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Mathematics curricula are often the primary resource used in the teaching and learning of 
mathematics–in particular, they represent mathematical knowledge for teachers and students. 
Yet, there seems to be a discrepancy between the curricular materials written for teachers and 
students (e.g., more variety in the semiotic choices in text provided for teachers than for 
students). This paper illustrates a way to compare the language written for the teacher and the 
student in curricula. Drawing on the social semiotic theory known as systemic functional 
linguistics (SFL), we examine what meaning potentials can be associated with the exchanges of 
knowledge proposed in mathematical text. Examining a Unit on Similarity in an online 
mathematics curriculum widely used in the United States, the paper explores how the semiotic 
systems in text presented for the teacher and student may impact the students’ opportunity to 
learn and pose challenges in the instructional exchange between teacher and student. 
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Background and Theoretical Framing 
Brousseau (1997) proposed that the relationship among teacher, students, and mathematics is 

mediated by a didactical contract, a set of tacit responsibilities that bind the teacher, students, and 
content. For example, the contract makes the teacher responsible for students’ acquisition of 
knowledge at stake and the students responsible for engaging in the work the teacher organizes 
for them to acquire that knowledge (Herbst & Chazan, 2012). Similarly, in an instructional 
system, “a teacher has the responsibility to organize and sustain activities for students in which 
the work that students do can be described by appealing to a culturally current representation of 
the knowledge at stake” (Herbst & Chazan, 2012, p. 605). Among the work a teacher needs to do 
is manage instructional exchanges, which involves equating or reconciling seemingly unequal 
representations of knowledge, such as the work the students did on one or more tasks and the 
knowledge at stake in those tasks. The management of an instructional exchange requires 
teachers not only to apply the didactical contract to the task at hand but also identify what the 
students need to do and figure out what aspects of the mathematical task point to the knowledge 
at stake (Herbst & Chazan, 2012). The statement of the knowledge at stake in an instructional 
exchange makes use of various elements of the mathematical register but managing instructional 
exchanges also “requires the teacher to engage in serious interpretation of much more opaque 
signs in the realm of the students’ work” (Herbst & Chazan, 2012, p. 606). Mathematics 
curricula are one important medium that guides teachers on how to engage in instructional 
exchanges.  

Mathematics curricula play a crucial role in the teaching and learning of mathematics. 
Textbooks are often the primary resource used by teachers to plan and deliver instruction and 
students also rely on textbooks as a reference and study guide (Reys et al., 2004). Mathematical 
concepts in textbooks are written in a voice that is appropriate for students (Remillard, 2000) and 

Articles published in the Proceedings are copyrighted by the authors.



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 292 

teachers are often regarded as mediators of the text (Love & Pimm, 1996). Given the prominent 
role of mathematics curricula, “making a wise selection is crucial because it determines the 
scope of mathematics that students experience and, to some extent, how teachers present the 
material and how students learn” (Reys et al., 2004, p. 65). While studies on the use of textbooks 
or curricula focus on the teacher or student, there is a lack of attention to the interactions between 
the teacher and student when using mathematical texts (Rezat, 2011) and the meanings construed 
in texts addressed to the teacher and students. As mathematical curricula often provide separate 
instructions for the teacher and student, semiotic resources in the teacher-facing and student-
facing instructions may differ, allowing for different experiences, meaning-making, and shaping 
how the teacher enacts their responsibility in an instructional exchange. Specifically, the 
language choices made in the text addressed to students may differ from those made in the text 
addressed to teachers and both of them may mediate when and how the teacher affects 
instructional exchanges. An analysis of the different language choices in these texts can provide 
us a first approximation at what work might exchange for what knowledge claims in instruction. 
The goal of this paper is to illustrate this way of using curriculum resources to analyze a priori 
the instructional exchanges that might take place in classes in which these resources are used. 

Methods 
Context 

We analyze a Geometry Unit on Similarity from the Illustrative Mathematics (IM) 
curriculum for grades 9-12 (Illustrative Mathematics Certified, 2023). Illustrative Mathematics is 
an independent nonprofit that provides high-quality K-12 instructional materials, rigorous, 
standards-aligned content, and engagement in mathematical discussion. The Unit on Similarity 
has students learn the definition of similarity in terms of dilations and rigid transformations. 
Students prove that if triangles have three pairs of congruent corresponding angles and three 
pairs of corresponding sides in a proportional relationship, the triangles are similar. They also 
draw conclusions about figures they have proven to be similar, such as, corresponding angles are 
congruent and corresponding sides are in a proportional relationship.  

In terms of structure, the unit consists of 16 lessons organized into four sub-sections: (A) 
properties of dilations, (B) similarity transformations and proportional reasoning, (C) similarity 
in right triangles, and (D) putting it all together. There is also a modeling prompt, called Scaling 
a Playground, that follows the first lesson. The modeling prompt provides students with an 
opportunity to choose and use appropriate mathematics and statistics to analyze empirical 
situations, helping students understand that they can use mathematics to better understand things 
they are interested in. During the task, students formulate a model, which can be a geometric, 
graphical, tabular, algebraic, or statistical representation that describes the relationships between 
variables in the situation.  

The IM curriculum provides text that is for the teacher (e.g., labeled under “teacher-facing”) 
and text that is for the student (e.g., labeled under “student-facing”). Each of the 16 lessons has a 
set of teacher-facing learning goals and student-facing learning goals. The teacher-facing 
learning goals describe mathematical, pedagogical, and language goals of the lesson for a teacher 
audience. While these goals are intended to be read by teachers, the actor they allude to is the 
students. For example, if a goal reads, “Comprehend that dilations take angles to congruent 
angles” (see Figure 1a), it construes for the teacher the meaning that students are ultimately to be 
able to comprehend that dilations take angles to congruent angles. In contrast, the student-facing 
learning goals are written in the first person, often starting with “let’s” and “I can,” and invite 
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students to the lesson of the day. Likewise, the modeling prompt distinguishes sections for the 
intended audience, calling sections “teacher instruction” or “student facing statements.” 
Data Analysis 

We conducted an analysis of discourse that seeks patterns in linguistic data by drawing on a 
meaning-focused theory of language, systemic functional linguistics. In particular, we draw on 
Halliday and Matthiessen’s (2004) system of Transitivity in lexicogrammar, that states a clause, 
as a token of ideational meanings (i.e., goings-on in the world) can be analyzed by identifying 
processes, participants, and circumstances, which are “organized in configurations that provide 
the models or schemata for construing our experience of what goes on” (p. 175). The ideational 
metafunction of text construes meaning through the different types of processes within the 
Transitivity system. Analyzing the domain of experiential meaning in mathematics is helpful in 
understanding how teachers and students can be engaged with and connect to the learning 
experience (O'Halloran, 2005).  

Ideational meanings are construed through choices of processes, which can be Mental, 
Material, Relational, Existential, Verbal, Behavioral, or Operational. Processes are typically 
realized with verb choices in simple clauses but in more complex clauses they may be 
nominalized. Mental (sensing) processes may be realized with verb choices such as consider or 
think, material (doing) processes with verb choices such as draw or project. Relational clauses 
relate two separate entities, they “characterize and identify” (Dimmel & Herbst, 2015, p. 166) as 
in the statement of a mathematical definition. Operational processes, a process type specific to 
mathematical discourse identified by O'Halloran (2005) are often realized by choices of 
arithmetic and algebraic operation symbols or by the “words that in mathematics mean an 
operation” (Dimmel & Herbst, 2015, p. 167) or symbols that represent a mathematical action or 
function (e.g., a raised number or letter next to a letter or number indicating the operation “raised 
to the … power”). Existential processes show that “phenomena of all kinds are simply 
recognized to ‘be’” (Halliday & Matthiessen, 2004, p. 171). Existential processes stipulate the 
existence of something (Dimmel & Herbst, 2015). For example, in a proof context, the word ‘let’ 
in “let O be the center of a dilation” tells the student that there exists an entity, O, that they can 
utilize in doing the proof. 

The system of Transitivity “offers a range of options for ideational (content) meaning that is 
comprehensive of the ways language varies in presenting experience: as doing, sensing, saying, 
or being” (Schleppegrell, 2013, p. 22). For example, Verbal processes are enacted in the form of 
‘saying.’ Behavioral processes are enacted in the form of partly ‘doing’ and partly ‘sensing,’ 
projecting the outer reflection of the consciousness (e.g., observe). Identifying the ideational 
meaning that can be represented in the form of processes, we compare teacher-facing text and 
student-facing text presented in (1) the lesson goals and (2) the unit’s modeling prompt. The 
lesson goals span across 16 lessons, allowing us to see patterns in the text across lessons that 
vary in the ways they position the intended reader (the teacher or the student). Looking at the 
modeling prompt offers another perspective on how text is presented to the teacher and the 
student, how their interaction is supported, and how printed language may stand on its own or be 
supported by other modalities (e.g., visual, technological). In particular, we identify meanings in 
the text construed through choices from the transitivity system. In our analysis, we first 
determine the form and quantity of processes in the teacher-facing text and student-facing text 
within the lesson goals and modeling prompt. Subsequently, we compare the processes in each 
lesson or prompt between the teacher- and student-facing texts, determining whether the 
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processes are more or less aligned with similar meanings. Through the analysis of transitivity 
patterns, we consider the following questions: 

1. To what extent do the teacher-facing text and student-facing text draw on processes with 
similar meanings? 

2. What patterns can we observe in the processes used within and across the teacher-facing 
and student-facing texts? 

Findings 
The analysis of transitivity patterns displayed a contrast between the teacher- and student-

facing texts in the learning goals: More use of the mental (cognizing) processes in the teacher-
facing goals and more use of the material and verbal processes in the student-facing goals. The 
teacher-facing goals are represented in statements that start with verbs that indicate what the 
students should be able to know by the end of the lesson. In terms of instructional exchanges, 
these instructional goals refer to the claim that the teacher may be able to make on behalf of the 
student based on what the teacher sees the students doing. If a teacher-facing goal says, 
“Comprehend that dilations take angles to congruent angles” (Figure 1a), the teacher is expected 
to ensure that students mentally understand this idea, as comprehend realizes a mental process. 
At the same time, the corresponding student-facing goal says, “Let’s dilate lines and angles” 
(Figure 1b), representing the work students will do as taking action in the material world, doing 
the dilation. The distinction between the mental process in the teacher-facing goal and the 
material process in the student-facing goal is also highlighted in the difference between the 
words “dilation” and “dilate”. These are key technical terms in this unit that identify an 
important concept students will use to justify that triangles are similar. We can see a distinction 
between “dilation” in the teacher-facing goal and “dilate” in the student-facing goal by how often 
each form (verb or its nominalization) is used and which transitivity process co-occur with their 
use. 

 

Comprehend that dilations take angles to 
congruent angles. 

Prove that a dilation takes a line not 
passing through the center of the dilation to a 
parallel line, and leaves a line passing through 
the center unchanged. 

Let’s dilate lines and angles. 
I can explain what happens to lines and 

angles in a dilation. 

Figure 1a: Teacher-facing Goals Figure 1b: Student-facing Goals 

Figure 1: Learning Goals for Lesson 4: Dilating Lines and Angles 
 
“Dilation” appears five times in the teacher-facing goals across the unit. For all five clauses, 

“dilation” is introduced by a mental process (i.e., comprehend, prove, Figure 1a), emphasizing to 
the teacher that they should be supporting students’ understanding of and perception on the 
concept of dilation. In contrast, “dilation” appears only once in the student-facing goal when 
students are asked to verbalize (i.e., explain, Figure 1b) what happens in a dilation. “Dilate,” the 
verb form and material process, is more commonly shown in the student-facing goals, appearing 
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four times while appearing not once in the teacher-facing goals. In a general sense, the teacher is 
being asked to focus on having students sense what a dilation is while the student is being asked 
to do the dilation, or to dilate, or to narrate what they did (or verbalize). It then becomes the 
teacher’s responsibility to not only ensure that the students dilate different properties of figures 
but also to interpret such actions as comprehending the properties of dilation what it means for 
dilations to work. Whereasthis is evidence of how nominalization supports the development of 
mathematical knowledge that is more concise and advanced, it packs within it material actions 
that may but also may not always entail all the properties attributed to dilations.    

Relational processes play the important role of describing the qualities and characteristics of 
entities. In the context of a geometry curriculum, relational clauses are essential for making 
meaning as they provide a way to describe and establish the properties of and relationships 
among geometric objects. The relational processes in the teacher-facing and student-facing goals 
convey similar meaning but are represented differently. In particular, the relational clauses in the 
teacher-facing goal are presented as complex noun phrases in the student-facing goals. For 
example, a relational clause in the teacher-facing goal has an embedded clause that is linked by 
‘are similar to’ the noun group, the original right triangle: “the two smaller right triangles formed 
when a right triangle has an altitude drawn to its hypotenuse are similar to the original right 
triangle” (Figure 2a). In the student-facing goal, two complex noun phrases describe what is to 
be explored and found: “right triangles with altitudes drawn to the hypotenuse” and “similar 
triangles formed by the altitude to the hypotenuse in a right triangle” (Figure 2b). We see that the 
complex noun groups in the student-facing goals are more concise and simplified. Yet, they are 
more complicated in parsing the mathematical meaning, requiring more work from the students 
to unpack them. 

The material processes in the student-facing goals (i.e., explore, find, Figure 2b) provide a 
concrete basis for understanding what is presented to the teacher in a relational process that 
would otherwise be difficult without an example or a visual support. Through exploration, 
students can physically draw altitudes on right triangles and see how they relate to the 
hypotenuse. In addition, by finding similar triangles, students can see how similar triangles are 
formed by right triangles with altitudes drawn to the hypotenuse. As the material processes 
support students’ concept of similar triangles in a more tangible way, the teacher-facing goal 
presents the same meaning but highlights the cognitive action through the use of the mental 
process (i.e., justify, Figure 2a). The mental process is important because it involves cognitive 
processes such as critical thinking and reasoning, deepening the students’ understanding of the 
properties of similar triangles. The mental process also shows that the teacher supports students’ 
learning from doing to sensing the relationship between the original right triangle and the two 
smaller triangles. 
 

Justify that the two smaller right triangles 
formed when a right triangle has an altitude 
drawn to its hypotenuse are similar to the 
original right triangle. 

Let’s explore right triangles with altitudes 
drawn to the hypotenuse. 

I can find similar triangles formed by the 
altitude to the hypotenuse in a right triangle. 

Figure 2a: Teacher-facing Goals Figure 2b: Student-facing Goals 

Figure 2: Learning Goals for Lesson 13: Using the Pythagorean Theorem and Similarity 
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Operational processes are helpful in elaborating the material process because the operational 
processes articulate steps to carry out a particular action. For example, the operational process of 
multiplication in the teacher- and student-facing goals (Figure 3) supports the elaboration of the 
material process of dilating. While the relationship between the operational process of 
multiplication and material process of dilation remains the same, it is represented differently in 
the teacher-facing and student-facing goals. In the teacher-facing goal, the operational process of 
multiplication is directive; the teacher may instruct the students to determine that dilating results 
in multiplying all lengths (Figure 3a). The focus is on the process of understanding how dilating 
works and recognizing that dilation is equivalent to the sequences of operations. On the other 
hand, in the student-facing goal, the operational process of multiplication will come to be known 
and the student will understand the concept, knowing that when figures are dilated by a scale 
factor of k, all lengths in the figure are multiplied by k (Figure 3b). The operational process in 
both teacher- and student-facing goals is projected by the mental process (i.e., determine, Figure 
3a; know, Figure 3b), comprehending that dilate is multiply. The mental process reports that 
students are able to apply multiplication when thinking of dilations. For example, students can 
understand that by multiplying all lengths in the figure by a scale factor of k, dilating is able to 
change the size and dimensions of the figure but maintain its shape and proportions. 

 

Determine that dilating by a scale factor 
of k multiplies all lengths by k 

I know that when figures are dilated by a 
scale factor of k, all lengths in the figure are 
multiplied by k 

Figure 3a: Teacher-facing Goals Figure 3b: Student-facing Goals 

Figure 3: Learning Goals for Lesson 3: Measuring Dilations  
 

In the modeling prompt, the existential process especially plays an important role in setting 
the context. The existential processes in the teacher- and student-facing sections introduce the 
diagram (teacher is to tell students “this is a diagram of a playground”, Figure 4a; students are 
given “Here’s a playground for a school of 360 children in Springfield”, Figure 4b). The purpose 
of the existential process here is to introduce the diagram as a model of the actual playground 
(Figure 4a).  

In the student-facing section, there is no specific goal set for students that indicates the 
processes they will engage in. Instead, they are given a scenario about the playground with the 
diagram and asked to answer questions (i.e., “how many?”, “how much?”, Figure 4b) that 
prompt their solving the problems and making sense of the modeling task. The teacher-facing 
section (Figure 4a) guides teachers to engage in material and verbal process (i.e., display, ask, 
invite, tell, clarify) so that students can engage in the material process (i.e., use) and ultimately 
the mental processes (i.e., wonder, notice) as they “share” (verbal process). Teaching-facing 
components also emphasize the mental processes, such as considering how students will 
experience something when it happens (e.g., “notice”). In the student-facing instruction, details 
on the hypothetical context are provided, placing more emphasis on the existential processes.  
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Display this image of the original 
playground for all to see: 

 
Ask, “What do you notice? What do you 

wonder?” After some quiet think time to 
notice and wonder, ask students to share 
with a partner. Then invite students to share 
what they noticed and wondered with the 
class, and record the responses for all to see. 

Then display this diagram: 

 
Tell students that this is a diagram of a 
playground, and they will use it to design a 
new playground to fit different constraints. If 
needed, clarify that the fence of the 
playground only goes around the perimeter, 
not along the segments. 

Here’s a playground for a school of 360 
children in Springfield. 

 
1. The fence around the playground costs 

90 dollars per 50-foot roll. Laying the grass 
across the area costs 400 dollars per 500 
square feet. How much did the fencing and 
grass for this playground cost to build? 

2. How many kids per square yard can 
Springfield’s playground hold? 

3. There’s a new playground going up in 
nearby Wintermeadow. Wintermeadow has a 
budget about 3 times greater than 
Springfield’s. Recommend a playground 
shape and size that would fit Wintermeadow’s 
budget and hold at least 3 times as many kids 
as Springfield’s playground at the same 
density of kids per square yard. How many 
kids can your playground hold? 

Figure 4a: Teacher Instruction  Figure 4b: Student-facing Statement 

Figure 4: Modeling Prompt: Scaling a Playground 

Discussion 
The different semiotic resources used in the teacher- and student-facing components of 

curricula provide opportunities for researchers to anticipate how teachers and students make 
meaning of mathematical concepts and whether any differences in the meanings construed can 
be expected. The Illustrative Mathematics curricular texts showcase an intriguing relationship 
between the articulation of goals for teachers and students. While teachers are directed to 
approach these lessons with the mental processes students are to develop through the unit 
foregrounded, students are focused on the practical aspect of doing, from a material standpoint. 
Even when the student’s goal is to know something, the expression of what they are to know 
focuses on the material processes involved in dilation. The focus on the doing process, although 
it is emphasized in the students’ learning goals, is only a partial understanding of their learning 
experience. This raises questions about whether the objectives for students’ learning should 
involve more reflection around the concepts of dilation, and whether teachers require a better 
understanding of how they can connect the material processes students engage in with the 
cognitive outcomes that are expected. The discourse facing students often fails to represent their 
mental activities, making it challenging for them to explain their approach to a task. This issue is 
especially important in current approaches to mathematics, where a focus on developing 
students’ thinking is critical for advanced learning. While the field recognizes the importance of 
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justification and proof in mathematics, mathematics teachers need guidance in supporting 
students to articulate the ways they are thinking through meaningful classroom discourse.  

Effective mathematics instruction requires a continuum of modes, including spoken, written, 
stand-alone, and visual support, to construct activities that meet students’ diverse needs. 
Collaborative interaction, allowing for meaning to be construed between individuals rather than 
within, is a key way teachers can support students’ movement between doing and thinking 
through talk (Gibbons, 2003). Teachers can model this by thinking aloud themselves to show 
how material processes can be articulated in what students achieve in more abstract language, as 
implying a cognition of sorts. This movement between the observed and the inferred, encoded in 
language by the choice of material and mental processes can support students to communicate 
their thinking for others to engage with (Herbel-Eisenmann et al., 2013). Through such efforts, 
teachers can help their students develop a deeper understanding of mathematical concepts and 
communicate their thinking effectively. The instructional exchange between the teacher and 
students involves building on the language students bring and adding the technical and abstract 
languages unique to mathematics to enhance students’ understanding of mathematical concepts.  

Addressing the discrepancy in texts between the teacher- and student-facing goals can 
improve the quality and specificity of curriculum materials and equip teachers to better support 
students. The teacher can report what the student is doing using the material processes and align 
instructional goals with mental processes, enabling the teacher to manage the instructional 
exchange. The management of an instructional exchange not only complies with the didactical 
contract but also highlights how students are expected to demonstrate the specific knowledge at 
stake. The teacher has the responsibility to engage students in actions that instantiate the 
processes in the instructional goals, regardless of what students actually think, and help develop 
concrete understanding of abstract mathematical concepts, but then the articulation of what 
students have learned needs to be further supported. The next logical steps in capitalizing on this 
understanding would be to conduct research that addresses how teachers can become more aware 
of the role of language in positioning them and their students to engage in discourse. By 
conducting such research, researchers can work towards ensuring that curricular texts effectively 
support instructional exchanges and high-quality mathematics education that meets students’ 
individual needs and builds on their languages. 
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