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1. Scaffolding is essential for enabling students to access and engage with curriculum
materials.

2. Large Language Models (LLMs) have shown promise in generating educational content
and supporting teachers.

3. Teachers frequently need to adapt and supplement standardized curricula to meet the
diverse needs of their students.

What this paper adds

1. Identifies a three-stage curriculum scaffolding process (observation, strategy formula-
tion, implementation) used by expert teachers.

2. Demonstrates that providing LLMs with additional context from the curriculum, such
as the original warmup task, helps to ground the model and improve the quality of the
generated warmup tasks.

3. When prompted well, LLMs can generate warmup tasks that are of similar or better
quality to those created by expert teachers in terms of alignment to learning objectives,
accessibility, and teacher preference.

Implications for practice and/or policy

1. Provides practical suggestions for prompting LLMs to generate high-quality warmup
tasks for middle-school math teachers, such as incorporating additional curriculum
context and expert-informed prompts.

2. Demonstrates how CTA with expert teachers can be used to develop LLM-based tools
for educators that align with their practices and preferences.

3. Additional research is needed to explore the potential for LLMs to support other types
of curriculum adaptations, evaluate their effectiveness in real classroom settings, and
investigate how they can be designed to effectively tailor to the specific needs and
characteristics of individual students.
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1 Introduction

Scaffolding is an instructional process that provides support tailored to the needs of students

that enables them to “solve problems, complete tasks, or achieve educational goals that would

be challenging without such support” (Wood et al., 1976). Research consistently shows that

scaffolded instruction benefits all students, whether they have documented learning needs

or not, leading to improved academic and non-academic outcomes (CAST, 2024; Goddard

et al., 2015). The need for scaffolding has been magnified in the post-pandemic era. The

national incidence of students with Individualized Education Plans (IEPs) and 504 plans has

increased from 13% to 15%, with some districts reporting rates as high as 35% (Irwin et al.,

2023). Furthermore, an alarming 49% of students are now below grade level in at least one

subject (Irwin et al., 2023).

In recent years, the use of standardized curricula in math education has proliferated to

support teachers in providing high-quality instruction (Remillard & Heck, 2014; Jackson

& Makarin, 2018; Doan et al., 2022). However, the post-pandemic era has highlighted the

limitations of these curricula in addressing the diverse needs of learners (Nerlino, 2022). With

more students working below grade level or requiring special support, standardized curricula

often lack the necessary scaffolding for accessibility and engagement. Curriculum scaffolding,

a core aspect of instructional scaffolding, involves teachers adapting and supplementing the

official curriculum to bridge this gap, particularly for struggling learners (Remillard & Heck,

2014; Remillard, 1999; Squire et al., 2003). This may include adding warmup tasks, formative

assessments, or culturally relevant adaptations (Meidl & Meidl, 2011; Walkington, 2013).

Despite the documented effectiveness of and need for scaffolding, a majority of educators

encounter significant challenges in implementing it, and there’s little work on how teachers

approach the scaffolding process (Sherin & Drake, 2009). One of the primary challenges is

the time-intensive nature of creating effective scaffolds, which requires teachers to carefully

analyze the curriculum, identify potential barriers for learners, and design appropriate adap-
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tations and supplements. This process can be particularly challenging for novice teachers

who may lack the experience and pedagogical content knowledge to efficiently navigate the

complexities of scaffolding (Lokey-Vega, 2015). Additionally, many teachers receive limited

training on how to effectively scaffold instruction, highlighting the need for more targeted

teacher education in this area (Yan & Goh, 2023; Galiatsos et al., 2019).

This research investigates the potential for Large Language Models (LLMs) to support

curriculum scaffolding in middle-school mathematics. Effectively exploring this potential first

requires a more granular understanding of how teachers approach the scaffolding process.

Thus, we start with a qualitative research phase, conducting Cognitive Task Analysis (CTA)

to gain insights into how expert teachers scaffold their curriculum. Building on our findings

and existing frameworks (Remillard & Heck, 2014), we propose a three-stage process of

curriculum scaffolding: observation, strategy formulation, and implementation. We apply

this framework to a case study of using LLMs to generate warmup tasks, a specific type of

instructional scaffold that activates and refreshes background knowledge. To assess LLMs’

ability to produce warmup tasks of a similar quality as those made by experts, we develop a

novel dataset of expert-created warmup tasks and prepared various LLM-based approaches

informed by insights from our CTA. We then evaluate these LLM-based approaches against

the expert-created tasks using considerations identified in the CTA as evaluation criteria.

Our research aims to explore the following interdependent questions:

1. How do expert teachers scaffold their curriculum, and which aspects of their process

might AI facilitate?

2. How do instructional scaffolds created by LLMs compare in quality to those created

by expert teachers?
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2 Related Work

2.1 Conceptions of Curriculum Use

A large area of educational research centers on curriculum use: How do teachers interact with

and draw upon curriculum resources designed to guide instruction (Remillard, 2005; Stein &

Smith, 1998)? Recent frameworks have sought to provide a more nuanced understanding of

the curriculum implementation process by distinguishing between the official curriculum and

the operational curriculum (Remillard & Heck, 2014). The official curriculum, also known

as the ‘formal curriculum’ (Gehrke et al., 1992), comprises curricular aims and objectives,

content of consequential assessments, and the designated curriculum (Remillard & Heck,

2014). In contrast, the operational curriculum encompasses what actually happens in the

classroom, including the teacher-intended curriculum, the enacted curriculum, and student

outcomes (Remillard & Heck, 2014; Gehrke et al., 1992).

The transition from the official to the operational curriculum involves teachers inter-

preting and making decisions when designing instruction, drawing upon the designated cur-

riculum and other resources. This process, termed “documentational genesis,” results in the

generation of new documents tailored to specific students at a particular moment (Gueudet &

Trouche, 2009). Sherin & Drake (2009) proposed a three-step process of reading, evaluating,

and adapting, while Brown (2002) described three modes of engagement: offloading, adapt-

ing, and improvising. This process of curriculum enactment is highly dependent on teacher

characteristics such as subject matter knowledge, pedagogical content knowledge, beliefs,

and goals, as well as the local context (Brown, 2002; Remillard, 2005; Gonzalez Thompson,

1984; Sherin & Drake, 2009).

As noted by Sherin & Drake (2009), there have been relatively few empirically-based

generalizations focused on the transition from the official curriculum to the operational, and

even less from the designated to the teacher-intended. This is partly due to the challenge

of accessing the teacher-intended curriculum, given that it typically exists within individual
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teacher minds, files and presentations and is not centrally collected or stored (Remillard

& Heck, 2014). Our study aims to contribute to this gap by examining the strategies and

considerations expert teachers employ in scaffolding curriculum for diverse learners and ex-

ploring the potential for AI to support this process. By focusing on the transition from the

designated curriculum to the teacher-intended curriculum and the specific adaptations and

supplements teachers make to ensure accessibility and engagement for all students, we seek

to provide a more nuanced understanding of curriculum enactment in contexts of learner

variability.

2.2 Scaffolding in Math Education

The effectiveness of scaffolding in math education is closely tied to the transition from the

official to the operational curriculum. The concept of scaffolding refers to the temporary

but essential support provided to learners to help them achieve tasks that would otherwise

be beyond their reach (Wood et al., 1976). Grounded in Vygotsky’s sociocultural theory

and the concept of the Zone of Proximal Development (ZPD), scaffolding emphasizes the

importance of providing learners with the necessary guidance and support to move from

assisted to independent performance (Vygotsky & Cole, 1978).

In the context of math education, scaffolding has been shown to be a highly effective

instructional approach, with meta-analyses reporting significant effect sizes on student out-

comes (Hattie, 2008; Zuo et al., 2023). The benefits of scaffolding extend beyond aca-

demic achievement, encompassing increased task effort, cognitive development, metacogni-

tive awareness, independence, sensemaking, and self-confidence (Zuo et al., 2023).

Well-designed, standards-aligned instructional materials often remain inaccessible to stu-

dents if the tasks fall outside their ZPD. Consequently, teachers often devote significant time

and effort to adapting and supplementing their core curriculum materials to better suit their

students’ learning needs (Philipp & Kunter, 2013). This process of curriculum scaffolding,

5



which we define as a subset of the teacher-intended curriculum, encompasses the various

techniques and strategies teachers employ to ensure that all students can access and engage

with the official curriculum.

These techniques include providing hints, modeling, asking probing questions, employ-

ing the gradual release of responsibility model, guided practice, visual aids, manipulatives,

graphic organizers, supportive resources, and offering alternative representations (Drew,

2022). By strategically using these techniques, teachers can tailor their support to the di-

verse needs of their students, helping each learner navigate the path towards understanding

and independence.

2.3 Automated Creation of Educational Materials

The rapid advancement of Large Language Models (LLMs), such as GPT-4, has opened up

new avenues for the automated creation of educational materials. These models, trained

on vast amounts of text data, have demonstrated the ability to generate human-like text

in response to given inputs, offering potential applications in various educational contexts.

The proliferation of AI tools and chatbots has led to increased usage among educators, with

nearly 50% now using ChatGPT at least once a week (Impact Research, 2024).

Recent studies have explored the use of LLMs in generating a wide range of educational

materials. LLMs have been employed to author learning objectives, ensuring alignment

with course content and desired outcomes (Sridhar et al., 2023). They have also been used

to write worked examples and explanations, providing step-by-step guidance for learners

(Jury et al., 2024; Prihar et al., 2023). In the domain of question generation, LLMs have

demonstrated the ability to create question-answer pairs, multiple-choice questions, and

open-ended questions across various subjects (Rodriguez-Torrealba et al., 2022; Elkins et

al., 2023; Z. Wang et al., 2022; Shimmei et al., 2023; Bulathwela et al., 2023; Doughty et al.,

2024). In the context of math education, LLMs have been utilized to generate problems at
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varying levels of difficulty and to adapt existing problems for improved student understanding

(Jiao et al., 2023; Norberg et al., 2023). LLMs have also been employed to generate entire

course content, including syllabi, lectures, and assessments (Leiker et al., 2023; Diwan et

al., 2023). This line of work suggests that LLMs could serve as powerful tools for creating

instructional resources, potentially saving teachers time and effort in developing materials

tailored to their students’ needs.

However, the use of LLMs in educational contexts is not without challenges. Researchers

have noted that these models can sometimes generate unreliable solutions to math problems

(Frieder et al., 2024) and may “hallucinate” information, producing content that appears

plausible but is not actually accurate (Ji et al., 2023). There is also evidence that LLMs

alone do not behave like expert instructors, such as when providing pedagogical feedback to

teachers (R. Wang & Demszky, 2023), while remediating mathematical mistakes in tutoring

(R. E. Wang et al., 2024), or providing pedagogical explanations (Jury et al., 2024; Prihar et

al., 2023). These limitations highlight the need for careful consideration and human oversight

when employing LLMs in the creation of educational materials.

One promising way to both ensure safety and pedagogically sound outputs is to create

AI-in-the-loop systems where the teacher is in control of what is being sent to students

(Ninaus & Sailer, 2022). For example, in a study exploring the use of LLMs for remediating

student math mistakes — a type of scaffolding, R. E. Wang et al. (2024) demonstrated that

LLM responses to students improve significantly when the teacher helps identify the cause

of error and response strategy to use.

2.4 Modeling Expert Decision-Making

Understanding the decisions instructional experts make while performing a task is critical

to designing technological systems that seek to model such expertise and enhance teach-

ers’ work. Cognitive Task Analysis (CTA) is a widely used structured, qualitative research
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method for eliciting and formalizing the knowledge, thought processes, mental strategies,

and goal structures that underlie expert performance (Clark et al., 2008). In recent years,

researchers have increasingly applied CTA in educational settings to gain insights into the

complex decision-making processes of expert teachers. For example, Lokey-Vega (2015) used

CTA to detail a nine-step process that experts follow when designing and implementing

technology-rich lessons, revealing that novice teachers were less familiar with distinct parts

of this process. Similarly, R. E. Wang et al. (2024) employed CTA to develop a framework

for expert teacher decision-making in the context of responding to student misconceptions,

formalizing a process in which the expert identifies the student’s error, determines a reme-

diation strategy, and articulates their instructional intention before generating a response.

CTA builds upon and extends traditional ethnographic research methods by incorporat-

ing not only observations but also verbal statements from experts as a primary source of

information. Through the use of interview techniques, verbal reports, and the analysis of

team communication, researchers can elicit valuable insights into the cognitive processes that

guide expert performance. In the context of curriculum scaffolding, CTA offers a powerful

tool for identifying the knowledge and strategies that expert teachers use to tailor curriculum

materials and create effective scaffolds for diverse learners. By formalizing these often tacit

processes, CTA can help to make expert teachers’ decision-making more explicit and accessi-

ble, potentially informing the design of professional development programs and instructional

resources.

Moreover, recent research has demonstrated the potential for integrating insights from

CTA into the development of Large Language Models (LLMs) to generate educational ma-

terials that align with expert teachers’ practices and preferences. R. E. Wang et al. (2024)

found that incorporating expert decision-making models derived from CTA into LLMs led

to outputs that were more favorably evaluated by teachers compared to those generated by

LLMs without such models. This suggests that LLMs informed by CTA can become valu-

able tools for generating educational outputs that resonate with educators and reflect best
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practices in instructional design.

3 Cognitive Task Analysis for Curriculum Scaffolding

To systematically uncover how expert middle-school math teachers scaffold their curriculum

to meet the diverse needs of their students (RQ1), we conducted CTA with six expert

teachers. The CTA allowed us formalize teachers’ curriculum scaffolding as a three-stage

process, which we describe in Section 3.2.

3.1 Methods

Participants. We recruited teachers from two public school districts in Washington and

Chicago. Each teacher was selected by district administrators based on their extensive

teaching experience (minimum of 10 years) and perceived expertise, a method that has been

shown to effectively identify highly skilled teachers (Jacob & Lefgren, 2008). The participants

had experience working in a range of public schools and student contexts, ensuring a diverse

set of perspectives. All teachers were compensated for their time at a rate of $45 per hour.

The number of experts included in this study is comparable to other NLP studies that work

closely with domain experts (R. E. Wang et al., 2024; Sharma et al., 2023).

Data collection. Data collection consisted of two main components: weekly surveys and

CTA interviews. Each week, the expert teachers completed a short survey in which they

provided (a) the official (designated) curriculum materials they had access to via their district

for the lessons they were teaching that week, (b) the teacher-intended curriculum materials

they specifically prepared to use in their classrooms, and (c) brief descriptions of the changes

made to the original materials. This approach allowed us to capture the transition from the

official curriculum to the teacher-intended curriculum, shedding light on the adaptations and

scaffolds created by the teachers.
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Prior to each CTA interview, the research team reviewed the official and teacher-intended

curriculum materials shared by the teachers and formulated hypotheses about the adapta-

tions made. The interviews were then structured around three main questions: (1) What

student responses to the curriculum did the teachers expect? (2) How did they want to re-

spond to these anticipated responses? (3) Why did they choose to respond in that particular

manner? These questions were designed to elicit insights into the complex decision-making

processes teachers employed when determining when, how, and why to adapt and scaffold

their curriculum materials.

During the interviews, teachers were prompted to provide detailed explanations of their

thought processes and reasoning behind the changes they made to the official curriculum

materials. The interviewers used follow-up questions and probes to encourage teachers to

elaborate on their responses and to clarify any ambiguities.

Data analysis. We analyzed the data collected through the weekly surveys and CTA in-

terviews using a qualitative, iterative approach. First, we reviewed the original and adapted

curriculum materials to identify patterns in the types of changes made by the expert teach-

ers. We then compared these initial observations against teachers’ own descriptions of their

adaptations and refined based on the insights gained from the CTA interviews. Next, we

coded the interview data using a combination of deductive and inductive coding techniques.

Deductive codes were derived from existing literature on curriculum use and scaffolding,

while inductive codes emerged from the data itself, capturing the unique strategies and con-

siderations employed by the expert teachers. We organized the coded data into themes and

sub-themes, representing the key components of the teachers’ decision-making processes.

Throughout the analysis process, the research team engaged in regular discussions to en-

sure consistency in coding and interpretation. We resolved discrepancies through consensus,

and iteratively refined the coding scheme to better capture the nuances of the data. We

then used the final themes and sub-themes to construct a framework describing the expert
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teachers’ approach to curriculum scaffolding.

Limitations. The small sample size (n=6) and the focus on two specific school districts

may limit the generalizability of the findings to other contexts. Additionally, the reliance on

self-reported data from the teachers may have introduced some degree of bias (Montibeller

& Von Winterfeldt, 2015).

3.2 Findings

Based on our findings from the CTA and building on existing frameworks of curriculum use

(Sherin & Drake, 2009; Brown, 2002), we propose a three-stage framework for understanding

how expert teachers scaffold curriculum materials to meet the needs of students who are

struggling to access and engage with the content. This framework comprises three key

stages: observation, strategy formulation, and implementation.

3.2.1 Observation: Assessing Curriculum Materials and Student Needs

The curriculum scaffolding process begins with teachers making observations about the exist-

ing curriculum materials and assessing how well they align with their professional intentions

and the needs of their students. Consistent with prior research (Sherin & Drake, 2009;

Collopy, 2003), our CTA revealed that teachers often read curriculum materials with their

students in mind, making determinations about how to use and adapt suggested activities

based on their perceptions of students’ needs and deficits.

The most common observation made by the expert teachers in our study was the sig-

nificant gap between the curriculum materials and the current level of their students, par-

ticularly in low-income communities with high percentages of students working below grade

level. Teachers noted that despite wanting to use the curriculum, they were acutely aware

that students would not be able to access the materials as presented, potentially leading to

disengagement and behavioral issues.
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Other observations included concerns about the curriculum’s presentation of content,

even when the content itself was deemed accessible. These concerns often intersected with

teachers’ professional and pedagogical beliefs about effective instruction. For example, some

teachers noted that their curriculum relied heavily on open-ended questions and student

discussions, with relatively little time spent on explicitly modeling processes and algorithms.

In these cases, teachers opted to increase opportunities for direct instruction within their

lessons.

Some observations were deeply rooted in teachers’ understanding of their students’ abil-

ities, interests, and learning needs. Teachers explained that certain phrasing, topics, or

cultural references in the curriculum might not be relevant to their students, or that certain

activities would not be effective for students with specific learning needs. In other cases,

teachers’ observations were driven more by their professional judgments than their under-

standing of their students. For instance, if a teacher believed there was a more effective way

to introduce a topic than what was provided in the curriculum, they would be inclined to

implement that method.

School-level dynamics and priorities also influenced teachers’ observations about the cur-

riculum materials. Efforts to increase the use of formative assessment or teach in a culturally

relevant manner, for example, led some teachers to note that the curriculum did not fully

reflect these priorities.

3.2.2 Strategy Formulation: Developing Approaches to Address Observations

After making observations about the curriculum materials, teachers formulate strategies to

address each of these observations. These strategies, typically developed at the lesson level,

reflect teachers’ professional experience and knowledge of what has worked well for them in

the past.

Our CTA identified several common strategies employed by expert teachers, including:
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• Activating and refreshing students’ background knowledge: For example, if

a lesson on fractions is planned, a teacher might include a warmup task that reviews

basic concepts of division and multiplication, ensuring students have the necessary

foundational knowledge.

• Supporting the decoding of text, mathematical notation, and symbols:

Teachers might add glossaries or visual aids to help students understand complex

terminology or symbols, making the content more accessible.

• Incorporating additional formative assessment: Teachers often include forma-

tive assessment activities, such as quick quizzes or exit tickets, to gauge student un-

derstanding and adjust instruction accordingly.

• Explicitly modeling necessary skills and procedures: For instance, if students

struggle with solving equations, teachers might provide step-by-step demonstrations

and think-alouds to model problem-solving processes.

• Providing opportunities for additional practice: Teachers might include fluency

drills or extra practice problems to reinforce key skills and concepts.

• Guiding student information processing: This could involve creating structured

note-taking guides or graphic organizers to help students capture and organize infor-

mation effectively.

These strategies were often grounded in learning sciences and reflected professional devel-

opment within the school, emphasizing evidence-based practices to enhance student learning

outcomes. The strategy formulation stage aligns with previous research suggesting that

teachers engage in a process of evaluation and adaptation when using curriculum materi-

als (Sherin & Drake, 2009). By developing strategies to address the gaps and challenges

identified during the observation stage, teachers demonstrate their pedagogical design ca-
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pacity (Brown, 2002) and their ability to craft instructional approaches that support student

learning.

3.2.3 Implementation

The final stage of the curriculum scaffolding process involves implementing the strategies

developed in the previous stage. This implementation occurs primarily at the resource level,

with teachers describing two main approaches: adaptation and supplementation of existing

curriculum materials.

Adaptation often involved light-touch edits and modifications to the original materials,

such as adding definitions, reducing cognitive demand, and making other minor tweaks to

improve accessibility and relevance for students. In some cases, teachers described more

substantial adaptations, such as restructuring an instructional task or changing its format.

Adaptation was more common when the original curriculum included resources that aligned

with the teacher’s desired strategy, such as a glossary of key terms that could be extended

to support student decoding of text and symbols.

Supplementation, on the other hand, usually occurred in response to identified gaps or

missing elements in the original materials. Teachers would create or source additional re-

sources to fill these gaps, such as developing warmup tasks to review relevant background

knowledge, creating note-taking guides for students, or crafting formative assessment ques-

tions. Supplementation often involved drawing upon third-party repositories like Teachers

Pay Teachers to find suitable materials.

Figure 1 summarizes the most common observations made by the experts, the associated

strategies they employed, and illustrative examples of how they implemented this strategy

in the lesson. We note that multiple strategies can be implemented via a single classroom

scaffold. For example, a warmup task could be used to activate relevant background knowl-

edge and to build student understanding of important language that will be used in the

lesson. Appendix A also provides additional examples of curriculum scaffolding strategies
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Figure 1: Framework showing the levels of curriculum scaffolding found in the CTA.
Expert teachers described first making observations about the existing curriculum
materials, then crafting strategies to address these, and finally implementing these
strategies through adaptations or modifications at the resource level. LLMs can
potentially support teachers at each of these steps.

and implementation approaches.

3.3 Opportunities for AI Augmentation

The findings from our CTA highlight several aspects of the curriculum scaffolding process

that could potentially be augmented through AI approaches. At each stage of the framework,

we see opportunities for LLMs to support teachers in their efforts to create accessible and

engaging instructional materials.

At the observation stage, LLMs could assist teachers by analyzing curriculum materials to

identify potential gaps and areas of challenge. Similar approaches have been used to identify

student misconceptions in programming (Fwa, 2024) and math education (Smart et al.,

2024). By providing teachers with preliminary observations based on student performance
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data and patterns in student learning over time, LLMs could save teachers time and offer a

foundation upon which to build their instructional strategies.

At the strategy formulation stage, LLMs could be designed to suggest strategies that

address the observations made by teachers. For example, if a gap in background knowledge

is identified, the LLM could propose strategies to activate prior knowledge. These suggestions

could be grounded in learning sciences and professional development best practices, ensuring

pedagogical soundness. LLMs could also potentially personalize strategy recommendations

based on specific student profiles and learning needs, similar to how they have been used to

interpret and explain students’ wrong answers (Smart et al., 2024).

At the implementation stage, LLMs could generate scaffolded instructional materials,

such as modified tasks or supplementary worksheets, aligned with the teacher’s desired

strategies. By incorporating expert decision-making models, LLMs could provide sugges-

tions that mimic the nuanced adaptations and supplements typically employed by expert

teachers. For example, LLMs could create warmup tasks that review relevant prior content

or generate formative assessment questions tailored to the lesson objectives. This aligns with

recent work to use LLMs to generate a wide range of educational materials, as outlined in

2.3.

These opportunities for AI augmentation resonate with Brown (2002)’s suggestions for

supporting teachers’ pedagogical design capacity. Brown proposes that teachers should re-

ceive help in evaluating the features and affordances of curriculum materials and identifying

necessary modifications to align these materials with instructional goals. The use of LLMs

to provide this kind of support could not only save teachers time and effort but also poten-

tially serve as a form of embedded professional development, helping teachers to refine their

understanding of instruction and student learning.
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4 Case Study: Using LLMs to Generate Curriculum

Scaffolds

Building on the three-stage framework obtained through our CTA, we conducted a case

study to understand how LLMs might be used at the implementation stage of curriculum

scaffolding, and how these scaffolds compare to those created by experts (RQ2). We restrict

our case study to only one stage in order to develop a proof-of-concept with a simpler

scenario that does not require jointly evaluating modeling decisions for the three stages at

once. Among the three stages, we chose to prioritize implementation because this step tends

to be the most time intensive for teachers (Grossman & Thompson, 2008) and because this

stage produces observable outputs that are directly comparable to expert implementations.

Thus, we draw on a pre-defined observation and scaffolding strategy for the implementation

task: (1) We focus on the observation that the designated curriculum is often inaccessible

to a significant proportion of students, and that there exists a gap between the curriculum

content and students’ present level of understanding, (2) we use a common strategy identified

during the CTA: the intention to activate and refresh students’ background knowledge of

key topics and skills. We leave the task of evaluating LLMs performance at producing

observations and scaffolding strategies for future work.

The specific implementation example we focus on is a warmup task, which not only

emerged as a common strategy in the CTA but also has a strong basis in learning science

research. The Universal Design for Learning framework and the National Council of Teachers

of Mathematics (NCTM) emphasize the importance of building on students’ prior knowledge

and experiences (CAST, 2024; National Council of Teachers of Mathematics, 2016). NCTM

recommends starting lessons with a review of previously learned skills, using a 5-10 minute

warmup activity, such as a discussion prompt or a mathematical task. For example, a lesson

on the Pythagorean Theorem might begin with a review of square numbers, surds, and the

properties of right-angled triangles. Given its prevalence and importance, warm up tasks
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serve as an ideal first case study for research-driven approaches to developing and testing

algorithms that create specific classroom scaffolds.

4.1 Methods

4.1.1 Data Collection

Creating a comparison set for LLM outputs required us to collect example implementations

of the teacher-intended curriculum. As noted in 2.1, this data is challenging to collect as it is

not centrally stored and often exists within individual teacher minds, files and presentations.

As such, we collaborated with two expert teachers from school districts in Washington and

Illinois to collect this novel dataset. Each expert has a minimum of 10 years of teaching

experience, deep familiarity with the Illustrative Mathematics curriculum, and roles as sub-

ject and curriculum leaders within their schools, where they mentor other teachers. These

qualifications help to ensure that the dataset is both robust and reflective of high-quality

instructional practices. The teachers were compensated at a rate of $50 per hour for their

contributions.

The data collection process began with selecting ten lesson plans from Units 2-7 of the

Illustrative Mathematics 6th-grade curriculum. These units target common misconceptions

in algebra, categorized into four primary areas: ratios and proportional relationships, the

number system, expressions and equations, and functions (Bush & Karp, 2013). The lessons

were evenly distributed across these categories, covering 21 of the 26 unique standards within

these units. This selection was deliberate, focusing on critical areas of need and spanning

a broad range of skills. It is noteworthy that while there is a warmup in every Illustrative

Mathematics lesson, the CTA revealed that these often assumed students were on grade level

and sometimes did not effectively activate background knowledge. Therefore, modification

was necessary to better meet the needs of students working below grade level.

Each expert was provided with the context of these ten lesson plans. The context included
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comprehensive details such as the lesson narrative, learning goals, standards, and specific

instructional routines and activities. Importantly, the experts were instructed to assume

they were teaching the lesson to a class where 50% of the students were working below grade

level. They were tasked with designing a warmup task that activates background knowledge,

concise enough to fit on a single Google Slide, aligning with common practices for creating

instructional materials. Additionally, they were asked to provide a brief commentary on the

rationale for their created task, including how, if at all, they used the original curriculum

warmup in their version. This commentary captures the teacher’s resource-level decision-

making process.

The dataset comprises 20 items in total, with each lesson plan having two modified

warmup tasks (one from each expert). Figure 2 illustrates an example of a lesson plan

context, the expert-created warmup task, and the commentary provided by the teachers.

4.1.2 Model Development

With expert examples of the teacher-intended curriculum for this specific classroom artifact,

we began to develop LLM-based approaches to generate similar warmup tasks. We prepared

three distinct approaches, each informed extensively by the findings from the CTA:

1. Expert Informed Prompt: In this condition, each model was provided with the

learning goals and lesson narrative. The prompt included general best practices for

creating effective warmups, incorporating insights gathered from the CTA. For ex-

ample, the model was encouraged to consider the skills and knowledge that would

be important for that particular lesson, mimicking the thought process that expert

teachers described.

2. Additional Curriculum Context: In addition to the learning goals and lesson nar-

rative provided in the Expert Informed Prompt condition, the model was given the

original warmup task from the Illustrative Mathematics curriculum. This condition
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Figure 2: For each lesson context (top-left), the expert teachers were given a pre-defined
observation (curriculum inaccessibility) and scaffolding strategy (activating background
knowledge). They implemented this strategy by creating a student-facing warmup
resource (bottom) and provided commentary on their rationale and use of the original
curriculum warmup, capturing their resource-level decision-making process (top-right).

tested the model’s ability to utilize existing curriculum components to generate a re-

lated but distinct educational task.

3. Expert Implementation Guidance Provided: As detailed in 4.1.1, the expert

teachers involved in data collection provided commentary focused on the implementa-

tion stage, justifying how and why they either adapted or supplemented the original
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warmup in the curriculum, in line with the process outlined in Section 3.2.3. In this

third condition, the model received the original warmup task and the expert teacher’s

commentary on implementation. This condition tested the model’s capability to inte-

grate human expert insights to refine or alter educational content meaningfully. The

rationale for this condition was to explore whether providing the model with explicit

guidance on how to implement the scaffolding strategy, as opposed to just the original

task itself, would lead to higher-quality outputs.

The full prompts used for each condition are documented in Appendix C for reference.

4.1.3 Evaluation Setup

Our evaluation methodology employs the comparative judgment technique, widely recognized

for its reliability in educational research (Pollitt, 2012).

Evaluators. To facilitate a comprehensive assessment, we engaged evaluators from two

distinct sources: a group of 19 current or former middle-school math teachers recruited

through partnerships with two school districts in Washington and Illinois and through per-

sonal and institutional networks, and an additional 31 active teachers recruited through the

Prolific platform. Prolific participants were screened to ensure they were based in the US or

UK, were current teachers, had at least an undergraduate degree, and had their degree in

mathematics or statistics. Although it was not possible to filter directly for math teachers,

we assumed it was likely they had experience teaching math if they met these criteria.

Table 1 summarizes the sample of evaluators based on self-reported information we col-

lected at the beginning of the task. The sample consisted primarily of current math teachers,

with 74% actively teaching math. An additional 18% were former math teachers, while the

remaining 8% were teachers of another subject with a math degree. In terms of teaching

experience, 52% had more than 10 years of experience, 28% had 5-10 years, and 20% had

less than 5 years. The majority of evaluators taught at the high-school level (78%), followed
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by middle-school teachers (61%), and a smaller proportion teaching at the elementary level

(13%).

Table 1: Demographic Information of Evaluators

Category Percentage

Current Math Teacher 74%
Former Math Teacher 18%
Never Taught Math 8%

More than 10 years of teaching experience 52%
5 - 10 years of teaching experience 28%
Less than 5 years of teaching experience 20%

High-School Level 78%
Middle-School Level 61%
Elementary Level 13%

Evaluation task. Each evaluator completed 10 paired comparisons, one for each of 10

distinct lessons. These sixth grade mathematics lessons were derived from our dataset (Sec-

tion 4.1.1). In each comparison, they evaluated the expert-made warmup against one of four

warmups: the original curriculum warmup and three LLM generated warmups, one from

the Expert-Informed Prompt condition, one from the Additional Curriculum Context condi-

tion and one from the Expert Implementation Guidance Condition. The original curriculum

warmup was included as a baseline comparison, to assess whether evaluators preferred the

unmodified materials from Illustrative Mathematics to the versions modified by the expert

teacher. To mitigate potential biases, we randomized the order of the lessons, the selection

of the expert warmup (expert 1 or expert 2) for each lesson, and the comparison condi-

tion presented for each lesson.1 In total, 500 comparisons were conducted, 125 for the

Expert-Informed Prompt condition, 132 for the Additional Curriculum Context condition,

122 for the Expert Implementation Guidance condition, and 121 for the Original Curriculum

Warmup condition.

1We verified that randomization worked correctly, as each unique model/original warmup item was com-
pared 6.25 times with a standard deviation of 1.196, which is in line with expectations.
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To minimize bias in the presentation of the warmups, we performed minimal post-

processing of the model-generated warmups for comparison with the expert versions. This

involved formatting the model output on a Google Slide with the same template and theme

as the expert version, without making any changes to the text. We also included up to one

image per slide to maintain aesthetic consistency. For example, if the model output involved

questions about paint, we inserted an image of paints. These images served purely aesthetic

purposes and had no pedagogical or mathematical relevance, encouraging evaluators to focus

on the content rather than the presentation. Figure 3 provides an example of the comparison

screen presented to evaluators.

Evaluators assessed the warmups based on the following criteria, chosen for their relevance

to practical and effective classroom instruction:

1. Alignment to Learning Objectives: Evaluators rated each scaffold based on its

alignment to the specific learning objectives, ensuring that the task directly contributes

to achieving these goals.

2. Accessibility for Below-Level Students: This criterion examines the ease with

which below-level students can engage with the task, considering the clarity, simplicity,

and support embedded within the scaffold.

3. Readiness for Classroom Use: This measures the extent to which a scaffold can be

utilized in the classroom without further modification. Evaluators assessed how much

additional preparation, adaptation, or modification each scaffold would require before

it could be effectively used. Readiness for use is important as it reduces preparation

time, allowing teachers to focus more on instruction and interaction with students.

4. Preference: Evaluators were asked which warmup they would prefer to use if they

were teaching the specific learning objective. This captures the overall practical pref-

erence of educators based on their professional judgment.
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Figure 3: For each of the ten lessons, evaluators were shown two warmups, one created
by an expert and one created in one of our model conditions. The order of expert and
model were randomized each time.

Each of these dimensions was assessed using a direct comparison between the expert-

created and model-generated warmups. Evaluators indicated their preference on a 5-point

Likert scale ranging from “Warmup A is much more [aligned to learning objectives/accessible/ready-
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Metric
Expert Informed

Prompt

Additional
Curriculum
Context

Implementation
Guidance

Original
Curriculum
Warmup

...aligned with learning objectives. 0.528*** 0.636*** 0.467*** -0.331**

...accessible. 0.448*** 0.447*** 0.410** -0.099

...ready-to-go. 0.440*** 0.371*** 0.270* 0.017

...preferred. 0.496*** 0.545*** 0.410** -0.124

Table 2: Results of Comparative Judgments Between Model-Generated Warmups and
Expert-Created Benchmarks

to-go/preferred]” to “Warmup A and B are equally [aligned to learning objectives/accessible/ready-

to-go/preferred]” to “Warmup B is much more [aligned to learning objectives/accessible/ready-

to-go/preferred]”. These ratings were then coded on a scale from -2 to +2, with -2 and -1

corresponding to Warmup A being much more or somewhat more preferred, 0 indicating

equal preference, and +1 and +2 corresponding to Warmup B being somewhat more or

much more preferred.

4.2 Results

Table 2 summarizes the results of the comparative judgments between the model-generated

warmups and the expert-created benchmarks across four dimensions: alignment to learning

objectives, accessibility for below-level students, readiness for classroom use, and preference.

The results are also visually represented in Appendix B, which shows violin plots for each

of the dimensions assessed.

Overall, the Additional Curriculum Context condition performed best across all evalu-

ation criteria. These outputs were significantly preferred to the expert outputs in terms

of alignment to learning objectives (M=0.636, p<0.001), accessibility (M=0.447, p<0.001),

readiness for classroom use (M=0.371, p<0.001), and overall preference (M=0.545, p<0.001).

However, the magnitude of the difference is moderate, with an average of 0.50 across the

criteria on a -2 to 2 point scale.

The Expert Informed Prompt condition also performed well, with outputs significantly
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preferred to the expert versions in alignment to learning objectives (M = 0.528, p < 0.001),

accessibility (M = 0.448, p < 0.001), readiness for classroom use (M = 0.440, p < 0.001),

and overall preference (M = 0.496, p < 0.001). The magnitude of the difference is similar to

the Additional Curriculum Context condition. A paired t-test indicates that the scores for

the Expert Informed Prompt condition are not significantly different from the Additional

Curriculum Context condition for alignment to learning objectives (t = −0.649, p = 0.517),

accessibility (t = −0.238, p = 0.812), readiness for classroom use (t = 0.163, p = 0.871), and

overall preference (t = −0.342, p = 0.733).

The Implementation Guidance Provided condition also performed well, with outputs

significantly preferred to the expert versions in terms of alignment to learning objectives

(M = 0.467, p < 0.001), accessibility (M = 0.410, p < 0.01), readiness for classroom

use (M = 0.270, p < 0.05), and overall preference (M = 0.410, p < 0.001). A paired t-

test indicates that the scores for the Implementation Guidance Provided condition are not

significantly different from the top-performing Additional Curriculum Context condition for

alignment to learning objectives (t = 1.051, p = 0.295), accessibility (t = 0.533, p = 0.595),

readiness for classroom use (t = 1.063, p = 0.290), and overall preference (t = 1.037,

p = 0.302). We provide hypotheses for why this condition did not outperform the other

conditions in the discussion and future work sections.

The Original Curriculum Warmup condition was not significantly preferred to the expert

outputs on most of the evaluation criteria, with mean scores close to zero for accessibility

(M = −0.099, p > 0.05), readiness for classroom use (M = 0.017, p > 0.05), and overall

preference (M = −0.124, p > 0.05). However, for alignment to learning objectives, the

expert-created warmups were significantly preferred to the original warmups in the curricu-

lum (M = −0.331, p < 0.01). This suggests that while the original curriculum warmups

were perceived as comparable to the expert-created ones in terms of accessibility, readiness

for use, and overall preference, the expert-created warmups were considered better aligned

with the learning objectives of the lessons.
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5 Discussion

Our research aimed to explore the potential of LLMs in supporting teachers with scaffolding

their curricula, specifically focusing on middle-school mathematics. We were particularly

interested in the transition from the designated curriculum to the teacher-intended curricu-

lum, and within that, the subset of adaptations and supplementations that teachers employ

to ensure that all students can access and engage with the curriculum, which we define as

curriculum scaffolding.

Building on CTA with expert teachers, we proposed a three-step process for curricu-

lum scaffolding: observation, strategy formulation, and implementation. This framework

aligns with existing literature, such as Sherin & Drake (2009)’s conceptualization of teachers

reading, evaluating, and adapting the curriculum and Brown (2002)’s three modes of en-

gagement with curriculum: offloading, adapting and improvising. We extend prior work by

providing additional granularity specific to the context of preparing curriculum for middle-

school mathematics classrooms where students are struggling to access and engage with

the content. Our framework offers insights into the day-to-day implementations of various

adaptation strategies in this specific subject and context, some of which are described in

Appendix A. For example, we provide additional color to what ‘adapting’ means in Sherin

& Drake (2009)’s conceptualization, detailing specific techniques such as activating back-

ground knowledge, supporting the decoding of text and symbols, and explicitly modeling

necessary skills and procedures. These insights contribute to a more nuanced understanding

of curriculum scaffolding in contexts of learner variability.

To apply this framework and investigate the potential of LLMs to produce high-quality

curriculum scaffolds, we focused on a specific scenario and strategy identified in our CTA

with expert teachers: creating warmup tasks that activate and refresh students’ background

knowledge. We presented a novel dataset of expert-created warmup tasks for this purpose

and developed several LLM-based approaches informed by the insights gained from the

27



CTA. Our evaluation, which involved 500 comparisons across three model conditions and

the original curriculum warmup by math teachers, found that the LLM-generated warmup

tasks performed better than those created by expert teachers. The best-performing approach

was the Additional Curriculum Context condition, where the model was provided with the

original warmup task from the curriculum in addition to an expert-informed prompt. This

finding resonates with the expert teacher approach identified in the CTA, whereby teachers

review the original curriculum materials before deciding how to adapt them for their specific

context.

Our results highlight the potential for LLMs to support teachers in the curriculum scaf-

folding process, particularly when provided with relevant context and guidance informed by

expert practices. By automating the creation of high-quality instructional scaffolds, such as

warmup tasks, LLMs could help alleviate the burden on teachers, allowing them to focus more

on direct instruction and interaction with students. Furthermore, our work demonstrates

an approach for closely involving teachers in the development and evaluation of LLM-based

approaches for education, which the research community has called for (Nazaretsky et al.,

2022). By replicating this approach for other specific curriculum scaffolding strategies and

implementation examples, researchers can continue to explore the potential of AI to support

teachers in creating effective, engaging, and inclusive learning experiences for all students.

Our findings contribute to the growing body of literature on curriculum use and the

application of AI in education. By providing a more granular understanding of the curricu-

lum scaffolding process and demonstrating the potential of LLMs to generate high-quality

instructional materials, this study lays the groundwork for the development of AI-driven

tools that can support teachers in their efforts to meet the diverse needs of their students,

particularly in contexts where many learners are struggling to access and engage with the

curriculum.
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6 Limitations and Future Work

While our study provides valuable insights, it is only a first step towards understanding the

potential of LLMs to support curriculum scaffolding. One limitation is the reliance on a small

set of expert-created warmups for evaluation. Although we collaborated with experienced

teachers to develop the dataset, having only two examples of teacher-created warmups per

lesson may not fully capture the diverse ways in which warmups can be implemented. Eval-

uators’ preferences might have been influenced by factors beyond the quality of the warmups

themselves. To address this limitation, future studies should aim to expand the dataset

to include a broader range of expert-created warmups, ensuring a more comprehensive and

accurate evaluation of the LLM-generated scaffolds.

Another limitation is that the strategies used in the Expert Strategy condition were de-

rived from the dataset creators rather than the evaluators themselves. It is possible that

the evaluators might have had different ideas about how to improve the warmups, and the

strategies infused into the model might not fully reflect their approaches. This discrepancy

could have affected the model’s performance in this condition. To mitigate this issue, fu-

ture research should consider a more dynamic approach, where teachers review the original

warmup, provide their own strategies for improvement, and then evaluate the automati-

cally generated warmup based on their input. Such an interactive AI-in-the-loop system

would help ensure that the LLM-generated scaffolds align more closely with the evaluators’

perspectives and preferences.

Our study lays the groundwork for several exciting avenues of research. One priority

should be to expand the dataset to include a wider variety of instructional scaffolds beyond

warmup tasks, as well as observations and strategies to capture all three stages of the scaf-

folding process. By applying the framework and methodology developed in this study to

other types of curriculum adaptations and supplements, researchers can gain a more com-

prehensive understanding of the potential for LLMs to support teachers in the curriculum
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scaffolding process. However, this type of data collection process would need to be dynamic

to address the limitations mentioned above.

Additionally, piloting the LLM-generated warmups in real classroom settings would pro-

vide valuable insights into their practical effectiveness and help identify areas for further

refinement. Collaborative research with teachers, involving the use of AI-generated scaffolds

in their day-to-day practice, could shed light on the challenges and opportunities associated

with integrating these tools into existing instructional workflows. Moreover, conducting fo-

cus groups and interviews with students to qualitatively understand their perception of the

materials, and measuring outcomes such as their relationship to math and academic perfor-

mance, could help assess the impact of these scaffolds on learners, similarly to what other

studies on scaffolding have done.

Another promising direction for future research is the exploration of more nuanced and

personalized scaffolding strategies. By leveraging real-time feedback from teachers and data

on student performance and engagement, LLMs could potentially generate instructional

scaffolds that are tailored to the specific needs and characteristics of individual classrooms

and learners (Lim et al., 2024). The development of adaptive, data-driven scaffolding tools

could represent a significant step forward in supporting teachers’ efforts to create inclusive

and effective learning experiences for all students.
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Appendix A Curriculum Scaffolding Strategies and Im-

plementation Approaches

Curriculum Scaffolding

Strategy

Implementation Examples

Increase relevance,

value, authenticity
1. Use motivating questions to engage students from the start

of the lesson.

2. Introduce the lesson with a hook to capture students’ in-

terest.

3. Incorporate students’ personal interests and experiences

into the lesson content.

Activate background

knowledge
1. Start with a task, such as a warmup or quiz, to review and

activate prerequisite topics and skills.

2. Provide a handout with relevant background knowledge,

including worked examples, helpful formulas, and defini-

tions.

3. Use graphic organizers to help students structure and vi-

sualize information.

4. Embed notes within the lesson materials to reinforce key

concepts and provide guidance.
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Curriculum Scaffolding

Strategy

Implementation Examples

Build student fluency

with targeted direct in-

struction and graduated

levels of practice.

1. Conduct fluency drills that focus on the specific skill being

taught in the lesson.

2. Ask probing questions that vary in difficulty and form to

deepen understanding.

3. Use quizzes and drills to reinforce prerequisite skills.

4. Implement digital practice activities that provide immedi-

ate feedback to students.

5. Provide direct instruction to address common misconcep-

tions and errors.

6. Model key skills through direct instruction to ensure stu-

dents understand the process.

Support decoding of

text, mathematical no-

tation, and symbols to

build math literacy.

1. Create vocabulary lists, word walls, and use strategic word

substitutions to support language comprehension.

2. Design practice activities that target students’ use of math-

ematical language in both large group and small group

tasks.
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Curriculum Scaffolding

Strategy

Implementation Examples

Add formative assess-

ment
1. Use exit tickets and diagnostic assessment questions to

gauge student understanding at the end of lessons.

2. Implement think, pair, share activities to encourage stu-

dent discussion and reflection.

3. Conduct low-stakes quizzes to monitor ongoing progress

without adding pressure.

4. Provide digital practice with immediate feedback to help

students correct mistakes in real-time.

5. Include mid-lesson checks for understanding to adjust in-

struction as needed.

6. Encourage student self-assessment to promote self-

reflection and goal setting.

Provide opportunities

for deeper concep-

tual understanding to

optimize challenge.

1. Offer more challenging practice that covers the same core

skill to push student thinking.

2. Provide practice with immediate feedback to help students

self-correct.

3. Design challenge practice activities that build new knowl-

edge based on current skills.
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Curriculum Scaffolding

Strategy

Implementation Examples

Adapt curriculum to

include appropriate

goal-setting, planning,

and strategy develop-

ment and managing

information to support

executive function and

SEL.

1. Prompt students to plan their problem-solving approach

before starting tasks.

2. Encourage students to break down tasks themselves to de-

velop planning skills.

3. Break up complex tasks or lessons into smaller, manageable

parts for students.

4. Use flowcharts to guide students through decision-making

processes.

5. Provide knowledge organizers with key notes and informa-

tion to aid in learning.
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Curriculum Scaffolding

Strategy

Implementation Examples

Adapt curriculum to

guide information pro-

cessing and lighten the

cognitive load on learn-

ers.

1. Simplify numbers and data in problems to make them more

accessible.

2. Use worked examples to demonstrate step-by-step solu-

tions.

3. Include hints and suggestions in handouts, especially guid-

ance for the first step in tasks.

4. Provide lesson notes in handouts to support learning.

5. Break down student-facing material into multiple artifacts,

such as warm-ups, in-class practice, individual practice,

and exit tickets.

6. Ensure the visual design of modified practice materials is

similar to general practice to avoid confusion.

7. Reformat student-facing work to make it more intuitive and

easier to follow.
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Appendix B Model Evaluation

Figure B1: Evaluators compared warmup tasks created under four model conditions
(Expert-Informed Prompt, Additional Curriculum Context, Implementation Guidance,
Original Curriculum Warmup) to those crafted by experts. The violin plots show the
distribution of scores across four dimensions: alignment with learning objectives,
accessibility for below-level students, readiness for classroom use, and overall preference.
Red dashed lines indicate the mean scores.
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Appendix C Model Prompts

Figure C2: This prompt was iteratively designed with input from expert teachers. It
pipes in relevant information from the curriculum.

Figure C3: This prompt included the original curriculum warmup from Illustrative
Mathematics.
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Figure C4: This prompt also includes the expert teacher’s strategy for modification of
the original curriculum warmup.
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