

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

798

FIRST GRADERS COORDINATION OF COUNTING AND MOVEMENTS ON A GRID
WHEN PROGRAMMING WITH TANGIBLE BLOCKS

Abigail Erskine
Purdue University

aerskin@purdue.edu

Laura Bofferding
Purdue University

lbofferd@purdue.edu

Sezai Kocabos
Purdue University

skocabos@purdue.edu

Haoran Tang
Purdue University

tang474@purdue.edu

As elementary students begin to program using tangible blocks, they must coordinate their use of

counting with the movements, directions, and numbers they use to move a character. In our

study, we analyzed 13 first graders’ first attempts at coordinating these elements when playing a

programming game on the iPad that used tangible programming blocks. We further analyzed

how their programs changed over the six sessions. Our results highlight the challenges students

faced when counting on a grid, representing movements with numbers, and distinguishing

between movement blocks. We also present factors that influenced their improvements. The

results indicate that game hints supported some students’ use of numbers, while the highlighted

path helped some and challenged others. Partner talk and having the opportunity to make

iterative changes in their code also supported some groups.

Keywords: Problem Solving, Computational Thinking, Computing and Coding, Number
Concepts and Operations

Research in K-2 settings has shown a correlation between programming and mathematics
scores (e.g., Grover, et al., 2016; Lewis & Shah, 2012; Kocabas et al., 2021). Students as young
as three years old can learn to program in visual or tangible alternative programming
environments such as Creative Hybrid environment for computer Programming (CHERP, Bers,
2010; Bers et al., 2014; Elkin et al., 2016; Sullivan & Bers, 2016), which pairs programming
with a set of physical blocks. These and similar alternative environments reduce the chances of a
program not being able to execute (Berland et al., 2013) and support young students by offering
visual feedback and tangible manipulatives (Brusilovsky et al., 1997; Mladenovi et al., 2016).
They also typically incorporate a physical or digital character (e.g., a turtle or a robot) and
programming blocks to give the characters instructions. Blocks may include movements (e.g.,
walk, turn, jump), directional arrows, and numbers to indicate how many movements to execute
(McNerney, 2004, see also Bofferding et al., 2022). One study found that following a one-week
CHERP robotics and programming intervention, preschoolers and kindergarteners were more
likely to have higher sequencing scores (Kazakoff et al., 2013). Likewise, first and third graders’
performance in fixing mathematics bugs of double counting in the pretest were highly correlated
with fixing programming bugs of double counting (Kocabas et al., 2021), indicating that learning
programming can enrich mathematics content knowledge and problem-solving skills (Fessakis et
al., 2013; Friend et al., 2018; Lewis & Shah, 2012). In one study, kindergarteners solved a series
of programming puzzles to lead a ladybug to a leaf to hide herself, which also supported their
counting and number comparison (Fessakis et al., 2013).

However, prior research has shown that young students struggle with counting in
programming (e.g., Bofferding et al., 2020; Kocabas et al., 2019, 2021) and mathematics (e.g.,

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

799

Battista, 1999, 2010; Battista et al., 1998; Fuson, 2012). One counting issue younger students
experience is double counting the same space or object twice. For example, three to five year
olds made more double counting errors when objects were shown in a disorganized manner than
when they were organized (Fuson, 2012; see also Kocabas et al., 2021).

Double counting often arises in structures with horizontal and vertical dimensions, such as
arrays. Students have to monitor their count while coordinating their horizontal and vertical
position (Risley et al., 2016). Children are good at keeping track of one thing at a time but may
have more difficulty coordinating two aspects. For example, second graders who do not
demonstrate columns and row structures may double count when columns and rows overlap
(Battista, 1999, 2010; Battista et al., 1998). Likewise, when programming, first and third graders
double counted the spaces when a column and a row overlapped on a programming path
(Kocabas et al., 2019, 2021). Other counting issues may arise due to different movement pieces
involved in programming (e.g., movements that move one space versus multiple spaces). The
goal of this work was to explore early elementary students’ counting related to space and
movements in a tangible programming environment to illustrate how they navigate these issues
and what helps them in this process. Therefore, we explored the following research questions:

1. When and how do first graders count the spaces they need Awbie to move in one or more
directions?

2. How do they coordinate their counting of spaces and use of number blocks?
3. How do they interpret and coordinate differences in walking versus jumping with their

counting and use of numbers?
4. What challenges do they face with counting and their use of programming blocks and

how do they overcome them (if at all)?

Methods
Participants and Setting

We conducted this study in a midwestern elementary school in the United States where 11%
of students were designated as English language learners, and 45% of students were eligible for
free and reduced meals. The data in this study comes from a larger study focusing on 29 first and
28 third graders’ commenting and debugging practices in programming and mathematics.
Students participated in a pre-test, six 20-minute playing sessions, and a post-test in the larger
study. For this analysis, we focus on 13 students from two of the first-grade classes (two of them
left at different points in the study, so part of the analysis focuses on the remaining 11) as they
played the game. During the sessions, each grade-level pair (and one student working alone) met
with a researcher at a table in the hallway and worked to advance through different levels of the
Coding Awbie game. Each session was video recorded, and researchers also took notes so we
could analyze their choices in using the coding blocks to move the character (Awbie).
Materials

The programming game students used, Coding Awbie, uses a series of movement blocks
with direction arrows and number blocks that attach to the movement blocks to control how
many times Awbie does that movement for each block. The movement blocks include a walk,
jump, or grab, and the directions include up, down, left and right. The number blocks range from
1 to 5. Students can combine one movement block and a number or can stack several movement
blocks with numbers to make longer programs (a movement block without a number defaults to
a movement of 1). Students play the game by arranging their blocks in front of the iPad. A mirror

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

800

attached to the iPad captures the code and shows the potential path represented by the code
highlighted on the iPad screen. When the student presses a tangible play button, the character
moves on the screen. If a student blocks the mirror while playing, the iPad may misinterpret the
code. Figure 1 shows an example program with three lines of code.

Figure 1: Example of Programming Code

The first line of code in Figure 1 shows Walk Right 4, which would move Awbie four spaces
to the right from his current spot. The second line of code tells Awbie to Jump Right 2 times. The
jump command enables Awbie to skip a square, so Awbie would jump to the second square and
then land on the fourth square from where he started. Awbie can jump over small items like
bushes. Students have the ability to turn the arrow to change the direction, which we see in the
third line of code where the arrow points down. The grab block keeps Awbie in his current
space, but he grabs items (e.g., strawberries) in the square next to him in the given direction.

All groups started on the first level of the game, which we called Forest 1 (see Figure 2 for a
map of the first level and screenshot of the starting point of each level). If they finished a level
before their time was up, they continued on to the next level. They restarted any level they did
not finish during their next session. The researchers encouraged pairs to work together and take
turns using the coding pieces or running the program. Each of the six sessions lasted 20 minutes.
For three of the six sessions, students spent part of the time studying and explaining worked
examples of programs (5 to 8 min). We gave pseudonyms to students, so the pairs included
Duck1 & Duck2, Duck3 & Duck4, Duck5 & Duck6, Bat1 & Bat2, Bat6 & Bat7, and Bat8. Bat2
left after the third session, at which point Bat8 played with Bat1. Bat7 left after session four, at
which point Bat6 played alone.

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

801

Figure 2: Forest 1 Map and Screenshot of Beginning Position
Description: A = location where Awbie starts. Green space = Grass. Blue space = Water. Red =
Strawberry. Circle = Lilypad. Dark green = Tree. P = Pie. Red space = End of level.

Data Analysis
We were interested in how the student pairs played and navigated their counting and

coordination of the movements. We coded for instances where students double counted one of
the spaces when counting: the starting square (i.e., they included the square where Awbie was
standing in their count of spaces to move) or a corner when changing directions (i.e., they
counted the square as an ending point for one direction and a beginning point for the new
direction). We also tried to make sense of other uses of numbers, such as whether they used
numbers as labels for spaces to move to, using numbers as labels for the line of code, or using
numbers in patterns or randomly. Finally, we also analyzed how they made sense of the distance
they wanted Awbie to move and whether they used numbers that were too high or low, whether
they broke up distances with two or more numbers, and whether and how they adjusted their
counts.

Students’ use of numbers could also vary depending on their interpretation of how the
different movement pieces worked. For example, if they thought the jump moved one space
(like a walk), their use of numbers would be different than if they knew the jump skipped over a
space. Therefore, we also identified times when students were using the jump or grab blocks as
if they moved just one space. For both counting and movement blocks, we also made notes for
when their use changed and what factors might have influenced their change (e.g., the researcher
said something, the game gave them a hint, etc.).

Findings
Student Pairs’ Attempts to Use Numbers and Movements on Session 1

Bat6 & Bat7 were the only ones who started off playing (did not do worked examples) and
were also the only ones who scrolled ahead to see where the path went before running their first
line of code. However, they initially organized their coding pieces from the bottom to the top and
used a mixture of jump and walk commands with random numbers. Bat 7 said, “Awbie cannot
jump over trees” when their first line of code (Jump Up 5) for their initial program caused Awbie

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

802

to bounce off the trees. They may have misinterpreted the jump as a walk and kept using it even
when the hint showed up as Walk Right 1. They switched to only using the number 1 on their
movements when getting the hint, but they often paid more attention to how many movements to
make than on where they were going or stopping.

The other six groups initially only saw up to space D5 initially on the screen because they did
not scroll to see where the path went; however, they had all explored some worked examples
involving the coding pieces. Duck5 and Duck6 successfully moved Awbie to D5 (a lilypad on
the water), but because he stopped there, Awbie fell in the water and went back to C5. Once they
saw more of the path, they correctly used numbers and navigated the columns and rows to have
Awbie Walk Right 3 to F5 and Walk Down 3 to F8. They were going to put a Jump Right 1 next
but saw that the highlighted path showed his potential movement would land him in the water, so
they changed it to Walk Right 1, ending at G8. At this point, one of the girls noticed that the path
looked like stairs, and they were able to successfully program Awbie to Walk Down 1, Walk
Right 1, multiple times in a row. They fell in the water a couple times because they did not move
down enough times and ended on a lilypad, and they did not try the jump anymore that session.

The second group, Duck3 and Duck4 first made programs separately. Duck3 wanted to Walk
Right 1 two times to get to the lilypad on D5 and then Jump Right 1 so the screen would
move. Instead, they played Duck4’s code, which involved a series of walks and jumps and got
them to F5 (hitting a few trees that they had not seen). From F5, they played Walk Down 3,
correctly counting to get to F8. Third, Bat8 kept the Jump Right 3 he had been using on a worked
example before playing and used it again without knowing where it would go. He kept running
previous lines of code multiple times until the researcher would remind him to change the code.
For example, when he got to the part that looked like stairs, he correctly played Walk Right 1,
Walk Down 1 and ran this code repeatedly, even after falling in the water several times at K12.
Although he correctly counted spaces, he then added new movements onto part of his old code,
so he often moved too far.

Fourth, and similar to Bat8, Bat1 and Bat2 also reused parts of their previous code. After
initially jumping right and then left, Bat1 and Bat2 ended up one space away from their starting
square. However, they quickly adjusted their code to successfully Walk Right 3 the correct
number of spaces to get to F5. They kept the Jump Right 3 from their first line of code, which
made them bounce off the trees, but then they correctly programmed Awbie to Walk Down 3.
They often added or changed one correct movement but continued to keep some commands from
previous lines of code and used numbers randomly, which hampered their progress. Fifth, Bat3
and Bat5’s initial difficulty corresponded to them using the jump and walk blocks as if they both
moved one space (potentially because they could not see where they were going). When that did
not work for them, they tried just using jumps and added on numbers in sequence with random
directions (i.e., Jump Right 1, Jump Right 2, Jump Up 3). They continued using sequences of
numbers and a mix of walk and jump blocks.
 Finally, Duck1 & Duck2 started off using numbers as locations for where they wanted Awbie
to move to. For example, their first three lines of code were Walk Right 1, Walk Right 2, Walk
Right 4, but they only needed the third line. Instead, because they had already moved right three,
their third line of code made Awbie hit a tree and bounce back. Their continued number use
appeared random, and Awbie often fell in the water before completing a step. Some of their
difficulty may have been due to forgetting to turn the directional arrows.
Student Pairs’ Progress Across Sessions 2-6

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

803

Bat6 and Bat7. During sessions 2 and 3, Bat6 and Bat7 continued to build their programs
from the bottom up (instead of top down) and sometimes scrolled to a future part of the path
when building their code. Although they saw the structure in rows and columns, Bat6 thought the
Jump block moved one space, plus often moved one space short. On the other hand, when Awbie
was at G9, Bat7 thought Walk Right 3 would move Awbie diagonally along the lily pads. Bat6
tried to show her that it would make Awbie walk horizontally into the water, although she did
not listen. They continued with these difficulties, reversing their code, even after following the
program’s hint showing them the correct way to combine pieces. After they examined worked
examples at the beginning of session 4, they started placing their coding pieces in the correct
order. Bat6 still thought the Jump would move one space until she played alone during session 5
(Bat7 moved) and noticed feedback from the game on where the jump would move Awbie. By
this time, she also correctly counted the spaces to span longer distances.

Bat1 and Bat2, Bat8. Bat1 & Bat2 did not make much progress in sessions 2 and 3. From
B5, they started off using Walk Right 1, Walk Right 1, Walk right 1, which did not get them far
enough to F5. They kept trying to use a combination of jumps and walks with high numbers, and
even ignored or did not follow the hint when it came up in both sessions. During these same
sessions, Bat8 once again reused one set of codes until he got a hint from the game (Walk Right
1, Walk Down 1) at which point he repeated that code. At G16, when that code did not work, he
changed the second line to Walk Right 1. Finally, he decided to change a number and did Walk
Right 5 but also kept Walk Right 1, moving Awbie too far right and landing him in the water. He
continued using this code (and going too far), sometimes changing the directions incorrectly or
changing the code when he got a new hint. He repeated this same process in session 3, only he
started using more jump blocks instead of walk blocks.

Starting at session 4, Bat1 and Bat8 played together because Bat2 moved. Bat1 primarily
took charge of the pieces with input from Bat8. In session 4, after they got a hint to Walk Right
1, Walk Down 1, they often kept these pieces and just changed their numbers or
directions. Therefore, even when they got to the point where they needed to Walk Up 5, they
programmed Walk Up 5, Walk Up 5, once again using both pieces. They continued to change
their code in reaction to Awbie not doing what they wanted after trying to reuse the code they
already had, and on one occasion they double counted the starting square. By session 5, they
were using the movements and numbers more intentionally, and had fewer instances of landing
in the water. However, they still had an instance of double counting the initial square even in
session 6. In both cases, the double counting happened on the first line of code for a new level.

Bat3 and Bat5. During sessions 2 and 3, Bat3 and Bat5 continued to use random
movements, directions, and numbers without counting the spaces, although, Bat3 demonstrated
some insight into how they could use a walk movement to get a strawberry they had jumped
over. They stopped using numbers other than one after they got a hint to Walk Right 1, Walk
Down 1 in session 3. In session 4, they used the movements more intentionally and started
counting the number of spaces they needed to move. However, when they were at G16 and
wanted to span the large distance to Q16 and then up to Q11, they ran out of Walk blocks. The
researcher suggested they use numbers. They did this, plus also used Grab blocks, which they
thought would move one space. They saw the structure in the columns and rows without any
double counting, although they did think they only needed to move Awbie up four spaces instead
of five from Q16 to Q11.

By session 5, they were more intentional and accurate in their use of numbers and directions.
They started using the highlighted path, which helped them fix a Walk Down 3 (that was going

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

804

to make Awbie run into a tree) to Walk Down 2. They also used addition facts for larger
distances in sessions 5 and 6. For instance, at G15, Bat3 mentioned that they needed to Walk
Down 1 (pointing to the screen) and sideways 4.” Bat5 then changed the Walk Right 4 to Walk
Right 5, considering the extra space they needed to move. While looking further on the path,
they saw the additional spaces and added on another Walk Right 4 and Walk Right 1.

Sometimes, because they would alter previous lines of code without removing extra ones,
their use of the highlighted path misled them into using numbers incorrectly. For example, at
Q16, they had just finished running Walk Down 1, Walk Right 5, Walk Right 4, Walk Right 1.
Since they need to go up, they turned the arrow on the first command up and counted the four
lilypads. After moving the four from the third line of code up, they noticed the path did not go
high enough and swapped it out for the five from the second command, giving them Walk Up 5,
Walk Right 1, Walk Right 1, Walk Right 1. They then counted the four lilypads from R11 to
U11 and put a four on their second line, then quickly realized it would need to be a five, giving
the Walk Up 5, Walk Right 5, Walk Right 1, Walk Right 1. Because they still had the two extra
Walk Right 1’s on the end, the path showed that Awbie would walk seven spaces right and hit a
bush. They used trial and error to swap out numbers until they found that Walk Right 3 would
work. Because they did not realize the last two Walk Right 1’s were showing up in the path, they
ended up changing those so Awbie did not move as they expected.

Duck1 & Duck2. Although Duck1 and Duck2 appeared to be using numbers randomly in
session 1, they started session 2 by considering how many spaces they wanted to move and used
one block per space. Sometimes, they did not accurately account for how much space they
needed to move. For example, when Awbie was at C5, they programmed him to Walk Right 1,
Walk Right 1, Walk Down 1. This led Awbie to stop on a lilypad and fall into the
water. Correcting their count the second time, they added in another Walk Right 1 block so that
he would walk right three times before walking down. Later, when one partner was going to add
an extra Walk Down 1, his partner corrected him, “I already did the down.” Another problem
they encountered was thinking the jump would move one space. During session 3, when Awbie
made it to I13, they once again confused the jump with a walk and also double counted the initial
square, thinking Jump Left 2 would take them to H13 after which they planned to walk down.
However, Awbie jumped into the water. Later, they iteratively increased the number on their
Jump Right piece to figure out how it worked and correctly used three jump blocks in a row in
their next session. Halfway through their time in session four, the game forced a hint that asked
them to place Walk Up 5. From this point onward, they started combining some of their
movements, and they used the numbers more strategically (e.g., Walk Right 2 instead of Walk
Right 1 and Walk Right 1), although they sometimes added on an extra command or reused
previous lines of code, that resulted in them falling in the water or moving too far.

Duck3 & Duck4. Primarily, Duck3 and Duck4 experienced difficulty counting the spaces, as
they frequently double counted both Awbie’s initial square and corners during the remaining
sessions. For example, they wanted to move Awbie from B5 to F5 and on to F8 but programmed
him to Walk Right 5 by counting B5 and then Walk Down 4 by counting F5. Because of the
double counting, they often moved Awbie too far. After trying the jump in session 1, they did not
use the jump again until session 5 at which point they noticed that the jump skipped a space
saying, “...ooo he jumped over.” On the second use of the jump in session 5, they used it
correctly. On session 6, they used the jump correctly (reinforced by a hint from the game),
although they made counting errors (e.g., using Jump Right 4 instead of Jump Right 3).

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

805

Duck5 & Duck6. In session 2, Duck5 and Duck6 started using addition facts for larger
distances but also made a double counting error. When Awbie was at F16, they said, “We need
to go six, but we do not have a number six” to get Awbie to L16. They used an addition fact to
solve their problem, stating, “We can have four plus two,” but then they noticed they could move
another five to Q16. Still looking ahead, Duck6 said they needed to go up five to Q11, but Duck6
double counted Q16, and said it was six. Throughout the other sessions they kept using addition
facts to move larger distances and even used the jump block correctly in sessions 2 to 6 to skip a
space. By their final session they were seeing distances rather than counting them, immediately
making comments such as, “You need a three” when seeing the path.

Discussion and Future Directions
Our analysis presents a fairly positive account of young students learning to coordinate

counting, movements, and direction on a grid. Based on our analysis, we noticed that
coordination with counting and movement is a multi-dimensional and essential skill which is
needed by younger children who partake in programming. Although the students had some
struggles with counting (Bofferding et al., 2020; Kocabas et al., 2019, 2021) and moving Awbie
in the correct direction, they progressed in counting along the two dimensions and seeing sets of
squares in terms of compositions of numbers. These results provide further evidence that
programming activities can support mathematical concepts (Fessakis et al., 2013; Friend et al.,
2018; Lewis & Shah, 2012).

There were cases where students double counted the starting space and corners and there
were times when they under-counted the number of spaces they needed Awbie to move to land
on green space or moved Awbie too far. Double counting errors were most common at the
beginning of a level, potentially because they had a conflict in terms of how Awbie started or
because they got used to Awbie’s movements as they moved within a level, resulting in fewer
counting conflicts later. Students’ under- and over-counts often resulted from misreading the
highlighted path showing the potential result of their program, a misinterpretation of a movement
block (i.e., thinking the jump or grab blocks would move one space), or their desire to reuse
previous code instead of counting again. Although reusing code is efficient, helping students
check the feasibility of previous code is also important. The hints provided by the game often led
them to change their approach, at least temporarily. In particular, the hints often helped students
combine movements so that instead of using several walk blocks, they would use one with a
number indicating the number of times they wanted to walk. Parts of the game where the
character could move larger distances in one direction also encouraged students to use
combinations of numbers, suggesting intentionally designed game features play an important role
in both their understanding of the programming commands but also their use of numbers. Some
students corrected each other, which helped them progress in their programming. These results
suggest that providing students with ways of handling disagreements or talking about their
reasoning when programming might be fruitful for encouraging productive peer talk and
collaboration.

Acknowledgments
This research was supported by NSF ITEST grant #1759254.

References

Articles published in the Proceedings are copyrighted by the authors.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 2). University of Nevada, Reno.
	

	

806

Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. V. A. (1998). Students' spatial structuring of
2D arrays of squares. Journal for Research in Mathematics Education, 29(5), 503-532.

Battista, M. T. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-based
classroom. Journal for Research in Mathematics Education, 30(4), 417-448.

Battista, M. T. (2010). Thoughts on elementary students’ reasoning about 3-D arrays of cubes and 306 vanderbilt. In
Z. Usiskin, K. Andersen, & N. Zotto (Eds.), Future curricular trends in school algebra and geometry:
Proceedings of a conference (pp. 183-199). IAP.

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young children. Early
Childhood Research & Practice, 12(2). Retrieved from http://ecrp.uiuc.edu/v12n2/bers.html.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157.
https://doi.org/10.1016/j.compedu.2013.10.020

Bofferding, L., Kocabas, S., Aqazade, M., Chen, L., & Haiduc, A. (2020, April 17–21). Exploring practices to
support commenting and debugging in early years of tangible programming [structured poster session].
American Educational Research Association Annual Meeting. San Francisco, CA, United States.
http://tinyurl.com/yyd7ayh4 (Conference canceled)

Bofferding, L., Kocabas, S., Aqazade, M., Haiduc, A., & Chen, L. (2022). The effect of play and worked examples
on first and third graders’ creating and debugging of programming algorithms. In A. Ottenbreit-Leftwich & A.
Yadav (Eds.), Computational thinking in PreK-5: Empirical evidence for integration and future directions. A
Special Research Publication (pp. 19-29). Association for Computing Machinery, Inc. and the Robin Hood
Learning + Technology Fund.

Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO robotics kit in preschool classrooms.
Computers in the Schools, 33(3), 169-186. https:// doi.org/10.1080/07380569.2016.1216251

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a
computer programming environment: A case study. Computers & Education, 63, 87-97.

Friend, M., Matthews, M., Winter, V., Love, B., Moisset, D., & Goodwin, I. (2018, February). Bricklayer:
Elementary Students Learn Math through Programming and Art. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (pp. 628-633).

Fuson, K. C. (2012). Children’s counting and concepts of number. Springer Science & Business Media.
Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and

programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4),
245-255. https://doi.org/10.1007/s10643-012-0554-5

Kocabas, S., Bofferding, L., Aqazade, M., Haiduc, A., & Chen, L. (2019). Students’ directional language and
counting on a grid. In Otten, S., Candela, A. G., de Araujo, Z., Haines, C., & Munter, C. (Eds.), Proceedings of
the 41st annual conference of the North American Chapter of the International Group for the Psychology of
Mathematics Education (pp. 431–432). St. Louis, MO

Kocabas, S., Chen, L., Bofferding, L., Aqazade, M., & Haiduc, A. (2021). Identifying and fixing double counting
errors in mathematics and programming. In Olanoff, D., Johnson, K., & Spitzer, S. (Eds), Proceedings of the
43nd annual meeting of the North American Chapter of the International Group for the Psychology of
Mathematics Education (pp. 637–640). Philadelphia, PA

Lewis, C. M., & Shah, N. (2012). Building upon and enriching grade four mathematics standards with programming
curriculum. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (pp. 57-
62).

Risley, R., Hodkowski, N. M., & Tzur, R. (2016). Devin's Construction of a Multiplicative Double Counting
Scheme: Dual Anticipation of Start and Stop. North American Chapter of the International Group for the
Psychology of Mathematics Education.

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: Learning outcomes from an 8-week
robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design
Education, 26(1), 3-20. https://doi.org/10.1007/s10798-015-9304-5

Articles published in the Proceedings are copyrighted by the authors.

