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Researchers have recommended using tasks that support students in reasoning 

covariationally to build productive meanings for graphs, rates of change, exponential growth, 

and more. However, not many recent studies have been done to identify how students reason 

when engaging in covariational reasoning tasks in undergraduate precalculus courses. In this 

study, I analyze submitted classwork, including video submissions of that work, in an applied 

precalculus undergraduate course. In comparing current literature on students’ covariational 

reasoning with these students’ responses, there is some overlap that this study provides 

additional insights to, and there are also unique ways of reasoning these students exhibited 

tied to understanding the steepness of slope as being associated with ideas of speed. This study 

contributes to knowledge about how students develop covariational reasoning. 
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Introduction 

Attempts to study students’ covariational reasoning—students’ reasoning about how 
quantities change together—has been going on for decades. Back in 2002, Carlson et al. 
(2002) proposed a framework for covariational reasoning. This framework was built after 
interviewing precalculus students on what has been aptly referred to as the Bottle Problem. In 
this problem, students graph volume vs. height of a given image of a slice of a bottle. 
Variations of the Bottle Problem have been used with a variety of populations (with K-12 
students, undergraduate mathematics students, preservice teachers, etc.) and contexts (in the 
US and internationally). The framework developed from Carlson et al.’s analysis of students’ 
responses to the Bottle Problem has served several researchers for the past few decades in 
understanding how students reason covariationally. Moreover, in 2015, Thompson & Carlson 
(2015) proposed a new framework for (co)variational reasoning that attends to more nuanced 
mental actions—such as the construction of multiplicative objects and distinguishing between 
variation and covariation. 

The study described in this report builds on the work of these and other researchers’ 
understanding of covariational reasoning by using these newer ideas on covariational 
reasoning. In particular, the newer ideas are used to explain a common way of reasoning seen 
in the Bottle Problem with students in an undergraduate precalculus classroom—one of 
which was a way of reasoning that was offered by a student in the initial Carlson et al. (2002) 
paper to introduce the framework. Below is the excerpt from that paper (Carlson et al, 2002, 
p. 366) in which the student describes their reasoning for constructing a graph with a concave 
down curve. 

B: OK, the more water, the higher the height would be [MA2]. In terms of height of the 
water, that is what we are talking about. If you are talking about the height left over, 
that is basically decreasing. Right here the height will be zero and the volume is zero. 
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As you go up, a little more height increases and the volume increases quite a bit 
[MA3], so the amount by which the height goes up is not as fast [MA3]. Once you get 
there [pointing to halfway up the spherical part of the bottle], the height increases even 
slower [MA3]. I guess from here to there height increases the same as the volume 
increases, and once you 

 
get here it increases slower [MA3]. No, I am wrong. So, every time you have to put 
more and more volume in to get a greater height towards the middle of the bottle and 
once you get here, it would be linear, probably [pointing to the top of the spherical 
portion]. So, it’s always going up [tracing his finger along the concave-down graph], 
then it would be a line. 

Int.: So, what does the graph look like? 
B: Like this [pointing to the concave-down graph he has constructed], but it has a straight 

line at the end. 
 

Figure 1: The Bottle Problem from Carlson et al. (2002, p. 360). 
 

The goal of this study was to collect students’ responses to the Bottle Problem from 
precalculus students and identify the covariational reasoning the students exhibited. In doing 
so, the following research question emerged and will be addressed in this paper: How do 
students who draw graphs for a situation involving two different rates reason covariationally? 
To answer this question, I will report on what literature on students’ quantitative and 
covariational reasoning has said about this situation in the past, including ideas of iconic 
translations, shape thinking, and thematic reasoning. I will then describe the methods of how I 
collected data on this problem and coded it to pull out examples similar to the ones described 
in the research question and identify a unique but related way of reasoning the students 
exhibited. I will then report on the students who exhibited this reasoning and conclude by 
describing how these students justified their graphs and relate it to the existing research on 
covariational reasoning. I conclude by introducing a new way of understanding students’ 
reasoning about concavity and linearity in graphs that has implications for future research on 
students’ meanings for graphing. 

 
Theoretical Framework 

In 2002, Carlson et al. (2002) proposed a framework for covariational reasoning that 
included five mental actions: “coordinating the value of one variable with changes in another” 
(MA1), “coordinating the direction of change of one variable with changes in another variable” 
(MA2), “coordinating the amount of change of one variable with changes in the other variable” 
(MA3), “coordinating the average rate-of-change of the function with uniform increments of 
change in the input variable” (MA4), and “coordinating the instantaneous rate of change of the 
function with continuous changes in the independent variable for the entire domain of the 
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function” (MA5) (p. 357). In classifying students based on this framework, they recognized that 
students can exhibit behaviors indicating particular mental actions without providing adequate 
evidence they “possessed an understanding that supported the behavior” (p. 358), citing 
Vinner’s (1997) notion of pseudo-analytical behavior. They thought that the student in the 
excerpt above may fit this category of reasoning. 

In moving forward with research on student’s covariational reasoning, Moore & Thompson 
began to distinguish between evidence of understanding vs. pseudo-analytical behavior in 
students’ graphing activities. In 2015, they introduced the notion of static and emergent shape 
thinking. Static shape thinking entails thinking about a graph “as an object in and of itself”, 
possessing properties associated with learned facts. An example in the paper was that of a 
student referencing “the sine graph” as a “graph everyone knows about” and that has a particular 
shape and orientation. Emergent thinking emphasizes the creation of a trace constructed via 
representing a covariational relationship between quantities. Students’ reasoning in the sine 
example might include highlighting magnitudes and constructing a point on the graph 
simultaneously representing both quantities’ magnitudes (i.e., a multiplicative object (Piaget, 
1970)), and then varying the quantities’ magnitudes to construct a trace of a line with that point. 

Their distinction was one contribution of many to research interested in making sense of 
graphical reasoning. For example, Stevens et al. (2016) looked at students’ justifications of 
curvature, Frank (2017) looked at the process of constructing a multiplicative object, Paoletti 
(2020) looked at the impact of inverse functions on students’ representational activity, Johnson 
(2022) looked at the impact of varying representations, and Ellis et al. (2013) focused on 
students’ understanding particular kinds of relationships being represented (e.g., exponential). 
Moore and colleagues also continued to learn about students’ construction of relationships 
between quantities via figurative and operative thought (Liang & Moore, 2020; Moore et al., 
2019). This research included attending to iconic translations and thematic associations as 
evidence of figurative thought, thought focused on the “figure to ground” (Thompson, 1985). 

Beyond understanding students’ representational activities, colleagues also worked to 
develop the construct of covariational reasoning. For example, Castillo-Garsow, Johnson, & 
Moore (2013) introduced the notion of chunky and smooth shape thinking, attending to the 
discrete vs. continuous ways of thinking involved in reasoning about varying objects. Ely & 
Ellis (2018) also considered this in Calculus contexts in terms of a “zooming in” on functions’ 
graphs. Meanwhile, work continued to develop the initial framework posed by Carlson et al. 
(2002), and in 2017, Thompson & Carlson (2017) proposed a new framework for 
covariational reasoning, 
revised by attending to “students’ variational reasoning separately from covariational 
reasoning” and to “how students coordinate their images of quantities’ values varying” by 
considering the variational reasoning and their construction of a multiplicative object 
(Thompson & Carlson, 2017; p. 440). The resulting levels of covariational reasoning include: 
no coordination, precoordination of values, gross coordination of values, coordination of 
values, chunky continuous covariation, and smooth continuous covariation (Thompson & 
Carlson, 2017, p. 441). 

The aforementioned body of literature has influenced this study. First, the Carlson et. al 
(2002) covariational reasoning provided an initial framework to analyze students’ responses. 
The work on students’ static and emergent shape thinking and figurative and operative 
thought provided a lens to tease apart students who focused on building quantitative 
relationships between quantities versus representing learned properties. The work on 
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understanding the impact and importance of gaining evidence for students’ reasoning via 
changing the representation systems helped make sense of the severity of students’ association 
to particular shapes. The work on understanding various relationships helped to unpack the 
role in which relationship was being described was impacting the resulting graphical 
representation. Lastly, the updated Thompson & Carlson (2017) framework provided a way to 
make sense of students’ actions in ways that did not rely solely on directional reasoning and 
amounts of change reasoning, but rather their coordination of quantities and their imagery of 
variation. 

 
Methods  

The study was conducted with 39 students from an undergraduate applied precalculus 
course at a medium-sized public university in the northeastern U.S. The course is coordinated 
and the instructor of the course is the researcher. The students in this course are not intended 
Mathematics or Engineering students, but rather the students with a variety of other majors 
(e.g., Biology, Conservation, Pharmaceutical Sciences, Marine Affairs, Journalism, 
Communication Studies, Psychology). The course consisted of students self-reported as White 
(27), Black (2), Hispanic (1), 2 or more races (8), and not specified (1). Throughout the 
semester, coursework was collected from the students, and the focus of this study is on the 
third class assignment of four total class assignments (see task description in the following 
section). All assignments had two parts: one done in class through groupwork and one outside 
of class time. Both parts were submitted individually online. The last two assignments 
included a video submission in which the students talked through their solutions on Part II of 
the assignment. 

In analyzing students’ covariational reasoning for this study, the researcher analyzed the 
33 submitted written work with accompanying video submissions of Assignment 3. The work 
was analyzed using Carlson et al.’s (2002) framework. Additionally, using thematic analysis 
(Corbin & Strauss, 2009), notes were taken on similar work within and across those categories 
(e.g., mention of speed) and compared to literature on covariational reasoning. The researcher 
then identified that several of the students reasoned similar to the student mentioned in 
Carlson et al. (2002). The researcher then used the ideas of shape thinking, co(variational) 
reasoning, and 
slope/rate of change to characterize students’ reasonings in ways that are viable based on their 
responses. 

 

Task Descriptions 
In this section, I will summarize the goals of the first three assignments to provide a better 

understanding of the assignments collectively, and then I will focus on the Bottle Problem 
assignment, indicating adaptations that were made to target the precalculus concepts of 
polynomial and exponential growth. 

 
Overview of Class Assignments 

There were four class assignments throughout the course of the semester. Part I questions 
primarily focused on exploring a dynamic context, identifying quantities, and representing 
relationships. Part II primarily asked for more pointed questions about the relationships 
between quantities. In Assignment 3, the students received various cross-sections of bottles, 
descriptions of bottles, or graphs relating the height and volume of the bottle and asked to 

Articles published in the Proceedings are copyrighted by the authors.



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno. 
	

	

889 

either draw the corresponding volume-height graph or the corresponding bottle. In Part II of 
the assignment, the students were asked to submit a 3-5 minute video in which they talked 
through their various graph and bottle constructions for the Part II bottles. 

Class Assignment 3: The Bottle Problem 
In the Bottle Problem, the students were given cross-sections of bottles, descriptions of 

bottles, or graphs of the volume-height relationship for bottles. Part I adopted materials used 
by Moore and colleagues from the NSF funded Advancing Reasoning Project. In Part II, the 
prompts included asking for specific reference to Direction and Amounts of Change talk. The 
following narrative was provided to introduce this talk to the students: 

We create graphs to represent quantities’ measures and how these measures change 
together. So, when we talk about graphs, we should talk about quantities’ measures and 
relationships. We call this covariation. There are numerous ways of talking about 
covariation including: Correlation As quantity A changes, quantity B also changes. 
Directional As quantity A increases (or decreases), quantity B increases (or decreases). 
Amounts of Change As quantity A increases by equal increments, the amount of increase 

(or decrease) in quantity B decreases (or increases). Rates of Change As quantity A 
increases, quantity B increases (or decreases) at an increasing (or decreasing) rate. 

Part II of the assignment had three problems. In the first problem, the students were asked 
to sketch the volume-height graph and draw the cross-section of a bottle (a) from a volume-
height graph of their own choosing, (b) a bottle in which the bottle doubles in volume for 
every additional inch of height, (c) a bottle in which the for each inch of height the bottle 
increases, the volume of the bottle increases two more inches cubed in volume than the 
previous increase. In the second problem, the students drew their own cross-section of a bottle 
and created the corresponding height-volume graph. In all these problems, the students were 
also asked to include Direction and Amounts of Change talk using color-coding. In the third 
problem, the students were asked to create a 3–5-minute video talking through their work in 
Part II using Direction and Amounts of Change talk. Only responses to Part II 1a and 2 are 
reported here. 

 
Results 

Although all the student work was analyzed using the Carlson et al. (2002) framework for 
covariational reasoning, the results reported here are two common themes of work in which 
students used some sort of covariational reasoning in their argument but also offered different 
justifications for the curvature of their graphs for at least some regions of their graphs. In 
particular, these categories are justifications based on faster/slower language (thematic 
associations) and justifications based on the shape of the bottle (iconic) (related to the 
aforementioned description of the student from Carlson et al. (2002). 

Thematic Justification: Faster/Slower 
Ten of the 33 students mentioned some of descriptions that associated the words faster and 

slower with the steepness of slope. For four of these students, these descriptions were 
associated with graphs that were sectioned into linear components (with, from the researcher’s 
perspective, some moderate curvature between the sections that was unaddressed in any 
students’ descriptions). Julia, for instance, gave the following verbal description associated 
with the work she produced in Figure 3. 
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Figure 3: (Left) Julia’s Bottle and Graph and (Right) Additional Highlights Added by 
Author to Represent the Sections of the Graph Referenced by Julia. 

[Julia’s Written Response in Figure 3: “The container will fill slowly, quickly, slowly, then 
quickly. As the height’s increasing at the bottom, volume is decreasing.”] 

Julia: And as for this one, the container will fill slowly, then quickly, then slowly, and 
then quickly again. And you can see this because at the base [points to the bottom of 

the cross section], even though it’s wider [makes angled in motion with hands], it 
doesn’t allow as much water in ’cause it narrows and it becomes slimmer [motioning 

along themiddle of the bottle]. So this would fill in very slowly [starts moving 

fingers alongside and up the cross section of the bottle] but not-but at a more 
constant rate [pointing to the first linear region on the graph], and then when it 
changes directions again [motions up the remainder of the bottle], that’s when this 
changes directions [motions up the remainder of the graph]. Yep. Then as height’s 
increasing at the bottom, volume is decreasing. 

Lorella and Leonhard produced similar bottles and graphs and gave similar justifications. 
When describing the middle section of her cross section and associated slanted line on her 
graph, Lorella stated that the volume will “start to fill up quicker and then as shown in the 
graph right here, is the portion that kinda closes in”, pointing to the middle region of her graph. 
Leonhard offered the following description of the vase and his graph seen in Figure 4. 

Leonhard: And as for this one, the container will fill slowly, then quickly, then slowly, 
and then quickly again The vase fills slowly, then quickly, then slowly. With the curve 
starting out less steep as we can see here [pointing to the first section of the curve], 
then steeper [pointing to the middle section of the curve]-steeper, very steep, then less 
steep [pointing to the third section of the curve]. Which is the same as it is here 
[pointing to the first section of the curve]. Which is why it will be the vase right here 
[pointing to diagram of cross section of vase]. 
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Figure 4: (Left) Leonhard’s Bottle and Graph with (Right) Additional Highlights Added by 
Author to Represent the Three Sections of the Graph Referenced by Leonhard 

These students all exhibited reasoning which involved an imagery of pouring in water that 
filled the glasses “slowly” or “quickly”. Also, although volume was the quantity they were 
referencing as filling “quickly”, a higher volume to height rate with the provided axes would 
imply a less steep slope based on their description. Thus, all these students associated speed 
with the steepness of a slope (without attention to the axes labels)-faster speed results in a 
steeper slope. Moreover, the “steeper” or “less steep” regions were referencing regions of the 
bottle (not points), and thus occurring over intervals in the corresponding graph. 
 

Iconic Translations: Decreasing then Increasing 
The results in this section correspond to the result that Carlson et al. (2002) reported for 

Student B discussed in the introduction. Although the bottles are different, like Student B, these 
five students all used a single concave up or down curve to represent the height and volume 
relationship of a spherical and an inward curved portion of a bottle (see Figure 5). 

 
(a) 

 
(b) 

 

 
(d) 
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(c) 

 
(e) 

Figure 5: Bottles and Graphs (a) Louise, (b) Elizabeth, (c) Sandra, (d) Hertha, and (e) Alan. 

In all the bottles in Figure 5, students associate concave down and up curves with regions 
that normatively have changes from increasing to decreasing (or vice versa) rates of height 
with respect to volume. Below are some excerpts from the various students describing their 
work: 

Louise (5a): [Referencing the green section on her bottle] The volume now starts 
to decrease, so rate of change quantity, everything, the volume is now decreasing 
as the height is increasing. [Referencing the purple section above the green section 

on her bottle] But then as the height increases, the volume then starts to increase 
and then increases. 

Elizabeth (5b): And then for question 2, I did this demonstrated with the pink being the 
straight line [pointing at leftmost pink region on graph] because it goes straight out, 
and then when there’s a rate of change in the curve [pointing at the left purple region 

on the graph], it is demonstrated by the purple [pointing to the bottom purple curve on 

the cross section]. And this side it changed again [pointing to the right purple region 

on the graph], so it’s purple here [pointing to the top purple curve on the cross 

section]. And then straight up [pointing at the right pink region on the graph] so it’s 
pink [pointing at the top pink region on the cross section]. And that is what that bottle 
looks like. 

Sandra (5c):   The graph, it doesn’t have any straight lines in this, so I knew it was gonna 
be a curvier bottle. So the green is going inwards so you see that inwards bottle there, 
and then it goes outwards, making it up to the cap of the bottle. 

Hertha (5d):   So the bottle does round out and at the bottom and it’s straight at the top 
and you can see that in the graph. So at the top, it’s increasing at more of the same 
rate, and at the bottom, the volume is increasing significantly faster than the height. 
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From all these various pieces of work, we see evidence of iconic translations, static 
shape thinking associating a curve in the bottle with a similarly represented curve (albeit 
diagonally placed) on a graph. However, when analyzing their descriptions, as well as the 
description B gave from the Carlson et al., (2002) article, these students are referencing 
quantities varying. Specifically, they talk about height and/or volume increasing. Instead of 
the focus being on speed, the focus here is on the shape of the bottle as height (or volume) 
increases. There are 
references to the bottle getting “wider” or have an “inwards curve” vs. an “outwards curve” 
as that quantity varies. Thus, the iconic translations the students are making are occurring in 
sections that they consider as one quantity is varying. For covariational reasoning to occur, 
two quantities need to be related, but here instead the students associate features (not 
quantities) as one quantity increases. So referencing features such as having “more volume 
than height” or “volume increasing significantly faster than the height” are not quantitative 
comparisons of 
quantities, but rather descriptions of characteristics associated with particular shapes in a 
graph. What makes it more sophisticated than some other iconic translations described in the 
literature review (with purely figurative reasoning) is twofold: (i) all the graphs are 
monotonically increasing indicating some awareness of the varying (particularly the increase) 
in one quantity, and (ii) like the previous examples, a bulging out seems to always be 
represented by a concave down shape to be associated with a decreasing, in a way similar to 
the speed decreasing was getting represented by less steep slopes. 

 

Discussion 
Altogether, as seen in the results, the discussed corpus of literature enabled the 

identification of nuances in students’ construction of a static object with apparent 
covariational reasoning (based on the Carlson et al. (2002) framework). Namely, rather than 
only characterizing the work of iconic translations or thematic associations, or simply as 
pseudo-analytical, the additional insights offered by the Thompson & Carlson (2015) 
frameworks enabled me to distinguish variational reasoning from covariational reasoning in 
ways that still attend to the students’ descriptions of variation in their justifications, 
distinguishing figurative reasoning from operative reasoning. These nuances brought to light 
connections students were making about how to represent differing speeds graphically (e.g., 
faster region implies steeper line segment, changing from faster to slower implies a concave 
down curve). The contribution of this study is noting that the students’ reasoning, although 
seemingly thematic, involves imagery of a changing speed occurring in a chunky matter—that 
is, with intervals of linear segments (thematic examples) or regions of steepness (iconic 
examples) whose steepness can be compared to one another to make claims about how 
changing quantities are related. The faster and slower language supported them to an extent, 
even the students making seemingly iconic translations based on shape of an object. I 
encourage continued research on how the development of chunky and smooth thinking might 
support student learning of various function types, especially during the transition from 
precalculus to calculus, when they will be introduced to tangent lines and instantaneous rates 
of change as resources to thinking about how quantities change together. 
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