in other types of designs. Therefore, these effect sizes must be 

interpreted in accordance with what is considered a large effect for the substantive area in which 

the research is conducted. 

The App 

The parameters and symbols given in the Shiny App are described in Table 1. The app 

uses the packages shiny, psych, and shinyalert. Users may click on the link to the app which 

would open in their preferred internet browser. This app will require internet connection to 

function. Although the program runs in R, users do not have to install R on their systems to run 

this Shiny App. The program also functions on handheld devices such as smart mobile phones. 

The program requires the user to provide seven out of the eight parameters listed in Table 1 to 

compute the missing value. Usually, this would be power because researchers might be 

interested in calculating the power of their study. Alternately, while planning a study researchers 
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might want to input the power to estimate the number of subjects, number of phase repetitions, or 

the number of observations. The program computes the missing values within a few seconds. 

However, when users want to solve for k for large values of n and m (>15), the program might 

take up to 30 seconds, and for larger values of n and m (>25), the program might take up to 2 

minutes to compute. It is of import to note that such extremely large values of phase repetitions 

are extremely uncommon in SCEDs. A recent study of 115 N-of-1/SCED studies found that the 

average number of subjects used in SCEDs since 2015 is 12.5 (Natesan Batley et al., 

Forthcoming). Consider a case where k = 2, autocorrelation = 0.5, and intraclass correlation = 

0.5.  To detect an effect of 0.75 with at least 80% power, it would require n = 35 observations per 

phase (a total of 140 observations per case over the 4 phases of the design) if m = 2 and n = 18 

observations per phase (a total of 72 observations per case) if m = 3. Similarly, for a design with 

k=2, n=10, m=6, autocorrelation = 0.2, intraclass correlation = 0.4, an effect size of 0.45 yields a 

power of 0.8, whereas an effect size of 0.2 yields power of 0.24. The app has been rigorously 

tested by five independent researchers for its functionality and accuracy. Therefore, suffice it to 

say that this program functions well for any reasonable parameter value that would be used in 

SCEDs. 

Other approaches 

The technique proposed in this paper follows the trajectory of computing level and/or trend, 

intraclass correlation, autocorrelation, and design-comparable effect size for (AB)k SCEDs. 

However, what we have considered is only one approach that can be used in SCED data analysis. 

Visual analysis is still extremely popular, especially amongst applied researchers and considers 

more user-friendly computations and decision-making processes (Lane & Gast, 2014).  
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Manolov and Onghena (2018) proposed an approach that combines statistical approach with 

visual analysis. Much work has been done on individual aspects of SCEDs such as evaluating 

consistency within and across phases (Tanius, Manolov, & Onghena, 2021), Bayesian estimation 

of immediacy (Natesan & Hedges, 2017; Natesan Batley, Minka, and Hedges, 2020), etc.  

It is necessary to remind the readers that statistical significance is sometimes not the aim of 

several popular SCED analyses such as visual analysis (Lane & Gast, 2014) and non-overlap 

indices (Maggin et al., 2019; Vannest et al., 2015). However, non-overlap indices that are 

commonly used in SCEDs suffer from drawbacks of being sensitive to outliers, being dependent 

on the scale of the outcome variable, and not having desirable distributional properties such as 

design comparable effect sizes. Sometimes finding statistical significance in SCEDs is purposely 

avoided as well (Branch, 2014, 2019; Perone, 1999).  

Limitations 

As discussed above, the app only computes power for (AB)k designs which are one type of 

SCEDs and multiple baseline designs that are widely used in SCEDs (Pustejovsky et al., 2019; 

Shadish & Sullivan, 2011; Smith, 2012) are not addressed here. The app can be used for only 

balanced designs, that is, equal time-points in each phase. Additionally, the derivations are based 

on asymptotic distributional assumptions. The power computations based on which the app is 

developed assume that the researcher would fit multilevel models with autocorrelations, compute 

design comparable effect sizes, or conduct similar analyses on the SCED data. We acknowledge 

that there are multiple methods of analyzing SCED data including visual analysis.   

Although trend is evaluated by many researchers in SCEDs and is part of the WWC standards 

(2022), Natesan Batley and Hedges (2021) showed that estimating level, trend, and 

autocorrelations altogether in SCEDs leads to inaccurate estimates and increased Type-II errors. 
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They showed that researchers are better off estimating level and slope or a less accurate model of 

level and autocorrelation in their analyses. This study handles the latter case which is not the best 

performing model. Therefore, this is an area that requires further exploration. Autocorrelations in 

SCEDs have always remained contentious, especially in the presence of small sample data. 

Whether these need to be modeled and how they should best be modeled still needs further 

research in SCED data. 

Discussion 

The app presented in the present study is a useful tool to add to any SCED researcher’s toolkit. 

SCEDs are becoming more important and necessary in an ever-increasing number of fields. For 

instance, one of the authors is currently leading a study on measuring clinically relevant, 

performance-based upper-limb prosthetic rehabilitation using extremely expensive prostheses. 

The expense of the prostheses limits the number of participants in the study. However, this 

prosthesis needs to be piloted before it can be manufactured on large scale for use with upper 

limb amputees. We computed the number of subjects and the other parameters of the study 

through these power calculations.  

It might be difficult for researchers to choose values for intraclass correlation and autocorrelation 

for these computations. One suggestion is to examine the values found in literature and use them. 

In fact, to be safe, multiple such permutations of intraclass and autocorrelations could be used to 

derive a range of sample sizes and the final sample size decided based on the study parameters. It 

is also advisable to account for attrition of participants.  

Researchers who are subject experts and not necessarily adept at programming in R or other 

statistical software can benefit from the use of this app. The app requires the input of 7 out of the 

8 parameters. So, when a researcher wants to know the required sample size, number of 
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observations, and the number of phases for a given power this would require some back-and-

forth computation. We are currently in the process of computing power for unbalanced and other 

types of single case experimental designs. We invite the research community to test and try the 

Shiny App and provide us feedback on its user-friendliness by emailing the first author. 
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Table 1: Symbols, parameters, and input values for the (AB)k Shiny App 

Symbol Parameter Input 

k Number of phase repetitions Positive integer>1 

n Number of observations per phase Positive integer>1 

m Number of subjects Positive integer>1 

phi Autocorrelation −0.99 ≤ 𝑝𝑝ℎ𝑖𝑖 ≤ 0.99 

rho Intraclass correlation 0 ≤ 𝑟𝑟ℎ𝑜𝑜 ≤ 0.99 

d Design-comparable effect size 0 ≤ 𝑑𝑑 

alpha Type-I error rate 0 < 𝑎𝑎𝑎𝑎𝑝𝑝ℎ𝑎𝑎 < 1 

Power Power 0 < 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑟𝑟 < 1 
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