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Abstract 
 

 Universal screening to predict students’ risk for reading problems is a foundational 

component of the Multi-Tiered Systems of Support framework and is required by law in many 

U.S. states. School or district administrators are tasked with selecting screening assessments that 

are both technically adequate and feasible given the resources of their local context. One 

common recommendation is that educational screening assessments should have at least a 

sensitivity of .9 and a specificity of .8. The two studies presented here used simulation 

methodology to identify the screener-outcome correlation(s) needed to achieve these 

recommended levels of sensitivity and sensitivity with a one-indicator (Study 1) or two-indicator 

(Study 2) screening battery. In both studies, the base rates of non-proficiency were manipulated. 

Results showed that the minimum correlations needed to achieve this recommendation were 

higher than what is typically observed in practice, and also varied across samples with differing 

base rates. Furthermore, screening assessments with the recommended levels of sensitivity and 

specificity had high rates of false positive classifications that depended on the base rate, cut-

point, and method of assigning risk. These results suggest that the practice of issuing specific 

criteria for the sensitivity and specificity of screeners may be misguided. Implications for the 

evaluation of the technical adequacy of screening assessments and recommendations for 

practitioners are discussed.  

 

Keywords: universal screening - classification - simulation - education 
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Introduction 

Many students in the United States do not attain proficiency in reading, with nearly 35% 

of 4th graders performing below a “Basic” level of reading comprehension and 65% reading 

below grade-level on a recent national assessment (NCES, 2019). This represents a public health 

issue as reading ability affects not only academic but societal and health outcomes (Sanfilippo et 

al., 2020). Waiting until students have begun to experience reading difficulties or until a formal 

dyslexia diagnosis is conferred (typically not until the end of 2nd grade) can have harmful 

consequences, as falling behind one’s peers in reading can lead to academic, social, and 

emotional problems which pervade and compound over time. Further, reading interventions are 

most effective at improving outcomes when delivered in kindergarten or first grade (Ozernov-

Palichik & Gaab, 2016). Thus, over the past few decades, empirical research has focused on the 

estimation of risk for reading problems before the onset of reading instruction and movement 

toward a prevention model of dyslexia (Catts et al., 2013; Catts & Hogan, 2020). 

Universal screening is an essential part of achieving early identification or prevention of 

reading difficulties at scale. Screening typically involves assessing the reading and reading-

related skills of all students in an educational context to predict who is at risk of non-proficient 

performance on a later reading assessment so that supplemental instruction or intervention can be 

provided (Gaab & Petscher, 2022). In the wake of legislation such as the No Child Left Behind 

Act (NCLB, 2002) reauthorized as the Every Student Succeeds Act (ESSA, 2015), and the 

Individuals with Disabilities Education Act (IDEA, 2012), and increased adoption of Response-

to-Intervention/Multi-Tiered System of Support frameworks in schools (of which universal 

screening is a foundational element; Troester et al., 2022; Fuchs & Vaughn, 2012), universal 

screening for reading problems has become common in the U.S., with over 40 states having 
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some provision for screening in their laws in 2023 (National Center on Improving Literacy, 

n.d.).    

Despite the ubiquity of screening, implementation varies across educational settings 

(Mellard et al., 2009). This is partly due to a lack of consensus across states on the definition of 

dyslexia or reading problems, which literacy skills and age groups should be targeted by 

screening, and how often screening should occur (Gearin et al., 2021). Additionally, the large 

number of commercially available screening assessments drives further variability (National 

Center for Intensive Intervention, n.d.; Jenkins et al., 2013). In many states, the Department of 

Education provides a list of approved screening assessments from which districts or schools must 

choose; however, this usually comprises five or more options which vary in terms of cost, 

administration time, and technical adequacy. For example, Missouri’s Department of Education 

lists 13 state-approved screening assessments for use in kindergarten (MDESE, n.d.). The 

Missouri list also demonstrates that state laws may specify which literacy skill components (e.g., 

phonological awareness, rapid naming, and sound symbol correspondence) are required to be 

targeted by screening, and then allow practitioners mix and match assessments from different 

publishers to satisfy these requirements. Therefore, practitioners at the district or school level 

still need to select the best assessment(s) for their academic setting. 

Evaluation of Screening Assessments 

While, in reality, many factors influence the selection of a screening assessment, 

education practitioners are urged to evaluate the technical adequacy of potential screeners. 

Technical adequacy encompasses multiple properties of a screening assessment such as 

reliability, validity (e.g., the correlation between a screener and the outcome it is intended to 

predict), and classification accuracy (Petscher & Suhr, 2022). Classification accuracy reflects 
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how well a screening assessment sorts students into categories: True Positives, False Positives, 

True Negatives, and False Negatives. These categories arise from the fact that, although reading 

and related abilities are usually measured on a continuum, the goal of screening is to determine 

whether each student should be provided with extra testing, resources, or intervention—a binary 

decision. As such, risk status is coded as a binary or ordinal variable, with categories defined by 

imposing cut-points on the distribution of scores. Traditionally, outcomes are also 

operationalized as binary categories: for example, schools may screen to predict which students 

are at risk for failing a year-end state assessment (Kent et al., 2019). In a hypothetical scenario 

where no intervention is provided, a screener with perfect classification accuracy would result in 

every student identified as “at-risk” by the screener failing the outcome (True Positives; TP), and 

every student identified as “not at-risk” passing the outcome (True Negatives; TN). In reality, 

due to measurement error and the fact that reading is an actively developing, latent ability, no 

screening measure can be perfectly accurate: there is always a trade-off between the rate of False 

Positives (FP) and False Negatives (FN; Fletcher et al., 2002).  

These four numbers, sometimes in combination with the base rate of problems in a 

particular screening context, can be used to calculate many indices giving unique insights into 

how a screener is performing, such as sensitivity, specificity, likelihood ratios, positive and 

negative predictive power, Cohen’s kappa, pre- and post-test probabilities, and so on (Streiner, 

2003). However, sensitivity, specificity, and predictive power are the most intuitive metrics and 

those that are most commonly reported by test publishers (NCII Screening Tools Chart, n.d.). In 

the context of screening for risk of reading difficulties, sensitivity is the likelihood that a student 

who is truly at risk for a reading problem will be flagged by the screener (TP/(TP+FN)), and 

specificity is the likelihood that a student who truly does not have a reading problem will not be 
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identified by the screener (TN/(TN+FP)). Positive predictive power (PPP) is the likelihood that a 

student flagged by the screener is truly at-risk for a reading problem given the base rate of the 

condition in the sample (TP/(TP+FP)), while negative predictive power (NPP) reflects the 

likelihood that a student who is not flagged by the screener is truly not at-risk for a reading 

problem given the base rate (TN/(TN+FN)).  

Sensitivity and specificity are often juxtaposed with PPP and NPP, with the former 

characterized as static properties of the screening assessment and the latter characterized as being 

sample-dependent. For example, Petscher et al. (2011) write that “if a screener was used in two 

separate samples where one was higher achieving than the other, similar estimates of sensitivity 

and specificity could be obtained, while different values for the positive and negative predictive 

power would be calculated” (p. 160). Thus, PPP and NPP indices are likely more useful than 

sensitivity and specificity for practitioners who are interested in rates of False Positive and False 

Negative classifications in their local context. 

Most contemporary education researchers agree that the base rate of problems in the local 

context needs to be considered in screening and suggest that practitioners consider indices such 

as predictive power or post-test probabilities (which combine sensitivity, specificity, and base 

rate information) when evaluating screening assessments (Swets, 1992; vanDerHeyden, 2011; 

Klingbeil et al., 2017). However, in many cases, sensitivity and/or specificity are still 

emphasized (e.g., Burns et al., 2022). Further, the characterization of sensitivity and specificity 

as being invariant properties of tests has led researchers to issue specific recommendations for 

these indices, against which practitioners are ostensibly meant to compare potential screening 

assessments. One common suggestion is that educational screening assessments should have a 

sensitivity above .9 and a specificity above .8 (Jenkins & Johnson, 2008; Johnson et al., 2009; 
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Thomas & January, 2021). Similarly, the NCII Screening Tools Chart ranks screening 

assessments on classification accuracy based in part on sensitivity and specificity information: 

assessments with a sensitivity and specificity above .7 are marked as having “Partially 

convincing evidence”, while those with a sensitivity and specificity above .8 are marked as 

having “Convincing evidence” (NCII Screening Tools Chart, n.d.).  

Achieving Recommended Sensitivity and Specificity 

Given the prevalence of such recommendations in practitioner-facing research literature, 

it is important to know if and when screening assessments can meet these standards. There is 

some evidence that a high benchmark for sensitivity and specificity, such as .9 and .8 posed by 

Jenkins & Johnson (2008), is difficult to achieve using administratively and analytically simple 

means (i.e., a single screening assessment using cut-points to assign risk— an approach 

commonly employed by schools; Jenkins et al., 2013, Prewett et al., 2012).  In a recent study, 

Edwards et al. (2022) demonstrated that there is a mathematical relationship between predictive 

validity and classification accuracy, such that, assuming a bivariate normal distribution, all 

common classification indices can be derived knowing just the correlation between a screening 

assessment and outcome measure and the cut-points used to denote risk on the screener and non-

proficiency on the outcome. Edwards et al. applied this formula to simulated samples with 

differing base rates, screener cut-scores, and screener-outcome correlations, and found that no 

screener correlating with the outcome at less than .85 achieved sensitivity of .9 and specificity of 

.8.  

A screener-outcome correlation of .85 is high compared to what is observed in practice, 

especially in the early grades. Usually, this could not be achieved with a screener measuring a 

single skill (univariate assessment, e.g., a measure of oral reading fluency alone). In a meta-



10 

analysis of curriculum-based screening assessments administered in kindergarten through 2nd 

grade, January and Klingbeil (2020) found that predictive correlations between screeners 

measuring individual components of reading and later reading outcomes ranged from .35 to .83.  

However, one limitation of Edwards et al. (2022) is that only a set range of screener cut-points 

were tested (at the 10th, 20th, and 25th percentile of scores.) While appropriate given that 

researchers tend to use established, publisher-provided cut-scores to determine which students 

are at risk (Klingbeil et al., 2017), it is known that the placement of the cut-point denoting risk 

on a screener can have large impacts on classification (Compton et al., 2010; VanDerHeyden et 

al., 2018). In terms of sensitivity and specificity, raising a cut-point will increase sensitivity at 

the expense of specificity (identifying more at-risk students while potentially including more 

False Positives), and decreasing a cut-point will increase specificity at the expense of sensitivity. 

Thus, it may be possible for a screener correlating with an outcome at less than .85 to achieve 

recommended levels of sensitivity and specificity if a more optimal cut-point is used than the 

three selected by Edwards et al. 

Value of simulations in educational research  

Simulations are computer-generated data sets of random numbers that reflect user-

specified parameters. These parameters are typically chosen based on existing large-scale data 

sets or meta-analyses of target phenomena and then systematically manipulated. Simulated data 

are useful when researchers wish to study the theoretical effects of phenomena that would be 

very difficult to observe, manipulate, or isolate in natural data. For example, Edwards et al. 

(2022) simulated data sets to explore the relationship between predictive validity and 

classification accuracy in screening because it would be unfeasible to administer many screening 

assessments with varying correlations with the outcome to samples with a range of base rates (or 



11 

to identify these conditions in existing data with any level of precision). Further, simulated data 

afford a high level of internal validity because all parameters are explicitly specified by the 

researcher. Thus, simulations are useful for testing mechanistic theories of how a target 

phenomenon could arise given certain conditions.  

Simulations have specifically been used in education research to study how various 

conditions affect the accuracy and longitudinal stability of alternative approaches to identifying 

students with learning disabilities. Over 20 years ago, Francis et al. (2005) used simulated data to 

investigate how measurement error around a cut-point may contribute to unstable identification. 

More recently, Schatschneider et al. (2016) simulated a series of data sets to compare the one-

year stability of alternative approaches to identification across samples with different growth 

patterns (e.g., fan-spread versus mastery learning growth). As mentioned above, several studies 

have manipulated correlations among screeners and outcomes to study the impact of predictive 

validity on classification accuracy (Edwards et al., 2022; van Norman et al., 2019). Simulations 

are also commonly used to test or validate novel statistical techniques on data that reflect 

population-level parameters. For example, Wagner et al. (2023) used a simulated data set with 

parameters based on correlation matrices from three large-scale meta-analyses to test the 

feasibility of a probabilistic or Bayesian approach to identifying individuals at risk for low 

achievement in reading. Thus, simulation methodology has been and continues to be used in 

educational research.   
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Study 1 

The first study reported here uses simulated data to extend the results of Edwards et al. 

(2022) to provide a more precise picture of what screener-outcome correlation is theoretically 

required to achieve recommended levels of sensitivity and specificity. Specifically, the first study 

was guided by the following research questions:  

1. Using a single screening assessment, what screener-outcome correlation is required to 

attain a sensitivity of .9 and a specificity of .8, with any possible cut-point, and does it 

differ depending on the base rate of non-proficiency in the sample? 

2. What is the range of positive and negative predictive power when a screening 

assessment meets the above recommendations for sensitivity and specificity? 

Methods 

Simulations. Data were simulated using the mvrnorm() function from the MASS 

package in R (Venables & Ripley, 2002). The R code and output have been made freely 

available on the Open Science Framework at the following link: https://osf.io/xwyr8/.  

First, sixty-five unique data sets were simulated: one per screener-outcome correlation 

ranging from .35 to .99 at increments of .01. Each data set comprised scores for one screening 

assessment and one outcome assessment for a very large sample (n = 10000). This large sample 

size was chosen in order to reduce noise and reliably identify the range of cut-points producing 

recommended sensitivity and specificity, as correlations tend to stabilize as the sample size 

increases (Schönbrodt & Perugini, 2013). The lower bound of tested correlations (r = .35) was 

selected after evaluating a large first-grade screening data for realistic screener-outcome 

correlations (see Spencer et al., 2014 for description of data set), and considering the findings of 

January & Klingbeil (2019)’s meta-analysis.  

https://osf.io/xwyr8/
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Second, for each data set, the base rate of non-proficiency was manipulated to be 10, 20, 

and 25%. This was achieved by defining “non-proficiency” on the outcome as scoring at or 

below the 10th, 20th, or 25th percentile of scores. The base rates were selected to remain 

consistent with Edwards et al. (2022), and align with the range of prevalence for dyslexia 

reported in previous literature. 

 Third, receiver operating characteristic (ROC) analysis was applied to determine the 

range of cut-points (if any) that produced recommended levels of sensitivity and specificity for 

each screener-outcome correlation. ROC analysis can be used to calculate the sensitivity and 

specificity of a test at every possible decision threshold (Pintea & Moldovan, 2009). The pROC 

package in R was used to perform the ROC analysis (Robin et al., 2011), using the scores on the 

screening assessment to predict the binary outcome (proficient or non-proficient).  

Analysis 

 For each simulated data set (i.e., screener-outcome correlation) and base rate, the range of 

ROC-derived cut-points producing a sensitivity equal to or greater than .9 and a specificity equal 

to or greater than .8 were identified and reported. Positive and negative predictive power (PPP 

and NPP) were then calculated using the following formulas: 

 

𝑃𝑃𝑃 =
(𝐵𝑎𝑠𝑒	𝑅𝑎𝑡𝑒)(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

(𝐵𝑎𝑠𝑒	𝑅𝑎𝑡𝑒)(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) + [(1 − 𝐵𝑎𝑠𝑒	𝑅𝑎𝑡𝑒)(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)] 

	

𝑁𝑃𝑃 =
(1 − 𝐵𝑎𝑠𝑒	𝑅𝑎𝑡𝑒)(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

(1 − 𝐵𝑎𝑠𝑒	𝑅𝑎𝑡𝑒)(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) + [(𝐵𝑎𝑠𝑒	𝑅𝑎𝑡𝑒)(1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)]	
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Results 

Minimum sufficient correlation. Results are presented in Table 1. The left-most column 

represents the screener-outcome correlation (i.e., one simulated data set). Each screener-outcome 

correlation has two rows of information corresponding to the minimum and maximum cut points 

(in percentiles) that produced recommended levels of sensitivity and specificity. The table is 

divided into three panels for each of three base rates (10, 20, and 25%), with each panel 

containing five columns providing the minimum or maximum cut point and the classification 

indices associated with this screener-outcome correlation/cut point/base rate. 

No univariate screener correlating with the outcome at less than .83 achieved 

recommended levels of sensitivity and specificity (sensitivity >= .9 and specificity >= .8). As 

seen in Table 1, the screener-outcome correlation needed to achieve these recommended values 

differed depending on the base rate of non-proficiency in the sample. As the base rate increased 

from 10% to 20% to 25%, the minimum sufficient screener-outcome correlation increased from 

.83 to .87 to .88. To demonstrate that the effect of base rate on these population-based indices 

was not due to changing cut-points across base rate conditions, an additional simulation was 

conducted using a more traditional screening scenario, in which a screener with a pre-specified 

cut-point was applied to samples differing in base rates of non-proficiency. A data set was 

simulated in which the base rate of problems in the sample (i.e., cut-point on the outcome) varied 

from 10 to 50%, but the same cut-point was always used to assign risk on the screener, with 

cases below the 20th percentile being flagged as at-risk. The results presented in Table 2 show 

that sensitivity and specificity again changed with the base rate: as base rate increased, 

sensitivity decreased and specificity increased.   
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Predictive power. As seen in Table 1, even when a univariate screening assessment 

correlated highly with the outcome and achieved recommended levels of sensitivity and 

specificity, positive predictive power (PPP) was low, particularly when the base rate was low. 

For example, with a screener-outcome correlation of .9 and a base rate of 10%, any cut-point 

producing recommended levels of sensitivity and specificity produced a PPP ranging from .35 to 

.48. This means that 50 to 60% of cases identified as at-risk by the screener were False Positives. 

At the same level of screener-outcome correlation with a 25% base rate, PPP ranged from .65 to 

.61, meaning over 30% of positive classifications were False Positives. Negative Predictive 

Power (NPP) was very high across all conditions, meaning that most negative classifications on 

the screener were True Negatives. Positive predictive power was also highly impacted by the 

placement of the screening cut-point. For example, with a screener-outcome correlation of .99 

and a base rate of 10% (and a sensitivity and specificity above .9 and .8), positive predictive 

power ranged from .36 to .91 depending on where the screening cut-point was placed.  

Discussion 

 Study 1 had four main findings. First, it was unlikely for any single screening assessment 

to reach high levels of sensitivity and specificity, regardless of cut-point or base rate. The 

minimum sufficient screener-outcome correlation to achieve a sensitivity of .9 and a specificity 

of .8 was r =.83. As mentioned previously, single indicators of reading ability do not often 

correlate with reading outcomes this highly (January & Klingbeil, 2020), which may in some 

cases be the result of low reliability, as reliability sets the upper limit on the possible correlation 

any screener can have with an outcome (Nunually & Bernstein, 1994).   

Second, the sensitivity and specificity of a single screening assessment were impacted by 

the base rate of non-proficiency in the sample. This finding was unexpected, given that 
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educational screening literature commonly characterizes sensitivity and specificity as being 

properties of tests rather than samples that are insensitive to changes in base rate. However, past 

research in the medical field has demonstrated that the prevalence of a disease can affect 

sensitivity and specificity when the predictor is not truly binary but exists on a continuum with 

risk determined using an imposed cut-point, which is most often the case when screening for 

academic difficulties (Brenner & Gefeller, 1997; Leeflang et al., 2013).  

Third, even when a screening assessment reached recommended values of sensitivity and 

specificity, positive predictive power was low, reflecting the presence of many false positive 

classifications, particularly when the base rate of non-proficiency in the sample was low. This 

situation would be untenable for schools with limited resources for providing at-risk students 

with additional support or intervention. 

Finally, the present findings stress the importance of using locally-derived, rather than 

publisher-issued, cut-points for assigning risk on a screening instrument. As seen in Table 1, the 

range of cut-points associated with a favorable profile of classification differed depending upon 

the base rate of problems in the sample.  
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Study 2 

Univariate screening is typically not recommended when screening for risk of academic 

difficulties. Researchers have suggested that using two or more indicators is preferable 

(multivariate assessment; Catts & Petscher, 2018). In the reading literature, use of a hybrid or 

“constellation” model (including uniquely predictive strengths, weaknesses, causes, and 

consequences of reading) to identify reading problems has been shown to result in better 

predictive validity, classification accuracy, and longitudinal stability compared to a univariate 

approach (e.g., Compton et al., 2010; Wagner, 2008; Wagner, 2018; Spencer et al., 2014). In 

fact, some studies employing intensive multivariate screening batteries have been able to achieve 

near-perfect classification accuracy: in a study of first-grade students, Compton et al. (2006) 

found that using a classification tree approach and a battery of assessments comprising word 

identification fluency, phonemic awareness, rapid naming, oral vocabulary, and 5 weeks of 

progress monitoring data predicted year-end word identification with a sensitivity of 100% and a 

specificity of 93.5%.  While PPP and NPP were not reported, there were few false positives and 

no false negatives with this approach.  

However, in practice, the implementation of screening necessitates balance between 

efficiency and accuracy. While effective, such an administratively and analytically intensive 

approach requiring 5 weeks of progress monitoring and use of a classification tree may not be 

tenable for schools for implement for all students several times per year, and further defies the 

purpose of universal screening which is intended to be a brief assessment of risk rather than a 

complete diagnostic work-up (Fletcher et al., 2021). Funding for a screening program and the 

time and bandwidth of teachers and reading professionals may impact a school’s ability to 
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administer multiple or intensive assessments to every student as a universal screening 

assessment.  

Some researchers have proposed that a gated approach to screening may allow 

practitioners to achieve recommended levels of sensitivity and specificity while minimizing the 

administrative burden and cost of screening compared to a “direct route” approach (Compton et 

al., 2010; vanMeveren et al., 2020; Paly et al., 2022). In gated screening, all students complete a 

brief initial screening assessment, but rather than immediately qualifying for additional support 

or intervention, students identified as “at risk” complete follow-up testing. Alternatively, a past 

year’s state test scores may be used as the first gate (van Norman, Klingbeil, & Nelson, 2017). 

This removes not-at-risk students from the sample while at-risk students complete further 

assessments to further distinguish True from False Positives, increasing the efficiency of 

screening as only a subset of students complete multiple assessments. While the idea is 

pragmatic, the research literature on gated screening in screening for educational difficulties is 

mixed. In some studies, a gated approach has been shown to reduce False Positives compared to 

univariate screening (Compton et al., 2010; Klingbeil et al., 2017). However, others have shown 

that the gated approach increases False Negatives compared to univariate and non-gated 

multivariate approaches (i.e., decreases sensitivity) compared to univariate and non-gated 

multivariate approaches (van Norman et al., 2017; Klingbeil et al., 2017; van Norman et al., 

2019). However, one study found that the gated approach increases sensitivity (vanMeveren et 

al., 2020). Finally, the reduction in False Positives afforded by gated screening may depend on 

the strength of the correlation between the measures at each gate, with a lower inter-screener 

correlation resulting in fewer false positives compared to a higher correlation (van Norman et al., 

2019).  
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Present study 

Study 2 aimed to evaluate a two-indicator, or multivariate, approach to screening. 

Specifically, the second study was guided by the following research question:  

1. Using two screening assessments, what is the minimum average screener-outcome 

correlation between two screeners sufficient to attain a sensitivity of .9 and a specificity 

of .8, and does it differ depending on the base rate of non-proficiency in the sample or 

how scores on the two screeners are combined to determine risk? 

2. What is the range of positive and negative predictive power when a screening 

assessment meets the above recommendations for sensitivity and specificity? 

Methods 

Simulations. The R code and output for Study 2 have also been made freely available on 

the Open Science Framework at the following link: https://osf.io/xwyr8/. 

First, data sets were again simulated using the mvrnorm() function from the MASS 

package in R (Venables & Ripley, 2002). Each data set comprised scores for one screening 

assessment and one outcome assessment with a sample size of 300. The screener-outcome 

correlations for each screener were manipulated to range from .5 to .9, while the correlation 

between the two screeners was set at .7. These parameters were chosen because there are 

constraints on what correlation structures are possible to simulate due to the need for a positive 

definite covariance (correlation) matrix as input. This is logical as it is not possible (without 

missing data) to have two measures that correlate with each other at .3 but both correlate with the 

same outcome at .9, for example. With an inter-screener correlation of .7, all matrices with 

screener-outcome correlations between .5 and .9 are positive definite. For each unique 

combination of correlations, 100 data sets were generated.  

https://osf.io/xwyr8/
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Second, as in Study 1, for each data set, the base rate of non-proficiency was manipulated 

to be 10, 20, and 25%. This was achieved by defining “non-proficiency” on the outcome as 

scoring at or below the 10th, 20th, or 25th percentile of scores. 

Screening approaches. Four methods of assigning risk (i.e., combining scores from the 

two screeners) were tested: Both, Either, Sum, and Gated. In the Both condition, cases scoring 

below the cut-points on both measures were flagged as at-risk. Cases scoring below the cut-point 

on just one measure were considered not at-risk. In the Either condition, cases scoring below the 

cut-point on either screening measure were flagged as at-risk. In the Sum condition, the scores 

on the two screening measures were simply added to create a sum score. Cases at or below the 

cut-point were considered at-risk. In the Gated condition, cases scoring below a liberal cut-point 

on the first screener (see below) were flagged. Only these cases identified as “at-risk” by the first 

indicator underwent the second “gate” of screening, and only cases scoring below the cut-point 

on this second screener were considered at-risk.  

Cut-points. Unlike Study 1, ROC analysis was not used to identify the range of 

screening cut-points producing recommended sensitivity and specificity. This is because ROC 

analysis would require scores from the two screeners to be combined (e.g., with logistic 

regression), and we wished to compare screening approaches in which the scores on the two 

screeners remained independent (e.g., the Both versus Either approach). Thus, for the Both, 

Either, and Sum multivariate conditions, 11 cut-points were tested for each simulation, ranging 

from matching the base rate to 10 percentile points above the base rate. For example, when the 

base rate was set at 10%, cut-points on each screener were set the 10th, 11th, …, 19th, and 20th 

percentile. Cut-points on the two screeners were always equal to one another.  
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In the Gated condition, the cut-points used to assign risk differed. To compensate for the 

potential loss to sensitivity observed in previous studies (e.g., van Norman et al., 2019), the cut-

point for the screener used as the first gate was very liberal, set at the 80th percentile of scores. In 

other words, cases scoring in the top 20th percentile were not considered at risk and were not 

included in the second gate of screening. At the second “gate”, the cut point was set to vary 

between 0 and 10 percentile points above the base rate as in other conditions. 

Analysis 

 For each simulated data set (i.e., screener-outcome correlation), base rate, and approach, 

sensitivity, specificity, PPP, and NPP were calculated using the following formulas: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

𝐻𝑖𝑡	𝑟𝑎𝑡𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 	𝐹𝑃 + 𝐹𝑁 

𝑃𝑃𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝑁𝑃𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 

Then, the minimum average screener-outcome correlation between the two screeners and range 

of cut-points (from the tested range of 11 cut-points) producing recommended classification were 

identified and reported.  

To account correlations existing on a non-interval scale, the correlations between each 

screener and the outcome were first converted to Fisher’s Z units, averaged, then converted back 

to an average correlation. This was accomplished using the FisherZ() function from the 

DescTools package in R (Signorell, 2017), which applies the following formula: 

r-to-Z conversion: zr=tanh−1(r)=21log(1−r1+r) 
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Results 

Minimum sufficient correlation. Results are presented in Tables 3 and 4. The tables are 

read the same way as Table 1 except for the left-most column which now represents the 

combined average screener-outcome correlation between the two screeners calculated using the 

procedure described in the Analysis section. No combined average screener-outcome correlation 

less than .77 achieved recommended levels of sensitivity and specificity with the tested range of 

cut-points. Further, this was only possible with the Either and Sum approaches. While the Both 

and Gated approaches achieved the recommended level of specificity with any screener-outcome 

correlation, neither approach ever achieved recommended sensitivity. Additionally, the minimum 

sufficient average screener-outcome correlation varied across screening approaches. For 

example, as seen in Table 3, with a base rate of 10%, an average correlation of .77 was sufficient 

to achieve recommended classification when using the Either approach, while an average 

correlation of .82 was needed when using the Sum approach.   

Within each condition, a limited range of cut-points produced recommended sensitivity 

and specificity. For example, using the Either approach with an average screener-outcome 

correlation of .8, recommended classification was achieved in the 10% base rate condition with 

any cut-point on the two screeners set between the 16th and 18th percentile of scores. With an 

average screener-outcome correlation of .9, recommended classification could be achieved with 

any cut-point on the two screeners set between the 10th and 19th percentile of scores. The same 

was true for the Sum approach (Table 4): within the 10% base rate condition, with an average 

screener-outcome correlation of .85, any cut-point between 17th and 20th percentile could achieve 

recommended classification, while with an average screener-outcome correlation of .9, any cut-

point between the 12th and 20th percentile could achieve recommended classification.  
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Predictive power. Tables 3 and 4 further demonstrate that using two screeners which 

each correlate highly with the criterion outcome and have recommended levels of sensitivity and 

specificity may still result in an untenable rate of false positives, depending on the screening 

approach, cut-points, and base rate of problems in the sample. For example, using the Either 

approach, with a base rate of 10%, sensitivity was .93 and specificity was .933, but PPP was 

.599—meaning that 40% of cases identified as being at-risk by the screener were False Positives.  

Discussion 

Study 2 demonstrated that using two indicators in screening decreased the correlation 

needed from each screener and the outcome necessary to achieve recommended levels of 

sensitivity and specificity compared to screening with a single indicator, but that this depended 

on the method of combining scores on the two screeners. If risk was defined as being at risk on 

either of the two screening assessments, it was possible to achieve a sensitivity above .9 and a 

specificity of .8 with two screeners correlating with the outcome at an average of .77. A 

screener-outcome correlation of .77 is still on the high end of what has been observed in previous 

studies in the context of screening for reading problems (January & Klingbeil, 2020). If risk was 

defined by being below a cut-point on the sum score of the two screening assessments, it was 

possible to achieve recommended sensitivity and specificity with an average screener-outcome 

correlation of .82— not much of an improvement compared to using a single indicator, which 

required a screener-outcome correlation of .83. A gated approach or an approach in which risk 

was defined based on being at risk on both screening assessments could not achieve the 

recommended sensitivity regardless of screener-outcome correlations, cut-points, or base rates.  
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General Discussion 

Implications for basic and applied research 

In the context of screening for academic difficulties, researchers tend to report 

benchmarks for evaluating the technical adequacy of screening assessments based on sensitivity 

and specificity. One such recommendation is assessments used to screen for reading problems or 

dyslexia should have a sensitivity of at least .9 and a specificity of at least .8 (Jenkins & Johnson, 

2008). There are two reasons that sensitivity and specificity tend to be emphasized over other 

classification indices: first, they are ubiquitously reported by test publishers, and second, they are 

described as being insensitive to base rate, implying that practitioners can assume that the 

sensitivity and specificity reported by the publisher will be the same when applied in their local 

context. 

The findings of the present study demonstrate that issuing stringent recommendations for 

only sensitivity and specificity of screening assessments may not be useful, because they are 

very difficult to achieve using a small battery of indicators with realistic levels of predictive 

validity. Further, issuing specific guidelines for sensitivity and specificity as indices of screener 

performance may also be misleading, since the present study demonstrated that sensitivity and 

specificity are not insensitive to base rate as previously assumed, and that even screeners that are 

highly correlated with outcomes and have acceptable sensitivity and specificity may still have 

very low levels of positive predictive power.  

Thus, the present findings suggest that sensitivity and specificity should not be presented 

as the priority metrics in evaluating the technical adequacy of screening instruments, and that 

indices capturing screening performance across a range of base rates should be in the foreground 

of such recommendations from researchers to practitioners. At a minimum, the impact of base 
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rate on sensitivity and specificity should be widely discussed, and it should become standard for 

screening assessment publishers report not singular values for sensitivity and specificity based on 

data from a norming sample, but a range of sensitivities, specificities, and predictive power 

indices observed when applying the instrument to multiple samples differing in base rate.  

Implications for schools and school psychological practice 

 The present findings emphasize both the necessity and difficulty of evaluating the 

technical adequacy of screening assessments. For school staff or administrators in the position to 

select a screener, the ability to access and interpret research evidence about the reliability and 

validity of commercially-available assessments is critical, not only to guide the selection of the 

best assessment but to have realistic expectations for how a screener will perform when applied 

in their context. Accessing this information is relatively simple: the Academic Screening Tools 

Chart maintained by the National Center on Intensive Intervention is a free online resource for 

comparing the classification accuracy, technical standards (e.g., reliability, predictive validity) 

and usability (e.g., administration time and cost) of commercially-available screeners in the 

subject areas of math and reading (NCII, n.d.). For each tool, results are reported for how the 

screener performed when previously applied to one or more test or norming samples. 

Evaluating the results is more difficult. Practitioners consulting the Academic Screening 

Tools Chart will find a large amount of detailed information which they may not have received 

any formal training on how to navigate or interpret. The findings of Edwards et al. (2022) and 

the present study suggest that practitioners should at a minimum attend to the predictive validity 

and classification accuracy of a potential assessment while noting the level of alignment between 

the test study/sample and their own context and goals. For example, given the relationship 

between screener-outcome correlation and classification accuracy demonstrated here, looking at 
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the predictive validity of a potential assessment may be a good starting point as an index of 

general screener quality.  

However, this estimate alone does not provide much information about how effective the 

screener is at identifying which students are and are not at risk. While classification accuracy 

indices are intended to be more useful in this regard, the present study demonstrated that they are 

not agnostic of contextual features such as the base rate of the target condition in the study 

sample. Practitioners should thus be aware that the majority of screeners listed on NCII’s Tools 

Chart were tested and normed with samples whose base rate of non-proficiency on the outcome 

was around 20% (NCII, n.d.). Thus, the reported sensitivity, specificity, and predictive power are 

not directly generalizable to a new setting with a different prevalence of the target condition that 

is being screened for.  

To get a better sense of how a screener may perform in a new context, it may be useful to 

use a free online tool created by Edwards and colleagues based on the findings of Edwards et al. 

(2022) (link: https://qmi-fcrr.shinyapps.io/Correlations_Cut-Points_Classification/). This tool 

allows users to input a screener-outcome correlation (which can be obtained from the NCII Tools 

Chart), a cut point on the screener, and the cut point on the outcome (i.e., the base rate if using 

percentiles), and calculates classification indices given these conditions. Notably, school 

psychologists may not always be in a position to singlehandedly select a screening assessment 

for their educational context. However, the above information could aid school psychologists in 

suggesting or supporting systems-levels improvements in their role as part of the leadership team 

in an MTSS ecology.  

Finally, the finding from the present study that the range of cut-points producing 

recommended levels of sensitivity and specificity differed depending on the base rate in the 

https://qmi-fcrr.shinyapps.io/Correlations_Cut-Points_Classification/
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sample brings up past calls from researchers that districts or schools should derive and use 

locally-normed rather than publisher-provided cut-scores when screening (Rice et al., 2023; 

Grapin et al., 2017; Schatschneider et al., 2008). However, similar to recommendations for 

classification accuracy, this suggestion requires more nuance than is typically given. Several 

recent studies comparing the classification accuracy afforded by locally-derived versus 

publisher-provided cut scores have found that developing local norms increases screener 

sensitivity but can substantially decrease specificity depending on the approach used (Rice et al., 

2023; Nelson et al., 2017; Grapin et al., 2017).  

Thus, a more appropriate recommendation may include the preface that school and 

districts should consider capacity for intervention before developing local cut scores. School 

psychologists may be uniquely able to assess and deliver this information depending on the roles 

they play in their particular school setting. Further, as mentioned in the previous statement, there 

are multiple statistical approaches to developing local cut-scores based on past student data (e.g., 

ROC curves, discriminant analysis, logistic regression). While researchers such as Grapin et al. 

(2017) have stated that each of these approaches can technically be accomplished using common 

software (e.g., Microsoft Excel), it is unclear whether district and school staff/administrators 

have access to the training and resources needed to confidently understand the benefits, 

assumptions, and limitations of these procedures. Further, while school psychologists are often 

trained in data analysis and the critical consumption of research, they may not have the specific 

content-area expertise or administrative bandwidth to translate these recommendations into 

practice. There is a need for further research on the barriers faced and supports needed by school 

psychologists and other school and district practitioners in this regard; however, one suggestion 

is that it may be beneficial to seek counsel from outside entities such as screener vendors or 
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nearby research institution to guide the process of deciding upon and enacting a process for 

locally-normed cut scores.  

Limitations 

The present study was limited in several ways. First, the present study relied on methods 

of determining cut-scores that assume linear data. However, it may be useful to test a 

classification or regression tree approach which does not carry this assumption. Next, in real-

world screening contexts, individuals’ abilities change over time, and one possibility is that some 

False Positive classifications occur when individuals who were truly at-risk at the time of 

screening are truly not-at-risk at the time of the criterion outcome assessment, due to informal 

intervention or other changes. A valuable future direction would be to build a growth component 

into the screening simulations to try to reflect this phenomenon and assess its impact on 

classification. Finally, the present study was not able to manipulate the intercorrelation between 

indicators in the two-indicator conditions due to limitations on the simulation methodology. 

Based on the results of van Norman et al. (2019)’s gated screening simulation, however, in 

which screeners that were less highly correlated with one another led to a greater reduction in 

false positive classification compared to screeners with a higher intercorrelation, it would be 

valuable to test the impact of screener intercorrelation on classification with all of the studied 

multivariate approaches. A future direction may be to investigate alternative methods of 

simulating data that would allow a lower screener intercorrelation to be tested.  
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Tables  

1. Table 1. Cut-points (in percentiles) on screener producing recommended levels of sensitivity and specificity for each screener-outcome 
correlation, and associated classification indices, across base rates.    

  

 

Base Rate 

  10% 20% 25% 

r Bound Cut-

Point 

Sens Spec PPP NPP Cut-

Point 

Sens Spec PPP NPP Cut-

Point 

Sens Spec PPP NPP 

.83 Max 27 .908 .800 .335 .987 
          

 
Min 26 .900 .810 .345 .986 

          

.84 Max 27 .918 .800 .338 .989 
          

 
Min 25 .900 .824 .362 .987 

          

.85 Max 27 .926 .800 .340 .990 
          

 
Min 24 .900 .833 .375 .987 

          

.86 Max 27 .934 .800 .342 .991 
          

 
Min 23 .900 .845 .393 .987 

          

.87 Max 28 .943 .800 .344 .992 34 .906 .800 .531 .972 
     

 
Min 22 .900 .858 .413 .987 33 .900 .808 .540 .970 

     

.88 Max 28 .951 .800 .346 .993 34 .916 .800 .534 .974 38 .908 .800 .602 .963 
 

Min 21 .900 .870 .434 .987 32 .900 .822 .558 .970 37 .900 .810 .613 .960 

.89 Max 28 .960 .800 .348 .994 35 .926 .800 .537 .978 38 .920 .800 .605 .968 
 

Min 20 .900 .881 .456 .988 31 .900 .836 .579 .971 36 .900 .825 .632 .961 
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.90 Max 28 .969 .800 .350 .996 35 .937 .800 .539 .981 38 .929 .800 .608 .971 
 

Min 19 .900 .893 .483 .988 30 .900 .850 .599 .971 35 .900 .839 .650 .962 

.91 Max 28 .975 .800 .351 .997 35 .948 .800 .542 .984 39 .940 .800 .610 .976 
 

Min 18 .900 .904 .510 .988 29 .900 .865 .625 .972 34 .900 .853 .671 .962 

.92 Max 28 .981 .800 .353 .997 35 .959 .800 .545 .987 39 .951 .800 .613 .980 
 

Min 17 .900 .914 .538 .988 28 .900 .879 .649 .972 32 .900 .868 .694 .963 

.93 Max 28 .986 .800 .354 .998 35 .968 .800 .547 .990 39 .961 .800 .616 .984 
 

Min 16 .900 .924 .568 .988 27 .900 .893 .678 .973 31 .900 .882 .718 .964 

.94 Max 28 .991 .800 .355 .999 36 .977 .800 .550 .993 39 .970 .800 .618 .988 
 

Min 15 .900 .936 .608 .988 26 .900 .907 .707 .973 30 .900 .897 .744 .964 

.95 Max 28 .996 .800 .356 .999 36 .985 .800 .552 .995 40 .979 .800 .620 .991 
 

Min 14 .900 .946 .649 .988 24 .900 .921 .741 .974 29 .900 .913 .776 .965 

.96 Max 28 .999 .800 .357 1.000 36 .991 .800 .553 .997 40 .987 .800 .622 .995 
 

Min 13 .900 .957 .699 .989 23 .900 .937 .782 .974 28 .900 .930 .811 .965 

.97 Max 28 1.000 .800 .357 1.000 36 .995 .800 .554 .999 40 .994 .800 .623 .997 
 

Min 12 .900 .968 .760 .989 22 .900 .952 .825 .974 27 .900 .948 .851 .966 

.98 Max 28 1.000 .800 .357 1.000 36 .999 .800 .555 1.000 40 .998 .800 .625 .999 
 

Min 11 .900 .978 .821 .989 21 .900 .969 .879 .975 25 .900 .965 .896 .967 

.99 Max 28 1.000 .800 .357 1.000 36 1.000 .800 .556 1.000 40 1.000 .800 .625 1.000 
 

Min 10 .900 .989 .905 .989 19 .900 .985 .938 .975 24 .900 .984 .950 .967 
Note. r  = Screener-outcome correlation; Cut = Cut score in Z-score units, rounded to nearest whole percentile; Sens = Sensitivity; Spec = Specificity; 
PPP = Positive Predictive Power; NPP = Negative Predictive Power.  
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2. Table 2. Effect of base rate on sensitivity and specificity when screener cut-point held constant at 20th percentile of scores. 

Note. r  = Screener-outcome correlation; Sens = Sensitivity; Spec = Specificity. 

 

 

 

 

 

 

 

 

 

 

 

 Base Rate 

 10% 20% 30% 40% 50% 

r Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec 

.4 .436 .826 .378 .845 .341 .860 .314 .876 .290 .890 

.5 .509 .834 .432 .858 .383 .878 .345 .897 .313 .913 

.6 .596 .844 .494 .873 .426 .897 .378 .918 .336 .936 

.7 .688 .854 .562 .891 .478 .919 .411 .940 .358 .958 

.8 .794 .866 .644 .911 .534 .943 .446 .964 .379 .979 

.9 .910 .879 .748 .937 .599 .971 .483 .988 .396 .996 
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3. Table 3. Either approach: Minimum average screener-outcome correlation between two screeners producing recommended levels 
of sensitivity and specificity for each screener-outcome correlation, and associated classification indices, across base rates. 
 
 

  

 

Base Rate 

  10% 20% 25% 

Avg 

r 

Bound Cut-

Point 

Sens Spec PPP NPP Cut Sens Spec PPP NPP Cut Sens Spec PPP NPP 

.77 Max 18 .902 .810 .345 .987 
          

 
Min 18 - - - - 

          
.78 Max 18 .903 .809 .345 .987 

          

 
Min 18 - - - - 

          
.79 Max 18 .905 .810 .346 .987 

          

 
Min 17 .901 .823 .362 .987 

          
.80 Max 19 .928 .800 .341 .990 

          

 
Min 16 .900 .838 .382 .987 

          
.81 Max 19 .936 .801 .343 .991 

          

 
Min 16 .903 .839 .385 .987 

          
.82 Max 19 .941 .801 .345 .992 24 .902 .804 .535 .970 

     

 
Min 15 .905 .855 .410 .988 24 - - - - 

     
.83 Max 19 .949 .801 .347 .993 24 .906 .805 .537 .972 27 .903 .801 .602 .961 

 
Min 15 .906 .854 .409 .988 23 .902 .819 .556 .971 27 - - - - 
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.84 Max 19 .956 .801 .349 .994 24 .916 .807 .543 .975 27 .906 .804 .607 .963 

 
Min 14 .905 .869 .434 .988 22 .901 .834 .577 .971 26 .902 .818 .623 .962 

.85 Max 19 .966 .802 .352 .995 25 .940 .801 .542 .981 27 .916 .806 .612 .966 

 
Min 13 .905 .885 .467 .988 22 .906 .836 .580 .973 25 .901 .835 .646 .962 

.86 Max 19 .972 .804 .355 .996 25 .947 .801 .543 .984 28 .940 .801 .612 .976 

 
Min 13 .910 .885 .468 .989 21 .905 .852 .605 .973 25 .904 .835 .647 .963 

.87 Max 19 .980 .804 .357 .997 25 .956 .802 .547 .986 28 .946 .802 .614 .978 

 
Min 12 .908 .899 .501 .989 20 .906 .867 .631 .974 25 .917 .839 .656 .968 

.88 Max 19 .987 .805 .360 .998 25 .965 .804 .552 .989 28 .956 .804 .619 .982 

 
Min 11 .909 .915 .543 .989 20 .916 .870 .638 .976 25 .929 .843 .664 .973 

.89 Max 19 .992 .805 .361 .999 25 .974 .806 .558 .992 28 .965 .807 .625 .986 

 
Min 10 .902 .930 .590 .988 20 .929 .873 .647 .980 25 .941 .847 .673 .977 

.90 Max 19 .997 .805 .362 1.000 25 .982 .808 .561 .994 28 .976 .810 .632 .990 

 
Min 10 .923 .932 .603 .991 20 .944 .876 .656 .984 25 .954 .851 .682 .982 

Note. r  = Screener-outcome correlation; Bound = Minimum and maximum cut-points producing recommended classification accuracy; Cut = Cut-point 
in percentile units; Sens = Sensitivity; Spec = Specificity; PPP = Positive Predictive Power; NPP = Negative Predictive Power.  
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4. Table 4. Sum approach: Minimum average screener-outcome correlation between two screeners producing recommended levels of 
sensitivity and specificity for each screener-outcome correlation, and associated classification indices, across base rates. 
 

  

 

Base Rate 

  10% 20% 25% 

Avg 

r 

Bound Cut-

Point 

Sens Spec PPP NPP Cut Sens Spec PPP NPP Cut Sens Spec PPP NPP 

.82 Max 20 .901 .878 .451 .988 
          

 
Min 20 - - - - 

          
.83 Max 20 .906 .878 .453 .988 30 .901 .850 .601 .972 35 .901 .834 .644 .962 

 
Min 19 .905 .889 .476 .988 30 - - - - 35 - - - - 

.84 Max 20 .915 .879 .458 .989 30 .907 .852 .605 .973 35 .909 .836 .649 .965 

 
Min 18 .904 .900 .502 .988 29 .902 .863 .622 .972 34 .904 .848 .664 .963 

.85 Max 20 .931 .881 .465 .991 30 .917 .854 .612 .976 35 .918 .839 .656 .969 

 
Min 17 .904 .912 .532 .988 27 .901 .888 .667 .973 32 .902 .874 .704 .964 

.86 Max 20 .945 .883 .473 .993 30 .931 .858 .621 .980 35 .931 .844 .665 .973 

 
Min 16 .903 .923 .564 .988 27 .905 .889 .671 .974 31 .902 .887 .728 .965 

.87 Max 20 .958 .884 .479 .995 30 .946 .862 .631 .985 35 .944 .848 .674 .979 

 
Min 15 .903 .934 .602 .989 25 .902 .913 .722 .974 30 .904 .901 .753 .966 

.88 Max 20 .972 .886 .486 .997 30 .959 .865 .639 .988 35 .957 .852 .684 .984 

 
Min 14 .908 .945 .648 .989 24 .902 .926 .752 .974 29 .905 .915 .780 .967 

.89 Max 20 .983 .887 .492 .998 30 .972 .868 .648 .992 35 .971 .857 .694 .989 
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Min 13 .909 .957 .699 .990 23 .909 .940 .790 .976 27 .901 .940 .835 .966 

.90 Max 20 .992 .888 .496 .999 30 .983 .871 .655 .995 35 .982 .861 .702 .993 

 
Min 12 .910 .968 .758 .990 21 .901 .963 .858 .975 26 .905 .955 .870 .968 

Note. Avg r  = Average screener-outcome correlation between two screeners; Bound = Minimum and maximum cut-points producing recommended 
classification accuracy; Cut-point = Cut-point on each screener in percentile units; Sens = Sensitivity; Spec = Specificity; PPP = Positive Predictive 
Power; NPP = Negative Predictive Power.  
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