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Recently, abstracted quantitative structures (AQS), a construct from quantitative reasoning, has 
been offered as a means to conceptualize and study mathematization during mathematical 
modeling. Extending this theoretical work, we provide empirical evidence that an intervention 
targeting participants’ AQS can assist in aligning modelers’ models with normatively correct 
models. We report on a pre/post intervention study designed to elicit alignment between symbolic 
forms and AQS and alignment between AQS and modeling scenarios. We used the Sørenson-
Dice coefficient and cluster analysis to identify shifts in student associations of symbolic forms 
with modeling scenarios. 
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Developing students’ capacity to apply their mathematical knowledge to real-world scenarios 
is a central goal of mathematics education, especially for undergraduate STEM majors. Transfer 
of mathematics knowledge to a non-mathematical domain is difficult for students to do (Lesh & 
Zawojewski, 2007; Wake, 2014) and is challenging for researchers to study (Carraher & 
Schliemann, 2002; Evans, 1999; Lobato, 2006). Within research on the teaching and learning of 
mathematical modeling, the idea of transfer is captured by the idea of mathematizing or 
recognizing mathematical structure within a real-world scenario (Maaß, 2006; Zbiek & Conner, 
2006). Mathematization has been difficult to study because it largely occurs as a modeler’s 
mental actions, and despite this fact, has been under-theorized (Cevikbas et al., 2021). Recently, 
the field has made considerable efforts towards finding theoretically-grounded ways to 
operationalize mathematization such that it can be studied; specifically, scholars have made 
progress in explaining modeler’s mental actions from a cognitive constructivist perspective by 
examining modeling from a quantitative reasoning lens (Czocher & Hardison, 2019; Czocher et 
al., 2022; Kularajan, 2023; Niss, 2010). Such approaches are necessarily based in the students’ 
own interpretations of real-world scenarios and representations of them. Some hypotheses have 
emerged. One is that transfer of mathematical knowledge between scenarios can be traced by 
attending to individuals’ abstracted quantitative structures (AQS), which are networks of 
quantitative operations an individual has interiorized to such an extent that it is independent of 
figurative material (Moore et al., 2022). Another is that operationalizing mathematization 
through the theoretical machinery of quantitative reasoning provides leverage for designing 
interventions and supports that may improve students’ overall modeling skills. This paper adds to 
the conversation by addressing both hypotheses.  

 If the approach of operationalizing modeling in terms of quantitative reasoning is viable, 
then the field needs empirical evidence that abstracted quantitative structures are mutable during 
modeling and that real-world scenario can be assimilated into schema associated with modelers’ 
AQSs. In this study, we operationalize AQS in terms of Sherin’s (2001) symbolic forms and 
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report on a pre/post intervention conducted with undergraduate STEM majors. We answer the 
research questions: Are participants’ ways of reasoning with abstracted quantitative structures 
stable, when subjected to a learning environment focused on modeling with those structures? and 
Is there an impact on participants’ associations between symbolic forms and scenarios? 

Theoretical Perspectives on Modeling & Empirical Background on Mathematical Concepts 
We adopt the cognitive perspective on mathematical modeling which is suitable for studying 

modelers’ processes of rendering a real-world problem as a mathematical problem to solve 
(Kaiser, 2017). The cognitive perspective articulates the phases a modeler may pass through to 
specify a mathematical problem. These phases include anticipating mathematical structures that 
may be useful in representing and solving the problem, carrying out a solution process, and 
interpreting and validating the solution in terms of real-world constraints. Mathematizing, one 
phase of mathematical modeling, refers specifically to introducing conventional representational 
systems (e.g., equations, graphs, and tables) to represent mathematical “properties and 
parameters that correspond to the situational conditions and assumptions that have been 
specified” (Zbiek & Conner, 2006, p. 99). Others have pointed out that mathematizing entails 
“anticipating mathematical representations and mathematical questions that, from previous 
experience, have been successful when put to similar use” (Stillman & Brown, 2014, p. 766). 
That is, modelers need an idea of what to try out as a model that might be adequate. While the 
idea of anticipation and implemented anticipation (Niss, 2010) has gained traction in modeling 
research for their descriptive power, they lack both explanatory and predictive power with 
regards to how to aid students during mathematization. We view the idea of implemented 
anticipation through the lens of quantitative reasoning to explain what is anticipated and how 
anticipated structures are formed. 

 Sherin (2001) elaborated on the construct of symbolic forms that contemplates modelers’ 
associations between algebraic templates and conceptual schema. The template is a format (e.g., 
_ × _ = _) that can express a mathematical idea or relationship (e.g., rate of change is 
proportional to amount present). Symbolic forms help explain how and why a modeler might 
choose to use × instead of + when constructing an equation to represent a scenario. Theoretical 
work on quantities, quantification, and quantitative reasoning helps explain how individuals 
imbue the templates, variables, and conceptual schema with situationally relevant meanings.  
Quantitative reasoning means conceiving quantities and relationships among quantities; those 
relationships may be arithmetic (numerically evaluated) or quantitative (mental operations) 
(Thompson, 1990). Thompson gave an example using two individuals’ heights to demonstrate 
that an additive comparison (mental operation) can be evaluated using subtraction (arithmetic 
operation). However, a comparison of the difference in two individuals’ heights to the difference 
in another two individuals’ heights (the difference between A and B is H times more than the 
difference between C and D) does not require evaluation of the differences in order to conceive 
the quantitative meaning. An abstracted quantitative structure (AQS) is a network of quantitative 
operations that an individual has interiorized and can operate as if it is independent of a 
figurative material (Moore et al., 2019). The core idea is that when a modeler has constructed an 
AQS, it is available to the individual when the scenario that engendered its construction is no 
longer present. Moore et al. (2019) clearly demonstrated evidence of the construction of AQSs 
and evidence of assimilation of new-to-the-student scenarios to previously constructed AQSs.  
Moore et al. (2019) also hypothesized that AQSs play an important role in transfer due to 
cognitive reorganization of previous experiences. Here, by transfer, we mean recognizing the 
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applicability of symbolic forms for the purpose of mathematizing a given scenario, that is, 
implemented anticipation (Niss, 2010).  

Mathematization of a real-world scenario is notoriously difficult for students across grade 
bands and content areas. Even students in advanced mathematics find it challenging because they 
face more complex scenarios where rate of change takes on dual roles as both dependent and 
independent variables. In such scenarios, students struggle with the idea that time is an implicit 
variable (Keene, 2007) and often interchange a differential equation with its solution (Donovan, 
2002). Scaffolding for these students includes placing emphasis on the system being modeled 
and making explicit connections between the equation and the system it represents (Baker, 2009; 
Czocher, 2017; Myers et al., 2008; Pennell et al., 2009). For these reasons, we designed a study 
to generate empirical evidence as to whether participants’ ways of reasoning with AQSs are 
stable throughout a learning environment focused on modeling with those structures. With 
reference to previous work on differential equations, our study focused on the templates of 
symbolic forms in Figure 3 and the learning environment emphasized these forms as 
representing conceptual schema like rate of change is constant (A), rate of change is 
proportional to quantity present (B), and net rate of change (C). Throughout, we will refer to the 
answer choices in the Matching Tasks as “templates,” intending to correspond to a family of 
symbolic forms and we will use “AQS” to refer to the abstracted quantitative structures we 
observed participants create, use, and re-use during the open modeling tasks comprising the 
learning environment. The templates operationalize the AQS as generic formats. 

Methods 
We conducted a pre/post intervention study within a design research project, which we 

evaluated using a paired samples +-test and a follow-up study using cluster analysis techniques. 
The intervention was a learning environment – task sequence and scaffolding – designed to build 
participants’ mathematizing competencies. The learning environment comprised 10 hour-long 
task-based interviews with each of 23 undergraduate STEM majors recruited from courses listing 
differential equations as a prerequisite.  The 10 sessions were organized so that the first and last 
sessions – our focus in this report – featured prompts intended to (a) document the criteria 
participants used to classify scenarios and (b) document participants’ association of templates 
with the given scenarios. The middle 8 sessions consistently emphasized recognizing symbolic 
forms and associating them with quantitative structures participants recognized in the real-world 
scenarios presented in the tasks. 

We describe the intervention’s tasks using Yeo (2007) classification framework. The 
tasks were mathematical modeling problems with well-defined goals (develop a model for the 
scenario) but ill-defined answers (multiple valid models). Earlier tasks in the sequence provided 
built-in guidance and were relatively simple in that they called for fewer quantities and 
quantitative operations. Later tasks were not guided and were also more complex, being open to 
constructing many quantities and manipulating them with quantitative operations and 
relationships. In this paper, we focus on the first and final sessions, which featured pre/post items 
intended to document the participants’ associations between scenarios and quantitative 
structures. In Sessions 1 and 10 we gave the Matching Task to document stability of reasoning 
with the target templates.  

The Matching Task prompt (Figure 3) asked participants to match scenarios to the 
templates (a) – (e) based on what they saw as relevant within the problem scenario. For example, 
Item 9 is an abbreviated prompt based on a canonical salty tank problem from differential 
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equations. It was an open problem during the modeling sessions and as a pre/post item was 
reduced to indicating the template perceived as appropriate to the participant. Participants were 
asked for explanation of their answers, information which we use to enrich our analysis. 
Consider the following mathema2cal expressions: 

a) !"!# = " b) !"!# = " ⋅ $(&) c) ( = ) ± + d) ( = " ⋅ ) ⋅ + e) !"!# = ",(&)$(&) 
where $(&) and ,(&) are quantities, $$(&) is the rate $(&) changes with respect to time, " is a constant, and 
), +,	and ( are quantities that possibly depend on time (or not) or may be composed of other quantities (or not). 
Which of the mathematical expressions above (either individually or as a composition) can be used to model 
the real-world scenarios below? 

Item 4: Consider a natural habitat where bobcats are natural predators of rabbits. Bobcats are very good hunters, 
but they aren’t perfect. Therefore, not all of the bobcat/rabbit encounters result in a rabbit’s death. Model the 
number of rabbit deaths due to only predation by bobcats. 
 

Item 9: Consider a tank where water and a salty solution enters the tank while the well-mixed liquid inside the 
tank exits the tank. Model the rate at which the amount of salt in the tank changes with respect to time.   

Figure 3: Abbreviated statement of Matching Task 
 

A total of H = 23 undergraduate STEM majors participated in the design research project 
whose result was the modeling intervention reported in this paper. The participants were 
generally high preforming, reporting high grades in mathematics (K = 3.4, )M = 0.5) and a high 
level of confidence with relevant mathematical concepts (K = 364, )M = 69 out of 500 points 
on a confidence scale). We describe the sample composition by gender and major, but do not 
analyze the data according to these subgroups because of the small resulting sample sizes. 
Approximately 22% of participants identified as female, 74% as male, and 4% as non-binary. 
Approximately 30% of participants were pursuing a degree related to computer science, 35% in 
electrical engineering, 17% in civil engineering, 13% in physics, and 4.3% in mechanical 
engineering. Because the overall project used design methodology to develop the intervention, 
the Matching Task was revised after Implementation 1 (H = 6) to provide response E. We 
exclude H = 9	participants’ responses from the t-test and pre/post response comparisons because 
the pre/post response options were not the same for participants in the earliest implementations 
(H = 7), and some participants did not complete the post-test (H = 2). However, we did include 
all participants' responses in the pre-test cluster analysis (H = 23) and all except the latter in the 
post-test analysis (H = 21) by using the response similarity metric (described below). 

To quantify similarity of participants’ ways of reasoning with the templates, we established a 
metric for response pattern proximity, as follows. Participants were encouraged to consider the 
templates as composites. For example, the normatively correct response for Item 9 was keyed as 
B&C, where the template B reflects the fact that the rate at which salt leaves the tank is 
proportional to the current amount of salt in the tank, and C reflects additive comparison of the 
inflow and outflow (net rate). Selecting C was regarded as closer to the keyed answer than 
selecting A and scoring reflected this. We chose the Sørenson-Dice coefficient (SDC) as a 
similarity metric to calculate scores because it both emphasizes similarities in response patterns 
and ignores template options which were neither included in the student answer nor the keyed 
answer. The SDC provides a 0 to 1 score for each item which can be interpreted as a percent 
overlap of the participant and keyed answers and is computed as )ME = 2|V ∩ X| (|V| + |X|)⁄  
for student answers V and keyed answers X (Sørenson, 1948). We calculated SDC per item and 
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then summed to generate a participant pre- and post-test score between 0 and 9. We conducted a 
paired samples +-test on these scores, which met all assumptions.  

We then explored shifts in associations per-participant and per-item using hierarchical cluster 
analysis techniques available in SPSS. Cluster analysis is a “data-driven approach” that allows 
clumping together participants who respond similarly, instead of using a priori groups. The goal 
is to organize heterogeneous samples into smaller groups that are maximally similar within-
group and maximally dissimilar across groups (Woods et al., 2020). We estimated similarity by 
applying the SDC metric on participant responses to the Matching Task items to determine 
similarity between sets of participant responses. Finally, we teased apart the influence of item- 
and individual-level response patterns to articulate an account of shifts in participants’ 
associations between symbolic forms (represented by the response choices) and scenarios. 

Results 
A paired +-test of the scores of the pre-tests (K = 4.37, )M = 1.54) and post-test (K =

6.42, )M = 1.29) suggest that the intervention resulted in additional normatively-correct 
associations between the templates and problems (+(13) 	= 	4.8, [	 < 	0.001), with a paired 
samples effect size of ] = 1.25. In the aggregate, participants’ associations between scenarios 
and templates shifted. Calculating the SDC between students’ pre and post answers to each item 
(n = 126 pairs of pre/post responses from 9 items and 14 participants), we found that 41% of the 
post-test responses had no similarity with the corresponding pre-test answer, with an average 
pre/post-test similarity of 0.50. The cluster analysis revealed that similarity of participants’ 
responses was lower on the pre-test than on the post-test (Table 1). Clustering performed on pre-
test response sets yielded low average similarity. The two primary pre-test clusters included 11 
of the 23 participants with average internal similarities of 0.63 ± 0.08 and 0.66 ± 0.08. The 
post-test revealed two clear primary clusters containing 8 and 7 participants respectively, and the 
6 remaining participants were clear outliers from either cluster.  Table 1 provides the similarity 
details of the post-test clusters, as well as average performance of students within these clusters. 

Table 1: Post-Test Cluster Statistics 
  Internal Similarity  Matching Task Performance 

Group / Mean Range  Pre2 Post Improvement2 

Cluster 1 8 0.76 ± 0.07 (0.59, 0.93)  5.27 ± 1.31 7.43 ± 0.68 2.16 ± 1.65 

Cluster 2 7 0.76 ± 0.08 (0.55,0.91)  3.87 ± 1.33 6.10 ± 0.64 2.25 ± 1.58 

Outliers 6 0.40 ± 0.10 (0.19,0.56)  3.15 ± 0.52 4.31 ± 0.35	 1.17 ± 0.17	

 
•      The cluster analyses revealed overall shifts towards the normatively correct response 

patterns and also indicated non-conforming item- and participant-level response patterns. 
For example, pre/post response patterns on Item 4 and Item 9 are shown in 

 
2 These columns only include scores on the final form of the pre/post test, resulting in /% = 6, /& = 6, /'(# = 2.  
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Figure 4. For the _ = 14 participants who took the same version of the pre/post tests, the graphs 
illustrate a general shift towards the normatively correct responses for each item. On Item 9, just 
shy of 60% of participants included E in their responses, while only 29% included C, and 14% 
selected both. Participants who provided a justification for selecting only E mentioned it looked 
similar to what they recalled from their differential equations class and that the multiplicative 
factors represented inflow and outflow. On the post-test, 86% associated template C with the 
scenario, and only 14% kept E, indicating that many participants learned to associate the 
conceptual schema for the superposition of flows with template C as necessary to model the salt 
tank problem.  
     On some items, participant response patterns did not shift towards the keyed answers. In item 
4, the response frequency for E increased though D was the keyed answer. Item 4 describes a 
predator-prey scenario. The item requests a model for the number of rabbit deaths due to 
predation, explicitly prompting the participant for an amount rather than a rate. The keyed 
answer D reflects a proportion of the possible interactions between the bobcat population and the 
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rabbit population. On the pre-test, the most selected template was C (43%). Participant 
justifications indicated they were conceiving the predator-prey interactions as being one-to-one, 
implying that the number of rabbits killed by bobcats was equivalent to the number of bobcats. 
On the post-test, the percentage of participants selecting C dropped to 14% while the proportion 
who chose E rose from 7% to 64% and the percentage who chose D rose from 29% to 50%. One 
of the open modelling tasks during the sessions featured a predator-prey scenario in which 
participants leveraged a symbolic form which fits into template E (as in the Lotka-Volterra 
equations). In comparison, Item 5 presented another predator-prey scenario and requested a 
model for the species interactive dynamics. The keyed answer was B&C&E to reflect two 
equations for the two species. On this item, participant responses did shift towards the keyed 
answer, with B rising from 21% to 50%, C from 29% to 57%, and E from 36% to 86%. No 
participants selected A in pre or post, and D decreased from 36% to 29%. Thus, the response 
patterns suggest that many participants learned to associate the template with the predator-prey 
scenario, but that the finer conceptions involved in transferring an AQS that call for distinction 
between amounts and rates-of-change of amounts were obscured. 

 
Figure 4 Relative Frequency of Multi-Select Responses to Items 4 and 9  

To better understand shifts in patterns of reasoning in relation to the item contexts, we 
closely examined Yixli, Tien, Niali, and Khriss. These participants were chosen because they 
exhibited four archetypal cases arising from a 2 × 2 configuration: associations were (not) 
shifted × associations were (not) normatively correct. The existence of the four archetypal cases 
demonstrates that shifting associations does not imply a shift to a normative association. For 
each participant, we describe how their ways of reasoning with AQS may have changed (or not) 
from pre to post. Yixli revised his responses to only Item 4 and 5 from pre to post; his post score 
was in the lower third of the sample (5.5/9). Explaining his change from C to E on Item 4, he 
stated, “because at this point it’s, like, beaten into my skull from all the problems that we did” [in 
the sessions]. Yixli successfully developed a system of differential equations for the predator-
prey scenario during the open modeling sessions. Thus, his statement supports the inference that 
he learned to associate predator-prey scenarios with template E but still inconsistently associated 
an AQS for rate of change in amount with a prompt requesting an amount, a common conflation 
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when learning to model with differential equations (Rasmussen & King, 2000; Rowland & 
Jovanoski, 2004).  More generally, Yixli demonstrated high levels of recognition of key features 
of the scenarios but did not associate normatively correct AQS with those features. For example, 
in items 2 and 4, he selected non-normative responses because he furnished a rate of change 
equation instead of an amount equation. In item 6, he selects one keyed response accounting for 
only part of the information presented in the prompt. Finally, on item 8, Yixli associated the 
scenario with exponential growth (B) instead of linear growth (A) based on the real-world setting 
rather than its properties. Considering Yixli’s response patterns across items explains why the 
majority of his responses – which were non-normative – did not shift from pre- to post. There 
were few non-normative associations for the intervention to address and Yixli’s tendency to 
focus on the real-world setting rather than its features was unperturbed by the intervention. 

 Tien changed responses to 4 items, selecting additional templates on the post while 
maintaining the templates he selected on the pre. He scored in the top third of the sample on post 
(7.3/9). On his pre-test, Tien selected at least one keyed response on all except two items; on 
items 4 and 9 he selected options C and E, respectively. He changed his response on item 4 to 
C&D&E, explaining that, for him, D reflected the number of rabbit deaths due to bobcats, while 
C and E reflected other quantities in the scenario. He similarly revised his responses to items 5 
and 6 to select C&D&E, which overlapped with the keyed response B&C&E. Items 5 and 6 
treated population dynamics, indicating that Tien viewed the C&D&E composition of templates 
as important for modeling population dynamics. Finally, Tien revised his response to item 9 from 
C to C&E, overlapping with the keyed response B&C. However, Tien explained that C reflected 
the sum of salt content and solution content, yielding the total amount of substance in the tank, 
not the additive comparison of inflow to outflow. We interpret Tien’s response patterns as 
indicating that he began the intervention with mostly normative associations between scenarios 
and productive symbolic forms and also gained additional association with quantitative 
structures that would aid him in modeling population dynamics. Additionally, his associations of 
forms with the salty tank scenario were correct for his conceptions, but non-normative. 

Unlike the previous two, Khriss revised his answers on all but 3 items but only slightly 
improved his score by a single point from 3.7 to 4.7, ending up scoring in the bottom tenth of the 
sample. On the pre-test, Khriss exclusively utilized the templates B, C, and E. On problem 2 he 
wrote out a normative equation but selected a non-normative template. Similarly, on problems 3 
and 8 he selected the template E to model an exponential growth problem, demonstrating that he 
had a normatively correct answer on 3 and a common non-normative answer on 8, but simply 
selected a non-normative template to describe those models. This was continued in the post-test 
on which Khriss was able to identify normative equations which modelled every problem, but 
then associated the scenarios with non-normative templates. The primary distinction between 
Khriss’s pre and post tests was that the equations Khriss wrote for the post-test responses were 
more detailed and normatively-correct than the equations Khriss wrote while taking the pre-test. 
This indicates that, while Khriss’s associations of templates with scenarios did not generally 
become more normative, the symbolic forms used by Khriss did.  

Finally, Niali revised his responses to nearly all items, improving from 2 to 7.2, and scored in 
the top third of the sample on the post-test (7.2/9). During the sessions, Niali indicated a robust 
association between template A and scenarios featuring linear growth and between template B 
and scenarios featuring exponential growth. Thus, we infer that his low pre-test scores were not 
due to a lack of transferrable AQS’s adequate to distinguishing those scenarios mathematically. 
Instead, he over-selected E for exponential growth scenarios rather than B. By the post-test, Niali 
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associated E with scenarios featuring a rate of change dependent upon interaction between two 
quantities. Like Yixli, he responded to the real-world setting of item 8 rather than the scenario-
specific features in the item. 

Conclusions 
The paired samples +-test indicates that undergraduate STEM majors’ ways of reasoning with 

abstracted quantitative structures can be modified through modeling with those structures. The 
cluster analyses also revealed overall shifts towards the normatively correct response patterns 
and also indicated non-conforming item- and participant-level response patterns. We observed 
that for some participants, the context was a stronger indicator of response selection than 
scenario-specific features. In previous literature, this phenomenon has been referred to as 
focusing on “surface features” vs. “deep structure” (Schoenfeld & Herrmann, 1982) However, 
we argue that the conclusion is not so simple. Our participants proffered “deep structural” 
explanations based on their structural conceptions of quantities and relationships among 
quantities even when seemingly focused on contextual features. That is, many selecting non-
normative responses demonstrated evidence of structural ways of reasoning rather than 
superficial reasoning. 

One limitation of our approach is that template-matching is not perfectly predictive of 
associations between scenarios and symbolic forms, as Khriss’s response patterns revealed. 
Teasing this apart might require developing a more nuanced similarity metric that accounts for 
the idea that template B is actually a sub-template of E, both of which can be expressed as 
instances of C (though many participants did not evidence awareness of these insights).  
However, overall, the Sorensen-Dice coefficient enabled a complex metric that modeled the 
response pattern data well. It supported a robust comparison of similarities in participants' ways 
of reasoning with sets of responses, providing an additional tool for evaluating complex 
reasoning patterns. Thus, we are optimistic about the approach to measuring the assimilation of 
scenarios to AQS’ in this way because it opens possibilities for future work on AQS. 

Our objective in the present study was to examine the stability of participants’ ways of 
reasoning with symbolic forms when engaging with modeling tasks designed to help them 
assimilate scenarios to those forms. Recently, Kularajan (2023) argued that a promising approach 
to studying (and subsequently improving) students’ capacity for mathematizing is to examine 
and respond to their emergent quantitative reasoning about the scenario. Our contribution is 
providing empirical support to this conjecture. We conclude that participants showed evidence of 
changing which scenarios are assimilated to a given AQS by matching it with a template as a 
consequence of engaging with modeling scenarios that reinforced the use of symbolic forms 
matching those AQSs. The next steps in this line of research are articulating the contours of 
learning environments that may be fruitful for students with differing ways of reasoning.  
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