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PME-NA HISTORY AND GOALS 
 

PME-NA History and Goals   
 
PME came into existence at the Third International Congress on Mathematical Education 
(ICME-3) in Karlsrühe, Germany, in 1976. It is affiliated with the International Commission for 
Mathematical Instruction. PME-NA is the North American Chapter of PME. The first PME-NA 
conference was held in Evanston, Illinois in 1979. Since their origins, PME and PME-NA have 
expanded and continue to expand beyond their psychologically oriented foundations.   The major 
goals of the International Group and the North American Chapter are:   
 
1. To promote international contacts and the exchange of scientific information in the 
psychology of mathematics education.   
 
2. To promote and stimulate interdisciplinary research in the aforesaid area, with the cooperation 
of psychologists, mathematicians, and mathematics teachers; and   
 
3. To further a deeper and better understanding of the psychological aspects of teaching and 
learning mathematics and the implications thereof.    
 
 
PME-NA Membership 
 
Membership is open to people who are involved in active research consistent with PME-NA’s 
aims or who are professionally interested in the results of such research. Membership is open on 
an annual basis and depends on payment of dues for the current year. Membership fees for PME-
NA (but not PME International) are included in the conference fee each year. If you are unable to 
attend the conference but want to join or renew your membership, go to the PME-NA website at 
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and 
visit the “Membership” page.    
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Preface 
The Forty Fifth Annual meeting of the North American chapter of the International Group for 

the Psychology of Mathematics Education was held PME-NA 45 in Reno, Nevada, Oct. 1-4, 
2023. The conference theme is listed below:  

 
Engaging All Learners 

 
Math learning should be a joyful experience for all students. When students are engaged and 

inspired, they are motivated to learn. Instruction that targets the learning needs and interests of 
our students makes it possible for students to excel in learning math. Participants in the 
conference explored how to create conditions to support learning that build on student 
engagement and interest in addition to other research engaged by the PME-NA community. The 
specific conference theme questions explored as part of the conference was: 

• How can we engage all students to learn math content by building on their interest and 
motivation to learn? 

• How do we design learning environments that take students and learning into account? 
• What are the design features of tools and curricula design features considering student 

engagement and interest in supporting learning? 
• How do we build partnerships with schools and the community to support student 

engagement and math learning? 
• What research agendas should we pursue to ensure that all students reach their potential 

by paying attention to engagement and learning needs? 

The acceptance rate for Research Report was 45%, the acceptance rate for brief research 
reports was 70 %. The acceptance rate for posters was 90%. Note: some papers were accepted in 
alternate format than originally proposed. The total number of participants who submitted 
proposals as co-authors was 1083.  
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support and everyone who helped make this conference a success. 
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AN ARGUMENT FOR ENGAGEMENT AS A FUNDAMENTAL CONSTRUCT FOR 
UNDERSTANDING MATHEMATICS LEARNING 

UN ARGUMENTO A FAVOR DEL COMPROMISO COMO CONSTRUCTO FUNDAMENTAL PARA 
COMPRENDER EL APRENDIZAJE DE LAS MATEMÁTICAS 

 
James A. Middleton 

Arizona State University 
jimbo@asu.edu 

 
An extended (and probably unnecessary) parallel is drawn between engagement in mathematics 
and engagement in musical performance. Key facets of engagement are described and a model 
of how mathematics engagement plays out in task-level activities is discussed in light of new 
findings related to its social and emotional facets. Implications for instructional practices that 
flow from this research are presented. The article concludes with suggestions for future research 
that incorporates understandings of identity and emotional object as promising directions.  

Keywords: Engagement, motivation, emotion, affect, identity  

My old mentor, Tom Romberg, he of Curriculum and Evaluation Standards for School 
Mathematics fame, once reflected to me that mathematics is like music. “You don’t become a 
musician by playing scales. You become a musician by playing music.” In my other life, I am a 
musician, and I love creating music, writing, and composing songs that try to say something 
about life and its meaning, and playing these songs to entertain and uplift people. When Teruni 
asked me to perform a couple of my songs prior to this address, I thought about the parallels 
between my relationship with music and my relationship to mathematics, and crafted this essay 
using some of these parallels as examples that might resonate to those of us interested in 
mathematical engagement—the sense of connection people have with mathematics, and their 
interaction with it and others as they experience it. 

I recently finished a marathon 37-hour studio session with my band. During those 37 hours, 
our team of 6 band members, one sound engineer, backup singers and “support team” (family) 
worked collaboratively to develop the structure of sixteen songs, overlaying different 
instrumental and vocal parts, and troubleshooting problem areas of tempo, pitch, orchestration, 
and voicing—all areas that together, make a song potentially compelling to the listener. At the 
end of those 37 hours, we had rough cuts of each of our songs that served as sort of “existence 
proofs” that our creative ideas were correct. But even at the end of the session, the songs are not 
polished, the final beauty yet unrevealed. 

The process of developing this body of work echoes the general research on engagement in 
mathematics. Members of our community of practice displayed various facets of engagement: 
Cognitive, Behavioral, Affective/Emotional, and Social, at different intensities at different times 
in the process of solving the many problems we encountered when creating something that for us 
was new and pleasing. One of my musical mentors, Igor Glenn, who played with Glen Campbell, 
Bobby Weir, The New Christy Minstrels, and John Denver told me, “Jim, being a musician is 
spending your life collecting licks and then putting them together in new ways.” Much like 
music, when learners are “engaged” in mathematics, they employ deep processing, instantiating, 
or developing procedures for combining smaller units of thinking into routines that, when 
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compiled, constitute a problem solution (Cognitive Engagement). In music we can liken this to 
composing a song such that the finished product has intellectual and aesthetic rigor.  

In mathematics, learners must also perform tasks, using appropriate tools for thinking and 
communication (Behavioral Engagement). In music, one must be able to play the notes, the licks 
and riffs that make up the pieces of the composition. Notice that the procedures enacted—the 
notes, licks and riffs are not the music. They are elements of understanding that are combined to 
create the music. The tools musicians use—instruments, click-tracks, microphones, and effects—
determine how a group of musicians can enact the composition, affording and constraining the 
possible ways in which a composition can be played. 

In mathematics, learners use emotional feedback to gauge task efficacy and to monitor 
engagement while learning (Affective/Emotional Engagement). Musically, the “feel”—the sense 
of emotion, whether it is happiness, sadness, frustration, or anger—one experiences while 
playing is transferred to the finished piece. Sometimes these emotions get in the way of quality 
performance—inhibiting the singer, for example, from adequately forming the right tone, as their 
throat closes with sadness. Sometimes emotions related to poor performance engender a negative 
feedback cycle that prevents the musician from enacting skills that they had previously been able 
to perform. But sometimes, emotion empowers a player to try something new that elevates the 
playing of herself and her bandmates to a new level of understanding of not just the song, but of 
musicianship itself. 

Lastly, in mathematics, learners play off their peers, reacting to and modifying behavior to 
support each other and to get value added from the collaboration (Social Engagement). 
Sometimes this type of engagement is productive, leading to improved learning, and sometimes 
it is inhibitive, leading to a breakdown of learning and its associated cognitive and social 
relationships. In recent work, my colleague Mandy Jansen and our team listened to students 
reflect on their relationship with their peers as they learned mathematics together. Their 
responses were laden with references to practices that impacted their own engagement. Such 
practices included social loafing, disruptive behaviors, disrespecting others, including the 
teacher, and domineering conversation, as examples of social interactions that inhibited 
individual engagement. But they also referred to practices such as helping one another, providing 
encouragement, and explanation as reasons why they remained engaged (Riske, et al., 2021). 
Likewise in music, members of a team must listen to each other, playing with their eyes and ears, 
such that each person’s contribution is unique, but coordinated with those of their bandmates. 
Respect, attention, support, and encouragement are all critical for one’s musical development. 

Much of the dynamics of engagement witnessed by teachers is due to the complexity of 
social acts in service to mathematical discourse. I have used the metaphor of improvisational jazz 
in previous articles, making the case that members of a community of practice play much the 
same roles as musicians in a band, each contributing some element to the larger discourse that 
corresponds to their expertise, confidence in their expertise, and their personal interpretation of 
the mathematics as well as the roles others take on. Curriculum serves as a basic composition by 
which the discourse has structure, and where, given the sociomathematical norms established in 
the classroom, individuals can “riff” off each other, providing creative input to the discourse, 
such that what ultimately results is a performance unlike any other. Yet, it still maintains the 
structure of the composition—the curriculum—to ensure coherence and aesthetic wholeness. 
Also like many bands, the “conductor”—the teacher—listens to the composition as it is being 
played, correcting mistakes, interpreting, and orchestrating the performance to display rigor and 
aesthetic quality. 
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When each of these facets of engagement are entered into in productive ways, students create 
new mathematical knowledge, feel interested and efficacious, value mathematical thinking as 
useful and important, and ultimately tend to pursue mathematically intensive work more readily 
in the future (Middleton, Jansen, & Goldin, 2017). Just like music, a performance becomes an 
episode that may be called up from memory later and replayed in the head or used as the basis 
for future performances. With the use of recording devices such as whiteboards, flip charts, 
graphing utilities and collaborative software, these memories don’t have to stay in one’s head. 
They can be made public—replayed—such that others may appreciate the thinking, borrow 
ideas, and make them their own, critique them and add new contributions (Lamberg & 
Middleton, 2009). 

Now, there is only so far that analogies can take us before they become tiresome. But I hope 
that those of you who enjoy music and especially those who have played or sang with others 
resonate (see what I did there?) with this description.  

When it comes to research on mathematics engagement, new advances in our understanding 
are being developed every day. I have boiled these findings down into four fuzzy take-aways that 
reflect the larger body of research on engagement, but that highlight new and important avenues 
that may benefit scholars who do not focus on engagement, per se, but who must take it into 
account when researching learning, teaching, and curriculum. These take-aways are: 

Mathematics engagement is embodied—When we engage in mathematical thinking, our 
motor cortex, endocrine system, attention and arousal centers of the brain, cortical processing, 
sensory and effector systems are activated—always. This, of which my colleague and friend, 
Mitch Resnick will speak at this conference, is some of the most exciting work in our field, 
indeed in the entire field of cognition. For instance, we have evidence that, when we observe 
others doing a task, the same centers in our brain light up as if we ourselves were doing the task. 
When we observe others emote, we likewise tend to interpret the experience in ways that evince 
the same emotion as the observed. When we rotate objects mentally, our heads tilt and our hands 
wave, mimicking the transformation. Emotional mirroring of this sort is often likened to 
contagion, wherein one person may begin to laugh triumphantly, and others follow suit 
(Iaocoboni, 2009; Mafessoni & Lachmann, 2019). 

Mathematics Engagement is emotional—Emotion is implicated into every facet of 
engagement. It is not separate from cognition, behavior, or social functioning (Meyer & Turner, 
2006). Without taking emotion into account, we cannot understand the reasons students persist in 
the face of difficulty, nor when they engage in practices that may be maladaptive from a 
mathematical perspective. It is also becoming more evident that mathematics itself—its doing 
and the resulting products of that doing—is emotional. Our feelings color the directions we take, 
the problem-solving processes and tools we employ, and whether potentially productive ways of 
thinking are followed up upon (Goldin, 2007). Lastly emotion directly impacts the depth of 
cognitive processing one can employ when engaged in challenging mathematics. Students who 
interpret their experience as interesting and enjoyable tend to persist in the face of failure versus 
students who are frustrated and anxious (Tulis & Fulmer, 2006). 

Mathematics Engagement is multifaceted—when I say that engagement is multifaceted, I 
do not mean in a trivial way—that there are many variables that contribute to engagement. What 
I mean is that, at any time in a learner’s experience, they engage in many things: Mathematics 
problem solving, negotiating social relationships, general mood relating to life events, specific 
state characteristics, and physiological dynamics that each color their behavior in the moment of 
learning. This multidimensional situatedness implies that not all students will be optimally 
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engaged at any one moment in time. While this is obvious to all of us who have taught before, it 
has not always been taken as a design imperative for curriculum and instruction. In the past, this 
fact has been overlooked in an attempt to create teacher-proof, general materials that turn out to 
have little meaning for learners (Thompson, 2013). Recent attempts to address this fact have led 
to true innovations including contextualized curriculum, positioning and other affirming teaching 
practices, and adaptive curriculum technologies (e.g., Gresalfi & Hand, 2019). Each of these 
attempts has been successful, such that curriculum, at least, and some instruction is quite 
different now than it was 40 years ago.  

But it begs the question, “Is it possible, or even desirable for all learners to be optimally 
engaged in all tasks at all times?” My own answer to this question is tied to my belief (and 
extensive evidence) that each student has different gifts, different skills, preferences, and 
proclivities they have developed because of their past experiences in and out of school. To 
address each facet of engagement, cognitive, behavioral, social, and emotional at optimal levels, 
we must take the long-term approach, while designing tasks for the short term. What I mean by 
this is that social engagement is the critical variable that will determine the optimization. For any 
task, if we optimize cognitive engagement, there must be multiple levels of challenge and 
multiple means by which students are able to enter the task. Similarly with behavioral 
engagement, some students will be more adept at different times with different tools for different 
purposes. Emotional engagement will be dependent upon the varied histories of students and 
their past relationship with mathematics, their peers, and schooling in general. No single task 
will optimize all these facets for all students all the time.  

Social engagement is the lever by which, even though at the task level engagement is not 
always optimal, over time, the support of the group, if orchestrated with care and inclusion as 
key principles can bolster lagging engagement, reward exceptional engagement, and offload sub-
tasks to different members of the group to account for each learner’s personal preferences and 
proclivities. Every task may not be optimal, but over time, all students may have the opportunity 
and the disposition to engage productively.  

Mathematics Engagement is the result of feedback—Following up on this, one of the key 
revelations in the past 20 years in the fields of affect, motivation, engagement, and identity, is the 
notion that what happens in the short term impacts the long term. This may seem to be a kind of 
no-brainer—of course what we learn in the moment impacts our longer-term understandings. 
That is why we teach, to create moments that provide the opportunity for people to learn and 
grow mathematically. But in the field of educational psychology the focus on general 
processes—traits to be more precise—has overshadowed the importance of state processes to the 
extent that the unique nature of mathematics concepts, pedagogical practices, and social 
environment have been largely ignored, and their respective and collective impact, unexplored 
(Middleton, Jansen, & Goldin, 2017).  But work in situational interest (Renninger & Hidi, 2019), 
achievement-related emotions (Forsblom, et al., 2022), task-based efficacy (Midgely et al., 
1989), and self-regulated learning (Bell & Pape, 2014) show how dramatically what happens in 
the moment of learning becomes consolidated into longer-term trait-like habits and preferences. 
A Model of Task-Level Engagement 

This work is being combined with work on social facets of engagement to reveal a rather 
complicated, but still relatively simple system of influences where feedback from the moment 
reinforces the long-term attitude of students, which in turn, impacts the student’s initial model of 
the learning situation, thereby partly determining their patterns of engagement (Middleton et al., 
2023). 
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Together, these newer empirical results can provide some direction for the design of 
mathematics curriculum and teaching practices. The syllogism I am drawing here is complex. 
The web of implications from object to predicate flows to areas yet unknown, but here are my 
understandings of the field of engagement-related research currently, and their implications for 
the improvement of the mathematical well-being of students (See Figure 1). 

 

 
Figure 1. Major interacting facets impacting mathematics engagement. 

When we think of prior mathematics experiences, the residue of these experiences makes up 
a person’s memories. In those memories, students recall support they have received by their 
peers (or not), as well as that provided by their teachers (or not). Other factors from the student’s 
culture and out-of-mathematics class experiences are also implicated here, but I have not 
included them in Figure 1 for clarity’s sake. These memories of mathematics past are used as 
evaluative templates to help the student determine their role, mode, requisite knowledge, and 
feelings about the task set before them.  

There is a transition point between the introduction of a task, and its doing. In this transition, 
a student may assess their own ability with respect to the task requirements (task efficacy), their 
interest in the mathematics, and in the context (situational interest), and how they will fit in with 
their group mates (norms of participation). These things determined, even if tentatively, will 
color the student’s engagement-in-the-moment.  

Then, at the task level, while engaged, there is constant monitoring of the cognitive, 
behavioral, social, and emotional characteristics of the task. As one is engaged, the initial model 
of the situation may be altered as one recognizes that they have knowledge to bring to bear on 
the problem, or that their group mate brings up an important point. So, the situational interest 
displayed, the situational efficacy attributed, the behaviors employed, and the person’s social 
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role play off each other dynamically. Peers and teacher provide potential support in the form of 
scaffolding, motivational talk, helping and feedback. The social acts teachers and peers proffer in 
carrying out the task can improve aspects of engagement (for some students) or inhibit them (for 
other).  

Together, the initial model, its dynamic interaction with situational variables, and the support 
interjections of teacher and peers provide information for the learner to update portions of their 
long-term engagement attitudes. This feedback reinforces already developed notions of 
mathematics and the learner’s ability and role within it and provides another episodic memory 
that can be called upon to direct future mathematics engagement in similar situations. 

Over time, the stereotypical mathematics problems given to students, the routines of 
mathematics classes, and the kind of feedback typically provided students create robust, long-
term attitudes towards mathematics that color students’ future expectations of mathematical 
engagement, including their tendency to select mathematically intensive coursework and future 
occupational aspirations (Sullivan, 2013; Betz, 2023). We are all familiar with reports showing 
the steady decline of positive mathematics motivation from the middle grades onward. Most 
students leave compulsory education with less-than-positive long-term engagement patterns. So, 
what are the key levers we can employ to reduce the slope of this decline? Might we even be 
able to reverse it for more students? It is to this question I devote the remainder of this essay. 
Implications for Practice 

It has always baffled me why our field tends to focus its attention on the long-term 
manifestations of mathematics engagement instead of the short-term. It is only in the moment of 
learning where we can make an impact. Luckily there are a handful of practices that have been 
shown to improve patterns of engagement, particularly those associated with social support--the 
degree that students have opportunities to interact in a social environment such that their ideas 
are valued, and they feel welcome to be there. In other words, when students can feel like they 
matter, both their mathematical thinking and they as members of the learning community, they 
will tend to become more engaged: 

Small Group Discourse. Discourse for engagement encourages nearly all participants in a 
group to share their thinking. Moreover, students listen to try to understand each other’s thinking 
to build consensus around the mathematical idea.  

Status Raising. The teacher and students regularly use language that magnifies specific 
student’s strengths with respect to knowing and doing mathematics and assumes capability 
instead of shortcomings. This kind of feedback serves a reward purpose, enhancing the sense of 
task efficacy in the learner, and as information for others regarding what good mathematical 
thinking looks like. It is important that such status raising is distributed authentically to good 
ideas across each member of the classroom. 

Motivational Discourse. When the teacher provides explicit language that supports student 
motivation using warm and welcoming language. These efforts can take several forms: 1) 
Focusing on the process of learning, challenging students, viewing errors as constructive, or 
supporting persistence; 2) Modeling positive affect to reduce anxiety and address emotional 
needs; and 3) Encouraging peer support and collaboration emphasizing joint goals & shared 
responsibilities. 

Accountability/high expectations. When the teacher holds students accountable for 
engaging with learning of content such that all students are expected to participate in class (work 
hard and put forth effort, communicate their thinking, and listen to the teacher and each other). A 
number of strategies here have been shown to be productive including: 1) Cold calling or using 
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random calling to lower incidence of loafing; 2) circulating the room and, while doing so, 
pushing students to keep working on the math (not letting students get away with not trying hard 
in their groups); 3) Using a timer to let students know how much time they have; 4) Enabling 
students to share their thinking without being called upon; 5) Using structured protocols to help 
students learn to talk with one another – here, group work roles are explicitly referred to; and 6) 
ANY methods that don’t allow students to hide—making explicit efforts to get more students 
involved in learning content.  

Together, these practices have been shown to be related to increased situational interest and 
task efficacy in students and reduced negative emotions towards mathematics. Each of these 
outcomes is important, but the reduction of negative emotions directed towards mathematics has 
a multiplier effect. That is, negative emotions in mathematics are strongly, negatively associated 
with the following aspects of engagement: situational interest in the task, social engagement, task 
efficacy, and beliefs that the mathematics in the task is useful and important (Middleton, et al., 
2023). So not only do these practices directly support the development of interest and 
mathematics self-efficacy, they also may indirectly reduce the impact of the negative emotions 
students exhibit in relation to challenging and difficult content. 

In a kind of shocking finding, my colleagues and I found that academic support practices like 
selecting challenging tasks, scaffolding discussions, assisting, and providing feedback can 
actually reduce some important aspects of affective/emotional and cognitive engagement 
(Middleton, et al., 2023). When tasks are highly challenging, for example, students necessarily 
make more mistakes, become confused and potentially frustrated. Teachers’ attempts to maintain 
a rigorous level in mathematics learning experiences can reduce students’ sense of efficacy and 
interest, which, unchecked, may lead to less productive engagement, or engagement in other 
activities that are unrelated to learning mathematics. In our conversations with students, and in 
large scale quantitative assessment, students in our studies felt that challenge was negative, and 
that pressing them to explain was also detrimental in relation to their engagement. 

The implications of these two seemingly contradictory findings, to me are this: It is the social 
support system in the classroom that undergirds rigorous work. The teacher, like the conductor of 
an orchestra, must always be pushing to improve the knowledge students are displaying. This can 
be difficult and disconcerting and may cause negative feelings such as frustration and 
embarrassment. However, with teacher and peers providing social support—i.e., status raising, 
motivational discourse, encouragement to keep level of effort high and others, the negative 
impacts, motivationally, of rigor may be overcome such that the value of the knowledge gained 
in pursuing and tackling hard problems takes a prominent role in promoting a strong sense of 
efficacy and interest (Ahmed, et al., 2010). My friend Gerry Goldin called this complex interplay 
between emotional content “affective structures” that can take negative emotional content and re-
interpret it as positive when barriers are overcome, and when a person’s contribution to the 
collective understanding is respected and valued (Goldin, et al., 2011).  
Next Steps in Research 

We have an opportunity at this time, to greatly enhance our understanding of mathematics 
learning by taking engagement seriously. In the past we have focused too exclusively on the 
cognitive or behavioral aspects of engagement to the detriment of its emotional and social 
counterparts. These two facets are pregnant with possibility, and I would like to end this essay 
with some directions I see as fruitful.  

Emotional Object. The latest research on emotion shows quite convincingly that we 
experience multiple emotions simultaneously. Work done by Schukalow et al., (2023), and my 
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colleagues (Middleton et al., 2023) explain this phenomenon in part by the fact that emotions are 
not just positive or negative (valence), they also have intensity (e.g., very angry versus ticked 
off), they have activation (e.g., active such as enjoyment, or passive such as boredom), and they 
have object (e.g., I am ashamed of myself, or I am ashamed for my classmates). The 
combinations of these features create the vast majority of affective patterns we see in the 
classroom. Furthermore, they can be shown to associate with different manifestation of 
engagement. Mapping these emotional patterns to develop an understanding of productive 
emotional engagement and its role in interpreting and evaluating learning experience is a new 
and promising area of research. 

Social Support. Our understanding of social support is being sped along by researchers 
focusing on culturally appropriate practices and identity, as well as others focusing on inclusion. 
It is time for the main body of mathematics education research to embrace this activity and try to 
incorporate their ideas into our body of work in engagement. As an example, I would like to 
point out Melissa Gresalfi and Vicki Hand’s (2019) lovely model of identity construction that 
accounts for identity to be seen as building from norms of practice which exist within the frames 
and storylines within which students are positioned. These frames and storylines exist within 
larger cultural narratives that guide one’s mathematics identity within one’s larger set of 
identities related to race, class, gender, and intersectionality. Questioning dominant racial and 
economic narratives by which mathematics and its place in society have been positioned, and 
proposing intervening narratives has the potential for personal frames and storylines to become 
more supportive of diverse identities. But also, in the classroom, positioning, and redefining 
what it means to be mathematically competent, corresponds to the very social support practices I 
highlight in this article. They have the potential to scaffold students’ playing a new kind of music 
in their mathematical experiences. Perhaps mathematics learning will become, like jazz, a 
beacon of inclusive artists and aficionados learning from each other and growing as new, diverse 
perspectives on mathematics and its role in our lives are shared. 
 
Conclusion 

The time is ripe for our community to step back and look at mathematics learning from a 
broader perspective: A perspective that accounts for the experience of learning—the engagement 
one has with the content, one’s self, and one’s community—as the fundamental unit of change in 
mathematics education. Those moments in which students persist in challenging tasks, supported 
by peers and teachers to showcase their ability, and where that ability is valued and respected 
will improve, ultimately, the affective responses learners have towards mathematics, and more 
importantly, change their identity with respect to mathematics in ways far more profound than 
focusing on a particular task sequence, or on teachers’ practices isolated from how they impact 
engagement. 
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We discuss the importance of bringing teaching to the forefront of instructional design. We do so 
by describing the process of developing an instructional sequence for early number, using design 
research. The instructional sequence was developed with the specific aim of supporting teaching, 
conceived as a complex and demanding job, not reducible to predictable routines. The sequence 
has caught the interest of an unexpected number of teachers in Mexico. We have followed up 
with some of them and have documented that the resource has benefited their practice 
significantly. In our account of the design process, we highlight what—from a theoretical point 
of view—we have come to regard as three guiding ideas that are central to designing for 
supporting teaching: (1) designing for a resource to be viable in teachers’ classrooms, (2) 
designing for a resource to be regarded by teachers as relevant to their practice and (3) 
designing so that a teacher who has just taken an interest in a resource might fruitfully engage 
with it in her practice. 

Keywords: Number Concepts and Operations, Instructional Activities and Practices, Teacher 
Knowledge. 

In the development of resources to support mathematics instruction in schools, instructional 
designers must necessarily take a position regarding both learning and teaching. Whether 
implicitly or explicitly, multiple considerations come into play not only about how students are 
to learn mathematics, but also about the roles that teachers are to play in instruction. A strong 
inclination has been to prioritize in the designs issues related to student learning. This, of course, 
is an easily justifiable position since the improvement of students’ mathematics learning is 
central to our aims as mathematics educators. However, this inclination carries the risk of 
overlooking teaching and even misconstruing it, jeopardizing the suitability of instructional 
design products to help improve mathematics education. 

Commonly, resources are designed with the expectation of them being capable of adequately 
supporting students’ learning, if administered appropriately. Many are developed through 
research and are based on rather complex and robust conceptualizations of mathematics learning. 
In contrast, not much attention is typically given in the design process to how teaching is 
conceptualized. Often, it ends up being framed as a practice in which compliance and adherence 
are considered to be essential. At the least, it is commonly expected that, for the use of the 
resource to render positive results, teachers would have to adhere to the indications of the 
developers. Hence, in instructional design, teaching is frequently conceptualized as a practice of 
a predominantly administrative and organizational nature, where teachers are seen to be 
operating within what Biesta (2007) refers to as “a causal model of professional action” (p. 7).  

The framing of teaching as a mainly administrative and organizational occupation stands in 
sharp contrast with how research in the field has come to understand it. It has been shown that 
teachers necessarily shape how instructional activities play out in classrooms (Brown, 2009; 
Gueudet & Trouche, 2012; Pepin, 2018), and decide how student learning ultimately gets to be 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 16 

supported (Biesta, 2007; Dewey, 1997; Lampert, 2001). It has been also shown that good 
mathematics teaching is demanding, uncertain, and not reducible to predictable routines (Ball & 
Cohen, 1999; Lampert, 2001; Schifter, 1995). This is due largely to the relational and adaptive 
nature of teaching. Teaching mathematics well “necessarily requires that teachers teach in 
response to what students do as they engage in solving mathematical tasks”(Jackson et al., 2013, 
p. 647). 

The aforementioned research makes it reasonable to question the value of instructional 
resources that are designed under the assumption that teaching is a predominantly administrative 
and organizational occupation. The use of resources that are based on an erroneous 
conceptualization of teaching might not lead to the improvement of mathematics instruction. But 
would it even be possible to design resources in which it is assumed that teachers are the ultimate 
producers of instruction? If so, could the design of such resources contribute to the substantial 
improvement of the teaching and learning of mathematics in classrooms?  

For several years, our work as researchers and instructional designers has focused on 
exploring what the development of resources for supporting mathematics teaching entails. These 
are resources to be used by teachers to support their students’ learning, developed with the 
understanding that good mathematics teaching requires functioning effectively in uncertain and 
indeterminate situations, where it is necessary to constantly make autonomous judgments, based 
on a pertinent rationale (see Hoyle, 2008).  

In the paper, we first explain the research approach we have taken in developing the 
instructional sequence, which is based on the methodological principles of design research. Next, 
we give an account of the process of developing of the instructional sequence, which involved 
three research cycles, each of which led us to develop theoretical insights into the design of 
instructional resources to support teaching, and to modify the instructional sequence. At the end 
of paper, we discuss how, of the three guiding ideas, we came to regard the second as the leading 
one: designing for a resource to be regarded by teachers as relevant. 

Research Approach 
Our research has been conducted following the general guidelines of design research (e.g., 

Bakker, 2018; Cobb et al., 2003), where we have pursed both, the crafting of an educational 
innovation and the development of theory. It has consisted, so far, of three research cycles. Each 
cycle has been conducted with the purpose of both improving an instructional sequence on early 
number and of developing and refining theoretical ideas. In the following three sections of this 
paper, we explain what each of these cycles has entailed. 

First Research Cycle, a Dual Classroom Design Study  
The first research cycle in the development of the instructional sequence consisted of 

conducting a dual classroom design study (Gravemeijer & van Eerde, 2009), in a third-grade 
preschool classroom (equivalent to kindergarten in the USA). The design study was conducted in 
collaboration with Jesica, a preschool teacher who at the time was enrolled in a Master program 
and was being supervised by the first author. The decision to conduct the design study was 
prompted by Jesica’s concerns about the lack of success she had had in teaching her preschool 
students to solve additive word problems, required by the Mexican curriculum. 

The first two authors were familiar with the resource known as the Patterns and Partitioning 
instructional sequence (P&P; Cobb, Boufi, et al., 1997; Cobb, Gravemeijer, et al., 1997; McClain 
& Cobb, 1999), which had been demonstrated to be viable in supporting students to develop 
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sophisticated early number ideas. These include developing notions that allow them to solve 
simple additive problems by reasoning about composing or decomposing quantities, instead of 
by counting by ones (Steffe, 1992; Steffe et al., 1988). Although the P&P was developed as part 
of the initial phase of a classroom design study conducted in a first-grade classroom, its 
designers considered that it could be a valuable instructional resource in kindergarten (McClain 
& Cobb, 1999).  

The P&P was designed to support the collective development of early number ideas by 
providing opportunities for students to reason about patterns and partitions of collections of up to 
ten items, leveraging whole-class discussions. For example, in one of the initial classroom 
activities, students are supported to develop familiarity with pairs of numbers that add up to five, 
by discussing the different ways in which five monkeys could be in two trees .  

The dual classroom design study was conducted with two chief goals. The first entailed 
investigating the practicality of using the P&P in a classroom like Jesica’s. This goal included 
inquiring about the adaptations that would be necessary to make to the instructional sequence to 
increase its possibilities of becoming a viable resource in this type of classroom.  

The second goal was to inquire about Jesica's educational practice in relation to the use of the 
P&P. Among other things, we planned to investigate how she would make sense of the 
instructional sequence, whether she would regard it as a useful resource and, if so, how, and 
why. In addition, we wanted to find out if the use of the sequence would lead to positive changes 
in her practice. If so, what would those changes be, and which elements of the instructional 
sequence would have favored them. 

In preparing for the classroom design study, we assessed the students’ elementary 
understandings of the number, that were prerequisites for children to be able to productively 
engage with the instructional tasks of the P&P sequence. It was found that the vast majority of 
Jesica’s students had not yet developed those elementary understanding. Some children in 
Jesica’s classroom were only successful with the word number sequence up to three and could 
correctly identify the names of only one or two single digit numerals (Cortina & Peña, 2018; 
Peña, 2018). 

The results of the assessment presented the research team with two problems directly related 
to developing instructional resources for supporting teaching. The first one concerned the 
viability of the resource. The activities proposed at the starting point of the P&P sequence did 
not connect to what students in a classroom like Jesica’s already understood about numbers and 
could do. Clearly, the P&P sequence could not readily be used in a classroom like Jesica’s, if 
expected to be a resource that would help a teacher in supporting the development of numerical 
notions in their students. 

In addition, the resource offered no guidance as to how it would be viable to start to work 
with children in such a classroom, so that they could be supported to eventually become readily 
capable of participating in the instructional activities of the P&P sequence. This meant that the 
P&P sequence not only lacked prompt viability in Jesica’s classroom but also relevance for a 
teacher like her. A teacher in Jesica’s position could reasonably—and correctly—consider the 
P&P sequence to be unsuited to her teaching practice, given the educational profile of the 
students with whom she worked.  

The results of the assessment led us to significantly modify the instructional sequence, in an 
attempt to make it viable in Jesica’s classroom and relevant for her. The starting point was 
changed and a whole new phase was included at the start, aimed at supporting children’s 
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development of essential number notions. The version of the P&P	Instructional	Sequence	that	was	
used	in	the	classroom	design	study,	with	the	modification	we	included,	is	presented	in	Table 1.  

In an intensive out-of-classroom collaboration with the first author, Jesica conducted the 
classroom design study in her preschool (Peña, 2018; Peña et al., 2018). The first author and 
Jesica met after each lesson to analyze classroom events and co-design the following classroom 
activities. During these interactions, the first author both supplied elaborations of the rationale 
that justified the instructional sequence and kept a record of what clarifications and elaborations 
were needed.  

	
Table 1. The First Version of the Modified P&P Instructional Sequence 

 
Phase Overarching teaching goal Specific learning goals 

1 Support the development of the 
essential number understandings 
up to five 

Master the number word sequence 
Enumerate with one-to-one correspondence 
Use fingers to represent numbers 
Identify the names of written numerals 

2 Support students’ reasoning about 
patterns and partitioning with 
numbers up to five 

Reason about (and subitise) spatial patterns 
Reason about (and subitise) finger patterns 
Reason about number partitions in the 10-frame 
Subitise and reason about spatial patterns in the 

10-frame 
Reason about how to solve arithmetic problems 

by composing or decomposing quantities, 
instead of by counting by ones 

3 Support the development of the 
essential number understandings 
up to ten 

Master the number word sequence 
Enumerate with one-to-one correspondence 
Use fingers to represent numbers 
Identify the names of written numerals 

4 Support students’ reasoning about 
patterns and partitioning with 
numbers up to ten 

Reason about (and subitise) finger patterns 
Subitise and reason about spatial patterns in the 

10-frame 
Reason about number partitions in the rekenrek 
Reason about how to solve arithmetic problems 

by composing or decomposing quantities, 
instead of by counting by ones 

	
In an intensive out-of-classroom collaboration with the first author, Jesica conducted the 

classroom design study in her preschool (Peña, 2018; Peña et al., 2018). The first author and 
Jesica met after each lesson to analyze classroom events and co-design the following classroom 
activities. During these interactions, the first author both supplied elaborations of the rationale 
that justified the instructional sequence, and kept a record of what clarifications and elaborations 
were needed.  

The classroom design study consisted of 21 instructional sessions that were taught over a 5-
month period. In Phase 1, the teacher supported collective engagement in repeated counting with 
words and symbols through activities such as singing number songs, playing number-word 
games and board games. In Phase 2, for example, students reasoned about number partitions up 
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to five in the 10-frame with a narrative involving a watermelon stall with two decks (see 
Figure 1, left). They were asked to advise a teacher’s friend on arranging a number of 
watermelons on her market stall. While students proposed different arrangements, the teacher 
kept a record of these on the board, specifying how many watermelons would be in the top and 
bottom decks (see Figure 1, right). 

		

														 	
Figure 1. A watermelon stall and the capture of the record the teacher kept. 

Phase 3 included similar activities to Phase 1, but with number words, collections, and 
written numerals up to 10. Phase 4 culminated in students reasoning about composing	and	
decomposing	quantities when solving problems about passengers getting on and off a Tour 
Bus. 

The bus left a park with 4 tourists, made a stop at a museum, and arrived at the destination 
with 10 tourists onboard. 

When the teacher first asked the whole class to explain what happened at the museum, it was 
considered obvious that more tourists had boarded the bus. Lupe explained: “Six got on because 
six are missing for ten”. Hernan, when asked whether he understood Lupe’s response, said: 
“Yes! Six are missing because there were four, and six are ten”. Both Lupe and Hernan were 
amongst the children who showed the least understanding of early number at the beginning of 
the classroom design study. Their responses to the problem illustrate how the great majority of 
the students not only came to solve rather advanced additive problems correctly, but how they 
did so by reasoning composing	or	decomposing	quantities, not by counting by ones.  

Our analysis indicated that the modified instructional sequence was viable for the targeted 
preschool classrooms (Peña, 2018; Peña et al., 2018). At the completion of the classroom design 
study, the team members had a strong practice-embedded understanding of how the designed 
resource could be used to support the reasoning about patterns and partitions up to 10, in 
educational settings like the one in which Jesica taught.  

Second Research Cycle, Developing an Online Resource 
The second research cycle was the result of the two authors remaining in communication 

with Jesica and maintaining a collaboration. After concluding her master’s studies, Jesica started 
to teach in a new school. There, she was questioned by her concerned principal and colleagues 
about why she did not follow the recommendations of the Ministry of Education regarding how 
to teach mathematics in preschool. She was using whole class activities rather than small group 
work, and was focusing on small numbers instead of “maintaining the challenge” by teaching 
tasks with larger numbers. Instead of responding to pressure by reverting to institutionally 
legitimate forms of teaching, Jesica defended her teaching decisions by referring to her students’ 
initial assessments, the results of the classroom design study in which she had participated, and 
the research literature. 
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Her teaching soon became of interest to her principal and supervisor when they realized how 
Jesica’s students became much more eager to participate in mathematics than was typical in the 
classrooms of the school zone. Jesica was asked to give short workshops during the staff 
meetings, both at the school and the school-cluster levels. Several of her colleagues started to 
approach her for advice. We understood that Jesica alone could not provide support to her 
colleagues comparable to that she had received during her Master study. Hence, the aim of the 
second research cycle was to develop resources that could help Jesica in her efforts to support 
her colleagues in improving their early number instruction.  

A website was created (www.sentidonumerico.com) with online resources intended to aid 
Jesica in leading the workshops and helping the teachers in their planning and decision making. 
We understood that if the website was to become a resource capable of participating with 
teachers on their selection of goals and tasks that were suitable for their students, our first job 
was to facilitate its plentiful, independent, and confident use by teachers. We assured her that the 
website was designed well for Jessica’s colleagues most accessible, and often the only, 
computer: a smartphone. It included descriptions and short videos of classroom activities, and 
printable tools that teachers could adapt and use in their classrooms (e.g., game boards). In 
addition to the immediate physical accessibility of the tasks and tools, our aim was to make the 
conceptual resources accessible. Each activity was thus labelled to identify a specific learning 
goal and a phase of the sequence (see Table 1).  

Based on access data and teachers’ questions, we noticed that Jesica’s colleagues were much 
more interested in the classroom activities aimed at supporting essential number understandings 
(Table 1, Phases 1, 3), than in the rest of the online resources. They readily recognized the 
importance of their students developing basic counting skills, despite this not been a priority 
explicitly stated in the Mexican curriculum. In contrast, they did not recognize the relevance of 
the learning goals within P&P phases of the sequence and found it difficult to justify the 
considerable investment of time and effort that pursuing these goals required. 

The contribution of P&P activities to supporting early number learning was the key 
innovation of the resource. Like any substantial teaching innovation, this presented teachers with 
what research on implementation refers to as an ecological disruption (Koichu et al., 2021). 
Unsurprisingly in hindsight, the teachers initially responded to this by non-participation with the 
innovative parts of the resource.  

The research team construed this situation as a design problem that entailed both the 
relevance of the resource and its clarity, for the teachers. The resolution required finding ways of 
communicating effectively that the innovation addressed problems that the teachers already 
considered relevant to their teaching, and how it did so.  

It is worth clarifying here that, over several decades, “problem solving” has been a key goal 
in the Mexican mathematics curricula (Secretaría de Educación Pública, 2011), including at the 
preschool level. Not surprisingly, the concern for making students problem solvers has entered 
the prevailing teacher culture. We knew that there was much frustration amongst Jesica’s 
colleagues, because only a few of their students ever became proficient in solving word 
problems. In addition, it was apparent to us that if the teachers were to focus solely on supporting 
the development of essential number understandings, their students would not come to solve the 
Tour Bus problems with flexibility when larger numbers were involved, as the only number 
patterns at their disposal would be those of sequential order (i.e., counting up and perhaps down 
by ones, cf. Graven, 2016).  
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Our instructional design challenge thus became to find ways of adjusting the instructional 
sequence so that the teachers could more easily recognize the close relation between the concerns 
they already had regarding their students’ difficulties with problem solving and the pursue of the 
P&P objectives. We made three modifications to the instructional sequence with the expectation 
that it would help the teachers to recognize that (a) by supporting their students to reach the key 
learning goals of the instructional sequence, they would be providing them with valuable means 
for problem solving, and (b) while the essential number understandings were necessary for 
becoming a proficient problem solver, they were not sufficient.  

The first modification involved renaming “number understandings” to “number skills”, to 
align with the language in which teachers made connections to their practice. The second 
modification involved renaming the teaching goals as addressing “basic” vs. “advanced” number 
skills (see new Phases 2 and 3 in Table 2). This removed the non-transparent “patterns and 
partitioning” language and presented the advanced number skills as a continuation of the basic 
skills, aimed at enhancing students’ problem solving beyond the activity of counting. The third 
modification involved downgrading the Phase 3 (Table 2) into a transition stage to further 
support teachers in recognizing the advanced number skills goals as the key ones they needed to 
support. 

 
Table 2. The Second Modification of the P&P Instructional Sequence 

 
Phase Overarching teaching goal Specific learning goals 

1 Support the development of the 
essential number understandings 
up to five 

Master the number word sequence 
Enumerate with one-to-one correspondence 
Use fingers to represent numbers 
Identify the names of written numerals 

2 Support students’ reasoning about 
patterns and partitioning with 
numbers up to five 

Reason about (and subitise) spatial patterns 
Reason about (and subitise) finger patterns 
Reason about number partitions in the 10-frame 
Subitise and reason about spatial patterns in the 

10-frame 
Reason about how to solve arithmetic problems 

by composing or decomposing quantities, 
instead of by counting by ones 

3 Support students’ reasoning about 
patterns and partitioning with 
numbers up to ten 

Reason about (and subitise) finger patterns 
Subitise and reason about spatial patterns in the 

10-frame 
Reason about number partitions in the rekenrek 
Reason about how to solve arithmetic problems 

by composing or decomposing quantities, 
instead of by counting by ones 

	
Formal and informal data indicated to us that the modifications encouraged considerable 

increase in teachers’ engagement with both the advanced number skills activities and the 
rationale of the instructional sequence. However, our aim here is to illustrate the type of criteria 
that were followed when trying to design a resource to support teaching, when teaching is 
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understood to be demanding, complex and independent, and teachers are considered to be the 
ultimate producers of instruction. Our design failure, which manifested as teachers’ lack of use 
of the key parts of the resource, shows where the designers’ work was unfinished. As we have 
already illustrated, the resource was not ready, for teachers who had not participated directly in 
its development, to be easily recognized by them as worthwhile of fully engaging with it.  

Third Research Cycle, Adjusting the Instructional Sequence and the Online Resources 
In facilitating teacher workshops with Jesica, we became aware that there was one issue 

underlying the design of the sequence that was far from being clear to the teachers, namely, that 
it was critical for children to experience fun, joy, belonging and success as they got involved in 
the instructional activities, particularly at the beginning of the instructional sequence (Phase 1, 
see Table 2). During the classroom design study, we had attempted to ensure that the children 
had these kinds of experiences, regardless of how competent they were.  

The modifications that we made to the instructional sequence during the second research 
cycle, seemed to make it easier for teachers to recognize the importance of supporting their 
students’ development of relatively complex number skills with numbers up to ten. However, 
they seemed to think that the pursue of such a goal would require a kind of instruction in which 
they would have to be instructing and correcting the children, constantly. The instructional 
activities of Phase 1 (see Table 2) were based on stories and games, and when Jesica used them, 
she focused on conveying to her students that they were good at what she was asking them to do. 
In the case of Jesica’s colleagues, it seemed that engaging students in mathematical activities 
expecting the children to enjoy them, and without correcting their mistakes, presented a 
significant pedagogical innovation.  

From a learning perspective, our consideration about trying to ensure that children 
experienced fun and joy, when engaging in mathematics instruction, was justified in the 
literature (Boaler, 2019; Parks, 2020). In addition, we viewed teaching reliant on correction of 
errors as a case in point of what Rancière (1991) refers to as stultification in schooling: a 
mechanism through which students are subtly but persistently positioned as incompetent and 
lacking. At this point in the development of the instructional sequence, we became aware that 
supporting students to experience fun, joy, belonging and success was also of critical importance 
for teaching. As we explain next, it was directly related to the possibility of the instructional 
sequence being viable in the teachers’ classrooms and, also, relevant to them.  

Students’ willingness to engage in mathematical activities makes teaching more manageable 
for the teacher, and the teacher more likely to participate with the resource. Conversely, if 
students come to view mathematical activities as tiresome, and themselves as incompetent and 
lacking, they will probably become reluctant to participate. This could easily create classroom 
management complications and lead a teacher to consider an instructional resource as unfitting 
for her class. 
Once again, we construed the situation as being an instructional design problem, one that 
concerned the clarity of the instructional sequence and also, as we already explained, its viability 
and its relevance. We realized that the sequence of goals (Table 2) that described the 
instructional sequence addressed only mathematical content, keeping the forms of classroom 
engagement hidden. We then decided to include a new phase at the start of the in the 
instructional sequence (Phase 0; see Table 3), where the main goal is to support children’s 
willingness to engage in early number activities, and enjoyment of doing so. We developed 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 23 

activities and teaching routines aimed at supporting teachers in coming to value and pursue this 
initial teaching goal based on noticing their students’ enthusiasm.  

Encouraging Results  
At the current stage of our research project, we feel that there is still much that we need to 

understand in relation to designing resources that support teaching. However, there have been 
promising developments that suggest that we are on a proper path. Some of them are related to 
the interest that Jesica’s colleagues have shown in the instructional sequence, which we have 
already mentioned. Others are related to later developments that have taken place on a larger 
scale. 

 
Table 3. The Final Modification of the P&P Instructional Sequence 

 
Phase Overarching teaching goal Specific learning goals 

0 Support the development of an 
interest in and a taste for counting 
and numbers 

Become interested and show joy when 
engaging in activities that involve counting 
or working with numbers   

 
The last version of the instructional sequence has caught the interest of an unexpected 

number of teachers. In 2020, after Mexican schools closed for COVID-19, we started to 
collaborate with several teaching organizations and offered intensive online workshops, 
organized in 2-hour increments over three consecutive days. Although we do not know how the 
attending teachers adapted the designed resource in their teaching, they valued the experience 
positively, to a surprising degree. One of the workshops was attended by 850 teachers who were 
present during all three days, even though no external incentives were provided to participate. 
The Facebook community that we created to keep in touch with the teachers has reached 7000 
members.  

In the summer of 2022, we offered a 27-hour online teacher professional development 
course, to be delivered in eleven Saturday sessions, throughout the 2022-2023 school year. The 
course was advertised in the Facebook community. We designed the course contemplating that 
we would have between ten and fifteen participants. However, the number of applications 
exceeded one hundred. We decided to select thirty participants, giving priority to the teachers 
who worked in public school and, amongst them, those who worked in schools located in rural 
areas, where professional development opportunities are scarce.  

At the time of writing this paper, nine of the eleven sessions have been held. There are 
twelve teachers who have participated in all the sessions. Overall, the course has helped us 
identify issues worth looking at closely, to improve the way in which the instructional sequence 
is formulated, and also the suitability of the resources we provide teachers online. It has also 
helped us to identify clearly that the instructional sequence can become a valuable resource for 
teachers who work in significantly different kinds of schools, one that helps them make 
judgments about how their groups are progressing, provides them with a pertinent rationale for 
deciding how to continue the educational work, and offers them clear suggestions about the 
activities, manipulatives and other means that they can employ in pursing specific learning goals. 
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Discussion 
Our work as researchers and instructional designers has focused on exploring what the 

development of resources for supporting mathematics teaching entails, when good mathematics 
teaching is understood as being independent, intellectually demanding, and complex. The 
resources we seek to develop would be for teachers to use, with their full consent, and they 
would be regarded by teachers as useful and beneficial to achieve their educational endeavor. 

Our research has led us to propose three theoretically oriented ideas to guide the design, 
refinement, and improvement of these types of resources: (1) designing for a resource to be 
viable in teachers’ classrooms, (2) designing for a resource to be regarded by teachers as relevant 
to their practice and (3) designing so that a teacher who has just taken an interest in a resource 
might fruitfully engage with it in her practice. In retrospect, we recognize the second as being the 
leading idea. In fact, the importance of the other two can be understood in terms of how they can 
make a resource come to be regarded by teachers as relevant. 

Concerning the first guiding idea, teachers would not be likely to consider a resource as 
relevant if when trying to engage with it, they find that it is incompatible with their students’ 
current mathematical abilities, or with their real possibilities of progress. Teachers will also not 
likely consider a resource as relevant if they find that the proposed means of support are not well 
suited to achieve the specified learning objectives. In other words, a resource that is not viable in 
a teacher’s classroom, is unlikely to be regarded as relevant, at least in the long run.  

In developing resources to support teaching, it is thus important that they be crafted through a 
careful and rigorous instructional design process, such as that involved in conducting a 
classroom design study. The reader will recall that the P&P sequence was developed as part of a 
classroom design study, and the adaptations we made to it during the first research cycle were 
the result of another study of the same type. 

But the viability of an instructional resource might be necessary condition for it to be 
relevant for teachers, but not sufficient. A resource might not be regarded by teachers as 
worthwhile of expending time and effort to engage with it and learn how to use it, if they do not 
see it as useful in pursuing goals they already consider important—regardless of how rigorous 
the research process of developing it was, how innovative it is, and that it has been used 
successfully in other classrooms. Hence, as we did during the second research cycle, the 
development of a resource to support teaching may require extra design efforts, tailoring it so 
that teachers can clearly recognize it as worthwhile. To be sure, this redesign process should not 
harm the viability of the resource, or else its relevance would be compromised.  

The importance of the third guiding idea can also be seen in terms of relevance to the teacher. 
From the perspective of developing resources to support teaching, the proposed starting point of 
a resource, crafted in the form of an instructional sequence, must not only be viable in terms of 
students’ current capacities to participate in the proposed activities. The activities must also be 
viable in terms of teachers’ current capacities to engage with them productively. If a teacher can 
not readily engage in the use of an instructional sequence in a way that is productive and 
meaningful to her, it is likely that she will not regard it as worthwhile.  

Conclusion 
Instructional design has long been seen as a good way to seek improvements in mathematics 

education. For the most part, the focus has been placed on students’ learning. Resources have 
been developed with the intention of making it possible to recreate in classrooms what research 
has found to be important in learning mathematics, both in general and of specific fields and 
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ideas. Teachers, for their part, have been commonly seen as those responsible for implementing 
the innovations. They have been expected to have faith in them and to be keen to assume the 
expenditures of time, effort and learning that incorporating the innovations into their teaching 
will involve. 

In this paper we have introduce a different approach to instructional design, one that entails 
considering that the successful support of mathematical learning requires good teaching, and that 
this kind of teaching is achieved by teacher who act with conviction, will, judgment, and 
autonomy. This generates new challenges for instructional design. As we have explained here, 
these challenges include ensuring that the designed resources can be recognized by teachers as 
relevant to their teaching, that they are viable in teachers’ classrooms, and that they allow 
teachers to engage fruitfully with the resources, from the start. 
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In this plenary discussion, Dr. Chao presents his research framework and reflections from 
engaging in Digital Mathematics Storytelling within Black, Asian American, and Asian 
American communities in multiple countries. The framework, based heavily around storytelling, 
counter-storytelling, and Critical Race Theory, has been employed as a workshop to elicit 
mathematics video stories from youth and mathematics teachers. Here, Dr. Chao reflects on 
what he’s learned from these workshops and how he’s started to recognize not only the power of 
storytelling for forging mathematics and community identities, but the dangers to our society 
because of social media and weaponized uses of mobile video everywhere. He ends by calling for 
a new critical digital media literacy within our field of mathematics education.     

Keywords: Equity, Inclusion, and Diversity; Social Justice; Technology 

Objectives 
Storytelling, a fundamental thread in the fabric of human culture, serves as the original medium 
through which knowledge, traditions, and values get passed down from generation from 
generation (de Jager et al., 2017; Prusak et al., 2012). Storytelling can be seen as the original 
form of culturally sustainable pedagogy, embodying the essence of shared human experiences 
across diverse cultures (Paris & Alim, 2017). Storytelling also entices young minds, particularly 
opening up space for voice and agency from young peoples from oppressed communities to 
express themselves (Love, 2014; Nunez-Janes & Cruz, 2013). Furthermore, storytelling can 
serve as an inclusive tool for acknowledging and respecting the heterogeneity of all cultures and 
communities (Solórzano & Yosso, 2002). 

Furthermore, storytelling plays a significant role in decolonizing educational practices 
(San Pedro & Kinloch, 2017). Focusing on storytelling challenges the hegemony of Western 
epistemologies by recognizing and centering knowledge as emerging from the people and the 
community, rather than imposing knowledge bases from outside the community as absolute truth 
(Matias & Grosland, 2016). This is particularly crucial in indigenous and marginalized 
communities, where traditional knowledge systems have often been undervalued or entirely 
erased. 

In the context of mathematics education, storytelling offers an innovative approach to 
learning. Storytelling enables youth to not only showcase the ways they engage with 
mathematics within their communities but also facilitates their self-positioning in relation to 
mathematics (Chao et al., 2022). Through stories, learners can relate mathematical concepts to 
their lived experiences, thus making learning more relatable and meaningful (Zazkis & Liljedahl, 
2009). 

The objective of this plenary discussion is to weave together the intricate threads of 
storytelling, community, and mathematics, and envision how they are intricately intertwined. 
This is a snapshot of my thinking in progress, as I engage in the work of how storytelling and 
mathematics connect through my own lenses as a Chinese American cisgender male living in the 
United States. I have engaged in this research work with Black, Asian American, and Asian 
communities in various parts of the United States, Vietnam, and Indonesia. This plenary 
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discussion serves as a place to collect my reflections and insight on what I think I’m learning. 
And what I am finding is that storytelling in mathematics, in this moment, is significant not only 
for educational researchers but also for individuals who are listeners, amplifiers, and storytellers 
in the modern digital landscape. Through our conceptual and community imagination, I hope this 
plenary discussion details how storytelling can be harnessed as a transformative tool in 
mathematics education and community-building, especially within our modern technology-
driven, hyper-connected, and polarized society. 

Theoretical Perspectives 
Storytelling: The Heart of Community 

Storytelling serves as the backbone of human civilization. In an era where technology is 
rapidly evolving, storytelling remains a steadfast medium through which traditions, values, and 
knowledge are continually passed down (Prusak et al., 2012). For centuries, communities have 
relied on stories to fortify their cultural heritage and impart wisdom to subsequent generations. 
Furthermore, storytelling can foster inclusive environments in which youth develop strong senses 
of identity and agency, often based upon their community, family, and heritage. 

However, with the advent of the digital age, mainstream media has (in)advertently created a 
disconnect between individuals and their traditional storytelling roots. The dominant narrative 
structures, often aligned with Western storytelling formats, overshadow the rich diversity of 
storytelling that defines various cultures. This creates a single format for how stories are shared, 
creating a true single-story experience, one in which all stories have a traditional protagonist who 
must go through Acts 1, 2, and 3 to culminate in a nice, tidy ending. This mono-cultural 
storytelling dominance robs children of the variance of storytelling types and formats from 
diverse cultures and narratives. Commercialized mainstream media not only shows the same 
types of stories over and over again, be it in books, movies, and YouTube videos, but encourages 
passive viewership of youth to consume, not just large amounts of media, but also goods and 
services (Hill, 2011). So while we live in a world surrounded by stories and technology to create 
our own stories, I see that many of the stories we see are still only the stories from the dominant 
groups, and they are not used to share important knowledge or culture, but rather to sell, to 
influence, and to propagate, rather than helping all of us develop our own storytelling skills or 
learn to grow closer to our communities. 
We are Inherent Storytellers 

Human beings have been guardians and purveyors of stories since the dawn of 
consciousness. The rich tapestry of our shared heritage is painstakingly embroidered with 
narratives passed down through millennia. In the Black and Asian American communities I have 
been working within, storytelling ascends beyond tradition; it becomes the lifeblood that courses 
through generations, linking the past to the present and foreshadowing the future. From the 
profound ancestral lore among Asian American families to the sagas of defiance and resilience 
among Black American families, our stories are interwoven into our very fabrics of existence. 

And so, our children are natural-born storytellers. Their vines of imagination and their buds 
of narration germinate early. However, traditional education structures often weed out these 
budding storytelling skills, especially when connected to mathematics. A folk science myth that 
continually lives within our schools is the archaic dichotomy of a “left brain” that focuses on 
logic versus a “right brain” that focuses on creativity, wrongfully separating mathematics from 
creativity and completely dissociating from storytelling (Geake, 2008). In truth, we know that 
mathematics is an art, intrinsically tied to our storytelling ability (Zazkis & Liljedahl, 2009). But 
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the straitjackets of standardized mathematics teaching continue to suffocate this creative link 
between mathematics and storytelling. So, this is not a mere call to arms; it is a clarion call for 
an intellectual insurgency to reclaim spaces within mathematics education that allow children to 
unfurl their stories and, through this, bolster their cultural identities and critical thinking: All of 
us and our children are mathematical storytellers. 
Narrative Identity and Counter-Storytelling 

Identity is not only embodied within the stories a person tells about themselves, but also 
encompasses the actual act of narrating or storytelling (Sfard & Prusak, 2005). Identity is a verb, 
made and remade through the act of storytelling. Our stories are not merely descriptions of a 
static reality, but rather dynamic constructs that can change over time and context. Our narratives 
serve as constructs that embody our range of experiences, characteristics, and expectations, 
thereby defining the creation and evolution of our personal and social identities. Even more 
important than telling a story to explore our identity is the way that identities are reified and 
endorsed through the acceptance, validation, and re-telling of our narratives. Simply put, our 
stories are our identities.  

Counter-storytelling, therefore, involves sharing stories and experiences that challenge 
existing dominant (and oppressive) narratives and stereotypes (Solórzano & Yosso, 2002). 
Counter-storytelling is a tool for individuals in marginalized communities to highlight their 
experiences and perspectives, and challenge destructive narratives that perpetuate harmful 
stereotypes. Through counter-storytelling, individuals and communities reclaim their own 
narratives and thereby their own identities (Chao et al., 2021). And we only learn how to tell 
counter-stories if we know how to tell stories first.  
Need for Creating Safe Spaces for Sharing Stories  

The transformative kiln of storytelling happens during the moment of collective sharing - 
around campfires, across kitchen tables, or over steamers of dim sum. Magic happens when 
individual narratives, through collective listening and feedback, metamorphize into a story for 
the community during the sharing that happens in a storycircle. I build on this concept of 
storycircles, using Lambert’s StoryCenter model (2013), as a safe space for a small group of 
storytellers to share their stories in progress, not just to elicit feedback and commentary from 
others, but to also feel out various parts of themselves as they take on and inhabit their own 
stories. 

In Black and Asian American communities, our youth already navigate an intricate labyrinth 
of identity and marginalization based on the many shifting ways they are positioned and how 
they position themselves. Engaging in a storycircle, then, in which a young person shares a story 
in progress, a story they are still feeling out, to others who are listening and not judging, serves 
as a crucible for self-realization, self-actualization, and agency. Here, sharing is not just 
cathartic, but an act of defiance and self-assertion. I am no longer just the way you see me; I am 
telling my story and together, we are remaking who I am through this story. 

I see a parallel the storycircle in the realms of ciphers, written about extensively in the hip-
hop education world (Alim et al., 2023; Emdin, 2016; Love, 2014). As a fan of hip-hop, I am 
enthralled at the magic that happens when artists encircle and express their truths, building off 
each other to create rhymes and stories. These ciphers become sanctuaries of unrestrained 
creativity, solidarity, and expression in which artists embody their full selves. However, the main 
barrier for entering a hip-hop cipher is the ability to rhyme or spit. The cost for entry can be 
perceived to be quite high. In contrast, my conceptualization of storycircles is that they are a 
“soft” option for anyone to be able to share their story in whatever manner they want, be it 
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verbally, through text, or image. I position the storycircle as an inviting space of collaboration, to 
collectively generate, define, and revise our community mathematics stories. My emphasis on the 
safe space of a storycircle is to refocus our gaze from the polished, finished story and instead on 
the intricate, delicate process of how we collectively weave our mathematics stories together. 
Grounding Principles of Black Lives Matter  

While the Black Lives Matter movement started as a collective call for systemic justice 
against police murder of Black people in the United States, the movement itself has become a 
global call for justice for all oppressed peoples, particular the violence endured under the 
vestiges of imperialism and white supremacy (What We Believe, 2018). The Black Lives Matter 
movement has significantly influenced my scholarship, my activism, and my thinking, 
particularly the movement’s guiding principles (Chao & Marlowe, 2019). These thirteen guiding 
principles are: (1) Restorative Justice, (2) Empathy, (3) Loving Engagement, (4) Diversity, (5) 
Globalism, (6) Queer Affirming, (7) Trans Affirming, (8) Collective Value, (9) Intergenerational, 
(10) Black Families, (11) Black Villages, (12) Unapologetically Black, and (13) Black Women 
(Mathews & Jones, 2022). While each of these guiding principles is important, in this 
storytelling work, I find connections to the guiding principles of (2) Empathy, (3) Loving 
Engagement, (4) Diversity, (5) Globalism, (8) Collective Value, and (9) Intergenerational.  

A focus on storytelling emphasizes listening to each other, creating opportunities to hear each 
other’s stories, and practicing empathy. And through hearing each other’s stories and sharing our 
stories with each other, we engage in loving engagement, seeing, listening, and recognizing each 
other as fellow humans. When we hear more and more of each other’s stories, we gain an 
appreciation for the diversity of all of us, collectively, and start to see that our own life histories 
are global, are intertwined with a much deeper, much more ancient narrative than what we have 
been taught at school. And it is these stories, often from voices unheard, that help define 
collective value, allowing every single individual a space to share their story, to share their voice, 
to share their identity. And the power of stories is that, when they are shared, they often do not 
focus just on one perspective or one generation, they connect generations, they connect us to our 
ancestors, biological or chosen, so that we see ourselves as part of a much deeper 
intergenerational dynasty. So, while I do not position my work as an active part of the Black 
Lives Matter movement, I do align heavily with these guiding principles and hope that my 
framing of storytelling can also build on what I see as important guiding principles for all our 
youth from oppressed communities.  
AsianCrit  

Asian American identity is a tapestry in itself, forged through political solidarity against the 
onslaught of imperial forces that wrought havoc across Asia over the past four centuries - tearing 
asunder histories, languages, and communities (Lee, 2015; Takaki, 1998). This identity, tethered 
not only to ancestral bonds, but to the shared tales of survival, coalition-building, and triumph, is 
nurtured and perpetuated through storytelling. Even the very term Asian American is a political 
one, created as an act of collation building during the Third World Liberation movement to fight 
for Asian American studies and acknowledge the solidarity between the Asian American 
community and the Black Power movement (Takaki, 1998). 

To fully examine and position the Asian American experience through a critical lens, I use 
AsianCrit, a subbranch of Critical Race Theory (Iftikar & Museus, 2018; Museus & Iftikar, 
2013). AsianCrit offers a lens through which the experiences and identities of Asian Americans 
can be analyzed and understood, going beyond surface-level perceptions, and delving into the 
complexities that define the Asian American experience. The seven tenets of AsianCrit are: (1) 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 31 

Asianization, (2) Transnational Contexts, (3) (Re)Constructive History, (4) Strategic 
(Anti)Essentialism, (5) Intersectionality, (6) Story, Theory, and Praxis, and (7) Commitment to 
Social Justice.  

While each of these tenets is deeply connected to my own history and voice as an Asian 
American scholar, I focus heavily on the sixth tenet: Story, Theory, and Praxis. I recognize the 
power of storytelling as a mechanism of voice and communication within the Asian American 
community and how the multiple and complex stories of Asian Americans that counter racist 
stereotypes and destructive narratives have been rare in our history (Chen & Buell, 2017). An 
AsianCrit perspective centers the ways storytelling is a powerful tool in unraveling the rich 
tapestry of experiences, while not only challenging stereotypes and promoting social justice, but 
also engaging in the complicated journey of both building a collective Asian American 
community. This is complex, as this work must both recognize the many and multiple groups 
that too often are essentialized under the banner of Asian American while promoting community 
solidarity, which is basically the fourth tenet, Strategic (Anti)Essentialism. This complexity is 
one of the paradoxes of Asian America, to both celebrate one’s unique ethnic and ancestral 
heritage, while also acknowledging the necessary ways that collective solidarity in the United 
States is built under the general category of Asian American. And to me, there is no better way to 
engage with these paradoxes than through telling the stories of people who live in and around 
these paradoxes while creating their own counter-stories of what it means to be Asian American.  
Our Technology Won’t Save Us, But We Can Save It 

I want to address the role of video storytelling in today’s age of TikTok, YouTube, and 
Instagram. When I first started my work in digital media, back as an undergraduate in the late 
1990s, I was fascinated with the ways I could capture so much video data onto a single MiniDV 
tape and then edit that footage in a lossless format. A future in which everyone had access to a 
virtual television studio seemed on the horizon. Now, more than twenty years later, that future 
has come alive in a way few of us could imagine. Yes, we live in world in which almost all of us 
can make engaging, polished videos seemingly instantly on our mobile devices, capturing all 
aspects of our lives to share with the public. Yet, other developments in the evolution of digital 
video have happened too.  

Mobile Video as Democracy. First, the ubiquity of live streams have allowed for 
documenting police brutality as it happens, effectively allowing the world to bear witness to the 
inhumane treatment that Black people face in their everyday lives (Hockin & Brunson, 2018). 
This use of video is not only powerful, but it has also transformed the conversation around 
racism in the United States through video evidence that systemic violence, so brutal and jarring 
that many of those who live within unaffected communities had trouble believing that this type 
of violence could still existed. Videos of Black individuals being murdered during routine traffic 
stops and videos of elderly Asian Americans being attacked on the street continually pop up on 
my own social media feeds. I’m often not in the mental space to watch them, because they are 
triggering. Yet I understand the power these images have in sparking anger, in creating action, 
and demanding change. 

Mobile Video Spreading Extremism. Second, however, the salaciousness of these violent 
videos brings up another side effect of the “video everywhere” era of today: clickability. Because 
so many videos are accessed through social media sites focused on generating views, engaging 
viewers to spend more and more time on their sites, and on collecting user data, the extremeness 
of videos that are immediately clickable or enticing has created an increase amount of videos that 
push on extreme viewpoints (Crain & Nadler, 2019). The amount of young people who claim to 
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have been radicalized to a particular cause because of being served a more extreme YouTube 
video after a more extreme YouTube video is alarming, in which viewers are recommended 
videos with extreme or dark views after watching videos with relatively mainstream viewpoints 
(Ribeiro et al., 2020). This radicalization is scary and has major implications in the ways our 
young people are engaging with the world today. I certainly did not imagine that a byproduct of 
the democratization of video production would be that our world views would become extremely 
fractured, that our societies would become so polarized, or that once dead and buried 
philosophies such as fascism, eugenics, or race-based mathematics intelligence would find new 
communities of supporters. 

The Need for Digital Media Literacy. Third, the ever presence of mobile video media has 
pawned significant dangers surrounding our own privacy, mental well-being, and safety. 
Students deal with bullying at school but on their social media feeds, feelings of isolation or 
depression can be magnified when staring at seemingly perfect photographs of one’s peers, and 
issues of privacy abound as students and teachers can be captured on video at any time. Digital 
media literacy is a general term that encompasses the ways that students can be literate not just 
about the digital media they are surrounded with, but also be aware of how to safeguard their 
privacy, their mental sanctity, and be conscious of the psychological warfare being waged on 
them through social media (Park, 2012). A focus on digital media literacy allows young minds to 
critically engage with digital content and learn how to leverage digital media not just in a safe 
way, but to actually effect change within their communities (Yue et al., 2019).  

And so, it is within this world that I am hoping to explore how to bring things back (while 
looking forward) by using storytelling. The digital video revolution brings both opportunities and 
challenges. While it offers unprecedented avenues for sharing and amplifying stories across the 
globe, potentially enriching educational experiences and fostering a sense of community, the 
unregulated nature of social media and video streaming apps pose terrifying dangers, such as 
misinformation, cyberbullying, extremism, the destruction of democracy, and global genocide. 
Our students and us need to walk into this technological landscape warily, with tools for our own 
protection, and safeguards so that our children can navigate through it safely.  

This is not just a call for revolutionizing mathematics education through storytelling but my 
urgent plea for a larger systemic metamorphosis. The same colonial forces that thrived on both a 
“divide and conquer” strategy to create infighting rather than solidarity and “bread and circuses” 
strategy to create distracting entertainment to dissuade revolution are mirrored in the divisive 
nature of social media. Our youth must be shielded and ready to fight. 

I believe that as our children learn about mathematics in the world to better navigate it, they 
should also learn about how to navigate the digital landscape carefully and conscientiously, learn 
about their own power as digital storytellers while being vigilant of its potential, extremism-
inducing pitfalls. We can weave together a safe space for mathematics storytelling, digital media 
literacy, and community building for our young minds to make their world a better place.  

The Digital Mathematics Storytelling Workshop 
The centerpiece of this research is the Digital Mathematics Storytelling Workshop. This 

workshop is structured around a few key modules or exercises, designed to engage young 
individuals or mathematics educators in the art of storytelling and its connection to mathematics. 
These workshops can last for as little as three days to as long as six weeks. In each of these 
workshops, I enact a participant action research framework, in which the participants themselves 
decide how the research should be enacted, what sorts of data they interested in, and the 
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relationship between the workshop and the research study (Bang & Vossoughi, 2016; Kindon et 
al., 2007; Mirra et al., 2015). This aspect, of asking participants to decide what the research 
should look like, does not always go smoothly. Overall, the workshop involves these modules: 

1. Mathematics in Daily Life: In the initial stage, participants create brief videos that 
capture the essence of mathematics as it manifests in their homes, families, and 
communities. This stage is critical as it helps participants see the ubiquity and relevance 
of mathematics in their own everyday life. 

2. Drafting and Sharing: Then, participants dedicate time to crafting a rudimentary story 
centered around the mathematics they saw or their personal relationship with it. This 
story is then shared within small groups through a structured format known as a 
Storycircle. In a Storycircle, each participant narrates their evolving story to others who 
listen intently without interruption. 

3. Reflection and Refinement: After the Storycircle, participants reflect upon the feedback 
received and consider the emotional experience of narrating their story to an audience. 
Armed with this insight, they meticulously refine their stories. 

4. Video Creation: In this stage, participants adapt their revised stories into video format. 
This phase allows them to experiment with different multimedia elements to further 
enhance the expressiveness of their narratives. 

5. Community Screening: In the final stage, we organize a community screening party 
where all participants share their stories to friends, family, and community members. 
Each storyteller presents their stories; the screening becomes a platform for dialogue as 
the audience provides feedback and engages in discussions inspired by the stories. 
 

I am continually revising these modules, hoping to attain the research goals of fostering and 
eliciting participants’ mathematics and storyteller identities. I have found that this process starts 
the process of bridging the gap between mathematics and storytelling, encouraging participants 
to embrace their mathematics selves as an integral and meaningful part of their narratives and 
communities. Yet, I still struggle to foster stories that reflect the breadth of the incredible stories 
and ideas that participants share during their storycircles. 

Reflections on My Research Findings 
In this section, while I do not report direct research results, I offer some broader findings and 

reflections, based on my undertaking on digital mathematics storytelling in various contexts. 
Storycircle is Life: We Must Have Space to Tell Mathematics Stories 

Storytelling is a quintessential human tradition. And yet, so many of the youth and the 
teachers I have worked with have very little confidence in their abilities as a storyteller. I think 
this is due to two things. First, in the vast amount of media we consume, often we see the same 
Eurocentric story structures again and again. So, when participants have a template in their mind 
of what a story should look and feel like, they often have a traditional three act story structure in 
their mind. This might feel disconnected with the ways that they might be thinking about or 
perceiving stories in their mind, so it makes them hesitant to share their story. Not all stories 
have to follow the same format as a blockbuster Marvel or Pixar film. Second, many of them 
have never had the opportunity to think about their own mathematics-connected stories, outside 
of devising a story problem. For them, a mathematics story must involve some sort of 
mathematics operation or number sentence, which limits the types of stories they can tell. 
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A poignant instance of this is a simple observation made during one of my first digital 
storytelling studies: a 7-year-old Black girl was intricately arranging beads in rows and telling 
me a story about how she was counting the beads in each row. As a mathematics educator, I am 
always mesmerized when listening to a child show me their counting strategies. However, one of 
the adult educators from the community was nearby and astutely recognized what the child was 
doing and asked the child if she was counting up how many beads she wanted in each braid of 
her hair. Immediately, the child excitedly said yes, and the story morphed into one about the 
mathematics behind the beading patterns she envisioned for her hair. Something I, as someone 
who has less familiarity with Black hair culture and braiding, did not pick up on when listening 
to the story. What this anecdote showed me is why we need to share our stories in progress to 
others in our community, who are there not just to offer feedback, but to help us better connect to 
what these stories even mean to ourselves.  

I have found that when my participants engage in their first storycircle, it is a difficult and 
vulnerable space. But it is these difficult spaces that are crucial in helping them start to see that 
they have the power to tell stories using their own voice. While our students might have multiple 
opportunities in their daily school experiences to engage in some form of mathematics and 
opportunities to periodically engage in story creation in their literacy or arts classes, they have 
probably never had the opportunity to engage in any form of mathematics storytelling. All of us, 
not just our students, need these conducive spaces to inspire us to perceive and weave our 
mathematics stories divergently, to tell our mathematics narratives in our own voice. And this 
development is not instantaneous; it requires time, nurturing, and exposure to an array of 
storytelling forms. So, we need spaces like the storycircles, so that, in the end, all of us can be 
the storytellers we are meant to be. 
Screenings Matters: The Collective Sharing of Stories 

Public sharing and collective feedback imbue storytelling with a transformative energy that 
fosters community building, social change, and identity affirmation. I have always loved the 
celebration that occurs when young people can share their stories publicly, to showcase all the 
hard work they put into making their story happen. Often, this screening is a catered event, with 
family, friends, and the community invited to view the stories. 

However, I have since learned that this screening is an important also a part of the process. 
Just because a video is “finished” for a screening, does not necessarily mean it is completed. 
During the screening, particularly when the screening is attended by the storyteller’s peers, the 
discussion that erupts around the story helps better connect the mathematics to the story. Or the 
discussion helps the storyteller better understand what the story means to them. For example, 
during one screening, a 7th-grade Asian American girl made a story about how she makes 
earrings and is trying to figure out how much to charge for those earrings. In the discussion, 
students brought up the concept of a wage, how the idea of trying to figure out how much money 
made from the profit of making and selling one earing might be too volatile, but as a worker, you 
are deserving of a steady wage for your labor. I was astounded at this insight and realized that 
this discussion, during the final screening, was an extremely mathematical conversation that also 
led us to connect to ideas of the role of capitalism in our society. What this showed me is that the 
final screening opens many opportunities for important discussions that can extend the 
mathematics in the original video. 
Beware The Video Everywhere Era 

While platforms like TikTok and YouTube have opened a whole new and exciting space for 
video storytelling for today’s youth, I have begun to feel, from my participants, how wary they 
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are about the fact that they are continually surrounded by peers with phones that could be 
recording them at any time. I want to be clear here. Yes, while I use digital video heavily in this 
work, I also want us, as mathematics education researchers, to advocate for our youth as they 
navigate environments where the ubiquity of constant video recording is becoming a source of 
anxiety. In almost every single digital mathematics storytelling workshop I have done recently, I 
have heard stories of people being filmed without their consent and ridiculed on social media. I 
have also heard from teachers who are constantly vigilant about phones in their classrooms, wary 
that they are being filmed and can be vilified on social media. 

So, while I see endless possibilities for community engagement and education through video 
media, so are the dangers. With the omnipresence of phones everywhere, we must be aware that 
many of our youth and teachers are extremely apprehensive about invasions of privacy and the 
potential misuse of their images. We must also be aware of the ways online video tools can be 
weaponized against vulnerable individuals or communities, often bullying or shaming people 
based on the same categories of gender, race, ability, or language that we see attacked again and 
again. In recent work, I have completely rethought my use of public community screenings, 
instead offering opportunities for participants to have smaller, more intimate screenings of their 
stories, so that they do not feel as vulnerable or exposed.  
Critical Digital Media Literacy 

Finally, I have come to realize that we live in an exciting, but fragile time, an era beset by a 
deluge of information and misinformation, with no real way for any of us to discern what is real 
and what is spin. The construct of digital media literacy might not be enough, as it focuses 
heavily on the curation and sharing of digital media in and of itself. What we need for our 
students and ourselves are stronger skills to better critique and harness the swirling currents of 
the digital age, skills that help us create systems of basic safety, skills that help us recognize how 
to consume thoughtful media versus extreme media.  

I believe our youth can be equipped not only with the skills to navigate the digital world but 
also with the knowledge and conviction to utilize these platforms in ways that uplift themselves 
and their communities. I am generally referring to these skills as Critical Digital Media Literacy, 
a loose grouping of the skills I see as necessary for youth to critically analyze the content they 
watch, understanding the psychological impact of the social media the engage with, and learn 
how to utilize digital media for positive change. So, as we embrace storytelling and its evolution 
through digital media, let us not lose sight of what we are trying to do. We are at a crossroads, 
where our digital spaces have largely been overtaken by traditional capitalist notions focused on 
generating the largest number of users to sell things to or control. But we can envision a better 
digital space, one based on the community knowledges and ways of knowing that come about in 
the stories we tell. It is our responsibility to cultivate spaces where diverse stories flourish, where 
communities find solace and power, and where the next generation are not merely consumers but 
conscientious creators and guardians of narratives that shape their world. 

Discussion 
My journey using Digital Mathematics Storytelling has taught me so much, not only about 

how to get people to make and share mathematics story videos. What I have learned is where the 
edges of our world of mathematics education and our digital society are not clear, where our 
models break, where there needs to be more definition, and where our role comes in. What I have 
also learned is that this intersection between storytelling, community, and mathematics education 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 36 

is much more difficult to navigate than I anticipated. Below are spaces where I am still 
struggling in this work.  
 Reciprocity between Storytelling and Mathematics. What I still do not have a strong 
handle on is the reciprocal relationship between storytelling and mathematics, how stories 
illuminate mathematical concepts and, in turn, how mathematics enriches the fabric of the 
stories. I know that it can happen, but I am still not exactly sure what it looks like and how to 
elicit it. In theory, I know that when children associate mathematical theories with their daily 
lives through storytelling, they internalize concepts with an intensity that rote learning may never 
achieve. But what does this look like? The stories that my participants tell still dance around this 
deeper connection to mathematics.  

Engaging in Counter-Storytelling. Engaging marginalized communities through 
counter-storytelling is where I thought this work would take me. And yet, even with setting up 
nurturing environments where individuals can engage in counter-storytelling to challenge 
dominant narratives and stereotypes, this is not what they choose to do. The prospect of 
storytelling is so visceral and so personal, I feel somewhat inauthentic suggesting that their 
stories need to have a political purpose, that their stories must also fight stereotypes while talking 
about mathematics.  

Sustainable Community Building and Identity Formation through Storytelling. We 
know that communities are formed through storytelling. Yet, in the storytelling workshops I have 
helped create, I cannot help feeling that the whole community falls apart once the workshops are 
over. How can we authentically create communities that are based on the identities that come out 
during the storytelling, that become true communities about individuals and not just a 
storytelling workshop? 
 
I end with these wonderings and hope that sharing my story with you has helped you in your own 
journey. I hope to hear your story too. 
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As part of a longitudinal study focused on mathematical play, we (Melissa, Amy, and Anita) are 
often faced with questions about what counts as play and what mathematics (and other learning) 
we see in play, and whose play is most likely to be seen or dismissed. Rather than discuss our 
findings from classroom videos of kindergarten children engaged in mathematical play, we 
asked scholars who bring different lenses to research on play, young children, and teaching and 
learning mathematics to look at some of our data and provide their perspectives. In this session, 
we will share video and discuss with our panel (Nathaniel, Naomi, and Tran) various ways to 
interpret that video. This paper provides background on the potential of mathematical play and 
the details of the study that generated data for analysis. We conclude with a copy of a transcript 
that is associated with a video we will watch during the plenary with hopes that participants will 
watch prior to the session and come with their own questions/perspectives.  

Keywords: early childhood, identity, mathematics, play 

Introduction 
As content standards become more rigorous and demanding, and high stakes assessment 

becomes the norm even early grades, the time for exploration and play is growing increasingly 
scarce (Miller & Almon, 2009). Even in the earliest grades, curriculum can be tightly scripted, 
recess strictly timed, and toys are often absent or hidden. While prescriptive activities are 
efficient solutions to the now-defined work of schooling--moving large numbers of students 
through a large numbers of topics—this approach rarely supports students in developing robust 
number sense.  Further, the practices that such approaches to teaching mathematics require, such 
as a focus on efficiency, speed, and memorization, are known to undermine students’ enjoyment 
and deep understanding (Boaler, 2002; Boaler & Staples, 2008). In contrast, classrooms that 
offer time for exploration, that emphasize reasoning and understanding over accuracy and speed, 
and which place student identity at the center of instructional design, have been found to support 
a more productive relationship with the domain of mathematics (Cobb et al., 2009; Gresalfi, 
2009). And yet, for a variety of reasons, such classroom practices have been challenging to 
develop at scale.   

One aspect of mathematical exploration that is a topic of great interest, but has received very 
little empirical focus, is mathematical play. While the role of play in supporting student learning 
is well-understood and often advocated for very young students, we have little understanding 
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about mathematical play for older children. Indeed, once children enter formal schooling, 
discussions of learning rarely reference play, and work investigating the design of mathematical 
learning environments has seldom explores whether or how play might be involved.   

Researchers who study play across contexts define play as “spontaneous, naturally occurring 
activities with objects that engage attention and interest” (Lifter & Bloom, 1998)p. 164). 
Burghardt (2010) argued that play is spontaneous or pleasurable, functional, different from 
similar serious behaviors, repeated, and initiated in the absence of stress. Increasingly, educators 
have recognized that play provides both social and cognitive benefits, such as increasing 
creativity, reducing stress, and promoting problem solving (Elkind, 2007). In this work, we 
define play as pleasurable activities that allow children to explore, to engage with interesting 
materials, to make choices, and to possibly engage in social interactions. The play is 
mathematical if the play context can promote a mathematical learning goal.   

For many, “mathematics” and “play” are terms that anchor two opposite extremes, with 
things that look like “math” resembling nothing that looks like “play.” But for mathematicians, 
play is an acknowledged element of engaging the discipline, in part because mathematicians are 
offered a different version of mathematics with which to engage. Rather than taking as their task 
the acquisition of other people’s knowledge, mathematicians are afforded the opportunity to 
think with and about mathematics, to inquire into its structure, its limits, and its possibilities. 
Many scholars have highlighted how play allows one to think beyond oneself, to test and explore 
the limits of ideas (Gadamer, 1975; Vygotsky, 1978), and such ideas are expressed by 
mathematicians. For example, as Mathematician Sharon Whitton states:    

Play has a role both in the work of mathematics and in the evolution of 
mathematics. Although play is not often acknowledged as a major contributing 
factor in mathematicians’ work, their methods of inquiry resemble many of the 
behaviors of children involved in meaningful play (cited in Bergen (2009), 
p.421).   

  
We argue that play should not be reserved only for those who are tasked with exploring the 

frontiers of mathematics, but rather, that play is itself an important vehicle for exploration, 
understanding, enjoyment, and learning. In play children can encounter and explore 
mathematical concepts and relationships through their engagement with carefully chosen 
materials (Ginsburg, 2006; Tudge & Doucet, 2004), such as when they compare quantities of 
toys, compose and decompose shapes of wooden blocks, and count forward and backward on a 
gameboard (Seo & Ginsburg, 2004). In lessons where children engage in mathematical play, they 
have opportunities to solve problems and explore concepts in low-stakes contexts that encourage 
social engagement, experimentation, and the use of interesting materials (Parks, 2015).  

Prior research suggests that designing spaces that allow students to explore mathematical 
ideas, encounter parameters and structures, develop a sense of mathematical aesthetic, and 
engage in cycles of revision and justification would be a productive use of class time (Sinclair, 
2004, 2026). Likewise, research has documented what young children learn in mathematics 
through play, such as through developing spatial reasoning through block building (Casey et al., 
2008) or magnitude through linear board games (Siegler & Ramani, 2008). However, little 
research has sought to link mathematical learning in schools to playful experiences in 
mathematics for children in the primary grades (Wager & Parks, 2014), or has addressed how 
such play could be supported.  
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Why Study Play 
Bringing play into the context of mathematics requires recognizing the mathematical content 

embedded in spontaneous play and the possibilities for designing mathematical engagement that 
embody a spirit of playfulness. For example, work on embodied cognition by Lakoff and Nunez 
(2000) has demonstrated how spontaneous play with containers can build concepts that support 
set thinking about numbers while play on balance beams can create an embodied sense of the 
meaning of equality. At the same time, research on mathematical play that has been orchestrated 
by adults, such as work with linear board games or puzzles, has been shown to develop 
mathematical understandings while still retaining many of the features of play (Kamii et al., 
2004; Siegler & Ramani, 2008). 
The Role of Play in Learning and Identity 

There is growing evidence that play can support students’ mathematical competence and the 
development of productive mathematical identities (Wager & Parks, 2014). Mathematical play 
offers opportunities for children to engage in all of the standards for mathematical practice, for 
example by making sense of problems and persevering in solving them, or exploring the 
structure of tools, symbols, and numbers. Play with particular materials, such as blocks 
(Wolfgang et al., 2003), linear games (Siegler & Ramani, 2008), and puzzles (Clements et al., 
2012) has been shown in a range of empirical research to impact young children’s mathematical 
learning of both number and geometry.   

With respect to identity, bringing play into mathematics also provides opportunities for 
children to come to see themselves as “mathematics people” (Parks, 2015, p. 83). When teachers 
create opportunities for children to engage in mathematical play, and when they label children’s 
play with mathematics vocabulary, they help children see themselves as people who enjoy 
mathematics (Esmonde, 2009). In addition, unlike formal lessons, play contexts often allow for 
children and teachers to use language more fluidly and to enact different kinds of social 
relationships, which may be more likely to mirror the ways that children talk and play at home. 
This can be particularly meaningful for children from low-income or marginalized families who 
may experience conflicts between the performance of school mathematics in formal lessons and 
the ways they engage at home ((Enyedy & Mukhopadhyay, 2007). Reshaping of mathematics 
norms and practices serves to position students differently with respect to the discipline, 
broadening not only the kinds of mathematical experiences that students might have, but also, 
how those experiences lead them to reach different conclusions about their abilities and 
preferences (Gresalfi & Hand, 2019).   
Supporting Play in the Mathematics Classroom 

Our approach to design begins with the starting point that the classroom is an ecosystem 
(Greeno, 1991; Gresalfi et al., 2012): changing one element of the system can influence others, 
but not always directly in a simple causal relationship. Play is an excellent example of an activity 
that cuts across multiple elements of a system, as it involves attending to the tools and physical 
resources available in a classroom, but also the concomitant norms and practices that make space 
for such toys and tools to become objects of inquiry. Likewise, while students’ beliefs about 
themselves and about mathematics influence how they might play in math class, those beliefs 
develop through their participation with these classroom norms (Gresalfi, 2009; Hand, 2010). 
Thus, in thinking about how to support mathematical play in elementary school classrooms, we 
articulate the different elements of the system, and how those elements of this ecosystem 
interact.   
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The Role of Tools in Attuning Students to Mathematical Ideas 
Within early childhood, Montessori (Montessori, 1917) was one of the earliest advocates for 

supporting children’s mathematical learning through their independent engagement with material 
objects. Current studies demonstrate that young children who experience Montessori programs 
(even when randomly assigned) perform more strongly on mathematics assessments than 
children who do not (Laski et al., 2015; Lillard & Else-Quest, 2006). Research suggests that a 
wide variety of toys and tools can be productive in promoting mathematics learning, but that 
these tools are most productive when children have multiple opportunities to explore the same 
materials over time in a variety of contexts, when adults support children in assigning 
mathematical meaning to the materials, and when materials make mathematics (rather than the 
everyday world) salient (Laski et al, 2015). Likewise, research on children’s mathematical 
engagement in museums has demonstrated that allowing children agency in their interactions 
with well-designed materials supports their engagement with mathematical concepts (Kelton et 
al, 2018) and that observing children’s physical engagements can provide insight into their 
developing understandings (Nemirovsky et al., 2012).    
The Role of Classroom Culture 

Classrooms that support learning through mathematical play offer a different experience for 
students than traditional math classrooms. This shift requires an environment in which students 
have agency to explore, make their own decisions, and feel comfortable making mistakes - an 
environment that invites students to participate (Gutiérrez, 2012) and develop their identities as 
learners and doers of mathematics. Agency, the opportunity to take action with regard to one’s 
own learning (Gresalfi, Martin, Hand, & Greeno, 2009), enables students to participate in 
mathematics in ways that are meaningful and sensible to them (Gresalfi & Cobb, 2006; Nasir & 
Hand, 2006). Classroom environments that provide opportunities to participate exercise agency 
can “transform how students see themselves as mathematical thinkers, how they see the 
discipline, and ultimately, the mathematics they learn” (Turner et al., 2013), p. 229).   
The Role of Teachers in Supporting Mathematical Play 

The potential of play to support students’ mathematical engagement depends largely on the 
teacher. Although students are naturally experts at play, they are less likely, on their own, to play 
in ways that easily translate to rich mathematical thinking.  When adults make conscious choices 
in constructing play environments and choose to intentionally engage with children during play 
and other informal activities, student mathematical engagement is enhanced (Trawick-Smith et 
al., 2016; Van Oers, 2010) In particular, teachers’ use of ‘math talk’ during formal and informal 
lessons has been shown in a variety of studies to have a significant impact on children’s later 
learning (Levine et al., 2010; Wiebe Berry & Kim, 2008). More broadly, there is growing 
evidence that providing materials that support mathematical play and intervening in play to 
deepen thinking and extend vocabulary can promote more significant early mathematics learning 
(e.g., van Oers, 2010; Trawick-Smith, Swaminathan & Liu, 2015; Wager, 2013). Trawick-Smith, 
Swaminathan, and Liu (2015) found that teachers’ asking of open-ended questions during play 
and providing of appropriate levels of guidance during play (not too much or too little) had 
positive relationships with mathematics learning in a pretest/posttest study.  However, despite the 
benefits of appropriate adult interactions in mathematical play, research has found that teachers 
sometimes fail to lift up the mathematics in children’s play because they are not skilled at 
recognizing the mathematics (Moseley, 2005), lack the time to observe play (Seo & Ginsburg, 
2004), or are constrained by curricula and other instructional demands (Parks & Bridges-Rhoads, 
2012).  
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The Playful Learning Project and the Challenges of Analysis 
This four-year longitudinal study was designed to investigate play in early elementary math 

education by developing in-depth accounts of: 1) how kindergarten teachers learn to integrate 
play into their instruction over multiple years, and how their teaching changes over time; 2) how 
the task of integrating play changes with different demands of mathematics curricula over the 
grades (kindergarten through second grade); and 3) how the relationship that students develop 
with mathematics might be transformed by experiencing playful mathematics learning over their 
early elementary careers (kindergarten through second grade).These fairly straightforward goals 
have become much more complex as we have embarked upon the study, and new challenges 
have emerged. Specifically, and the he focus of this paper and our plenary, is to explore and 
problematize mathematical play by considering what mathematical thinking looks like when it is 
transformed through play, what counts as play, and how some children’s play is visible, 
suppressed, or otherwise rendered invisible by broader structures and biases, from researchers, 
teachers, and other children.  

Over the first year of the project, the team worked with six kindergarten teachers who taught 
in teams in three classrooms at a racially and economically diverse public school in the Southern 
United States. The teachers and the project team co-designed four weeks of instruction with the 
goal of introducing playful tasks into the lessons of the mandated curriculum. During the weeks 
these lessons were taught, the project team video recorded children’s engagement in small 
groups using GoPro 360 cameras, which captured all four students per table simultaneously. We 
also videoed the teacher during whole-class and small group instruction. From the three 
classrooms across the four units, we captured 580 videos of student mathematical play, ranging 
from two to twelve minutes in duration. 

 Because the GoPro cameras record in 360 degrees, analyzing the videos presents several 
challenges in terms of attention. Often four children were engaged in four separate activities, 
although sometimes the whole group would come together or partners would team up. The video 
could be “unwrapped” to see all four children at once or could be watched so the viewer could 
control the focus of attention. As a research group, we found that where we directed attention in 
the videos and the sense we made of interactions during play about mathematics was shaped by 
on our professional backgrounds (e.g., former early childhood teachers and former high school 
mathematics teachers often attended to different aspects of the mathematics), our identities (e.g., 
our racial identities shaped our focus and interpretations) and our academic histories (e.g., being 
immersed in learning sciences, early childhood education, or teacher education framed 
interactions in different ways). This became even more complex when teachers were included in 
watching video, as their perspectives brought in additional differences.  

Conversations across the group about these differences reminded us of a decades old special 
issue in the Journal of Learning Sciences (Sfard & McClain, 2002) where a group of researchers 
analyzed the same video through a variety of lenses to provide insight on the role of symbolic 
tools in shaping mathematical thinking. At the time, we remembered being struck by the 
different understandings of the same video that each theoretical perspective allowed, but in 
looking back we noticed instead how similar each of the socio-cultural perspectives taken really 
were. This raised some questions for us. We wondered about what perspectives we were missing 
even within the diversity of our research group. We were especially concerned with perspectives 
that were not represented in our research group and that we would be unlikely to encounter at 
mathematics education research conferences, but yet felt highly relevant to play. 
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We were interested in what scholars who centered young children’s perspectives and the 
social context of schooling might see in the children’s play. This wondering led to this plenary. 
We choose a video from the first year of our study, which took place in November, during a unit 
on counting to twenty. The video shows four children playing at a center invited children to 
design a zoo with plastic animals by putting a specified number of animals in each “pen.” We 
chose this video because it revealed rich and diverse social interactions among the children and 
because we felt that all the mathematics was not immediately apparent. The points of ambiguity, 
both social and mathematical in nature, makes it a good candidate for rich analysis, particularly 
analysis that draws from different perspectives.  

The children pictured in this video are called Quentin, King, and Kiera (pseudonyms). 
Quentin is a black boy who was moved into the classroom about two weeks prior to the episode, 
in an effort to balance the children with “challenging behaviors” across the three kindergarten 
classes. In his previous classroom, Quentin was frequently removed from activities due to the 
teacher’s perception that he was being disruptive to the class. King is a black boy who tended to 
be quiet in class but paid close attention to instructions in general and math in particular and was 
almost always on task. Kiera is a white girl who also tended to be quiet in class and was reluctant 
to offer answers to questions in whole-class settings. There is a fourth child in the video from 
whose parents did not give consent to participate, and therefore we do not include his data (he 
spoke very little in this interaction).  

We invited three scholars who center young children in their work to share their insights as 
part of the plenary. They are Dr. Tran Templeton, whose work draws on critical childhood 
studies to explore how young children make sense of their own lives, Dr. Nathaniel Bryan, 
whose work draws on Critical Race Theory and PlayCrit theories to understand the experiences 
of young Black boys and their teachers, and Dr. Naomi Jessup, whose work draws on Critical 
Race Theory to reimagine mathematics education in humanizing ways, with particular attention 
to Black children. 

Rather than share these scholars’ perspectives in this paper, we invite readers to prepare for 
the plenary by engaging on their own with the transcript of the video and to form their own 
questions and (admittedly) partial understandings to bring to the conversation. The episode 
shown in the transcript below shows the children engaging in the zoo activity described above, 
along with occasional interruptions from the kindergarten teacher, Ms. Lane.  

In reviewing the transcript, we encourage readers to think about the following prompts: 
• What ques*ons about mathema*cs and play do the interac*ons in the video raise for 

you? 
• What theore*cal frames do you think would illuminate the analysis? 
• Which moments in the video do you find most engaging? Why? 
 

Table 1: Transcript of Zoo Video  
 

Time Quentin King Kiera Ms. Lane 
0:00 [Sticks tongue out at 

camera and giggles] 
   

0:15 King you have two yellow 
ones. I have two orange 
ones.  
I know.. [unclear] 

   



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 45 

Two yellow ones. 
0:26  A lion. That’s what I 

want. 
  

0:28 Can I have that orange 
one cause I have this 
orange one right here and 
I want this? 

   

0:35 Can I have that orange 
one? I just want the 
orange one.  

   

0:45   Look these look the exact 
same. [showing animal to 
Quentin] 

 

0:50 Yeah. I can find them. 
ROAR!! 

   

0:55  Stop   
0:56 Let’s make this a shoe 

store 
   

1:00  Hey   
1:09 [Gasp!] I found another 

one. Let’s put them all 
together.  

   

1:15 These together [pairs up 
matching animals]. I got 
to get another giraffe. 

   

1:29  No. We can’t put that 
together.  

  

1:38  What’s that?   
1:40 [Gasp] Why do you put 

the stuff up? 
   

1:42  Oh my goodness. This is 
something like a.. that’s 
a dinosaur, but I don’t 
even know what it’s 
called.  

  

1:47 You’re messing up our 
game. We’re trying to put 
two of each on the board.  

   

1:53    xxx, are you 
playing? 

1:56    Okay, try to do that 
one right there. 
[pointing to the box 
labeled 7 in the zoo 
in front of xxx] 

1:59 We’re doing this one.    
2:03    After you finish you 

have to make sure 
that you count to 
make sure that the 
amount of animals 
matches this number 
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[points to the “13” 
on the stickynote in 
the box that Quentin 
and King are 
working on]. 

2:11 We’re not done. We got 
to put a ri... 
[Adds elephant to animals 
that King is counting]  

[pointing and counting 
each animal] 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11. 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 
12, thir... 

  

2:25 Well, we can knock all of 
them down [knocks about 
half of the animals down 
and gathers them 
together] and count to..Let 
put. Let’s grab. I’m going 
to grab a different animal 
[grabs animal from bin] 
So yeah…. 

[knocks down and grabs 
other half of the animals 
to put back into the bin] 

  

2:37  I’m going to count while 
I put them on there.  

  

2:41 [place hippo in 13 square] 
Ooooooneeee 

   

2:42  [places elephant in 13 
square] One 

  

2:43 [touches elephant] No that 
will be two.  
[picks up and places 
hippo again] One 

   

2:45  One [touches elephant]   
2:46 [touches elephant] Two    
2:47 [adds dinosaur] Three No. No. [picks up 

elephant. One. [picks up 
hippo] Two. [adds 
giraffe] Three.   

  

2:53 [adds gorilla] Four [points to hippo, giraffe, 
elephant, dinosaur, then 
gorilla each in turn 
counting] One, two, 
three, four, five.  

  

2:56 [adds duck] Six    
3:00  [adds rhinoceros] Seven.    
3:04 [adds squirrel] Eight. 

Hey you’re copying me.  
[adds chetah] Eight.   

3:08  [adds deer] Nine.    
3:10 [adds lion] Ten.     
3:12  [adds giraffe] Ten   
2:13 [adds hippo] Eleven. 

[adds buffalo] 
Twelve.[adds kangaroo] 
Thirteen.  
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3:23  No that’s thirteen there. 
We’re done.  

  

3:25  Now we need to do...   
3:26 16. Let me scoot this over 

there a little bit [pulls zoo 
toward him so that the 16 
box lies flat on the table.  

   

3:32  These are a lot of 
animals 

  

3:35     
3:39 I’m gonna put a fox on 

our [unclear]. I want a 
fox. [add fox to 16 box]. 
One. 
King can I go - Can I help 
you with 16? I’m trying to 
do 16. [moves around to 
King’s side of the table]. I 
want to help with 16.   

   

3:57 [takes a handful of 
animals from bin]  

   

4:08  One. [unclear]   
4:12 We doing sixteen. 

[unclear] Okay.  
   

4:14  18. Stop! 
[places lizard, fox, 
cheetah on 18 box each 
in turn while counting] 
One. Two.  

  

4:18 Okay. I’m gonna do 
sixteen. 

Three.    

4:22 [places panda, tapir, 
koala, lizard each in turn 
while counting] One 

[places giraffe on 18 
box] Four 

  

4:27 two, three    
4:31  Five   
3:33 Four. Uh, will you 

[unclear]. Excuse me 
King! [frustrated]. I’m 
trying to put this on the 
table to make sure it 
works. King, can I get one 
of these animals?  

   

4:47 [pointing to each animal 
in the 16 box] One two, 
three, four, five. 

  Y’all don’t have to 
sit down if you don’t 
want to. You can 
stand up if it’s 
easier. Is it easier? 

4:53 Yes   Like what Quentin 
is doing? 

5:03    Okay, we will scoot 
your chair in. That 
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way you can walk 
around the table and 
look at [unclear].  

5:08 [scoots his chair in and 
then goes to scoot King’s 
chair in] King. King. 
Excuse me. We can push 
our chair up the teacher 
said and walk around.  

   

5:20 [touching each animal in 
16 box and counting them 
in turn] One, two, three, 
four, five, six. 

[touching each animal in 
18 box and counting 
them in turn] One, two, 
three, four, five, six, 
seven, eight, nine, ten, 
eleven, twelve, thirteen.  

  

5:29  [puts hippo in 18 box] 
fourteen.  

  

5:32  Sixteen. Eighteen.  [put 4 new animals in 18 
box]. Fifteen, sixteen, 
seventeen, eighteen. 

 

5:35 One, two, three, four, five, 
six. [adds new animal to 
16 box] Seven.  

What’s this? A bull! 
That’s a bull! 

  

5:44 Kiera, could you give me 
one of the animals? I need 
an animal.  

   

6:02 I know what these are. 
Are we? Uh, Kiera – 
there's three of us over 
here.  

   

6:07   I know.   
6:10 You’re smushing me.    
6:12   [moves around the table 

to 7 block] 
 

6:13 What about this guys? We 
can scoot your chair down 
here and make it easier.  

 [moves back to side with 
King and Quentin] 

 

6:24  What is this? A monkey?   
6:28 Yeah! Uh, I don’t know. 

Gasp! I know what these 
are! Um. They’re twins. 
Who wants to match the 
twin with m–? Let’s 
match the the animals! So 
animal... 

   

6:46   Let’s match the animals.   
6:49 So this one goes with...    
6:52  Oh, it’s not matched yet.   
6:54 I’m matching    
6:55   Me too!  
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6:56 So them go together. The 
ones that don’t go 
together let’s put them 
over here [touches 16 
box] 

   

7:03 These go together 
[picking up a pair of 
matched animals] 

   

7:04   Here, these go together. 
[hands Quentin a cheetah 
that matches a cheetah in 
his hand] 

 

7:06 Oh yeah. Uh, it’s 
right...yeah, uh it’s 
another one. Here. [hands 
her the cheetah] 

   

7:13   Here. Ha! [hands Quentin 
a giraffe] 

 

7:15 No. I don’t need that one. 
These two match. And 
these match.These two 
match. I’ve got one over 
here that matches. 
[handing Kiera pairs of 
animals each time] 

   

7:34 Is this an elephant?    
7:35   Yep  
7:36 Okay elephant    
7:45 [continues pairing up 

animals and putting them 
in front of Kiera]. We’re 
trying to match them! 

   

7:50   That’s you. I’m just 
standing right here.  

 

7:54   That’s him that’s not me. 
That’s him.  
 

 

7:57 It’s you too. I’m giving 
them to you and then 
you’re putting them on 
the thing. 

 Nuh-uh!  

8:00 We’re not doing – We're 
not doing anything BAD! 

   

8:05   We just match them.  
8:08 We’re just trying to take 

care of the animals 
[unclear] 

   

8:12  We don’t need to do that   
8:15   Here, here’s this.   
8:22  Look at the timer [to 

Quentin] 
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8:25   Oh, it’s a 6! Clean up. 
Let’s clean up. [all 
students frantically pick 
up animals and put them 
back in bin] 

 

8:35 [takes bin and put it in 
front of himself] Fast! 
Faster! Faster than a - 
Let’s do it faster than a 
giraffe.  

   

8:45    Calm it down okay.  
Go ahead and have a 
seat. 
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PREPARING TEACHERS TO ENGAGE STUDENTS FOR EQUITABLE 
MATHEMATICS EDUCATION 
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Preparing teachers to teach mathematics is at the intersection of the three areas where cultural 
and racial knowledge intersects with content and pedagogical content knowledge. Consequently, 
preparing teachers to teach mathematics must consider all peoples' practices. This highlights 
two Black girls marginalized by their teacher, which provides the space for discussing teacher 
discretion and systemic violence. A significant takeaway when preparing teachers is to get them 
to think about how they can lead with mathematics rather than violence. 

Keywords: Equity, Inclusion, and Diversity; Classroom Discourse; Teacher Educators 

Preparing Teachers: Content, Pedagogy, & Cultural and Racial Knowledge 
Mathematics teacher education has often concentrated on equipping teachers with the 

necessary skills to address three key areas: (a) the content of mathematics they should teach, (b) 
knowledge of pedagogy for teaching mathematics, and (c) the qualifications required for 
teaching mathematics (Berry et al., 2014). Teachers should have deep knowledge of mathematics 
content, which correlates positively to students’ achievement (Howard & Milner, 2021). 
Additionally, teachers should know the pedagogy for teaching mathematics or mathematical 
knowledge for teaching, which is positively related to teachers' use of effective mathematics 
teaching practices (Ottmar et al., 2015). By focusing on these three areas, too often, preparing 
teachers to engage in equitable mathematics teaching receives minimal attention. There is 
widespread agreement among professional organizations in the field of mathematics education 
that preparing teachers to develop equitable frameworks in their teaching is necessary for 
addressing inequities in students’ experiences (Association of Mathematics Teacher Educators, 
2020; National Council of Teachers of Mathematics, 2014, 2018, 2020A, 2020B). Martin (2019) 
argued that there is still a considerable amount of effort required to establish equitable and 
inclusive access to mathematics education for those who have been historically excluded and 
disenfranchised.1 

Teachers who teach students from historically marginalized and disenfranchised populations 
should not only be prepared to understand mathematics content and pedagogy but should also be 
prepared to understand ways of using their students' racial and cultural backgrounds in their 
teaching. Howard and Milner (2021) highlight three areas of knowledge for preparing teachers 
for equitable education: (a) content knowledge, (b) pedagogical content knowledge, and (c) 
cultural and racial knowledge. Preparing teachers to teach mathematics is at the intersection of 
the three areas where cultural and racial knowledge intersects with content and pedagogical 

 
1 When I use historically excluded and disenfranchised, I am not ascribing a sweeping set of attributes to Black, 
Latinx, Indigenous, and poor peoples. I understand that collapsing these groups into one group does not 
acknowledge the intersectionality within these groups. However, there are shared histories and experiences among 
historically excluded and disenfranchised people.	 
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content knowledge. Consequently, preparing teachers to teach mathematics must consider all 
peoples' practices, including African, Indigenous, and non-Westernized perspectives 
(Mukhopadhyay et al., 2009). Building relationships and considering the practices of all peoples 
are described by many researchers as building on students’ “funds of knowledge.” Funds of 
knowledge encompass various aspects of people's lives, such as cultural experiences, artifacts, 
values, emotions, language, and identity (Moll & Gonzalez, 2004).  

An example is provided by Civil and Khan (2001), who delved into teaching practices to 
establish a connection between students' familial and cultural experiences and mathematics 
content. These works all question the belief that teaching mathematics is culturally neutral and 
that there is a set of universally accepted teaching practices. Consequently, preparing teachers to 
teach mathematics must elicit frameworks for making meaningful connections between teaching 
with students' cultures, lives, and experiences. 

The vignette below highlights the importance of making meaningful connections between 
teaching with students' cultures, lives, and experiences. The vignette focuses on the role of 
mathematical discourse as a pedagogical practice intersecting with Black girls' experiences and 
ways of knowing. Specifically, the Black girls, Alexa and Jasmine, are marginalized by their 
teacher, which provides the space for discussion of teacher discretion and systemic violence due 
to the girls being marginalized. 
Vignette: Alexa and Jasmine 

Ms. Lewis, a fourth-grade teacher, uses Cuisenaire Rods to make sure her students 
understand the concepts of unitizing (treating an object as a unit or whole), partitioning 
(separating a unit/whole into equal parts), and iterating (repeating a part to produce identical 
copies of it) (McCloskey & Norton, 2009). In previous grades and lessons, students used 
Cuisenaire Rods to compare fractions, add fractions with like denominators, and subtract 
fractions with like denominators. In this lesson, Ms. Lewis builds on the previously learned 
concepts to introduce adding fractions with unlike denominators. She starts by saying, “If the 
brown rod is the whole, how might we solve !

"
+ !

#
?”  

The students worked on the problem individually and then in pairs. Alexa and Jasmine, two 
Black girls, paired up to share their work and thinking with one another. Alexa’s representation 
of the problem is below. 

 
 
 
 
 
Alexa stated, “since brown is the whole, purple is one-half because two purples make a 

brown, and red is one-fourth because four reds make a brown.”  
Simultaneously, Jasmine explains her representation below. 
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Jasmine stated, “the purple is the same as two reds, so two reds are one-half. That is the same 

as two-fourths. So, you put another red, and the answer is three-fourths.” The discussion between 
the girls continued, with both working to make sense of the representations and convince each 
other why their representation made more sense.  

Alexa and Jasmine were talking and referencing their representations simultaneously in a 
dynamic rather than a linear pattern. Their voices were elevated, and they expressed themselves 
nonverbally using hand gestures. While making her rounds to the pairs in the classroom, Ms. 
Lewis said to Alexa and Jasmine, “Ladies, one at a time.” There was no acknowledgment of their 
mathematical representation or the content of what was said.  

When it was time for the whole group class discussion, Alexa and Jasmine enthusiastically 
raised their hands to share but were not acknowledged. After three students shared, Ms. Lewis 
presented a second task. “If the blue rod is the whole, how might you solve "

$
+ "

%
?”  

Alexa decided not to engage with the task, and Jasmine spent much time trying to get Alexa 
to do the task. Alexa asked, “Why should I do it? . . . she not gonna call on us.” Jasmine 
responded, “that don’t matter . . . come on, just do it.” After a few moments, Ms. Lewis made her 
rounds to Alexa and Jasmine and noted that neither had started the second task. Ms. Lewis 
stated, “I need you, ladies, to get started and follow directions.” Jasmine started representing the 
task with the Cuisenaire Rods, while Alexa decided not to engage.  

As I reflect on Alexa and Jasmine’s positioning in Ms. Lewis’ classroom, I wonder if the 
girls’ discourse pattern was perceived as not competent. As a result, Alexa felt marginalized and 
disconnected. What if Ms. Lewis had led by getting a sense of the girls’ mathematics 
understandings, rather than focusing on the ways the girls were engaging? If Ms. Lewis had 
taken this approach, would Alexa have continued to stay engaged throughout the lesson? Alexa 
and Jasmine’s discourse patterns are informed by their experiences within the Black community. 
This chapter challenges readers to examine the intersections between discourse patterns informed 
by communal experiences, teaching practices, and systemic violence.  
Mathematical Discourse, Systemic Violence, and Discretionary Spaces 

There is widespread agreement on the role of mathematical discourse in positively impacting 
students’ mathematical experience. Promoting and valuing students’ participation in 
mathematical discourse is a way of positioning them as mathematically competent (Berry, 2018). 
Mathematical discourse involves several practices, such as asking and answering questions, 
exchanging mathematical representations and ideas, and constructing, evaluating, and refining 
arguments, among other methods. The use of mathematical discourse practices allows students to 
demonstrate their mathematical understanding and to connect with other students. However, 
mathematics teachers must be mindful of how focusing on discourse practices to the exclusion of 
mathematical and cultural understanding and experiences can position students as incompetent. 
In the vignette, Ms. Lewis focused on discourse without acknowledging Alexa and Jasmine’s 
mathematical understanding. She responded to how the girls engaged in discourse rather than 
their mathematical understanding reflected in their discourse.  

Even when focusing on mathematical understanding for discourse, students may be 
positioned as “at-risk.” For example, constructing viable arguments and critiquing others’ 
reasoning are practices used in mathematics teaching that might have risk-taking implications for 
students. Constructing viable arguments and critiquing others’ reasoning are practices that, when 
performed outside the mathematics classroom, may put historically excluded students, 
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specifically Black students, at risk of negative consequences. When Black students construct 
arguments and critique the reasoning of those in authority or engage in this practice outside of 
mathematics classrooms, educators must consider the potential consequences. Argumentation 
may involve the projection of voice, tone, positioning of bodies, and proximity. These forms of 
engagement may be considered deficit if there is little understanding of social and cultural 
contexts for argumentation. In preparing teachers it is important to convey that there may be 
teaching practices that position students as “at-risk.” 

The potential risk for Black students engaging in argumentation occurs when their ways of 
engagement do not align with expected norms for participating in this type of discourse, creating 
the potential for negative consequences. Alexa and Jasmine’s discourse patterns were not aligned 
with Ms. Lewis’ expectations for students’ participation in discourse. Many Black students come 
from communities where argumentation is non-linear and can be perceived as loud and 
aggressive, with several people talking simultaneously while engaging with one another. The 
assumption may be that no listening is occurring if multiple people are talking simultaneously. 
Such an assumption ignores the experiences and resources students bring from their 
communities. This argumentation pattern is inconsistent with turn-taking, where one person 
speaks while others listen, with everyone using “inside voices.” Policing argumentation based on 
assumptions and a specific pattern of discourse ignores that students may be highly engaged in 
mathematics. Understanding the assumptions and argumentation patterns helps teachers 
recognize that discourse in some communities is dynamic and multi-tiered.  

Research in mathematics education reveals that Black students often face devaluation, 
inequity, exclusion, and violence (Battey, 2013; Berry, 2008; Joseph et al., 2019; Martin, 2015; 
McGee & Martin, 2011). In everyday language, “violence” is primarily defined as physical 
aggression against a person or group (Leonardo, 2013). In this context, violence is used to 
describe the emotional and psychological acts occurring in spaces where students feel 
disconnected and marginalized. Although this type of violence may not result in physical harm, it 
is still considered as such due to its detrimental effect on an students emotional and 
psychological well-being. The experiential aspects of violence in mathematics for historically 
excluded students can result in teaching and learning that lead to little or no engagement in 
activities that promote reasoning. In the second task in the vignette, Alexa chose not to 
participate because she felt she had not been acknowledged for her mathematical thinking, 
resulting in her feeling disconnected. An argument can be made that in this scenario, Alexa 
experienced violence.  

Many Black students come to schools and classrooms with contexts rooted in the culture and 
traditions of the Black experience (Berry, 2020). Consequently, educators must know and 
understand Black students’ resources and find ways to incorporate these into mathematics 
teaching and learning. Considering Alexa and Jasmine’s perspectives in the vignette, it is 
plausible that their discourse pattern might be rooted in their cultural context and familiar 
traditions. Unfortunately, classroom teaching practices too often ignore context and traditions 
familiar to students and default to normalizing whiteness as the source of standard practices. This 
does not imply that all such practices are detrimental to Black students; however, it is necessary 
to understand how classroom practices differentially impact students’ experiences. 

Teachers make daily decisions in classrooms that have a significant impact on their students' 
experiences. According to Ball (2018), these decisions are made in what he refers to as 
"discretionary spaces." In mathematics, discretionary spaces include but are not limited to task 
selection, means of engagement, positioning of students, and decisions about discourse. Ball 
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(2018), argues that discretionary spaces are driven by both policies and the autonomous 
discretion of teachers. For example, policy-driven practices might require specific teaching 
practices and resources, test preparation strategies for standardized tests, and standardizing 
content coverage through the narrow use of a pacing guide. The tensions between policy-driven 
teaching practices and teacher autonomy create what Ball (2018) described as a paradox of 
constraint and discretion in teaching.  

Constraint teaching while positioned to disrupt inequities, can also restrict teachers’ use of 
their professional judgment through standardization, and impede efforts to make schools 
contextually and culturally responsive. Discretion in teaching can make it possible to teach in 
contextually sensitive and culturally responsive ways and enable teachers to connect the school 
to the world, but it can also allow marginalization and other forms of oppression to flow into 
schools. Thus, Ball’s (2018) paradox suggests that there are nuanced spaces necessary for both 
constraint and discretion in teaching to address systemic violence.  

Ms. Lewis used a district-level mandated curriculum in her classroom that incorporated many 
teaching strategies supported by the National Council of Teachers of Mathematics (NCTM, 
2020). For example, the curriculum incorporated mathematical discourse strategies that 
encourage students to provide reasoning and justifications for their mathematical thinking. While 
one can argue that using the curriculum and its materials are policy-driven, implementing those 
practices was at Ms. Lewis’ discretion. It was clear that Ms. Lewis followed the basic outline of 
the lesson as prescribed in the curriculum materials. However, her decision not to acknowledge 
Alexa and Jasmine was at her discretion. The paradox is that the curriculum was designed to 
provide a high-quality mathematics experience for students, but the implementation can lead to 
disconnection and marginalization.  

Every classroom is fertile with opportunities to elevate or stifle students through various 
modes of participation, valuing their thinking, and building community. Ball (2018) unpacks 
micro-moments in which teachers send implicit and explicit messages to students through 
decisions made in discretionary spaces. For some students, discretionary spaces serve as a source 
of systemic violence. Systemic violence can address behavior, position students’ mathematical 
competency, and relate to culture and language in mathematics teaching. One way to disrupt 
systemic violence is to focus on students’ humanity, cultural ways of knowing, and experiences 
that can create opportunities for engagement through mathematical discourse. 
Leading with Mathematics 

Let’s ponder how the lesson would have been different if Ms. Lewis had focused on 
mathematics instead of how Alexa and Jasmine engaged with one another. Instead of saying, 
“Ladies, one at a time,” what if Ms. Lewis had said, “Tell me about your representation” or 
“Describe your Cuisenaire Rods”? These questions suggest that leading with mathematics 
creates opportunities for both the teacher and the learner. One major takeaway from the vignette 
when preparing teachers is to get them to think about how they can lead with mathematics rather 
than violence. Leading with mathematics focuses on pedagogical choices that position students 
as competent, experts, and safe. Teachers use questions to elevate students’ mathematical 
thinking and representations rather than focusing solely on behaviors and how students are 
engaging in discourse while excluding mathematics. Positioning students as competent, experts, 
and safe demonstrates the discretionary spaces teachers use as part of their professional judgment 
to diminish and eliminate systemic violence and psychological, cultural, and spiritual harm to 
students. When teachers engage in discourse practices to support positive identity development, 
build community, and give students autonomy to engage in mathematics using the resources they 
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bring to the classroom, they can reflect on the impact of their practices on students’ well-being. 
Reflecting on this vignette should push mathematics teacher educators to consider how to 
prepare teachers to use spaces of discretion. 
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WELCOME TO THE WORLD OF MATHEMATICS -- WHERE ANYTHING IS 
POSSIBLE! 

¡BIENVENIDO AL MUNDO DE LAS MATEMÁTICAS, DONDE TODO ES POSIBLE! 

Mitchell J. Nathan 
University of Wisconsin–Madison 

MNathan@wisc.edu 

In my Keynote Address to PME-NA 45, I offer an embodied framework for naming what makes 
mathematics powerful for mathematicians and scientists, yet intractable for many learners. The 
essential claim is this: Students reside in the Real World, where math is grounded, embodied and 
meaningful, while mathematics resides in the ungrounded, disembodied realm of the UnReal 
World. To make all educational experiences meaningful, I consider ways to prepare students to 
be tourists to the UnReal World, such as progressive formalization and immersion in eXtended 
Reality (XR). Even so, educators must remember that learners remain citizens of the Real World 
even when visiting the UnReal World. I share examples of how embodied learners make sense of 
UnReal things, method of making bridges between these worlds, and concerns that entrenched 
assessment practices neglect the nonverbal ways of knowing expressed by embodied learners.  

Welcome to the world of mathematics -- where anything is possible! This is both wonderful 
(for mathematicians) and terrible (for students). Wonderful, in that mathematics delivers a set of 
formal systems with precise and powerful rules for generating (and verifying) mathematically 
correct statements to model patterns, both real and imagined Terrible, because the truths that are 
generated are detached from the Real World and frequently defy the intuitions and expectations 
students have developed from their lived experiences. I offer this frame because my scholarship 
is positioned with a guiding value: All educational experiences should be meaningful to 
students. I arrive at this based on ethical considerations that educational institutions must be 
committed to improving students’ lives and futures, and based cognitive considerations that 
meaningful information is more readily accessed, retained, and applied (Bransford et al., 2000). I 
refer to this focus on meaningful learning as achieving a grounded understanding (Nathan, 
2014). Ideas and symbols that are abstract and unfamiliar become grounded for learners when 
they are connected to one’s lived and felt experiences, including those ideas and symbols that are 
embodied through one’s perceptions, actions, and social and cultural practices.  

1. Students Reside in the Real World; Mathematics in the UnReal World 
Mathematics education encounters an apparent enigma: If people naturally do math as they 

go about their lives, what makes learning math so difficult? The quandary falls away when we 
recognize that the math people do is what I call Grounded and Embodied Math, or GEM. It is 
the math that people can do because as embodied beings, people are grounded in their lived, 
contextually bound experiences. This is the mathematics of  the Real World (RW) where people 
-- myself included! -- actually reside. Here in the RW, things have mass, and extent; operations 
take time and energy; capacities are limited, space confined. Hardly anything (perhaps not 
anything) is truly linear, exact, discrete, or known with certainty. In the RW where GEM occurs, 
all things are not possible. Herein lies a central challenge for math education. 

One can also imagine a different world, the UnReal World (unRW), where UnGrounded 
and disEmbodied Math (unGEM) is relevant and has meaning. This is a realm filled with 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 60 

dimensionless points, lines of infinite length, perfect correlations, and certainty. 
 

I use these terms, RW, unRW, GEM, and unGEM -- cumbersome as they may be 
-- to help firm up my thoughts about the current challenges facing math education 
and some of the promising pathways forward.  

When we teach math, we are really asking two things of students: 

I. Master the formal systems of notation that describes the behavior of objects that adhere to 
the rules of unGEM; and   

II. Become a resident of unRW, so that unGEM becomes meaningful. 

Our educational institutions predominantly support students only with the first of these, and 
largely ignores the second. I believe it is imperative that we consider both propositions because 
there are many documented occasions where students can reliably apply the rules of unGEM 
(consistent with Proposition I), even as the formal statements of unGEM remain meaningless 
with respect to the world in which they reside (counter to Proposition II; e.g., Koedinger & 
Nathan, 2004; Landy & Goldstone, 2007). More commonly, students adhere to Proposition I by 
mastering unGEM even when they can demonstrate their understanding of the mathematical 
ideas to which the unGEM symbols refer. This is observed, for example, when students who 
speak different languages exhibit nonverbal ways of effectively expressing their mathematical 
reasoning during collaboration, thus circumventing unfamiliar terms (Swart et al., 2021).  

2. Preparing Tourists to the UnReal World 
One reason for this disconnect is a lack of common ground between phenomena in the RW 

and the unRW (Alibali et al., 2019). Naming the dichotomy between the grounded and embodied 
nature of the RW and the ungrounded and disembodied nature of the unRW helped me frame my 
goals in terms of an educational question: How can we support students to become competent 
tourists in unRW? I am aware of three promising ways (which need not be mutually exclusive): 

1. Progressive formalization. This builds on the natural ability of humans to incrementally 
ground from concrete experiences to idealized descriptions (i.e., abstractions) of those 
experiences by establishing a new grounding of previously unfamiliar ideas in successive 
iterations. For example, manipulating physical objects (i.e., performing operations on 
RW objects) often provides the necessary grounding when first encountering numbers, 
while numbers later ground arithmetic operations, arithmetic comes to ground algebraic 
expressions, and so on. Realistic Mathematics Education (Gravemeijer & Doorman, 
1999; Van den Heuvel-Panhuizen & Drijvers, 2020) and Concreteness Fading (Bruner, 
1966; Fyfe et al., 2014; Ottmar & Landy, 2017) are two approaches to progressive 
formalization in math education with substantial empirical support. These approaches 
incrementally shifts RW experiences towards unGEM of unRW by successively stripping 
away the perceptual richness of RW actions and objects, so they come to serve as 
increasingly idealized representations of the original experience.  
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2. Professional Vision. Changes in one’s perceptions and language through instruction 
enables one to see and describe RW phenomena through a lens of unGEM (Goodwin, 
1994; Stevens & Hall, 1998). Powerful examples of this are seen in Bob Moses’ Algebra 
Project (Moses & Cobb, 2002), Learning Along Lines (Ma, 2016; Taylor, 2017), and 
Dallas Math Walks (Wang & Walkington, 2023). These approaches brings unGEM into 
RW by grounding unRW concepts in students’ lived perceived and embodied 
experiences.  

3. Immersion in Microworlds. This invites learners into spaces where objects only behave 
according to rules of unGEM. The includes approaches with varying degrees of 
immersion, from tablets that present manipulable mathematical objects for number 
(TouchMath; Sinclair & Heyd-Metzuyanim, 2014), algebraic expressions (Graspable 
Math; Ottmar et al., 2015), and geometric objects (Carbri, GeoGebra), to eXtended 
Reality (XR) environments (including VR and AR) that sensorially immerse one in 
unRW spaces (Dimmel et al., 2023; Johnson-Glenberg & Megowan-Romanowicz, 2017; 
Walkington et al., 2022). These approaches puts residents of RW in unRW to adopt the 
practices of unGEM; and, ideally, reflect upon those practices when they return to RW.  

Each of these approaches rests on the amazing plasticity of the human neural system, and a 
realization that with the appropriate sensorimotor experiences, we are able to (temporarily) 
realign our expectations for how things ought to behave in the world. Examples such as the 
rubber hand illusion (National Geographic, 2015), illustrate the range of situations to which 
humans are able to adjust. 

3. We Remain Citizens of the Real World Even When we Visit the UnReal World 
As educators and educational researchers, it is important to keep in mind that people are 

inclined to apply the rules and expectations that have successfully guided their RW experiences 
even when visiting the unRW. To illustrate, humans -- mathematicians included, LOL! -- are 
inclined to interpret phenomena of the unRW through a GEM lens. Thus, numbers are locations 
in space, operations are physical actions on mathematical “objects,” limits are fictive motion 
(Lakoff & Núñez, 2000), logic is a sequence of cause and effect, and set theoretic statements are 
idealizations of containers for collecting, categorizing and classifying objects (Johnson, 1980). In 
visual art, M. C. Escher’s Ascending and Descending, intrigues us because it offers a twist 
(literally and actually) on our experiences of gravity the RW. Even the Theory of Relativity, 
arguably the paradigmatic case of thinking “outside the box,” is said to have its origin in the 
mundane nature of Einstein’s contemplations of the variations in train schedules across Europe 
as he commuted to and from his job at the patent office in Bern (Galison, 2004). It is not that 
people are unable to perceive unGEM objects, but that they will project their RW interpretations 
onto objects from unGEM. We see this abound from work analyzing students’ math errors (e.g., 
Landy & Goldstone, 2007; Koedinger & Nathan, 2004; VanLehn, 1990) demonstrating that these 
errors often arise when people try to make unGEM objects conform to their RW. Thus, it is 
important to acknowledge -- and accommodate -- learner’s natural tendencies. 

This should not be taken to suggest that people are basically literal thinkers, or lack 
imagination. Contrarily, people exhibit great imagination in their contributions to science, 
technological innovation, and the arts. Rather, these realizations highlights how people are 
naturally inclined to use their experiences to rationalize problem spaces, and, further, to point out 
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that even people’s imagination is not limitless; it is tethered to one’s RW, embodied experiences. 
Artists such as Escher (1972; see note 1) in the visual realm, and Pink Floyd in music (Waters, 
Wright, Mason, & Gilmour, 1970; see note 2) demonstrate that even when people imagine 
behaviors that violate the laws of the RW, they do so while standing on terra firma.  

While we all live in the RW, there are actual residents of the unRW: ChatGPTn (currently at 
version 4) is one example, and so is your smartphone. These residents are comfortable with 
living in ungrounded, formal spaces. Borges’ (1962/ 2007) Library of Babel is one such space. 
Borges imagined an institution that contains every conceivable book by generating every 
orthographic variations of the alphabet, regardless of whether it is readable or accurate (e.g., the 
entire contents of my future talk). Personally, as a trained mathematician, I like to visit unRW 
and partake in unGEM, but as a trained engineer, I do not wish to reside there permanently.  

One of our superpowers as human beings is our ability to process all events from a grounded 
and embodied perspective. Just because humans have developed strings of symbols to represent 
systems of language, culture, art, and mathematics, does not mean that we take comfort in their 
arbitrary associations to ideas and events. Unlike AI, we do not simply store these formalisms 
verbatim or process them blindly. Rather, people project meaning onto these symbol systems 
because of their cultural associations, embodied affordances, and the mental simulations they 
invoke (Bransford et al., 1972; Gallese & Sinigaglia, 2011; Glenberg & Robertson 2000). This 
tethering to worldly experiences is one of the advantages people have over AI systems and it is 
one reason why humans excel in expressing themselves through art and mathematics. Practice 
and feedback from the RW affords humans opportunities to get better at accurately recognizing 
and generating images that represent RW objects. Ironically, generative AIs trained on synthetic 
data produced by other generative AIs rapidly degrade with practice and feedback, and the 
images they produce become further removed from real-looking objects (Alemohammad et al., 
2023). unGEM, operating in its own self-referential world, becomes self-consuming and 
increasingly absurd (Eisenstein, 2023). 

4. Final Thoughts: Assessing the Understanding of Grounded and Embodied Learners 
Since its inception, the PME community has acknowledged a key insight by focusing on the 

Psychology of Mathematics Education. Educational practitioners and leaders, working with 
members of the education research community, must bridge GEM and unGEM. At its core, these 
bridging activities necessitate a continued understanding of the psychological needs of students 
and teachers to adopt the reasoning and practices of an unReal World that has tremendous utility 
for modeling the RW and gifting it with innovations that further the Public Good. Existing and 
emerging educational practices and technologies offer promising inroads, but ultimately depend 
upon an understanding of human thinking, human development and human behavior.  

This is made imminently clear by examining a persistent misalignment between our 
emerging conceptualizations of student knowledge and current knowledge assessment practices. 
Once we recognize the grounded and embodied nature of people’s mathematical thinking and 
learning, including students’ nonverbal and nonsymbolic ways of knowing and expressing their 
thinking, it is clear that formative and summative knowledge assessment practices must follow 
suit. Fortunately, teachers who themselves engage in and reflect upon their own embodied 
mathematical behaviors seem to become more inclined to notice students’ nonverbal ways of 
expressing their mathematical reasoning and to address students’ embodied behaviors in their 
formative assessment practices (Sung, Swart & Nathan, 2021). Considerations of both formative 
and summative assessment practices designed with grounded and embodied learners in mind 
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offer some of the most promising next steps for advancing mathematics education for all 
learners.  

Author Notes  
Note 1. M. C. Escher’s lithograph Waterfall (Dutch: Waterval; Escher, 1972) gives the 

appearance of a normal flow of water that endlessly cycles upward or downward. The 
watercourse uses two Penrose triangles to create the illusion. The Penrose triangle was designed 
by Oscar Reutersvärd in 1934, and independently discovered by Roger Penrose in 1958 (Penrose 
& Penrose, 1958). 

Note 2. Pink Floyd’s (1970) “Echoes” is a composition on the Meddle album that runs over 
23 minutes. The composers used the Shepard-Risset Glissando, a variant of the Shepard Tone 
created by psychologist Roger Shepard (1964), which can be heard at the end of composition, 
beginning just after the 22-minute mark in the Meddle version, 
https://www.youtube.com/watch?v=KBca3xf-j3o. 
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Pedagogical content knowledge (PCK) has been a topic of much interest for the last 37 years 
(Duni, 2019). When trying to understand teacher knowledge, in introducing measures of central 
tendency (MCTs) in middle school, finding a framework to adapt to this work was difficult. The 
problem is that most frameworks are too general and do not lend themselves to the questions 
being posed. So, the lack of specificity in the existing frameworks forced me to the create a new 
conceptual framework to analyze teacher knowledge. 

As established by previous research (Ball, Thames, &Phelps, 2008; Hill et al., 2008; Groth, 
2013), I conceptualized PCK as the knowledge of curriculum (KC), knowledge of content and 
students (KCS), and knowledge of content and teaching (KCT). What I contributed and 
elaborated on, was the specific components of each of knowledge variate as it pertains to 
teaching MCTs in middle school statistics. I analysed curriculum documents (NCTM, 2000; 
CCSSO, 2010), policy documents (Franklin et al., 2007; Franklin et al., 2015), and research 
(Mokros & Russel, 1995; Strauss and Bichler, 1998; Tarr & Shaughnessy, 2003; Zawojewski & 
Shaughnessy, 2000) pertaining to how students learn, and how teachers teach MCTs in middle 
school statistics (Duni, 2018). From that literature review I compiled the different components of 
the framework (that I will present here) that I used to analyze teachers’ pedagogical content 
knowledge. 

Components 
KC emphasizes the need for students to understand the differences and choose between the 

different MCTs, and that students need to have a conception of the mean that does nor revolve 
around the algorithm of add-and-divide. Kader et al. (2013) and NCTM (2000) recommended the 
concept of the fair share and balance point as good introductions to the mean. NGA & CCSSO 
(2010) recommended that students should also understand that all three MCTs are used to 
represent the data with a single number, and that students should make connections between 
MCTs and variability. 

KCS incudes mostly conceptions and misconceptions students have about finding MCTs. 
Students tend to: think of minimums and maximums as outliers, ignore 0 in the data set when 
computing measures of center, not order data before finding the median, use the mode in the 
beginning to represent typicality, ignore mean when it is not part of the data, have difficulty 
calculating weighted means, only know the mean procedurally. 

Lastly, KCT included the investigative cycle at the center as well as recommendations to 
connect statistics to other areas of mathematics, relying on real data, and making effective use of 
technology (Franklin et al., 2007; NCTM, 2000). 

This research shows that the existing overarching frameworks on PCK are useful, but they 
need to be adapted to the specific work done. Having this framework allows faculty to be 
specific on recommendations for teacher preparation and professional development. 
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Student’s engagement in learning impacts student performance in math. Therefore, a quasi- 
experimental study was conducted to investigate the impact of using story telling as a context to 
teach math verses using a traditional lecture approach in a fifth-grade classroom. The control 
group received traditional instruction while the experimental group received a digital 
intervention that incorporated story telling. The findings revealed that using a ST approach of 
teaching was more effective in enhancing students’ engagement at grade 5 in mathematics 
classroom. 

Keywords: Mathematical Knowledge for Teaching; Storytelling; Student’s Engagement. 

The objective of this study is to investigate how storytelling could enhance behavioral, 
emotional, and cognitive engagement in the math-classroom. Storytelling (ST) incorporates both 
logical (i.e., what makes sense) and aesthetic (i.e., how it feels to the reader) aspects. It addresses 
what make sense and how it feels. It ignites both cognitive and emotional engagement in 
learning. This study investigated: How storytelling support 5th grade students’ emotional, 
behavioral, and cognitive engagement in math classroom. 

Integrating Storytelling with math, engages students because it provides students a 
meaningful context that makes learning interesting (Lemonidis & Kaiafa, 2019; Zazkis & 
Liljedahl, 2009). Therefore, students are more engaged, and they perform better in math (Moyer, 
2000). There are three kinds of engagement: Cognitive (Lemonidis & Kaiafa, 2019) social 
(Altieri, 2009), and emotional engagement (Goral & Gnadinger, 2006; Toh et al., 2016). 
Storytelling approach in classroom have incorporate all these kinds of engagements (Marsico, 
Molo, Albano, & Perin, 2019; Kim & Li, 2021). Behavioral engagement (BE) means the 
observable acts of students being involve in learning (Fredricks et al., 2004; Griffin et al., 2008). 
Students’ participation and efforts to perform tasks and interact appropriately are categorize as 
behavioral engagement. In our framework, 

A quasi-experimental design research was used to compare traditional method and 
storytelling-based approach (Gribbons & Herman, 1997). Sixty fifth grade students took part in 
this study and filled out a questionnaire related to behavioral engagement, cognitive engagement, 
and emotional engagement. The control group participated in a traditional lecture where they 
listened to a lecture, took notes, and did sample problems and the experimental group 
participated in a technology-based instruction that incorporated story telling. The findings 
revealed that the technology-based lessons that incorporated story telling significantly increased 
student engagement. 
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Objective 
Mathematics is considered to be a “gatekeeper” (e.g., Douglas & Attewell, 2017), a subject 

that allows some students to move forward while holding others back (Moses, Kamii, Swap, and 
Howard, 1989). Students with visual impairments (SVI) are among those who are excluded from 
mathematics education due to the visual nature of mathematics which can limit their access (Bell 
& Silverman, 2019; Jitngernmadan, Stöger, Petz, & Miesenberger, 2017). 

Teachers for students with visual impairments (TSVIs) are one source of academic support 
for SVIs. However, TSVIs struggle to support SVIs in mathematics education because they often 
lack mathematics education in their academic and professional development (McBride, 2020). 
This poster considers what mathematical pedagogical content knowledge (MPCK) TSVIs bring 
to their work with SVIs in mathematics education. 

Theoretical Framework 
Chick’s (2006) MPCK framework was used to analyze the data in three categories: (1) 

Clearly PCK, (2) Content Knowledge in a Pedagogical Context, and (3) Pedagogical Knowledge 
in a Content Context. 

Methods 
I conducted a 60-minute semi-structured interview with a math teacher working in a school 

for SVIs. The teacher also had 15 years teaching mathematics in mainstream schools. 

Results and Implications 
The teacher was very purposeful in his use of Clearly PCK and of Content Knowledge in a 

Pedagogical Context. For example, when working with fractions, the teacher considered whether 
the student was sighted or not. For a sighted student, the teacher would use visual symbolic 
representation to explain fractions. However, for a SVI, the teacher would use verbal sense-
making and specific wording to support the SVI to do fractions in their head. After the verbal 
sense-making stage, the teacher would then work with the SVI on symbolic representation in 
braille or large print. The teacher used Pedagogical Knowledge in a Content Context when he 
encouraged SVIs to use their tools, engage with others, develop a growth mindset and positive 
attitude towards mathematics, and have better access and inclusion in mathematics fields. 

The study showed the differences between one teachers work with SVIs and sighted students. 
The study also showed that TSVIs might focus on the visual aspects of math and the necessary 
adaptations rather than focusing on SVIs’ sensemaking with or without those adaptations and 
accommodations. Future work might investigate how to best support TVIs’ MPCK development 
to effectively support SVIs. 
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Teachers’ attention and flexibility on referent unit is important to better understand fractions 
and fractions operations while it is documented that teachers struggle with it. In this study, we 
explored teachers’ different levels of identifying referent unit in a fraction multiplication 
problem involving a drawn representation. By analyzing data from five pilot interviews with five 
middle school mathematics teachers, we found out that teachers attended referent unit 
differently. Moreover, their different levels of mastering referent unit related to what they view 
as a whole through their thinking.  

Keywords: Referent Unit, Fraction Multiplication/Division, Visual representations, Teacher 
Knowledge  

Backgrounds 
Numerous studies have investigated the understanding of fractions among both in-service 

and pre-service teachers. Given that fraction plays an important role for upper elementary and 
middle school grades (e.g., CCSSM, 2010), including topics such as using visual models to 
understand fraction multiplication and division, a robust teaching of this content is necessary. 
Recent studies have reported that teachers having constrains on comprehension of fraction 
operations and on facilitating fractions across different representations (Copur-Gencturk & 
Ölmez, 2022; Izsák et al., 2019; Lee, 2017; Lee et al., 2011; Lo & Luo, 2012; Philipp & 
Hawthorne, 2015).  
Prior Research 

Recent research noted about teachers’ struggle with referent unit. For example, teachers’ 
attention to referent unit and their flexibility with the referent unit are considered as indicators of 
understanding of fractions as well as fraction operations. Referent unit is different from unit in a 
way that referent unit may change according to the situational needs, as Lee (2017) defined: 
“referent units are units that are needed when numbers are embedded in problem situations.” (p. 
329). Lee et al. (2011) investigated on how twelve teachers’ reasoning and understanding of 
mathematical visual representations with referent unit, and they found out that the participants 
lack flexibility of keeping track of “unit to which a fraction refers” (p. 204). Consistent with 
them, Lee (2017) studied 111 pre-service teachers, only 12% of whom showed flexibility of 
referent unit by providing “appropriate representations” (p. 345). To examine teachers’ attention 
to referent unit, Copur-Gencturk and Ölmez (2022) reported approximately half of their in-
service teacher participants (N=246) attended referent unit, by referring “different wholes or 
unit” where 1/3 could be greater than ½.  

While there is limited research particularly examining teacher’ understanding of referent unit, 
making sense of visual representations is often adopted as a way of such kind of exploration, 
such as length representations or area model representations (Izsák et al., 2019; Lee et al., 2011; 
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Orrill et al., 2008; Orrill & Brown, 2012). Those studies documented variety level of teachers’ 
struggle with coordinating fractional reasoning in the context of both representations.  

Perspectives 
Majority research demonstrated that teachers could solve fraction multiplication/division 

problems by algorithm (e.g., Lo & Luo, 2012), but more importantly, they need to make sense of 
it both for themselves and thus for their students. Specifically, in the case of referent unit, they 
need to know how to facilitate the fractions operations in different visual representations, so that 
they can help with future students’ conceptual understanding. According to Shulman (1986), it 
requires not only teachers’ content knowledge (CK) but also their pedagogical content 
knowledge (PCK), since PCK includes knowledge of students and making sense of different 
representations to students. To explore teachers’ knowledge through this lens, we are driven by 
this research question: to what extend teachers attend to referent unit when interpreting drawn 
representation?  

Methods 
The present study involved conducting interviews with a convenience sample of five middle 

school mathematics teachers, consisting of two currently practicing teachers (Kevin and Hunter) 
and three recently retired teachers (Laura, Beth, and Wendy). They are all pseudonymous. Kevin 
taught at a private school, while the rest of the participants were public school teachers. For two 
of the retired teachers, they are considered within the context of school settings, because Beth 
teaches as a long-term substitute and Wendy last taught in the 2019-2020 school year. Among 
the sample, Beth was the only Black teacher, while the other four participants were white.  

Each interview, conducted over Zoom, lasted approximately an hour, during which the 
teachers were asked to work on tasks on Jamboard. Meanwhile, they were asked to share their 
screen for both parties to show their pointers moving around or their notes or scratches while 
they are thinking. Jamboard containing 19 pages of questions related to nine different situations, 
with one to two questions per screen. The interviews were recorded and transcribed by Zoom, 
and one of the authors reviewed and edited the transcript to ensure the accuracy of transcribed 
conversation. 

This work focuses on only one area model representation (figure 1) form a situation where 
there are four different students’ work. We first had the teachers looked at four students’ work 
separately, with a purpose of revealing teachers’ knowledge about how to make sense of each 
area model representation from students’ work. Before they responded, they were informed to 
consider the fraction multiplication problem ¾ × ⅔, and to solve it using an area model, 
students colored in the model as shown below. Following the students’ drawing, we asked them 
to solve task one with two separate questions: Where do you see ¾ in Donald’s drawing? How 
about 2/3?  

Our intention for task one is to capture whether teachers can identify there are two different 
wholes in this representation. Specifically, the first whole is the entire rectangular shape, we can 
consider it as ¾ [of the whole rectangle], or three blue of the whole shape, which represents the 
blue-shaded parts. However, the second whole as we intended now is supposed to be the blue-
shaded parts, through which it reflected a thinking of 2/3 [of the blue shaded parts], or 2 parts of 
3 blue parts represents the two orange-shaded parts.  
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Data was analyzed qualitatively to determine whether each teacher successfully identified the 
two different wholes as we indented to, if not, what whole did they refer to when they responded 
to the two separate interview questions. 

 
 

Figure 1: A student’s work of modeling 𝟑 𝟒$ × 𝟐 𝟑$   

Results 
Where Did the Teachers See 3/4 

 All five teachers identified ¾ as the blue-shaded parts quickly. They either marked the three 
blue shaded parts on Jamboard or mentioned it as the “blue lines.” Interestingly, when they 
talked, they did not explicitly refer to the relationship of the blue shaded parts to the whole 
rectangle. Only one teacher, Kevin, explicitly attended to the relationship of the blue section to 
the whole by typing a note to himself on Jamboard saying, “Blue=3/4 of whole.”  

Regardless of their ways of indication (verbal or written), we agreed that all of these five 
teachers were aware of where the 3/4 could be seen in this representation, with recognizing the 
whole as the entire rectangular shape.  
 
Where Did the Teachers See 2/3  

Among five teachers, two teachers (Kevin and Laura) successfully identified 2/3 as two 
orange parts of three blue parts. Kevin typed his notes on Jamboard saying, “Red [Orange] = 2/3 
of blue shaded”. Laura explained, “…so the two-thirds are the orange lines going this way, and 
the two-thirds doesn’t include this one [the top right blue part], so it is 2/3 of the blue lines.”  

The other three teachers explicitly expressed confusion when they trying to identify 2/3. For 
example, Wendy mentioned that the denominator “is confusing,” because she thought the student 
did not realize “[the whole rectangular shape] is not partitioned into thirds.” Similarly, Hunter 
said, “I honestly don’t see the two-thirds… I would like to cut it into three pieces, but I don’t see 
where the two-thirds are in his drawing.” Further extending the idea of partitioning that Hunter 
introduced, Beth said, “…where is [2/3]? Um…In order to multiply this [2/3], I would have done 
it [the whole rectangle] into twelfths, because I could see it a little better: 6/12.”  

All three of these teachers (Wendy, Hunter, and Beth) were unable to identify where the 2/3 
appears in the representation and they also all seemed to be searching for 2/3 of the original 
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rectangle, rather than 2/3 of the 3/4. Wendy and Hunter wanted to partition the entire rectangle 
into fourths or into thirds. Thus, we interpreted that they were not shifting to think about a 
different whole when they were looking for 2/3. Even though Beth gave an alternative way of 
partitioning the entire rectangle into a common denominator (twelfths), she was trying to find 
both ¾ and 2/3 in the original rectangle, rather than attending to the whole to which each fraction 
referred. In another words, she was thinking of the same whole.   

In contrast, Kevin and Laura were smoothly and explicitly, transitioning from the-entire-
rectangle-as-a-whole into the blue-shaded-part-as-a-whole. Thus, we concluded that, two of the 
five teachers showed some flexibility of referent unit as they successfully identified what the unit 
is based on the situational needs. 

Discussion  
The present study is consistent with prior research about teachers struggle with referent unit 

(e.g., Izsák, 2008) and provide more evidence on the difficulties teachers have on identifying 
referent unit when they deal with the area model for fraction multiplication situations. Our 
findings revealed that it was not anomalous that the given area (rectangle) was conceived as the 
whole by teachers even when the discussion should have been about the blue section of the 
rectangle. This is the same phenomenon described by Izsák (2008) who drew from Steffe’s 
(1994; 2003) work with children to explain the issue as the teacher not attending to two levels of 
units: the whole rectangle and the new “whole” comprised of the three blue boxes. 

Interestingly, as one of four different student representations in this pilot task, the researchers 
had anticipated that Donald’s drawing would be relatively clear for teachers. However, it seemed 
that the other representations, which were all area models partitioned into more equal pieces 
were easier overall. Additional analysis needs to be completed to determine the extent to which 
the teachers attended to the shifting unit in the other drawn representations. We ponder whether 
this task, with its four unique area models, might differentiate teachers’ understanding of referent 
units. 

By illustrating the importance of looking at whether teachers attended to referent units in a 
drawn representation situated in fraction multiplication problem, we hope to contribute on the 
existing research about teachers’ attention as well as flexibility of referent unit.  
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Objective  
For decades, there has been a call in mathematics teaching and learning to focus on 

mathematical structures. This was a pillar of “new math” (Phillips, 2015) and part of the way the 
National Council of Teachers of Mathematics (NCTM) defined mathematics in both sets of 
standards (NCTM, 1989, 2000). It is also a Standard for Mathematical Practice in the Common 
Core (CCSSI, 2010). However, little research considers teachers’ knowledge of structural 
relationships. Certainly, it has been posited that teachers who understand mathematical structure 
will be more capable of supporting students in learning about them (Mason et al., 2009). This 
conjecture has neither been tested nor explored in terms of the extent to which teachers are aware 
of structural relationships.  

Here, we report a pilot study aimed at understanding how practicing teachers understand 
invariance as it relates to fractions. While invariance is often considered for proportional 
reasoning situations, it is rarely a focus of discussion or instruction for fractions. Thus, we 
wondered how teachers might make sense of novel tasks that asked them to attend to aspects of 
invariance with fractions. 

Response to Issue 
This poster reports an exploratory study undertaken as a pilot of an interview instrument. We 

interviewed a convenience sample with five current (Kevin and Hunter) or recently retired 
(Laura, Beth, and Wendy) middle school mathematics teachers. (All names are pseudonyms)  

We considered how the teachers responded to a single item contrasting fractions and 
proportions by considering how two different drawings (one area model and one with shaded 
dots) might show that 2/3 is equivalent to 8/12. One of the main take-aways was that these 
participants did not attend to the relationship of the numerator to the denominator in their 
sensemaking about equivalence. Interestingly, the teachers also had different conceptions of the 
referent unit as they interpreted the drawings, as well.  

Given that this was only one task considered by five participants, we are careful not to 
overstep our claims. More questions need to be asked of more teachers to understand this issue. 
However, the work reported here supports our assertion that teachers may not attend to structural 
aspects of fraction situations when solving for themselves. Further, it suggests that research is 
warranted in this area.  

Acknowledgments  
This material is based upon work supported by the National Science Foundation under Grant 

No. 2201125. Any opinions, findings, and conclusions or recommendations expressed in this 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 78 

material are those of the author(s) and do not necessarily reflect the views of the National 
Science Foundation. 

References  
Common Core State Standards Initiative (2010). Common core standards for mathematics. 

https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf 
Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structure for all. Mathematics Education 

Research Journal, 21(2), 10-32. 
National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. 

National Council of Teachers of Mathematics. 
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. National 

Council of Teachers of Mathematics. 
Phillips, C. J. (2015). The new math: A political history. The University of Chicago Press. 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 79 

TEACHERS’ KNOWLEDGE AND USE OF VISUAL FRACTION REPRESENTATIONS 

 
Karl W. Kosko 

Kent State University 
kkosko1@kent.edu  

Christine K. Austin 
Kent State University 
causti17@kent.edu 

Maryam Zolfaghari 
Kent State University 
mzolfagh@kent.edu 

The purpose of this study was to examine the relationship between in-service teachers (ISTs’) 
reported use of manipulatives and their pedagogical content knowledge for teaching fractions 
(PCK-Fractions). The study’s results indicated no significant relationship between ISTs’ 
reported use of visual representations and their PCK fractions. However, trends were observed 
across ISTs’ education, taught grade levels, PCK, and use of visual representation. The 
implications and future needs for the study are discussed in the paper.  

Keywords: Mathematical representations; instructional activities and practices; teacher 
knowledge.  

Mathematical Knowledge for Teaching (MKT) involves the content and pedagogical content 
knowledge used by teachers to engage in pedagogy in its various forms (Ball et al., 2008; Izsák, 
2008). Over the past two decades, research on MKT has shown various factors are associated 
with lower and higher MKT. For example, while years of experience alone are positively 
associated with higher MKT scores (Copur-Gencturk & Li, 2023; Hill, 2010), a stronger 
association is typically found when focusing on experience in contexts where specific concepts 
are taught (Herbst & Kosko, 2014; Hill, 2010; Zolfaghari et al., 2022). Various other factors 
have been explored including those associated with indicators of content knowledge (Copur-
Gencturk & Li, 2023; Hill, 2010; Ko & Herbst, 2020) and pedagogy used (Hill et al., 2008; 
Jacobson et al., 2021; Morin, 2013). This paper focuses on one particular pedagogical approach 
often posed as associated with higher MKT: use of visual representations and manipulatives.  

Manipulative use has long been tied with definitions of MKT. For example, Hill et al. (2005) 
describe developing items of specialized content knowledge so that teachers could “show or 
represent numbers or operations using pictures or manipulatives…” (p. 388). Later validating the 
Mathematical Quality of Instruction rubric, Hill et al. (2008) included use of representations, 
including manipulatives, as a category that aligned with MKT scores. Examining teachers’ MKT 
for fraction multiplication, Izsák (2008) noted a relationship between teachers’ skill and 
frequency in using visual representations for fraction arithmetic and their demonstrated MKT. 
Morin (2013) found that the relationship was particularly evident in one teacher’s incorporation 
of a concrete to figurative to abstract progression for students’ meaning-making. This included 
knowledge of varying manipulatives that allowed for adjusting activities should one 
representation not facilitate the connections to underlying concepts the teacher sought. 
Examining the topic more explicitly, Jacobson et al. (2021) found that teachers’ evaluation of 
visual representations corresponded with their demonstrated pedagogical content knowledge. 
Despite the common assumption of manipulative use being tied to higher MKT scores, the bulk 
of such scholarship is qualitative. Thus, the purpose of this exploratory study is to examine 
whether and to what degree Inservice teachers’ pedagogical content knowledge for teaching 
fractions (PCK-Fractions) is associated with their reported use of manipulatives for teaching 
fractions.  
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Pedagogical Content Knowledge for Teaching Fractions 
Research on MKT for fractions is common, with studies providing evidence for a lack of 

content knowledge amongst preservice and inservice teachers (Erdam, 2016; Huang et al., 2009; 
Izsák et al., 2019). For example, Izsák et al. (2019) reported many teachers were unable to 
coordinate three levels of units – an important conceptual level for understanding fraction 
multiplication and division. Such reasoning is also important as Izsák (2008) observed teachers’ 
ability to coordinate such units corresponded with how they used visual representations. 
Similarly, Thurtell (2019) found that preservice teachers who had less robust content knowledge 
of fractions were limited in their use of visual representations. Thurtell (2019) suggested that an 
overreliance on symbolic representation as an ideal for representing mathematics was at fault. 
Rather, “the undercurrent of calculational views evident in the preservice teachers’ learning 
approaches were reflected clearly in their teaching approaches” (p. 305) despite dispositions 
generally supportive of using visual representations. More recently, Zolfaghari et al. (2022) 
found that preservice teachers who have field experiences in upper elementary grades (3-5) 
demonstrated higher PCK for fractions. Key in this finding is that Zolfaghari et al. (2022) 
defined higher PCK as an ability to assess more sophisticated unit coordination in students’ 
reasoning. Taken altogether, scholarship on teachers’ MKT for fractions suggest content 
knowledge is generally weaker than it should be. However, preservice teachers would benefit 
from explicit experience in upper elementary classrooms (Zolfaghari et al., 2022) and by 
interrogating an overreliance on symbolic representations for teaching fractions (Thurtell, 2019).  
Visual Representations and Manipulatives 

Visual representations are commonly advocated for the teaching and learning mathematics 
(Bolden et al., 2015). Visual representations are defined as both concrete and pictorial, with 
common mathematical visuals including groups of and array models for multiplication (Kosko, 
2018) and fraction strips, number lines, and pie charts for fractions (Cramer et al., 2008; Tunç-
Pekkan, 2015). Different studies have reported teachers’ usage of visual representations at 
various grade levels. For instance, surveying 603 primary and 336 secondary teachers, Howard et 
al. (1997) found that most teachers felt confident in using visual representations. However, the 
use of visual representations was significantly lower in secondary mathematics classrooms 
compared to elementary classrooms. Similarly, Gilbert and Bush (1988) surveyed 220 
elementary teachers and found that as teachers’ grade level increased, their use of visual 
representations decreased. Examining 820 teachers from K–10, Swan and Marshall (2010) found 
teachers’ reduced use of visual representations was due to the complexity of topics taught. 
Rather, “teachers associate the use of mathematics manipulatives with concept formation and 
hence to be abandoned when the mathematics becomes more complex.” (p.17). These findings 
were corroborated by similar surveys (O’Meara et al., 2020; Uribe-Flórez & Wilkins, 2010). 
Additionally, O’Meara et al. (2020) found that teachers’ use of manipulatives was negatively 
associated with a lack of training available in how to use them. 

Method 
Participants & Measures (1 paragraph) 

The sample consisted of 47 in-service teachers (ISTs) who taught in Midwestern schools 
districts. Much of this sample identified as white (n = 45), female (n = 36), and had an average of 
18.23 years of teaching experience. Our sample consisted of 12 third grade, 18 fourth grade, 6 
fifth grade, and 11 sixth grade teachers. Of the 47 participants, 37 reported to have a master’s 
degree which includes a master’s in general education/curriculum (n = 10), elementary education 
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(n = 3), secondary mathematics (n = 2), literacy/reading (n = 10), administration/leadership (n = 
6), education psychology (n = 2), and education technology (n = 1).  

Participants were recruited via email from nearby school districts that taught grades third 
through sixth and were asked to participate in a survey to be completed on Qualtrics. The survey 
consisted of 14 pictures of fraction manipulatives that the ISTS had to indicate if they were 
aware of (see Table 1). If they indicated that they knew the manipulative they were then asked 
how often they used the manipulative (physical and virtual) on a Likert scale (0 = Never, 1 = 
Rarely, 2 = Sometimes, 3 = Often, 4 = Always). Then, the ISTs were given a Pedagogical 
Content Knowledge of Fractions instrument (PCK-Fractions) that was designed to measure a 
teacher’s level of PCK for the teaching and learning of fractions of upper elementary 
mathematics (Zolfaghari et al., 2021; 2022). The instrument consisted of 17 multiple choice 
items that have the teachers look at a student’s mathematical work and assess their reasoning.  
Analysis & Results 

ISTs demonstrated higher PCK-Fraction scores (M = 0.35, SD = 0.96), which is to be 
expected when considering the measure assesses teachers from preservice to inservice (see 
Zolfaghari et al., 2022). On average, most of the sampled ISTs are aware of various fraction 
manipulatives (Table 1). However, fewer participants knew of using Geoboards (n = 24) or 
playdoh (n = 5) for teaching fractions. Spearman Rho correlation coefficients were calculated to 
examine the relationship between ISTs’ PCK-Fractions, their knowledge of various fraction 
manipulatives and their reported use. To facilitate this, we created composite variables for all 
visual representations (excluding symbolic numeral and symbolic number lines) for knowledge 
of (α=.82, M=.72, SD=.23) and use of (α=.83, M=1.33, SD=.61) various visual representations of 
fractions. The correlation analysis indicates a strong significant relationship between the number 
of manipulatives known and the average reported use (ρ = 0.580, p < .001). However, no 
statistically significant relationship was observed between PCK-Fractions with either knowledge 
(ρ = -0.230, p = .879) or reported use (ρ = -0.097, p = .516) of fractions visual representations. 

 
Table 1: Percent of Participants who Know of Manipulatives and Average Reported Use 

 Know Use  Know Use 
Symbolic Numerals w/ Pictures 95.75% M=2.93 Counters 80.85% M=1.36 
Symbolic Numerals 100% M=2.60 Fraction Tiles 74.47% M=1.30 
Symbolic Number Line 97.87% M=2.50 Fraction Squares 74.47% M=1.11 
Fraction Strips 89.36% M=2.11 Linking Cubes 70.21% M=1.02 
Fraction Circles 93.62% M=1.89 Cuisenaire Rods 68.10% M=0.77 
Tactile Number Line 80.85% M=1.51 Geoboards 51.06% M=0.53 
Pattern Blocks 74.47% M=1.41 Play-Doh 10.64% M=0.06 
Likert Use Scale: 0 = Never, 1 = Rarely, 2 = Sometimes, 3 = Often, 4 = Always 

 
To better understand these results, we examined the potential effect of various demographic 

variables that may influence teachers’ use of manipulatives. Of particular interest, we found that 
the highest degree earned (bachelors or masters) had a statistically significant and negative 
relationship with the use of manipulatives (ρ = -0.397, p = .006). Table 2 reports participants by 
their highest degree earned and the grade level taught along with the average years of experience 
and average reported use (0 = Never, 1 = Rarely, 2 = Sometimes, 3 = Often, 4 = Always). As 
seen in Table 2, other than fifth grade, ISTs who have a master's degree, on average, reported 
using manipulatives less frequently. Another interesting trend evident in Table 2 is that the 
specific grade level taught appears to influence reported manipulative use, with grade 6 teachers 
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reporting the lowest use of visual representations and grade 5 the highest. Unfortunately, the 
relatively small sample size per subgroup in Table 2 prevented further statistical analysis.  

 
Table 2: Average Reported Years’ Experience by Highest Degree Earned and Grade Level 

Taught 
Highest Degree Grade PCK Experience Use 

Bachelors  
(n = 10) 

Third  
(n = 3) 

M = -0.03 
SD =  0.66 

 M = 7.00 
SD = 6.56 

M = 1.73 
SD = 1.00 

Fourth  
(n = 5) 

M = 0.22 
SD = 1.19 

M = 15.60 
SD = 11.87 

M = 2.08 
SD = 0.90 

Fifth  
(n = 2) 

M = -1.23 
SD = 1.82 

M = 6.50 
SD = 2.12 

M = 1.45 
SD = 1.06 

Masters 
(n = 37) 

Third 
(n = 9) 

M = 0.43 
SD = 0.72 

M = 13.11 
SD = 8.45 

M = 1.07 
SD = 0.46 

Fourth 
(n = 13) 

M = 0.49 
SD = 1.00 

M = 20.46 
SD = 7.68 

M = 1.28 
SD = 0.72 

Fifth 
(n = 4) 

M = 1.58 
SD = 0.39 

M = 25.00 
SD = 4.69 

M = 1.68 
SD = 0.19 

Sixth 
(n = 11) 

M = 0.15 
SD = 0.58 

M = 23.73 
SD = 6.97 

M = 0.84 
SD = 0.49 

 

Discussion 
Results presented here are from an exploratory study examining the relationship between 

PCK for fractions and ISTs’ reported knowledge and use of visual representations for fractions. 
Despite significant scholarship positing a relationship between use of visual representations and 
MKT (Hill et al., 2008; Izsák, 2008; Jacobson et al., 2021), we found no statistically significant 
relationships. However, trends in the descriptive data suggest that grade level and graduate 
coursework may have varying effects on visual representation use and the role of PCK. Our 
study did not examine the role of content knowledge, and future work should consider this given 
prior research suggesting its influence on how teachers use visual representations (Izsák, 2008; 
Thurtell, 2019). Additional research is also needed to better understand how graduate work may 
detract from use of manipulatives. More focus may be drawn to the concentration of such 
degrees (i.e., the majority in this study were in literacy due partly to a state mandate), the quality 
of degrees themselves, and so forth. One final implication from this study is that despite 
knowledge of various visual representations, most teachers use such representations less than 
“often” when teaching fractions. This finding is alarming, given that more effective use of 
manipulatives occurs at least on a weekly basis (Uribe-Flórez & Wilkins, 2010).  
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Objectives 
To address the need of making mathematics meaningful to all learners, I explore the research 

question: How do teachers’ identities align with their movements in a small group mathematics 
station? I argue that teachers communicate parts of their identities through movement. Directly 
aligning with the theme, body-based movement such as gesturing facilitates learning, meaning-
making, rapport-building, and enhances students’ engagement. 

Theoretical Framework 
I use frameworks of embodied cognition and identity as performance. Embodied cognition is 

a process through which an organism navigates its surroundings using its body and connects new 
ideas and representations to prior experiences, facilitating meaning-making (Nathan, 2021; 
Núñez et al., 1999). Examples include gesturing such as pointing or tracing a triangle in the air 
(Alibali & Nathan, 2012). I focus on a sociocultural lens of embodied cognition to account for 
both individual and collaborative interactions (Danish et al., 2020). Next, identity as performance 
is “the performance and the recognition of the self…by telling stories, joining groups, [and] 
acting in a particular way at a particular time” (Butler, 1988; Darragh, 2016, p. 29). Both the 
teacher’s performance and input from students inform her identity.   

Methods 
I apply a qualitative case study methodology (Merriam & Tisdell, 2016) to provide intensive 

and holistic description and characterize movement and identity. After listening and participating 
in a read-aloud in a kindergarten classroom, kindergarteners separated into integrated stations 
around the classroom including a mathematics station. Using qualitative methods, I found 
through transcription, coding, and thematic analysis of video and interview data that I collected 
that participants made both conscious and subconscious choices with actions. Through an 
interpretivist perspective, I aligned parts of my participants’ semi-structured interviews about 
their identities with the movements that they performed during facilitation to extract meaning.  

Results and Implications 
My first participant identified as a teacher and mother. Through past experiences of teaching 

elementary students, some of her conscious actions aligned with her identity as a teacher like 
lightly touching a students’ forearm to redirect attention, forming shapes with her hands, and 
folding her hands in her lap to model respect. My second participant identified as both a teacher 
and teacher educator, and similarly she used conscious movements to connect the activity to real 
life contexts while also noting in an interview that some movements were subconscious. For 
future directions, I plan to study facilitation in informal science, technology, engineering, and 
mathematics (STEM) learning spaces. 
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Graphical representations are common in STEM fields for modeling, communicating, and 
analyzing phenomena. Results from research (e.g., Lai et al., 2016), including large-scale 
national assessments (e.g., Nation’s Report Card, 2005), indicate that U.S. students have not 
been provided sufficient opportunities for developing rich graphing understandings. However, 
much of the research and tasks used to examine students’ graphing understandings have assumed 
that students have established understandings of the Cartesian plane needed to construct and 
interpret graphs. In our work, we address this issue by designing tasks that attend to students’ 
understandings of three layers constituting a graphical representation: frames of reference, 
coordinate systems, and graph (Joshua et al., 2015; Lee et al., 2020) (see Figure 1a).    

 
(a)  

(b) 
Figure 1: (a) Three layers of a graphical representation and (b) task design framework 

In this poster, we leverage conceptual analysis (Thompson, 2008) to unpack the three layers 
of a graphical representation and our associated task design framework (see Figure 1b). We 
illustrate how this novel framework was used to design tasks for middle-grades students and the 
role the framework played when analyzing students’ engagement with the tasks.  

We implemented the tasks in one-on-one clinical interviews (Clement, 2000; Goldin, 2000) 
with 15 sixth-grade students to gain insights into their existing graphing understandings at the 
onset of a teaching experiment (Steffe & Thompson, 2000) aimed at building upon these 
students’ graphing understandings. We discuss affordances and limitations of our approach, as 
well as potential task revisions we are considering as a result of our analyses of students’ 
activities.  

B
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Quantity B
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Previous research on differential equations notes that students tend to conflate rate of change 
and amounts of change. In this study, we create a local causal explanation (Maxwell, 2004) for 
why one participant did distinguish between the rate of change in a population and change in a 
population, while the other did not. We conjecture that students may only be able to construct (or 
talk about) rates of change if they have the appropriate quantities available to them in which to 
coordinate. 
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It has been well documented that students tend to conflate the rates of change with change in 
the amounts (Mkhatshwa & Doerr, 2018; Rasmussen & King, 2000; Rasmussen & Marrongelle, 
2006; Rowland & Jovanoski, 2004). For example, Rowland and Jovanoski (2004) found that 
students consistently did not distinguish between “amounts” and “rates of change of amounts” 
throughout different contexts (adding and removing fish in a pond farm, drugs being 
administered to a patient, and a car slowing down). This aligns with Rasmussen and King’s 
(2000) study on finding starting points to teach differential equations via guided reinvention. In 
their study, they noted that one student distinguished between the rate of change of the fish 
population and the change in the fish population, while two students did not. They inferred that 
students did not make the distinction when they did not “conceptualize the situation in a way that 
involved a rate of change”. We aimed to investigate why participants might use language that 
describes change in amounts when talking about the rate of change of amounts. We address the 
question: What conditions led participants to (not) distinguish between the rate of change of a 
population and the change in a population when constructing a model of how quickly a disease 
spreads through a community? 

Theoretical perspective 
To describe the conditions under which participants distinguished the rate of change of a 

population and change in a population, we will first explain the theoretical perspective we take 
on how one may construct a differential equation (a type of mathematical model) to represent 
real-world situations. We operationalize mathematical modeling using theories of quantitative 
reasoning. With this lens, quantities are seen as the building blocks of the model (Larson, 2013).  
A quantity is different from a variable; it is a mental construct that is characterized by 
conceptualizing an object that has an attribute that an individual can imagine measuring 
(Thompson & Carlson, 2017). For example, when modeling disease transmission, one could 
conceptualize a quantity like the number of sick people at a specific time. The object would be 
the sick population, the attribute would be the amount, and one could envision counting the 
number of sick people on a given day even if it would not be possible to do. One constructs a 
mathematical model by operating on the quantities they impose onto the task scenario. Operating 
on quantities has been described in terms of quantitative operations and covariational reasoning 
(Kularajan & Czocher, 2022). A quantitative operation is a conceptual operation where an 
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individual creates a new quantity in relation to one (or more) already created quantities (Ellis, 
2007; Thompson, 2011).  For example, one could additively compare the number of sick 
individuals on day one with the number of sick individuals on day three to create the change in 
the amount of sick population during two days. Covariational reasoning occurs when one 
envisions two quantities that can vary and thinks about the ways they change in relation to each 
other, and how they vary simultaneously. For example, an individual could envision the number 
of sick people at an instance varying with time. Covariational reasoning has been described 
through increasing levels of more complex ways of coordinating pairs of quantities (Thompson 
& Carlson, 2017). An important theoretical implication of taking this lens is that the models one 
constructs are dependent upon the quantities they impose onto the task scenario (Czocher et al., 
2022).   

Methods 
This study was part of a larger study of the efficacy of facilitator scaffolding moves during 

modeling. Participants in the larger study worked on several modeling tasks over the course of 
10 1-hour long sessions. Data were collected via individual clinical task-based interviews held 
over Zoom. We report on 2 STEM undergraduates’ work on the disease transmission task, which 
was the last modeling problem in the sessions. In the disease transmission task, participants were 
asked to imagine a disease spreading through a community of sick and well members and asked 
to model the rate of spread of the disease through the community. The canonical differential 
equations associated with this task are: &'

&(
= 𝛼 × 𝑆(𝑡) ×𝑊(𝑡); &)

&(
= −𝛼 × 𝑆(𝑡) ×𝑊(𝑡),where 

𝑆(𝑡) represents the number of sick people at time 𝑡, 𝑊(𝑡) represents the number of well people 
at time t, and 𝛼 represents the probability of transmitting the disease between the sick and well 
individuals. We report on work from Roion, a computer science major, who built a model for the 
amount of change of the sick population in an instant, and Niali, an electrical engineering major, 
who built a model for the rate of change of the sick population. Both participants self-reported 
typically receiving As and Bs in their math classes. We chose to report on these two students to 
contrast one participant who did make the distinction between the rate of change of an amount 
and the change in amount and one who did not. The contrasting cases offer a chance to examine 
why a participant may or may not distinguish between the rate of change of a population and the 
change in a population. Data were analyzed by taking stock of the quantities students imposed 
onto the task scenario by noting the object, attribute, and evidence of quantification (Czocher et 
al., 2022). We then documented how and why (or inferred the reason why) participants chose to 
combine quantities to construct the rate of change of the infected population. This was done by 
attending to participants’ answers when asked “why did you multiply/divide/subtract/add 
quantity 𝑋 with/by quantity 𝑌.” When participants did not explicitly state their reason, we 
inferred why they combined quantities by appealing to the dimensional units participants 
ascribed to their quantities.  

Results 
Given our theoretical perspective, the conditions under which participants did/did not 

distinguish the rate of change of a population and the change in a population are determined by 
the quantities they imposed onto the task scenario and how the participants decided to operate on 
those quantities.  
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Roion’s final equation modeling how quickly a disease spreads through a community is 
shown in Figure 1. Roion built his equation as follows: First, Roion constructed two quantities: 
the number of infected people at time 𝑡, represented by 𝐼(𝑡), and the number of well people at 
time 𝑡, represented by 𝑊(𝑡). Roion then multiplicatively combined the number infected people 
at time 𝑡 and the number of well people at time 𝑡 to create a new quantity called the maximum 
interactions between infected people and well people at time 𝑡. Roion then took a subset of the 
maximum number of interactions to get the number of interactions that happen (which he 
denoted 𝑐 ×𝑊(𝑡) × 𝐼(𝑡)). He then took a subsequent proportion of the interactions that actually 
happen to get the number of interactions that result in infection (which he denoted 𝑎 ⋅ (𝑐 ⋅ 𝑊(𝑡) ⋅
𝐼(𝑡)). Roion did not ascribe any dimensional units to 𝑎 and 𝑐. To him, they were unitless 

proportions, and so 𝑎 ⋅ 7𝑐 ⋅ 𝑊(𝑡) ⋅ 𝐼(𝑡)8 represented an amount of interactions at time 𝑡	that 
result in infection. We infer that Roion calculated the amount of change in an instant.   

Niali’s final equation that modeling quickly a disease spreads through a community is shown 
in Figure 2 (left). 

 
 

Figure 2 Niali's equations for newly infected at time 𝒕 (left), and newly infected during an 
arbitrary duration of time (right) 

Niali followed a similar path to Roion at first. For Niali, 𝑆(𝑡) denoted the number of sick people 
at time 𝑡, and 𝐻(𝑡) denoted the number of healthy people at time 𝑡. Niali combined these two 
quantities multiplicatively to get the maximum number of interactions between the two 
populations at time 𝑡. Niali then multiplied by two percentages to get the number of interactions 
that resulted in infection at time 𝑡 (𝐸 represented the percentage of interactions that actually 
happened and 𝑇 represented the percent of actual interactions where disease was transmitted). 
Niali noted that the number of interactions that resulted in infection at time 𝑡 is the same 
calculation as newly infected at time 𝑡. It is at this point that Niali and Roion diverged. Niali 
coordinated the number of newly infected with an arbitrary duration of time to construct the 
number of newly infected during a duration of time Δ𝑡 as seen in Figure 2 (right). By doing this, 
Niali is coordinating the multiplicative change in the infected population with additive change in 
time. This coordination results allowed Niali to write an equation for the average rate of change 
of the infected population.  

Discussion 
In this paper, set out to describe the conditions that led participants to (not) distinguish 

between the rate of change of a population and the change in a population when constructing a 
differential equation. By attending to the quantities participants imposed onto the scenario and 

Figure 1 Roion's equation amount of change of the sick population in an instant  
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how they operated on those quantities, we were able to detect differences in how our participants 
constructed their models for disease spread. These differences may explain why one may/may 
not distinguish between rates and amounts. In our examples, Niali distinguished the amount of 
change in the sick population from the rate of change in the sick population because the 
quantities he imposed onto the task scenario could be operated on to create a rate of change. 
Niali created quantities called newly infected during Δ𝑡 and called duration of time (Δ𝑡)  and 
operated on those quantities to create the average rate of change of the sick population (a 
coordination of the newly infected and duration of time). Roion, however, did not impose 
quantities onto the scenario that could be operated on to create a rate of change. We found no 
evidence that Roion imposed a quantity that described the duration of time in this task, thus we 
hypothesize that Roion did not have the “building block” necessary to create a rate of change of 
the sick population, but he did have the “building blocks” necessary to build a model for the 
amount of change in an instant. Our theoretical perspective and methodological approach 
allowed us to create a local causal explanation for why Niali did distinguish between the rate of 
change in the sick population and change in the sick population, while Roion did not. Our 
interpretation is consistent with Ellis et al. (2012)’s work on building exponential growth with 
8th-grade students. In her study, the students were able to conceptualize exponential growth as 
constant multiplicative rates of change by coordinating multiplicative ratios of height 
(multiplicative change in the plant) with additive differences for the time (additive change in 
time). Importantly, the students first had to quantify the multiplicative change in the plant and 
change in time as quantities themselves that could be coordinated. That is, students may only be 
able to construct (or talk about) rates of change if they have the appropriate quantities available 
to them in which to coordinate.  

A goal of this paper was to document contrasting cases of students thinking about differential 
equations to inform future research and instruction about how students think about differential 
equations in a canonical context. Rasmussen & King (2000) originally gave students a SIR 
disease model and then moved on to an unbounded exponential growth model when students had 
difficulty articulating the meaning of the differential equations. Researchers and teachers might 
consider helping the student quantify change in amount and change in time such that the student 
has the opportunity to coordinate the two to construct a rate of change. However, given that both 
participants in our study came to a model that described the spread of the disease through a 
community that looked normatively correct and was satisfactory for them, we suggest that 
researchers and teachers consider whether it might be beneficial to the student to background the 
distinction between rate of change of an amount and the change in an amount in an instant when 
working with students at this level. That is, if we want students to develop mathematical models 
for real-world contexts that are meaningful for them that work mathematically the same as the 
normatively correct model, then it might be worth allowing students to use amount languages 
when discussing rates of change. We do not assert that our results would generalize across 
people. The strength of the relationship between the quantities a student has available and their 
use of amount language to talk about rates needs further exploration. 
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Proof validation plays a significant role in students' understanding and learning of mathematical 
proofs. Recent studies have shown that university students were lacking skills in proof validation 
and were challenged by the implementation of the appropriate acceptance criteria when 
validating proofs. Drawing on Habermas’ construct and rational questioning, the present study 
develops a proof validation framework that seeks to improve students' proof validation skills. 
The written responses of students' proof validation were analyzed based on their use of the proof 
validation framework in the context of a transition-to-proof course. The results showed that 
students primarily focused on the epistemic rationality component when they accept or reject the 
purported proof and that the students experienced difficulties with meeting the requirements of 
rationality components. Some educational implications are provided.  

Keywords: Reasoning and Proof, Research Method, Design Experiment.  

Mathematical proof is an essential component of undergraduate mathematics courses and 
serves as a prerequisite for students' advanced mathematical learning. Research in mathematics 
education indicates that most students have experienced substantial difficulty with proofs at the 
undergraduate level or beyond (Selden, 2012; Sommerhoff & Ufer, 2019; Weber, 2010). Many 
universities have instituted transition-to-proof courses (cf. Moore, 1994) to help students to 
review methods of mathematical proof (e.g., direct proof, proof by contradiction, proof by 
induction) to equip them for advanced mathematics courses that require mathematical proving 
skills. Students are expected to be able to read, evaluate, and write proofs through such a 
transition-to-proof course. The research studies on these courses have primarily concentrated on 
investigating students' beliefs regarding proofs, as well as their approaches to and challenges 
with proof comprehension, construction, and validation (e.g., Ko & Knuth, 2013; Mejia-Ramos 
et al., 2012; Segal, 2000; Selden & Selden, 2015; Weber, 2010). A few studies on proof 
validation have reported that university students often encounter substantial obstacles in 
accurately validating proofs and offering solid justifications for their judgments (see Alcock & 
Weber, 2005; Bleiler et al., 2014; Ko & Knuth, 2013; Kirsten & Greefrath, 2023; Selden & 
Selden, 2003, 2015; Sommerhoff & Ufer, 2019). However, little empirical research exists on 
how to improve students’ skills of validation of proofs as in Selden and Selden, 1995 which 
focused on "proofs as texts that establish the truth of theorems and on readings of, and reflections 
on, proofs to determine their correctness" (Selden & Selden, 2003, p. 5). Proof validation plays a 
significant role at university level mathematics because university students who take advanced 
mathematics courses are expected to spend substantial study time reading and evaluating proofs 
and arguments that are presented by lectures or textbooks (Inglis & Alcock, 2012; Selden & 
Selden, 2003; Weber, 2004). Researchers (e.g., Alcock & Weber, 2005; Kirsten & Greefrath, 
2023; Selden & Selden, 2003; Sommerhoff & Ufer, 2019) have suggested that validation of 
proofs should be taught explicitly in the university.   

Studies that have focused on proof validation have typically explored the ability of students 
to differentiate between valid and invalid arguments (e.g., Alcock & Weber, 2005; Bleiler et al., 
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2014; Ko & Knuth, 2013; Selden & Selden, 2015; Weber, 2010). In his study of 28 
undergraduate mathematics majors who had completed a transition to proof course, Weber 
(2010) found that the students judged invalid proofs to be valid proofs 60% of the time (64 out of 
106). Furthermore, researchers have sought to gain insights into the cognitive processes involved 
in students' proof validation process by employing assessment models to better understand how 
students make these judgments. For instance, Selden and Selden (2003) found that 
undergraduates focused too much on the surface features of an argument, in which students tend 
to check proofs step by step rather than by the logical structure of proofs. Harel and Sowder 
(2007) proposed the idea of using "proof schemes" to describe and evaluate student performance 
in proving. The results of these studies revealed that many students judged invalid empirical 
arguments to be valid proofs because their ability to determine whether arguments were proofs 
was very limited, and they had problems with implementing appropriate acceptance criteria for 
validating proofs. However, these assessment models or proof schemes mainly focus on 
documentation of students' current situations or difficulties they experience while validating 
proofs, so these models cannot address the distance between the students' proof validation 
performance and the teacher's expectations. Consequently, several researchers (e.g., Selden & 
Selden, 2013, 2015; Sommerhoff & Ufer, 2019; Weber & Alcock, 2005) have advocated for 
further research aimed at developing instructional tools to address students' challenges with 
proof validation. They have argued that instruction in transition-to-proof courses should 
incorporate the introduction of these tools with the goal of enhancing students' proof validation 
skills.  

Proof by contradiction (PBC) is an essential proof method across all mathematical content 
areas and is often viewed as more difficult than direct proof (Quarfoot & Robin, 2022). 
According to Robin and Quarfoot (2022), students need opportunities for validation of proofs 
using the PBC method before being able to link these experiences in their written work. The 
present study examined how a cohort of mathematics students used a proof validation framework 
that was adapted from Habermas' (1998) construct of rationality in the context of a transition-to-
proof course to validate proofs that focused on PBC. 

Theoretical Framework  
In the field of mathematics education, Boero (2006) started to use Habermas' (1998) 

construct of rationality as a theoretical framework to study various mathematical discursive 
activities (e.g., proving, argumentation, problem-solving) based on the three components of 
rationality: epistemic (inherent in the control of validation of statements), teleological (inherent 
in the strategic choice of tools to achieve the goal of the activity), and communicative (inherent 
in the conscious choice of suitable means to communicate understandably within a given 
community). In recent years, following Boero (2006), several researchers (e.g., Boero et al., 
2010; Boero & Planas, 2014; Morselli & Boero, 2011; Urhan & Bülbül, 2022a, 2022b; Zhuang, 
2020; Zhuang & Conner, 2018, 2020, 2022a) have used Habermas' construct of rationality to 
analyze students' behavior in proving and problem-solving processes and developed instructional 
tools to help teachers plan and manage argumentative discourse according to rationality 
components. Moreover, considering the gap exists between the rationality of teachers and 
students, some researchers (e.g., Boero & Planas, 2014; Boero et al., 2018; Urhan & Bülbül, 
2022; Zhuang & Conner, 2022a) have suggested the explicit introduction of Habermas' construct 
of rationality to students for pedagogical purposes to facilitate students' awareness of rationality 
requirements in proving and argumentation activities according to the teacher’s expectations.  
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Drawing on Habermas’ (1998) construct of rational behavior, Zhuang and Conner (2018, 
2022a) developed a rational questioning framework for teachers to support students in meeting 
the requirements of rationality in argumentation. The present study views rational questioning as 
a didactical tool that can be introduced to students in order to guide them in the validation of 
proofs as shaped by rationality requirements; because rational questioning guide students to 
concern the choice of appropriate and efficient methods (teleological rationality) on the basis of 
mathematical knowledge (epistemic rationality), such as rules, theorems, axioms, and principles 
and communicate in a precise way with the choice of understandable means of communication 
within the shared mathematical community (communicative rationality), which corresponds to 
what policy documents and mathematics educators suggest as important characteristics of proof 
in mathematics (Boero et al., 2010; Boero & Planas, 2014; NCTM, 2000; Stylianides, 2007).  

By adapting Habermas' (1998) construct of rationality and Zhuang and Conner's (2018, 
2022a) rational questioning framework, this study develops a proof validation framework (see 
Table 1) to support students' proof validation skills via the use of rational questioning. The 
purpose of this study is to explore how students validate the purported proofs (cf. Selden & 
Selden, 2003) through the use of the developed proof validation framework. More specifically, 
this study addresses the following research questions: 

1. Which rationality component is privileged when students accept or reject the purported 
proof?  

2. Which rationality components students are competent when they validate the purported 
proof? 

 
Table 1: Proof Validation Framework 

 
Components of Habermas' 

Rationality 
Rational questioning to consider when validating 

purported proofs 
Epistemic Rationality (ER):  
Uses valid definitions, axioms, and 
theorems shared by the 
mathematical community. 

E1. What are the mathema*cal defini*ons, 
axioms, or theorems stated in the proof? Are 
they true?  

E2. Are there any other defini*ons, axioms, or 
theorems that would more reliably account for 
the stated mathema*cal claims?  

E3. What are the warrants or reasons used to 
support the stated mathema*cal claims and 
mathema*cal arguments?  

E4. Does the proof provide correct warrants or 
reasons to jus*fy the stated mathema*cal 
claims and mathema*cal arguments?  

E5. Are the warrants or reasons convincing enough 
to help someone understand why the stated 
mathema*cal claims are true?  

Teleological Rationality (TR):  
Employs efficient proof strategies 
(e.g., direct proofs, proof by 

T1. What the proof methods (e.g., proof by 
contradic*on, direct proof) are used to prove 
the stated mathema*cal claims and 
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contradiction, proof by induction, 
etc.) to achieve the goal of proof. 

mathema*cal arguments? Are the proof 
methods used correctly and logically to 
achieve the goal of the proof? 

T2. How efficient is the applied proof method? 
Could any other methods be taken into 
account?  

T3. Could these proof methods be used to solve a 
similar problem? 

  Communicative Rationality (CR): 
Writes with forms of expression 
(e.g., mathematical language, visual 
representations, symbolic notation, 
etc.) that are understandable in the 
mathematical community.    

 

C1. Are the proofs or arguments represented 
clearly?  

C2. Do the proofs or arguments contain 
mathema*cally correct language, visual 
representa*ons, or symbolic nota*ons? 

C3. Are there any ways to organize or write the 
proofs or arguments more clearly? Are there 
any irrelevant or distrac*ng points? 

Methodology 
By following an instrumental case study (Stake, 1995), this study analyzed a cohort of 

mathematics graduate students' written responses from one of their course assignments in an 
online transition-to-proof course. The course serves as an introductory course for a master's 
mathematics program at a comprehensive state university in the United States to help students to 
review methods of mathematical proofs before they take advanced graduate-level mathematics 
courses. Because it is an online course, the participants of this study come from all over the 
world. Most participating students hold a bachelor’s degree related to mathematics (i.e., pure 
mathematics, applied mathematics, mathematics education) or have studied a STEM-related 
major (e.g., computer science) for their undergraduate degrees. A few students have some 
experience in proof-related mathematics courses, such as advanced calculus and abstract algebra, 
but none of them have taken a transition-to-proof course that specifically focuses on proof 
validation and written techniques. Many students in this class hope to teach mathematics at a 
community college after completing the master's program in mathematics.  

During the first couple of weeks of the course, the instructor introduced the proof validation 
framework (see Table 1) to the class and guided students to use the framework to validate the 
proofs that focused on direct proof methods through an online interactive learning community. 
Next, the students were expected to use the proof validation framework to complete the weekly 
Proof Writer's Workshop (PWW) assignment in which the students needed to read, evaluate, and 
critique at least one purported proof that is common to the new proof methods that are covered in 
the course. Students had to decide whether the purported proof that was given by the instructor 
should receive a pass (solid) proof, a revised (developing proof), or a failed grade (flawed proof), 
and the students were asked to justify their validations. In the assignment, the students were 
given a reflection question about the use of the proof validation framework: "Which components 
of rationality help you analyze this proof/argument? Explain." after they evaluated the purported 
proof. 

The data in this study include 16 participating students' written responses on a purported 
proof that focused on PBC. The purported proof and the reflection question from their PWW 
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assignments are shown in Figure 1. Before working on the PWW assignment, students were 
assigned to read the textbook How To Prove It (Velleman, 2019) in regard to PBC content. For 
this purported proof, the instructor expects the students to determine whether a fundamental flaw 
exists in reasoning about the definition of set difference (epistemic rationality). Although the 
PBC was used correctly, it may not be the most efficient proof method to apply, proof by 
contrapositive can be considered as a more efficient strategy (teleological rationality). This 
purported proof is well-written in text, but it could be more consistent with symbolic notations, 
such as the use of the set difference signs as "\" or "-" (communicative rationality).  

This study conducted a microanalysis of each student's written responses for one of their 
weekly PWW assignment (Corbin & Strauss, 2015). The responses provided by the students for 
the first question were utilized to assess the accuracy of their proof validation, as well as to 
analyze the rationality components in which students demonstrated competence during the 
validation of the proposed proof (RQ2). Through the use of the constant comparative method 
(Glaser & Strauss, 1967), the students' answers to the reflection question were used to investigate 
which rationality component is privileged when they make judgments (RQ1).  

 
Figure 1: Proof Writer's Workshop (PWW) Assignment Used in this Study 

Results 
Through the analysis of the students’ PWW assignment written responses, 14 out of 16 

students gave the purported proof (see Figure 1) either a revised or a failed grade. Interestingly, 
the two students who made the wrong evaluation, in which they gave a grade of pass, did not 
validate the purported proof based on rationality components. This section reports how these 14 
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students validated the purported proof through the use of the proof validation framework (see 
Table 1).  
Privileged Rationality Component  

Based on students' written responses to the reflection question, all 14 students stated that they 
evaluated the given purported proof through epistemic rationality. Most of the students drew on 
epistemic rationality to analyze the correctness of the definition of set difference (under the 
guidance of E1 rational questioning, see Table 1). For instance, one student responded, "The 
epistemic rational element was the primary element that helped me analyze this proof because 
not stating a valid definition is what leads to the flaw in reasoning. You could also say that a 
valid definition (set difference) was incorrectly applied." A few students pointed out that the 
purported proof had a lack of warrants or reasons to support the stated theorem because the 
definition of the subset (given 𝐴	 ⊆ 𝐵) should be employed (under the guidance of E4 rational 
questioning).  

Eight students mentioned that they applied teleological rationality when they validated the 
purported proof. One student highlighted that "The main rationality element that helped the most 
with this proof is teleological because the use of PBC seemed odd to me." The students generally 
drew on teleological rationality to evaluate the correctness of the proof method (under the 
guidance of T2 rational questioning, see Table 1). However, students rarely focused on the 
effectiveness of the proof method (under the guidance of T3 and T4 rational questioning). Only 
one student suggested that the proof could be shorter if a direct proof method were employed.  

Eight students concentered on the communicative rationality of the purported proof. Most of 
them were satisfied with the language and notation that was used in the given purported proof 
(under the guidance of C1 and C2 rational questioning). Some students have different opinions 
as to whether the proof method should be stated in the beginning. For instance, one student stated 
that "It was also nice to have them state the proof method in the first sentence, so the reader 
knows what assumptions should be expected." Another student commented, "Maybe a little 
redundant to say proving by contradiction and then stating again that they were supposing for 
contradiction."  

Overall, when validating the given purported proof, 7 students articulated that all three 
components of rationality helped them to validate the purported proof. Five students merely 
mentioned epistemic rationality. One student focused on both epistemic and teleological 
components of rationality and another focused on both epistemic and communicative 
components of rationality. In this sense, epistemic rationality appears to be the privileged 
rationality component when students accept or reject the given purported proof.  
Competent Rationality Components  

Among students who focused on the epistemic rationality component, 11 students were able 
to determine the correctness of the definition of set difference as stated in the purported proof, 
"From the definition of set difference, this tells us that 𝑥 ∉ 𝐵 and 𝑥 ∈ 𝐶. " In addition, five of 
them corrected the definition in their written responses either by stating the correct definition or 
providing a counterexample. On the other hand, three students thought that the writer stated the 
definition of set difference correctly.  

Of eight students who attended the teleological rationality component, four thought that the 
PBC method was applied correctly. Another four students articulated that the writer did not 
follow the PBC strategy due to incorrect assumptions. For instance, one student stated that "The 
use of contradiction is wrong since the contradiction used, 𝑥 ∉ 𝐵 − 𝐶 which contradicts the 
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primary given assumption." The rest of the three students argued that the writer should assume 
𝑥 ∉ 𝐴 − 𝐶 because according to their understanding of PBC, the writer should assume the 
negation of the if portion of the statement.  

The students who have paid attention to the communicative rationality all agreed that the 
purported proof was written clearly in the text. As one student commented, "The proof was 
written clearly and used correct notations."  Several students recommended improving the 
written work by ensuring consistency in the usage of notations, such as the set difference sign. 

The results of this study also showed that 3 out of 14 students provided both invalid 
interpretations of epistemic and teleological rationality even though they rated the purported 
proof as revised. In addition, the two students who gave the grade of pass did not apply the proof 
validation framework. Without focusing on any rationality component, one student simply 
commented that "This proof looks to be sufficient to support the conclusion." Another student 
applied the direct proof method to show that the given purported proof was true in terms of the 
theorem and therefore concluded that the presented purported proof should pass with a lack of 
concentration on the purported proof itself. 

Discussion 
Researchers have used Habermas’ (1998) construct to identify and interpret the challenges 

that are experienced by university students in mathematical proving and problem-solving 
activities (e.g., Boero & Morselli, 2009; Urhan & Bülbül, 2022b). This study responds to the call 
within the field to conduct research that develops approaches to teaching proof validations 
explicitly. The results of this study indicate that the proof validation framework (see Table 1) 
based on Habermas’ (1998) construct of rationality and guided by rational questioning (Zhuang, 
2020; Zhuang & Conner, 2018, 2022a) provides students with a tool to validate mathematical 
proofs in terms of rationality components rather than simply focused on what Selden and Selden 
(2003) called the surface features of proofs and arguments. According to Boero et al. (2010), the 
goal of developing rational behavior in proving must be guided and promoted by teachers. The 
introduction of the proof validation framework to students scaffolds them to be aware of the 
rationality requirements inherent in proving and to facilitate students' maturation of acting 
rationality in proving activities in a long-term teaching intervention. As one student replied in the 
reflection question, “All three of the elements of rationality helped me to analyze this proof. I 
found that the rational questions provided helped me the most. The questions allowed me to look 
for specific reasoning in the proof. This allowed me to break apart the proof, sentence by 
sentence, and apply the rational elements.”  

Previous research that examined students' abilities in proof validation has primarily 
concentrated on assessing the accuracy of their judgments regarding the warrants or reasons 
presented in the purported proofs (Alcock & Weber, 2005; Selden & Selden, 2003; Sommerhoff 
& Ufer, 2019; Weber & Alcock, 2005). Habermas' construct provides us with a more 
comprehensive frame in which to understand varying aspects of students' acceptance criteria for 
validating mathematical proofs, especially for teleological rationality and communicative 
rationality. The construct enables teachers to identify students' competence in rationality 
components and embeds students' competence in rationality components into their classroom 
instruction.  

The result of this study showed that the epistemic rationality was represented as the 
privileged rationality component when students validated the given purported proof. This finding 
is unsurprising given that the principal flaw inherent in the purported proof lies in the incorrect 
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definition of the stated set difference. This finding is also consistent with previous studies (see 
Alcock & Weber, 2005; Inglis & Alcock, 2012; Ko & Knuth, 2013; Kirsten & Greefrath, 2023; 
Selden & Selden, 2003; Sommerhoff & Ufer, 2019) in which students tended to check proofs 
line by line to make sure that each statement in the argument is mathematically correct. In 
addition, this study found that only 8 out of 14 students considered either the teleological or the 
communicative rationality component when they made judgments. This result implies that 
students prioritized the evaluation of the truthfulness of the stated assertions, rather than 
critically assessing the appropriateness and effectiveness of the employed proof method, as well 
as the clarity of the proof presentation. What is most disappointing is that only a single student 
acknowledged the efficiency of utilizing PBC in the purported proof. Hence, it is imperative for 
teachers to provide guidance to students regarding the teleological and communicative rationality 
during the process of proof validation, in order to direct the students’ attention toward the overall 
strategy employed and the written structure of the proof. 

Although the students who applied the proof validation framework (see Table 1) correctly 
rated the purported proof as either revised or failed under the guidance of rational questioning, it 
was noticed that some students' interpretations of rationality components were incompetent. The 
failures of interpretations include inadequate knowledge of the definition of set difference 
(epistemic rationality) and the incorrect assumption of negating if statement regards PBC 
(teleological rationality). These results demonstrate the importance to ask students to provide 
justifications for their validation according to the three rationality components because it enables 
teachers to determine the rationality components at which the students are competent. In this 
way, teachers can plan and design the follow-up process of teaching not only by focusing on 
students' gaps in mathematical knowledge but also by taking the rationality components into 
account based on the rationality requirements that teachers expect students to achieve in proving 
activities.  

Implications and Future Directions  
A number of studies (e.g., Kirsten & Greefrath, 2023; Selden & Selden, 2003, 2015; 

Sommerhoff & Ufer, 2019) have consistently revealed the challenges encountered by university 
students in the process of validating proofs. However, the skills critical for proof validation often 
do not receive adequate emphasis within the mathematics classroom. 

This study proposes the idea of introducing the proof validation framework (see Table 1) to 
students in a transition-to-proof course. This framework provides a way for students to 
implement rationality components when they validate proofs, so they may benefit from 
interventions that focus on the requirements of rationality behavior in proving activities. 
Moreover, the utilization of the proof validation framework enables teachers to evaluate students' 
proof validation performance at a meta-level, as described by Boero et al. (2010), encompassing 
an awareness of the constraints associated with the three components of rationality as well as the 
content of the proof. For pedagogical purposes, the proof validation framework scaffolds 
students to realize proving as a rational process and guides them to gradually move to an 
awareness of epistemic, teleological, and communicative requirements of rationality that is 
inherent in proving as a long-term teaching intervention.  

The present study proposes one potential way to improve students’ proof validation skills, 
and other possible ways to improve students’ skills in proof validation are worthy of 
investigation. Zhuang and Conner (2022b) discussed the use of students' incorrect answers 
through classroom-based argumentation, so it may be beneficial to examine errors in proofs that 
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are constructed by students. Additionally, it would be interesting to investigate whether students 
are able to apply the skills of proof validation in terms of rationality components to their 
construction of proofs.  
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COMBINING COVARIATIONAL REASONING AND CAUSALITY TO 
CONCEPTUALIZE FEEDBACK LOOPS 

COMBINANDO EL PENSAMIENTO COVARIACIONAL Y LA CAUSALIDAD PARA CONCEPTUALIZAR 
BUCLES DE RETROALIMENTACIÓN 

Darío González 
Universidad Autónoma de Chile 
dario.gonzalez@uautonoma.cl 

This paper introduces two theoretical constructs, open-loop covariation and closed-loop 
covariation, that combine covariational reasoning and causality to characterize the way that 
three preservice mathematics teachers conceptualize a feedback loop relationship in a 
mathematical task related to climate change. The study’s results suggest that the preservice 
teachers’ reasoning about feedback loop between quantities involved the ability to conceive 
closed-loop covariation, which in this study was characterized by two cognitive realizations: (i) 
the conception of simultaneous change and (ii) the recognition of circular causality. These 
realizations, at least for the participants, appeared to be independent from one another. The 
theoretical distinction between open- and closed-loop covariation could inform instructional 
strategies to develop students’ ability to think about and model feedback loops. 

Keywords: Cognition, Integrated STEM / STEAM, Modeling, Sustainability. 

Purpose of The Study 
Authors from disciplines as diverse as biology, chemistry, engineering, economy, and 

mathematics have proposed that current global, complex, politically charged, socio-scientific 
issues (universal income, evolution, pandemic and vaccines, climate change, etc.) require STEM 
professionals to understand them as complex systems (Ghosh, 2017; Orgill et al., 2019; Renert, 
2011; Richmond, 1997; Roychoudhury et al., 2017; Schuler et al., 2018). This holistic 
perspective, known as systems thinking, focuses on understanding phenomena in terms of 
relationships, connectedness, and context. Systems thinking complements the analytic or 
reductionist perspective commonly used in STEM and STEM education fields. An important 
distinction between these perspectives involves causality; while the reductionist perspective 
focuses on linear, direct cause-and-effect relationships, systems thinking involves identifying 
complex causality relationships. An important type of these relationships are feedback loops, or a 
“succession of cause-effect relations that start and end with the same variable. It constitutes a 
circular causality, only meaningful dynamically, over time” (Barlas, 2002, p. 1147). 

Mathematics represents a powerful way to make sense of relationships, which can be 
understood as two (or more) quantities changing together over time. Feedback loops, therefore, 
can be seen as two (or more) quantities changing simultaneously in a way such that, the first 
quantity causes the second quantity to change, and that change causes the first quantity to change 
again, and so on. In particular, I believe that combining covariational reasoning with the notion 
of causality can provide insights into how students can understand feedback loop relationships in 
mathematics. 

In this paper, I combine covariational reasoning and causality to introduce two theoretical 
constructs, open-loop covariation and closed-loop covariation, which can characterize the way 
that three preservice teachers conceptualize a feedback loop relationship in a mathematical task 
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related to climate change. The constructs also have the potential to address a gap in the literature 
focusing on covariational reasoning which have a tendency to consider only unidirectional 
implications of change and leave underexplored the role of real-world causality. I also discuss 
possible implications for mathematics learning and teaching. 

Conceptual Framework 
Covariational Reasoning and the Multiplicative Object 

Covariational reasoning finds one of its earliest definitions in the work of Saldanha and 
Thompson (1998), who defined it as follows: 

Someone holding in mind a sustained image of two quantities’ values (magnitudes) 
simultaneously. It entails coupling the two quantities, so that, in one’s understanding, a 
multiplicative object is formed of the two. As a multiplicative object, one tracks either 
quantity’s value with the immediate, explicit, and persistent realization that, at every 
moment, the other quantity also has a value … An operative image of covariation is one in 
which a person imagines both quantities having been tracked for some duration, with the 
entailing correspondence being an emergent property of the image. (pp. 298-299) 

The multiplicative object in their definition is analogous to the logical conjunction “and” that 
joins or units two propositions to produce one proposition that is true if and only if both of the 
constituent propositions are true. In the case of covariation, the multiplicative object joins the 
corresponding values of two covarying quantities so that the student “mentally unites their 
attributes to make a new attribute that is, simultaneously, one and the other” (Thompson et al., 
2017, p. 96). This multiplicative object supports the student’s ability to conceptualize two (or 
more) quantities changing simultaneously and interdependently. 
 
Open- and Closed-Loop Covariation 

Covariational reasoning support the conceptualization of two quantities changing 
simultaneously. However, simultaneity may not be enough to conceptualize feedback loop 
structures in a system. I propose that the way causality is conceived may also play an important 
role in conceptualizing a feedback loop relationship between two covarying quantities. To 
address this distinction, I introduced two constructs: open-loop covariation (OLC) and closed-
loop covariation (CLC). 

Let’s consider the filling bottle problem where water is being pour into the bottle at a 
constant rate, increasing the volume of water, V, and the water height, h, in the bottle. The 
multiplicative object allows one to visualize V and h changing simultaneously over time so that 
there exist a pair (V(t), h(t)) for any t in some interval of conceptual time. One imagines that if V 
changes, so does h, and if h changes, so does V; they change together. The multiplicative object, 
thus, support a student’s ability to conceptualize simultaneous change between two quantities. 

However, the multiplicative object does not provide an answer to the questions of how and 
why a change in V results in a change in h, or vice versa. In this paper, I use the term causality as 
a way of describing how and why the state of a dynamic process changes as time goes on (Sauer, 
2010). The volume of water V, or the space taken by the water in the bottle, is growing since 
more and more water is entering the bottle. One also observes (or imagines) that the water 
height, h, is increasing as water enters the bottle; that is, h grows as V grows. One could say that 
the growing volume of water in the bottle causes the water height to increase; the more water 
enters the bottle, the more the water height increases. This is a description of how and why a 
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change in V causes a change in h. It is important to point out that thinking of causality in the 
opposite direction may not be as natural or intuitive; mathematically, changing the value of h 
would change the value of V, but it is hard to imagine that, in a real-world context, an increase in 
h would cause more water to enter the bottle. I use causality in that second “real-world” sense 
and consider the covariation of h and V as OLC, which shows simultaneity (V and h change 
together) and only linear causality (a change in V causes a change in h, and may not be as 
intuitive to say that a change in h causes a change in V). 

The conceptualization of a feedback loop structure between covarying quantities is only 
possible when there exists circular causality between those quantities. For instance, consider a 
simple predator-prey model relationship in which P is the number of predators in a region and N 
is the number of preys in the same region. We assume that predation (magnitude of P) is the only 
factor affecting N and that prey availability (magnitude of N) is the only factor affecting P. With 
those assumptions, P increases when N increases because an increase in availability of prey 
produces prosperity for predators, who can reproduce more. However, when P increases passed 
certain value, N starts to decrease because an increase in predator means that more preys would 
die. When N decreases passed certain threshold value, P would start to decrease as well because 
predators do not have enough food to sustain their population. As P decreases passed certain 
value, N becomes to increase again because there are less predators and less preys get eaten. This 
is an example of CLC, which shows simultaneity (P and N change together) and circular 
causality (changes in N cause changes in P, which in turn cause changes in N again and so on). 
Conceptualizing circular causality, as illustrated by the predators-prey model, seems to be more 
cognitively demanding than conceptualizing linear causality (Ghosh, 2017; Hokayen et al., 2015; 
Roberts, 1978; Wellmanns & Schmiemann, 2022). 

Methodology 
This paper is part of a larger study that investigated how PSTs make sense of some elemental 

mathematics behind modeling climate change. Three secondary PSTs ¾hereafter Jodi, Pam, and 
Kris¾ enrolled in a mathematics education program at a large Southeastern university 
participated in the larger study. These PSTs had completed Calculus I and II and an Intro to 
Higher Mathematics course and were completing a Math Modeling for Teachers course by the 
time the larger study took place. The PSTs were asked to complete an original sequence of 
mathematical tasks while participating in individual, task-based interviews (Goldin, 2000). In 
this paper, I focus on the PSTs’ responses to the Energy Balance task. 

 
The Energy Balance (EB) Task 

An energy balance model describes the continuous heat exchange between the sun, the 
planet’s surface, and the atmosphere (Figure 1a). The planet’s surface is warmed by a fraction of 
the sun’s radiation (S). As the surface’s temperature increases, it radiates heat towards the 
atmosphere (R). The majority of it (B) is absorbed by greenhouse gases (GHG), which rises the 
atmosphere’s temperature. As it warms up, the atmosphere radiates a fraction of the absorbed 
heat back to the surface (A). The latter further increases the surface’s temperature, which results 
in an increase of surface radiation towards the atmosphere and an increase in the atmosphere’s 
temperature. The continuous heat exchange between the surface and the atmosphere is known as 
the greenhouse effect and has a key role in controlling the planet’s mean surface temperature, T. 
The relative abundance of GHG in the atmosphere regulates the amount of heat it absorbs. 
Therefore, changes in the concentration of GHG are followed by changes in T. 
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The EB task (Figure 1b) describes a simplified situation that begins with an energy balance at 
the surface; that is, the surface absorbs heat at the same rate it releases it (S + A = R in Figure 
1a). Then, it is assumed that a unique and instantaneous pulse of carbon dioxide (CO2) is 
released at t = 0 to increase its concentration in the atmosphere. The EB task focuses on CO2 for 
it is one of the main drivers of global warming (IPCC, 2018). The instantaneous increase in CO2 
is followed by an instantaneous increase in A, the heat radiation from the atmosphere to the 
surface. Thus, at t = 0, the surface is absorbing heat at a higher rate than that at which it is 
releasing it (S + A > R in Figure 1a). The surface then begins to warm up as time elapses (T 
increases as t increases) and to increase its heat radiation towards the atmosphere (R increases as 
t increases). The atmosphere also begins to warm up and to further increase its heat radiation 
back to the surface (A increases as t increases). This further warms the surface and further 
increases the surface heat radiation towards the atmosphere (T and R continue to increase as t 
increases). This energy feedback loop between the surface and the atmosphere allows for R to 
increase enough so that a new energy balance is reached (S + A = R). This balance is 
accompanied by a new (higher) value of T. Thus, the goal of the EB task was to engage PSTs 
into thinking about how the Earth’s energy balance’s response to an increase in CO2 results in an 
increase in the mean surface temperature, T, thus connecting CO2 pollution to global warming. 

The current paper examines the PSTs’ reasoning regarding the feedback loop between the 
surface and the atmosphere in terms of a covariation between R and A with respect to time. The 
results will mainly focus on the PSTs’ responses to the second part of the EB task, in which they 
were asked to draw the graph of T as a function of time t (Figure 1b). 
 

 
 

 
Figure 1: (a) An Earth’s energy balance model (left) and (b) the EB task (right) 

Data Collection 
Before working on the EB task, the PSTs participated in a 32-minute-long, individual 

minilesson where some basic concepts related to the Earth’s energy balance and the greenhouse 
effect were discussed. The goal was to provide PSTs with enough knowledge about those 
concepts so that they could start working on the EB task. The minilesson began with a 7-minute-
long video retrieved from the NASA YouTube channel NASAEarthObservatory introducing the 
energy balance and the greenhouse effect. Then, each PST and I held a 5-minute-long Q&A 
session in which we clarified questions about the ideas discussed in the video. During the next 20 
minutes, each PST and I worked with a diagram of the energy balance similar to the one in 
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Figure 1a. We talked about what each of the quantities S, R, L, B, and A represented and how 
they related to one another. Then, we talked about the energy balance at the surface as the 
equality S + A = R, and I illustrated it for some specific initial values of S, A, and R. We also 
discussed what inequalities such as S + A > R or S + A < R could mean in terms of temperature. 

A week after the minilesson, each PST completed the EB task during a 60-minute-long, 
individual, task-based interview (Goldin, 2000). The interviews were semi-structured and had an 
interview protocol with pre-defined questions so that all participants received similar prompts 
during the interviews. To help PSTs understand how the energy balance responds to the increase 
in CO2, the following recursive rules were made available to them: Bt = k·Rt, At = ½·Bt, and Rt + 1 
= S + At, for some 0 ≤ k ≤ 1. By using these rules, they could find the values of B, A, and R for 
successive values of time, thus observing how these quantities change dynamically. This 
modelling strategy is known as Discrete Event Simulation and can be used to help students 
understand the dynamics of systems in particular situations (Hoad & Kunc, 2018). 
 
Data Analysis 

The interview videos and transcripts were analyzed through thematic analysis (Braun & 
Clarke, 2006; 2012). This qualitatively method of data analysis allows for systematically 
identifying, organizing, and offering insight into patterns of meaning across a data set though the 
development of codes and themes. Thematic analysis is a widely used analytic strategy to 
identify and make sense of collective or shared meanings and experiences. The method can be 
summarized into six phases: familiarizing yourself with your data, generating initial codes, 
searching for themes, reviewing themes, defining and naming, and producing the report. 

I watched all interview videos and took notes while doing so. The videos were separated into 
shorter, more manageable episodes, each one covering a single topic or showing evidence of a 
particular way of reason covariationally. The notes informed my first round of coding for the 
interview transcripts. Then, the episode transcripts were sorted according to similar codes to look 
for patterns in participants’ responses. This allowed me to revise and refine the initial codes, 
reducing them to two main themes. Thus, the five initial codes “asynchronous”, “synchronous”, 
“feedforward but not feedback”, “verbalizing/indicating circularity”, and “circular relationship” 
were collapsed into two themes: “Simultaneous Change”, with “asynchronous” being the 
absence thereof and “synchronous” being the presence thereof, and “Circular causality”, with 
“feedforward but not feedback” representing the absence thereof and “verbalizing/indicating 
circularity” and “circular relationship” representing the presence thereof. 

Using the analytic framework previously described (Table 1), I indexed all episode 
transcripts into three analytic matrices, one per participant. These matrices allowed me to look 
for patterns in the distribution of themes, which provided the information needed to meet the 
research goals. 

Results 
The analysis revealed that, for this group of preservice teachers, two main cognitive 

realizations appear important to conceptualize the energy feedback loop between the surface and 
the atmosphere (the greenhouse effect) as a CLC between the quantities R and A: conceiving 
simultaneity of change and a circular causality relationship between those quantities. When one 
of these realizations was not supported, the PSTs developed inaccurate conceptualizations of the 
greenhouse effect and, by extension, this had an impact on their understanding of the link 
between CO2 pollution and global warming. 
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Table 1: Analytic Framework 
 

Theme Descriptions 

Simultaneity 

Asynchronous 
The PST describes or represents changes in A and R as occurring asynchronously (A changes 
first, then R changes, then A again, and so on). 
Synchronous 
The PST describes or represents changes in A and R as occurring simultaneously as time elapses. 

Causality 

Linear 
The PST describes or represents causality in one direction between A and R. Either change in A 
causes change in R or change in R causes change in A. 
Circular 
The PST describes or represents a circular causality between A and R so that change in A causes 
change in R, which in turn causes change in A again. 

 
The PSTs explored the greenhouse effect as an energy feedback loop while working on their 

graphs of T = g(t). I start the discussion with Kris’ work because she conceptualized the 
greenhouse effect in terms of CLC. More specifically, Kris made remarks about R and A 
increasing simultaneously as time, t, increased: “So, as R increases, A increases … the new R is 
affected by S plus A [points at S and A]. So, when A increases, R is going to be [bigger]. It can’t 
just keep increasing”. Kris also made remarks suggesting she conceived of a circular causality 
relationship between the quantities R and A. 

Well, [the surface] keeps in taking. I think it is warming up because once we added more 
CO2, that is less of the emitted energy that is getting just like shut out passed the atmosphere, 
leaked from it. So then, more of it is going to be absorbed by the atmosphere … Whatever is 
absorbed by the atmosphere [points at B] is going to be absorbed back into the [points at the 
surface], well half of that plus the sun’s energy [points at S] is going to be absorbed by the 
Earth, which is going to keep increasing, as we saw with like the 400 [points at the R-value 
of “400”]. Then, from the A value [with a capped marker, traces the top half of a circle, 
going from R to A], just with the A, [the surface] absorbs 160, and then we add a new R-value 
[with the capped marker, traces the bottom half of the circle, going from A to R], whatever 
that was, and then [the surface] absorbs 164 [with the capped marker, re-traces the top half 
of the circle, going from R to A]. So, I think it is going to keep increasing [draws an 
increasing, concave-downward graph for T = g(t) that appears to have a horizontal 
asymptote that she labels as “new equilibrium temperature”]. 

In the above excerpt, Kris repeatedly referred to the relationship between R and A as a “cycle”, 
which suggests an awareness of circular causality between the quantities. Also, notice how she 
gestured both, the feedforward relationship from A to R and the feedback relationship from R 
back to A, further suggesting circular causality. Kris also drew an accurate graph of T = g(t) 
showing asymptotic growth towards a new equilibrium value (Figure 2a); this suggests an 
awareness of the balancing quality of the feedback loop. Kris’s CLC coincided with her 
demonstrating an accurate conception of the greenhouse effect, which guided her to conclude 
that an increase in CO2 causes a warming effect over the planet’s surface, correctly relating CO2 
pollution to global warming. 
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Figure 2: (a) Kris’s graph of T = g(t) (left) and (b) Pam’s graph of T = g(t) (right) 

 
The case of Pam illustrates the conceptualization of OLC, where simultaneous change is 

conceived but not circular causality. She described R and A as two quantities increasing in 
tandem as t increased but only in the A-to-R direction (“R increases as [emphasis added] A 
increases. So, as [emphasis added] our A increases, R increases”). Pam also interpreted the 
increase in R and A as the planet’s surface emitting more heat than the heat it was absorbing, 
which suggested additional evidence of only conceiving causality from A to R. 

A lot [of heat] is going in, but more is coming out, like R increases as A increases. So, as our 
A increases, R increases. But our S is staying the same. But our A is always less than R. So, 
more [heat] is coming out [pauses to think]. So, the Earth is trying to cool itself off, so the 
temperature is decreasing from here to here. 

Pam again implied that an increase in A causes an increase in R, but did not appear aware that the 
increase in R also causes a new increase in A. She referred to R as heat leaving the surface and 
being larger than the heat absorbed by it. This claim overlooked that A is actually a fraction of R 
that is reabsorbed by the surface. This might have kept Pam from conceptualizing the feedback 
relationship from R back to A. Pam’s OLC coincided with her demonstrating an inaccurate 
conception of the greenhouse effect, which may have led her to incorrectly conclude that the 
planet’s surface cools down after an increase in CO2, as her graph shows (Figure 2b). 

Finally, Jodi’s reasoning did not support simultaneous change but supported circular 
causality between R and A. In the following excerpt, Jodi appeared to imagine R and A as 
changing asynchronously—A changes first, then R changes, and then A again, and so on—but 
seemed aware of the circular causality between those two quantities. 

I am trying to look at the differences. So, like here [points at the R-value “390” and the A-
value “150”]. Ok, so here the change was five [points at the R-value “395” and the A-value 
“155”]. The change was two [points at the R-value “397” and the A-value “157”]. Is it, I 
mean, is it not changing? … The flow of energy increased by five [points at the A-value 
“155”], but then it decreased by five [points at the R-value “395”]. Then it increased by two 
[points at the A-value “157”], and then it decreased by two [points at the R-value “397”]. 
So, it is almost as if there was no change in temperature because I associate like energy as 
kind of having a relationship with temperature. So, if the energy increases, then the 
temperature increases. But, in this scenario, an equal change in energy [points at A] was an 
equal change in output [with her index finger, traces the bottom half of a circle from A to R] 
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… Ok, cycle started here [points at B], and here the Earth’s temperature would’ve been 
something. Equal input of energy, equal output of energy [with her index finger, traces a 
circle connecting A, R and B]. Ok. So, when the cycle started, there was an input of energy 
[points at A], and then it got released [with her index finger, traces the bottom half of a circle 
from A to R]. Another cycle starts [points at B], input of energy, release of energy [with her 
index finger, traces a circle connecting B, A, and R]. So, it would almost be like [draws a 
periodic curve formed by identical arcs]. 

Notice how Jodi described the changes in R and A as happening at different times rather than 
simultaneously. This suggests Jodi did not develop a multiplicative object and her reasoning may 
not be considered covariational. In contrast, she did allude to circular causality by tracing circles 
with her finger connecting R and A. I also interpreted the periodicity of her graphs (Figure 3) as 
additional evidence of awareness of circular causality. Jodi’s way of reasoning coincided with 
her demonstrating an inaccurate conception of the greenhouse effect and arriving to an incorrect 
conclusion regarding the real impact of CO2 pollution on the planet’s surface temperature. 
 

 
Figure 3: Jodi’s periodic graphs of T = g(t) 

Conclusion 
Some situations that involve two quantities changing together over time also require the 

recognition of an underlying feedback loop structure between them. The study’s results suggest 
that, for this group of preservice teachers, reasoning about feedback loop between quantities 
involved the ability to conceive closed-loop covariation, which in this study was characterized 
by two cognitive realizations: (i) the conception of simultaneous change and (ii) the recognition 
of circular causality. The first realization is based on the mental construction of a multiplicative 
object between those quantities (Saldanha & Thompson, 1998; Thompson et al., 2017), while the 
second realization involves noticing that changes in a quantity cause change in the second 
quantity, which in turn cause new changes in the first quantity and so on. The results also 
suggests that these two realizations, at least for these preservice teachers, appeared to be 
independent from each other. Kris demonstrated both realizations, while Pam and Jodi 
demonstrated one or the other but not both. An implication of this is that instructional strategies 
aiming to support students’ ability to understand feedback loops mathematically should focus on 
developing both realizations at the same time. 

It also important to point out that many school mathematical tasks involving change between 
quantities may only require open-loop covariation, where students oftentimes only need to attend 
to linear causality between the quantities. Examples of these are situations modeled by linear or 
quadratic functions. However, closed-loop covariation may be an interesting and novel way to 
explore situations involving exponential growth (e.g., compound interest or population growth), 
where the current value of the dependent quantity plays a role on how that quantity changes. 
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COMBINING COVARIATIONAL REASONING AND CAUSALITY TO 
CONCEPTUALIZE FEEDBACK LOOPS 

COMBINANDO EL PENSAMIENTO COVARIACIONAL Y LA CAUSALIDAD PARA CONCEPTUALIZAR 
BUCLES DE RETROALIMENTACIÓN 

Darío González 
Universidad Autónoma de Chile 
dario.gonzalez@uautonoma.cl 

This paper introduces two theoretical constructs, open-loop covariation, and closed-loop 
covariation, that combine covariational reasoning and causality to characterize the way that 
three preservice mathematics teachers conceptualize a feedback loop relationship in a 
mathematical task related to climate change. The study’s results suggest that the preservice 
teachers’ reasoning about feedback loop between quantities involved the ability to conceive 
closed-loop covariation, which in this study was characterized by two cognitive realizations: (i) 
the conception of simultaneous change and (ii) the recognition of circular causality. These 
realizations, at least for the participants, appeared to be independent from one another. The 
theoretical distinction between open- and closed-loop covariation could inform instructional 
strategies to develop students’ ability to think about and model feedback loops. 

Keywords: Cognition, Integrated STEM / STEAM, Modeling, Sustainability. 

Purpose of The Study 
Authors from disciplines as diverse as biology, chemistry, engineering, economy, and 

mathematics have proposed that current global, complex, politically charged, socio-scientific 
issues (universal income, evolution, pandemic and vaccines, climate change, etc.) require STEM 
professionals to understand them as complex systems (Ghosh, 2017; Orgill et al., 2019; Renert, 
2011; Richmond, 1997; Roychoudhury et al., 2017; Schuler et al., 2018). This holistic 
perspective, known as systems thinking, focuses on understanding phenomena in terms of 
relationships, connectedness, and context. Systems thinking complements the analytic or 
reductionist perspective commonly used in STEM and STEM education fields. An important 
distinction between these perspectives involves causality; while the reductionist perspective 
focuses on linear, direct cause-and-effect relationships, systems thinking involves identifying 
complex causality relationships. An important type of these relationships are feedback loops, or a 
“succession of cause-effect relations that start and end with the same variable. It constitutes a 
circular causality, only meaningful dynamically, over time” (Barlas, 2002, p. 1147). 

Mathematics represents a powerful way to make sense of relationships, which can be 
understood as two (or more) quantities changing together over time. Feedback loops, therefore, 
can be seen as two (or more) quantities changing simultaneously in a way such that, the first 
quantity causes the second quantity to change, and that change causes the first quantity to change 
again, and so on. In particular, I believe that combining covariational reasoning with the notion 
of causality can provide insights into how students can understand feedback loop relationships in 
mathematics. 

In this paper, I combine covariational reasoning and causality to introduce two theoretical 
constructs, open-loop covariation and closed-loop covariation, which can characterize the way 
that three preservice teachers conceptualize a feedback loop relationship in a mathematical task 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 116 

related to climate change. The constructs also have the potential to address a gap in the literature 
focusing on covariational reasoning which have a tendency to consider only unidirectional 
implications of change and leave underexplored the role of real-world causality. I also discuss 
possible implications for mathematics learning and teaching. 

Conceptual Framework 
Covariational Reasoning and the Multiplicative Object 

Covariational reasoning finds one of its earliest definitions in the work of Saldanha and 
Thompson (1998), who defined it as follows: 

Someone holding in mind a sustained image of two quantities’ values (magnitudes) 
simultaneously. It entails coupling the two quantities, so that, in one’s understanding, a 
multiplicative object is formed of the two. As a multiplicative object, one tracks either 
quantity’s value with the immediate, explicit, and persistent realization that, at every 
moment, the other quantity also has a value … An operative image of covariation is one in 
which a person imagines both quantities having been tracked for some duration, with the 
entailing correspondence being an emergent property of the image. (pp. 298-299) 

The multiplicative object in their definition is analogous to the logical conjunction “and” that 
joins or units two propositions to produce one proposition that is true if and only if both of the 
constituent propositions are true. In the case of covariation, the multiplicative object joins the 
corresponding values of two covarying quantities so that the student “mentally unites their 
attributes to make a new attribute that is, simultaneously, one and the other” (Thompson et al., 
2017, p. 96). This multiplicative object supports the student’s ability to conceptualize two (or 
more) quantities changing simultaneously and interdependently. 
Open- and Closed-Loop Covariation 

Covariational reasoning support the conceptualization of two quantities changing 
simultaneously. However, simultaneity may not be enough to conceptualize feedback loop 
structures in a system. I propose that the way causality is conceived may also play an important 
role in conceptualizing a feedback loop relationship between two covarying quantities. To 
address this distinction, I introduced two constructs: open-loop covariation (OLC) and closed-
loop covariation (CLC). 

Let’s consider the filling bottle problem where water is being pour into the bottle at a 
constant rate, increasing the volume of water, V, and the water height, h, in the bottle. The 
multiplicative object allows one to visualize V and h changing simultaneously over time so that 
there exist a pair (V(t), h(t)) for any t in some interval of conceptual time. One imagines that if V 
changes, so does h, and if h changes, so does V; they change together. The multiplicative object, 
thus, support a student’s ability to conceptualize simultaneous change between two quantities. 

However, the multiplicative object does not provide an answer to the questions of how and 
why a change in V results in a change in h, or vice versa. In this paper, I use the term causality as 
a way of describing how and why the state of a dynamic process changes as time goes on (Sauer, 
2010). The volume of water V, or the space taken by the water in the bottle, is growing since 
more and more water is entering the bottle. One also observes (or imagines) that the water 
height, h, is increasing as water enters the bottle; that is, h grows as V grows. One could say that 
the growing volume of water in the bottle causes the water height to increase; the more water 
enters the bottle, the more the water height increases. This is a description of how and why a 
change in V causes a change in h. It is important to point out that thinking of causality in the 
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opposite direction may not be as natural or intuitive; mathematically, changing the value of h 
would change the value of V, but it is hard to imagine that, in a real-world context, an increase in 
h would cause more water to enter the bottle. I use causality in that second “real-world” sense 
and consider the covariation of h and V as OLC, which shows simultaneity (V and h change 
together) and only linear causality (a change in V causes a change in h, and may not be as 
intuitive to say that a change in h causes a change in V). 

The conceptualization of a feedback loop structure between covarying quantities is only 
possible when there exists circular causality between those quantities. For instance, consider a 
simple predator-prey model relationship in which P is the number of predators in a region and N 
is the number of preys in the same region. We assume that predation (magnitude of P) is the only 
factor affecting N and that prey availability (magnitude of N) is the only factor affecting P. With 
those assumptions, P increases when N increases because an increase in availability of prey 
produces prosperity for predators, who can reproduce more. However, when P increases passed 
certain value, N starts to decrease because an increase in predator means that more preys would 
die. When N decreases passed certain threshold value, P would start to decrease as well because 
predators do not have enough food to sustain their population. As P decreases passed certain 
value, N becomes to increase again because there are less predators and less preys get eaten. This 
is an example of CLC, which shows simultaneity (P and N change together) and circular 
causality (changes in N cause changes in P, which in turn cause changes in N again and so on). 
Conceptualizing circular causality, as illustrated by the predators-prey model, seems to be more 
cognitively demanding than conceptualizing linear causality (Ghosh, 2017; Hokayen et al., 2015; 
Roberts, 1978; Wellmanns & Schmiemann, 2022). 

Methodology 
This paper is part of a larger study that investigated how PSTs make sense of some elemental 

mathematics behind modeling climate change. Three secondary PSTs ¾hereafter Jodi, Pam, and 
Kris¾ enrolled in a mathematics education program at a large Southeastern university 
participated in the larger study. These PSTs had completed Calculus I and II and an Intro to 
Higher Mathematics course and were completing a Math Modeling for Teachers course by the 
time the larger study took place. The PSTs were asked to complete an original sequence of 
mathematical tasks while participating in individual, task-based interviews (Goldin, 2000). In 
this paper, I focus on the PSTs’ responses to the Energy Balance task. 
The Energy Balance (EB) Task 

An energy balance model describes the continuous heat exchange between the sun, the 
planet’s surface, and the atmosphere (Figure 1a). The planet’s surface is warmed by a fraction of 
the sun’s radiation (S). As the surface’s temperature increases, it radiates heat towards the 
atmosphere (R). The majority of it (B) is absorbed by greenhouse gases (GHG), which rises the 
atmosphere’s temperature. As it warms up, the atmosphere radiates a fraction of the absorbed 
heat back to the surface (A). The latter further increases the surface’s temperature, which results 
in an increase of surface radiation towards the atmosphere and an increase in the atmosphere’s 
temperature. The continuous heat exchange between the surface and the atmosphere is known as 
the greenhouse effect and has a key role in controlling the planet’s mean surface temperature, T. 
The relative abundance of GHG in the atmosphere regulates the amount of heat it absorbs. 
Therefore, changes in the concentration of GHG are followed by changes in T. 

The EB task (Figure 1b) describes a simplified situation that begins with an energy balance at 
the surface; that is, the surface absorbs heat at the same rate it releases it (S + A = R in Figure 
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1a). Then, it is assumed that a unique and instantaneous pulse of carbon dioxide (CO2) is 
released at t = 0 to increase its concentration in the atmosphere. The EB task focuses on CO2 for 
it is one of the main drivers of global warming (IPCC, 2018). The instantaneous increase in CO2 
is followed by an instantaneous increase in A, the heat radiation from the atmosphere to the 
surface. Thus, at t = 0, the surface is absorbing heat at a higher rate than that at which it is 
releasing it (S + A > R in Figure 1a). The surface then begins to warm up as time elapses (T 
increases as t increases) and to increase its heat radiation towards the atmosphere (R increases as 
t increases). The atmosphere also begins to warm up and to further increase its heat radiation 
back to the surface (A increases as t increases). This further warms the surface and further 
increases the surface heat radiation towards the atmosphere (T and R continue to increase as t 
increases). This energy feedback loop between the surface and the atmosphere allows for R to 
increase enough so that a new energy balance is reached (S + A = R). This balance is 
accompanied by a new (higher) value of T. Thus, the goal of the EB task was to engage PSTs 
into thinking about how the Earth’s energy balance’s response to an increase in CO2 results in an 
increase in the mean surface temperature, T, thus connecting CO2 pollution to global warming. 

The current paper examines the PSTs’ reasoning regarding the feedback loop between the 
surface and the atmosphere in terms of a covariation between R and A with respect to time. The 
results will mainly focus on the PSTs’ responses to the second part of the EB task, in which they 
were asked to draw the graph of T as a function of time t (Figure 1b). 
 

 
 

 
Figure 1: (a) An Earth’s energy balance model (left) and (b) the EB task (right) 

Data Collection 
Before working on the EB task, the PSTs participated in a 32-minute-long, individual 

minilesson where some basic concepts related to the Earth’s energy balance and the greenhouse 
effect were discussed. The goal was to provide PSTs with enough knowledge about those 
concepts so that they could start working on the EB task. The minilesson began with a 7-minute-
long video retrieved from the NASA YouTube channel NASAEarthObservatory introducing the 
energy balance and the greenhouse effect. Then, each PST and I held a 5-minute-long Q&A 
session in which we clarified questions about the ideas discussed in the video. During the next 20 
minutes, each PST and I worked with a diagram of the energy balance similar to the one in 
Figure 1a. We talked about what each of the quantities S, R, L, B, and A represented and how 
they related to one another. Then, we talked about the energy balance at the surface as the 
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equality S + A = R, and I illustrated it for some specific initial values of S, A, and R. We also 
discussed what inequalities such as S + A > R or S + A < R could mean in terms of temperature. 

A week after the minilesson, each PST completed the EB task during a 60-minute-long, 
individual, task-based interview (Goldin, 2000). The interviews were semi-structured and had an 
interview protocol with pre-defined questions so that all participants received similar prompts 
during the interviews. To help PSTs understand how the energy balance responds to the increase 
in CO2, the following recursive rules were made available to them: Bt = k·Rt, At = ½·Bt, and Rt + 1 
= S + At, for some 0 ≤ k ≤ 1. By using these rules, they could find the values of B, A, and R for 
successive values of time, thus observing how these quantities change dynamically. This 
modelling strategy is known as Discrete Event Simulation and can be used to help students 
understand the dynamics of systems in particular situations (Hoad & Kunc, 2018). 
Data Analysis 

The interview videos and transcripts were analyzed through thematic analysis (Braun & 
Clarke, 2006; 2012). This qualitatively method of data analysis allows for systematically 
identifying, organizing, and offering insight into patterns of meaning across a data set though the 
development of codes and themes. Thematic analysis is a widely used analytic strategy to 
identify and make sense of collective or shared meanings and experiences. The method can be 
summarized into six phases: familiarizing yourself with your data, generating initial codes, 
searching for themes, reviewing themes, defining and naming, and producing the report. 

I watched all interview videos and took notes while doing so. The videos were separated into 
shorter, more manageable episodes, each one covering a single topic or showing evidence of a 
particular way of reason covariationally. The notes informed my first round of coding for the 
interview transcripts. Then, the episode transcripts were sorted according to similar codes to look 
for patterns in participants’ responses. This allowed me to revise and refine the initial codes, 
reducing them to two main themes. Thus, the five initial codes “asynchronous”, “synchronous”, 
“feedforward but not feedback”, “verbalizing/indicating circularity”, and “circular relationship” 
were collapsed into two themes: “Simultaneous Change”, with “asynchronous” being the 
absence thereof and “synchronous” being the presence thereof, and “Circular causality”, with 
“feedforward but not feedback” representing the absence thereof and “verbalizing/indicating 
circularity” and “circular relationship” representing the presence thereof. 

Using the analytic framework previously described (Table 1), I indexed all episode 
transcripts into three analytic matrices, one per participant. These matrices allowed me to look 
for patterns in the distribution of themes, which provided the information needed to meet the 
research goals. 

Results 
The analysis revealed that, for this group of preservice teachers, two main cognitive 

realizations appear important to conceptualize the energy feedback loop between the surface and 
the atmosphere (the greenhouse effect) as a CLC between the quantities R and A: conceiving 
simultaneity of change and a circular causality relationship between those quantities. When one 
of these realizations was not supported, the PSTs developed inaccurate conceptualizations of the 
greenhouse effect and, by extension, this had an impact on their understanding of the link 
between CO2 pollution and global warming. 

 
Table 1: Analytic Framework 
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Theme Descriptions 

Simultaneity 

Asynchronous 
The PST describes or represents changes in A and R as occurring asynchronously (A changes 
first, then R changes, then A again, and so on). 
Synchronous 
The PST describes or represents changes in A and R as occurring simultaneously as time elapses. 

Causality 

Linear 
The PST describes or represents causality in one direction between A and R. Either change in A 
causes change in R or change in R causes change in A. 
Circular 
The PST describes or represents a circular causality between A and R so that change in A causes 
change in R, which in turn causes change in A again. 

 
The PSTs explored the greenhouse effect as an energy feedback loop while working on their 

graphs of T = g(t). I start the discussion with Kris’ work because she conceptualized the 
greenhouse effect in terms of CLC. More specifically, Kris made remarks about R and A 
increasing simultaneously as time, t, increased: “So, as R increases, A increases … the new R is 
affected by S plus A [points at S and A]. So, when A increases, R is going to be [bigger]. It can’t 
just keep increasing”. Kris also made remarks suggesting she conceived of a circular causality 
relationship between the quantities R and A. 

Well, [the surface] keeps in taking. I think it is warming up because once we added more 
CO2, that is less of the emitted energy that is getting just like shut out passed the atmosphere, 
leaked from it. So then, more of it is going to be absorbed by the atmosphere … Whatever is 
absorbed by the atmosphere [points at B] is going to be absorbed back into the [points at the 
surface], well half of that plus the sun’s energy [points at S] is going to be absorbed by the 
Earth, which is going to keep increasing, as we saw with like the 400 [points at the R-value 
of “400”]. Then, from the A value [with a capped marker, traces the top half of a circle, 
going from R to A], just with the A, [the surface] absorbs 160, and then we add a new R-value 
[with the capped marker, traces the bottom half of the circle, going from A to R], whatever 
that was, and then [the surface] absorbs 164 [with the capped marker, re-traces the top half 
of the circle, going from R to A]. So, I think it is going to keep increasing [draws an 
increasing, concave-downward graph for T = g(t) that appears to have a horizontal 
asymptote that she labels as “new equilibrium temperature”]. 

In the above excerpt, Kris repeatedly referred to the relationship between R and A as a “cycle”, 
which suggests an awareness of circular causality between the quantities. Also, notice how she 
gestured both, the feedforward relationship from A to R and the feedback relationship from R 
back to A, further suggesting circular causality. Kris also drew an accurate graph of T = g(t) 
showing asymptotic growth towards a new equilibrium value (Figure 2a); this suggests an 
awareness of the balancing quality of the feedback loop. Kris’s CLC coincided with her 
demonstrating an accurate conception of the greenhouse effect, which guided her to conclude 
that an increase in CO2 causes a warming effect over the planet’s surface, correctly relating CO2 
pollution to global warming. 
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Figure 2: (a) Kris’s graph of T = g(t) (left) and (b) Pam’s graph of T = g(t) (right) 

 
The case of Pam illustrates the conceptualization of OLC, where simultaneous change is 

conceived but not circular causality. She described R and A as two quantities increasing in 
tandem as t increased but only in the A-to-R direction (“R increases as [emphasis added] A 
increases. So, as [emphasis added] our A increases, R increases”). Pam also interpreted the 
increase in R and A as the planet’s surface emitting more heat than the heat it was absorbing, 
which suggested additional evidence of only conceiving causality from A to R. 

A lot [of heat] is going in, but more is coming out, like R increases as A increases. So, as our 
A increases, R increases. But our S is staying the same. But our A is always less than R. So, 
more [heat] is coming out [pauses to think]. So, the Earth is trying to cool itself off, so the 
temperature is decreasing from here to here. 

Pam again implied that an increase in A causes an increase in R, but did not appear aware that the 
increase in R also causes a new increase in A. She referred to R as heat leaving the surface and 
being larger than the heat absorbed by it. This claim overlooked that A is actually a fraction of R 
that is reabsorbed by the surface. This might have kept Pam from conceptualizing the feedback 
relationship from R back to A. Pam’s OLC coincided with her demonstrating an inaccurate 
conception of the greenhouse effect, which may have led her to incorrectly conclude that the 
planet’s surface cools down after an increase in CO2, as her graph shows (Figure 2b). 

Finally, Jodi’s reasoning did not support simultaneous change but supported circular 
causality between R and A. In the following excerpt, Jodi appeared to imagine R and A as 
changing asynchronously—A changes first, then R changes, and then A again, and so on—but 
seemed aware of the circular causality between those two quantities. 

I am trying to look at the differences. So, like here [points at the R-value “390” and the A-
value “150”]. Ok, so here the change was five [points at the R-value “395” and the A-value 
“155”]. The change was two [points at the R-value “397” and the A-value “157”]. Is it, I 
mean, is it not changing? … The flow of energy increased by five [points at the A-value 
“155”], but then it decreased by five [points at the R-value “395”]. Then it increased by two 
[points at the A-value “157”], and then it decreased by two [points at the R-value “397”]. 
So, it is almost as if there was no change in temperature because I associate like energy as 
kind of having a relationship with temperature. So, if the energy increases, then the 
temperature increases. But, in this scenario, an equal change in energy [points at A] was an 
equal change in output [with her index finger, traces the bottom half of a circle from A to R] 
… Ok, cycle started here [points at B], and here the Earth’s temperature would’ve been 
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something. Equal input of energy, equal output of energy [with her index finger, traces a 
circle connecting A, R and B]. Ok. So, when the cycle started, there was an input of energy 
[points at A], and then it got released [with her index finger, traces the bottom half of a circle 
from A to R]. Another cycle starts [points at B], input of energy, release of energy [with her 
index finger, traces a circle connecting B, A, and R]. So, it would almost be like [draws a 
periodic curve formed by identical arcs]. 

Notice how Jodi described the changes in R and A as happening at different times rather than 
simultaneously. This suggests Jodi did not develop a multiplicative object and her reasoning may 
not be considered covariational. In contrast, she did allude to circular causality by tracing circles 
with her finger connecting R and A. I also interpreted the periodicity of her graphs (Figure 3) as 
additional evidence of awareness of circular causality. Jodi’s way of reasoning coincided with 
her demonstrating an inaccurate conception of the greenhouse effect and arriving to an incorrect 
conclusion regarding the real impact of CO2 pollution on the planet’s surface temperature. 
 

 
Figure 3: Jodi’s periodic graphs of T = g(t) 

Conclusion 
Some situations that involve two quantities changing together over time also require the 

recognition of an underlying feedback loop structure between them. The study’s results suggest 
that, for this group of preservice teachers, reasoning about feedback loop between quantities 
involved the ability to conceive closed-loop covariation, which in this study was characterized 
by two cognitive realizations: (i) the conception of simultaneous change and (ii) the recognition 
of circular causality. The first realization is based on the mental construction of a multiplicative 
object between those quantities (Saldanha & Thompson, 1998; Thompson et al., 2017), while the 
second realization involves noticing that changes in a quantity cause change in the second 
quantity, which in turn cause new changes in the first quantity and so on. The results also 
suggests that these two realizations, at least for these preservice teachers, appeared to be 
independent from each other. Kris demonstrated both realizations, while Pam and Jodi 
demonstrated one or the other but not both. An implication of this is that instructional strategies 
aiming to support students’ ability to understand feedback loops mathematically should focus on 
developing both realizations at the same time. 

It also important to point out that many school mathematical tasks involving change between 
quantities may only require open-loop covariation, where students oftentimes only need to attend 
to linear causality between the quantities. Examples of these are situations modeled by linear or 
quadratic functions. However, closed-loop covariation may be an interesting and novel way to 
explore situations involving exponential growth (e.g., compound interest or population growth), 
where the current value of the dependent quantity plays a role on how that quantity changes. 
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Emergent graphical shape thinking (EGST) entails conceiving a graph as being dynamically 
generated via the trace of a moving point constrained by two changing quantities. As such, 
Paoletti et al. (2023) argue that meanings for quantities within a situation and meanings for 
graphical representations must be connected, or bridged, to engage in EGST. In this report, we 
explore this bridging process through a case study investigating how two students made 
connections that bridge their situational and graphical meanings during their work on a 
mathematical task. We found that the pair’s connections between situational and graphical 
meanings emerged most prominently only after recursive engagement with reasoning in both 
contexts. We discuss the implications of these findings for researchers and practitioners seeking 
to support students as they develop EGST. 

Keywords: Algebra and Algebraic Thinking, Middle School Education, Learning Trajectories 
and Progressions; Reasoning 

Students’ graphical reasoning plays an important role in their learning across STEM fields 
and their participation as critical citizens (e.g., Glazer, 2011; Potgieter et al., 2008). In particular, 
emergent graphical shape thinking (EGST) can be useful, as it entails conceiving a graph as 
being dynamically generated via the trace of a moving point constrained by two changing 
quantities (Moore, 2021; Moore & Thompson, 2015). For instance, Figure 1 shows how a 
student can represent a conceived relationship between the dynamic quantities of the base 
segment length and area of a growing shape via a graph that is produced from the movement of a 
dynamic point. Paoletti et al. (2020) noted that EGST is important to interpret many graphs 
across STEM textbooks and practitioner journals in ways consistent with the authors’ intentions. 
However, such reasoning is non-trivial. For example, less than 30% of the 121 U.S. teachers in 
Thompson et al.’s (2017) study provided evidence suggestive of EGST on a task that could 
potentially elicit such reasoning. Hence, there is a continued need to explore ways to support 
students’ in developing EGST. 
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Figure 1: Four screenshots showing a point as a dynamic trace of the relationship between 

two situational quantities. 

In order to engage meaningfully in EGST, Paoletti et al. (2023) argued that learners need to 
engage both in reasoning specific to the situation (real-world or abstract) and in reasoning about 
objects in graphical representations. However, the process by which students bridge their 
thinking in situational and graphical contexts to support EGST is still relatively unexplored. 

In this paper, we present a case study (Yin, 2018) to explore learners’ situational and 
graphical bridging process. We feature the activity of a pair of sixth-grade students as they 
engaged in a teaching experiment (Steffe & Thompson, 2000) to investigate how we might 
support students to engage in such bridging. To provide context for our case study, we first 
elaborate on the literature showing the relevance of situational and graphical representations to 
the development of EGST. Then, we present our methods and results, highlighting how students’ 
iterative engagement with situational and graphical connections corresponded to greater 
specificity in both domains. Finally, we share implications for researchers and educators who 
wish to support their students in EGST. 

Situations and Graphs in Emergent Graphical Shape Thinking 
This case study builds upon the local instruction theory presented in Paoletti et al. (2023). 

The local instruction theory posited that students must engage in quantitative and covariational 
reasoning both with respect to situational quantities and with objects represented graphically 
prior to engaging in EGST. Reasoning quantitatively, both situationally and graphically, entails 
an individual constructing quantities to interpret their experiential worlds (Smith & Thompson, 
2008; Steffe, 1991; von Glasersfeld, 1995). Covariational reasoning entails a learner mentally 
coordinating two varying quantities (Thompson & Carlson, 2017). Covariational reasoning often 
follows a developmental progression (Paoletti et al., 2023; Carlson et al., 2002) in which a 
student coordinates two quantities by thinking “of one, then the other, then the first, then the 
second, and so on” (Saldanha & Thompson, 1998, p. 299) until they have constructed a 
relationship that entails both quantities simultaneously being tracked for some duration. 
Researchers (Saldanha & Thompson, 1998; Thompson et al., 2017) refer to such a conception as 
a multiplicative object (i.e., a Cartesian product). 

Although we often use mathematical representations (e.g., graphs, equations) to represent 
relationships between covarying quantities, covariational reasoning does not require such 
representations (e.g., Paoletti & Moore, 2018; Castillo-Garsow et al., 2013; Johnson, 2015). 
Learners often construct and coordinate covarying quantities to develop meanings for situational 
quantities and relationships between quantities. These meanings for a situation (M.S) can serve 
as the foundation for their mathematical activity (e.g., constructing a graph representing a 
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relationship) or can result from their interpreting mathematical representations (e.g., developing 
a novel meaning for a situational relationship as they interpret a graph).  

As a pre-requisite to engaging in EGST, learners must also engage in quantitative and 
covariational reasoning with respect to objects in a graphical representation (Moore, 2021; 
Paoletti et al., 2023). Paoletti et al. (2023) described a particular sequence of three meanings in 
graphical representations (M.R) that can support students’ EGST. They described a learner must 
first consider how a segment length can represent a quantity’s magnitude (M.R.1). Next, in a 
Cartesian coordinate system, a learner can consider changes in two orthogonal segment lengths 
in relation to two covarying quantities (M.R.2). Then, a learner can conceive of or anticipate a 
point in the coordinate system as a multiplicative object simultaneously representing the two 
segments’ magnitudes (M.R.3).  

Reflected in the above descriptions, to engage in EGST, learners must ultimately coordinate 
their situational (M.S) and graphical meanings (M.R) to conceive of a graph as being generated 
by the dynamic trace of a point. Paoletti et al. (2023) contended that there is likely a dialectal 
relationship between students’ situational and graphing meanings, stating, “our LIT does not 
outline a single, linear, or developmental progression; rather, we call for repeated and connected 
occasions for students to engage in M.S, M.R, and [emergent reasoning] as they develop stable 
graphing meanings that entail EGST” (p. 205). However, the way in which students construct 
these connections has not been explored in detail. 

Methods 
We applied case study methodology (Yin, 2018) to respond to the following research 

question: How might students make connections between situational quantitative and 
covariational reasoning (M.S) and graphical representations of covarying quantities (M.R) as 
they build toward EGST? We drew our case from data collected during a teaching experiment 
(Steffe & Thompson, 2000) with one pair of students. We engaged the pair in tasks we intended 
to support their EGST. In this report, we present results from the students’ activity during one 
session where we identified that students were engaged in reasoning to relate situational (M.S) 
and graphical (M.R) meanings in explicit ways. 
Participants, Context, and Task 

We conducted our teaching experiment with sixth grade students in a public charter school in 
the Northeastern United States. The first author facilitated the teaching experiment as the 
teacher-researcher (TR). In our selected case, our participants were Sebastian (age 11; self-
identified as male and Black, Puerto Rican, and Latino) and Tom (age 11; self-identified as male 
and White). Both participant names are pseudonyms selected with student input. 

In our case for this report, the pair collaborated on a task we designed in Desmos called The 
Big Event. We presented students with a dynamic scenario in which two teachers (Mr. K and 
Mrs. B) are walking away from a podium and post respectively to create a growing area where 
hypothetical students could stand for a presentation (the shape grew as shown in Figure 1). 
Throughout the task, we asked Sebastian and Tom to identify and coordinate Mr. K’s distance 
from the podium (i.e., the horizontal base segment length) and the area of the shape formed 
(M.S). In this scenario, as Mr. K’s distance increases, the total area of the shape increases and the 
amounts of change of area (hereafter AoC, see Carlson et al., 2002) decrease. Students had the 
option to toggle between views of the scenario changing smoothly (e.g., Figure 1) and changing 
in chunks (as in the triangular image in Figure 2).  
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Our report focuses on Sebastian and Tom’s activity with respect to two prompts in the Big 
Event Task that we designed to transition students from reasoning situationally (M.S) to 
reasoning graphically (M.R). Prompt 1 presented students with three dynamic line segments 
(blue, orange, and purple) alongside the growing shape (Figure 2). Whereas the blue line 
segment grew by equal amounts for each jump of change in the shape, the orange segment grew 
by increasing amounts and the purple segment by decreasing amounts. Similar to the Which One 
Task (Liang & Moore, 2021), the text asked them to select a segment that could represent Mr. 
K’s distance from the podium and the shape’s area respectively (M.S & M.R.1). After selecting 
segments, Prompt 2 presented students with a blank coordinate plane and axes labeled with each 
focal quantity. The text requested that students consider plotting points along each axis (M.R.2) 
and then asked students to plot points in the plane (M.R.3). 

Prior to engaging with this task, Sebastian and Tom had constructed and interpreted graphs 
during the teaching experiment. Specifically, they had completed the Faucet Task, wherein they 
coordinated the directional changes between the amount of water and temperature of the water 
depicted in a dynamic faucet applet (see also Paoletti, 2019; Paoletti & Vishnubhotla, 2022). 
They also graphed another scenario in the Big Event Task that showed a triangle growing by 
more each time.  

 

 

Figure 2: Screenshot from the Big Event Task showing the chunkily growing scenario 
alongside the segments (blue, orange, and purple) in Prompt 1. 

Data Collection and Analysis 
We audio- and video-recorded Tom and Sebastian’s activity with a camera and screen 

capture tool. We conducted a conceptual analysis (Thompson, 2008) as we analyzed the data to 
build models of the students’ meanings that viably explained their words and actions. With this 
goal in mind, after each session we constructed an event map (Green & Bridges, 2018) to 
organize the key events of each session. This process supported us to identify and bound our 
case. We transcribed the activity (i.e., dialogue, written activity, and gestures) from the segment 
we identified as informing our case analysis. Next, we analyzed the transcript at the utterance 
level, highlighting moments in which 1) the TR or text of the task prompted or 2) the pair 
engaged in building connections between M.S and M.R. We leveraged the patterns in our 
analysis to organize an account of activity that could address our research question. 

Results 
To explore how Tom and Sebastian might bridge their situational quantitative and 

covariational reasoning (M.S) with their developing graphical representations of covarying 
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quantities (M.R), we presented prompts that we intended to provide consistent and progressively 
specific connections between these meanings. In this case, the students first proceeded through 
the task as designed (which we intended to support a shift from M.S. to M.R), which only 
supported limited connections between the situation and graph (Pass 1). The TR subsequently 
prompted Sebastian and Tom to consider more explicit connections between the situational 
quantities and graphical representations at each stage of their activity. Such prompts supported 
the students to construct a graph with increasing precision and justification (Pass 2). We 
illustrate how students’ recursive and specific connections between situations (M.S) and graphs 
(M.R) across Pass 1 and Pass 2 prepared them for the transition to EGST. 
Pass 1: Addressing the Task with a Linear Progression from M.S to M.R 

As Tom and Sebastian engaged in their first pass through the task, they read Prompt 1 to 
select a segment corresponding to the situational quantities of Mr. K’s total distance from the 
podium and the total area of the shape (i.e., to bridge M.S. with M.R.1). Sebastian identified the 
blue segment as representing Mr. K’s total distance, gesturing between the “same jumps” he 
observed in the situational context (M.S) and in the blue segment. Subsequently, Tom added that 
the area of the triangle would match the purple segment “because the biggest jump [gestures to 
Sit-A in Figure 3a] is the first one [gestures to Seg-A in Figure 3a] and then it gets smaller every 
time.” We note how Tom engaged in gestures indicative of connection between the changes in 
the quantity of area (M.S) and the changes in the partitions of his segment choice (M.R.1). 

Next, the students advanced to Prompt 2, requesting a graph. The TR added an explicit 
request for students to consider how the segments on the previous slide (M.R.1) could support 
the construction of the graph itself (M.R.2 & M.R.3) and re-read the labels of the quantities on 
the axes (M.S). However, reflecting the non-trivial nature of bridging meanings across situations 
and graphs necessary to engage in EGST, neither Tom nor Sebastian explicitly referenced both 
situational quantities as they presented their strategies to graph points. For example, Sebastian 
described that points on the graph would begin in the top right area of the plane and proceed 
toward the origin to “go down smaller and smaller.” Sebastian explained that this was because he 
expected the graph to move in the opposite direction as the increasing and concave-up graph they 
had constructed from the growing triangle portion of the Big Event Task. We note that Sebastian 
did not reference either of the situational quantities (Mr. K’s total distance or the area) to support 
his conjectures. 

Tom disagreed with Sebastian’s strategy. Although Tom verbally described the situational 
quantities of Mr. K’s total distance and area of the triangle, his gestures did not correspond to the 
quantity of area. His graphing activity focused on marking points in the situation in his 
constructed graph as opposed to representing the intended quantities (M.R.2 & M.R.3). First, 
engaging with the animation of the triangle, Tom explained: 

I would put…[Mr. K’s] dot right there [points as in (1) in Figure 3b] and then for the area 
roped off, the dot right there [points as in (2) in Figure 3b] so I would, like, combine those 
[gestures as in (3), reaching location (4) in Figure 3b] and put it there. 

To support his description, Tom plotted a first point on the graph, followed by a second point at 
the TR’s request (Figure 3c). We note that the location of these points strongly mirrors the 
locations Tom identified in the situation (Figure 3b). As such, we conjecture Tom was 
reproducing an image (i.e., iconic graphical reasoning; see also Clement, 1989; Johnson et al., 
2020) rather than engaging with explicit quantities (M.S). When the TR prompted more 
specifically about the match between the situational quantities of both distance and total area and 
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the graph, Tom further acknowledged a disconnect: “Yeah, it’s not the same because it [gestures 
to triangle from left to right] increases over time.” Although we could interpret “it” in this 
statement to area, such an attribution is still unclear. However, the students explicitly 
acknowledging a disconnect provided an opportunity for them to further develop explicit 
connections between the situational quantities (M.S) and the graphical representation (M.R).  
 

   
(a) (b) (c) 

 Figure 3: (a) A reference image for students’ gestures to the situation and purple segment 
and (b) a recreation of Tom’s gestures prior to (c) plotting initial points in the graph. 

Pass 2: Addressing the TR’s Iterative Prompting to Engage M.R and M.S 
The TR conjectured the students were not explicitly attending to the situational quantities 

(M.S). This led the TR to provide additional prompts to support increased specificity with 
respect to situational quantities before returning to the graph to support Sebastian and Tom 
developing meanings for EGST. Hence, the TR returned to Prompt 1 with the segments. On this 
pass, the TR’s prompts extended beyond asking students to identify a segment to match the total 
area of the triangle to a request to analyze how and why the segment matched in specific ways.  

Viewing the screen in Figure 2, the TR focused first on a scenario in which Mr. K had only 
made three equal-sized jumps in his distance from the podium. The TR asked, “What would that 
purple segment look like?” Sebastian first described that “on the purple segment, it’s like, big 
[puts hand in a “C”] to little [moves “C” upward while framing a smaller space], to little 
[repeats].” The TR subsequently prompted for Sebastian to explain the parts of both the segment 
and the diagram he was “paying attention to.” Sebastian explained: 

Like the yellow right here [gestures Sit-A in Figure 3a] which is right here [gestures from 
bottom to top to bottom of Seg-A in Figure 3a] and the white [gestures to Sit-B in Figure 3a], 
right here [points to Seg-B in Figure 3a] and then the pink [gestures to Sit-C in Figure 3a], 
would be right here [points to Seg-C in Figure 3a]. 

We note the increasing specificity of Sebastian’s gestures between corresponding quantities in 
the situation (M.S) and portions of the segment (M.R.1), particularly related to distinguishing 
AoC of area. The TR followed Sebastian’s explanation by asking, “[If] I want to look at the total 
area…roped off at that point, what would we be looking at?” Tom repeated Sebastian’s 
connections between AoC of area and the segment components, and then described, “We’re 
looking at a line where it stopped…so it’d stop like [points to the highest point of Seg-C in 
Figure 3a] right there.” We highlight the explicitness of Tom’s connections between the area and 
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the segment representation (M.S and M.R.1) in terms of both AoC and total amounts. 
The TR then asked the pair to consider the AoC and total area in the situation and segment as 

Mr. K transitioned to his fourth jump in the diagram: “Is my [purple] line segment going to be 
bigger or smaller?” Tom began by gesturing across the triangle diagram from left to right: “So 
the triangle’s going to get less but the total area is not… they are all combining.” Sebastian 
further described that the activity felt like “reverse psychology,” explaining: 

We start off with big jumps [gestures over Sit-A in Figure 3a] and started to decrease 
with smaller jumps [moves across triangle to Sit-E in Figure 3a] but the area starts to get 
bigger as those jumps [waves three times from left to right with hand] go on. 

We take Sebastian’s detailed explanation as evidence of the productive shifts in the relationship 
he conceived between situational quantities (M.S) and corresponding segments (M.R.1). Given 
this specific evidence, the TR advanced again to the graphing slide. To set up the task, the TR 
reminded the students of prior activity graphing with dynamic, orthogonal segments in the 
Faucet Task (M.R.2) and repeated their conclusions from the activity on the previous slide 
(M.R.1). Tom constructed the initial graph for the pair: 

So, I think, each jump from Mr. K [moves over 3 times as in (1) in Figure 4a] is going to be 
the exact same, but first I am gonna start out with [moves mouse to (2) in Figure 4a] a big 
jump [moves mouse up as in (3), plotting point] like that, and then we’re going to go here 
[moves mouse to (4) in Figure 4a] and then it’s a smaller jump [moves mouse up as in (5), 
plotting point]. 

Tom continued to plot an additional three points in this way (see Figure 4b), explaining the 
jumps in area were “getting smaller every time we do it.” Sebastian further interpreted Tom’s 
graph: “As Mr. K’s distance is increasing and the jumps are getting smaller, [the total area]’s still 
getting bigger [places hands orthogonally], no matter how far Mr. K walks [motions horizontal 
hand from left to right, repeats twice more].” 

We consider Tom and Sebastian’s activity collectively to emphasize how their iterative 
engagement with situational quantities (M.S) and segments (M.R.1) supported shifts in their 
graphing activity. First, the students displayed explicit indications of conceiving orthogonal 
segments along each axis (e.g., Sebastian’s orthogonal hand gestures, M.R.2). Furthermore, the 
students also indicated the simultaneity of those segments in the points they constructed (e.g., 
Tom’s over and up gesturing “getting smaller every time we do it,” M.R.3). Importantly, these 
graphical objects were not described as contextless; rather, Sebastian, in particular, referenced 
situational quantities explicitly in his interpretation of the points (M.S). In response to the TR’s 
prompts, the pair specifically engaged with AoC and total area as they drew connections directly 
to segments. This activity supported their graphing with greater justification and support. 
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(a) (b) 
Figure 4: (a) A recreation of a subset of Tom’s gestures in constructing his second graph 

and (b) Tom’s final graph. 

Discussion and Conclusion 
In this paper, we presented a case study to address our RQ and describe how two students 

built connections between situational quantitative and covariational reasoning (M.S) and 
graphical representations of covarying quantities (M.R) as they progressed toward EGST. We 
note that the linear progression we initially designed from a situation to a graphical 
representation in Pass 1 did not provide sufficient opportunities for our students to reason in a 
coordinated way about how to represent the same two quantities across both contexts. In Pass 2, 
the students iteratively engaged with situations and graphs (that is, returning to M.S and 
repeatedly making connections between each component of M.R with M.S) in a way that 
resulted in more specific thinking. Thus, we conjecture that by engaging in both Pass 1 and Pass 
2, the students developed robust connections between situational quantities (M.S) and graphs 
(M.R); we present Figure 5 to synthesize these results. Although we do not detail Tom and 
Sebastian’s full construction of a smooth graph and EGST later in their activity here, we show 
evidence of robust connections between quantities in situations and graphs that prepared them 
for this next step in their reasoning. 

 
Figure 5: Visual presentation of the relationship between Pass 1 and Pass 2 in supporting 

students’ connections between meanings in situations (M.S) and graphs (M.R). 
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In this report, we describe the process by which two students bridged their thinking in 
situational and graphical contexts. Reflecting the non-trivial nature of EGST (e.g., Thompson et 
al., 2017), our case provides evidence of the importance for students to have “repeated and 
connected occasions for students to engage in M.S [and] M.R,” (Paoletti et al., 2023, p. 205) as 
they build towards EGST. Such findings have implications for practitioners and researchers 
intending to support learners’ graphing meanings. Importantly, providing students recursive 
opportunities to make connections between meanings for situations (M.S) and graphical 
representations (M.R) is critical in the design of tasks and instruction. Future researchers may be 
interested in exploring other ways to students may connect situational quantities and graphical 
representations to support EGST. Such investigations could further efforts to improve the 
teaching and learning of graphing in ways that are attentive to the needs of STEM fields. 
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While proving, and more broadly conceived “reasoning and sense-making,” have received a 
great deal of attention in mathematics education research over the past three decades, recently 
scholars have argued for the importance of justification as a learning and teaching practice. As 
teachers work toward realizing goals for more equitable classroom environments, little is known 
about whether teachers’ conceptions about mathematical practices, such as justification, reflect 
an understanding of how students’ engagement in those practices can support more than just 
mathematical achievement. In this paper, we present findings from our analysis of interviews 
with 10 secondary mathematics teachers engaged in participatory action research to explore 
connections, and potential disconnections, between teachers’ conceptions of justification and 
their visions for equitable instruction. 

Keywords: Teacher Beliefs; Reasoning and Proof; Professional Development 

Developing a deep understanding of mathematics is a core principle of equitable mathematics 
teaching (Horn, 2012). Scholars have examined, both theoretically and empirically, the role that 
opportunities to justify play in advancing equitable learning outcomes in K-12 classrooms 
(Bartell et al., 2017; Boaler & Staples, 2007). Some existing research has offered insights about 
whether opportunities that teachers provide students to engage in sensemaking and justification 
are robust, meaningful opportunities (Bieda, 2010; Henningsen & Stein, 1997), and other studies 
have provided insight into how classroom norms can influence students' access to and 
participation in argumentation practices (Klosterman, 2016; Staples, 2007; Yackel & Cobb, 
1996). However, little is known about whether teachers’ conceptualizations of justification and 
its role in school mathematics aligns with teachers’ views about equitable learning outcomes. We 
argue that how teachers conceive of what justification is, and its role in teaching and learning 
mathematics, influences how they utilize justification opportunities as a tool to advance equitable 
learning outcomes. This paper explores the question, “In what ways do teachers’ conceptions of 
justification align with, or deter from, their visions for equitable classrooms?” 

Background 
Teachers’ Conceptions of Justification 

Although the role of proof in the discipline of mathematics has been well-documented, there 
is less understanding of the role of justification and its relationship to proof and proving and 
other mathematical reasoning processes essential to learning mathematics (Ellis et al., 2021). 
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However, teachers may see a bigger role of justification in school classrooms, as they often 
question the role that formal proof should play in students’ learning of mathematics and what 
students are expected to learn and be able to do (Knuth, 2002). In interviews with seventeen high 
school mathematics teachers, Knuth found that fourteen teachers did not feel proof should play a 
central role in learning mathematics, whereas all of the teachers indicated that informal proofs – 
such as explanations and being able to justify one’s reasoning – were an important part of 
learning mathematics. Given the importance that teachers place on justification to support 
students’ mathematical learning, understanding how they define justification may offer windows 
into the ways that they incorporate this process into the teaching of mathematics. 
The Role of Justification in Teaching and Learning Mathematics 

Teachers’ conceptions of justification, and the role it plays in learning and teaching 
mathematics, influences the opportunities teachers provide for students to engage in justification 
(Gonzalez Thompson, 1984). The work of Staples, Bartlo, and Thanheiser (2012) specifically 
explored ways that teachers came to understand the role of justification through a professional 
development with 12 middle school teachers (grades 6 - 8) designed to co-inquire with teachers 
to understand justification at the middle school level and its importance for learning 
mathematics. Staples and colleagues discovered that teachers aligned the purposes of 
justification much more with its role as a teaching practice and a learning practice than its 
usefulness in establishing the validity of mathematical results. Specifically, teachers discussed its 
value in students’ mathematics learning, particularly promoting conceptual understanding, 
fostering valued mathematical skills and dispositions. Additionally, teachers discussed 
justification’s value to support teaching, such as gathering information about what students 
know, supporting students’ engagement with other students and enabling more student-student 
interactions, and supporting students’ sense of agency in and outside of the classroom. 

The study reported in this paper builds upon the work of Staples, Bartlo and Thanheiser 
(2012) to explore how teachers see justification as playing a role in teachers’ efforts to create 
more equitable learning environments. Specifically, we explore conceptually the connections 
between ways justification is defined and the dominant and critical dimensions of equity as 
conceptualized by Gutiérrez (2012). Further, we illustrate, based on data from 11 high school 
mathematics teachers participating in a study group, alignments and disconnections between 
teachers’ conceptions of justification and their descriptions of equitable learning environments. 

Theoretical Framework 
Gutiérrez (2012) conceptualized equity in mathematics education as comprising dimensions 

that reflect a dominant perspective (access and achievement) as well as a critical one (identity 
and power). The components of the dominant perspective have been the traditional focus of 
gaps-oriented equity work, namely the opportunities each and every student has to learn rigorous 
and meaningful mathematics (access) as well as how well they can demonstrate what they have 
learned as a gateway for academic success (achievement). In the past two decades, elements of 
the critical dimension have gained more prominence in mathematics education research, due in 
part to their role in rewriting the script of how mathematics should be taught and learned. 

Gutiérrez frames identity using a window/mirror metaphor; “students need to have 
opportunities to see themselves in the curriculum (mirror), as well as have a view onto a broader 
world (window)” (2012, p. 19-20). As students are able to use mathematics to make sense of the 
world, they need agency to engage in social transformation as a result of their mathematics 
learning. 
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This component, power, prompts us to consider how we are promoting students with the 
mathematical power they need to change systems they deem unjust. 

In our work, we draw upon this frame to think about how possible conceptions and purposes 
of justification may work to support these aspects of equity. For example, if we consider 
justification as “the process of supporting your mathematical claims and choices when solving 
problems or explaining why your claim or answer makes sense” (Bieda & Staples, 2020, p. 103), 
the role of justification in teaching and learning mathematics goes beyond explaining the 
veracity of a claim. By also seeing moments where students explain their problem-solving 
choices as the mathematical practice of justification, teachers implicitly communicate that 
students have agency to not only argue why they have a correct answer, but also why their 
solution strategy is valid (even if it is different from other strategies). This conception not only 
supports students’ achievement (dominant axis), but also students’ identity (critical axis), in that 
their ways of doing mathematics have a space to be legitimized through justification. 

Building on our data, we argue first that teachers’ conceptions of justification matter for 
how justification can be employed in their classrooms to advance equity goals. We further 
argue that various conceptions and purposes of justification align with components of 
Gutiérrez’s (2012) frame on equity more principally than other components. We might 
imagine these conceptions imposed on the dominant and critical axes of Gutiérrez’s framing of 
equity, with their placement highlighting how particular conceptions frame justification 
relative to dominant and critical mathematics within school mathematics. For instance, Figure 
1 shows the placement of Bieda and Staples’ (2020) conception along the axes. 

 

 
Figure 1: Plotting conceptions of justification along dimensions of equity Methods 

 
Research Context 

To better understand how teachers conceptualize justification and its relationship to equity, 
we have been working with ten teachers and one teacher candidate from two high schools in two 
different states (one in the Midwest and one in the Northeast) to conduct participatory action 
research over the course of the 2022-2023 academic year. These teachers volunteered to 
participate in this collaboration given their interests and commitments to advance equity in their 
classrooms. The majority of the participants are white, and the majority of their students come 
from minority backgrounds and homes with low income. The teaching experience of the in- 
service teachers range 3-33 years and averages 12.4 years. 

Prior to their participation in the study group, participants engaged in two activities. First, we 
conducted a pre-interview with each participant to gather background information and 
experiences, including their initial thoughts about justification and equity. Second, during 
summer 2022, we held a workshop at each school (12-15 hours) with the goal of working toward 
shared understanding of justification and equity within each group. Since the start of the school 
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year, we have held 1.5-hour study group meetings with the participants twice per month at each 
site. During the meetings, teachers report about the successes and challenges they are 
experiencing in supporting equitable learning opportunities and in providing students 
justification opportunities. Teachers’ thoughts about the relationship between these two are also 
discussed. 
Data Collection 

This paper presents findings from our pre-interviews with each teacher. The pre-interviews 
gathered each teacher’s initial conceptions of justification and equity. Teachers were asked, 
“How would you define justification in mathematics?”, “What is the relationship you see 
between equity and justification?”, and “When you think about creating equitable opportunities 
to learn, what does that mean to you?” Interviews were conducted by two members of the project 
team on Zoom, recorded, and transcribed. 

Data Analysis 
To understand the alignment between teachers’ conceptions of justification and equity, we 

analyzed responses to each question separately and then looked across analyses to synthesize 
findings. To analyze responses to the questions, “How would you define justification in 
mathematics?” and “What is the relationship you see between equity and justification?”, we first 
conducted open coding using a thematic analysis (Braun & Clarke, 2006) approach to teachers’ 
definitions of justification. To analyze responses to the question, “When you think about creating 
equitable opportunities to learn, what does that mean to you?,” we identified utterances 
corresponding to specific dimensions of Gutiérrez’s (2012) framework for equity. 

Findings 
In this section, we present findings from our analysis of three cases that represent the range of 

responses provided by participants about their definitions of justification. In sharing these cases, 
we will juxtapose their definitions of justification with their thoughts about equitable 
opportunities to learn, to explore the alignments, and potential contradictions, between these 
conceptions. 
Case 1: Justification as Revealing Students’ Thinking 

The first case, William, is an 9th-grade mathematics teacher in his fifth year of teaching. 
When asked to define justification, he responded: 

“I mean, as simple terms, it’s their thought process. How they got their answer. Getting it on 
paper. Because your goal as a teacher is to kind of provide those skill sets and for them to, 
you know, understand the process and the math skills that are needed to answer that, to 
breakdown a question. And so that justification piece is really, you know… show me your 
work. But it’s more than that. But like, you’re critical, like what was your thought process? 
How did you know that? What did you do? Why did you do it? And just getting that on paper 
because that's, end of the day, is like when they take those tests you know they have to be able 
to get it on paper. So that's that justification piece for me” (William, Pre-Interview) 
William’s conception of justification is focused on assessing student’s understanding, or 

“thought process.” He discusses that justification involves how students arrived at their answer 
and why they solved the problem in the way they did. We also noted that his definition focuses 
more on individual understanding, rather than the collective understanding of the class. 
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We found that all of William’s statements about equitable learning opportunities were coded 
on the dominant axis. For him, equity was about providing each individual student (access) what 
they need to be successful (achievement). He mentioned, “Success looks different for every 
student and I think giving students you know opportunities to improve their practice is crucial, 
but what you provide each student to be successful is going to be different... and so the equity 
piece is just giving students opportunities to improve in different ways at the level they're at.” 
Thus, if justification is a means for assessing students’ thought processes, it is a tool for 
supporting both the access and achievement elements of Guttiérez’s (2012) dimensions of equity.  
Case 2: Justification as Explaining and Convincing Other People 

Lynda is a high school mathematics teacher (grades 10-12) in her fourth year of 
teaching. 

Lynda described justification as: 
“basically explaining your thinking and being able to prove whatever it is that you want to 
claim in a way that makes sense to other people. So I think a lot of times you can justify 
something in your own mind, but then actually coming up with the words or the logic or the 
picture or whatever the case may be to prove it to somebody else.” (Lynda, Pre-Interview) 
In contrast to William’s definition, Lynda describes justification as going beyond explaining 

your thinking to be able to “prove whatever it is that you want to claim in a way that makes sense 
to other people.” Lynda’s definition emphasizes how justification is a collective activity; coming 
up with a justification involves considering what will be convincing to somebody else. 

When asked to explain about creating equitable learning opportunities, Lynda emphasized 
access and identity: 

“I think [the basic idea is] that everybody has access. But to expand on that, right, that 
everybody would be able to, like, assess the problem from the beginning, but also, like 
remain in the problem the entire time. So I think like some lessons are built so that you know, 
there's like the opener that everybody can access, but then things step up, and maybe you lose 
people on the way. So to create like a whole equitable lesson some way that everybody can 
get in. And if you kind of fall out that there's a way back in. And I don't know, just being 
mindful of people's different like backgrounds in terms of like background knowledge for the 
math needed background in terms of just like cultural experiences, that may or may not play 
a part in the lesson. And then also just different, like accessibility needs if people have like, 
different impairments that might need to be adjusted for.” (Lynda, Pre-Interview) 
Lynda’s attention to how lessons need to provide access for each student, and her awareness 

of differences in students’ mathematics and cultural backgrounds, reflects a commitment to 
ensuring that all students can participate in her classroom mathematical community. By defining 
justification in a way that is not just convincing to oneself but also to others, it positions 
justification as building a classroom where students’ access to the mathematical tasks is 
important and students’ varied backgrounds are embraced as part of their mathematical identities. 
Case 3: Justification as Knowing Why 

Emma is a 9th- and 10th-grade mathematics teacher in her sixth year of teaching. When asked 
to define justification, Emma stated: 

“I think it's being able to like to explain to somebody why you did something rather than just 
what you did. I think a big issue is that we tend to teach processes and how to memorize 
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processes, and we don't spend as much time focusing on like why are we actually doing this, 
what does it connect to. And so I think that that mathematical justification is just being able to 
explain the why rather than just the what.” (Emma, Pre-Interview) 
We argue that Emma’s response is somewhat of a blend of the ideas from William’s and 

Lynda’s responses. Emma’s focus on justification promotes understanding the “why” behind the 
processes echoes William’s attention to justification going beyond a student explaining how they 
got an answer. Yet, like Lynda, Emma also mentions that justification involves explaining to 
others. When asked about what it means to create equitable learning opportunities in her 
classroom, Emma’s responses reflected attention to access in a couple of ways. She indicated: 

“And so I try to think about like not just creating learning experiences based off of what like 
I would be able to successfully engage in, but thinking about the different things that might 
hold somebody back or make them experience it differently.” (Emma, Pre-Interview) 
She continued: “… it starts with just like getting to know your students and figuring out what 

they need.” Her attention to knowing students and their lives outside of class was predominant in 
her responses to questions related to creating equitable opportunities to learn, reflecting her 
concern for supporting students’ identities, and using knowledge about their out-of-class 
identities to inform her instruction. 

When considering if Emma’s conception of justification aligns with her vision for creating 
equitable opportunities to learn, it is less clear whether her emphasis on being able to “explain to 
somebody why you did something” is supportive of her efforts to create a learning environment 
that connects with who they are and how they learn within and outside of the mathematics 
classroom. 

Holistic Results 
Overall, the majority of teachers (8 of 10) describe justification as an individual activity that 

involved some kind of written record and provided a detailed accounting of what they students 
knew or how they had solved a problem. Only 2 of 10 teachers suggested justification was a 
practice where students engaged one another and potentially built knowledge. Additionally, 
when discussing what it means to create equitable learning opportunities, the majority of 
teachers’ responses reflected aspects of the dominant axis of equity (Gutiérrez, 2012) and only 3 
of the 10 teachers discussed aspects related to supporting the critical axis. Although a noticeable 
minority, the responses from those three teachers reflected a vision of supporting the identity 
dimension of the critical axis (Gutiérrez). 

 

Discussion 
Although scholars have argued how justification plays a role in promoting equity (Bieda & 

Staples, 2020; Boaler & Staples, 2008), little empirical work has been done to show that 
teachers’ conceptualizations of justification, and therefore the nature of the justifications and 
justification activity they expect from students, reflect, and align with their goals for creating 
equitable learning opportunities. In our findings, we discovered that most of the participating 
teachers conceive of justification as an activity that can promote students’ access to deeper 
understanding of mathematics but tend to focus less on how justification can support students’ 
mathematical identities and become a tool for exercising power in changing their worlds. 
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Moreover, the tendency to focus on elements of access and achievement were evident in their 
vision for creating equitable learning opportunities in their classrooms. What these findings 
suggest is that more work is needed to help teachers go beyond recognizing justification as a 
means for showing deeper understanding and explaining why, but to also conceptualize 
justification as an activity that builds mathematical identities needed for students to both step 
into and exercising agency with advocating for change in society. 

 

Acknowledgments 
This research was supported through funding from Blinded for Review (Blinded). Any 

opinions, conclusions, or recommendations contained herein are those of the authors and do not 
necessarily reflect the views of Blinded. 

References 
Bartell, T., Wager, A., Edwards, A., Battey, D., Foote, M., & Spencer, J. (2017). Toward a framework for research 

linking equitable teaching with the standards for mathematical practice. Journal for Research in Mathematics 
Education, 48(1), 7-21. 

Bieda, K. N. (2010). Enacting proof-related tasks in middle school mathematics: Challenges and opportunities. 
Journal for Research in Mathematics Education, 41(4), 351-382. 

Bieda, K. & Staples, M. (2020). Justification as an equity practice. Mathematics Teacher: Learning and Teaching 
PreK-12, 113(2), 102–108. https://doi.org/10.5951/MTLT.2019.0148 

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of 
Railside School. Teachers College Record, 110(3), 608-645. 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 
77-101. 

Ellis, A. B., Staples, M., & Bieda, K. N. (2022). Justification Across the Grade Bands. In K. Bieda, A. Conner, 
K.Kosko, and M. Staples (Eds.), Conceptions and Consequences of Mathematical Argumentation, Justification, 
and Proof (pp. 287-297). Cham: Springer International Publishing. 

Gonzalez Thompson, A. (1984). The relationship of teachers' conceptions of mathematics and mathematics teaching 
to instructional practice. Educational Studies in Mathematics, 15(2), 105-127. 

Gutiérrez, R. (2012). Context matters: How should we conceptualize equity in mathematics education?. In B. 
Herbel-Eisenmann, D. Wagner, J. Choppin & D. Pimm( Eds.), Equity in discourse for mathematics education: 
Theories, practices, and policies (p.17-33). Springer Science and Business Media. 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that 
support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics 
Education, 28(5), 524-549. 

Horn, I. S. (2012). Strength in numbers: Collaborative learning in secondary mathematics classrooms. Reston, VA: 
National Council of Teachers of Mathematics. 

Klosterman, P. J. (2016). Identification and establishment of social and sociomathematical norms associated with 
mathematically productive discourse. Unpublished doctoral dissertation, Washington State University. 

Knuth, E. J. (2002). Teachers' conceptions of proof in the context of secondary school mathematics. Journal of 
Mathematics Teacher Education, 5, 61-88. 

Staples, M. (2007). Supporting whole-class collaborative inquiry in a secondary mathematics classroom. Cognition 
and Instruction, 25(2-3), 161-217. 

Staples, M. E., Bartlo, J., & Thanheiser, E. (2012). Justification as a teaching and learning practice: Its (potential) 
multifacted role in middle grades mathematics classrooms. The Journal of Mathematical Behavior, 31(4), 447- 
462. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for 
Research in Mathematics Education, 27(4), 458-477. 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 141 

DESIGNING MATHEMATICAL REASONING TO BE A FORM OF INOCULATION 
AGAINST UNWARRANTED BELIEFS 

Samuel Otten 
University of Missouri 
ottensa@missouri.edu 

 

Mitchelle M. Wambua 
University of Missouri 

mwambua@mail.missouri.edu 

Emmanuel Chukwuebuka Umeh 
University of Missouri 
ecung6@missouri.edu 

Keywords: Reasoning-and-Proving, Conspiracy Theories, Boundary Crossing 

The problem of conspiracy theories and epistemically unwarranted beliefs is being addressed 
by media literacy specialists (Jones-Jang et al., 2021), social psychologists (Douglas & Sutton, 
2018), science educators (Fasce & Picó, 2019), among others. What role can mathematics 
education play in reducing our societal susceptibility to unwarranted beliefs? Unwarranted 
beliefs are defined as beliefs not based on valid reasoning or credible data and which are 
maintained even in the face of countervailing evidence. Mathematics education should be able to 
provide skills related to validity and credibility, but there are two interrelated drawbacks which 
must be overcome. First, mathematical reasoning must avoid the danger of being taught narrowly 
so that it is constrained to a procedural exercise exclusive to school mathematics (Reid & 
Knipping, 2010). In other words, we must instill transferrable reasoning skills. Second, we must 
help students form the disposition to actually apply those analytical reasoning skills. Falling for 
fake news headlines, for example, seems to be more a matter of failing to apply analytical skills 
than it is a matter of the oft-assumed confirmation bias (Pennycook & Rand, 2019). 

We employ boundary crossing (Akkerman & Bakker, 2011) as a theoretical perspective for 
the design of a curriculum unit intended to build students’ reasoning skills in a manner relevant 
not only for school mathematics but also for social and political discourse. This approach 
explicitly attends to the building of habits within and beyond mathematical contexts so that 
students are more likely to actively use their analytic skills when faced with unwarranted claims. 
We identify the boundary as being between school mathematics situations and social situations 
in which political or current event arguments are made. We have designed scenarios from 
political debate that have mathematical substance and can be brought into the school 
mathematics space, while also designing a “pedagogical device” in the mathematics instruction 
that can be a boundary object for political debates or when consuming news media. 

The pedagogical device is consistent with media literacy guidelines (Aufderheide, 1993; 
Jones-Jang et al., 2021) and interventions that have successfully inoculated students against 
unwarranted beliefs (Dyer & Hall, 2019) and is simultaneously well-suited, we believe, for 
spurring mathematical reasoning. It consists of two questions that we can constantly ask when a 
claim arises: “How do you know that is true?” and “Could that possibly be wrong?” These 
questions are framed not as personal attacks (which are unproductive in classrooms and in 
confronting unwarranted beliefs) but in the spirit of collective understanding and sense-making. 
The poster presentation will include multiple examples of these questions being used to spur 
reasoning and debate within mathematics, such as when faced with the (false) claim that an 
exponential function cannot “catch up” to a polynomial function with a very large exponent 
(Otten et al., 2023). The questions will also be applied to political claims such as the story that 
enough dead people voted in the 2020 U.S. presidential election to sway the outcome. 

By teaching mathematical reasoning in a manner that promotes active wondering about the 
basis of claims (“how do you know that is true?”) and invites curiosity, not confrontation, about 
the possible existence of counterevidence (“could that possibly be wrong?”), we hope to 
exemplify one possible approach to the design of learning opportunities that will resonate across 
mathematical and political boundaries and increase the likelihood that students activate their 
analytic skills in ways that inoculate them to unwarranted beliefs. 
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The aim of this study is to characterize ways of reasoning and arguing that first year university 
mathematics students exhibit in problem-solving activities from a course that emphasizes the 
importance of formulating conjectures and the search for different ways to support or validate 
them. The use of a Dynamic Geometry System in the representation of problems and in the 
formulation of conjectures or relationships that are important in the solution processes is 
highlighted. In this context, students have the opportunity to look for different ways to argue and 
support the relevance and validity of the conjectures. Results indicate that students extend their 
ways of reasoning so that allows them to move from empirical to formal arguments within 
problem solutions 

Keywords: Undergraduate Education; Problem Solving; Reasoning and Proof; Technology 

According to admission profiles for higher education, in Physical-Mathematical Sciences and 
Engineering, students are expected to have a solid knowledge of basic concepts from High 
School Calculus, Analytical Geometry and Algebra, as well as to be interested in problem 
solving. However, data from diagnostic exams for admission to the bachelor’s degree in 
Mathematics of various institutions show that most students enter this area of study without an 
adequate understanding of basic mathematical concepts and with skills and strategies for 
problem solving focused on a basic level of reproduction. This shows that students will have 
significant difficulties during their integration into higher education.  

This highlights the need to provide a mathematical education that encourages students to 
focus their interest and attention on the development of skills and strategies for the management 
of concepts, the resolution of mathematical problems and the elaboration of arguments that allow 
them to go beyond the reproduction of knowledge to build a robust and abstract mathematical 
thinking that enables them to formulate and solve different types of problems in any area of their 
academic, social and labor training. 

With this in mind, it becomes important to continue researching on aspects and factors that 
have an influence on a successful or deficient integration at university level, mainly in the 
Mathematics area. Thus, in this research we sought to characterize, by means of a task focused 
on Problem Solving (PS) (Polya, 1965; Schoenfeld, 1985), which are the tools, skills and 
difficulties within the process of argumentation and mathematical reasoning that first-year 
undergraduate students in Mathematics show, therefore the following research question was 
posed How does the use of Dynamic Geometry System (DGS) within the PS promote the 
development of mathematical processes such as obtaining conjectures, arguing and validation, so 
this allows students to get in higher level mathematical activities? 
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Contextual framework 
Research on the secondary-tertiary transition in Mathematics has considered different 

perspectives in order to explain and address the problems and stages that students go through 
during this transition period. In this regard, Leviatan (2008) states that students' difficulties are 
due to the fact that high school mathematics tends to focus on developing algorithmic skills for 
resolution of concrete and routine exercises, while at university, skills for abstraction and aspects 
of inquisitive questioning are required, while non-routine problem solving, and mathematical 
rigor are emphasized. On the other hand, Clark and Lovric (2010) define that transition from one 
level to another involves the process of a rite of passage divided into three phases: 1) Separation 
from the level, from the previous ways and routines of learning; 2) Liminality, a phase in which 
routines, beliefs and habits from high-school level still form part of students’ attitudes within the 
new educational system not yet assimilated; and 3) Incorporation into the new environment. This 
transition implies a crisis that leads the interruption, modification, and distortion of previous 
routines, so this crisis is inevitable but necessary for students to develop advanced mathematical 
thinking and autonomy before their training. Considering this, it becomes feasible to investigate 
aspects that could smooth this process. Thus, Rach and Heinze (2016) identified 5 variables 
involved in academic success or failure during second-tertiary transition: 1) interest in 
mathematics, 2) self-concept as a mathematics learner, 3) previous achievements as a 
mathematics learner, 4) previous knowledge of mathematics, and 5) quality of learning 
strategies. For their part, Di Martino and Gregorio (2019) established five categories of causal 
attributes that lead to the difficulties presented during integration to university education: 1) 
Context factors; 2) Transition aspects; 3) Inadequate knowledge; 4) Inadequate way of thinking 
in/for mathematics; and 5) Comparison with peers. Considering these aspects allows us to 
generate alternatives to support the student in facing these problems. 

As can be seen, problems that students will face during this transition have a multicausal 
nature. In this regard, Adelman (2006) suggests that students previously need examples of the 
activities performed during the first year of university education and the kind of future exams in 
order to have a better idea of what students are expected to do. Thus, it is important for students 
to have approaches to processes linked to argumentation and mathematical reasoning. For his 
part, Schoenfeld (2022) mentions that the educational challenge lies in creating robust learning 
environments that support students in developing not only the authentic knowledge and 
processes that underlie mathematics, but that promote the development of a sense of agency and 
authority to make sense of mathematical objects and practices within robust mathematical 
thinking. 

Given the above, it becomes necessary to contribute to research on aspects, factors and 
practices that contribute to a more accessible and with greater opportunities to succeed during 
Mathematics education. The analysis presented in this paper is on the basis of, as mentioned 
before, the results of a task based on PR within a Geometry course whose methodology includes 
aspects related to the five dimensions to create powerful mathematics classrooms (Schoenfeld, 
2014): 1) Mathematical content; 2) Cognitive demand; 3) Access to mathematical content; 4) 
Agency, authority and identity and 5) Use of assessments. Thus, first is given a general 
description of the teaching practices carried out in the course, followed by a descriptive analysis 
of the processes set in motion by the group of participating students. For the analysis of data 
obtained, we identified resources and heuristics (Schoenfeld, 1985), as well as conceptual and 
procedural tools (Melhuish, Vroom, et al., 2022) that students use and that bring them closer to 
the realization of authentic mathematical activities. For this purpose, we consider Authentic 
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Mathematical Proof Activity (AMPA) theoretical framework proposed by Melhuish, Vroom, et 
al. (2022), from the ten procedural tools expressed by the authors, we sought to identify: 1) 
refinement or analysis of a proof, a statement, or definition by focusing on the attainment of 
assumptions; 2) elaboration of formalizations, i.e., the process of translating informal ideas into 
formal or symbolic rhetorical forms; 3) elaboration of analogies, i.e., the process of importing 
proofs, statements or concepts across different domains adapting them to new schemas; 4) use of 
examples, a specific and concrete representation of a statement, concept or proof that represents 
a class of objects; and 5) elaboration of diagrams and visual representations of mathematical 
objects (statements, concepts or proofs) that capture structural properties. 

Description of didactic methodology 
Group G1 consisted of 8 undergraduate mathematics students who participated on a 

voluntary basis and who were taking a Modern Geometry I course from a public university. 
Contents of the course were developed on the basis of problems or initial questions posed by 

the teacher, which students had to explore prior to the class. During the class, the teacher used 
the Dynamic Geometry System Geogebra (DGS) to explorate the proposed problems, as well as 
to simulate geometric straightedge-and-compass constructions and to verify initial conjectures, 
so that students were familiar with this technology and could use it to explore problems 
presented on their own. 

The dynamics of the course sought to provide opportunities for students to have equal access 
to the contents developed, by means of course notes, suggested bibliography, interactive applets 
in Geogebra and the possibility of research via the internet. Students were encouraged to develop 
the ability to argue and not only the use of established formulas or algorithms; on the contrary, 
through the problems and questions posed, students were encouraged to generate conjectures and 
different ways to corroborate the validity of them, as well as the exchange of ideas in groups to 
meet the dimension of cognitive demand (Schoenfeld, 2014) and to generate both individual and 
collaborative commitment in the performance of the activities by students. 

Thus, by the time the task was assigned, students had received training aimed at obtaining 
conjectures, arguing and exploration using Geogebra. In addition, by this time they had reviewed 
content related to triangles properties, triangles congruence and similarity criteria, inscribed 
angles and cyclic quadrilaterals properties. 
Context of the Problem Solving Task Assignment 

The group of students was given the following task: There is a square ABCD. If on the DA 
side you construct the midpoint E, then draw the segment BE and construct the perpendicular 
segment CF with F the perpendicular foot on BE. What kind of triangle do the points C, D and F 
form? Prove your conjecture in two different ways. 

Students had the option of tackling the task individually or in pairs, as the latter modality of 
work prevailed in the dynamics of the course. Students took the problem home and had about 
three days for a first approach to it. Then, in a classroom class, space was provided for the group 
to present the conjectures obtained, the initial ideas for the demonstration of the conjecture and 
possible doubts or concerns. This class was part of the control elements of the RP (Schoenfeld, 
1985), so the necessary feedback was given to the students. 

To collect data, a logbook was requested to record the resolution processes, as well as the 
questions, ideas or actions that arose during the resolution of the task. For this purpose, the 
following elements were requested: 
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1. Description of the exploration, understanding of the problem and making a conjecture. 
For the analysis of data in this section, we sought to determine what means, instruments 
and processes students used or followed to explore and understand the problem, as well 
as to make a conjecture. 

2. Description of the process of developing a plan or strategy for solving the problem. In 
this section we sought to identify whether students recognized the resources (concepts, 
mathematical content, evidence or previous results) they had or did not have to tackle the 
problem, so that this would lead them to determine a possible path to follow for the 
solution or to consider various sources of research. 

3. Process of solving the problem. This section analyses arguments and processes that led to 
proving the conjecture obtained. 

4. Problem extensions. This section analyses whether students pose new questions or 
problems to be solved based on what has already been solved. 

From the analysis of these elements, the aim is to describe the type of reasoning and ways of 
acting that students put into practice in order to solve problems, as well as the difficulties they 
faced and the ways in which they overcame them. 

Analysis of results 
For the analysis of the results, it was considered the evaluation of three logbooks developed 

in pairs (E1, E2, E3) and one individually developed logbook (E4) of group G1. In this report, 
the tools and processes within the logbook developed by students are exemplified with short 
episodes. It should be noted that in the logs it is observed that the predominant way of working 
to understand and explore the problem was individual, as well as for the general writing of the 
log, while students worked collaboratively mainly to exchange and verify ideas during the 
planning of a strategy, in the process of solving it, and to obtain feedback from their peers. The 
results obtained in the team logbook sections are described below. 
Analysis: Exploring and Understanding the Problem 

Students in each team were very descriptive in terms of the acts they performed to 
understand the problem, and they were also open in expressing their way of acting and thinking 
about the processes during the RP, which allows us to identify, at least in a global way, their 
belief system in relation to this activity (Schoenfeld, 1985). 

As can be seen in Table 1, all students used Geogebra to carry out the construction, and also 
used the software tools either to measure distances between points or the construction of circles 
to compare radii and thus compare lengths. The use of Geogebra helped students to represent and 
understand the problem, and thus to make a conjecture about the type of triangle generated in the 
construction. 

 
Table 1. Responses from exploration and understanding phase 

 

Problem 
representation 

Processes followed by each team 
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E1. We first developed the construction that posed the problem with 
the help of the Geogebra plotter. When we made the model, we realised 
that the triangle CDF was isosceles, since its bisector, height and 
mediatrix of D coincided, which is characteristic of a triangle of this 
type, and we subsequently checked this by measuring the distances DF 
and DC with the help of the program. 

 

E2. The first thing I did was to construct the figure in Geogebra to 
get a clearer idea of what was being drawn. Then when I looked at the 
triangle, at first glance it looked like an equilateral triangle, but after 
comparing the lengths of the sides, using circles, I realised that it was 
actually an isosceles triangle. 

 

E3. First I traced [the figure] freehand, as I didn't get very far, I 
plotted the hypotheses in Geogebra and there I discovered that the 
triangle was isosceles. 

E4. I decided to open Geogebra to build the construction step by step 
(I suspected it would be complicated). After building it I realized that 
the triangle FCD is isosceles. Now I wonder how to prove it, because I 
can't think how I know it is isosceles. 

 
All the students conjectured that the triangle in question is isosceles. Thus we have that 

students implement the strategy of elaborating diagrams accompanied by the use of technology, 
and it is also observed that they have the necessary resources to elaborate the construction based 
on the structural characteristics of the mathematical objects. On the other hand, it is observed 
that students have acquired a certain degree of confidence both in making decisions regarding 
their actions as problem solvers and in the use of auxiliary tools or devices. 
Analysis: Drawing up a Plan 

In general, it can be observed that for the first demonstration of the conjecture, the students 
considered two possible ways, the first related to demonstrating that two sides of the triangle 
have the same length, the second, demonstrating that in the triangle there are two internal angles 
that measure the same, for which they mentioned that they could use congruence or similarity of 
triangles. One team highlighted as an important aspect the fact that both the angles formed by the 
perpendicular and those of the square are right angles, which allowed them to consider the CDEF 
quadrilateral and hence to consider the use of results relating to cyclic quadrilaterals. Below are 
fragments of what the students expressed in search of a first demonstration. 

E1. At the beginning we came to the conclusion that we could find equal angles from the 
figures formed by the construction [...] and consider that there were congruent triangles. 

E2. I felt that the best way to test this was to use triangle congruence.  
E3. The fact that the sides [of the quadrilateral] measure the same and the angles are right 

angles is relevant, because in this way we see that it is a cyclic quadrilateral and so we 
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can relate this to other results such as congruence, similarity of triangles and angles 
inscribed in a circle. 

E4. First I will try to arrive at the equality of two angles of the triangle FCD. 
It is worth mentioning that both in this stage and in the comprehension stage, the 

identification of the resources available to the students becomes evident, from which it is 
possible to draw up a suitable diagram and define a first approach or resolution plan. 
Analysis: Problem-Solving Process 

The students mentioned that after having obtained the conjecture, they faced several 
moments of frustration and despair, as they did not quickly find a way forward to prove their 
assertion. Some of them expressed "letting the ideas and frustrations rest" for a considerable time 
and then resuming with a calmer attitude, during this time a face-to-face class was held in which 
the initial ideas were expressed as a group lesson, which allowed the students to reconsider the 
resources they had and other possible ways of approaching the conjecture. Thus, for the 
demonstrations, teams E1, E2 and E4 also considered results relating to cyclic quadrilaterals and 
angles inscribed in a circle. 

The resolution processes followed by two teams are described and analyzed below. 
 

 
Figure 1. Answers corresponding to the resolution of the problem (on the left side 

demonstration 1 of E1, on the right side demonstration 2 of E4). 

In general, it is observed that students used results related to characteristics of cyclic 
quadrilaterals, criteria of congruence and similarity of triangles, and inscribed angles in a circle. 
In addition, they expressed using Geogebra to verify the ideas that emerged in this process. 

In the argumentation generated by E1, it can be observed that they use (although it is not 
explicitly mentioned) the property that the internal angles of a triangle add up to 180° together 
with the fact that the angles of the initial square are right angles in order to obtain the value of 
other angles. In addition, it is observed that one of the (almost immediate) ways of acting of the 
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students is to obtain results by means of mathematical calculations even when the relevance of 
performing certain calculations has not been established, i.e. more calculations are performed 
than necessary (not for that reason incorrect), so that the process of monitoring and refining the 
elaborated demonstration could be improved. Subsequently, they use the fact that if in a convex 
quadrilateral its opposite angles are supplementary (add up to 180°) then the quadrilateral is 
cyclic, this result is also not explicitly expressed. Finally, they also implicitly use the property 
that in a cyclic convex quadrilateral the measure of an angle formed by one side and a diagonal is 
equal to that of the angle formed by the side opposite to the first and the other diagonal. 

In E4's answer we can see that their argumentation takes as a starting point that the 
quadrilateral FEDC is cyclic, this is argued because the [opposite] angles of the quadrilateral are 
supplementary. On the other hand, in point 2, it is not argued why point G is the midpoint of the 
segment AB. Then, like E1, in (3) they implicitly use the fact that in a convex cyclic 
quadrilateral the measure of an angle formed by one side and one diagonal is equal to that of the 
angle formed by the side opposite to the first and the other diagonal. In (4) it is observed that 
although students handle the concept of congruence and the criteria that allow them to establish 
the congruence of triangles, they do not correctly use the notation to express this fact, which 
subsequently leads them to compare sides and corresponding angles correctly or incorrectly 
(point 5). In (8) it is established that by considering equal angles and subtracting other angles 
whose measure is equal, equal angles will be obtained, which will make it possible to establish 
the equality of two internal angles of the triangle in question in order to demonstrate that it is an 
isosceles triangle. Although the students' reasoning is correct and allows them to reach the 
desired conclusion, it is observed that the equality considered in (7), the expressions 
corresponding to the angles and the corresponding subtractions are incorrect. This shows that 
there is still a need to work on the process of transferring the ideas [oral or thought] to a written 
and formal argumentation. 
Analysis: Problem extensions 

In group G1 it was observed that the extension phase was not developed by most of the 
students as they omitted this section, those who elaborated an answer (E3) considered asking 
about some properties that are generated by other objects in the construction or if the 
circumcircle of the triangle DEB is considered, how many other circumcircles present in the 
construction are going to be cut by the first one? None of these questions are answered. On the 
other hand, one student in particular, expressed that by means of Geogebra she built (and 
replicated) the initial construction, with which she observed that "a repetitive figure" was 
formed, with which she asks herself if this construction forms a fractal, "how does it look like to 
repeat this process", "how is it demonstrated that point D is the midpoint of LK and that D is the 
vertex of ED? These questions are left open for further exploration. 

Conclusions 
The dynamics implemented in group G1 course encouraged students to use Geogebra as a 

means for exploration, understanding, obtaining conjectures, and verifying some initial ideas. 
This leads us to conclude that it is important to provide physical and temporal spaces in high-
school and university mathematics courses for students to use GDS not only as a means of 
representation but also to manipulate the elements that make up the construction to obtain 
conjectures and verify them, and even more so, to obtain their own or additional results of the 
problem from this manipulation. 
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With regard to argumentation, on the one hand, it is important for students to first recognize 
the mathematical resources they have and then to be able to apply them in problem solving; on 
the other hand, it is also important that during mathematics education, spaces are created to 
develop oral and written arguments that allow them to develop an informal mathematical 
thinking, but with a logical sequence that brings them closer to the process of abstraction and 
demonstration. Thus, it was observed that the students had the opportunity to put into action 
various mathematical skills and seek different ways of arguing and supporting the relevance and 
validity of the conjectures. The results indicate that the students extended their ways of 
reasoning, allowing them to move from empirical arguments to formal arguments in the 
presentation of solutions to the problems. 

On the other hand, it was observed that within the group dynamics there is a lack of space for 
students to pose their own problems, either based on those proposed by the teacher or not. Thus, 
the role of the teacher in guiding and providing feedback during the monitoring and control 
processes is considered to be of utmost importance. 

Finally, it is crucial that dynamics in mathematics courses encourage students to make 
decisions regarding the way in which the mathematical problems presented are approached, the 
manipulation of auxiliary tools such as technologies for the exploration and construction of 
mathematical objects in order to obtain conjectures and create spaces for the generation of formal 
arguments, the use of mathematical notation and symbology and the refinement of proofs to 
strengthen mathematical reasoning during the transition to university. 
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The Realistic Mathematics Education (RME) approach was developed and popularized in the 
Netherlands in the 1970s, built on Freudenthal’s observation that mathematics is a human 
activity (Treffers, 1993). RME involves students working on context problems, problems whose 
context is experientially real to them. When looking at student work on context problems, 
Gravemeijer and Doorman (1999) highlighted different models generated by students and ways 
that students might transition between them. Realistic modeling, an important perspective on 
mathematical modeling, focuses on students’ abilities and skills to model and understand real-
world and authentic problems (Pollak & Garfunkel, 2013; Abassian, 2020). Research in both 
RME and realistic modeling emphasizes the importance of the models students produce and use 
when solving realistically grounded contexts. In this work we considered how preservice 
teachers’ knowledge of the problem context and their interest in the setting influence their 
choices when engaged in mathematical modeling.  

This report is part of a broader study whose primary goal is to unpack the quality and content 
of interactions around mathematical modeling tasks. We conducted clinical interviews with 
participating teachers. The data was analyzed to determine what factors influenced the choices 
that the participants made. We found distinct ways the participants’ use of embedded mental 
models impacted the choices they made while working on modeling tasks. Participants working 
on one of the tasks used in the study, “the classroom task” is discussed below as an illustration.  

The task involved determining the number of desks that could fit into a classroom based on 
the CDC COVID guidelines. No model was included as part of the task; instead personal 
experiences shaped the assumptions made in exploring the problem. These personal experiences 
enforced particular conditions on the models produced and used by the participants. These 
particularities are what we call embedded mental models. Drawing on previous research around 
implementation of RME amongst young learners, we further note that working from an 
embedded model had many affordances for our participants. They engaged quickly and easily 
with the task and stayed engaged until they felt they had solved it. They quickly sketched a 
picture and discussed variables and parameters worthy of consideration. These practices were 
consistent with what they had experienced as students in regular classrooms.  

Working with an embedded model imposed distinct constraints on participants’ modeling 
process. It prevented them from considering alternative design approaches. Although the task 
could be seen as a packing problem, participants did not consider layouts other than rows and 
columns or table shapes other than rectangular model. When asked about a different layout for 
classroom set up, they expressed that they were unable to visualize a different arrangement. As 
such, embedded mental models limited the variables the participants considered or viable 
approaches that could move them towards constructing a generalized model.  

When working with participants on mathematical modeling tasks (whether teachers or 
students), it is important to identify when they might be using an embedded mental model and 
what specific affordances and constraints they will experience as a result. 
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Recently, abstracted quantitative structures (AQS), a construct from quantitative reasoning, has 
been offered as a means to conceptualize and study mathematization during mathematical 
modeling. Extending this theoretical work, we provide empirical evidence that an intervention 
targeting participants’ AQS can assist in aligning modelers’ models with normatively correct 
models. We report on a pre/post intervention study designed to elicit alignment between symbolic 
forms and AQS and alignment between AQS and modeling scenarios. We used the Sørenson-
Dice coefficient and cluster analysis to identify shifts in student associations of symbolic forms 
with modeling scenarios. 

Keywords: modeling, mathematical representations, undergraduate education 

Developing students’ capacity to apply their mathematical knowledge to real-world scenarios 
is a central goal of mathematics education, especially for undergraduate STEM majors. Transfer 
of mathematics knowledge to a non-mathematical domain is difficult for students to do (Lesh & 
Zawojewski, 2007; Wake, 2014) and is challenging for researchers to study (Carraher & 
Schliemann, 2002; Evans, 1999; Lobato, 2006). Within research on the teaching and learning of 
mathematical modeling, the idea of transfer is captured by the idea of mathematizing or 
recognizing mathematical structure within a real-world scenario (Maaß, 2006; Zbiek & Conner, 
2006). Mathematization has been difficult to study because it largely occurs as a modeler’s 
mental actions, and despite this fact, has been under-theorized (Cevikbas et al., 2021). Recently, 
the field has made considerable efforts towards finding theoretically-grounded ways to 
operationalize mathematization such that it can be studied; specifically, scholars have made 
progress in explaining modeler’s mental actions from a cognitive constructivist perspective by 
examining modeling from a quantitative reasoning lens (Czocher & Hardison, 2019; Czocher et 
al., 2022; Kularajan, 2023; Niss, 2010). Such approaches are necessarily based in the students’ 
own interpretations of real-world scenarios and representations of them. Some hypotheses have 
emerged. One is that transfer of mathematical knowledge between scenarios can be traced by 
attending to individuals’ abstracted quantitative structures (AQS), which are networks of 
quantitative operations an individual has interiorized to such an extent that it is independent of 
figurative material (Moore et al., 2022). Another is that operationalizing mathematization 
through the theoretical machinery of quantitative reasoning provides leverage for designing 
interventions and supports that may improve students’ overall modeling skills. This paper adds to 
the conversation by addressing both hypotheses.  

 If the approach of operationalizing modeling in terms of quantitative reasoning is viable, 
then the field needs empirical evidence that abstracted quantitative structures are mutable during 
modeling and that real-world scenario can be assimilated into schema associated with modelers’ 
AQSs. In this study, we operationalize AQS in terms of Sherin’s (2001) symbolic forms and 
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report on a pre/post intervention conducted with undergraduate STEM majors. We answer the 
research questions: Are participants’ ways of reasoning with abstracted quantitative structures 
stable, when subjected to a learning environment focused on modeling with those structures? and 
Is there an impact on participants’ associations between symbolic forms and scenarios? 

Theoretical Perspectives on Modeling & Empirical Background on Mathematical Concepts 
We adopt the cognitive perspective on mathematical modeling which is suitable for studying 

modelers’ processes of rendering a real-world problem as a mathematical problem to solve 
(Kaiser, 2017). The cognitive perspective articulates the phases a modeler may pass through to 
specify a mathematical problem. These phases include anticipating mathematical structures that 
may be useful in representing and solving the problem, carrying out a solution process, and 
interpreting and validating the solution in terms of real-world constraints. Mathematizing, one 
phase of mathematical modeling, refers specifically to introducing conventional representational 
systems (e.g., equations, graphs, and tables) to represent mathematical “properties and 
parameters that correspond to the situational conditions and assumptions that have been 
specified” (Zbiek & Conner, 2006, p. 99). Others have pointed out that mathematizing entails 
“anticipating mathematical representations and mathematical questions that, from previous 
experience, have been successful when put to similar use” (Stillman & Brown, 2014, p. 766). 
That is, modelers need an idea of what to try out as a model that might be adequate. While the 
idea of anticipation and implemented anticipation (Niss, 2010) has gained traction in modeling 
research for their descriptive power, they lack both explanatory and predictive power with 
regards to how to aid students during mathematization. We view the idea of implemented 
anticipation through the lens of quantitative reasoning to explain what is anticipated and how 
anticipated structures are formed. 

 Sherin (2001) elaborated on the construct of symbolic forms that contemplates modelers’ 
associations between algebraic templates and conceptual schema. The template is a format (e.g., 
_ × _ = _) that can express a mathematical idea or relationship (e.g., rate of change is 
proportional to amount present). Symbolic forms help explain how and why a modeler might 
choose to use × instead of + when constructing an equation to represent a scenario. Theoretical 
work on quantities, quantification, and quantitative reasoning helps explain how individuals 
imbue the templates, variables, and conceptual schema with situationally relevant meanings.  
Quantitative reasoning means conceiving quantities and relationships among quantities; those 
relationships may be arithmetic (numerically evaluated) or quantitative (mental operations) 
(Thompson, 1990). Thompson gave an example using two individuals’ heights to demonstrate 
that an additive comparison (mental operation) can be evaluated using subtraction (arithmetic 
operation). However, a comparison of the difference in two individuals’ heights to the difference 
in another two individuals’ heights (the difference between A and B is 𝑁 times more than the 
difference between C and D) does not require evaluation of the differences in order to conceive 
the quantitative meaning. An abstracted quantitative structure (AQS) is a network of quantitative 
operations that an individual has interiorized and can operate as if it is independent of a 
figurative material (Moore et al., 2019). The core idea is that when a modeler has constructed an 
AQS, it is available to the individual when the scenario that engendered its construction is no 
longer present. Moore et al. (2019) clearly demonstrated evidence of the construction of AQSs 
and evidence of assimilation of new-to-the-student scenarios to previously constructed AQSs.  
Moore et al. (2019) also hypothesized that AQSs play an important role in transfer due to 
cognitive reorganization of previous experiences. Here, by transfer, we mean recognizing the 
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applicability of symbolic forms for the purpose of mathematizing a given scenario, that is, 
implemented anticipation (Niss, 2010).  

Mathematization of a real-world scenario is notoriously difficult for students across grade 
bands and content areas. Even students in advanced mathematics find it challenging because they 
face more complex scenarios where rate of change takes on dual roles as both dependent and 
independent variables. In such scenarios, students struggle with the idea that time is an implicit 
variable (Keene, 2007) and often interchange a differential equation with its solution (Donovan, 
2002). Scaffolding for these students includes placing emphasis on the system being modeled 
and making explicit connections between the equation and the system it represents (Baker, 2009; 
Czocher, 2017; Myers et al., 2008; Pennell et al., 2009). For these reasons, we designed a study 
to generate empirical evidence as to whether participants’ ways of reasoning with AQSs are 
stable throughout a learning environment focused on modeling with those structures. With 
reference to previous work on differential equations, our study focused on the templates of 
symbolic forms in Figure 3 and the learning environment emphasized these forms as 
representing conceptual schema like rate of change is constant (A), rate of change is 
proportional to quantity present (B), and net rate of change (C). Throughout, we will refer to the 
answer choices in the Matching Tasks as “templates,” intending to correspond to a family of 
symbolic forms and we will use “AQS” to refer to the abstracted quantitative structures we 
observed participants create, use, and re-use during the open modeling tasks comprising the 
learning environment. The templates operationalize the AQS as generic formats. 

Methods 
We conducted a pre/post intervention study within a design research project, which we 

evaluated using a paired samples 𝑡-test and a follow-up study using cluster analysis techniques. 
The intervention was a learning environment – task sequence and scaffolding – designed to build 
participants’ mathematizing competencies. The learning environment comprised 10 hour-long 
task-based interviews with each of 23 undergraduate STEM majors recruited from courses listing 
differential equations as a prerequisite.  The 10 sessions were organized so that the first and last 
sessions – our focus in this report – featured prompts intended to (a) document the criteria 
participants used to classify scenarios and (b) document participants’ association of templates 
with the given scenarios. The middle 8 sessions consistently emphasized recognizing symbolic 
forms and associating them with quantitative structures participants recognized in the real-world 
scenarios presented in the tasks. 

We describe the intervention’s tasks using Yeo (2007) classification framework. The 
tasks were mathematical modeling problems with well-defined goals (develop a model for the 
scenario) but ill-defined answers (multiple valid models). Earlier tasks in the sequence provided 
built-in guidance and were relatively simple in that they called for fewer quantities and 
quantitative operations. Later tasks were not guided and were also more complex, being open to 
constructing many quantities and manipulating them with quantitative operations and 
relationships. In this paper, we focus on the first and final sessions, which featured pre/post items 
intended to document the participants’ associations between scenarios and quantitative 
structures. In Sessions 1 and 10 we gave the Matching Task to document stability of reasoning 
with the target templates.  

The Matching Task prompt (Figure 3) asked participants to match scenarios to the 
templates (a) – (e) based on what they saw as relevant within the problem scenario. For example, 
Item 9 is an abbreviated prompt based on a canonical salty tank problem from differential 
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equations. It was an open problem during the modeling sessions and as a pre/post item was 
reduced to indicating the template perceived as appropriate to the participant. Participants were 
asked for explanation of their answers, information which we use to enrich our analysis. 
Consider the following mathema2cal expressions: 

a) !"
!#
= 𝑘 b) !"

!#
= 𝑘 ⋅ 𝑄(𝑡) c) 𝐼 = 𝑎 ± 𝑏 d) 𝐼 = 𝑘 ⋅ 𝑎 ⋅ 𝑏 e) !"

!#
= 𝑘𝑃(𝑡)𝑄(𝑡) 

where 𝑄(𝑡) and 𝑃(𝑡) are quantities, 𝑄$(𝑡) is the rate 𝑄(𝑡) changes with respect to time, 𝑘 is a constant, and 
𝑎, 𝑏,	and 𝐼 are quantities that possibly depend on time (or not) or may be composed of other quantities (or not). 
Which of the mathematical expressions above (either individually or as a composition) can be used to model 
the real-world scenarios below? 

Item 4: Consider a natural habitat where bobcats are natural predators of rabbits. Bobcats are very good hunters, 
but they aren’t perfect. Therefore, not all of the bobcat/rabbit encounters result in a rabbit’s death. Model the 
number of rabbit deaths due to only predation by bobcats. 
 

Item 9: Consider a tank where water and a salty solution enters the tank while the well-mixed liquid inside the 
tank exits the tank. Model the rate at which the amount of salt in the tank changes with respect to time.   

Figure 3: Abbreviated statement of Matching Task 
 

A total of 𝑁 = 23 undergraduate STEM majors participated in the design research project 
whose result was the modeling intervention reported in this paper. The participants were 
generally high preforming, reporting high grades in mathematics (𝑀 = 3.4, 𝑆𝐷 = 0.5) and a high 
level of confidence with relevant mathematical concepts (𝑀 = 364, 𝑆𝐷 = 69 out of 500 points 
on a confidence scale). We describe the sample composition by gender and major, but do not 
analyze the data according to these subgroups because of the small resulting sample sizes. 
Approximately 22% of participants identified as female, 74% as male, and 4% as non-binary. 
Approximately 30% of participants were pursuing a degree related to computer science, 35% in 
electrical engineering, 17% in civil engineering, 13% in physics, and 4.3% in mechanical 
engineering. Because the overall project used design methodology to develop the intervention, 
the Matching Task was revised after Implementation 1 (𝑁 = 6) to provide response E. We 
exclude 𝑁 = 9	participants’ responses from the t-test and pre/post response comparisons because 
the pre/post response options were not the same for participants in the earliest implementations 
(𝑁 = 7), and some participants did not complete the post-test (𝑁 = 2). However, we did include 
all participants' responses in the pre-test cluster analysis (𝑁 = 23) and all except the latter in the 
post-test analysis (𝑁 = 21) by using the response similarity metric (described below). 

To quantify similarity of participants’ ways of reasoning with the templates, we established a 
metric for response pattern proximity, as follows. Participants were encouraged to consider the 
templates as composites. For example, the normatively correct response for Item 9 was keyed as 
B&C, where the template B reflects the fact that the rate at which salt leaves the tank is 
proportional to the current amount of salt in the tank, and C reflects additive comparison of the 
inflow and outflow (net rate). Selecting C was regarded as closer to the keyed answer than 
selecting A and scoring reflected this. We chose the Sørenson-Dice coefficient (SDC) as a 
similarity metric to calculate scores because it both emphasizes similarities in response patterns 
and ignores template options which were neither included in the student answer nor the keyed 
answer. The SDC provides a 0 to 1 score for each item which can be interpreted as a percent 
overlap of the participant and keyed answers and is computed as 𝑆𝐷𝐶 = 2|𝑃 ∩ 𝐾| (|𝑃| + |𝐾|)⁄  
for student answers 𝑃 and keyed answers 𝐾 (Sørenson, 1948). We calculated SDC per item and 
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then summed to generate a participant pre- and post-test score between 0 and 9. We conducted a 
paired samples 𝑡-test on these scores, which met all assumptions.  

We then explored shifts in associations per-participant and per-item using hierarchical cluster 
analysis techniques available in SPSS. Cluster analysis is a “data-driven approach” that allows 
clumping together participants who respond similarly, instead of using a priori groups. The goal 
is to organize heterogeneous samples into smaller groups that are maximally similar within-
group and maximally dissimilar across groups (Woods et al., 2020). We estimated similarity by 
applying the SDC metric on participant responses to the Matching Task items to determine 
similarity between sets of participant responses. Finally, we teased apart the influence of item- 
and individual-level response patterns to articulate an account of shifts in participants’ 
associations between symbolic forms (represented by the response choices) and scenarios. 

Results 
A paired 𝑡-test of the scores of the pre-tests (𝑀 = 4.37, 𝑆𝐷 = 1.54) and post-test (𝑀 =

6.42, 𝑆𝐷 = 1.29) suggest that the intervention resulted in additional normatively-correct 
associations between the templates and problems (𝑡(13) 	= 	4.8, 𝑝	 < 	0.001), with a paired 
samples effect size of 𝑑 = 1.25. In the aggregate, participants’ associations between scenarios 
and templates shifted. Calculating the SDC between students’ pre and post answers to each item 
(n = 126 pairs of pre/post responses from 9 items and 14 participants), we found that 41% of the 
post-test responses had no similarity with the corresponding pre-test answer, with an average 
pre/post-test similarity of 0.50. The cluster analysis revealed that similarity of participants’ 
responses was lower on the pre-test than on the post-test (Table 1). Clustering performed on pre-
test response sets yielded low average similarity. The two primary pre-test clusters included 11 
of the 23 participants with average internal similarities of 0.63 ± 0.08 and 0.66 ± 0.08. The 
post-test revealed two clear primary clusters containing 8 and 7 participants respectively, and the 
6 remaining participants were clear outliers from either cluster.  Table 1 provides the similarity 
details of the post-test clusters, as well as average performance of students within these clusters. 

Table 1: Post-Test Cluster Statistics 
  Internal Similarity  Matching Task Performance 

Group 𝑛 Mean Range  Pre2 Post Improvement2 

Cluster 1 8 0.76 ± 0.07 (0.59, 0.93)  5.27 ± 1.31 7.43 ± 0.68 2.16 ± 1.65 

Cluster 2 7 0.76 ± 0.08 (0.55,0.91)  3.87 ± 1.33 6.10 ± 0.64 2.25 ± 1.58 

Outliers 6 0.40 ± 0.10 (0.19,0.56)  3.15 ± 0.52 4.31 ± 0.35	 1.17 ± 0.17	

 
•      The cluster analyses revealed overall shifts towards the normatively correct response 

patterns and also indicated non-conforming item- and participant-level response patterns. 
For example, pre/post response patterns on Item 4 and Item 9 are shown in 

 
2 These columns only include scores on the final form of the pre/post test, resulting in 𝑛% = 6, 𝑛& = 6, 𝑛'(# = 2.  
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Figure 4. For the 𝑛 = 14 participants who took the same version of the pre/post tests, the graphs 
illustrate a general shift towards the normatively correct responses for each item. On Item 9, just 
shy of 60% of participants included E in their responses, while only 29% included C, and 14% 
selected both. Participants who provided a justification for selecting only E mentioned it looked 
similar to what they recalled from their differential equations class and that the multiplicative 
factors represented inflow and outflow. On the post-test, 86% associated template C with the 
scenario, and only 14% kept E, indicating that many participants learned to associate the 
conceptual schema for the superposition of flows with template C as necessary to model the salt 
tank problem.  
     On some items, participant response patterns did not shift towards the keyed answers. In item 
4, the response frequency for E increased though D was the keyed answer. Item 4 describes a 
predator-prey scenario. The item requests a model for the number of rabbit deaths due to 
predation, explicitly prompting the participant for an amount rather than a rate. The keyed 
answer D reflects a proportion of the possible interactions between the bobcat population and the 
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rabbit population. On the pre-test, the most selected template was C (43%). Participant 
justifications indicated they were conceiving the predator-prey interactions as being one-to-one, 
implying that the number of rabbits killed by bobcats was equivalent to the number of bobcats. 
On the post-test, the percentage of participants selecting C dropped to 14% while the proportion 
who chose E rose from 7% to 64% and the percentage who chose D rose from 29% to 50%. One 
of the open modelling tasks during the sessions featured a predator-prey scenario in which 
participants leveraged a symbolic form which fits into template E (as in the Lotka-Volterra 
equations). In comparison, Item 5 presented another predator-prey scenario and requested a 
model for the species interactive dynamics. The keyed answer was B&C&E to reflect two 
equations for the two species. On this item, participant responses did shift towards the keyed 
answer, with B rising from 21% to 50%, C from 29% to 57%, and E from 36% to 86%. No 
participants selected A in pre or post, and D decreased from 36% to 29%. Thus, the response 
patterns suggest that many participants learned to associate the template with the predator-prey 
scenario, but that the finer conceptions involved in transferring an AQS that call for distinction 
between amounts and rates-of-change of amounts were obscured. 

 
Figure 4 Relative Frequency of Multi-Select Responses to Items 4 and 9  

To better understand shifts in patterns of reasoning in relation to the item contexts, we 
closely examined Yixli, Tien, Niali, and Khriss. These participants were chosen because they 
exhibited four archetypal cases arising from a 2 × 2 configuration: associations were (not) 
shifted × associations were (not) normatively correct. The existence of the four archetypal cases 
demonstrates that shifting associations does not imply a shift to a normative association. For 
each participant, we describe how their ways of reasoning with AQS may have changed (or not) 
from pre to post. Yixli revised his responses to only Item 4 and 5 from pre to post; his post score 
was in the lower third of the sample (5.5/9). Explaining his change from C to E on Item 4, he 
stated, “because at this point it’s, like, beaten into my skull from all the problems that we did” [in 
the sessions]. Yixli successfully developed a system of differential equations for the predator-
prey scenario during the open modeling sessions. Thus, his statement supports the inference that 
he learned to associate predator-prey scenarios with template E but still inconsistently associated 
an AQS for rate of change in amount with a prompt requesting an amount, a common conflation 
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when learning to model with differential equations (Rasmussen & King, 2000; Rowland & 
Jovanoski, 2004).  More generally, Yixli demonstrated high levels of recognition of key features 
of the scenarios but did not associate normatively correct AQS with those features. For example, 
in items 2 and 4, he selected non-normative responses because he furnished a rate of change 
equation instead of an amount equation. In item 6, he selects one keyed response accounting for 
only part of the information presented in the prompt. Finally, on item 8, Yixli associated the 
scenario with exponential growth (B) instead of linear growth (A) based on the real-world setting 
rather than its properties. Considering Yixli’s response patterns across items explains why the 
majority of his responses – which were non-normative – did not shift from pre- to post. There 
were few non-normative associations for the intervention to address and Yixli’s tendency to 
focus on the real-world setting rather than its features was unperturbed by the intervention. 

 Tien changed responses to 4 items, selecting additional templates on the post while 
maintaining the templates he selected on the pre. He scored in the top third of the sample on post 
(7.3/9). On his pre-test, Tien selected at least one keyed response on all except two items; on 
items 4 and 9 he selected options C and E, respectively. He changed his response on item 4 to 
C&D&E, explaining that, for him, D reflected the number of rabbit deaths due to bobcats, while 
C and E reflected other quantities in the scenario. He similarly revised his responses to items 5 
and 6 to select C&D&E, which overlapped with the keyed response B&C&E. Items 5 and 6 
treated population dynamics, indicating that Tien viewed the C&D&E composition of templates 
as important for modeling population dynamics. Finally, Tien revised his response to item 9 from 
C to C&E, overlapping with the keyed response B&C. However, Tien explained that C reflected 
the sum of salt content and solution content, yielding the total amount of substance in the tank, 
not the additive comparison of inflow to outflow. We interpret Tien’s response patterns as 
indicating that he began the intervention with mostly normative associations between scenarios 
and productive symbolic forms and also gained additional association with quantitative 
structures that would aid him in modeling population dynamics. Additionally, his associations of 
forms with the salty tank scenario were correct for his conceptions, but non-normative. 

Unlike the previous two, Khriss revised his answers on all but 3 items but only slightly 
improved his score by a single point from 3.7 to 4.7, ending up scoring in the bottom tenth of the 
sample. On the pre-test, Khriss exclusively utilized the templates B, C, and E. On problem 2 he 
wrote out a normative equation but selected a non-normative template. Similarly, on problems 3 
and 8 he selected the template E to model an exponential growth problem, demonstrating that he 
had a normatively correct answer on 3 and a common non-normative answer on 8, but simply 
selected a non-normative template to describe those models. This was continued in the post-test 
on which Khriss was able to identify normative equations which modelled every problem, but 
then associated the scenarios with non-normative templates. The primary distinction between 
Khriss’s pre and post tests was that the equations Khriss wrote for the post-test responses were 
more detailed and normatively-correct than the equations Khriss wrote while taking the pre-test. 
This indicates that, while Khriss’s associations of templates with scenarios did not generally 
become more normative, the symbolic forms used by Khriss did.  

Finally, Niali revised his responses to nearly all items, improving from 2 to 7.2, and scored in 
the top third of the sample on the post-test (7.2/9). During the sessions, Niali indicated a robust 
association between template A and scenarios featuring linear growth and between template B 
and scenarios featuring exponential growth. Thus, we infer that his low pre-test scores were not 
due to a lack of transferrable AQS’s adequate to distinguishing those scenarios mathematically. 
Instead, he over-selected E for exponential growth scenarios rather than B. By the post-test, Niali 
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associated E with scenarios featuring a rate of change dependent upon interaction between two 
quantities. Like Yixli, he responded to the real-world setting of item 8 rather than the scenario-
specific features in the item. 

Conclusions 
The paired samples 𝑡-test indicates that undergraduate STEM majors’ ways of reasoning with 

abstracted quantitative structures can be modified through modeling with those structures. The 
cluster analyses also revealed overall shifts towards the normatively correct response patterns 
and also indicated non-conforming item- and participant-level response patterns. We observed 
that for some participants, the context was a stronger indicator of response selection than 
scenario-specific features. In previous literature, this phenomenon has been referred to as 
focusing on “surface features” vs. “deep structure” (Schoenfeld & Herrmann, 1982) However, 
we argue that the conclusion is not so simple. Our participants proffered “deep structural” 
explanations based on their structural conceptions of quantities and relationships among 
quantities even when seemingly focused on contextual features. That is, many selecting non-
normative responses demonstrated evidence of structural ways of reasoning rather than 
superficial reasoning. 

One limitation of our approach is that template-matching is not perfectly predictive of 
associations between scenarios and symbolic forms, as Khriss’s response patterns revealed. 
Teasing this apart might require developing a more nuanced similarity metric that accounts for 
the idea that template B is actually a sub-template of E, both of which can be expressed as 
instances of C (though many participants did not evidence awareness of these insights).  
However, overall, the Sorensen-Dice coefficient enabled a complex metric that modeled the 
response pattern data well. It supported a robust comparison of similarities in participants' ways 
of reasoning with sets of responses, providing an additional tool for evaluating complex 
reasoning patterns. Thus, we are optimistic about the approach to measuring the assimilation of 
scenarios to AQS’ in this way because it opens possibilities for future work on AQS. 

Our objective in the present study was to examine the stability of participants’ ways of 
reasoning with symbolic forms when engaging with modeling tasks designed to help them 
assimilate scenarios to those forms. Recently, Kularajan (2023) argued that a promising approach 
to studying (and subsequently improving) students’ capacity for mathematizing is to examine 
and respond to their emergent quantitative reasoning about the scenario. Our contribution is 
providing empirical support to this conjecture. We conclude that participants showed evidence of 
changing which scenarios are assimilated to a given AQS by matching it with a template as a 
consequence of engaging with modeling scenarios that reinforced the use of symbolic forms 
matching those AQSs. The next steps in this line of research are articulating the contours of 
learning environments that may be fruitful for students with differing ways of reasoning.  
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Deliberate Practice of Mathematics Collaboration 
CASCADE is designing simulations of collaboration on tasks involving algebra and statistics 

that arise in STEM careers. Players engage with aspects of tasks, discourse, and social dynamics 
that shape mathematics collaboration (Hamm, Farmer, Lambert, & Gravelle, 2014; Heck & 
Hamm, 2016; Lotan, 2003; Smith & Stein, 1998). The simulations are designed in partnership 
with BIPOC professionals in STEM fields and leaders of programs serving grades 6-12 youth 
historically underrepresented in STEM careers. PROJECT’s design research first draws on 
frameworks of mathematics collaboration and deliberate practice to design simulations, then 
adapts the design based on student playtesting.  

Set in STEM career fields, the simulations engage players with processes of communication 
and problem solving to practice collaboration skills (Heck & Hamm, 2016) with virtual work 
partners. Following tenets of deliberate practice (Ericsson, Krampe & Tesch-Römer, 1993), 
players have repeated chances to try specific skills of collaboration, experience consequences, 
and receive feedback. Players’ practice is low stakes in terms of achievement or consequences.  
Designing the Simulation as a Learning Environment with Practice and Feedback 

PROJECT simulations place players in virtual environments of STEM career fields with a 
narrative built around a mathematics task common in these careers. In first-person perspective, 
players encounter virtual partners with whom they collaborate. We utilize the three central 
features of mathematics collaboration—tasks, discourse, and social dynamics—to engage players 
with targeted challenges. As each challenge arises, players choose among options reflecting 
varying levels of collaborative functioning. Players receive two types of feedback: implicit 
feedback—a direction the narrative takes in response, and explicit feedback—explanations and 
guidance delivered by a mentor character (Folsom-Kovarik, Newton, Haley, & Wray, 2014). 
Adapting the Simulation Design through Lessons Learned 

Seven pairs of adolescents from a college pathway program playtested a simulation 
prototype. Their play was recorded using screencapture and a camera with audio, and researchers 
conducted debriefing interviews. Rather than having their choices judged “right” or “wrong,” 
players appreciated receiving feedback and the experience of seeing both positive and negative 
consequences play out. Analysis of playtesting data generated two additional design elements. 
First, players are explicitly encouraged to explore choices they feel are non-productive, so they 
can see what consequences arise. Second, when players choose the most productive options, 
resulting feedback includes consequences that would have resulted from non-productive choices.  
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Extant research has demonstrated that problem-posing and problem-solving mutually affect one 
another. However, the exact nature and extent of this relationship requires a detailed 
elaboration. This is especially true when adidactical problem-posing arises within a problem-
solving context. In this study, we analyze the scripting journey used by two students to record 
their investigation of sums of consecutive integers. We analyze the adidactical problem-posing 
found within the scripting journey using three facets of a problem posing framework: 
mathematical knowledge base, problem-posing heuristics, and individual considerations of 
aptness. Our analysis reveals how these aspects of problem-posing emerge within a 
mathematical investigation, how they are related to surrounding problem-solving, and what 
types of activity act as catalysts to promote further problem-posing activity. 

Keywords: Problem Solving; Undergraduate Education; Preservice Teacher Education 

Introduction 
“How are problem-posing skills related to problem-solving skills?” (Cai et al., 2015, p. 14). 

According to Cai et al. (2015), this question is yet unanswered, but exploring it could lead to 
advances in the collective understanding of students’ mathematical activity. We note that this is 
not a question of the existence of a relationship; at the time, extant research already supported 
the hypothesis that successful problem-posers were also successful problem-solvers, and vice 
versa (cf. Silver & Cai, 1996; Cai & Hwang, 2002; 2003). Instead, the question suggests that it is 
the fundamental character of this relationship that remains unclear—and it calls for mathematics 
education researchers to explore the nature and extent of the connection between problem-posing 
and problem-solving. 

This call was not ignored. Liljedahl and Cai (2021) reported on advances in both problem-
solving and problem-posing from the intervening years—and in particular, those studies that 
sought to understand better how the two fields intersect. For example, Elgrably & Leikin (2021) 
discovered that initial problem-solving efforts can spark later problem-posing creativity; 
conversely, Hartmann et al. (2021) noted that initial problem-posing can lead to unexpected 
student success in later problem-solving. 

Although the two studies cited above combined problem-solving and problem-posing, in 
each case, all problem-posing activity was incited directly by the task itself. That is, participants 
were explicitly instructed to pose mathematical problems. However, Koichu (2020) exemplified 
that problem-posing can be instigated adidactically, “as an activity necessitated for the posers by 
the need to find or create problems that would serve another goal” (p. 3). In Koichu’s work, this 
other goal was pedagogically oriented; problem-posing arose adidactically as participants 
prepared to teach a difficult topic. We wondered to what extent adidactical problem-posing 
might naturally arise when the ultimate goal is not to teach a particular mathematical idea, but 
instead, to investigate a particular mathematical phenomenon through problem-solving.  

To this end, we developed an investigative task without an explicit problem-posing 
component. The data in this study is a self-reported dialogue inspired by participants’ firsthand 
experiences as they use problem-solving to explore the task; we call this type of dialogue a 
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scripting journey. We address the following research question: How does adidactical problem-
posing emerge when engaging with a problem-solving investigation? A framework for the 
analysis of problem-posing, an overview of scripting journeys, and the task itself are provided in 
the following sections. 

A Theoretical Framework for Problem-Posing Analysis 
To address our research questions, we draw on a framework proposed by Kontorovich et al. 

(2012). The framework consists of attributes that attend to the cognitive, affective, and social 
dimensions of problem posing. In this paper, we analyze episodes of adidactical problem-posing 
activity using three of these attributes: mathematical knowledge base, problem-posing heuristics 
and strategies, and individual considerations of aptness. 

A problem poser’s mathematical knowledge base includes mathematical definitions, facts, 
procedures, prototypical problems, and competencies related to mathematical discourse and 
writing. Problem-posing heuristics and strategies refer to the systematic approaches that a 
problem poser adopts to analyze and transform a mathematical situation and, later, to pose 
problems. Drawing on previous research, Kontorovich et al. (2012) composed a provisional list 
of such strategies, three of which are of interest to this report: 

1. Numerical manipulation: Posing a new problem by assigning different numerical values 
to given constraints. 

2. What-if-notting: Posing a new problem by removing or changing either a given constraint 
or an underlying assumption about the mathematical setting. 

3. Generalization: Posing a new problem “for which the given problem is a special case” 
(Kontorovich et al., 2012, p. 152). 

Finally, throughout a problem-posing task, problem posers consider the suitability of posed 
problems for a particular audience. This audience might include themselves, a real or 
hypothetical evaluator, or an intended audience who will be tasked with solving the problem. 
Individual considerations of aptness are the problem posers’ conceptualizations of the explicit 
and implicit criteria by which this audience will judge the posed problem (or by proxy, the 
problem-poser) and how necessary it may be to meet these criteria. For example, when 
considering whether a problem is appropriate for a later problem solver, the problem poser could 
try to anticipate whether the problem will be mathematically challenging, engaging, or capable 
of successfully teaching a desired concept to the solver. 

The Task 
Scripting Tasks and Scripting Journeys 

A scripting task is an activity centered around the construction a mathematical dialogue, 
typically involving some combination of teacher- and student-characters. Sometimes, a scripting 
task provides a prompt—a few introductory lines of dialogue that introduce the topic of the 
script. When a prompt is included, it typically introduces a mathematical question of a student 
(e.g., Bergman et al., 2022; Kontorovich & Zazkis, 2016; Marmur & Zazkis, 2018), a 
misunderstanding (e.g., Zazkis et al., 2013), or a disagreement (e.g., Marmur et al., 2020; Zazkis 
& Zazkis, 2014) that the script should attend to and eventually resolve. 

Recently, researchers have explored the application of scripting tasks that produce a 
particular type of dialogue referred to as a scripting journey (Kercher et al., in press). Unlike 
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dialogues resulting from other types of scripting tasks, a scripting journey is not a continuation of 
a prompt; rather, the scriptwriters use their own mathematical activity as a model for 
constructing the scripting journey. Kercher et al. (in press) observed that student-written 
scripting journeys contain robust mathematical activity and are thus appropriate for analysis in 
mathematics education research. With this result in mind, we leverage scripting journeys to 
capture and analyze the emergent adidactical problem-posing activity within a problem-solving 
investigation. 
The Consecutive Integers Task 

The activity used to stimulate adidactical problem-posing was the Consecutive Integers task 
(CI task). Its introductory instructions are presented in Figure 1. 

 

 
 

Figure 1: The introduction of the Consecutive Integers task. 
 

Participants were then provided with a selection of example questions to direct their 
explorations, which included: Consider any number of your choice. What values are possible for 
𝐾? Can you find all of them? Can you generalize further? That is, given any natural number, can 
it be written as the sum of consecutive integers? If so, in what ways? If not, why?  

Thus, the CI task can be thought of as a modular, semi-structured investigation in which 
participants were free to select from a number of smaller problem-solving tasks of varying 
degrees of open-endedness and mathematical sophistication. The task also invites participants to 
explore sums of consecutive integers independently of the suggested problems, and in doing so, 
guides participants towards posing and solving their own problems. Completion of the CI task 
required participants to record their mathematical activity as a scripting journey. 

Participants, Data Collection, and Analysis 
The data in this study is part of a larger study on the adidactical problem-posing of 

prospective elementary school teachers enrolled in a mathematics methods course. We focus on 
the work of Brandi and Ben (pseudonyms), who completed the CI task outside of usual 
classroom hours. Both scripting tasks and mathematical investigations were a typical component 
of the course, but the CI task was the first assignment in which the participants had been required 
to record their work as a scripting journey. The course did not  include explicit problem-posing 
activities or instruction. 

The research team first read and reread Brandi and Ben’s scripting journey, in which they 
featured themselves as characters, to become familiar with their investigation. Then, the first 
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author coded the script for instantiations of adidactical problem-posing. Considering that the 
participants were not asked to set aside a comprehensive list of what they considered to be the 
problems that they posed over the course of their investigation, two different methods were used 
to distinguish posed problems within the dialogue. First, we identified some explicit questions as 
posed problems—such as when Brandi asks, “But if 294 is 𝑋, what happens when 𝑋 is 
unknown? For example, 7𝑁 + 21 = 𝑋?” On the other hand, some posed problems were inferred 
from statements of intent or from a character’s musings. These problems did not always appear 
in the form of a question, but the remark was coded as a posed problem if it was suggestive of 
particular constraints and goals that the speaker had in mind. For example: “I wonder if this can 
be written as a formula to work with other patterns.” 

The second author then independently coded the scripting journey for adidactical problem-
posing, and these codes were compared with the first author’s codes. Discrepancies were 
resolved by discussion until complete agreement was reached. Brandi and Ben’s scripting 
journey was then subjected to analysis using the framework of Kontorovich et al. (2012). 
Throughout the application of the analysis framework, the entire authorial team met regularly to 
discuss their interpretations of the observed problem-posing activity. 

Findings: Brandi and Ben 
In this section, we first present a summary of Brandi and Ben’s scripting journey in the form 

of a short vignette. Following the vignette, we analyze the recorded problem-posing behavior 
using the framework of Kontorovich et al. (2012). 
Vignette 

Immediately upon beginning their investigation, Brandi and Ben work together to establish a 
way of representing 294 as the sum of 7 consecutive integers algebraically. First, Brandi 
wonders if the property that 294 can be written as the sum of 7 consecutive integers “can be 
written as a formula to work with other patterns.” In response, Ben proposes a formulation using 
the variable 𝑁: 

I think it should only go to 𝑁 + 6 because 𝑁 is the first integer and 𝑁 + 1 is the second. 
Therefore, seven consecutive integers would end at 𝑁 + 6. It should be: 𝑁 + (𝑁 + 1) +
(𝑁 + 2) + (𝑁 + 3) + (𝑁 + 4) + (𝑁 + 5) + (𝑁 + 6). 

Note that Ben uses the variable 𝑁 to represent the smallest integer in the sequence even though 
the exact sequence of integers is given by the task (see Figure 1). This behavior, taken in context 
with Brandi’s stated desire to work with “other patterns,” suggests that the student-characters in 
this excerpt are working to solve an implicitly posed problem: namely, they are attempting to 
discover an algorithm that will allow them to locate a sequence of integers that add to a given 
sum without guessing and checking. 

In support of this overarching problem, Brandi and Ben go on to pose a number of follow-up 
problems that they anticipate will help them better understand the functionality of their 
developing algorithm: 
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Table 1: Posed problems in response to the developing algorithm 
 

 Speaker Dialogue 
[1] Brandi But if 294 is 𝑋, what happens when 𝑋 is unknown? For example, 7𝑁 +

21 = 𝑋. 
[2] Ben [After noticing the sum is divisible by the number of divisors] Do you think 

that can work if the number of consecutive integers is an even number? 
[3] Ben What happens when we solve for 𝑁 and it’s not a round whole number? 

In the process of answering these problems, Ben eventually realizes procedure they have 
been using can be improved by simply dividing the desired sum by the number of consecutive 
integers. Then, “any quotient that is a whole number will have an odd number of consecutive 
integers, […] and any quotient that is a half number will have an even number of consecutive 
integers.” The student-characters decide to leverage technology and construct a spreadsheet that 
will handle these computations. Freed from the responsibility of manual arithmetic, Brandi and 
Ben pose a sequence of problems that attend to more abstract concerns. These include: 
 

Table 2: Posed problems in response to the creation of the spreadsheet 
 

 Speaker Dialogue 
[4] Brandi What are you going to put in the table? 
[5] Brandi How will you know which numbers [of consecutive integers] to check? 
[6] Brandi Can it go to an unlimited number of even or odd consecutive integers? 
[7] Brandi What happens when we have a huge number of consecutive integers? 
[8] Brandi Well, I guess we can go to negative numbers? 

Brandi wonders first about the information that should be provided to the spreadsheet; that is, 
she considers which information in the task should be considered a constraint and which should 
be a goal. The student-characters then explore the boundaries of what reasonable values for 𝐾, 
the number of consecutive integers, might be. In particular, Brandi wonders about a hypothetical 
upper bound on 𝐾; in response, the student-characters consider the inclusion of negative numbers 
and zero as one avenue for generating a “huge number of consecutive integers.” 

After attending to these considerations and building the spreadsheet (Figure 2), Brandi 
suggests that they test it with a newly posed problem: to find a list of all possible values of 𝐾 for 
a completely different number, 165. Using their spreadsheet, they divide 165 by consecutive 
integers starting at 2, consider the quotient, and, where possible, produce the sequence of 
consecutive integers that sum to 165 by using the quotient as the midpoint of the sequence. 
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Figure 2: The first 20 of the 450 rows in Brandi and Ben’s spreadsheet. 
 
Compiling this list of ways in which 165 is expressed as the sum of integers inspires Brandi 

to pose a new collection of problems: 
 

Table 3: Posed problems in response to the application of the spreadsheet to an example 
 

 Speaker Dialogue 
[9] Brandi Is there something to do with the factors of the number? 
[10] Brandi Why won’t that [choosing 𝐾 = 18] work? 

 
In what follows, the student-characters attempt to uncover an underlying mathematical 

justification for the acceptable values of 𝐾 identified by the exhaustive search they undertook 
with the aid of their spreadsheet. For example, the student-characters readily accept that 18 
consecutive integers will not sum to 165 after consulting their spreadsheet; to supplement this 
conclusion, they examine the prime factorization of 165 and attempt to rationalize why 18 did 
not work but, on the other hand, 15 did. 
Analysis 

Mathematical knowledge base. Brandi and Ben used mathematical knowledge when they 
addressed the validity of using negative numbers in their sequence of consecutive integers 
[Problem 8]. Furthermore, much of Brandi and Ben’s work before the creation of their 
spreadsheet leveraged their knowledge of divisibility rules and properties. After the spreadsheet, 
they used their knowledge of divisibility and prime factorizations to attempt to find a relationship 
between valid choices of 𝐾 for a number and its prime factors [Problems 9, 10]. 

In addition to their knowledge of mathematical content, Brandi and Ben also demonstrated an 
awareness of mathematical norms for justification, generality, and efficiency. For example, 
problems in the dialogue attended to multiple cases [Problems 2, 6], and Ben’s initial suggestion 
to work with the variable 𝑁 can be seen as a way of ensuring that these separate cases can be 
united under a sufficiently general notation. We also draw attention to the characters’ attempts to 
streamline their spreadsheet application [Problems 4, 5, 7], which we take as evidence of their 
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desire to avoid an impractical guess-and-check approach for locating possible values of 𝐾. 
Brandi and Ben seem to feel that such an approach would not sufficiently address the 
mathematical goal of the task. 

Problem-posing heuristics and strategies. Brandi and Ben engaged with the generalization 
heuristic when they attempted to capture the mathematical situation using equations and 
variables; their attempts to unite multiple cases under a single algorithm are another form of 
generalization. Considering different cases typically required the numerical manipulation 
heuristic, as did testing conjectures on different examples [Problem 10]. The symbolic 
representation proposed by Ben also allowed the characters to easily manipulate not only the 
number of consecutive integers but also the value of the target sum [Problem 1]. Later, the 
spreadsheet would serve the same goal of allowing Brandi and Ben to apply the numerical 
manipulation heuristic as quickly as possible. 

Brandi and Ben also employed the what-if-not strategy to challenge their implicit 
assumptions about the CI task. First, when they realized that they had taken for granted that 𝐾 
must be less than the desired sum and posed problems questioning whether that really was its 
upper bound [Problems 5, 7]; and second, when they wondered whether they should be allowed 
to use a sequence of consecutive numbers that included negative values [Problem 8]. Both of 
these applications of the what-if-not strategy were instigated by the use of the spreadsheet, which 
removed the computational barrier and enabled them to examine the reasonable bounds of 𝐾. 

Individual considerations of aptness. The primary consideration of aptness made by Brandi 
and Ben concerned whether or not a problem would be immediately appropriate for furthering 
their understanding of the mathematical situation at hand. That is, a good problem in the context 
of the scripting journey was one that would yield progress in the ongoing investigation. In this 
sense, Ben’s suggestion to consider even numbers [Problem 2] was apt in that it addressed a case 
that the group had not yet attended to; similarly, Brandi’s problem attempting to integrate prime 
factorization [Problem 9] was considered apt because it allowed the characters to refine their 
procedure for locating appropriate values of 𝐾. This latter example highlights that Brandi and 
Ben valued efficiency as an appropriate criterion for their posed problems. 

Brandi and Ben also considered a problem apt when it invoked a symbolic representation of 
the CI task, as demonstrated early in the vignette. Although neither character said outright why a 
symbolic representation was valuable, we might interpret this preference in multiple ways. First, 
a symbolic representation might be considered apt in that it is a more efficient way to test 
possible values of 𝐾; this interpretation is in line with Brandi and Ben’s other evident priorities 
and explains why their symbolic system was abandoned once they had constructed the more 
efficient spreadsheet. Second, it could be that the characters expected that the required “general 
solution” to the CI task would only be sufficiently general if its steps could be demonstrated 
symbolically. In this sense, the characters would consider representing the task symbolically to 
be apt not only because it furthered their understanding but because it was an implicit 
requirement of a correct solution. 

Discussion 
The research question guiding our study was: How does adidactical problem-posing emerge 

when engaging with a problem-solving investigation? In addressing this research question, we 
focus on the process of problem-posing, the purpose of problem-posing, and the conditions under 
which problem-posing appears. 
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When we interpret this question in terms of the mechanical process of forming a novel 
mathematics problem, we see that there are many similarities between didactical and adidactical 
problem posing—in both cases, the problem poser relies on their mathematical knowledge base 
and a selection of heuristics to construct a problem that is relevant to the mathematical setting. 
This report illustrates the nuanced relationship between these three components of the analysis 
framework. For example, Brandi and Ben applied the what-if-not heuristic when they questioned 
their implicit assumption that the sequence of consecutive integers should consist of only 
positive numbers. But in order to apply this heuristic, they first had to consult their mathematical 
knowledge base and clarify the elements of the set of integers. Finally, they considered whether a 
problem that makes use of negative integers would even be appropriate for making progress in 
the investigation at hand. 

Another aspect of addressing our research question lies in examining not only the means by 
which problems are posed but also for what purpose they are posed in an investigation. 
Certainly, one purpose of posed problems was to complete the CI task. We note that this goal 
necessarily reduced the amount of variation in problem type that Brandi and Ben felt compelled 
to explore. That is, participants’ problem-posing activity was limited by the aptness of a problem 
for contributing to their ongoing investigation into sums of consecutive integers. We note that 
Problem 6 received very little follow-up in the scripting journey; this could be because Brandi 
and Ben recognized that sequences of odd or even numbers was beyond the scope of their 
investigation of sums of consecutive integers. 

Although some of the constraints of the consecutive integer task were immutable, 
participants decided independently when their investigations had reached a natural conclusion. 
The point at which a group found their work on the CI task to be satisfactory illuminated what 
kinds of mathematical artifacts they perceived to be normatively valued within their mathematics 
course. Brandi and Ben were not satisfied with their work until they had answered some subset 
of the example problems provided by the task; however, they also posed and endorsed their own 
problems that dealt with formal mathematical representations, the efficiency or reliability of 
algorithms and formulae, or justifications that demonstrate generalizability. In this way, the CI 
task prompted problem-posing to emerge not only in service of solving a given problem but also 
as a consequence of solving that problem. 

Finally, we address our research question by considering when in the course of problem-
solving it is likely that students will engage in a didactical problem-posing. We observed that the 
creation of the groups’ spreadsheet engendered a flurry of problem-posing unrestrained by 
computational limitations. These posed problems explored how the new spreadsheet might 
become even more efficient with a better understanding of the mathematical setting [Problems 4-
8]. Because it triggered a burst of novel problem-posing activity, we identify the creation of the 
spreadsheet as an example of what we call a problem-posing catalyst. A problem-posing catalyst 
is a shift in perspective brought about by the removal of constraints or a mathematical 
realization. The problem-posing activity that follows a catalytic event is more concentrated 
because the catalyst creates a “fresh” problem space; problems occur more easily to the posers 
because they appear from previously unexplored directions. Consequently, the fact that post-
catalyst problem-posing takes place within a newly conceptualized mathematical setting means 
more potential for further insights—that is, more catalysts. In this way the cycle of didactical 
problem-posing fuels itself. 
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Concluding Remarks 
This report contributes to problem-posing literature by describing different ways in which a 

problem-poser’s mathematical knowledge base, problem-posing heuristics and strategies, and 
individual considerations of aptness might play a role in the didactical problem-posing they 
exhibit during an investigation involving problem-solving activity. 

Additionally, we introduce the construct of a problem-posing catalyst to provide a touchstone 
for future explorations of a didactical problem posing. This study illustrates problem-posing 
catalysts that arise through investigative problem-solving activity; however, we note that because 
catalysts are characterized by a shift in perspective, they might emerge in other settings. Future 
studies could describe catalysts in other types of tasks with potential fora didactical problem-
posing, such as when students must generate a variety of examples or search for visual patterns. 

Because scripting journeys are participants’ self-reported retellings of problem-solving 
activity, conclusions that we are able to draw about their problem-posing come with caveats. By 
attempting to capture their engagement with the CI task as a narrative dialogue, the participants 
could be expected to selectively include only those problems that they perceived as contributing 
to their mathematical progress. This can be seen as a limitation. That is, the scripting journeys 
may have included only those problems, both solved and unsolved, which already met the 
scriptwriters’ individual considerations of aptness. Future research might use other methods of 
monitoring problem-posing activity, such as video recordings of group work, to capture 
problems that were posed by the group but not included in their scripting journey. 
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Drawing on a concept-map methodology, we investigated how 18 prospective elementary 
teachers (PSTs) conceptualize STEM thinking as habits of mind shared across STEM domains in 
the context of problem-solving prior to explicit classroom discussions about STEM thinking. A 
28-question, 5-point Likert-scale survey was used to explore PSTs’ orientations for STEM 
thinking in elementary school mathematics classrooms. Our results show that PSTs come to 
teacher education with many general ideas about STEM thinking in problem-solving contexts but 
do not necessarily see STEM ways of thinking as common habits of mind supporting problem-
solving across STEM domains. Our data also reveals that PSTs come with positive overall STEM 
thinking orientations, but they tend to be hesitant to think about themselves as future teachers 
who foster STEM thinking in their elementary school classrooms. We discuss implications for 
teacher preparation.  

Keywords: Integrated STEM / STEAM, Preservice Teacher Education, Problem Solving, 
Teacher Beliefs 

Background 
The importance of STEM education, which refers to teaching and learning science, 

technology, engineering, and mathematics, has been established for many years. STEM 
education contributes to developing a STEM-literate society (Bybee, 2013). Early on, STEM 
education was interpreted through the lens of improving student learning in isolated STEM 
disciplines, primarily science, and mathematics (Breiner et al., 2012; Sanders, 2009; Wang et al., 
2011). Over the years, the meaning of the acronym STEM has shifted from thinking about 
STEM as a collection of isolated disciplines—S, T, E, and M to thinking about STEM as an 
interdisciplinary domain centered around authentic problems that allow for integrating two or all 
of the STEM content (Tytler et al., 2019). Recently, some STEM education researchers 
advocated for expanding thinking about STEM education from content integration to focusing on 
common habits of mind that link STEM disciplines (Bennett & Ruchti, 2014; Kelley & Knowles, 
2016; Maiorca & Roberts, 2022; Roberts et al., 2022; Williams & Roth, 2019). Kelley and 
Knowles (2016), for example, proposed interpreting STEM integration through the lens of 
problem-solving practices shared across the STEM disciplines. Bennett and Ruchti (2014) 
argued for interpreting STEM integration through the lens of reasoning skills foundational to all 
STEM disciplines. Roberts et al. (2022) viewed integrated STEM as problem-solving practices 
and ways of thinking that support problem-solving across the STEM domains.  

Advocates of more integrated approaches to STEM education argue that teaching STEM in a 
more connected manner in the context of solving real-world problems helps students understand 
the characteristics and features of STEM disciplines as forms of human knowledge and inquiry  
and generates student awareness of how STEM fields shape human environments (Roberts et al., 
2022; National Research Council, [NRC], 2014).  
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There is an increased trend to prepare STEM-focused teachers. However, despite the 
emphasis on STEM integration in K-12 education and calls for providing elementary students 
with early experiences with STEM, limited research addresses prospective elementary school 
teachers (PSTs’) preparation for STEM integration. Our research explores perceptions about 
habits of mind across STEM problem-solving that elementary PSTs hold prior to engaging them 
in discussions about STEM thinking in a teacher education program. This research was guided 
by the following research questions: (1) What is elementary PSTs’ initial understanding of habits 
of mind shared across STEM domains in the context of problem-solving before explicit 
instruction about STEM thinking? and (2) What is PSTs’ initial orientation for STEM thinking in 
elementary school mathematics classrooms? 

Conceptual Foundations 
We drew on phenomenography as our research methodology to investigate PSTs’ 

perceptions of STEM thinking (Marton, 1986; 1988). Our goal was to construct an initial 
framework that describes our PSTs’ perceptions of STEM thinking in the context of problem-
solving and track changes in our PSTs’ understandings of STEM thinking. A central focus of 
phenomenography studies is the examination of learners’ conceptions of a phenomenon of 
interest. However, we find it useful to briefly discuss how STEM thinking is conceptualized in 
the existing research literature.    

Like other researchers (e.g., Bennett & Ruchti, 2014; Denick et al., 2013, Kelley & Knowles, 
2016; Williams & Roth, 2019), we view STEM thinking as a way of STEM integration through 
the lens of problem-solving practices shared across the STEM disciplines. Consistent with NRC 
(2014) descriptions, we conceptualize STEM thinking as purposeful thinking in problem-solving 
situations that incorporates concepts, methods, attitudes, and practices from science, technology, 
engineering, and mathematics. We operationalize STEM thinking as the use of disciplinary 
practices related to problem-solving that transcend across STEM disciplines. Examples of these 
practices include asking questions, evaluating information, defining and interpreting problems, 
planning, carrying out investigations, developing and using solution models, analyzing and 
interpreting information, testing ideas, constructing and justifying arguments, constructing 
explanations, or communicating information. 

Given the intricacies of STEM thinking and practices, we drew on concept mapping to allow 
PSTs to externalize their interpretations of STEM thinking. Concept maps are visual displays 
that show how individuals represent their knowledge by organizing their thoughts and 
experiences about a phenomenon of interest. The existing literature on concept mapping in 
teacher education provides evidence that concept maps can serve as useful and valid assessment 
tools for gaining insights into student knowledge (Brinkmann, 2003; Kinchin et al., 2000; 
Schmittau, 2009). Past researchers also documented that concept maps provide valid and reliable 
research tools (Miller et al., 2009).  

Our conceptualization of prospective teachers’ orientation for fostering STEM thinking in 
their future practice was grounded in the Theory of Planned Behavior (Ajzen, 1991). The Theory 
of Planned Behavior describes behavioral intentions as the predictive variables of one’s 
behavior. We also drew on the existing research that provides evidence that beliefs, 
understandings, and intentions form a predictive platform on which prospective teachers build 
their orientations for fostering STEM subjects in their future classrooms (e.g., Kurup et al., 2019; 
Wu et al., 2022). For our study, we selected four behavioral domains as a platform for describing 
PSTs’ orientations for STEM thinking:  prospective teachers’ (a) emotional readiness for STEM 
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thinking practices in problem-solving contexts, (b) visions of the importance of STEM thinking, 
(c) perceptions of classroom implementation of STEM thinking, and (d) self-efficacy beliefs 
about their ability to engage in STEM thinking and foster STEM thinking in elementary 
classrooms.  

Method 
Participants and study context. The study was conducted in the context of a larger project 

that produced curricular materials designed to support teacher candidates’ learning about STEM 
thinking in elementary mathematics classrooms. Participants were 18 PSTs enrolled in Problem 
Solving and Reasoning for Teachers course. The vast majority were in their first year at the 
university (12 PSTs), and the remaining participants were either in their second year (3 PSTs) or 
in their third year (3 PSTs). For all PSTs, the course that provided the context for the study was 
their first mathematics course in a 3-course mathematics sequence for elementary education 
majors. The 75 minutes long class sessions met twice a week for 14 weeks. This paper reports 
data collected during the first week of the course, during which PSTs engaged in a problem-
solving activity from the first module. The initial class activity asked PSTs to build the tallest 
freestanding tower, given 20 pieces of uncooked spaghetti, clear tape, one yard of string, 
scissors, and a measuring tape. By working in groups of three, PSTs had 18 minutes to 
accomplish their task. Following the activity, the instructor introduced Polya’s (2004) problem-
solving framework as a general guide for organizing problem-solving activities and invited PSTs 
to reflect on their problem-solving approaches, strategies, and thinking in the Spaghetti Tower 
problem context. Individual students and groups shared how they made sense of the problem, 
planned solution approaches, evaluated and tested their ideas and strategies, what knowledge 
they drew upon, how they decided which materials to use, etc.  

Data and Data Analysis. As part of their homework, following the Spaghetti Tower activity, 
PSTs were asked to construct and explain a concept map that illustrates their interpretation of 
ways of thinking that support solving problems across STEM disciplines (STEM thinking). We 
analyzed concept maps and reflections on STEM thinking (n = 18) to answer RQ #1.  

At the beginning of the semester, PSTs were also asked to respond to 28 (5-point) Likert-
scale survey questions designed to gain insights into their initial orientations for STEM thinking 
(n = 18). Consistent with our conceptual framework, the survey questions addressed each of the 
four predictive behavior categories described earlier. The survey questions were adapted from 
the existing literature (e.g., Kurup et al., 2019; Wu et al., 2022) and included seven questions per 
category. Included in Figure 1 are sample survey questions from each question category.  

 
Emotional readiness questions (ER): 
 
Q3: I enjoy thinking about becoming a teacher who 
takes on a STEM thinking approach in my lessons. 
 
Q6: I feel it is important for a teacher to be able to 
foster STEM thinking in the elementary school 
mathematics classroom. 
 

Visions of importance questions (VI) 
 
Q9: I think the focus on STEM thinking in elementary 
mathematics classrooms can improve students’ 
employment competitiveness. 
 
Q10. I think the focus on STEM thinking in elementary 
mathematics classrooms helps to cultivate students’ 
ability to solve real-life problems. 

Perceptions of implementation questions (PI) 
 

Self-efficacy questions (SE) 
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Q16: I do not think implementing STEM thinking in my 
elementary school classroom will make me feel 
stressed and anxious. 
 
Q 19: If I have an option, I would like to teach in a 
place where STEM thinking and STEM integration are 
valued. 

Q23: I feel confident that I will be able to motivate 
students who have a low interest in activities that 
facilitate STEM thinking. 
 
Q 28: I feel confident in my ability to understand and 
apply concepts and methods from STEM subjects in 
different problem situations.  

 
Figure 1: Examples of survey questions from each behavioral category 

 
Analysis of PSTs’ reflections and concept maps. We first utilized qualitative content 

analysis methods and open coding (Saldaña, 2016) to identify PSTs’ initial views about thinking 
strategies that transcend STEM problem-solving. This data analysis stage comprised multiple 
passes through the data, during which each response was carefully annotated and scored. The 
identified concepts were then organized into broader categories that emerged from patterns in the 
data set. While revising our coding, we kept track of concepts that did not fit the initial list of the 
broader categories and further expanded our initial list of categories using patterns from the 
analysis. Ultimately, concepts that PSTs connected to STEM problem-solving were organized 
into five broader categories: (1) Analyzing, (2) Planning, (3) Executing, (4) Evaluating, and (5) 
Other. The Other category included more general concepts identified across the data that did not 
fit the first four categories. We then tabulated code frequencies to provide a collective summary 
of concepts that our group of PSTs connected to STEM thinking in problem-solving.  

We also applied a concept map scoring rubric adapted from (Watson et al., 2016) to provide 
the overall picture of each PST’s views of STEM thinking. Each map was scored on (a) the 
overall breadth of ideas related to STEM thinking in problem-solving included in the map, (b) 
the level of interconnectedness of ideas, and (c) the overall map design. Each aspect was scored 
on a 4-point scale (max. 12). The overall map score for each PST was computed as the average 
across concept map score categories. The overall map score provided a measure of the strength 
of each PSTs’ vision of STEM thinking in problem-solving. We then computed the average 
concept map score for our PSTs cohort.   

Analysis of survey responses. We first constructed survey scale sub-scores by combining 
PSTs’ responses to questions from each group. For each PST, the survey sub-scores were defined 
as a sum of the PST’s responses to all questions from a respective category (Sullivan & Artino, 
2013; Norman, 2010). The sub-scores provided a measure of variables associated with each 
category: ER, emotional readiness for STEM thinking; VI, visions of the importance of STEM 
thinking; PI, perceptions on classroom implementation of STEM thinking; and SE, self-efficacy 
with STEM thinking (scale 7-35). We then conducted a non-parametric Friedman test to examine 
the distribution of median sub-scores and explore the extent to which each sub-score contributed 
to our PSTs’ STEM thinking orientation. We conducted a Wilcoxon post hoc test with a 
Bonferroni adjustment for multiple comparisons to identify possible differences between sub-
score pairs. For each PST, we also examined the percentage of survey questions for which the 
PST responded with a “strongly agree” score of 5 or “agree” (score of 4) to provide the overall 
summary of STEM thinking orientation for PSTs in our cohort.  

 
Results 

RQ1. How do elementary PSTs understand habits of mind shared across STEM domains in 
the context of problem-solving before explicit instruction about STEM thinking? 
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Included in Table 1 is a summary of ideas identified across the analyzed concept maps and 
accompanying explanations that our PSTs associated with STEM thinking.  

Table 1 shows that, as a group, collectively, PSTs associated with STEM thinking a broad 
range of habits of mind. About 60% of our PSTs considered some aspect of thinking related to 
analyzing problem information as a common thinking habit across STEM problem-solving. Over 
70% of our PSTs considered some aspect of thinking related to solution planning as common 
habits across STEM problem-solving. As summarized in Table 1, half of our PSTs also thought 
about STEM problem-solving in terms of creativity. Less often, PSTs in our cohort associated 
STEM thinking in problem-solving with ways of thinking focused on executing or evaluating 
problem-solving activity. While, as a group, our PSTs associated a broad range of concepts with 
STEM thinking, the visions of STEM thinking shared by individual PSTs were more limited. 
PSTs’ maps included between 1-12 concepts. The average map score for the group was 1.85, and 
the distribution of individual overall map scores was as follows: 5 PSTs (scores between 3-4); 4 
PSTs (scores between 2-3); 9 PSTs (scores between 1-2). Most of the analyzed concept maps had 
limited breadths (number of concepts included) and minimal or no connections illustrating how 
the included concepts support thinking across STEM problem-solving.  

 
Table 1: PSTs’ collective views of STEM habits of mind in problem-solving 
Category Included Concepts #PSTs (%) 
Analyzing  
                                                        

•Thinking about problem information, what is 
known, interpreting problem situation, thinking 
about the knowledge needed to generate problem 
solution, making a mental picture of the problem 
and what is needed to address/solve, organizing 
information 

     11 (61%) 

•Generating and asking questions, wondering about 6 (33%) 
•Thinking about similarities and differences in 
problems and solutions, considering patterns,  

5 (27%) 

•Making observations 3 (16%) 
Planning •Anticipating how a solution could look like, 

brainstorming, thinking about/considering options, 
having an open mind to possibilities, experimenting 
with ideas 

    14 (77%)  

 •Thinking out of the box, thinking 
creatively/flexibly, being open to risk-taking, 
thinking in innovative ways 

9 (50%) 

 •Thinking about different tools  7 (39%) 
Executing •Testing options and strategies, creating new 

strategies/prototypes/models 
7 (39%) 

 •Engaging with others in a team, 
communicating/explaining solutions 

7 (39%) 

Evaluating •Reflecting on understanding, reflecting on what 
works and what does not, thinking about progress, 
thinking about better worse ideas/solutions   

5 (28%) 
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Other •Using logic and reasoning, thinking in systematic 
ways  

6 (33%) 

Figure 2 shows an example of a concept map drawn by Alice (pseudonym). Alice’s map and 
her explanation (Figure 1) illustrate that she might not perceive STEM thinking in terms of 
habits of mind that connect the STEM disciplines in problem-solving. Like many other PSTs, 
Alice considered a limited number of concepts overall and associated those concepts with 
isolated disciplines. Her star-like map design and the explanation she provided for her map show 
that she might think about STEM as a collection of isolated disciplines and not see the STEM 
habits of mind as overarching ways of thinking applicable to problem-solving situations across 
the STEM disciplines. 

 
Figure 2: An example of a concept map and an excerpt from the accompanying 

explanation (Alice) 
 
RQ 2. What is PSTs’ initial orientation for STEM thinking in elementary school mathematics 

classrooms prior to the instruction about STEM thinking? 
The analysis of survey responses revealed that, overall, our PSTs had positive STEM 

thinking orientations. Eleven of the PSTs (61%) responded “strongly agree” or “agree” to more 
than 50% of survey questions. The analysis of survey responses, disaggregated by question 
group, showed that PSTs’ STEM orientations differed along the four behavioral domains of 
interest.  

Figure 3 summarizes distributions of PSTs’ survey responses disaggregated by each of the 
four behavioral domains of interest: Emotional readiness for STEM thinking. ER; Visions of the 
importance of STEM thinking, VI; Perceptions of classroom implementation of STEM thinking, 
PI; and Self-efficacy beliefs about one’s ability to engage in STEM thinking and foster STEM 
thinking in elementary classrooms, SE.  
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Figure 3: Distribution of median survey sub-scores 
 
PST’s orientations for STEM thinking differed across the four behavioral domains: ER 

(median = 29, range 18-35); VI (median = 28.5, range 21 - 35); PI (median = 19, range 14 - 26), 
and SE (median = 25, range 11-35). Friedman’s test revealed statistically significant differences 
across PSTs’ responses to these four groups of survey questions: χ2(3, N = 18) = 33.16, p = 0.01. 
Kendal’s coefficient of concordance of 0.614 indicated that the observed differences in PSTs’ 
orientations for STEM thinking were fairly large across the four domains.  

We conducted follow-up comparisons using a Wilcoxon test and controlling for Type I error 
across these comparisons at the 0.05 level using the LSD procedure. The median for perceptions 
of implementation (PI) was significantly lower than the median for emotional readiness (ER), p 
< 0.01, the median for visions of importance (VI), p < 0.01, and the median for self-efficacy 
(SE), p < 0.01. The median for self-efficacy (SE) was significantly lower when compared to the 
median for emotional readiness (ER), p = 0.02, and the median for visions of importance (VI), p 
= 0.006.  

 
Discussion 

There is an increased focus on providing elementary school students with STEM experiences 
and engaging them in STEM problem-solving practices and ways of thinking (Estapa & Tank, 
2017). At the same time, little is known about ideas about STEM thinking that prospective 
elementary school teachers bring to their preparation programs and what initial orientations for 
STEM thinking they have. Below, we discuss the implications of our research for teacher 
educators and future studies. 

The analysis of concept maps our PSTs generated following the first class activity suggests 
that PSTs come with some ideas about STEM ways of thinking in problem-solving contexts. 
When considered as a group, our PSTs included many concepts and ideas about STEM thinking 
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that were consistent with the existing literature (e.g., Bennett & Ruchti, 2014; Denick et al., 
2013, Kelley & Knowles, 2016; Roberts et al., 2022; Williams & Roth, 2019). For example, 
thinking about structural similarities or differences across problems and solutions, anticipating 
how a problem solution could look like, asking questions, and wondering. But when considered 
individually, our PSTs shared more limited perspectives about STEM thinking in problem-
solving contexts. Their maps were not well developed and generally included a limited number 
of concepts. In addition, the overall designs of their maps suggested that many of our PSTs might 
not think about STEM thinking as a form of STEM integration. To prepare PSTs for meeting the 
challenges of teaching mathematics in a way that supports STEM integration, teacher educators 
need to engage PSTs in explicit discussions about shared ways of thinking and practices that 
support STEM problem-solving. A possible entry point for supporting PSTs in developing views 
of habits of mind that connect STEM disciplines in problem-solving contexts could be explicit 
discussions about ways of thinking that contribute to problem analysis, planning, and execution 
across STEM problem-solving situations.  

Our study shows that elementary PSTs come to their preparation programs with many 
positive orientations toward STEM thinking overall. About two-thirds of our participants 
documented positive emotional readiness for STEM thinking, viewed STEM thinking as 
important for students to develop, and many of the PSTs had positive self-efficacy beliefs about 
their ability to engage in STEM thinking in problem-solving contexts.  

Our analysis of survey responses also revealed that our PSTs were most concerned about 
classroom implementation of STEM thinking. Their responses suggested that they appear to be 
hesitant to think of themselves as future teachers who can foster STEM thinking in their 
elementary school classrooms. This finding deserves special attention from teacher educators. 
Our results show that even though PSTs might think highly about the importance of engaging 
students in STEM thinking, they might not facilitate this engagement in their future classroom 
practice without proper support.  

In future research, we are interested in seeking more information about ways in which 
prospective elementary school teachers make sense of STEM thinking in problem-solving 
contexts as a way of integrating STEM domains. We are also interested in exploring how to best 
support the development of PSTs’ knowledge about STEM thinking as a way of STEM 
integration in problem-solving contexts and their dispositions for STEM thinking.   
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In this report, we present cases where students constructed new quantities through operating on 
quantities that does not fit the definitions of existing theories on quantitative operations. As a 
result, we identified five quantitative operators—operators that can be used on single qualities in 
order to transform the quantity to a new quantity—students used while constructing 
mathematical models for real-world scenarios.  

Keywords: Quantitative Reasoning, Mathematical Modeling, Operations on Quantities  

Mathematical modeling is an important skill for students to learn. However, it is still a 
challenging subject for students (Stillman et al., 2010; Jankvist & Niss, 2020). In an effort to 
mitigate some of these challenges, recently, mathematical modeling scholars have adopted 
theories from quantitative reasoning (Thompson, 1994; 2011) to operationalize mathematical 
modeling competencies (e.g. Czoher et al., 2022; Larsen, 2013; Roan & Czocher, 2022). In this 
adaptation, quantities are viewed as building blocks of a mathematical model (Larsen, 2013). 
That is, a new quantity can be constructed through operating on one or more existing quantities. 
As a result, a mathematical model maybe viewed as a network of such operations on quantities 
(Thompson, 1990). If this perspective on mathematical models and mathematical modeling is to 
be taken to investigate students’ mathematical modeling, then more work needs to be done on the 
mechanisms involved in the conception of a new quantity through operating on existing quantity 
or quantities. These mechanisms have been explicated by scholars as quantitative operations 
(Thompson, 1990) and (co)variational reasoning (Carlson et al., 2002) through investigating, 
predominantly, K-12 students’ mathematical reasonings. However, it is still not clear exactly 
how theories from quantitative reasoning explain students’ reasoning as students mathematically 
model dynamic, complex situations, especially those that require differential equations. For 
example, students have constructed rate of change through operating on existing quantities in 
ways that cannot be explained by the current theories of quantitative reasoning (Kularajan & 
Czocher, 2022). In this report, we share examples from a study of students’ reasoning during 
mathematical modeling that demonstrate the need for amending and extending theories of 
quantitative reasoning to include quantitative operators. 

Operation on Quantities 
Quantities are conceptual entities that exist in the mind of an individual. Thompson (1994) 

defined quantity as a mental construct consisting of three interdependent entities: an object, a 
measurable attribute, and a quantification. Quantification involves conceiving a measurable 
attribute of an object and a unit of measure and forming a proportional relationship between the 
attribute’s measure and the unit of measure (Thompson, 2011). While objects are constructions 
taken as given, the attributes that one conceives as measurable are imbued by the individual 
conceiving them (Thompson, 1994). Thompson (1990) explains this phenomenon through the 
ideas of motion and distance moved in an amount of time. For example, for a young child 
watching a cat running to hunt a bird in the backyard, the cat probably is an object, and the 
young child may have imbued the attribute motion to the running cat. However, for this young 
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child, the running cat probably does not have the attribute distance moved in a corresponding 
amount of time. 

A relationship among measurable attributes is established through operating on quantities. 
Thompson (1994) defines quantitative operation as the “mental operation by which one 
conceives a new quantity in relation to one or more already-conceived quantities” (p.10). As a 
result of a quantitative operation a quantitative relationship is created: the quantities operated 
upon along with the quantitative operation are in relation to the result of operating (Thompson, 
1994). In other words, a quantitative relationship is the “conception of three quantities, two of 
which determine the third by a quantitative operation (Thompson, 1990, p. 12).” Examples of 
quantitative operations include combining two quantities additively, comparing two quantities 
additively, combining two quantities multiplicatively, comparing two quantities multiplicatively, 
instantiate a rate, generalize a ratio, and composing two rates or ratios (Thompson, 1994). For 
example, how many more cats visited my backyard on Saturday than on Sunday is a quantity that 
we may construct by additively comparing the number of cats that visited my backyard on 
Saturday and the number of cats that visited my backyard on Sunday. At the same time, we may 
construct the total number of cat-bird interactions on Saturday during the time period 9am to 
5pm by instantiating a rate of 10 cat-bird interactions per hour for 8 hours.  

Although Thompson (1994) defined quantitative operations as the mental operations on “one 
or more already-conceived quantities” to construct a new quantity, the definition of a quantitative 
relationship (Thompson, 1990) and the examples given for quantitative operations (Thompson, 
1994) emphasize operations on two quantities to conceive a third new quantity. Therefore, it is 
not clear through the definition of quantitative operations (Thompson 1994a), quantitative 
relationships (Thompson, 1990), and the examples of quantitative operations, whether mental 
operations performed on one quantity to construct a new quantity fall within the scope of 
Thompson’s quantitative operations. In addition, students may engage in operations on quantities 
without clear evidence of the operations having a situationally relevant quantitative meaning, but 
the resultant quantity has a quantitative meaning for the student. We refer to these borderline 
instances as pseudo-quantitative operations and present examples in our findings.   

Methods 
Data for this report were drawn from a larger study of effective scaffolding for promoting 

modeling competencies. We worked with 34 undergraduate STEM majors who were enrolled in 
or had already taken differential equations at the time of the interviews. The students participated 
in 10 hour-long task-based clinical interviews (Goldin, 2000) where they developed 
mathematical models for real-world systems. We present examples, to illustrate our case, from 
four students’ work—Ivory, Szeth, Pattern, and Winnow—on The Cats and Birds Task, The 
Tropical Fish Task, The Pruning Task, and The Tuberculosis Task.   

The Cats and Birds Task: Cats, our most popular pet, are becoming our most embattled. A 
national debate has simmered since a 2013 study by the Smithsonian’s Migratory Bird Center 
and the U.S. Fish and Wildlife Service concluded that cats kill up to 3.7 billion birds and 
20.7 billion small mammals annually in the United States. The study blamed feral 
“unowned” cats but noted that their domestic peers “still cause substantial wildlife 
mortality.” In this problem, we will build a model (step-by-step) that predicts the species’ 
population dynamics, considering the interaction of the two species. 
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The Tropical Fish Task: To regulate the pH balance in a 300L tropical fish tank, a buffering 
agent is dissolved in water and the solution is pumped into the tank. The strength of the 

buffering solution varies according to 1 − 𝑒
)*
+, grams per liter. The buffering solution enters 

the tank at a rate of 5 liters per minute. Create an expression that models how quickly the 
amount of buffering agent in the tank is changing at any moment in time. 

The Pruning Task: Imagine you have a hedge in your garden of some size, 𝑆, and you want it 
to increase its size even more. You hire a gardener for some advice on growing this particular 
plant.  She advises you that the overall rate of growth will depend both on the extent of 
pruning and on the regrowth rate, which is particular to the plant species and environmental 
conditions. Both rates can be measured as a percentage of the size of the plant. The pruning 
rate can be adjusted to result in a target overall growth rate. Can you derive a model for the 
rate of change of the size of the plant? 
The Tuberculosis Task: Tuberculosis (TB) is a serious infectious disease caused by a 
bacterium that originated in cattle, but can affect all mammals including humans. It typically 
affects the lungs, causing a general state of illness, coughing, and eventual death. Many 
infected individuals carry a latent (inactive) infection for a long time before their lungs 
succumb to the damage caused by the bacteria. The disease is highly contagious; it is spread 
from person to person when an infected individual coughs, spits, speaks, or sneezes. Because 
transmission rates are so high, TB outbreaks are frequently associated with poverty 
conditions – locations where overcrowding is common. In these communities, spread (rate of 
new infections) can be very high and decimate a community rapidly. Imagine a community 
where sick and well members move about freely among one another. Create a mathematical 
model for the rate that the disease will spread through the community. 
The interviews were retrospectively analyzed to construct second-order accounts (Steffe & 

Thompson, 2000) of students’ reasonings via inferences made from students’ observable 
activities such as verbal descriptions, language, written work, discourse, and gestures. The 
retrospective analysis consisted of multiple passes of the data to arrive at examples that illustrate 
the different ways students engaged in Pseudo-Thompsonian Quantitative Operations. First, we 
watched the videos in MAXQDA in chronological order and paraphrased each interview by 
chunks. Next, we created accounts of students’ mathematics and the reasons they attributed to 
their mathematics. Next, we reviewed the accounts and the videos at the same time and refined 
our accounts by adding details using theories from quantitative reasoning. We credited a student 
to have instantiated a quantity if we were able to infer from his reasonings that he had conceived 
an object, attribute, and a measurement process for the attribute. As evidence of student to have 
conceived a measurement process, we checked if at least one of the quantifications criteria was 
met (see Czocher & Hardison, 2021). We used segments of transcripts, where the students 
engaged in quantitative reasoning along with inscriptions and gestures as evidence for our 
claims. Next, from these accounts, we selected instances where the students constructed a new 
quantity by operating on a singular quantity or the operation itself (to construct the new quantity) 
did not have clear evidence of a situationally relevant quantitative meaning. Finally, we refined 
our second-order accounts by triangulating with utterance and gestures to support our claims.  

Findings 
We identified five examples where students engaged in pseudo-quantitative operations: (1) 
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constructing rate of change through taking the derivative, (2) constructing total amount through 
taking the integral, (3) constructing percent through considering parts of a whole, (4) 
constructing amount through considering a proportion of the whole, and (5) constructing rate of 
change through negation. We illustrated the first example in Kularajan & Czocher (2022), where 
we showed two modelers taking the derivative to construct the rate of change of the bird 
population due to predation by cats, in The Cats and Birds Task. In this report, we present 
examples of (2)-(5). 

 
Taking the Integral  to Construct Total Amount 

To illustrate this operation, we present Ivory’s work from The Tropical Fish Task. In the 
Tropical Fish Task, Ivory was working towards constructing a model for the amount of buffering 
agent in the tank at time 𝑡. To accomplish this goal, Ivory first constructed expression 1 to 
represent the rate at which the amount of buffering agent enters the tank. 

 𝑚*(𝑡) = 5 ∙ (1 − 𝑒
)*
+,) (1)  

In expression 1, Ivory defined 𝑚*(𝑡) as the rate at which the amount of buffering agent 
enters the tank at time 𝑡. After constructing expression 1, she stated that she would take the 
integral of 𝑚*(𝑡)  in order to construct an expression for the amount of buffering agent in the 
tank at time 𝑡. Following this reasoning, Ivory constructed the expression below to represent the 
amount of buffering agent inside the tank at time 𝑡. 

 𝑀(𝑡) = 	∫𝑚*(𝑡) (2)  
The interviewer pointed out that the expression 2, as written, only accounts for the amount of 

buffering agent that had entered the tank and ignores the amount of buffering agent that exits the 
tank. In response, Ivory modified expression 2 to the one shown in Figure 1 while confidently 
voicing that expression 2 “does work.” In Figure 1, Ivory defined 𝑚+(𝑡) as the rate at which the 
amount of buffering agent leaves the tank at time 𝑡. Through the expression in Figure 1, we infer 
that Ivory constructed the amount of buffering agent in the tank at time 𝑡, by additively 
comparing the amount of buffering agent that enters the tank and the amount of buffering agent 
that leaves the tank.  

 
Figure 1: Ivory’s model for the amount of buffering agent in the tank at time 𝒕 

We infer that Ivory first constructed the rates at which the amount of buffering agent enters 
and leaves the tank to operate on them further through taking the integral to construct the amount 
of buffering agent that enters the tank and the amount of buffering agent that leaves the tank, 
respectively. Even though Ivory constructed a quantity that had situationally relevant meaning to 
her (amount of buffering agent that enters (leaves) the tank at time 𝑡), the operation (taking the 
integral) on the singular quantity (rate at which the amount of buffering agent enters (leaves) the 
tank) did not have clear evidence of a situationally relevant quantitative meaning. For Ivory, 
taking the integral was an operation that could be performed on the measurable attribute rate of 
change to construct the amount.  
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Envisioning Parts of the Whole to Construct Percent 
To illustrate this operation, we present Szeth’s work from the Pruning task. Szeth first 

constructed Expression 3 where Szeth defined 𝑅’ as the rate at which the plant would be 
growing, 𝑃 as the “pruning,” 𝐺, as the “regrowth rate,” and 𝐸 as “environmental conditions.” 

 𝑅′ = 𝑃 + 𝐺′ + 𝐸 (3)  
After Szeth constructed expression 3, he mathematized 𝑅′ and 𝐺′ as 𝑅′ = '

!--
 and 𝐺′ = '

!--
 

because “both rates can be measured as a percentage of the size of the plant.” We interpret that 
when Szeth read the task “the overall rate of growth [of the plant] will depend both on the extent 
of pruning and on the regrowth rate…Both rates can be measured as a percentage of the size of 
the plant,” he interpreted “both rates” to be the rate at which the plant is growing (𝑅′ ) and the 
regrowth rate (𝐺′), as oppose to regrowth rate and the extent of pruning. Therefore, Szeth 
constructed 𝑅′ and 𝐺′ as a percentage of the size of the plant, 𝑆, through considering !

!--

(.
 of the 

size of the whole plant 𝑆. In this instance, for Szeth, considering !
!--

(.
 of the size of the plant 𝑆 

was an operation on the quantity 𝑆 in order to construct the new quantity “regrowth rate.” Szeth 
said that he would substitute 𝑅′ = '

!--
 and 𝐺, = '

!--
  in expression 3. Following this, the 

conversation below was exchanged among us.  

Interviewer: You have 𝑅′ = '
!--

 and 𝐺′ = '
!--

. So, does that say that 𝑅′ and 𝐺′ are both equal 
to each other, or can they be different percentages? 

Szeth: I guess it does say they're equal. I wouldn't take them to be equal. In real life 
perspective, they are supposed to be different things. 

Interviewer: And how would you modify it so that they're not equal? 
Szeth: Think I would just get rid of this [scratches off 𝑅′ = '

!--
], because 𝐺′	is already in an 

equation that affects 𝑅′. So, if I put this, let's substitute that [pointing at 𝐺′ = '
!--
]	into 

there [pointing at 𝐺′ in 𝑅′ = 𝑃 + 𝐺′ + 𝐸], then it's still true that this rate [referring to 𝑅’] 
can be measured as a percentage of the size. It still be involved in this equation up here. 

In the above excerpt, when the interviewer asked Szeth if 𝑅′ and 𝐺′ are equal, Szeth 
responded that “in real life…they are supposed to be different things.” By that, we interpret that 
he meant 𝑅′ and 𝐺′ measure different qualities of the plant, that may (or may not) have different 
values. We take this as evidence that for Szeth considering a fraction of the size of the plant—in 
particular considering !

!--

(.
 of 𝑆—was a mental operation performed on the size of the plant, to 

construct the quantities that can be written as a percentage as a size of the plant. In response, 
when we asked how he would modify 𝑅′ and 𝐺′ such that they wouldn’t be equal, Szeth 
indicated that he would substitute 𝐺′ = '

!--
  in expression 3 and modified expression 3 as below. 

 𝑆′ = 𝑃 + '
!--

+ 𝐸 (4)  
In expression 4, Szeth replaced 𝑅, = 	𝑆′ and indicated that 𝑆′ is implicitly written as a percentage 
of the size of the plant because  𝑆′ is written in terms of  𝐺′ = '

!--
.  

In this example, we illustrated how Szeth constructed the quantity 𝐺’—“regrowth rate”—through 
operating on the quantity 𝑆—“the size of the plant”—by considering a portion of 𝑆. In other 
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words, we illustrated how Szeth constructed 𝐺’ by structurally conceiving percent through 

imagining a part, in particular !
!--

(/
, of a whole size of the plant. 

 
Envisioning a Proportion of the Whole to Construct Amount 

 To illustrate this operation, we present Pattern’s work from the Cats and Birds task. In 
The Cats and Birds Task, Pattern was working towards constructing a model for the number of 
cat-bird encounters that result in a bird’s death. To accomplish this goal, Pattern first constructed 
an expression to calculate the maximum number of cat-bird encounters at time 𝑡	(Figure 2(a)). 
Pattern was then asked to consider how he might modify his expression to account for the fact 
that only a proportion of the maximum encounters are realized. In response to this, Pattern 
elected to multiply the number of maximum number of cat-bird encounters at time t	by some 
percentage 𝛼, shown in Figure 2(b). Pattern explained his reasoning for multiplying by 𝛼 as 
follows. 

Pattern: So this [referring to the expression in Figure 2(a)] is the total possible encounters 
that could possibly happen if perfect conditions are met for each cat to meet each bird, 
and then you're going to take a percentage of that total, and that would be your total.   

In this instance, Pattern constructed the number of encounters that actually happened by 
envisioning a proportion of the maximum number of cat-bird encounters at time 𝑡. Here, for 
Pattern, 𝛼 acted as a multiplicative scaling factor to quantify the proportion of cat-bird 
interaction that were realized. There was no clear evidence that 𝛼 had a situationally relevant 
quantitative meaning for Pattern. That is, we were not able infer a situational referent (an object) 
and the attribute 𝛼 was measuring.  

Later, Pattern was asked to adapt his model (Figure 2(a)) to account for the fact that 
sometimes a bird might escape. In response to the request, Pattern decided to multiply the 
maximum number of cat-bird encounters at time 𝑡	by some percentage 𝛽 as shown in Figure 
1(c). Pattern explained his decision to multiply by 𝛽 as follows. 

Pattern: Because what I did here was I made it really easy for myself by creating this baseline 
[referring to 𝐶(𝑡) ∙ 𝐵(𝑡))]. And from here, you can... Since they're not giving it to me, I 
can add whatever I want. So that gives me the freedom of being like, well, since you want 
to know how many birds die, we can just create this percentage [referring to 
7𝐶(𝑡) ∙ 𝐵(𝑡)8 ∙ 𝛽].  

In this instance, Pattern constructed the number of encounters that result in a bird’s death by 
taking a different proportion of the maximum number of cat-bird encounters at time 𝑡. Through 
Pattern’s reasoning above, we interpret that, 𝐶(𝑡) ∙ 𝐵(𝑡) acted as a “baseline” to consider 
different proportions of the maximum number of cat-bird interactions—number of cat-bird 
interactions that realized and number of cat-bird interactions that resulted in a dead bird. Pattern 
accomplished this by using multiplicative scaling factors (e.g. 𝛼% and 𝛽%, respectively) that 
reduced the size of the whole—maximum number of cat-bird interactions. In both of these 
instances, Pattern constructed new quantities by considering a proportion of the “baseline” via 
using multiplicative scaling factors . However,	𝛼% and 𝛽% were not associated with a 
discernable or situationally relevant attribute. 
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(a) 

 
(b) 

 
(c) 

Figure 2: Pattern's models for (a) maximum number of cat-bird encounters, (b) number of 
actual cat-bird encounters, (c) number of cat-bird encounters that resulted in a birds death 

Negating a Rate of Change to Construct a New Rate of Change 
To illustrate this operation, we present Winnow’s work from The Tuberculosis Task. 

Winnow constructed expression 5 as a model for the rate of change of the sick people with 
respect to time. 

 &'
&(
= 0

'(()×4(()
× 𝐻(𝑡) (5)  

In expression 5, Winnow defined 𝐻(𝑡) as the number of healthy people at time 𝑡, 𝑆(𝑡) as the 
number of sick people at time 𝑡, and 𝑚 as the number of contacts between healthy and sick 
people that actually occur. When the interviewer asked for a model for the rate of change of the 
healthy people with respect to time. Winnow noted immediately that the rate of change of the 
healthy people “would be a negative number because the healthy people would be—the number 
of healthy people would be decreasing.” Following this reasoning, Winnow constructed an initial 
model for the rate of change of healthy people with respect to time as shown in expression 6.  

 &4
&(
= − 0

'(()×4(()
× 𝑆(𝑡) (6)  

After constructing expression 6, Winnow validated his model by checking against specific 
conditions, 𝑆(𝑡) = 10 and 𝐻(𝑡) = 10. He was happy that substituting for 𝑆(𝑡) = 10 and 𝐻(𝑡) =
10 in expressions 5 and 6 yielded the same value, but the negation of one another, asserting that 
the rate of change with respect to time for sick people would be the same value as the rate of 
change with respect to time for healthy people.  

To perturb Winnow, the Interviewer asked him to validate his model against the values 
𝑆(𝑡) = 2 and 𝐻(𝑡) = 10. Realizing that  &'

&(
 and &4

&(
 would not yield the equal values, Winnow 

modified his model for the rate of change of healthy people with respect to time to be &4
&(
= − &'

&(
. 

Winnow justified his modification to his model as “the number of new sick people and the 
decrease in healthy people should be the same.” Through this we infer that winnow negated the 
rate of change of sick people with respect to time to construct the rate of change of healthy 
people with respect to time, because for Winnow, the number of new sick people, directly 
corresponds to the decrease in the number of healthy people. However, there was no clear 
evidence whether the " − "  in &4

&(
= − &'

&(
 represented a quantity, let alone −1, for Winnow.  

Discussion 
We introduced the construct pseudo-quantitative operations to account for five instances of 

modelers constructing quantitative relationships without clear evidence that the operations 
performed on quantities had situationally relevant quantitative meaning. In this report, we 
presented four such instances. First, we illustrated how Ivory constructed the amount of 
buffering agent entering and leaving the tank by taking the integral of the rate at which the 
buffering agent enters the tank and the rate at which the buffering agent leaves the tank, 
respectively. Next, we presented an example of how Szeth constructed the “regrowth rate” of the 
plant by considering a fraction of the whole size of the plant, by using a multiplicative scaling 
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factor of !
!--

. Third, we illustrated how Pattern constructed the number of birds that died due to 
predation by cats by shrinking the total number of cat-bird interactions that realized through 
using a multiplicative scaling factor 𝛼. Finally, we presented how Winnow considered the 
negation of the rate of change of the sick people with respect to time in order to construct the rate 
of change of healthy people with respect to time.  

What do we mean by the operations on quantities having no situationally relevant 
quantitative meaning?  Recall the example where Winnow constructed the rate of change of 
healthy people with respect to time by negating the rate of change of sick people with respect to 
time. If Winnow had indicated that the − in &4

&(
= − &'

&(
 represented 5!	.789(.:	;7<=>?	

!	=@AB	;7<=>?
 — a 

measurable attribute of the system of healthy and sick people—then we would have credited 
Winnow to have engaged in the multiplicative combination of two quantities (number of people 
removed from the healthy population for each person getting sick and the rate of change of the 
sick people with respect to time), making it a quantitative operation as Thompson (1990) defined 
it. For Winnow, the − in &4

&(
= − &'

&(
 acted as an operator to transform &'

&(
 , in turn quantifying &4

&(
.  

Similarly, when Pattern constructed the number of birds that died due to predation by cats by 
shrinking the total number of cat-bird interactions that realized through using a multiplicative 
scaling factor 𝛼, we were not able to infer whether for Pattern 𝛼 carried any situationally relevant 
quantitative meaning. We would have credited Pattern to have engaged in a quantitative 
operation—instantiating a rate—between 𝛼 and 𝐶(𝑡) ∙ 𝐵(𝑡), if he had shown clear evidence that 
𝛼 measured the number of cat-bird interactions that resulted in a dead bird for every 100 cat-bird 
interactions, an attribute of the system of cats and birds. However, for Pattern 𝛼 acted as an 
operator that shrank the size the total number of possible cat-bird interaction to represent a 
subset of that amount. Likewise, when Szeth constructed a percentage of the size of the plant as 
'
!--

, the !
!--

  acted as an operator to transform 𝑆 in order quantify the “regrowth rate.” At the 
same time, for Ivory, the integral acted as an operator to transform a rate to an amount; there was 
no clear evidence whether the integral involved the coordination of two quantities.  

Even though taking the derivative, integral, using a multiplicative scaling factor, and 
negating in and of itself may not be credited as quantitative operations, they are operations that 
the students performed on existing quantities to construct a new quantity. In addition, the 
aforementioned operations on existing quantities are an image that is prevalent in undergraduate 
learners and the result of that action is often useful for mathematical modeling. Adhering to the 
definitions of quantitative operations, as Thompson defined it, instances such as illustrated in this 
report will be missed. Therefore, to investigate students’ quantitative reasoning in mathematical 
modeling, we propose to extend the definition of operations on quantities to include operations 
on singular quantities to construct new quantities through the aid of quantitative operators. We 
identified five such quantitative operators:  &	∎

&(
, ∫∎, 𝛼 × ∎, !

!--
×∎, and −∎. These 

quantitative operators can be viewed as functions that take in a quantity and output a new 
quantity, where a quantity itself can be operationalized as a function consisting of three variables 
(object, attribute, and quantification). The inclusion of these quantitative operators allows us to 
make better sense of the mechanisms involved in the construction of new quantities in students’ 
mathematical modeling. Our findings reaffirm that quantitative reasoning is essential to 
mathematical modeling, but also caution that not every parameter, variable, or operation in the 
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student’s work needs to signify a situational referent in order for their modeling activities to be 
productive.  
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The purpose of this study is to gain understanding of how secondary teachers conceptualize the 
relationships between mathematical modeling and problem solving. Eight secondary teachers 
participated in semi-structured, think-aloud individual interviews. Some conceptualizations 
include (a) modeling and problem solving are two distinct processes; (b) modeling is a subset of, 
or a tool for, problem solving; (c) the two processes share similar characteristics such as a real- 
life scenario but are different in terms of whether a single correct answer exists; (d) the two 
processes are inseparable, completely enmeshed in each other, and co-dependent; and (e) 
problem solving is a reduced process of modeling. Teachers’ conceptualizations are related to 
their preferred instructional sequence and the types of problems or activities they’d rather use. 

Keywords: Modeling, Problem Solving, Teacher Knowledge, Teacher Educators 

Mathematical modeling, or responding to real-world problems mathematically, meets the 
needs and interests of 21st century learners by offering abundant opportunities for developing 
critical skills such as adaptability, systems thinking, nonroutine problem solving, and complex 
communication skills (Bybee, 2010). As an example, Model Eliciting Activities (MEAs) are 
open-ended and context-rich activities that challenge learners to generate models or systems as 
useful solutions for complex real-world situations (Aguilar, 2021; Lesh & Doerr, 2003). Lesh 
and colleagues (e.g., Lesh & Harel, 2003; Lesh & Lehrer, 2003) implemented MEAs with 
students who were enrolled in remedial mathematics and were from poor, large urban school 
districts. Learners in these studies were competent in developing conceptual tools as they 
simultaneously built “communities of mind” and “the thinking of teams” (p.187). Despite the 
potential of mathematical modeling for actively engaging and motivating diverse learners, there 
is evidence that teaching of mathematical modeling is limited in P-12 classrooms (Doerr, 2007; 
Zbiek, 2016; Zbiek & Conner, 2006). 

 

Purposes of Study 
It has been difficult for the mathematical modeling community to come to an agreement on 
(a) a unified definition of mathematical modeling, (b) the characterization of the modeling 

process, or (c) how modeling is differentiated from traditional application problems. This lack of 
agreement has become one of the major challenges for teaching, learning, and research of 
modeling in the context of P-12 mathematics education (Cai et al., 2014). 

The boundary between problem solving and modeling has never been clear. Some 
researchers (e.g., Blum & Niss, 1991; Lesh & Doerr, 2003) emphasize the differences between 
mathematical modeling and traditional problem solving and avoid using the term “problem 
solving” without qualification. These researchers often point out that the facts and rules in 
traditional application problems are restricted artificially so that the problems can be solved with 
readily available algorithms or basic operations. Therefore, traditional application problems are 
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also called “dressed up” word problems (Blum & Niss, 1991) or “pre-modeled problems” 
(Burkhardt & Pollak, 2006). While traditional problem solving often requires one cycle of 
straightforward interpretation of a real-world scenario, mathematical modeling requires multiple 
cycles of adapting, modifying, and refining ideas (Lesh & Harel, 2003). 

Other researchers such as Selden et al. (1999) call all non-routine or novel problems that 
require higher-order reasoning simply “problems,” and routine problems that can be solved using 
clear procedures “exercises”. In their conception of problems, mathematical modeling is problem 
solving, whereas traditional problem solving is just an exercise. 

Although we have some knowledge of how researchers perceive the relationship between 
mathematical modeling and problem solving, limited studies focused on teachers’ perspectives 
and how their perspectives might help explain their instructional practices and decisions. The 
purpose of this study is to gain understanding of teachers’ perspectives of the relationship 
between mathematical modeling and problem solving. Two research questions guide this study: 

(1) How do secondary teachers conceptualize the relationships between mathematical 
modeling and problem solving? (2) How are teachers’ conceptualizations related to their 
perceptions of teaching mathematical modeling in mathematics classrooms? 

Perspectives 
Doerr and English (2003) define modeling as a process to develop “systems of elements, 

operations, relationships, and rules that can be used to describe, explain, or predict the behaviour 
of some other familiar system” (p. 112). Several common and essential features of the modeling 
process include (a) modeling is a cyclic process that usually requires multiple iterations, (b) the 
process typically begins with a real situation, (c) modeling typically ends with the report of a 
successful result or the decision to revise the initial model to achieve a better result, and (d) the 
entire modeling process contains several common steps such as formulation, computation, 
interpretation, and validation (Blum & Leiß, 2007; Blum & Niss, 1991; Galbraith & Stillman, 
2006; Pollak, 2003; Zbiek & Conner, 2006). Early depictions of modeling are often rooted in 
applied mathematics and do not differentiate between the modeling process and the problem- 
solving process (Burkhardt & Pollak, 2006). 

However, more recent characterizations of the modeling process tend to point out the various 
distinctions between traditional application problems and modeling. Not all applied 
mathematical problem solving qualifies as modeling. This is because traditional problem solving 
usually takes a single cycle from givens to goals; whereas modeling tasks involve iterative cycles 
during which the emerging/initial model is subject to refinement, revision, adaptation, and 
modification (Dossey, 2010; Lesh & Doerr, 2003; Lesh & Harel, 2003; Lesh & Yoon, 2007; 
Lesh & Zawojewki, 2007). Solving traditional application problems may also be considered a 
reduced process of the modeling cycle (Blum & Niss, 1991; Lesh & Doerr, 2003; Lesh & Yoon, 
2007). In MEAs, making symbolic descriptions of meaningful real problem situations, or 
mathematization, is at the heart of the tasks. However, in traditional application problems, 
students make meaning of symbolically described situations (Lesh & Doerr, 2003; Lesh & Harel, 
2003). In other words, traditional application problems have already mathematized the situations 
for students. 

In addition, traditional application problems and modeling often lead to very different 
products or outputs. Many traditional problems typically require a short answer in the form of a 
sentence or a number. On the other hand, for modeling tasks, students create conceptual tools 
and artifacts such as new techniques, examples, systems, approximations, and algorithms. 
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(Dossey, 2010; Lesh & Doerr, 2003; Lesh & Harel, 2003; Pollak, 2003)The criteria for judging 
the quality of modeling and traditional problem solving tend to be different as well. The solution 
to an application problem is typically judged based on correctness. 

The criteria for judging a mathematical model may include reusability, modifiability, and 
shareability, as well as model’s generalizability beyond the specific problem situation (Doerr, 
2016; Lesh & Harel, 2003; Lesh & Yoon, 2007; Zawojewski, 2013). Lesh and Zawojewki (2007) 
have pointed out the “end in view” nature of MEAs, where models are judged based on the 
expressed needs of the client given at the beginning of the modeling task. 

One subtle difference between mathematical modeling and solving traditional application 
problems is reflected in the relation between the modeling process and the world outside of 
mathematics. A modeling task arises from the real world. Modeling is a process to mathematize 
the real world, i.e., bringing the real world into contact with mathematics. On the other hand, a 
traditional problem is a process of realizing mathematics, i.e., given the mathematical knowledge 
and problem-solving strategies and heuristics, apply them to solve real world problems (Lesh & 
Doerr, 2003; Lesh & Lehrer, 2003). The best characterization of this difference is given by 
Dossey (2010), who states: 

Modeling involves standing outside mathematics and looking into mathematics to find things 
that conceivably might help resolve the driving question. Applications, on the other hand, come 
from standing inside mathematics and noting that particular pieces can be used to better 
understand or highlight objects outside of mathematics. (p. 88) 

Finally, Models and Modeling Perspectives (MMP) proposed by Lesh and colleagues (e.g., 
Lesh & Doerr, 2003; Lesh & Harel, 2003; Lesh & Zawojewki, 2007) is in direct contrast with the 
traditional view of the relationships between modeling, applied problem solving, and traditional 
problem solving. In the traditional view, applied problem solving is treated as a subset or special 
case of traditional problem solving. Within this view, modeling is a type of applied problem 
solving. In contrast, MMP treats traditional problem solving as a subset or a special case of 
“applied problem solving as modeling activities” (Lesh & Yoon, 2007, p.783). 

 

Methods 
Participants and Contexts 

Participants included eight secondary (6-12) math teachers (Alexis, Alicia, Ann, Brian, Carrie, 
Eric, Katherine, Sarah, pseudonyms) who taught at eight different schools, and their ages ranged 
from mid-20s to late-40s. Prior to this study, the eight teachers were enrolled in a two-year 
secondary teacher preparation program (6-12) at a public university located in the Southeastern 
United States. The program was a non-traditional program designed for those who have a 
bachelor’s degree in a content area. Half of the eight teachers held a bachelor’s degree in an 
economics or business field: Katherine (Business Management), Ann (Accounting), Sarah 
(Finance), and Eric (Econometrics). Brian held a bachelor’s degree in Aeronautics. The rest of the 
participants (Alicia, Alexis, and Carrie) majored in mathematics. 

Prior to this study, the eight teachers participated in another study (about 1.5 years before this 
study) during which they had developed conceptual understanding of (a) the meanings of 
mathematical modeling, (b) the modeling cycle, and (c) criteria for judging the products of 
mathematical modeling. The eight teachers also solved one MEA and analyzed two sets of MEAs 
together during the earlier study. This study engaged the teachers in reasoning about the 
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relationships between problem solving and mathematical modeling, an aspect that was treated 
briefly and given only tentative interpretations in the earlier study. 

Data Collection 
Alexander and Dochy’s (1995) graphic catalyst (displayed in Figure 1) was adapted to elicit 

the eight teachers’ conceptualizations of the relationship between mathematical modeling and 
problem solving. Teachers were asked to indicate which option best represented their 
understanding of the relationship between modeling and problem solving. In addition, teachers 
were free to create their own model of this relationship as an alternative. Alexander and Dochy’s 
categories: separate, overlapping, inseparable, knowledge subsumption, and belief subsumption, 
along with their meanings, were borrowed directly for this study except that the last two 
categories were changed to modeling subsumption and problem-solving subsumption according 
to the purpose of this study. 

The meanings of these categories were presented to the teachers using the exact words from 
Alexander and Dochy (1995): (a) Separate (Option 1) shows modeling and problem solving are 
“two distinct and unrelated entities;” (b) Modeling subsumption (Option 2) suggests that 
modeling is a component of problem solving; (c) Problem-solving subsumption (Option 3) shows 
modeling “as embedded within” problem solving; (d) Inseparable (Option 4) means modeling 
and problem solving are “completely overlapping and indistinguishable constructs;” and finally, 

(e) Overlapping (Option 5) indicates “some dimensions of modeling are integrated with 
problem solving, still allowing for some aspects of each construct to remain separate and 
distinct” (p. 417, 419). “Problem solving” was intentionally left ambiguous or unqualified to 
elicit potentially diverse responses from the teachers. In addition, although each of the graphical 
representations in Figure 1 and their associated meanings were provided at the beginning of the 
study, teachers were also free to give their own interpretations. 

Each of the eight teachers participated in a semi-structured think-aloud individual interview. 
Think-aloud interviews are likely to unveil underlying mental processes and knowledge 
structures, and therefore, are appropriate for a study that seeks to understand teachers’ mental 
representations of the relationship between modeling and problem solving (Kelly & Lesh, 2000). 
Open-ended and broad prompts were used to elicit a wide range of productive thinking as 
naturally as possible. Each interview lasted for about an hour. 

 
 

 
Figure 1: Graphic Representations of Various Relationships Between Modeling and 

Problem Solving 
At the beginning of the interview, each teacher was given (a) Figure 1 and (b) transcript of 

their verbal response to the question: “What does mathematical modeling mean to you?” (At the 
end of the earlier study mentioned above). Each teacher was asked to choose one representation 
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or draw an alternative one that best captured their understanding of the relationship based on 
their response to the question above, and then explain and justify their choice. Each teacher was 
also given the chance to change their choice based on their thinking at the time of the interview, 
an opportunity that none of the eight teachers took. In addition, each teacher was asked to 
explain how their choice might influence their perceptions of teaching mathematical modeling in 
6-12 mathematics classrooms. 

Data Analysis 
A hybrid approach of inductive (emergent) and deductive (theoretically guided) coding 

(Fereday & Muir-Cochrane, 2006) was used to analyze the data. Alexander and Dochy’s (1995) 
graphic representations and the corresponding categories existed a priori and were applied to the 
data directly as provisional codes. However, codes that emerged during the analysis were also 
allowed to avoid premature closure, and to uncover new ideas (Saldaña, 2016; Strauss & Corbin, 
1990). Several rounds of coding were performed on the data. The first round of coding focused 
on identifying and labeling excerpts of interest. The second round of coding refined the initial 
codes as guided by the research questions. Codes that were considered as trivial or less relevant 
to the study were removed. As analysis continued, codes that shared similar attributes were 
grouped together into categories or themes during the third round of coding. Finally, a fourth 
round of coding was conducted to make appropriate modifications to achieve a better fit between 
the final codes and the data and to make sure that the coding categories had stabilized. 

Results 
Teachers’ Conceptualizations of the Relationship between Modeling and Problem Solving 

Each of the final coding categories and sample responses from the eight teachers are 
presented in Table 1. Alexis was the only teacher who chose Option 1. She was hesitant to claim 
that the two processes are completely unrelated, but she was certain that they are distinct from 
each other due to the very different natures of the two processes. Although problem solving has 
an obvious path; with modeling, the learner needs to find the “entire mathematics approach.” 

Brian and Alicia both chose option 2. For both teachers, problem solving is the bigger 
purpose. Modeling also serves the purpose of solving problems. When asked how traditional 
application problems are different than MEAs, Brian explained that traditional application 
problems are “very basic,” then he shared the example of giving students a constant speed of a 
train and a travel distance, and ask them: “How long is it going to take to go this far?” On the 
other hand, Brian viewed MEAs as more complicated: “take a step outside of this [real-life 
scenario], and we can start applying some math concepts to it, then step back into our real-world 
scenario” to find out whether a solution “fits the bill.” Alicia described MEAs as requiring “more 
depth of knowledge,” and “really, really difficult, like having them [students] think outside of the 
box.” For both teachers, the larger box contains all kinds of problem solving, including context- 
free problems, such as solving or manipulating an equation. Applied problem solving that 
involves real-world contexts belongs to the box in the middle. MEAs or other advanced 
modeling activities also belong to the box in the middle and constitute a more difficult subset 
[not shown on the figure] of all applied problem solving. 

Ann was the only teacher who chose Option 5. She explained that the part that belongs to 
only problem solving but not modeling represents solving “cut and dry equations” using a given 
formula [i.e., context-free problems]. The part that belongs to modeling but not problem solving 
are problems or activities like MEAs that are “open-ended” and “extensive,” and may not always 
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lead to an accurate answer. The part where modeling and problem-solving intersect must 
“making sense of real-world situations” and require interpretation before coming up with a 
solution, but still must have an “accurate” answer or “one true answer.” 

Sarah chose Option 3. Carrie was debating between Option 3 and Option 4. Both teachers 
believed that problem solving in a mathematics classroom must involve mathematical symbols or 
expressions; and therefore, only after a real-world situation is mathematized, problem solving 
begins. The steps before mathematization such as interpreting and visually representing a 
scenario are part of modeling or preparation for problem solving but not problem solving. 

Katherine and Eric chose Option 4 as their best representation of the relationship between 
modeling and problem solving. These teachers emphasized the cyclic and iterative nature of the 
modeling process and how problem solving, and modeling are integrated into the same process 
and are mutually dependent on each other. Carrie (who chose both Option 3 and Option 4) also 
pointed out even “simple little problem” like 3 + 2 can be a mathematical representation of a 
real-world scenario and therefore, math is all about describing the real world. Eric shared a 
similar view and argued that addition and subtraction in early grades, as well as using 
multivariate functions to represent and predict an economic phenomenon in econometrics are all 
mathematical modeling except for their “varying degrees of difficulty and fluidity.” 

 
Table 1: Sample Responses for Each of the Coding Categories 

 
Coding Categories Sample Responses 

Straightforward 
versus open-ended 

Classroom-based problems, I’m literally only looking for a solution. I 
am not really looking for the in between…simply do what the formula 
is asking me to do…whereas with modeling…still given a given, but 
you have to produce the goal, and you have to produce everything in 
between, like your approach to how to get your solution. (Alexis, 
Option 1) 

Modeling as a tool for 
problem solving 

Modeling can be used for problem solving. (Brian, Option 2) 
The whole purpose of modeling is to assist with problem solving… 
Problem solving would be the bigger picture. (Alicia, Option 2) 

Overlapping but 
different 

The problem solving [part], I feel like is just like handing them an 
equation to solve, that's problem, and it's got to be right or wrong 
answer… the modeling part I kind of…realized that's even more real-
world type situations in context … A lot of times, one student may 
interpret it differently than another student. They're not necessarily 
always getting the same answer…Modeling is not always accurate, I 
guess, because you can get, you know, different opinions from groups 
or students…modeling could help solve the problem, so maybe that 
would be the middle…[but] also has to be accurate. (Ann, Option 5) 

Problem solving 
embedded in modeling 

Problem solving is embedded within modeling. (Sarah, Option 3) 
There’s more to modeling the real world than just problem solving. 
(Carrie, Option 3 & 4) 
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Modeling and 
problem solving as an 
integrated process 

Can’t have one without the other…Modeling is just like math in 
general…used to describe the real world…you can’t have modeling 
without math, and you can’t really have math without modeling. 
(Carrie, Option 3 & 4) 
Enmeshed with each other. (Katherine, Option 4) 
They're one in the same…varying degrees of difficulty and fluidity. 
(Eric, Option 4) 

 
Teaching Mathematical Modeling in Mathematics Classrooms 

In response to the question: “How do you think your conceptualization of the relationship 
between modeling and problem solving influences your decisions regarding teaching 
mathematical modeling in mathematics classrooms,” the eight teachers focused on two 
dimensions of instruction: instructional sequence and problem/activity types (see Figure 2). 
Among all the teachers, Alexis was the most hesitant to teach mathematical modeling to her 
students. She felt that she was not prepared to enact modeling activities in her classrooms and 
emphasized that formal training was needed before she would be ready. She was also concerned 
about her students, stressing: “I don’t feel like everybody will be able to grasp the concept [of 
mathematical modeling].” She admitted that she was more comfortable with the traditional 
instructional sequence in which formal demonstration of mathematical concepts should happen 
before asking students to use the concepts to solve traditional application problems. 

 
 

Figure 2: Teachers’ Preferred Instructional Sequences and Types of Problems 
The rest of the teachers all shared the belief that teaching mathematical modeling was both 

important and lacking in secondary mathematics education. In addition, they all preferred a 
modeling approach to teaching mathematics, which is, having students engage and struggle with 
a mathematical modeling activity first (to develop mathematical concepts naturally) before 
formally introducing mathematical concepts. Especially Alicia, when reflecting on the changes 
in her own instructional sequence, stated “introducing a model first could be really beneficial for 
the students.” With the traditional approach, Alicia observed, “they [her students] were lost,” and 
“they’re going through the motions, and they don’t really understand the concept of the 
function.” However, both Brian and Alicia were also satisfied with using traditional application 
problems as modeling activities. 

The rest of the teachers were more open to activities like MEAs. Katherine acknowledged 
that although she was using a pilot program that required more problem solving from her 
students than before, the problems were still just requiring students to consider one variable at a 
time; MEAs require the learner to consider multiple factors at the same time and ideally should 
be used instead. Ann and Eric both felt positively about how the math teams at their schools were 
regrouping their standards so that one project can address multiple standards at the same time. 

All three teachers pointed out (a) the benefits of working with colleagues in other disciplines, 
and (b) the similarities between MEAs and the interdisciplinary projects at their own schools. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 202 

Discussion and Conclusion 
The eight teachers’ conceptualizations of the relationship between modeling and problem 

solving are diverse and mostly consistent with research literature. For example, Alexis’s focus is 
on whether the path from givens to goals is obvious or hidden. This is also pointed out by Lesh 
and colleagues as one of the key differences between traditional application problems and MEAs 
(Lesh et al., 2000). Brian’s and Alicia’s view of modeling as a subset of problem solving is 
consistent with what Lesh and colleagues (Lesh et al., 2000; Lesh & Doerr, 2003) call “the 
traditional view.” This view considers all application problems, including MEAs, as a subset of 
all kinds of problem solving. Ann’s review is more consistent with the MMP advocated by Lesh 

and colleagues (Lesh et al., 2000; Lesh & Doerr, 2003). If we do not consider the part in 
Option 5 of Figure 1 that belongs to only problem solving but not modeling (i.e., according to 
Ann, context-free problems that require using formulas only), the rest of the graphic 
representation is consistent with MMP in terms of viewing traditional application problems as a 
subset of modeling activities in general. Sarah’s and Carrie’s view of solving traditional 
application problems as a reduced process of the modeling cycle is also consistent with Blum 
and Niss (1991). The view that modeling and problem solving are completely enmeshed, 
inseparable and mutually dependent on each other is a new conceptualization not found in 
research literature. 

There is some preliminary evidence that a teacher’s conceptualization of the relationship 
between modeling and problem solving is likely to be related to the instructional sequence and 
type of problems they prefer. For example, one teacher’s (Alexis) view seems to create a barrier 
between the two processes, which makes the teacher feel the transition from the traditional 
approach to the modeling approach more challenging. In addition, when modeling is viewed as a 
more advanced form of problem solving, MEAs are often seen as another subset of all applied 
problems. This view does not seem to deter a teacher (e.g., Alicia) from successfully adopting 
the modeling approach or teaching mathematical modeling. However, under this view only 
traditional application problems (e.g., use an initial fee and fixed monthly payment to model 
linear functions) are likely to be used to teach mathematical modeling. Teachers who view 
modeling and problem solving as two integrated and mutually dependent processes or whose 
view is consistent with the MMP are more open to not only the modeling approach but also 
teaching mathematical modeling using open-ended, complex activities. 

In conclusion, this study is an exploratory study that involves only eight teachers. Although 
the eight teachers’ conceptualizations of the relationships between modeling and problem- 
solving are diverse, it is possible that other conceptualizations are missed. The relationship 
between these conceptualizations and instructional preferences is tentative due to the small 
number of teachers studied and needs further research. Despite these limitations, this study offers 
some implications for how to increase the use of modeling to teach mathematics in 6-12 
classrooms. First, the view that mathematical modeling and problem solving are two distinct 
processes seems to be the least ideal for encouraging modeling in the mathematics classroom. In 
this study, the teacher who held this view was the most hesitant to teach modeling because she 
perceived considerable risks for using modeling in her teaching. Second, all the other 
conceptualizations including (a) modeling as a subset of problem solving, (b) the two are 
overlapping, (c) problem solving is embedded in modeling, and (d) modeling and problem 
solving is an integrated process, seem to be compatible with the instructional approach and 
sequence that integrate modeling throughout the curriculum rather than saving modeling for the 
end of a unit or a course. This instructional approach and sequence often allow students to 
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explore mathematics problems collaboratively before direct instruction and has shown to be 
more effective than the traditional approach with teacher demonstration followed by practicing 
traditional problems (Boaler, 2015). Third, some teachers may hold “the traditional view” that all 
application problems, including MEAs, constitute a subset of all kinds of problem solving, and 
therefore, do not make a clear distinction between traditional application problems and MEAs. 

These teachers may feel content with using traditional application problems even if these 
problems often focus on developing procedural skills rather than reasoning ability. Teacher 
educators may steer teachers away from conceptualizations that are counterproductive to the use 
of modeling activities that require higher-order thinking and help teachers develop MMP by 
building upon productive conceptualizations. 
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SOCIOMATHEMATICAL SCAFFOLDING AS STUDENTS ENGAGE IN 
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Instructors manage several tensions as they support students to engage in mathematical 
disciplinary practices such as defining, conjecturing, and proving. These tensions include 
honoring students’ contributions while simultaneously apprenticing students to following 
mathematical norms. I present a case study of a teacher-researcher in a laboratory setting who 
was particularly skilled at this endeavor. I found that the teacher-researcher engaged in a 
pattern in which the teacher-researcher cycled between inquiring into the students’ thinking 
about their draft of a definition, conjecture, or proof and then engaged in scaffolding, including 
scaffolding of mathematical norms. I exemplify this pattern with an episode of students writing a 
conjecture equivalent to the Archimedean Property that served as a warrant for one of their 
proofs. I close the paper discussing complexities of apprenticeship into the norms of the 
discipline.  

Keywords: Instructional Activities and Practices, Reasoning and Proof, Undergraduate 
Education 

One common goal of many undergraduate mathematics classes is to engage students in 
disciplinary practices that support them in creating definitions, conjectures, and proofs. This 
allows students to experience mathematics as a creative activity, rather than a static product 
handed down to them by their instructor. For example, a student from a class that used 
curriculum materials that were specifically designed for this goal commented on their 
experience:  

“You’re not being handed a finished package and being told to just take it as is. You’re 
building it. It’s the difference between being given an assembled Lego set and building it 
yourself…”  
Many scholars have discussed the tensions that instructors manage as they support students 

to ‘build it themselves’ (e.g., Ball, 1993; Melhuish et al., 2022; Rasmussen & Marrongelle, 2006; 
Speer & Wagner, 2009). At the heart of this complex work is honoring the students’ 
contributions, or using the Lego analogy, valuing what the students do with the Legos. At the 
same time, instructors aim to support students to make progress on the mathematical goals that 
are set by the course. Using the Lego analogy, this means the “it” in “build it themselves” is a 
specific structure that the instructor has in mind such a Lego-car. Further, instructors are often 
obligated to support students to adopt norms from the mathematics discipline. Put in another 
way, instructors are compelled to support students to build their Lego-car with four wheels 
touching the ground, for instance, rather than fulfilling the wheels’ purpose in some other 
inventive way. 

There have been notable discussions around the teaching and learning of mathematics 
discipline’s norms (Dawkins & Weber, 2017; Weber & Melhuish, 2022). Mathematical norms 
have been discussed as a matter of access that can operate to equip or exclude students in 
mathematics and mathematics classrooms (Dawkins & Vroom, in press). And thus, students who 
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desire to interact with the mathematics discipline should be given meaningful experiences with 
them, such as those that support students to see norms as reasoned choices (Larsen et al., 2022; 
Vroom, 2022). Mathematical norms have also been discussed in relation to identity since the 
adoption of disciplinary norms may overshadow students’ personal, cultural, or linguistic 
capacities (Goffney et al., 2018). And so, an instructor must “strike a balance between 
opportunities to reflect on oneself and others as part of the mathematics learning experience” 
(Gutiérrez, 2009, p. 5). The complexities of apprenticeship into the norms of the discipline 
warrant more research on the different ways this might be enacted. This research could better 
inform when this apprenticeship is (and is not) appropriate, how instructors can craft meaningful 
experiences with disciplinary norms, and how instructors can strike a balance between providing 
opportunities to reflect on oneself and others. 

This paper makes some progress on understanding apprenticeship into mathematical norms. I 
present a case study of a teacher-researcher in a laboratory setting who was particularly skilled at 
building on students’ initial drafts of definitions, conjectures, and proofs. He supported the 
students to refine the drafts so that they both captured the students’ ideas and followed 
mathematical norms. I investigated what the teacher-researcher was doing to support the students 
in this way. In what follows, I discuss the constructs that I used to describe the teacher-
researcher’s moves, including sociomathematical scaffolding. Then, I present a cyclic pattern 
that I noticed in the teacher-researcher’s moves and exemplify it with an episode from the 
laboratory experiment.  

Theoretical Perspective   
I take scaffolding to mean the process that enables students to carry out a task that they may 

have not otherwise been able to accomplish without assistance (Wood et al., 1976). In this report, 
I investigate the teacher-researcher’s scaffolding of students’ creation of definitions, conjectures, 
and proofs that are consistent with mathematical norms. Mathematical norms are expectations on 
practice accepted by the mathematics community to uphold mathematics community’s shared 
orientations and goals that underlie shared activity (Dawkins & Weber, 2017). For instance, 
conventions in formal mathematical language are examples of norms that uphold the goal of 
effectively communicating and using definitions, theorems, and proofs. Norms can also include 
expectations such as excluding irrelevant statements from a proof in order to uphold that proofs 
should increase understanding of the mathematical theory involved (Dawkins & Weber, 2017).  

Williams and Baxter (1996) distinguished between analytic and social scaffolding. Analytic 
scaffolding is “the scaffolding of mathematical ideas for students” (p. 24) and is a tool to support 
students to create mathematical knowledge. Whereas social scaffolding is “the scaffolding of 
norms for social behavior and expectations regarding discourse” (p. 24) and influences the “ritual 
of classroom life” (p. 36). Nathan and Knuth (2003) note that social scaffolding is not particular 
to mathematics and can apply to any instruction regardless of the subject. An example of social 
scaffolding is requesting students to take turns sharing their rough draft ideas with their 
groupmates.  

Inspired by Cobb and Yackel’s (1996) emergent perspective, I distinguish a third category, 
sociomathematical scaffolding, as the scaffolding of mathematical norms. For instance, an 
instructor might let students know that it is normative in mathematics for “there exists” and “there 
exists at least one” to be interchangeable as students interpret a mathematical statement with the 
phrase (Vroom, 2022). Such scaffolding was included in Nathan and Knuth’s (2003) analytic 
scaffolding; however, this differentiation is crucial as students engage in creating definitions, 
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conjectures, and proofs as such products are heavily influenced by mathematical norms. It is a 
widely shared goal that students should be supported to create products that are conceptually 
reasonable (potentially supported by analytic scaffolding). But there is critical debate about the 
extent to which and how students should be supported to adopt the norms of the mathematics 
discipline (potentially supported by sociomathematical scaffolding).  

There are a variety of ways in which instructors can scaffold. I highlight two categories of 
ways because of their relevance to the data that I share in the Results section: (a) creating 
problematic situations and (b) pedagogical content tools. Creating problematic situations is 
connected to Harel’s (2008, 2013) theory that students should have an intellectual need to learn 
what we intend to teach them, where an intellectual need refers to a problematic situation that 
motivates the construction of the piece of knowledge. An instructor who aims to create intellectual 
needs to refine students’ definitions, conjectures, and proofs would focus efforts on shining light 
on an issue with the draft (i.e., creating a problematic situation).  

Pedagogical content tools (PCTs) can be powerful tools in instructor scaffolding. A PCT is 
“a device, such as a graph, diagram, equation, or verbal statement, that a teacher intentionally 
uses to connect to student thinking while moving the mathematical agenda forward” (Rasmussen 
& Marrongelle, 2006, p. 389). Rasmussen and Marrongelle discuss two types of PCT’s: 
transformational records and generative alternatives. Transformational records are “notations, 
diagrams, or other graphical representation that are initially used to record student thinking and 
that are later used by students to solve new problems” (p. 389). Generative alternatives are 
“alternate symbolic expressions or graphical representations that a teacher uses to foster 
particular social norms for explanation and that generate student justifications for the validity of 
these alternatives” (p. 389). For instance, the teacher might introduce a teacher-initiated 
alternative to the class with the intention of soliciting justifications, or a teacher might highlight a 
student-initiated alternative and then engage students in a discussion about merits of the 
alternative.  

Methods 
The data that I present in this report comes from a laboratory design experiment (Cobb & 

Gravemeijer, 2008). The primary design goal was to refine tasks that supported students in 
reinventing foundational concepts in real analysis using the instructional design theory of 
Realistic Mathematics Education (Gravemeijer, 1999). A secondary goal was to test the 
conjecture that the task sequence could be leveraged to support students in learning about proof-
related activity such as defining, conjecturing, and proving (see Larsen et al., 2022 and Vroom, 
2020 for details about the task design). The experiment was ten 1.5-hour long teaching sessions. 

The design experiment involved two students who I refer to as Chloe and Gabe, a teacher-
researcher who I refer to as Bryan, an observer (myself), and a camera operator. Chloe and Gabe 
typically earned high marks in their mathematics coursework and were recruited from the last 
two courses of the calculus sequence at their university. Bryan was particularly experienced at 
teaching in such a way that built on students’ thinking. He had previously conducted many 
teaching experiments in this role (in both laboratory and classroom settings) to develop inquiry-
oriented curricula and instructor support materials. The reason I selected the design experiment 
for further investigation was because Bryan seemed to play a key role in supporting students to 
refine their contributions (draft of definitions, conjectures, proofs) in such a way that both 
captured the students’ ideas and followed disciplinary norms. 
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The data analysis for this study began with creating content logs of each teaching session. 
The logs were a detailed chronological account of the students’ activity and discourse. The 
content logs were supplemented with pictures of the students’ work and selected transcribed 
excerpts. After the end of the experiment, I reread the logs and identified episodes of the students 
engaging in writing definitions, conjectures, and proofs. I considered an episode to be the 
activity that occurred between the students’ first and last draft of a particular definition, 
conjecture, or proof. I then selected three focal episodes that varied in activity type (defining, 
conjecturing, proving) to further analyze based on Bryan’s seemingly crucial role. To do so, I 
identified instances in which Bryan inquired into the students’ thinking, engaged in scaffolding, 
created problematic situations, or used a pedagogical content tool. I used these codes because 
they were either instructional moves that Bryan and I specifically talked about while collecting 
data (inquiring into the students’ thinking, PCTs) or I perceived there to be relevant afterwards 
(scaffolding, creating problematic situations). As I analyzed the data, I noticed an emerging 
pattern in Bryan’s moves. After I analyzed the focal episodes, I then returned to the remaining 
episodes to both observe whether the pattern appeared in the other episodes and add more 
nuanced understanding of this pattern. In what follows, I first describe this pattern and then I 
illustrate it with one of the focal episodes.  

Results 
Throughout the teaching sessions, Bryan’s moves followed a cyclic pattern in which he 

repeatedly inquired about the students’ intended meaning of their draft (of a definition, 
conjecture, or proof) and then followed with scaffolding to support the students in refining their 
draft. I illustrate the cyclic patten in the episode that follows in which Bryan supported the 
students to write and refine a conjecture equivalent to the Archimedean Property by repeatedly 
engaging in sociomathematical scaffolding. 

 
First Cycle  

Prior to this episode, Chloe and Gabe engaged in writing a proof that the sequence {2?} 
tended to infinity. Their emerging proof let 𝑘 be a real number, let 𝑥 = log" 𝑘, and then “let 𝑚 >
𝑥 where 𝑚 is a positive integer”. The episode began with Bryan following up with the line “let 
𝑚 > 𝑥 where 𝑚 is a positive integer” by asking why they could “pick a positive integer that is 
bigger than 𝑥”. Chloe responded with the first draft of their conjecture (see Figure 1.) 

 

 
 

“there is always a bigger number” 

Figure 1. Draft 1.  

Bryan began sociomathematical scaffolding, saying “Add a little more precision to this, what 
kind of number is a bigger number and what is it bigger than?” This question implicitly shared 
the mathematical norm that statements should be unambiguous. The question exposed a 
problematic situation in that Chloe’s intended meaning was unclear because it did not state what 
type of number she was referring to, nor did it state what sort of number she was comparing it to. 
This led Chloe to refine the statement to Draft 2 (Figure 2).  

 

 
 

“there is always a pos int bigger  
than 𝑥” 
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Figure 2. Draft 2. 

Second Cycle 
Next, Bryan inquired into Chloe’s intended meaning of Draft 2 by asking clarifying questions 

such as: “And what is 𝑥?”, “And what do we know about 𝑥?”, “So, are you saying that there is 
always a positive integer that is bigger than that particular 𝑥, the one that is log" 𝑘? Or is some 
more general principle of numbers that you're trying to say? So, is this x specific to our 
problem?”. With this inquiry, Chloe revealed that she intended for the statement to be true for the 
particular 𝑥-value that they introduced in their proof (𝑥 = log" 𝑘). She also explained that the 
statement was also true for an arbitrary 𝑥-value, explaining “but like it is applicable for any 𝑥”. 

The conversation continued with Bryan sociomathematical scaffolding by exposing a 
mathematical norm that the statement should justify the line in the proof: 

Teacher-researcher: So, what kind of number should we say that it is in our statement of this 
property? If we said that ‘there is always a positive integer that is bigger than 𝑥 where 𝑥 is an 
integer’ would that be saying the same thing as saying ‘where 𝑥 is a real number’? 

Chloe: No, but they are both true.  
Teacher-researcher: And which are you using here?  
Chloe: It doesn't matter. 
Teacher-researcher: Well, let's test you on that. Write ‘where 𝑥 is an integer’.  
(Chloe altered the statement as requested: “there is always a pos int bigger than 𝑥 where 𝑥 is 
an integer”) 
Teacher-researcher: Now if we were somehow able to prove that true, what you just wrote, 

would you be able to use that to explain why you can choose an 𝑚 over here? (referring to 
“let 𝑚 > 𝑥 where 𝑚 is a positive integer” in the students’ emerging proof) 

Gabe: No.  
Observer: Why not?  
Gabe: Because this isn't necessarily going to be an integer (points to 𝑥 = 𝑙𝑜𝑔"𝑘). 
Chloe: Yeah, true. 
Gabe: And so it won't cover all the potential values.  
Teacher-researcher: So, if you say that ‘there is always a positive integer bigger than 𝑥 where	𝑥 

is an integer’ then that's not strong enough to use in this case. 
(Chloe refined the statement to Draft 3, see Figure 3.)  

 

 
 

“there is always a pos int bigger  
than 𝑥 where 𝑥 is a number” 

Figure 3. Daft 3. 

During the above exchange, Bryan leveraged a generative alternative by focusing the 
students’ attention on two specification options for 𝑥: a real number or an integer. Chloe 
explained that both options were acceptable since both versions of the statement were true. 
Bryan then refocused the students to not only attend to the truth of the statement but also the 
need to explain the step in their proof. Using the alternative in relation to the line of the proof 
created a problematic situation: the version of the statement that specified 𝑥 to be an integer was 
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true but did not function as a warrant because “it won't cover all the potential values” of 𝑥 =
log" 𝑘. This motivated Chloe to refine the statement by adding “where 𝑥 is a number” to the 
drafted conjecture (Figure 3). 
 
Third Cycle 

Bryan continued the conversation by inquiring into the students’ thinking about Draft 3, 
asking “Do you mean real number? Or a…” Chole responded, “I don’t see why it matters what 
number it is because there is going to be a positive integer that is larger than it.” I interpret 
Chloe’s comment to mean that she didn’t see why there was a need to specify 𝑥 to be real 
number, and that she thought her statement (that said ‘where 𝑥 is a number’) captured her idea.  

Bryan continued the discussion by sociomathematical scaffolding by sharing a mathematical 
norm. He explained:  

Well that’s why we say real numbers when we mean that. When we mean that it doesn’t 
matter what kind of number it is, we say real number. To do two things. To one to say that 
we mean it more than just naturals, or integers, or rationales, or irrationals, we mean it for all 
of them. That’s the set that we say when it doesn’t matter, we say it’s true for all real 
numbers. It also lets them know that we are not thinking of imaginary numbers.  
With this comment, teacher-researcher shared that the mathematics community would use 

‘real numbers’ instead of ‘numbers’ to communicate the students’ meaning. Chole responded 
with “ok” and then altered the draft by adding the word “real” before number. (See Figure 4.) 

 

 
 

“there is always a pos int bigger  
than 𝑥 where 𝑥 is a real number” 

Figure 4. Draft 4. 

Fourth Cycle 
Bryan then considered Draft 4 before he continued the conversation by sociomathematical 

scaffolding: 
Teacher-researcher: Alright, so… [reads statement under breath]. Alright, so one thing that I 

want to do for practice if you go back to your definition we wrote that one (pointing to a 
definition that they previously wrote for a sequence converging to infinity) in terms of ‘for 
any real number there exists’, so it’s sort of like ‘for any… there exists’.  But this one over 
here that Chloe just wrote doesn't quite... it seems like it is trying to say the same sort of thing 
but not using the same kind of language. So, can we write this with saying like ‘there exists’ 
and ‘for any’ or ‘for all’? I think that ‘for all’ is more common but ‘for any’ is also kosher.  

(Chloe starts writing.) 
Teacher-researcher: It's not that what you are saying is wrong, but if we kind of write them all 

in the same way then it is easier to see how we map them in proofs and stuff. And maybe if 
you use variables that would be cool too. 

(Chloe and Gabe give teacher-researcher questioning look.) 
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Teacher-researcher: Like letters like you did before you had the 𝑎D, 𝑠 and the 𝑘′𝑠 (pointing to 
their previously constructed definition of sequence converging to infinity), things like that. 
So, you have an 𝑥 for one of them but you didn't use a variable for your integer.  

Chloe: Yeah. 
Teacher-researcher: So maybe use a letter for both of them.  
Chloe: Yeah. 
(Crosstalk while Chloe writes) 
(Chloe writes: for any real number 𝑥 there exists a positive integer 𝑚 that is larger than 𝑥) 
Chloe: Happy now? 
Teacher-researcher: Well I am always happy, I am also always happy to ask for more.  
(Bryan and students laugh) 
Teacher-researcher: So, is there a mathy way to say ‘is larger than’? 
Gabe: Yeah. (Gabe finished refining the statement to Draft 5, see Figure 5.) 
  

 

 
 

“for any real number 𝑥  
there there exists a pos int 𝑚  
such that 𝑚 > 𝑥” 

Figure 5. Draft 5. 

In the previous segment, Bryan leveraged transformational records. First, Bryan continued to 
connect the students’ statements with a conventional version of the statement by suggesting that 
they use the phrases ‘there exists’ and ‘for any’ or ‘for all’. Then, Bryan suggested that they use 
symbols to encode ‘is larger than’. With these requests, Bryan suggested that such phrases are 
normative in mathematics discourse. These requests motivated the students to refine their draft to 
what’s in Figure 5. Bryan appeared to be satisfied with Draft 5 ending the refining activity.  

Conclusion 
In this report, I presented the cyclic pattern in which Bryan supported the students in refining 

their definitions, conjectures, and proofs. In the episode that I presented, Bryan cycled between 
inquiring into the students’ thinking about a draft of a conjecture and engaged in 
sociomathematical scaffolding. The episode that I offered exemplified that this is complex work. 
He drew on a variety of tools to support his scaffolding including creating problematic situations 
and using PCTs. I do not present this pattern as necessarily an idealistic way to support students 
to write and edit definitions, conjectures, and proofs. The appropriateness of this pattern is highly 
contextual and minimally depends on the students’ learning goals. Rather, I present the pattern to 
further contextualize the notion of sociomathematical scaffolding to promote critical discussions 
on the teaching of mathematical norms. I highlight serval points about Bryan’s 
sociomathematical scaffolding in what follows. 

There were instances in which Bryan was able to create problematic situations to support his 
sociomathematical scaffolding (during the first and second cycle). Sociomathematical 
scaffolding seemed particularly productive when paired with creating problematic situations in 
the sense that such moves emphasize reasoning for such refinements. During the first cycle, this 
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pairing revealed that Draft 1 was unclear what number was being reference and compared. 
During the second cycle, this pairing exposed that the version of the statement that specified 𝑥 to 
be an integer was true but did not function as a warrant in the students’ proof. Both of these 
instances focused on the need for a refinement that was connected to a mathematical norm. I 
suspect that sociomathematical scaffolding paired with problematic situations would promote 
student access in mathematics classrooms (the extent to which this instruction allows students to 
“play the game”, Gutiérrez, 2009, p. 6). Future work could further explore this conjecture.    

I also predict that the way in which sociomathematical scaffolding is enacted can promote or 
constrain the re-making of mathematical norms through negotiation with students and their 
contexts (the extent to which this instruction allows students to “change the game”, Gutiérrez, 
2009, p. 6). I conjecture that sociomathematical scaffolding paired with creating problematic 
situations would affirm students’ identity in the mathematics classroom because creating 
problematic situations focuses on the need for a refinement, not the actual refinement itself. 
Thus, students’ have the ability to negotiate how they want to (re-)make mathematical norms for 
their classroom. For instance, the second cycle highlighted the need for the statement to warrant 
a line in their proof. The students refined the draft so that it functioned as a warrant by stating 
that 𝑥 was a number, which later it was clarified that the students intended “number” to mean 
how others might mean “real number”. During the third cycle, Bryan choose to share the norm 
that mathematicians use “real number” when they reference the sort of numbers that the students 
were referring to. I argue that the appropriateness of this move depends on the students. If the 
students desired to abide by mathematical norms then this scaffolding seems appropriate. If the 
students did not have this desire, then it may be more advantageous to allow students to use 
“number” instead of “real number” to affirm students’ own linguistic capacities in the 
mathematical setting.  

I did not see evidence of the instructor engaging in social scaffolding as he supported 
students to refine their definitions, conjectures, proofs. This is likely because of the laboratory 
setting and the episodes that I analyzed were later in the sessions likely after social norms had 
been established. I did, however, find evidence of the teacher-research engaging in analytic 
scaffolding in other episodes that I analyzed. I suspect that the interplay between social, 
sociomathematical, and analytic scaffolding would be important in the whole class setting and 
future research could investigate the ways in which these interact.  

This paper takes some first steps to document how the apprenticeship into mathematical 
norms can be enacted as students engage in defining, conjecturing, and proving. I hope that 
future work can build on it to further explore contexts for which this apprenticeship is (and is 
not) advantageous, the ways to create meaningful experiences with disciplinary norms, and how 
instructors can balance supporting students to play and change the game of mathematics through 
classroom mathematical norms.  
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Significance and Context 
Visuospatial reasoning is malleable (Heckman, 2006; Sinclair et al., 2016; Uttal et al., 2013), 

could be developed before attending school (Sinclair et al., 2013), and is conducive to science, 
technology, engineering, and mathematics (STEM) careers (Chen & Mix, 2013; Gathercole & 
Pickering, 2000; Grissmer et al., 2013; Newcombe, 2010; Wai et al., 2009). Owens (2020) 
described visuospatial reasoning as involving space and place, recognizing shapes, combinations, 
and their properties, symmetry thinking, comparing quantities and using ratios, spatial 
capabilities, locating, intention, attention, and noticing. As part of an afterschool club led by 
researchers from a Midwestern research-intensive university in an urban elementary school, we 
invited 14 typically marginalized girls (TMGs) to draw maps from their homes to the school. 
Maps have been used to gain insight into spatial thinking (Cohrssen & Pearn, 2021). Using 
Owen’s (2020) work as a lens, we learned that girls’ maps went beyond spatial representation, 
showing links across time, perspectives, and relationships. We argue that inviting learners to 
draw their lived experiences invites the use of their cultural experiences, e.g., school-family 
experiences, that further develop their visuospatial reasoning. 

Analysis and Findings 
We sought to answer the question: What elements of Owens’ framework are present in 14 

TMGs’ maps? Building from the task of Cohrssen and Pearn (2021), we invited 14 TMGs from 
one urban elementary school to draw maps representing the route from their homes to school. 
We analyzed the maps using Owen’s (2020) framework. Preliminary findings illustrate how the 
girls experienced their journeys. Maps represented the time TMGs spent on their car rides to 
school, 2D and 3D perspectives from different physical locations or aerial views, characteristics 
of their communities including representations of various shops they saw on their way to the 
school, and features of roadways including bumps, curves, angles, and reduced speed.  

Conclusion 
The TMGs’ maps provided insight into the interplay of lived experience and the development 

of spatial reasoning. Using visuospatial reasoning as an interpretive lens for analyzing geometric 
tasks elevates the significance of lived experience in cognitive development (Owens, 2020). 
Girls showed advanced visuospatial reasoning aligned with existing research (Sinclair et al., 
2013). Findings from our study support the argument that visuospatial reasoning develops from 
lived experience, representations of experience, and communication about experiences that 
encourages abstractions. Further, using visuospatial development, rather than spatial reasoning 
alone supports learners in seeing themselves as doers and thinkers of STEM disciplines.  
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Like other curricula around the world (OECD, 2019), Québec curriculum (Gouvernement du 
Québec, 2002) prescribes the use of manipulatives as a way to foster mathematical reasoning in 
elementary classes. Yet, most research on manipulatives focuses on whether students are more 
successful in math when using them (e.g., Carbonneau et al, 2013). And, we still have very little 
information about the use itself and how different teachers' practices shape mathematical 
reasoning. This poster uses data from the project MathéRéaliser, which aims to address this issue 
by studying how students use manipulatives to solve different tasks in relation to teachers’ 
practices. More specifically, we will present the analysis of students' mathematical reasoning 
when solving a word problem involving fractions in relation to different pedagogical choices. To 
qualify the different pedagogical choices, we use Brousseau's (1981) definition of didactic 
variables, i.e., parameters, linked to the design and setting of a teaching situation, which can be 
varied by the teacher and lead to different mathematical activities. The concept of affordance, 
which is the relational properties of an object within a certain environment that are bound to 
certain actions (Gibson, 1979), helps link the students’ mathematical reasoning to those choices.  

Four elementary classes (two 3rd, one 5th, and one 6th) solved the following problem using 
different manipulatives: Your neighbor wants to make a garden and plant carrots, tomatoes, and 
lettuce. He wants to give half the area to carrots and give a larger area to tomatoes than lettuce. 
He wonders what fraction of the garden to reserve for each of the vegetables. Offer him two 
solutions. Figure 1 shows three examples of manipulatives. In each class, field notes and pictures 
were collected in addition to the videos of 7 dyads and of the whole class. 

 

FIGURE 1: Three different manipulatives used to solve the problem. 
The analysis allows noticing how students exploit different properties of manipulatives to 

solve, communicate and justify their answers in relation to the different pedagogical choices 
made. For example, we can see in figure 1 (left) that the dyad could not rely on color to 
distinguish the different parts of their gardens as only one color was available. They instead 
relied on the creation of two fences to partition their garden. Most dyads used manipulatives in 
very creative ways, different than what was intended by the designers of the manipulatives, to 
produce and communicate a valid solution, helping understand how different choices lead to 
different opportunities to reason mathematically. 
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This project seeks to understand the emergence of mathematical meanings mediated by learners’ 
interactions with multiple artifacts. Extending our prior work which took an enactivist approach 
and revealed the dynamics of embodied interactions fundamental to understanding fraction 
division, we now employ a semiotic lens to illuminate how learners make personal meanings 
from their engagement with multiple artifacts and translate them into more generalized 
mathematical meanings. We are doing so by taking a semiotic approach to tracking the emergent 
phenomenon of two learners’ meaning making as it arises from the complex interplay of signs. 
We rely on our findings to argue that semiotic theory can be used as a resource to complement 
and enhance an enactive analysis of the unfolding of sense making with multiple artifacts. 
Implications for the design of learning experiences with multiple artifacts are proposed.  

Keywords: Mathematical Representations, Cognition, Learning Theory, Rational Numbers 

Hiebert and Grouws (2007) synthesized evidence from a number of studies to argue that the 
conceptual learning of mathematics is associated with teachers’ and students’ “explicit attention 
to the development of mathematical connections among ideas, facts, and procedures” (p. 391). 
Indeed, the Principles and Standards laid out by the National Council of Teachers of 
Mathematics (NCTM, 2000) emphasize the value of representing mathematical ideas in a variety 
of ways, and that these representations are fundamental to how we understand and apply 
mathematics. Its more recent Principles to Actions (NCTM, 2014) identifies, “Use and connect 
mathematical representations” as one of only eight “high-leverage practices and essential 
teaching skills necessary to promote deep learning of mathematics” (p. 9). Much research has 
been done regarding the ways in which teachers can support students’ engagement with multiple 
representations. What is less well understood is the process by which multiple representations of 
a concept can be leveraged in order to contribute to learners’ meanings for concepts. The better 
we understand this process, the better prepared we are to engage and support all learners. 

Findings from an enactivist analysis of strategy development in mental mathematics contexts 
suggest that the nature of the processes at play cannot be understood in terms of solvers’ 
flexibility and choice of strategies (Proulx, 2013). Rather, these processes are dynamic, 
emergent, and contingent on “an ongoing loop” (p. 319) of interactions between the problem and 
the solver. Since meaning making results from problem solving, and since problem solving has 
been shown to be dynamic, emergent, and contingent (Proulx, 2013), it would seem that meaning 
making might be, as well. Furthermore, research has also shown that mathematical meaning 
making is inextricably linked to the material and symbolic tools that mediate its learning 
(Verillon & Rabardel, 1995). Following these lines of thought, in our prior work (Greenstein et 
al., 2021) we sought to determine what an enactivist analysis could reveal about the nature of 
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processes at play involved in mathematical meaning making in the context of multiple artifacts. 
We did so through the analysis of the mathematical activity of a father and daughter as they 
aimed to make sense of an algorithm for fraction division using a manipulative designed for 
learners’ engagement with fraction concepts. What that work revealed was the potential power of 
manipulatives to provoke particular forms of embodied experience (Abrahamson & Sánchez-
García, 2016; Nathan 2021) fundamental to the conceptual learning of mathematics. It also 
revealed that although students’ use of multiple representations is increasingly prevalent in their 
learning of mathematics, the process by which learners connect these representations is actually 
quite complex (Greenstein, 2013). That process can be supported by teachers’ and students’ 
commitments to the integrity of a model of knowing as making sense, and to the availability of 
artifacts such as manipulatives that provide learners with immediate feedback they can use to 
self-assess the viability of their reasoning.  

This work seeks to complement the findings of the benefits of these embodied experiences by 
further illuminating how learners make personal meanings from their interaction with multiple 
representations of a concept and translate those meanings into more generalized mathematical 
meanings. We do so by employing a semiotic lens to track the evolution of these emergent 
meanings as we address the question, “What can a semiotic lens contribute to an enactivist 
perspective on fraction division meaning making with multiple artifacts?”  

Theoretical Framework 
Two perspectives ground this study, the enactivist theory of cognition (Maturana & Varela, 

1987; Varela, et al, 1992) and the theory of semiotic mediation (Bartolini Bussi & Mariotti, 
2008). We first use enactivism to understand the evolutionary dynamics of two learners’ 
embodied interactions as they aim to make sense3 of fraction division using a manipulative 
designed for the exploration of fraction concepts. Then, we take a semiotic approach to analyzing 
these interactions in order to elucidate how the personal meanings that emerge from their 
engagement with each artifact are coordinated and ultimately converge upon a mathematical 
meaning of fraction division.  

Two principles underlie the enactive approach: “1) Perception consists in perceptually guided 
action, and 2) cognitive structures emerge from the recurrent sensorimotor patterns that enable 
action to be perceptually guided” (Varela et al., 1992, pp. 172-173). Thus, from this perspective, 
knowing is not “outward manifestations of some inner workings” (Davis, 1995, p. 4) but a 
dynamically co-emergent phenomenon that arises and is made visible within a world of 
significance brought forth (Maturana & Varela, 1987) through one’s goal-directed, “embodied 
(enacted) understandings” (Davis, 1995, p. 4). 

By viewing knowing in the interactivity of learners (Davis, 1995), the enactivist perspective 
offers an alternative to the conventional view of knowledge as a static accumulation of facts, 
strategies, and ideas. Cognition, or active knowing, is “not something that happens ‘inside’ 
brains, bodies, or things; rather, it emerges” in the interactions between them (Malafouris, 2013, 
p. 66). In Davis’s (1995) adaptation of Maturana and Varela’s (1987) words, “Knowing is doing 
is being” (p. 7). We can consider one’s way of knowing/doing/being as driven by the 
evolutionary imperative for an organism to maintain a functional, or harmonious, relationship 

 
3 We tend to use “sense making” in the context of our enactivist analysis, since cognition is defined in relation 

to our senses. We tend to use “meaning making” elsewhere in its conventional sense. However, we will also 
intentionally use them interchangeably to endorse the enactivist view that the terms are synonymous. 
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with its environment. “In other words, to know is to respond adequately; it is a doing that fits into 
the context where it emerges as the organism (e.g., a student, a researcher) interacts effectively 
with their environment” (Maheux & Proulx, 2015, p. 212). This drive toward a “good enough” 
solution rather than an optimal one is theoretically linked to the concepts of structural coupling 
and structural determinism. 

Structural coupling is associated with the Darwinian concept of co-evolution, whereby an 
organism and its environment experience mutual structural changes through recursive and 
repeated interactions (Maturana & Varela, 1987) that allow their co-evolution to continue. Thus, 
their fit is dynamic and contingent upon their unique histories of recurrent interactions and 
structural changes (Maturana, 1988, as cited in Reid & Mgombelo, 2015, p. 175). So, as the 
environment provides a source of “triggers” that occasion the evolution of the organism, that 
evolution is determined by the organism’s structure, a phenomenon that Maturana and Varela 
(1987) conceive of as structural determinism.  

As mentioned earlier, in our prior work we took this enactivist perspective on mathematical 
activity as knowing-in-action to investigate the in-the-moment problem solving of a father and 
daughter as they seek to understand fraction division. From this perspective, their understanding 
is made evident as they seek to find harmony in mathematical meanings across initially 
conflicting interpretations of the various elements of two artifacts: 1) the paper-based, “flip-and-
multiply” algorithm for fraction division, and 2) a manipulative that the daughter designed for 
engagement with fraction concepts. As Maffia and Maracci (2019) have found, this use of 
multiple artifacts within problem solving contexts can elicit the production, transformation, and 
coordination of personal meanings (that resolve dissonances into harmonies) toward more 
culturally established mathematical signs.  

In order to understand how meanings emerge from contexts in which multiple artifacts 
mediate one’s meaning making, we leverage Maffia and Maracci’s (2019) concept of semiotic 
interference, which relies on Presmeg’s (2006) use of Peirce’s (1998) triad of sign relations. As 
depicted in Figure 1 (left), Peirce’s sign is a triadic relationship among a representamen (the 
perceivable part of a sign; the perceiver’s personal representation4), an object (what the sign 
stands for), and an interpretant, which “is the result of trying to make sense of the relationship… 
[between] the object and the representamen” (Presmeg, 2006, p. 170, emphasis added).  
 

 
 

4  This conception of “representation” is distinct from its typical use in mathematics education (e.g., tables, 
graphs, expressions, manipulatives; NTCM, 2000, 2014). Thus, in the context of our semiotic analysis, we will use 
“representation” in the Peircean sense (1998) and “artifact” in the sense that it is typically used in our field. 
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Figure 1: The triadic relationship of a sign (adapted from Peirce, 1998, and Presmeg, 
2006); the example of a sign for “two-thirds”; and an example using a piece of the Fraction 

Orange, presented in Figure 3 below.  
Now, semiotic interference describes the phenomenon that arises whenever “the interpretant 

of a sign whose object belongs to the context of [one] artifact is translated by a student in a new 
sign whose object belongs to the context of another artifact” (Maffia & Maracci, 2019, p. 3-58; 
see Figure 2, right). Thus, semiotic interference provides a window into learners’ chaining of 
signs (Presmeg, 2006; Bartolini Bussi & Mariotti, 2008) as they negotiate their interpretations in 
order to converge upon a meaning for fraction division. Presmeg (2006) envisions a semiotic 
chain as a nested relationship of signs (see Figure 2, left) such that once a sign is established 
(e.g., S1), it can then be regarded as the object of a new sign. This new sign (e.g., S2) “comprises 
everything in the entire chain to that point” (p. 169). The ongoing process of enchaining signs 
(see Figure 2, center) is meant to depict the emergent phenomenon of meaning making that arises 
from this “complex interplay of signs” (Maffia & Maracci, 2019, p. 3-57). 
 

 
Figure 2: Left: Depiction of Presmeg’s nested model of semiotic chaining (2006, p. 171); 

Center: Semiotic interference in a semiotic chain (Maffia & Maracci, 2019, p. 3–59);  
Right: Depiction of semiotic chaining across contexts. 

Methods 
This project is part of a larger study (Greenstein & Seventko, 2017; Greenstein & Olmanson, 

2018; Greenstein et al., 2019; Greenstein et al., 2020; Greenstein et al., 2021; Akuom & 
Greenstein, 2022) that tested the hypothesis that a pedagogically genuine Making experience 
(Halverson & Sheridan, 2014) of a physical manipulative for mathematics learning would be 
formative for the development of practicing and prospective mathematics teachers’ (PMTs’) 
inquiry-oriented pedagogy. The study took place in a specialized mathematics course for PMTs 
at a university in the northeastern United States. For the project reported here, we took a 
revelatory case study approach (Yin, 2014) in order to determine what an enactivist-semiotic 
perspective might reveal about the problem-solving activity of “Dolly” and her father, “Lyle” 
(both pseudonyms).  

Dolly was a participant in the larger study. She calls the manipulative she designed a 
“Fraction Orange” (Figure 3) and in designing it, she aimed to create a tool embedded with 
mathematical meanings that afford the mediated learning of fraction concepts (e.g., part-whole 
meaning of fractions, measurement meaning of division). The orange is a sphere partitioned into 
two hemispheres. One hemisphere is further partitioned into fourths, eighths, and sixteenths of 
the whole, and the other is further partitioned into thirds, sixths, and twelfths. Dolly designed the 
fraction orange to support a student’s learning of fraction division. However, she and the 
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instructor (first author on this paper) agreed that an adult would be fine, too. Many adults have 
not yet had the privilege or experienced the joy of making sense of fraction division. 

Dolly’s manipulative and the thirteen-minute problem-solving interview she conducted with 
Lyle constitute the data for this case study. Three researchers, including Dolly, analyzed the data 
both individually and in collaborative dialogue. We undertook the analysis by analyzing “verbal 
utterances through line-by-line analysis of the transcripts; stud[ying] body language and 
intonation by viewing video tapes...; and inferr[ing] mathematical forms and objects from the 
participants’ actions, utterances and notations” (Simmt, 2000, p. 154), which constitute Dolly 
and Lyle’s knowings-in-action as they aimed to coordinate meanings for fraction division in the 
manipulative and in an algorithm that ostensibly substantiates those meanings.  

 

 
Figure 3: Dolly’s Fraction Orange 

Findings 
Here we present excerpts from our semiotic analysis of the data, which we undertook in order 

to assess its viability for complementing an enactive analysis that revealed the interactions that 
were fundamental to two learners’ conceptual learning of fraction division. The intent of this 
complementary analysis is to understand and depict how their mathematical meanings were 
achieved through those interactions. 
The Initial Emergence of Personal Mathematical Meanings 

At the outset of the interview, Dolly asks Lyle to solve the problem, ½ ÷ ¼, which she 
presents to him on paper alongside her fraction orange (Figure 4a). Although both the orange and 
the pen and paper are made available to him, Lyle chooses the pen, performs the standard, flip-
and-multiply algorithm, and declares his answer to be 2, having simplified the 4/2 to 2/1. With 
enactivist principles framing our interpretations, we suggest that these are structurally-
determined actions informed by Lyle’s history of structural coupling with traditional school 
mathematics, where the answer derived from solving a fraction-division task by flipping and 
multiplying was deemed good enough to “survive.” It constituted what Lyle needed to do to 
achieve harmony within the milieu of mathematics classroom environments. 
 

 
Figure 4: a) The Algorithm, b) the Half-Piece, and c) the Fourth-Pieces 
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Next, because Dolly is conducting the interview in order to assess the efficacy of her 
manipulative, she points to her fraction orange and asks Lyle, “Can you show me with this?” It 
is at this moment where we observe (a) the launching point on an emergent path of non-linear 
and unfolding (Proulx, 2019) problem-solving interactions bounded by alternating moments of 
what we refer to as harmony (a pleasing fit) and dissonance (a displeasing conflict or lack of fit), 
and (b) the emergence and evolution of personal meanings toward established mathematical 
meanings as the learners strive to harmonize their interpretations across the two artifacts: pieces 
of the orange and symbolic forms on paper. Mindful of the view of cognition as effective action 
from an enactivist perspective, we deliberately chose “harmony” and “dissonance” to reflect the 
cognitive and affective constitution of moments of fit or lack thereof, respectively. In the excerpt 
below we observe Lyle’s enacted responses to the task Dolly posed to him.  

 

Lyle: A half divided by a quarter… <removes what he considers to be a half-piece> a half 
divided by a quarter <he counts the 4 fourth-pieces inside the 2 sections of the half-piece 
(see Figures 4b and 4c)> is four. 

Dolly: <pointing to Lyle’s written work> But that’s not what you got. 
Lyle: Uh oh. <Lyle pulls out the 4 fourth-pieces and looks back-and-forth between the paper 

and the orange as a timbre of concern grows in his voice:>. Uh oh. A half, <Lyle points 
to the now-empty half-piece.> divided by a quarter. Why doesn’t that work? 

 

We see this as a moment of dissonance in meanings originating from Lyle’s contrasting 
interpretations of his representations of the orange (i.e., manipulatable pieces inside pieces) and 
the algorithm (i.e., manipulatable symbols in expressions; Landy & Goldstone, 2007). Although 
he declares that the answer “is four,” the somatic marker of his facial expression conveys the 
dissonance he was experiencing. When pressed for an explanation – “But that’s not what you 
got” – a verbal marker of that dissonance is expressed: “Uh oh…Why doesn’t that work?” 
Apparently, Lyle’s knowing of fraction division as he actively perceives it (i.e., his engagement 
is both active and perceptually guided; Harvey, 2017) in the algorithm is discordant with his 
knowing of fraction division as he actively perceives it in the fraction orange.  
The Messiness of Multiple Representations 

In this next exchange, Dolly is surprised to find that she’s not sure of her meanings, either. 
Thus, we observe both father and daughter striving for harmony in meanings as they attempt to 
make sense of the fraction division expression, ½ ÷ ¼.  

 

Dolly: Here’s our half. <She takes the half-piece, places it next to the algorithm carried out 
on paper, and asks Lyle:> And how many quarters go into a half? 

Lyle: <Looking at the orange> Two. <Shifting his attention to the written work and restating 
that outcome:> Four. <Shifting his attention back to the orange, and then back again to 
the paper:> Is that half of a quarter, though? It’s half <pointing to the ½ in the 
expression, ½ ÷ ¼> of a quarter. <now pointing to the ¼ on the paper> It’s not half of a 
whole thing.  

Dolly: <Sensing that Lyle is still deliberating:> It’s a quarter of a half, right? 
Lyle: <Lyle refers to the orange, then to the paper, and then back to the orange. With 

uncertainty:> Yeah?  
Dolly: How many quarters of a half are there? <laughs and smiles> Why is this so hard? 
 

Here, Dolly begins by enacting her interpretation of the object “one half” as a half-piece of 
the orange (her representamen) and physically placing the piece on the paper, as if to propose a 
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common meaning between them. Thus, her interpretation of the posed problem, ½ ÷ ¼, as “How 
many quarters go into a half?” is both meaningful and en-actionable to her. Lyle, referencing the 
orange and evoking his own interpretations of the objects “one fourth” and “one half,” 
determines that two quarter-pieces fit into one half-piece (his representamen) and declares the 
answer to be “2.” Immediately thereafter, however, he shifts his attention to the algorithm on the 
page and changes his answer to “4,” presumably trying to match the “4” in the “4/2” that is the 
outcome of the algorithm and that at one point he calls “4 halves.” In doing so, he seems to 
privilege the algorithm over the embodied actions that are reflective of interpretations he 
attributed to representamens in the orange. Next, he checks his answer of “4” against his 
interpretation of the division expression: “Is that half of a quarter, though?” Then, Dolly steps 
in to suggest a different interpretation of the expression: “It’s a quarter of a half, right?” Lyle’s 
unsure: “Yeah?” To which Dolly responds with yet another interpretation presumably informed 
by Lyle’s: “How many quarters of a half are there?”  

Lyle’s actions at this moment are directed at finding harmony in meanings across multiple 
interpretations of multiple elements in the fraction division expression and the two different 
values he derives from it. The dissonance Dolly’s feeling is expressed through her utterance, 
“Why is this so hard?” Her dad is feeling it, too. Their collective words and actions express the 
messiness of their engagement with incompatible interpretations of multiple representations and 
what it feels like as they strive to make a generalizable mathematical meaning for fraction 
division through what amounts to a complex interplay of signs. 

By this point we’ve seen the value of using a semiotic lens to track the complex interplay of 
Dolly and Lyle’s multiple interpretations and the evolution of emergent meanings. We share this 
next excerpt in order to demonstrate the utility of a semiotic depiction of the enchaining of signs. 
Here, Dolly and Lyle find harmony in their meanings for fraction division by resolving some of 
the many dissonances that were swirling around this last excerpt. 
Traversing the Semiotic Landscape: The Enchaining of Signs 

This excerpt took place in the final moments of Dolly and Lyle’s problem solving. Just prior 
to this moment, they enchained their signs for – and thus made sense of – ½ and ¼ by translating 
their interpretations of representamens in the orange to elements of the algorithm. Now, they are 
engaged in similar meaning-making activity as they aim to find interpretations for the ½ and ¼ in 
the posed problem, ½ ÷ ¼.  

 

Dolly: We wanna take a half of one and divide it by a quarter of one, right? 
Lyle: Yes. 
Dolly: Take a half of one and divide – oh, that’s what it is! … We wanna take this <half-

piece of the orange> and see how many of those <quarter-pieces> fit in there <the half-
piece. Then, confidently:>And that’s why our answer is 2. 

Lyle: Yes. 
Dolly: There’s still two halves in a whole, ‘cuz this <the expression, ½ ÷ ¼> is in regards to 

a whole. <rephrasing> This is in regards to 1. So a half of 1 divided by a quarter of 1 is 
2, because 2 quarters fit into 1 half.  

Lyle: Yeah. It makes sense that way. 
 

In this excerpt, we observe the meaning Dolly makes of the expression, ½ ÷ ¼, by 
enchaining interpretations of ½ and ¼ according to the measurement meaning of division she and 
Lyle enacted earlier. Next, Lyle proceeds to re-enact the interpretation for himself. 
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Lyle: <pointing with his pencil to ½ on the page:> So this is half of a whole <then pointing 
to the ¼ on the page.> and this is a quarter of a whole. <Next, he turns his attention to 
the orange (as in Figure 4b) and points to the half-piece:> Half of a whole. <Next, he 
points to each quarter-piece in a sweeping motion across the pieces:> Quarter of a whole 
<Then, pointing to the two quarter-pieces, he continues:> is 2. <Thus, he appears to be 
establishing that the number of quarter-pieces he’s identified, 2, is the answer to the 
posed problem, ½ ÷ ¼>. 

Dolly: <pointing to the 2 quarter-pieces and agreeing with Lyle> Yeah, ‘cause there’s two 
quarters of a whole. 

Lyle:  <with a sigh of relief> Yeah, that makes sense. 
 

As if to establish his own meanings for fraction division and its coherence in representations 
across artifacts as Dolly has just done, Lyle uses the pencil to re-enact a physical bridge between 
the elements of the problem and the pieces of the orange. We interpret his subsequent actions as 
an effort to match his interpretations of half of a whole and quarter of a whole in the symbolic 
expression to representamens he’s identified in the orange (the half-piece and the quarter-piece, 
respectively; see Figure 5, left). These actions reify the harmony that has finally emerged from 
recursive interactions that culminate in an enchaining of signs signifying the sense he and Dolly 
have made to form a newly coupled structure of fraction division (see Figure 5, right). 
 

 
Figure 5: Enchained and unchained signs for one half and one fourth (Left), and for the 

number of fourths in one half (Right) 

Concluding Discussion  
A taken-as-shared principle of mathematics education is that the learning of mathematics 

entails using and connecting multiple representations of mathematical ideas (e.g., Hiebert & 
Grouws, 2007). This work presented here reminds us that learners’ paths of problem solving are 
contingent on their particular mathematical structures and interactions (Proulx, 2013), and thus 
the process by which learners connect these representations is actually quite complex 
(Greenstein, 2013; Lesh et al., 1987; Maracci & Mariotti, 2019). In order to make sense of this 
complexity and thereby offer implications for the designs of tools and tasks that have the 
potential to support the evolution of all learners’ mathematical meanings, this work set out to 
discern the contributions of a semiotic lens to an enactivist analysis of fraction division meaning 
making with multiple artifacts. That enactivist analysis revealed the mediated interactions with 
multiple artifacts that were productive for developing mathematical meanings for fraction 
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division. The findings presented here in the depictions of Dolly and Lyle’s chaining of signs 
through semiotic interference revealed just how their mathematical meanings were achieved 
through the interactions revealed by the enactivist analysis. In other words – and this is the 
contribution we propose to have made – the semiotic analysis was successful for explicating the 
interpretive constitution of two learners’ enacted meanings. Thus, we take these findings to argue 
that semiotic theory can be used as a resource to complement and enhance an enactive analysis 
of the unfolding of meaning making with multiple artifacts.  
 

Acknowledgments  
This material is based upon work supported by the National Science Foundation under Award 
No. 1812887 

References 
Akuom, D. O., & Greenstein, S. (2022). The Nature of Prospective Mathematics Teachers’ Designed Manipulatives 

and their Potential as Anchors for Conceptual and Pedagogical Knowledge. Journal of Research in Science, 
Mathematics and Technology Education, 5, 109-125. 

Abrahamson, D., & Sánchez-García, R. (2016). Learning Is Moving in New Ways: The Ecological Dynamics of 
Mathematics Education. Journal of the Learning Sciences, 25(2), 203-239.  

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and 
signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), 
Handbook of International Research in Mathematics Education (2nd ed., pp. 746–805). Lawrence Erlbaum. 

Davis, B. (1995). Why Teach Mathematics? Mathematics Education and Enactivist Theory. For the Learning of 
Mathematics, 15(2), 2–9.  

Greenstein, S. (2013) Connecting Rate Using Dynamic Representational Technologies. The New Jersey 
Mathematics Teacher, 71(2), 13-20. 

Greenstein, S., & Seventko, J. (2017). Mathematical Making in Teacher Preparation: What Knowledge is Brought to 
Bear? In E. Galindo & J. Newton (Eds.), Proceedings of the 39th Annual Conference of the North American 
Chapter of the International Group for the Psychology of Mathematics Education (pp. 821–828). Hoosier 
Association of Mathematics Teacher Educators. 

Greenstein, S., & Olmanson, J. (2018). Reconceptualizing pedagogical and curricular knowledge development 
through making. Emerging Learning Design Journal, 4(1), 1–6 

Greenstein, S., Fernández, E., & Davidson, J. (2019). Revealing Teacher Knowledge Through Making: A Case 
Study of Two Prospective Mathematics Teachers. Proceedings of the 41st Annual Conference of the North 
American Chapter of the International Group for the Psychology of Mathematics Education. 

Greenstein, S., Jeannotte, D., Fernández, E., Davidson, J., Pomponio, E., & Akuom, D. (2020). Exploring the 
Interwoven Discourses Associated with Learning to Teach Mathematics in a Making Context. In A. I. Sacristán, 
J. C. Cortés-Zavala, & P. M. Ruiz-Arias (Eds.), Mathematics Education Across Cultures: Proceedings of the 
42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics 
Education (pp. 810–816). Cinvestav/AMIUTEM/PME-NA 

Greenstein, S., Pomponio, E., & Akuom, D. (2021). Harmony and Dissonance: An Enactivist Analysis of the 
Struggle for Sense Making in Problem Solving. Proceedings of the 43rd Meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. 

Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review, 84(4), 
495-504. 

Harvey M. I. (2017) “posing | solving” can be explained without representations, because it is a form of perception-
action. Constructivist Foundations 13(1), 169–171. http://constructivist.info/13/1/169 

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. 
Lester, Jr. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 371-404). 
Information Age Publishing.  

Maheux, J.-F., & Proulx, J. (2015). Doing|mathematics: analysing data with/in an enactivist-inspired approach. 
ZDM, 47(2), 211-221.  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 227 

Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 33, 720-733. https://doi.org/10.1037/0278-7393.33.4.720  

Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics 
learning and problem solving. In C. Janvier (Ed.), Problems of representations in the teaching and learning of 
mathematics (pp. 33-40). Lawrence Erlbaum. 

Malafouris, L. (2013). How things shape the mind. MIT Press. 
Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human understanding: New 

Science Library/Shambhala Publications. 
Nathan, M. J. (2021). Foundations of embodied learning: A paradigm for education. Routledge. 

https://doi.org/https://doi.org/10.4324/9780429329098  
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: 

Author. 
National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. 

Reston, VA: Author. 
Peirce, C. S. (1998). The Essential Peirce, Volume 2: Selected Philosophical Writings, 1893-1913 (Peirce Edition 

Project, Ed.). Indiana University Press.  
Presmeg, N. (2006). Semiotics and the “Connections” standard: Significance of semiotics for teachers of 

mathematics. Educational Studies in Mathematics, 61(1), 163-182. 
Proulx, J. (2013). Mental mathematics, emergence of strategies, and the enactivist theory of cognition. Educational 

Studies in Mathematics, 84(3), 309-328.  
Proulx, J. (2019). Mental mathematics under the lens: Strategies, oral mathematics, enactments of meanings. The 

Journal of Mathematical Behavior, 56, 1-16. 
Reid, D. A., & Mgombelo, J. (2015). Survey of key concepts in enactivist theory and methodology. ZDM, 47(2), 

171-183. 
Simmt, E. (2000). Mathematics Knowing in Action: A Fully Embodied Interpretation. Proceedings of the Annual 

Meeting of the Canadian Mathematics Education Study Group (pp. 153-159), University of Quebec at 
Montreal, Canada. 

Varela, F. J. (1987) Laying down a path in walking. In W. I. Thompson (Ed.) Gaia: A Way of Knowing (pp. 48-64). 
Lindisfarne Press. 

Varela, F. J., Rosch, E., & Thompson, E. (1992). The Embodied Mind: Cognitive Science and Human Experience: 
MIT Press. 

Verillon, P., & Rabardel, P. (1995). Cognition and Artifacts: A Contribution to the Study of Though in Relation to 
Instrumented Activity. European Journal of Psychology of Education, 10(1), 77-101. 

Yin, R. K. (2014). Case study research: Design and methods (5 ed.). Sage Publications.  
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 228 

CURRICULUM,	ASSESSMENT,	
AND	RELATED	TOPICS	

	 	



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 229 

A MODIFIED DEPTH OF KNOWLEDGE FRAMEWORK FOR WORD PROBLEMS  

 
Jonathan D. Bostic 

Bowling Green State Univ. 
Bosticj@bgsu.edu  

Timothy Folger 
Bowling Green State Univ. 

 tdfolge@bgsu.edu  

Kristin Koskey 
Drexel Univ. 

kk3436@drexel.edu 

Gabriel Matney 
Bowling Green State Univ. 

gmatney@bgsu.edu  

Toni May 
Drexel Univ. 

Tas365@drexel.edu  

Gregory Stone 
MetriKs Amérique 

gregory@metriks.com  

   
Depth-of-knowledge (DOK) is a means to communicate the cognitive demand of tasks and is 
often used to categorize assessment items. Webb’s (2002) framework has been applied across 
content areas. The aim of this two-phase iterative study was to modify Webb’s DOK framework 
for word problems. Through work with school partners, this iterative design-research based 
study provides supportive evidence for a modified DOK framework reflecting levels of 
complexity in word problems. The resulting modified DOK framework presents an opportunity 
for mathematics educators to reflect on various aspects of cognitive complexity.  

Keywords: assessment, problem solving  

Alignment between student learning standards and assessments can be evaluated based on 
content and cognitive complexity (AERA et al., 2014; Webb, 2007). Webb (1997; 2002) has 
argued for models that categorize assessment items by the cognitive demand, or depth-of-
knowledge (DOK), required to successfully complete the item. Webb (2002) classified DOK into 
the four levels: (1) Recall, (2) Skills and concepts, (3) Strategic thinking, and (4) Extended 
thinking (see table 1). Kilpatrick and colleagues (2001) define a mathematical exercise as a task 
that promotes efficiency with a known procedure, which aligns with level one DOK. This study 
examined the DOK required to solve mathematical problems (i.e., not exercises). For instance, 
word problems may require translating from text to a mental model, and later to a mathematical 
model prior to applying a mathematical strategy (Verschaffel et al., 2000). A multi-step process 
such as this is likely to extend beyond rote procedure; suggesting such word problems are 
unlikely to be classified as a level one DOK.  

Table 1: Webb’s DOK (2002) and Associated Descriptions 
Level Description 

Level 1:  
Recall 

“The recall of information such as a fact, definition, term, or simple procedure, as well as 
performing a simple algorithm or applying a formula” (Webb, 2002, p. 3). 

Level 2:  
Skills and 
Concepts 

“The engagement of some mental processing beyond a habitual response. A Level 2 assessment 
item requires students to make some decisions as to how to approach the problem or 
activity… These actions imply more than one step” (Webb, 2002, p. 4). 

Level 3: 
Strategic 
Thinking 

“Requires reasoning, planning, using evidence, and a higher level of thinking than the previous 
two levels. In most instances, requiring students to explain their thinking is a Level 3… [Level 
3 items may require] developing a logical argument for concepts; explaining phenomena in 
terms of concepts, and using concepts to solve problems” (Webb, 2002, p. 4). 

Level 4:  
Extended 
Thinking 

“Requires complex reasoning, planning, developing, and thinking most likely over an extended 
period of time… At Level 4, the cognitive demands of the task should be high and the work 
should be very complex. Students should be required to make several connections - relate 
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ideas within the content area or among content areas - and have to select one approach among 
many alternatives on how the situation should be solved” (Webb, 2002, pp. 4-5). 

Problem statement 
A team of researchers developed Problem-Solving Measures for grades 3-8 (PSM 3-8) that 

align with the Common Core State Standards for Mathematics (CCSSM; e.g., Bostic & 
Sondergeld, 2015, Bostic et al., 2020). Each word problem was developed using two synergistic 
frameworks for problems: Schoenfeld (2011) and Verschaffel et al. (1999). These frameworks 
suggest that tasks are problems if (a) a task is complex enough such that a strategy is not readily 
apparent, (b) it is unknown whether the task has a solution, and (c) it can be solved using 
multiple strategies. These elements were drawn upon to design mathematics word problems 
aligned to the CCSSM, which ultimately became the sample space for the study. Two sample 
items are shared in Figure 1. It was hypothesized that items categorized as problems might be 
classified at a DOK higher than level one DOK. The word problems transcended level one DOK 
and led to a question: How might DOK better capture unique aspects of lower complexity 
compared to higher-complexity grades 3-8 DOK word problems? An intended outcome from this 
work is to develop a modified DOK framework that has potential to inform researchers and 
practitioners about DOK within the context of mathematics word problems and extend prior 
scholarship on DOK. A second outcome was to obtain sufficient rater agreement using that 
modified DOK framework. Two phases framed this study. Phase I entailed developing a 
modified DOK framework such that DOK level descriptors reflected variation in the cognitive 
complexity of mathematics word problems. Phase II examined rater reliability applying the 
modified DOK framework to the grades 3-8 PSMs.  

 
PSM7 (7.NS.2):  Rosalinda plans to make marshmallow treats to share with her class. The 

recipe requires    2 !
E
  cups of marshmallows, 3 !

#
	cups of rice cereal, and !

#
 cup of butter. It serves 

eight people. How many cups of rice cereal will she need if she must make treats for 28 people? 
PSM4 (4.OA.3): Josephine sold tickets to the fair. She collected a total of $1,302 from the 

tickets she sold. $630 came from the adult ticket sales. Each adult ticket costs $18. Each child 
ticket costs $14. How many child tickets did she sell?  

Figure 1: Sample items from PSM4 and PSM7 

Phase I 
Development of a modified DOK framework was an iterative process with numerous 

feedback loops, drawing upon a design-based research approach (Middleton et al., 2008). To 
develop the framework, a team of five panelists were selected based on content expertise and 
prior experience developing PSM items. The panel consisted of two mathematics education 
faculty, one doctoral student, and two masters-level students. One of the two faculty member 
served as an external other throughout the process.  

All participants read and reflected on material’s related to Webb’s DOK (2002). The group 
conducted a literature search, moved possible reading materials into a shared folder, scanned 
materials for content overlap and uniqueness, then reflected on materials that were essential and 
those that were recommended for becoming familiar with DOK. The result was three materials 
recommended for further review (i.e., Hess, 2006; Petit & Hess, 2006; Webb, 2002). The team 
read, discussed, and reflected on each reading to better understand Webb’s (2002) framework 
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(see table 1). Once the team reached consensus in operationalizing the modified DOK language 
and classifying a subset of grade seven PSM items, then they applied it to a larger set of 15 grade 
6 PSM items in pairs. One faculty member and one masters student formed a group while the 
doctoral student and a second masters student formed a second group. Memos were made during 
this application about limitations in using Webb’s DOK framework, word problems where it was 
easier to classify than others, and potential modifications to Webb’s DOK framework. 
Discussions between two team members were documented. A goal from those discussions was 
for each team to have agreement on a DOK score for each item. Those scores were then 
compared between the two pairs of team members. Disagreements were resolved through 
discussions and each item received a single score. Results from DOK coding were shared with 
the external expert as a way to check the credibility of the process as rigorous, well documented, 
and logically applying modifications to Webb’s DOK framework.  

Next in the process, the team sought areas to revise the emergent DOK framework with the 
intention of improving the DOK classification process for word problems. Consensus was 
reached that some word problems had less complexity (suggesting a lower DOK score), while 
other word problems required students to draw upon multiple developmentally appropriate, 
content-focused strategies to solve the task (suggesting a higher DOK level). The team began the 
process of creating a modified DOK framework by revising Webb’s DOK (2002) framework. 
Discussions of memos from earlier in the process generated big ideas, which informed DOK 
modifications. The team developed a draft revised DOK framework for word problems. The four 
team members sought feedback from the external other, which was integrated into the revision. 
The team tested the draft revised DOK framework with four randomly selected items from a pool 
of grades 6-8 items. Each team member worked individually and memoed about their rationale 
for each rating. Then, they met with their team partner for agreement and discussion of memos, 
followed by a whole-group meeting. Revisions were made to the draft modified DOK framework 
based upon emergent patterns from memos. The team shared DOK scores, memos, and patterns 
with the external other as part of the process. After further rounds of revisions in this fashion, the 
team developed a revised DOK framework specifically for mathematics word problems, which 
was again shared with the external other. The team applied this revised DOK framework to a set 
of 10 randomly sampled grades 3-8 word problems that were new. The degree of inter-rater 
reliability agreement (𝜅) was interpreted using Cohen’s guidelines (1960): x< 0.20 (none to 
slight), 0.21-0.40 (fair), 0.41-0.60 (moderate), 0.61-0.80 (substantial), and x> 0.81 (almost 
perfect). There was agreement across nine items and disagreement with one item generating 
Cohen’s 𝜅 = .9. On that one item, pairs of coders had agreement, but the codes differed by one 
adjacent unit. Discussion ensued and the team ultimately reached agreement. Thus, there was 
almost perfect agreement during the final iteration across four team members. At this time, the 
team developed training materials that for future coders and/or re-calibration. Developed 
materials included a manual, sample items with explanations of coding, as well as a set of items 
to be used for calibration coding. The modified DOK framework is shared in Table 2.  

 
Table 2: Modified DOK Framework for Word Problems 

Level Description 
Level 1:  Recall & 

Reproduction 
Respondents are expected to recall or reproduce knowledge and/or skills while problem 

solving. This typically involves working with facts, terms, details, calculations, and/or 
simple procedures or formulas. A solution to a level 1 item does not need to be “figured 
out” or “solved”. 
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Level 2:  Skills  & 
Foundational 
Concepts 

A student is expected to decontextualize from a situational context when solving items. A 
level 2 DOK item requires students to process information regarding the concept being 
measured. 

Levels 3: Strategic 
Thinking & 
Reasoning 

A level 3 DOK item requires mathematical reasoning and higher order thinking processes. 
Students are expected to combine multiple skills or heuristics and conceptual 
understanding to reach a solution. There may be multiple viable solutions. 

Phase II 
The modified DOK framework for mathematics word problems was then used by three raters 

(mathematics education graduate students) not familiar with the development process. The 
training manual and selected readings (e.g., Hess, 2006; Webb, 2002) were shared with them in 
advance of their training session. A 90-minute training with the faculty member from phase one 
included discussing readings and sample PSM items. Following coder training and calibration, 
the raters were asked to work collaboratively on three items and come to consensus using the 
revised DOK framework. One week later, the faculty member and three raters debriefed about 
how they reached decisions with the framework, nuances related to each word problem, and 
concerns they had while applying codes. Following this debriefing, the raters engaged in 
independent coding. The raters were asked not to disclose ideas with each other related to their 
independent codes. They received six-word problems and a copy of the revised DOK framework. 
All three raters agreed on four items, yet there was a discrepancy on two items by one adjacent 
level (i.e., DOK 2 vs DOK 3). This indicated substantial agreement using Cohen’s (1960) 
guidelines (Cohen’s 𝜅 = .71); however, the team wanted to have a stronger understanding of the 
revised DOK framework. The raters convened with the faculty member to discuss coding results 
and their memos from applying the modified framework. Emerging from their use of the 
framework were challenges understanding developmental differences of content knowledge at a 
specific grade level (e.g., grade 7 vs grade 8) and what counted as two distinct strategies. After 
coming to agreement and finalizing discussions with the lead faculty member and external other, 
this team completed independent coding as a confirmation of their ability to reliably code items. 
They were provided with seven randomly selected grades 3-8 PSM items and asked to (a) code 
each item using the modified DOK framework and (b) provide a rationale for their code. Results 
from their independent coding showed that the three raters applied the same codes for five of 
seven items. One rater differed from the other two raters on two of seven items by an adjacent 
code. Rater agreement (Cohen’s 𝜅 = .89) yielded almost perfect agreement. Coding memos 
across the three raters communicated further support for differentiating between levels two and 
three was warranted to help improve agreement in classifying DOK level.  

 
Discussion 

The present work serves as a means to reconsider applications of Webb’s (2002) DOK 
framework for word problems. Through a focused, design-research process, we developed a 
modified DOK framework that helps to magnify potential differences between word problems. 
Thus, this modified framework extends prior DOK scholarship. Much like a magnifying glass 
can highlight unique features not seen with the naked eye, we believe this framework may do the 
same for word problems: highlighting the unique features of word problems. A second intention 
in this design was to test the potential of others using this framework. An initial use with a small 
sample demonstrates potential for effectiveness (i.e., scaling up) trials this revised DOK 
framework with a larger sample of coders and other items. One limitation with this framework is 
that the word problems reviewed did not lend themselves towards Webb’s (2002) level four 
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DOK. Thus, our revised DOK framework did not reveal changes in this area. However, we 
believe reviewing tasks that promote modeling with mathematics (CCSSI, 2010) may lend 
themselves to this level and result in revisions to the framework. Another limitation is that the 
team has only reviewed word problems associated with a project that designed word problems. A 
future study might explore use of the revised DOK framework with samples from textbooks used 
in classroom instruction.   
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Textbooks play an important role in teachers’ instructional decisions (Jones & Tarr, 2007), 
which consequently affects students’ learning. This paper reports on a comparison of the 
elementary mathematics textbooks used in Iran and the United States, the Go-Math textbook. I 
analyzed topic sequences, frequency of the tasks, and cognitive demands of the fraction task in 
second and third-grade textbooks, employing the framework developed by Smith and Stein 
(1998) regarding the Levels of Cognitive Demands (LCD). Findings showed that Iran’s 
textbooks devoted more percentage of pages to fractions in second grade than Go-Math 
textbooks. LCD of the tasks in second grade in both courtiers were in lower levels. Also, the 
presentation of the fraction concepts varied in different countries and Go-Math covered more 
fraction concepts in third grade. Recommendations for future research were offered. 

Keywords: Textbook analysis; Fraction; Levels of cognitive demand; Curriculum; Content 
analysis. 

Fractions are one of the topics in elementary school textbooks used in many countries 
(Edwards et al., 2023) and methods and the presentation of this concept vary in different 
countries. In Iran, there is only one mathematics textbook published by the Ministry of Education 
(ME) for each grade, and teachers and students rely on the textbooks published by ME. Thus, the 
underlying rationale for focusing on the concept of fractions in textbooks was that the analyzed 
Iran’s textbooks were used nationwide and reflected a good picture of the nature of tasks 
implemented by teachers. This study was part of a larger study that compared the type of 
questions in mathematics textbooks in different countries and discuss the result of the study 
about comparing fraction tasks in the textbook series in Iran and a commonly used textbook in 
the U.S., Go-Math textbook.  

 
Literature Review 

Learning and teaching fractions is one of the difficult areas in mathematics (Edwards et al., 
2023; Getenet & Callingham, 2019). Research showed that students struggle with the concept of 
fractions and these difficulties with fractions have been observed across all levels (Charalambous 
& Pitta-Pantazi, 2006). Furthermore, some research shows a relation between differences in 
students' performance and the approaches of the textbooks to mathematics topics (e.g. Li 
(2000)). In their study of 340 fifth graders and 306 sixth graders Charalambous and Pitta-Pantazi 
(2006) argued that “the differences in students’ performance on the five interpretations of 
fractions mirror the imbalance in the emphasis placed on them during instruction” (p. 309). For 
example, students' performance in part-whole subconstruct of fractions was better than other five 
interpretations of fractions, and it was the subconstruct that students met more frequently in their 
mathematics textbooks. Furthermore, the research emphasizes that textbooks in many ways can 
contribute to improved learning outcomes (Milligan et al., 2018) and the nature of the 
mathematics tasks in textbooks can influence students' thinking and also can limit or broaden 
their views (Henningsen & Stein 1997).   
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In mathematics education, textbooks have a great influence on the education scene (Fan et 
al., 2013; Milligan et al., 2018). Textbooks play an important role in teachers’ instructional 
decisions (Jones & Tarr, 2007), the materials they use in the classroom (Chang & Silalahi, 2017), 
and the concepts that are imparted in the classroom (Jones & Tarr, 2007). Chang and Silalahi 
(2017) stated that analysis of textbooks can aid in understanding the effectiveness of specific 
approaches and identify what is required in terms of teaching and identify areas for improvement 
in curriculum development. Thus, this study aimed to analyze Iran’s mathematics textbooks in 
different grades. 

Iran’s elementary textbooks, published by the ME, are used nationwide, and national 
assessments use these textbooks as the main sources of learning material. There is only one 
mathematics textbook published by the ME for each grade, thus they reflect a good picture of the 
nature of the tasks that are implemented by teachers in the classrooms. This paper sets out to 
analyze the introduction to the fraction concept used in elementary textbooks to establish the 
frequency and problem types of the tasks. Furthermore, students need opportunities "to engage 
with tasks that lead to deeper, more generative understandings about the nature of mathematical 
concepts” (Stein et al., 2001, p. 15). Thus, this study also reports on the result of the analysis of 
the level of the cognitive demands required by tasks in Iran’s elementary textbooks and 
compares it with a commonly used textbook in the U.S., Go-Math. 

 
Research Questions  

In this study, I addressed the following research questions:  
1- What are the cognitive demands of the fraction tasks in Iran's textbooks in comparison to 

a commonly use textbook in the U.S., Go-Math?  
2- What are the nature and frequency of the fraction tasks in second and third grades 

mathematics textbooks in Iran and Go-Math in the U.S.? 
 

 Theoretical Framework 
This study draws from a framework developed by Smith and Stein (1998) in considering 

what kind of thinking tasks the textbooks demand of the students. Smith and Stein (1998) 
categorized mathematical tasks in terms of four cognitive features. They provided a scoring 
rubric that can be applied to all kinds of mathematical tasks and helps to rate the tasks based on 
the required cognitive demand. Characteristics of the tasks in the Lower-level Memorization 
(LM) were "reproducing previously learned facts, rules, formulas, or definitions” (Smith & 
Stein, 1998, p. 348). This type of task cannot be solved by using procedures (Smith & Stein, 
1998). Lower-level Procedure without connections (LP) task is defined as a task that requires 
“use of the procedure either is specifically called for or is evident from prior instruction” (p. 348) 
and requires limited cognitive demand. Higher-level Procedures with connections (HP) refers to 
a task that focuses students' attention on the use of procedures, suggests explicit or implicit 
pathways, and requires some degree of cognitive effort. Higher-level Doing Mathematics (HDM) 
task requires “students to explore and understand”, and requires “complex and nonalgorithmic 
thinking” and considerable cognitive effort (p. 348). In this study, I used the list of the 
characteristic of the tasks at each level and examples provided by Smith and Stein (1998) to 
analyze questions related to fraction tasks in second and third-grade elementary textbooks, which 
will be elaborated more in the next part. 

Methods 
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This study was a part of research in analyzing mathematics textbook questions in different 
countries and intended to examine the extent that second and third-grade mathematics textbooks 
in Iran and the U.S. attend to fraction concepts. The subjective data of this study was all 
questions related to the fraction concept in two textbook series in the U.S. and Iran. Two grade-
level textbooks published under the approval of the ME in Iran for grades two and three, the 
tenth edition published in 2022, were selected and compared to the Go-Math textbook series in 
the U.S., the student e-book 2015 Common Core. The selection of the second and third garde 
was done purposefully, because subconstructs of the fractions were not covered in earlier grades. 

Tasks that were explored in this study were all of the questions from both textbook series, 
Iran's textbooks and Go-Math textbooks, related to the fraction concept, and included questions 
listed as activities, introduction, problem-solving, application, practice and review questions. In 
counting the number of the tasks for both textbook series, a set of exercises that build on one 
another were considered as one task, as illustrated by an example in Figure 1 part A. Also, a set 
of questions that attend to the same topic but had different question numbers, and can be 
answered in isolation, was considered as a single task (see Figure 1 part B).  

 A                                                         B 

  
Figure 1: Example of Multiple Questions Considered as One Task in Coding Process 

 
In the first stage, the topic sequences, frequency of fraction questions, and page position of 

the questions were compared in both textbook series. In the second stage, the level of cognitive 
demands of all the questions was analyzed employing the framework developed by Smith and 
Stein (1998). Finally, the contents of selected textbooks were compared in their pedagogical 
approach to their focus on learning fractions.   

 In the second stage, I used the list of characteristics in Smith and Stein (1998) to assign a 
level for each task. Figure 2 shows examples of the tasks coded in each LCD. In this process, if a 
task appeared for the first time in the textbook that required using a procedure and represented 
the concept in multiple ways or made connections among multiple representations, it was coded 
at HP. Similar tasks that were observed later in the textbook were coded as LP because they 
reproduced previously learned facts (Smith & Stein, 1998). For example, finding a fraction on 
the number line that was introduced in the third-grade Go-Math textbook was coded as HP in the 
first appearance in the textbook and as LP later because it required limited cognitive demand 
(Figure 2). To ensure the validity of the data, I asked an expert college (Creswell & Miller, 2000) 
to do coding independently for random questions, then we compared assigned codes. 

 
 

 Lower-Level Demands  
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LCD   LM LP 
  
  
  
Exa

mple   

  
  Higher-Level Demands  
LCD HP HDM 
  
  
  
  
  
  
Exa

mple   

 

  

 

Figure 2: Example of the Tasks Coded in Each LCD 
 

Findings 
Comparison of the Number of Pages  
In general, the total number of pages in Iran's textbooks was less than the total number of 

pages in Go-Math textbooks (145 pages in comparison to 774 pages in second grade and 151 
pages in comparison to 758 pages in third grade). The number of pages that included fraction 
tasks in the third-grade Go-Math textbook was higher than the number of pages in second grade 
(117 and 28 respectively), while in Iran's textbook, a relatively equal number of pages were 
allocated to fraction tasks in both grades (15 pages in third grade and 17 pages in second grade 
which were 11% of the total pages in the both grades’ textbooks). Furthermore, in comparing the 
percentage of the pages that were allocated to the fraction tasks in second grade, in the Go-Math 
textbook fraction tasks were 3% of the total number of gages in the textbook, while this 
percentage was 0.11 in Iran’s textbook. In third grade, the percentage of the pages that were 
allocated to the fraction tasks in Go-Math textbooks was higher than in Iran's textbook (15 % in 
comparison to 11%). Table 1 shows the number of pages and page position in fraction tasks in 
both textbook series. 

Table 1: Number of Pages and Page Position in Fraction Tasks 
Textboo
k  

G
rade 
Leve

l  

N
umber 

of 
Pages  

Number of 
Fraction Pages  

% of pages 
with Fractions  

First Fraction 
Page Position 
(Unit/ch/pg)  

Final Fraction 
Page Position 
(Unit/ch/pg)  

Go 
Math! 2015   

2
nd  

7
74  28  3%  

 
p. 747  

ch 11out of 11  
Lesson 8, 9, 10, 

11  
  

p. 774  
ch 11 out of 11  
Lesson 8, 9, 10, 

11  
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3
rd  

7
58  117  15%  p. 440  

ch. 8 Out of 12   
p. 556  

ch 9. Out of  12  

Iran’s 
Math 

Textbook   
2022 

  
  

2
nd  

1
45  15  11%  p. 110   

ch 7 out of 8  
p. 125  

ch 7 out of 8  

3
rd   

1
51  17  11% p. 41   

ch 3 out of 8  
p. 57  

ch 3 out of 8 

 
Comparison of the LCD 
The findings of this study indicated that the levels of the tasks related to fraction concepts in 

both textbook series in second grade required low cognitive demand. In Go- Math textbook only 
6 tasks that required students to compare different parts of a whole or to find different ways of 
showing equal parts were coded as HDM and 86% of the tasks required low-level cognitive 
demand.  All of the tasks in Iran’s second-grade textbook required low-level cognitive demand; 
there was not any task that required high-level demand (0%, see Table 2). Also, the Go-Math 
textbook included more memorization tasks than Iran’s textbook (81% in comparison to 60%).  

Both third-grade textbook series included more high-level tasks in comparison to the second 
grade; 40% of the tasks in third-grade Iran’s textbook in comparing to 0% in second grade, and 
27% of the tasks in third grade in Go-Math in comparison to 14% in second grade (see Table 2) 
were in HP or HMD levels. Table 2 shows the number of tasks at each level. 

Table 2: LCD of the Tasks in Go-Math Textbooks and Iran’s Textbooks 

Textbook  
G

rade 
Level  

Number 
of Fraction 

Pages 

Nu
mber of 
Tasks  

L
M  

L
P  

H
P  

H
DM  

Go Math 
2015  

  

2n
d  28  43  3

5   2  0  6  

      86%  14%  
3r

d  117  358  8
8  

1
73  

8
4  

1
3  

      73%  27%  

Iran's 
textbook 2022  

2n
d  15  25  1

5  
1

0  0  0  

      100%  0%  
3r

d  17  35  3  1
8  7  7  

        60%  40% 

 
Pedagogical Analysis 
Grade 2. Both textbook series introduced the concept of fractions by dividing the whole unit 

to equal parts in second grade. Go-Math introduced the concept of equal parts by partitioning 
geometric shapes in lesson eight in chapter 11, which is the last chapter of the textbook (see 
Table 1), and related this concept to the geometric figures that were discussed earlier in this 
chapter. Iran's textbook introduced this concept in chapter seven (out of eight chapters) by 
referring to the concept of measurement, discussed in chapter five, and also referring to the ten’s 
and one's place values in two-digit numbers, discussed in chapter two of the textbook. Alajmi 
(2012) found that Japan’s textbook similar to Iran's books introduce fractions with referring to 
the concept of measurement.  
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Furthermore, while in the Go-Math textbook, equal parts of a whole is the last chapter of the 
textbook, Iran's’ textbook followed this concept with probability questions; connecting the 
likelihood of the occurrence to the number of equal parts that were colored in a shape. Figure 4 
shows examples of how these textbook series approached the concept of equal parts in 
connection to previously introduced concepts. 

 
Iran’s Textbook   Go-Math Textbook    

 

 

 

 
 
 
 
 

 

Figure 4. Introduction to The Concept of Fraction in Iran’s Textbook and Go-Math 
Textbook, Grade 2 

 
Grade 3. The presentation of the fraction concepts varied in different countries. The number 

of concepts that were covered in the Go-Math textbook was higher than in Iran’s textbook (see 
Table 3). However, Iran's Textbook included Part of a Part of a Whole, writing a fraction for 3D 
figures, and Estimated Fraction that were not discussed in Go-Math (see Figure 4). Figure 3 
shows the example of the Part of a Part of a Whole in which one part of a whole/unit where 
considered as part of a bigger whole.   

The Go-Math textbook, introduced the fraction concepts with LM and LP tasks while the 
first pages of the fraction chapter in Iran’s textbook had more HP and HDM tasks. For example, 
Figure 3 shows the questions on the first page of the chapter about fractions in which students 
were required to work on Part of a Part of a Whole and Comparing Parts of a Whole, in HDM 
tasks. The concept of Comparing Parts of a Whole, as presented in Iran’s Textbook in the form 
of dividing a whole to different pieces and comparing created parts (see Figure 3) was discussed 
on page 519 (the first page of the chapter is 440) in the concept of Compare Fractions with the 
Same Numerator in Go-Math in a form of HP task and later on in the form of LP tasks. 
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Table 3: Concepts Related to The Fraction in Iran’s Textbook and Go-Math Textbook 
 Go-Math   Iran’s Textbook  

2
nd  

Equal Parts (the whole, halves, thirds, and fourths).   Equal parts of a whole unit (cm as a unit and 
mm  as parts, equal parts in a geometric shape, 
equal parts of a segment)  

3
rd  

Equal Parts of a Whole  
Equal Shares  
Unit Fractions of a Whole (First fraction p. 455)  
Fractions of a Whole   
Fractions on a Number Line  
Relate Fractions and Whole Numbers  
whole number and a fraction greater than 1(such as 2=8/4)  
Fractions of a Group  
Find Part of a Group Using Unit Fractions  
Problem Solving  
Find the Whole Group Using Unit Fractions  
Compare Fractions with the Same Denominator  
Compare Fractions with the Same Numerator  
Compare Fractions with Different Numerators and 

Numerators (Missing pies strategy)  
Compare and Order Fractions (order fractions with same 

numerator)  
Model Equivalent Fractions  

Equal Parts of a Whole ,   
Model Equivalent Fractions  
Compare Fractions with the Same Numerator  
Compare Fractions with the Same 

Denominator  
Compare Fractions with Different Numerators 

and Denominator (Same whole and different parts)  
Two or Three Whole units and fraction (greater 

than 1, Ex: 2 wholes and 1/3 of a whole)  
  

 

 

 

  
Figure 3: Example of the Questions in the First Page of chapter 3 in Iran's Textbook, 

Grade3 
 

              
    Figure 4: Fraction for 3D Figures and Estimated Fraction in Iran’s Textbook 

 
Discussion and Implications  

This study contributes to the field of research on elementary school mathematics curricula 
with respect to fraction concept analysis.   
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As mentioned in the data analysis section, the total number of textbook pages allocated to 
fractions in Iran's textbook was considerably less than the U.S. textbooks. A study by Alajmi 
(2012) showed a similar result in comparing Kuwait, Japan, and U.S. mathematics textbooks. 
Further studies are required to study textbooks from different countries in an attempt to gauge 
how textbooks approach the concept of fractions in elementary grades.   

Students should have the opportunity to engage with higher-level tasks that lead them to a 
deeper understanding of the concept (Stein et al., 2000). On the other hand, research showed that 
the LCD of tasks might declines throughout teachers’ implementation in the classroom (Stein & 
Smith, 1998; Stein et al., 2001). Considering the findings of the current study that showed a 
higher number of lower-level tasks in both countries, and the result of similar studies such as 
Bütüner (2021) in Turkish and Singaporean textbooks, including more high-level tasks is 
required in the school's curriculum. Furthermore, according to Smith and Stein (1998) setting up 
a high-level task does not guarantee students’ engagement at a high level. Thus, further studies 
are required to analyze and compare how teachers implement these tasks in different countries. 
Moreover, professional developments are avenues that could prepare teachers to implement 
lessons with high cognitive demands.  
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When mathematics is taught in the context of social issues, it provides students with 
mathematical skills to analyze and think critically about the world. Using the theoretical 
perspective of Opportunity to Learn, in this study we analyzed five middle school mathematics 
textbooks to investigate the extent to which school mathematics textbooks incorporate 
contextualized situations related to social issues. Findings of the study suggest that there are an 
overwhelming number of decontextualized problems in every textbook. The contextualized 
problems covered a range of categories, but a very few of them were on social issues that could 
offer students the chance to engage in critical thinking. 

Keywords: Curriculum, Social Justice, Middle school education 

Although mathematics is often considered a subject which is less context-dependent (Janelle, 
1990; Gutstein, 2003), research suggests that the context of a mathematical task supports student 
learning (Boaler, 1993). Presenting mathematical concepts in real-life contexts connected to 
students’ culture and local communities helps students engage in mathematics and understand 
their reality (Boaler, 1993). Furthermore, mathematics when grounded in social issues such as, 
climate change, race, gender biases, socioeconomic status, resource disparity, environmental 
injustice, and other meaningful real-life contexts provides students with mathematical skills that 
help them analyze and think critically about the world (Frankenstein, 1989, 2009; Gutstein, 
2003). This study aims to investigate what role school mathematics textbooks play in 
familiarizing students with social contexts and developing students’ social consciousness. We 
analyzed five middle school mathematics textbooks in this study and investigated, to what extent 
do middle school mathematics textbooks present contextualized situations that align with social 
issues? 

A Brief on Textbook Analysis 
Textbooks are essential vehicles for learning. It is a primary source of resources for teachers 

and strongly influences their instructional practices (O’Keeffe, 2014; Weiland, 2019). Although 
teachers often modify curricular materials according to their idiosyncratic requirements, 
textbooks still offer insight into what is happening in classrooms (Brown & Edelson, 2003). In 
the past, researchers have analyzed mathematics textbooks to investigate how textbook features 
impact students’ conceptual understanding of mathematics (O’Keeffe & O’Donoghue, 2011), 
how differentiated mathematical activities challenge students’ cognitive abilities (Brändström, 
2005), and how procedural complexity, type of solving processes, and degree of repetition of 
mathematics problems impact eighth grade students’ learning of mathematics (Vincent & Stacey, 
2008). However, few researchers have explored the contextualized situations in mathematics 
textbooks. Rivers (1990) compared five textbooks adopted in first-year algebra classes in South 
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Carolina and analyzed the contexts used in the algebra problems to examine if the contexts are 
responsive and inclusive towards women and people of ethnic minorities. Weiland (2019) 
analyzed statistics problems in two high school mathematics textbook series and examined their 
contextual situations. Weiland (2019) found that the contexts were predominantly neutral and 
fictional, and provided students limited opportunities to engage in discourse around relevant and 
crucial topics in today’s society. Building on Weiland’s (2019) work, in this study we spanned 
across all content in five textbooks to examine the presence of social issue contexts. 

Theoretical Perspectives 
Carroll (1963) originally proposed the concept of Opportunities to Learn (OTL) which refers 

to the inputs and resources in the education system that are provided to students that support their 
learning. Carroll (1963) identified time spent in class as a key opportunity that shapes students’ 
learning. Subsequently, researchers (Stevens, 1993; Hadar, 2017; Hwang & Ham, 2021) 
recognized other factors, such as textbook content, cognitive demand of mathematics tasks, 
teachers’ instructional practices, and teachers’ selection of content as opportunities that influence 
students’ academic performances. Furthermore, Wijaya et al. (2015) pointed that mathematics 
tasks embedded in relevant contexts provide students with an opportunity to learn mathematics 
in meaningful ways and build problem solving skills. Drawing on the construct of OTL, we 
conjecture that mathematics problems designed in the context of social issues can provide 
students with opportunities to think critically about the world they live in. Accordingly, we 
began our investigation of the contexts presented in middle school mathematics textbooks. 

Methods 
To address our research question, we analyzed five selected mathematics textbooks (Table 1) 

based on the results of a questionnaire we sent to a group of middle school teachers via a social 
media platform. We asked them to list the textbooks they used and chose to investigate five 
mathematics textbooks that were most frequently used. Two coders went through every example 
and practice set problem of each textbook and identified statements describing contextualized 
situations. We based our coding on the categories established by Weiland (2019). When a 
particular context did not fit into a category proposed by Weiland (2019), we created new 
categories. Considering the focus of our study, we searched for problems that were based on 
social contexts, and created a new category called “Social Issues.”  

 
Table 1: Textbook title, publisher, % of decontextualized and contextualized problems 

Name of the book Publisher % of 
Decontextualized 

% of 
Contextualized 

McGraw-Hill Math 
7, Second Edition 

McGraw Hill Education 73.81 26.19 

McGraw-Hill Math 
8, Second Edition 

McGraw Hill Education 75.50 24.50 

enVisionmath2.0 
(Grade 7) 

Pearson 36.98 63.02 

enVisionmath2.0 
(Grade 8) 

Pearson 42.91 57.09 

Big Ideas Math Houghton Mifflin Harcourt  58.51 41.49 
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Also, we merged categories when we identified contextualized situations that fit a broader 
context. For example, we merged the Business/Sales & the Work/Salary/Savings categories to 
create the “Finance and Monetary” category. The categories are summarized in the results 
section. We do not present all categories and examples from every contextualized category for 
space constraints. 

Results 
In analyzing the five textbooks, we noted that all textbooks contained a significant number of 

problems that were devoid of any context. We coded them as decontextualized problems. The 
percentages of decontextualized problems are shown in Table 1. The rest of the problems were 
identified under different categories. We note that the categories we identified in the contexts are 
not mutually exclusive and several contextualized problems could be assigned to more than one 
category. For example, the problem “how much more does the ham and cheese omelet cost than 
the cheese omelet” (Big Ideas, p. 82) fits into both food and the finance and monetary 
categories.  

With regards to the “Social Issues” category, all the five textbooks contained a minimal 
number of questions on social issues. As shown in Figure 2, in enVision 8, 3% of the 
contextualized problems were on social issues, while in the rest of the books, the percentage of 
contextualized problems on social issues was lower than 1.5%.  These problems were presented 
in the context of uneven consumption of oil across different countries, depletion of natural 
resources, trends in the temperature of a town, amount of garbage produced in a city, and 
community activities, and sustainability. We observed that many of these problems had 
accompanying graphs and images, and students were asked to solve the problems based on the 
visuals. For instance, Figure 1 displays a problem from McGraw Hill 7 on the accumulation of 
trash on a beach that asks students to use a given bar graph to calculate the number of cigarettes, 
styrofoam, plastic, paper, and wood found on the beach. 

 

 

1. Is there more trash on the beach due to 
plastic or paper? 
2. Which material accounts for more than twice 
as much trash on the beach as Styrofoam? 
3. What material accounts for the least amount 
of trash on the beach? 

 

 
Figure 1: Example of a social issue context from McGraw Hill 7, page 136 

 
In terms of the other categories, we found an overwhelming number of problems in the 

context of Sports and Entertainment, Finance and Monetary, Science/Weather/Astronomy, 
School/Testing, and Food. As shown in Figure 2, in three textbooks, the majority of the 
contextualized problems were centered around Sports and Entertainment (McGraw Hill 7: 
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16.9%, McGraw Hill 8: 16.44%, and Big Ideas: 17.64%). Across the other two textbooks, the 
contextualized problems were mostly in the Finance and Monetary (enVision 7, 28%, enVision 
8: 19.08%) and Science/Weather/Astronomy (enVision 7: 18.57%, enVision 8, 24.4%) 
categories. In all textbooks except enVision 8, approximately 10% of the contextualized 
problems were related to Food.  

 

 
Figure 2: Bar graph with the percentage of contextualized problems in five textbooks 

Preliminary Discussion and Implications 
The aim of this study was to investigate how often social issues are used as contexts in 

mathematics textbooks. While we note that the contextualized situations presented in the 
textbooks referred to sports, theme parks, birthday parties, clothing, school supplies, finance, and 
pets, social issues prevalent in society such as race, ethnicity, gender, socio-economic conditions 
are completely absent from the textbooks. This omission is significant and noteworthy. Although 
a very few questions (refer to example in Figure 1) provide a potential to think about issues such 
as garbage collection and energy conservation, we agree with Weiland (2019) that most contexts 
presented are neutral and do not offer students many opportunities to get curious and think 
critically about social issues. For example, page 11 in enVision 7 asks students to determine the 
difference when the temperature changes from 8F to 0F. The context presented in this problem is 
fictitious. It does not prompt students to think critically about climate change caused due to 
human activities. We propose that instead of providing arbitrary temperatures, if the problem 
asked students to determine how the average air temperature of the United States has changed 
with time due to human activities, that would provide students with an opportunity to think about 
a pressing social issue. As educators, if we want to prepare students to be critical citizens and use 
mathematics to understand and analyze social issues, we recommend reforms of textbooks that 
foster such social literacy at the school level. 
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In our study, we analyze the performance of students enrolled in a corequisite Elementary 
Statistics course compared to students in the traditional (on-level) Elementary Statistics course. 
Students deemed not college-ready, based on the standardized state placement exam, were placed 
in an additional three-hour developmental mathematics course (corequisite course) paired with 
an Elementary Statistics course. They received instruction covering developmental mathematics 
topics necessary for their understanding of the topics immediately being addressed in the on-
level course. The preliminary study consisted of 2 corequisite sections (38 students) and 2 
traditional credit-bearing on-level statistics sections (85 students). The Elementary Statistics 
courses administered three common exams and a common cumulative final exam.  

Table 1: Average by Exam for Each Group 
 

 Corequisite Sections On-Level Sections 
Exam 1 Averages 
Exam 2 Averages 
Exam 3 Averages 

Final Exam Averages 

71.9 
74.4 
73.5 
60.9 

72.8 
76.3 
72.2 
64.2 

Overall Course Average 70.2 71.4 
 

Table 2: Proportion Comparisons by Letter Grade 
 

Grades Corequisite On-Level 
A 8.16% 14.35% 
B 
C 
D 
F 

D/W 

22.45% 
22.45% 
14.29% 
12.24% 
20.41% 

22.78% 
25.11% 
10.55% 
14.56% 
12.66% 

 
We analyzed the performance of the corequisite students and the on-level students’ exam 

scores and found no significant difference between the grades. The authors intend to expand this 
analysis using data from Fall 2022 and Spring 2023 for all sections of Elementary 
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Statistics.  This includes both corequisite sections, in-person on-level sections, hybrid, and online 
sections. 

Introduction 
In this study, we are interested in the performance of students enrolled in the corequisite 

course for Elementary Statistics compared to the on-level Elementary Statistics courses to assess 
the effectiveness of the current corequisite structure.  

This study aims to address the following research questions:  

1. How do the exam grades and overall course average of students enrolled in the 
corequisite course compare to those not enrolled in the corequisite? 

2. How do the corequisite students compare in their overall performance to the on-level 
students? 

Methodology 
Setting and Participants  

This study was conducted in the Spring of 2022 at a 4-year public university in the southern 
United States. The preliminary study consisted of 2 corequisite sections (38 students) and 2 
traditional credit-bearing on-level statistics sections (85 students) taught by two different 
instructors. 

 
Data Collection and Analysis  

Instructors of the Elementary Statistics courses used in this study conducted a secondary data 
analysis by collecting three exam grades and one final exam grade for each enrolled student. We 
used independent two-sample t-tests to compare the performance of corequisite students on all 
exams and overall semester grades to the students enrolled in the traditional, on-level statistics 
course. Additionally, we use a two-sample proportions test to compare the proportion of each 
letter grade for the corequisite students (2 sections, 49 students) and the on-level statistics 
students (11 sections, 474 students).   

Findings 
We report the preliminary findings for our research questions regarding Spring 2022 

Elementary Statistics courses.  
Research Question 1 

How do the exam grades and overall course average of students enrolled in the corequisite 
course compared to those students not enrolled in the corequisite? 

Table 1 shows the averages for each exam for both the corequisite classes (38 total students) 
and the on-level classes (85 total students).  

 
Independent two-sample t-tests were used to compare the two groups for each exam and the 

overall course grade. All t-tests concluded that the differences were statistically insignificant.  In 
other words, there is not a significant difference in the averages for each exam and the overall 
course average between the two groups.  For this preliminary analysis, we only compared classes 
taught by two instructors.  The first instructor taught one corequisite section and the second 
instructor taught one corequisite section and two on-level sections. 
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Research Question 2  
How do the corequisite students compare in their overall performance to the on-level 

students? 
Table 2 shows the percentages for each grade for the corequisite classes (2 sections, 49 total 

students) and the on-level classes (11 sections, 474 total students).   
 

Table 2: Proportion Comparisons by Letter Grade 
 

Grades Corequisite On-Level 
A 2.92% 4.99% 
B 
C 
D 
F 

D/W 

8.03% 
8.03% 
5.11% 
4.38% 
7.3% 

7.93% 
8.74% 
3.67% 
5.07% 
4.41% 

 
In this comparison, all sections of Elementary Statistics were used.  This includes 11 

sections, of which, five were full in-person, four were hybrid, and two were 100% online.  A 
two-sample proportions test indicates that all letter grades are insignificant.  There is no 
statistically significant difference between the proportions of each letter grade when comparing 
the corequisite classes to the on-level elementary statistics classes. 

Conclusion and Future Plans 
Our analysis shows that the corequisite Elementary Statistics courses performed just as well 

as the on-level sections in both the exam grades and overall letter grade. The corequisite sections 
have a student population that is deemed not college-ready, so they are having to catch up to the 
on-level material in the class. One would assume that these students would struggle more than 
the on-level students, but we are successfully addressing the gaps in learning through our just-in-
time statistics remediation. Our model is proving to serve the students well and helping them 
complete the on-level Statistics course required for their degree plan.  

This preliminary analysis was based on four sections of Elementary Statistics - two 
corequisite sections and two on-level sections.  The authors intend to expand this analysis using 
data from Fall 2022 and Spring 2023 for all sections of Elementary Statistics.  This includes both 
corequisite sections, in-person on-level sections, hybrid, and online sections. 
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This study investigated how Japanese curricula represent functional relationships through the 
lenses of quantitative and covariational reasoning. Utilizing both macro and micro textbook 
analyses, we examined the tasks, questions, and representations in the Japanese elementary and 
lower secondary course of study, teachers’ guide, and textbooks. Findings showed that, starting 
from the 4th grade by the end of 8th grade, Japanese curricula focus on iteratively improving 
learners’ quantitative and covariational reasoning gradually raising up to continuous 
covariation level. This pointed out that Japanese curricula have a spiral nature in the learning of 
functional relationships involved in proportional and linear situations. We discuss the 
implications of findings for teaching, learning, and teacher education. 

Keywords: curriculum, quantitative reasoning, covariational reasoning, linear functions  

Background  
School curriculum has a role in improving students’ learning and acvement (Cai, 2017). The 

term curriculum is a broad notion including intended, implemented, attained, and potentially 
implemented curriculum. Intended curriculum is a planned set of actions for students to achieve 
a specific goal. Implemented curriculum refers to how the goals of the intended curriculum are 
implemented within classrooms and the attained curriculum is considered as what is learned by 
students in classrooms. Within the span of curriculum research, textbooks are considered a 
potentially implemented curriculum as they build a pathway “… between the intentions of the 
designers of curriculum policy and the teachers that provide instruction in classrooms” (Valverde 
et al., 2002, p.2). Being mediators between intended and implemented curriculum, textbooks are 
considered as having a strong impact on what occurs in classrooms (Valverde et al., 2002). In 
addition, textbooks provide information about pedagogical predispositions, nature of subject 
matter, arrangements of topics, and level of complexity. Therefore, textbooks have been accepted 
as tools to be investigated (Cai, 2017) in order to gain some possible insights about opportunities 
for students to learn mathematics (e.g., Son & Senk, 2010), teacher’s teaching and learning (e.g., 
Son & Kim, 2015), and educational preferences of a particular country (e.g., Usiskin, 2013). Son 
and Diletti (2017) further argued that teachers’ guidebooks and other supplementary materials 
(e.g., assessments) might be classified as potentially implemented curriculum since they also 
have potential impact on teaching. It is in this regard that, in this study, we examined Japanese 
curricula including the course of study, teachers’ guide and textbooks because of their potential 
impact on learning of mathematics topics and classroom teaching. 

Textbook analysis is mainly done either on the overall structure of textbooks, which is named 
as macroanalysis (i.e., horizontal analysis) or on the treatment of specific mathematics topics, 
which is called as microanalysis (i.e., vertical analysis).  Researchers recommended to use both 
the macro and micro analysis to investigate the treatment of a mathematics topic so that the topic 
could be examined in terms of its place in specific educational system, related topics to it, and 
learning opportunities provided in it (Charalambous et al., 2010; Watanabe et al., 2017; Li, 
2000). Regarding microanalysis, the treatment of functions is one important notion to study 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 252 

because functions are the backbone of the domain of algebra and lays the foundation for 
advanced mathematics (Kaput, 1994). Functional relationships between quantities can be 
modeled by linear, quadratic, polynomial, exponential functions etc. Although scarce in number 
(Son & Diletti, 2017), there are some studies focusing on secondary school mathematics such as 
quadratic functions (e.g., Sağlam & Alacacı, 2012) and linear functions (e.g., Wang et al., 2017). 
Particularly, Wang et al. (2017) examined mathematics textbooks in Shanghai and in England by 
looking at the hierarchical levels of students’ understanding of linear functions through some 
aspects, such as dependent relationship and connecting representations. Functional relationships 
can mainly be expressed in two ways: (i) by a correspondence relationship between elements of 
two sets and (ii) by representing covariation in quantities (Blanton et al., 2011). Though, the 
topics of functions were suggested to be developed through quantitative and covariational 
reasoning and to do it starting with earlier grades rather than waiting until high school and 
college (e.g., Oehrtman et al., 2008).  Thompson and Carlson (2017) defined: 

A function, covariationally, is a conception of two quantities varying simultaneously such 
that there is an invariant relationship between their values that has the property that, in the 
person’s conception, every value of one quantity determines exactly one value of the other. (p. 
436) 

Lloyd et al. (2010) pointed to the essentiality of understanding functions as means to outline 
how related quantities covary. In addition, studies showed that students who cannot reason 
variationally and covariationally seemed experiencing difficulties about functional and 
proportional relationships (e.g., Carlson et al., 2002). It is also found that undergraduate students 
start their collegiate study with weak understanding of functions, thus experiencing deficiency 
about making sense of dynamic events (e.g., Carlson et al., 2002). Therefore, research suggested 
designing instruction and curriculum for improving the learners’ understanding of functional 
relationships (Thompson & Carlson, 2017; Carlson et al., 2002). Thus, in compliance with earlier 
research (e.g., Karagöz et al. 2022; Taşova et al., 2018), we acknowledge that quantitative and 
covariational reasoning might be a possible avenue for analyzing curricular materials. Similarly, 
Thompson and Carlson (2017) argue that Japanese curricula exemplifies how quantitative and 
covariational reasoning can be integrated in standards and textbooks.  

It is in this regard that, in this study, we investigated the topic of functional relationships in 
Japanese curricula between the grades of 4 to 8 through the lenses of quantitative and 
covariational reasoning.  We also particularly attended to the call for integrating macro and 
micro analyses to investigate the research questions of “How might Japanese curricula materials 
depicted in the topic of functional relationships potentially trigger quantitative reasoning and 
covariational reasoning? In what ways tasks, problem situations, questions, and the use of 
representations (including algebraic, graphical, tabular, and verbal) in functional relationships 
might potentially trigger quantitative and covariational reasoning in Grades 4 to 8?” 

Theoretical Framework 
Thompson (1990) defined quantitative reasoning as “the analysis of a situation into a 

quantitative structure—a network of quantities and quantitative relationships” (p. 12). A quantity 
is a measurable quality of an object coming into being with a person’s conception of a situation 
by considering the measurable quality of an object (Thompson, 1994a). Both quantitative and 
covariational reasoning is about conceiving a situation where the former requires a person to 
conceive the situation in terms of a quantitative structure and the latter is necessary for a person 
to conceive the dynamic situation which involves quantities’ varying values (Thompson & 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 253 

Carlson, 2017). Carlson et al. (2002) defined covariational reasoning as “the cognitive activities 
involved in coordinating two varying quantities while attending to the ways in which they 
change in relation to each other” (p. 354). They argued that these activities (i.e., images of 
covariation) are developmental, meaning that “the images of covariation can be defined by level 
and that the levels emerge in an ordered succession” (Carlson et al., 2002, p. 354). In their 
covariational reasoning framework, Carlson et al. presented five mental actions originating in 
five covariational reasoning levels (see Figure 1). 

 
Figure 1: Covariational reasoning levels and corresponding mental actions  

Method  
In this study we examined the Mathematics International (MI) textbook series published in 

2011 globally by Tokyo Shoseki in collaboration with Global Educational Resources. Tokyo 
Shoseki is a leading textbook publisher in Japan and its textbook series are one of the six most 
widely used series in elementary mathematics (Watanabe et al., 2017). The MI series cover 
grades 1 to 9 which includes both elementary (grades 1 to 6) (Fujii & Iitaka, 2012) and lower 
secondary (grades 7 to 9) school mathematics (Fujii & Matano, 2012). In addition, we 
investigated the course of study (COS) published in 2008, which is the national curriculum 
standards in Japan, and teachers’ guides, which is defined as “a guidebook on Japanese 
curriculum standards” (Isoda, 2010a, p. i) for teachers. Both were provided by the Ministry of 
National Education of Japan.  

To analyze the curricula materials, we utilized a content analysis method (Weber, 1990). 
First, we determined the grade levels in the Japanese COS where the functional relationships 
were covered. We found out that under the topic of functional relationships, rate, ratio, 
proportion, and linear functions were covered between the grades 4 and 8. In this paper we 
specifically focus on linear functions and proportional relationships. We conducted our analysis 
in the order of the course of study (COS), teachers’ guide, and the units of textbooks. Our unit(s) 
of analysis in all the curricular materials were a statement or a set of statements, graphs, 
diagrams, tables and symbols. Using both quantitative reasoning and covariational reasoning 
frameworks as our theoretical constructs, we examined how quantities were introduced and how 
the relationships between them were triggered in the statements, tasks, questions, problem 
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situations and representations throughout curricula. As covariational reasoning enables 
examining quantitative reasoning in dynamic situations, using the categories in Figure 1, we 
examined which mental actions were targeted on the part of students to engage in covariational 
reasoning. This way, we determined the tasks, questions, problem situations, and representations 
that seemed potentially to trigger the mental actions, and eventually covariational reasoning. 

Findings 
Findings has shown that the level of covariational reasoning and complexity of task variables 

increases with the increase in grade level (see Figure 2).  

 
Figure 2: Spiral and iterative nature of Japanese curricula with respect to the metal actions 

in covariational reasoning  

Particularly, in the context of functional relationships, the gross coordination level of 
covariational reasoning has been supported starting from the 4th grade to the 8th grade. Although 
the tasks and questions in each grade mostly focus on and delve into specific mental actions with 
the corresponding covariational reasoning level, there is a spiral nature such that the 
covariational reasoning level in the upcoming grade builds on and deepens on the previous ones. 
This suggests that mental actions in the previous covariational reasoning level are iteratively 
triggered to build the next level of reasoning. Particularly, gross coordination of values level of 
covariational reasoning seems to be aimed in the 4th grade by particularly triggering MA1 and 
MA2; coordination of values level seems to be targeted in the 5th grade by particularly triggering 
MA1, MA2, and MA3; and continuous covariation seems to be targeted in the 6th and 7th grades 
by particularly triggering MA1, MA2, MA3, and MA4; and (chunky and smooth) continuous 
covariation seems to be targeted in the 8th grade by particularly triggering MA1, MA2, MA3, 
MA4 and MA5. In lieu of space, we do not share detailed analysis, rather we aim to present 
different mental actions, reasoning levels, or representations that’s not included in the previous 
grade.    

In 4th grade, in the COS, students are expected to “represent and investigate the relationship 
between two quantities as they vary simultaneously” (Takahashi et al., 2008, p. 11). Teachers are 
suggested to use “activities to find two quantities in everyday life that vary in proportion to each 
other, and to represent and investigate the relationships of numbers/ quantities in tables and 
graphs.” (Isoda, 2010a, p. 116). Also, the Japanese curriculum explicitly differentiates quantities 
from numbers as stating “a quantity expresses size of an object…A number of objects can be 
expressed in integers, for example by counting them. On the other hand, in measuring length of 
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strings or weight of water, the quantity can be divided infinitely and cannot always be expressed 
integers” (Isoda, 2010, p.34). Particularly, teachers are suggested to present activities having 
quantities of actual objects compared to make it easier for students “to grasp what quantity is 
being compared, and the meaning of the quantity will become gradually clear to students …For 
length, for example, “long/short”; … for speed, “fast/slow” (Isoda, 2010, p. 35). All these 
suggested that there is emphasis on the fact that quantities are measurable qualities of objects 
such that speed measures whether an object is fast or slow while length measures whether an 
object is long or short. In the textbook, students are given a broken-line graph to represent 
monthly temperature changes of Tokyo to build the gross coordination of values level of 
covariational reasoning. Particularly, students are expected to verbally indicate the axes and 
coordinate the values, such as, the highest temperature and the corresponding specific month 
(MA1). They are also expected to focus on the direction of change (i.e., increase, decrease, 
constancy) of temperature in months (MA2). Thus, the goal in this grade seems to trigger gross 
coordination of values level of covariational reasoning. 

In 5th grade, the objectives and teachers’ guide explanations aim for students to (i) deepen 
their understanding about covarying quantities, and (ii) consider and express quantitative 
relationships through using different representations. The main goal seems to deepen the gross 
coordination of values level; but also coordination of amount of changes of variables (MA3) has 
seemed to be introduced. In the textbook, through a task asking to use sticks of the same length 
side by side to make 30 squares, students are expected to recognize the pattern of an arithmetic 
sequence by examining the change in quantities and their relationships. As an example of two 
different students’ ideas, the following figure is given in the textbook. 

 
Figure 3: Students’ ideas on stick and square task (Fujii and Iitaka, 2012, Grade 5, p. 

A103-104) 

The variables are the number of squares and the number of sticks which are both discrete. A 
tabular representation is presented in Kaori’ approach where she considers the changes between 
two consecutive values of the number of sticks for each square. However, Takumi examines the 
arrangement of sticks in the picture where his focus is on how many more sticks (i.e., 3 more 
sticks) is needed for each square given the first stick. Particularly, Kaori presented quantities, 
number of squares and number of sticks, in chunks at her table. Albeit the numerical values, her 
focus is on how the two quantities vary simultaneously such that the number of squares is 
increasing by one while the number of sticks is increasing by three each time. That is, students’ 
attention is on the increments of 1 and 3 that quantify the increase in the number of squares and 
the number of sticks respectively. Also, students are expected to compare the differences (the 
increments of one and three) between the two quantities which might help determine the idea 
that for each difference (increment of one) in the number of squares, there is some other 
difference (increment of three) in the number of sticks. Moreover, students are expected to 
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verbalize what the values of 3, 4, 30, and (30-1) represent given the mathematical sentence 4 +
3 × (30 − 1), an important connection between algebraic and verbal representations. In addition, 
Kaori’s table seems to illustrate the correspondence of increase in number of squares with the 
increase in number of sticks, and her explanation supports that she considers “the way the 
number of sticks increasing…” (Fujii and Iitaka, 2012, Grade 5, p. A103). Therefore, Kaori’s 
behavior seems to underscore MA3 and indicate her covariational reasoning level as 
coordination of values. On the contrary, Takumi does not seem to recognize that for each new 
square there are three more sticks needed. His way of thinking suggests that he seems to focus on 
the number of squares and the “increase” in the number of sticks rather than coordinating the 
amount of change in one quantity with the change in the other as Kaori. Takumi’s behavior 
seems to underscore MA2 which corresponds to gross coordination of values.  

In 6th grade, students are expected to both (i) understand and investigate direct proportional 
relationships and (ii) gain an awareness of inversely proportional relationships by examining the 
situations that involve quantities varying simultaneously (Takahashi et al., 2008). The teachers’ 
guide states that “the quotient of two corresponding quantities remains constant” (Isoda, 2010a, 
p. 155) in the direct proportional relationships which represent “a straight line passing through 
the origin.” (Isoda, 2010a, p. 155). This characteristic is explicitly stated as important to 
distinguish proportional relationships. Teachers are suggested to use “activities such as 
representing on a graph two quantities that vary simultaneously so that they [students] 
understand that if two quantities are in a proportional relationship, the graph representing this 
relationship is a straight line” (Isoda, 2010a, p. 155)  

The task below from 6th grade textbook shows that coordination of values level of 
covariation (up to MA3) aimed to be deepened and continuous covariation (MA4) seemed to be 
triggered. In lieu of space, we do not provide detailed analysis but our account of how students 
might possibly reason.  

 
Figure 4:  What Will the Graph Look Like (Fujii and Iitaka, 2012, Grade 6, p. B100) 

In the task, two continuous variables, time and depth of water, are simultaneously compared 
through using graphical representations. Students might think that the narrower the base area of 
the tank the greater the amount of water poured into the tank in a minute. If a student thinks the 
coordination of depth with amount of time passing (M1), considers the increase in the depth of 
the water with regard to the time (MA2), compares the amounts of changes in depth of the water 
for some amount of time (MA3), and envisions the average rate of change of depth as increasing 
simultaneously with the time (MA4), the student might have continuous covariation level of 
covariational reasoning. However, the action of coordinating the rate of change with the uniform 
increments of inputs (MA4) are not examined through the numerical values of quantities. Thus, 
we claim that the task might be targeted to raise students’ awareness about the rate of change as a 
scaffold for the upcoming grades rather than explicitly fostering MA4 in this task. 

In 7th grade, students are expected to further enhance their understanding of direct and 
inverse proportional relationships in real-life situations. Yet, differently from the 6th grade, the 
direct and inverse proportional relationships is planned to be re-examined through focusing on 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 257 

the simple forms of linear functions  𝑦 = 𝑎𝑥 and reciprocal functions 𝑦 = 8
D
 respectively (Isoda, 

2010b). Differently from 6th grade, students are expected to examine similarities and differences 
between direct and inverse proportion graphs. Moreover, the rationale of the use of proportional 
relationships is explicitly stated as to trigger correspondence and covariation meaning of 
functions in many phenomena in daily life (Isoda, 2010b).  

We share an example from the MI textbook showing direct and indirect proportional 
relationship between two variables and how the continuous nature of their covarying relationship 
is represented visually (see Figure 5).  

 
Figure 5:  Graphing of y=2x (Fujii and Matano, 2012, Grade 7, p. 117-118) and graphing of 

𝒚 = 𝟔
𝒙
 (Fujii and Matano, 2012, Grade 7, pp. 127-129) 

Different integer values of y and x are given for plotting both 𝑦 = 2𝑥  and 𝑦 = H
D
. Students 

are asked to explicitly think about the interval for x values and corresponding y values getting 
smaller and smaller producing a straight line or a curve. It seems that the continuous nature of 
variables is targeted through graphical representations. This way of representing might lay a 
foundation to smooth continuous covariation (corresponding up to MA5), although it is not 
explicitly introduced. 

In 8th grade, linear functions are introduced, and continuous covariation seems to be 
triggered and deepened. Students are expected to examine the changes and correspondences of 
two quantities again with a focus on graphical, algebraic, tabular, and verbal representations. In 
addition, the rate of change for the linear functions (i.e., in the form of 𝑦 = 𝑎𝑥 + 𝑏) is expressed 
as :+5:-

D+5D-
 . Here, the rate of change which equals the constant 𝑎, is expressed as “how much y will 

increase when x increases by 1” (Isoda, 2010b, p. 92). All these focus on relationships between 
amounts of changes in variables suggested that at least MA3 is targeted. Moreover, there is an 
emphasis on the difference between the expressions of equations with two variables and 
functions. When the coordination of values of 𝑦 and 𝑥 is considered for an equation with two 
variables expressed as 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, there is one and only one 𝑦 value for every 𝑥 value if 
𝑏 ≠0. This relationship indicates that 𝑦 is a function of 𝑥 and the equation could be rewritten as 
𝑦 = − 8

I
𝑥 − A

I
  to illustrate the functional relationship explicitly (Isoda, 2010b).  

We present an example from the textbook (see Figure 6) in which the values of temperature 
are decimal numbers not increasing uniformly with uniform integer changes in time. 

 
Figure 6: Temperature change of drinks task (Fujii and Matano, 2012, Grade 8, p. 70) 

Students are asked to represent this situation with a graph on a coordinate system and think 
of the relationships between variables where temperature is a function of time. Students are 
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expected to use tables to express the result of values of variables and placing the values of 
temperature for corresponding units of time on a coordinate system (MA1), verbalize the 
direction of change as increase or decrease (MA2), coordinate the amount of change in 𝑦 with 
the amount of increase in 𝑥 (MA3), and coordinate the average rate of change of the temperature 
with uniform changes in time (MA4). Thus, students are supported to reason on the chunky 
continuous covariation level. Yet, in case students consider the rate of change as an 
instantaneous rate of change, MA5 might also be triggered. In 8th grade, students are also asked 
to compare linear functions (i.e., 𝑦 = 𝑎𝑥 + 𝑏) with proportional equations (i.e., 𝑦 = 𝑎𝑥).  It is 
explicitly explained that translation of the graph of 𝑦 = 𝑎𝑥 on the y axis by the value of 𝑏 
represents 𝑦 = 𝑎𝑥 + 𝑏, where the value of 𝑏 is expressed as y-intercept. Moreover, the use of 
different types of representations and the relationship between them are explicitly presented. 

Discussion and Conclusion 
The findings showed that proportional and functional relationships are presented as 

intertwined with the quantitative and covariational reasoning starting from 4th grade to 8th grade 
in Japanese curricula. Starting from gross coordination of values, the highest level of 
covariational reasoning (smooth covariational reasoning) is aimed to be built in an inclusive and 
iterating way in Japanese curricula. Notably, attending to the developmental nature of 
covariational reasoning (Carlson et al., 2002) mental actions involved in each covariational 
reasoning level has been revisited and deepened at successive grade level. Therefore, Japanese 
curricula illustrate a great model for spiral curriculum, especially for developing the proportional 
and functional relationships throughout the elementary and lower secondary level mathematics. 

The development of the concepts of proportions and linear functions in the curricula are 
answering the calls of research. Particularly, in Japanese curricula, the concepts of functions are 
developed through covariational reasoning at first, then correspondence meaning is shared in the 
textbook after triggering the highest covariational reasoning level iteratively. Researchers argue 
that covariation meaning of functions are more relevant to students’ daily engagement with the 
topic and their use of covariational perspective can lead to the development of correspondence 
view of functions (Thompson, 1994b; Carlson et al., 2002; Oehrtman et al., 2008; Smith, 2003; 
Lloyd et al., 2010). Moreover, as suggested in literature, functions are examined through 
different representations and dynamic situations (e.g., Thomson & Carlson, 2017); the task 
variables get more complex gradually (e.g., Heinz, 2000); the difference between functions and 
equations are presented (e.g., Chazan & Yerushalmy, 2003); the relationship between 
proportional relationships and linear functions are explained (e.g., Lloyd et al., 2011); the 
invariant relationship between variables are introduced as rate of change in dynamic situations 
(e.g., Carlson, 2002); real life situations are used to study proportional relationships and 
functions (e.g., Carlson et al., 2002; Oehrtman et al., 2008); quantities and quantitative 
operations are explicitly introduced (e.g., Thompson, 1994) in Japanese curricula. That is, 
Japanese curricula are designed in a way to bridge the mathematics education literature with 
teachers’ teaching. Lastly, the findings of the study pointed out that Japanese curricula 
attentively focus on not only conceptual understanding but also mathematical thinking in a 
developmental way (e.g., successive development of mental actions). Hence, we suggest 
curriculum developers pay attention to the spiral nature of Japanese curricula. We argue that 
Japanese curricula can be used by teacher educators to study and improve teachers’ covariational 
reasoning. Our analysis also supports Thompson and Carlson (2017)’s argument that Japanese 
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curricula exemplifies how quantitative and covariational reasoning can be integrated in standards 
and textbooks.  
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This study investigated how Japanese curricula represent functional relationships through the 
lenses of quantitative and covariational reasoning. Utilizing both macro and micro textbook 
analyses, we examined the tasks, questions, and representations in the Japanese elementary and 
lower secondary course of study, teachers’ guide, and textbooks. Findings showed that, starting 
from the 4th grade by the end of 8th grade, Japanese curricula focus on iteratively improving 
learners’ quantitative and covariational reasoning gradually raising up to continuous 
covariation level. This pointed out that Japanese curricula have a spiral nature in the learning of 
functional relationships involved in proportional and linear situations. We discuss the 
implications of findings for teaching, learning, and teacher education. 

Keywords: curriculum, quantitative reasoning, covariational reasoning, linear functions  

Background  
School curriculum has a role in improving students’ learning and acvement (Cai, 2017). The 

term curriculum is a broad notion including intended, implemented, attained, and potentially 
implemented curriculum. Intended curriculum is a planned set of actions for students to achieve 
a specific goal. Implemented curriculum refers to how the goals of the intended curriculum are 
implemented within classrooms and the attained curriculum is considered as what is learned by 
students in classrooms. Within the span of curriculum research, textbooks are considered a 
potentially implemented curriculum as they build a pathway “… between the intentions of the 
designers of curriculum policy and the teachers that provide instruction in classrooms” (Valverde 
et al., 2002, p.2). Being mediators between intended and implemented curriculum, textbooks are 
considered as having a strong impact on what occurs in classrooms (Valverde et al., 2002). In 
addition, textbooks provide information about pedagogical predispositions, nature of subject 
matter, arrangements of topics, and level of complexity. Therefore, textbooks have been accepted 
as tools to be investigated (Cai, 2017) in order to gain some possible insights about opportunities 
for students to learn mathematics (e.g., Son & Senk, 2010), teacher’s teaching and learning (e.g., 
Son & Kim, 2015), and educational preferences of a particular country (e.g., Usiskin, 2013). Son 
and Diletti (2017) further argued that teachers’ guidebooks and other supplementary materials 
(e.g., assessments) might be classified as potentially implemented curriculum since they also 
have potential impact on teaching. It is in this regard that, in this study, we examined Japanese 
curricula including the course of study, teachers’ guide and textbooks because of their potential 
impact on learning of mathematics topics and classroom teaching. 

Textbook analysis is mainly done either on the overall structure of textbooks, which is named 
as macroanalysis (i.e., horizontal analysis) or on the treatment of specific mathematics topics, 
which is called as microanalysis (i.e., vertical analysis).  Researchers recommended to use both 
the macro and micro analysis to investigate the treatment of a mathematics topic so that the topic 
could be examined in terms of its place in specific educational system, related topics to it, and 
learning opportunities provided in it (Charalambous et al., 2010; Watanabe et al., 2017; Li, 
2000). Regarding microanalysis, the treatment of functions is one important notion to study 
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because functions are the backbone of the domain of algebra and lays the foundation for 
advanced mathematics (Kaput, 1994). Functional relationships between quantities can be 
modeled by linear, quadratic, polynomial, exponential functions etc. Although scarce in number 
(Son & Diletti, 2017), there are some studies focusing on secondary school mathematics such as 
quadratic functions (e.g., Sağlam & Alacacı, 2012) and linear functions (e.g., Wang et al., 2017). 
Particularly, Wang et al. (2017) examined mathematics textbooks in Shanghai and in England by 
looking at the hierarchical levels of students’ understanding of linear functions through some 
aspects, such as dependent relationship and connecting representations. Functional relationships 
can mainly be expressed in two ways: (i) by a correspondence relationship between elements of 
two sets and (ii) by representing covariation in quantities (Blanton et al., 2011). Though, the 
topics of functions were suggested to be developed through quantitative and covariational 
reasoning and to do it starting with earlier grades rather than waiting until high school and 
college (e.g., Oehrtman et al., 2008).  Thompson and Carlson (2017) defined: 

A function, covariationally, is a conception of two quantities varying simultaneously such 
that there is an invariant relationship between their values that has the property that, in the 
person’s conception, every value of one quantity determines exactly one value of the other. (p. 
436) 

Lloyd et al. (2010) pointed to the essentiality of understanding functions as means to outline 
how related quantities covary. In addition, studies showed that students who cannot reason 
variationally and covariationally seemed experiencing difficulties about functional and 
proportional relationships (e.g., Carlson et al., 2002). It is also found that undergraduate students 
start their collegiate study with weak understanding of functions, thus experiencing deficiency 
about making sense of dynamic events (e.g., Carlson et al., 2002). Therefore, research suggested 
designing instruction and curriculum for improving the learners’ understanding of functional 
relationships (Thompson & Carlson, 2017; Carlson et al., 2002). Thus, in compliance with earlier 
research (e.g., Karagöz et al. 2022; Taşova et al., 2018), we acknowledge that quantitative and 
covariational reasoning might be a possible avenue for analyzing curricular materials. Similarly, 
Thompson and Carlson (2017) argue that Japanese curricula exemplifies how quantitative and 
covariational reasoning can be integrated in standards and textbooks.  

It is in this regard that, in this study, we investigated the topic of functional relationships in 
Japanese curricula between the grades of 4 to 8 through the lenses of quantitative and 
covariational reasoning.  We also particularly attended to the call for integrating macro and 
micro analyses to investigate the research questions of “How might Japanese curricula materials 
depicted in the topic of functional relationships potentially trigger quantitative reasoning and 
covariational reasoning? In what ways tasks, problem situations, questions, and the use of 
representations (including algebraic, graphical, tabular, and verbal) in functional relationships 
might potentially trigger quantitative and covariational reasoning in Grades 4 to 8?” 

Theoretical Framework 
Thompson (1990) defined quantitative reasoning as “the analysis of a situation into a 

quantitative structure—a network of quantities and quantitative relationships” (p. 12). A quantity 
is a measurable quality of an object coming into being with a person’s conception of a situation 
by considering the measurable quality of an object (Thompson, 1994a). Both quantitative and 
covariational reasoning is about conceiving a situation where the former requires a person to 
conceive the situation in terms of a quantitative structure and the latter is necessary for a person 
to conceive the dynamic situation which involves quantities’ varying values (Thompson & 
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Carlson, 2017). Carlson et al. (2002) defined covariational reasoning as “the cognitive activities 
involved in coordinating two varying quantities while attending to the ways in which they 
change in relation to each other” (p. 354). They argued that these activities (i.e., images of 
covariation) are developmental, meaning that “the images of covariation can be defined by level 
and that the levels emerge in an ordered succession” (Carlson et al., 2002, p. 354). In their 
covariational reasoning framework, Carlson et al. presented five mental actions originating in 
five covariational reasoning levels (see Figure 1). 

 
Figure 1: Covariational reasoning levels and corresponding mental actions  

Method  
In this study we examined the Mathematics International (MI) textbook series published in 

2011 globally by Tokyo Shoseki in collaboration with Global Educational Resources. Tokyo 
Shoseki is a leading textbook publisher in Japan and its textbook series are one of the six most 
widely used series in elementary mathematics (Watanabe et al., 2017). The MI series cover 
grades 1 to 9 which includes both elementary (grades 1 to 6) (Fujii & Iitaka, 2012) and lower 
secondary (grades 7 to 9) school mathematics (Fujii & Matano, 2012). In addition, we 
investigated the course of study (COS) published in 2008, which is the national curriculum 
standards in Japan, and teachers’ guides, which is defined as “a guidebook on Japanese 
curriculum standards” (Isoda, 2010a, p. i) for teachers. Both were provided by the Ministry of 
National Education of Japan.  

To analyze the curricula materials, we utilized a content analysis method (Weber, 1990). 
First, we determined the grade levels in the Japanese COS where the functional relationships 
were covered. We found out that under the topic of functional relationships, rate, ratio, 
proportion, and linear functions were covered between the grades 4 and 8. In this paper we 
specifically focus on linear functions and proportional relationships. We conducted our analysis 
in the order of the course of study (COS), teachers’ guide, and the units of textbooks. Our unit(s) 
of analysis in all the curricular materials were a statement or a set of statements, graphs, 
diagrams, tables and symbols. Using both quantitative reasoning and covariational reasoning 
frameworks as our theoretical constructs, we examined how quantities were introduced and how 
the relationships between them were triggered in the statements, tasks, questions, problem 
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situations and representations throughout curricula. As covariational reasoning enables 
examining quantitative reasoning in dynamic situations, using the categories in Figure 1, we 
examined which mental actions were targeted on the part of students to engage in covariational 
reasoning. This way, we determined the tasks, questions, problem situations, and representations 
that seemed potentially to trigger the mental actions, and eventually covariational reasoning. 

Findings 
Findings has shown that the level of covariational reasoning and complexity of task variables 

increases with the increase in grade level (see Figure 2).  

 
Figure 2: Spiral and iterative nature of Japanese curricula with respect to the metal actions 

in covariational reasoning  

Particularly, in the context of functional relationships, the gross coordination level of 
covariational reasoning has been supported starting from the 4th grade to the 8th grade. Although 
the tasks and questions in each grade mostly focus on and delve into specific mental actions with 
the corresponding covariational reasoning level, there is a spiral nature such that the 
covariational reasoning level in the upcoming grade builds on and deepens on the previous ones. 
This suggests that mental actions in the previous covariational reasoning level are iteratively 
triggered to build the next level of reasoning. Particularly, gross coordination of values level of 
covariational reasoning seems to be aimed in the 4th grade by particularly triggering MA1 and 
MA2; coordination of values level seems to be targeted in the 5th grade by particularly triggering 
MA1, MA2, and MA3; and continuous covariation seems to be targeted in the 6th and 7th grades 
by particularly triggering MA1, MA2, MA3, and MA4; and (chunky and smooth) continuous 
covariation seems to be targeted in the 8th grade by particularly triggering MA1, MA2, MA3, 
MA4 and MA5. In lieu of space, we do not share detailed analysis, rather we aim to present 
different mental actions, reasoning levels, or representations that’s not included in the previous 
grade.    

In 4th grade, in the COS, students are expected to “represent and investigate the relationship 
between two quantities as they vary simultaneously” (Takahashi et al., 2008, p. 11). Teachers are 
suggested to use “activities to find two quantities in everyday life that vary in proportion to each 
other, and to represent and investigate the relationships of numbers/ quantities in tables and 
graphs.” (Isoda, 2010a, p. 116). Also, the Japanese curriculum explicitly differentiates quantities 
from numbers as stating “a quantity expresses size of an object…A number of objects can be 
expressed in integers, for example by counting them. On the other hand, in measuring length of 
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strings or weight of water, the quantity can be divided infinitely and cannot always be expressed 
integers” (Isoda, 2010, p.34). Particularly, teachers are suggested to present activities having 
quantities of actual objects compared to make it easier for students “to grasp what quantity is 
being compared, and the meaning of the quantity will become gradually clear to students …For 
length, for example, “long/short”; … for speed, “fast/slow” (Isoda, 2010, p. 35). All these 
suggested that there is emphasis on the fact that quantities are measurable qualities of objects 
such that speed measures whether an object is fast or slow while length measures whether an 
object is long or short. In the textbook, students are given a broken-line graph to represent 
monthly temperature changes of Tokyo to build the gross coordination of values level of 
covariational reasoning. Particularly, students are expected to verbally indicate the axes and 
coordinate the values, such as, the highest temperature and the corresponding specific month 
(MA1). They are also expected to focus on the direction of change (i.e., increase, decrease, 
constancy) of temperature in months (MA2). Thus, the goal in this grade seems to trigger gross 
coordination of values level of covariational reasoning. 

In 5th grade, the objectives and teachers’ guide explanations aim for students to (i) deepen 
their understanding about covarying quantities, and (ii) consider and express quantitative 
relationships through using different representations. The main goal seems to deepen the gross 
coordination of values level; but also coordination of amount of changes of variables (MA3) has 
seemed to be introduced. In the textbook, through a task asking to use sticks of the same length 
side by side to make 30 squares, students are expected to recognize the pattern of an arithmetic 
sequence by examining the change in quantities and their relationships. As an example of two 
different students’ ideas, the following figure is given in the textbook. 

 
Figure 3: Students’ ideas on stick and square task (Fujii and Iitaka, 2012, Grade 5, p. 

A103-104) 

The variables are the number of squares and the number of sticks which are both discrete. A 
tabular representation is presented in Kaori’ approach where she considers the changes between 
two consecutive values of the number of sticks for each square. However, Takumi examines the 
arrangement of sticks in the picture where his focus is on how many more sticks (i.e., 3 more 
sticks) is needed for each square given the first stick. Particularly, Kaori presented quantities, 
number of squares and number of sticks, in chunks at her table. Albeit the numerical values, her 
focus is on how the two quantities vary simultaneously such that the number of squares is 
increasing by one while the number of sticks is increasing by three each time. That is, students’ 
attention is on the increments of 1 and 3 that quantify the increase in the number of squares and 
the number of sticks respectively. Also, students are expected to compare the differences (the 
increments of one and three) between the two quantities which might help determine the idea 
that for each difference (increment of one) in the number of squares, there is some other 
difference (increment of three) in the number of sticks. Moreover, students are expected to 
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verbalize what the values of 3, 4, 30, and (30-1) represent given the mathematical sentence 4 +
3 × (30 − 1), an important connection between algebraic and verbal representations. In addition, 
Kaori’s table seems to illustrate the correspondence of increase in number of squares with the 
increase in number of sticks, and her explanation supports that she considers “the way the 
number of sticks increasing…” (Fujii and Iitaka, 2012, Grade 5, p. A103). Therefore, Kaori’s 
behavior seems to underscore MA3 and indicate her covariational reasoning level as 
coordination of values. On the contrary, Takumi does not seem to recognize that for each new 
square there are three more sticks needed. His way of thinking suggests that he seems to focus on 
the number of squares and the “increase” in the number of sticks rather than coordinating the 
amount of change in one quantity with the change in the other as Kaori. Takumi’s behavior 
seems to underscore MA2 which corresponds to gross coordination of values.  

In 6th grade, students are expected to both (i) understand and investigate direct proportional 
relationships and (ii) gain an awareness of inversely proportional relationships by examining the 
situations that involve quantities varying simultaneously (Takahashi et al., 2008). The teachers’ 
guide states that “the quotient of two corresponding quantities remains constant” (Isoda, 2010a, 
p. 155) in the direct proportional relationships which represent “a straight line passing through 
the origin.” (Isoda, 2010a, p. 155). This characteristic is explicitly stated as important to 
distinguish proportional relationships. Teachers are suggested to use “activities such as 
representing on a graph two quantities that vary simultaneously so that they [students] 
understand that if two quantities are in a proportional relationship, the graph representing this 
relationship is a straight line” (Isoda, 2010a, p. 155)  

The task below from 6th grade textbook shows that coordination of values level of 
covariation (up to MA3) aimed to be deepened and continuous covariation (MA4) seemed to be 
triggered. In lieu of space, we do not provide detailed analysis but our account of how students 
might possibly reason.  

 
Figure 4:  What Will the Graph Look Like (Fujii and Iitaka, 2012, Grade 6, p. B100) 

In the task, two continuous variables, time and depth of water, are simultaneously compared 
through using graphical representations. Students might think that the narrower the base area of 
the tank the greater the amount of water poured into the tank in a minute. If a student thinks the 
coordination of depth with amount of time passing (M1), considers the increase in the depth of 
the water with regard to the time (MA2), compares the amounts of changes in depth of the water 
for some amount of time (MA3), and envisions the average rate of change of depth as increasing 
simultaneously with the time (MA4), the student might have continuous covariation level of 
covariational reasoning. However, the action of coordinating the rate of change with the uniform 
increments of inputs (MA4) are not examined through the numerical values of quantities. Thus, 
we claim that the task might be targeted to raise students’ awareness about the rate of change as a 
scaffold for the upcoming grades rather than explicitly fostering MA4 in this task. 

In 7th grade, students are expected to further enhance their understanding of direct and 
inverse proportional relationships in real-life situations. Yet, differently from the 6th grade, the 
direct and inverse proportional relationships is planned to be re-examined through focusing on 
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the simple forms of linear functions  𝑦 = 𝑎𝑥 and reciprocal functions 𝑦 = 8
D
 respectively (Isoda, 

2010b). Differently from 6th grade, students are expected to examine similarities and differences 
between direct and inverse proportion graphs. Moreover, the rationale of the use of proportional 
relationships is explicitly stated as to trigger correspondence and covariation meaning of 
functions in many phenomena in daily life (Isoda, 2010b).  

We share an example from the MI textbook showing direct and indirect proportional 
relationship between two variables and how the continuous nature of their covarying relationship 
is represented visually (see Figure 5).  

 
Figure 5:  Graphing of y=2x (Fujii and Matano, 2012, Grade 7, p. 117-118) and graphing of 

𝒚 = 𝟔
𝒙
 (Fujii and Matano, 2012, Grade 7, pp. 127-129) 

Different integer values of y and x are given for plotting both 𝑦 = 2𝑥  and 𝑦 = H
D
. Students 

are asked to explicitly think about the interval for x values and corresponding y values getting 
smaller and smaller producing a straight line or a curve. It seems that the continuous nature of 
variables is targeted through graphical representations. This way of representing might lay a 
foundation to smooth continuous covariation (corresponding up to MA5), although it is not 
explicitly introduced. 

In 8th grade, linear functions are introduced, and continuous covariation seems to be 
triggered and deepened. Students are expected to examine the changes and correspondences of 
two quantities again with a focus on graphical, algebraic, tabular, and verbal representations. In 
addition, the rate of change for the linear functions (i.e., in the form of 𝑦 = 𝑎𝑥 + 𝑏) is expressed 
as :+5:-

D+5D-
 . Here, the rate of change which equals the constant 𝑎, is expressed as “how much y will 

increase when x increases by 1” (Isoda, 2010b, p. 92). All these focus on relationships between 
amounts of changes in variables suggested that at least MA3 is targeted. Moreover, there is an 
emphasis on the difference between the expressions of equations with two variables and 
functions. When the coordination of values of 𝑦 and 𝑥 is considered for an equation with two 
variables expressed as 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, there is one and only one 𝑦 value for every 𝑥 value if 
𝑏 ≠0. This relationship indicates that 𝑦 is a function of 𝑥 and the equation could be rewritten as 
𝑦 = − 8

I
𝑥 − A

I
  to illustrate the functional relationship explicitly (Isoda, 2010b).  

We present an example from the textbook (see Figure 6) in which the values of temperature 
are decimal numbers not increasing uniformly with uniform integer changes in time. 

 
Figure 6: Temperature change of drinks task (Fujii and Matano, 2012, Grade 8, p. 70) 

Students are asked to represent this situation with a graph on a coordinate system and think 
of the relationships between variables where temperature is a function of time. Students are 
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expected to use tables to express the result of values of variables and placing the values of 
temperature for corresponding units of time on a coordinate system (MA1), verbalize the 
direction of change as increase or decrease (MA2), coordinate the amount of change in 𝑦 with 
the amount of increase in 𝑥 (MA3), and coordinate the average rate of change of the temperature 
with uniform changes in time (MA4). Thus, students are supported to reason on the chunky 
continuous covariation level. Yet, in case students consider the rate of change as an 
instantaneous rate of change, MA5 might also be triggered. In 8th grade, students are also asked 
to compare linear functions (i.e., 𝑦 = 𝑎𝑥 + 𝑏) with proportional equations (i.e., 𝑦 = 𝑎𝑥).  It is 
explicitly explained that translation of the graph of 𝑦 = 𝑎𝑥 on the y axis by the value of 𝑏 
represents 𝑦 = 𝑎𝑥 + 𝑏, where the value of 𝑏 is expressed as y-intercept. Moreover, the use of 
different types of representations and the relationship between them are explicitly presented. 

Discussion and Conclusion 
The findings showed that proportional and functional relationships are presented as 

intertwined with the quantitative and covariational reasoning starting from 4th grade to 8th grade 
in Japanese curricula. Starting from gross coordination of values, the highest level of 
covariational reasoning (smooth covariational reasoning) is aimed to be built in an inclusive and 
iterating way in Japanese curricula. Notably, attending to the developmental nature of 
covariational reasoning (Carlson et al., 2002) mental actions involved in each covariational 
reasoning level has been revisited and deepened at successive grade level. Therefore, Japanese 
curricula illustrate a great model for spiral curriculum, especially for developing the proportional 
and functional relationships throughout the elementary and lower secondary level mathematics. 

The development of the concepts of proportions and linear functions in the curricula are 
answering the calls of research. Particularly, in Japanese curricula, the concepts of functions are 
developed through covariational reasoning at first, then correspondence meaning is shared in the 
textbook after triggering the highest covariational reasoning level iteratively. Researchers argue 
that covariation meaning of functions are more relevant to students’ daily engagement with the 
topic and their use of covariational perspective can lead to the development of correspondence 
view of functions (Thompson, 1994b; Carlson et al., 2002; Oehrtman et al., 2008; Smith, 2003; 
Lloyd et al., 2010). Moreover, as suggested in literature, functions are examined through 
different representations and dynamic situations (e.g., Thomson & Carlson, 2017); the task 
variables get more complex gradually (e.g., Heinz, 2000); the difference between functions and 
equations are presented (e.g., Chazan & Yerushalmy, 2003); the relationship between 
proportional relationships and linear functions are explained (e.g., Lloyd et al., 2011); the 
invariant relationship between variables are introduced as rate of change in dynamic situations 
(e.g., Carlson, 2002); real life situations are used to study proportional relationships and 
functions (e.g., Carlson et al., 2002; Oehrtman et al., 2008); quantities and quantitative 
operations are explicitly introduced (e.g., Thompson, 1994) in Japanese curricula. That is, 
Japanese curricula are designed in a way to bridge the mathematics education literature with 
teachers’ teaching. Lastly, the findings of the study pointed out that Japanese curricula 
attentively focus on not only conceptual understanding but also mathematical thinking in a 
developmental way (e.g., successive development of mental actions). Hence, we suggest 
curriculum developers pay attention to the spiral nature of Japanese curricula. We argue that 
Japanese curricula can be used by teacher educators to study and improve teachers’ covariational 
reasoning. Our analysis also supports Thompson and Carlson (2017)’s argument that Japanese 
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curricula exemplifies how quantitative and covariational reasoning can be integrated in standards 
and textbooks.  
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We previously (Gantt et al., 2023; Paoletti et al., 2021) identified items from the publicly 
released TIMSS 2011 assessments that had potential for students to employ covariational 
reasoning as a solution strategy. In this report, we explore the extent to which fourth-grade 
students’ performance on such items in mathematics differed among 26 nations. Using multi-
level modeling, we conclude that, in general, fourth-grade students were less successful on 
mathematics items for which covariational reasoning was a viable strategy than on items for 
which we could not identify a possible covariational reasoning strategy. However, three 
countries (Finland, Sweden, and the Netherlands) did not follow this pattern. 

Keywords: Assessment, Elementary School Education, Problem Solving  

Coordinating two dynamically changing quantities, or reasoning covariationally (Carlson et 
al., 2002), is a critical skill for students to develop across mathematics and science (e.g., Gantt et 
al., 2023; Panorkou & Germia, 2021; Paoletti et al., 2022; Sokolowski, 2020). Covariational 
reasoning can be closely tied to students’ construction of mathematical representations (e.g., 
Confrey & Smith, 1995; Moore et al., 2013; Stevens, 2018; Wilkie, 2020) and to their making 
sense of particular types of quantitative relationships (e.g., Ellis et al., 2015; Johnson, 2015; 
Thompson & Thompson, 1996). Despite the growing body of research emphasizing the 
importance of covariational reasoning across mathematics and science domains (see Gantt et al., 
2023 for a synthesis), the majority of the research exploring K-12 students’ covariational 
reasoning has focused on small scale qualitative studies. In this report, we address the need to 
explore students’ covariational reasoning quantitatively using a large data set from the Trends in 
International Mathematics and Science Study (TIMSS).  

Since 1995, the TIMSS assessment has been regularly used to measure students’ 
achievement in mathematics and science in 90 countries (NCES, n.d.). TIMSS data has been 
used for international comparisons of student achievement (e.g., Archibold, 1999; Chudgar et al., 
2013; Mejía-Rodríguez et al., 2021; Wang et al., 2012) and has formed the basis for government 
reports and decision-making about STEM education in countries around the world (e.g., NCES, 
2021; Richardson et al., 2020; Thomson et al., 2020).  

The TIMSS assessment is a particularly useful resource to explore students’ covariational 
reasoning as there are indications that such reasoning may be supported differently in various 
countries.  For example, Thompson et al. (2017) explored a large sample of US and Korean 
teachers’ meanings related to constructing graphs. They found large differences between the two 
countries in terms of teachers’ tendencies to exhibit covariational reasoning on tasks that could 
elicit such reasoning. Thompson and Carlson (2017) also described differences in Japanese and 
American textbooks’ approaches to support students’ covariational reasoning (Thompson & 
Carlson, 2017). Hence, by using the TIMSS assessment, we address the need to explore between-
country differences in students’ covariational reasoning. The research question guiding this study 
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is: To what extent do differences exist within and between countries in fourth-grade students’ 
performance on TIMSS mathematics items depending on the item’s potential to elicit a 
covariational reasoning strategy? 

Covariational Reasoning in the TIMSS Assessment 
In this report, we build on and extend our prior work (Gantt et al., 2023; Paoletti et al., 2021) 

where we conducted a content analysis of publicly released TIMSS items from the Grade 4 
Mathematics, Grade 8 Mathematics, Grade 4 Science, and Grade 8 Science assessments based on 
their potential to elicit students’ covariational reasoning. We defined an item as having the 
potential to elicit covariational reasoning (PCR) if we could “1) identify a way a student might 
conceive two changing quantities and 2) determine some solution strategy that could reasonably 
entail covariational reasoning” (Gantt et al., 2023, p. 6). For example, one multiple choice Grade 
4 Mathematics item prompted: “The scale on a map indicates that 1 centimeter on the map 
represents 4 kilometers on the land. The distance between two towns on the map is 8 centimeters. 
How many kilometers apart are the two towns?” (IEA, 2013, p. 12). We classified this item as a 
PCR item because a student could coordinate one-centimeter changes in the map with four-
kilometer changes on land to determine that eight such centimeter changes would result in 32 
kilometers on land. This solution entails reasoning covariationally. However, a correct response 
to this item does not guarantee that a student employed covariational reasoning; for example, a 
student could have used a memorized procedure or randomly guessed the correct answer. 

In Gantt et al. (2023), we categorized approximately one-third of all publicly released items 
as PCR across all four assessments. Particular to this paper, we coded 27 out of the 73 (37%) 
publicly released Grade 4 Mathematics items as PCR. We further organized the TIMSS items 
into content strands across the Grade 4 and Grade 8 Mathematics assessments. Table 1 presents 
the number of PCR items within each Grade 4 content strand. We also reported the number of 
PCR items by TIMSS-identified cognitive domain (Knowing, Applying, Reasoning; Mullis et 
al., 2009). In Grade 4 Mathematics, we identified 6 PCR Knowing items (out of 28, 21%), 10 
PCR Applying items (out of 29, 35%), and 11 PCR Reasoning items (out of 15, 73%). 

 
Table 1: Grade 4 Mathematics PCR Items as Percentage of Total Items by Content Strand 

 
3. Content strand 4. Total 

items 
5. PCR 
items 

6. % 
(PCR/ Total) 

7. Number (Whole 
numbers; fractions & 
decimals) 

8. 29 9. 14 10. 48% 

11. Algebra (Patterns 
& relationships; number 
sentences) 

12. 11 13. 6 14. 55% 

15. Geometry (2- & 3-
dimensional shapes; points, 
lines & angles) 

16. 24 17. 1 18. 4% 

19. Statistics (Reading 
& interpreting; organizing 
& representing) 

20. 9 21. 6 22. 67% 
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Methods 
Our data corpus consisted of the TIMSS 2011 publicly available fourth-grade mathematics 

student performance data (TIMSS 2011 International Database, 2022). We restricted our 
investigation to data from 26 member nations of the Organization for Economic Cooperation and 
Development (OECD). Each code for each student’s response to each item was converted to a 
binary score (correct or incorrect). Because we had only coded the potential for covariational 
reasoning (PCR) for publicly released TIMSS assessment items (Gantt et al., 2023), we removed 
performance data for all other (not released) items from the dataset. Students who completed 
forms of the TIMSS assessment that included no publicly released items were excluded. We 
considered the students who remained in the data set to be randomly selected from among all 
students who took the assessment, since the assignment of forms to students was randomized 
within each classroom. Due to the TIMSS sampling methodology and the distribution of publicly 
released fourth-grade mathematics items within forms of the assessment, students included in the 
data set contained performance data for at least half of the items presented to them.  

We created multi-level (items nested within students) logistic regression models separately 
for each country. The unconditional (intercept-only) model gave the log-odds of an average 
student getting an average item correct. The conditional model incorporated the binary predictor 
of PCR for each item. In this second model, the intercept represented the log-odds of an average 
student getting an average non-PCR item correct, and the sum of the intercept and the coefficient 
for PCR represented the log-odds of an average student getting an average PCR-coded item 
correct. We converted all log-odds to probabilities in our results for ease of interpretation. 
Although a correct answer to a PCR item does not imply that a student employed covariational 
reasoning, we interpret a smaller probability within the PCR category as possibly indicating that 
an average student from that country was less likely to reason covariationally for such a problem. 

Finally, for each country, we conducted an ANOVA test to compare the conditional model to 
the unconditional model to see for which countries the conditional model was a statistically 
significant improvement over the unconditional model. A statistically significant ANOVA test 
indicated that the conditional model significantly reduced the variance of the residuals from the 
data over the unconditional model, meaning that adding the PCR predictor significantly 
improved the model’s predictive capabilities. 

Results 
Table 2 contains conditional model results (as probabilities) for 26 OECD member nations. 
 
Table 2: Probability Results of Conditional Models for 26 OECD Member Nations 
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39. A
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127. J
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n 

128. .
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6 
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5 
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3
1
* 

131. U
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s 

132. .
6
7
2 

133. .
5
9
2 

134. -
.0
80
* 

135. Note: * represents a statistically significant difference at p < .001. Lack of a * indicates the 
difference was not statistically significant at p < .05. 

 
As Table 2 shows, for all the countries in our sample except Finland, the Netherlands, and 

Sweden, the probability of an average student getting a non-PCR item correct exceeds the 
probability of an average student getting a PCR item correct. For nearly all countries in the 
sample, the conditional model is an improvement over the unconditional model and the 
coefficient for PCR in the model is statistically significant (p < .001) and negative. The first 
result shows that analyzing performance data with the PCR status of an item better predicts 
student performance than analyzing the data without this distinction, whereas the second result 
demonstrates that students performed significantly better on non-PCR than PCR items. 

As noted above, three countries do not follow this pattern. For Finland and Sweden, the PCR 
coefficients in the conditional models are not statistically significant, meaning there was no 
significant difference in average fourth-grade student performance on non-PCR and PCR items 
on the mathematics assessment. Unsurprisingly, the conditional model is also not a significant 
improvement over the unconditional model for Finland (p = .377) and Sweden (p = .106). 
Finally, for the Netherlands, the conditional model is a significant improvement over the 
unconditional model (p < .001), but the sign of the PCR coefficient is positive instead of 
negative. The positive coefficient indicates that the average fourth-grade student in the 
Netherlands was more likely to answer a PCR mathematics item correctly than a non-PCR item.  

Discussion 
Our results suggest that, in most of the countries for which we analyzed performance data, 

the average student had a lower probability of getting an average PCR item correct compared to 
a non-PCR item. Although prior research indicates that emphases on covariational reasoning in 
teaching and curricula vary from country to country (e.g., Japan and Korea compared to the US; 
Thompson & Carlson, 2017; Thompson et al., 2017), we found similar differences in how 
students in these three countries performed on PCR and non-PCR items. In other words, although 
the average student in Japan and Korea outperformed the average student in the US on both PCR 
and non-PCR items from the fourth-grade mathematics TIMSS assessment, there are significant 
gaps in performance between these item groups in all three countries. We notice, however, that 
the gaps are smaller in Japan and Korea than in the US, and we intend to conduct follow up 
analyses to determine whether the difference in gaps is statistically significant. 

We note that Finland, Sweden, and the Netherlands, the three countries for which we found 
either no difference in performance on PCR and non-PCR items or better performance on PCR 
items than non-PCR items, are geographically close to each other. We hypothesize that 
differences in written curricula, teacher knowledge, or instructional practices might explain our 
findings. However, an important limitation of this investigation is that the quantitative analyses 
we conducted cannot explain differences, only document them. Further qualitative research will 
be needed to contextualize our findings and possibly explain why these differences occurred. 

We emphasize that the analyses we present here are preliminary, and there are other possible 
explanations for our findings that are not yet addressed. For example, it may be that differences 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 276 

in performance in different content areas or in different cognitive domains are confounded with 
differences in performance on PCR items. We intend to conduct follow-up analyses using just 
the data from items in the Number and Algebra strands and incorporating cognitive domain as a 
separate predictor to address this question. We also will extend these analyses to Grade 4 Science 
and Grade 8 Mathematics and Science items to see if the differences we found persist. Finally, 
we focus on within-country differences in this report and only began to explore relative 
performance differences between countries by noting that some countries do not follow the 
expected pattern. Future analyses will extend and better contextualize our findings. In doing so, 
we hope to determine where students are succeeding in learning to reason covariationally and 
identify best practices from qualitative analyses of curricula and teaching. 
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Drawing on indigenous knowledge that can foster critical thinking and help students become 
active participants in a democratic society, the Trivium Curriculum (D’Ambrosio, 1999) entails 
three main components: literacy (communicative instruments), matheracy (analytical instruments), 
and technoracy (material and technological instruments) aim for the transformation of mathematics 
into a living subject, lying within a broader perspective of learning as a product of the interaction 
and integration among teachers, students, mathematical content, and environmental context (Rosa, 
2010). Through learning activities involving literacy, matheracy, and technoracy, the trivium 
curriculum can incorporate the students' values, cultural knowledge, and perspectives (Niss & 
Højgaard, 2011). For instance, the trivium framework can be applied to teaching mathematics 
while incorporating conventional stories, customs, and viewpoints related to indigenous 
knowledge. It can be made more relevant and approachable by connecting it to students’ cultural 
experiences. 

This poster presentation juxtaposes literacy, matheracy, and technoracy (Rosa & Orey, 2010) 
with a mathematics competency framework (Niss & Højgaard, 2011). The poster will contain 
examples of activities that are rooted in the Trivium and also develop specific competencies such 
as communication competency (literacy), problem handling competency (matheracy), and 
modeling competency (literacy, matheracy, and 
technoracy). 

Figure 1: Connections between trivium curriculum and mathematics competency, adapted 
from Niss & Højgaard (2011) and Rosa & Orey (2015). 

 
This work blends broad categories of indigenous knowledge with specific forms of 

mathematics competency with the goal of encouraging students to examine mathematical activities 
in their sociocultural contexts (Rosa & Orey, 2007) and offer respect to the diverse cultural 
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backgrounds of students (Bassanezi, 2000). We wish to bring more attention to the Trivium 
Curriculum's potential in developing a deep understanding of mathematical concepts and 
operations and applying indigenous mathematical knowledge and reasoning to solve problems. 
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Mathematics teachers make numerous decisions that form lessons that in turn greatly influence 
what students learn. In making these decisions, teachers rely on their curricular reasoning (CR) 
to decide on what mathematics to teach, how to structure their lesson, and what problems or 
tasks to use to achieve their lesson goals. However, teachers differ with respect to the 
sophistication of their CR and the diversity of CR aspects used in their reasoning. In this paper, 
we detail two ways to classify teachers’ CR: a leveled approach to capture the increasing 
sophistication of teachers’ CR, and a heat map approach that highlights the extent to which 
teacher use various CR aspects in their planning. These methods provide stakeholders avenues 
by which CR can be studied and that teachers’ CR abilities can be further developed. 

Keywords: Curriculum; Instructional Activities and Practices; Instructional Vision  

Mathematics teachers make innumerable decisions that shape their lessons and impact 
students’ opportunity to learn. Past research has often focused on teachers, students, and the 
mathematical content as key classroom elements that drive classroom interactions (Cohen & 
Ball, 1999; Cohen et al., 2003), yet research has illustrated the essential role curriculum plays in 
influencing instruction (Stein et al., 2007; Rezat, 2006). Over the past 25 years, mathematics 
education researchers have extensively studied mathematics curriculum and how teachers use it, 
including how curriculum can be educative for both teachers and students. Lloyd et al. (2017) 
defines curriculum as the “written curriculum materials and textbooks...and the resources with 
which students and teachers work most closely in the mathematics classroom” (p. 824). We 
extend the definition of curriculum to include any materials (e.g., written or digital resources) 
that teachers use to plan and enact lessons that support students’ mathematics learning. 

Following current trends in the field, we have come to view teachers as designers who 
engage in a participatory relationship as they work with curriculum (Brown, 2009; Remillard, 
2005). From this perspective, Roth McDuffie and Mather (2009) expanded the work of Shulman 
(1986) on curricular knowledge by exploring the cognitive work teachers engage in while 
working with curriculum. This cognitive work, termed as curricular reasoning (CR), 
encompasses the “thinking processes that teachers engage in as they work with curriculum 
materials to plan, implement, and reflect on instruction” (Breyfogle et al., 2010, p. 308). CR is 
heavily informed by teachers’ knowledge, background, and teaching experience, and is used by 
teachers as they operationalize curriculum and enact decisions with different types of curricula. 
Building on Roth McDuffie and Mather’s (2009) research, Dingman et al. (2021) identified five 
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CR aspects that teachers reason with as they use curriculum to plan and enact mathematics 
lessons. The five empirically identified CR aspects identified in our research are: 1) Viewing 
Mathematics from the Learner’s Perspective (teachers’ reasoning about the assessment and 

anticipation of student thinking and reasoning about the purpose of the task, given their prior 
knowledge about students’ backgrounds and experience); 2) Mapping Learning Trajectories 
(teachers’ reasoning about connections across content in the unit, across units, or across grades); 
3) Considering Mathematical Meanings (teachers’ reasoning about the mathematics for 
themselves or for the student); 4) Analyzing Curriculum Materials (teachers’ reasoning about the 
curriculum, identifying strengths and limitations); and 5) Revising Curriculum Materials 
(teachers’ reasoning about past teaching experiences to make changes to the task or the 
curriculum). Teachers vary in terms of how many CR aspects they reason with while planning 
and enacting lessons. Qualitative findings indicate that these differences in teachers’ reasoning 
influence students’ learning of mathematics (Dingman et al., 2021). 

Much research on teachers’ decisions is based on the Instructional Triangle introduced by 
Cohen et al. (2003), which is used to study interactions among teachers, students, and the content 
under study. However, some researchers (Rezat, 2006; Rezat & Sträber, 2012; Tall, 1986) 
suggest that this focus is too narrow, neglecting other resources that inform classroom 
interactions such as technology and curricula. Our findings demonstrate that curriculum is a 
critical element of teachers’ practice, and that CR is inherent to teachers’ work as they plan and 
enact lessons (Choppin et al., 2018, 2020, 2021; Dingman et al., 2021; Roth McDuffie et al., 
2018). Given the diverse approaches to mathematics provided by various curricula, these 
findings make sense. Our findings also suggests that teachers’ CR influences their decisions and 
students’ learning opportunities. Further investigations should consider curriculum as well as the 
teachers, students, and the content under study. 

To that point, Dingman et al. (2021) propose the Instructional Pyramid displayed in Figure 1 
that expands the Instructional Triangle (Cohen et al., 2003) in order to represent and capture the 
myriad interactions that occur in the instructional environment. Figure 1 illustrates the interplay 
among these four key classroom elements and highlights the aspects of CR teachers employ as 
they reason with these elements. Teachers’ curricular decisions are based upon the classroom 
elements (vertices) and the CR aspects (edges and faces) found in the Instructional Pyramid. 

How and why teachers make these curricular decisions is important to understand, given the 
potentially limited role of written textbooks in determining what is taught, in favor of open- 
source and teacher-developed activities aligned (or purported to align) to standards (Banilower et 
al., 2013). Teachers’ decisions regarding the use of these various resources holds considerable 
influence over students’ opportunity to learn mathematics (Stein et al., 2007). 
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Figure 1: Instructional Pyramid for Curricular Reasoning 
The importance of viewing teachers’ decisions and reasoning through the Instructional 

Pyramid model for CR is based on data from our project that suggests that oftentimes teachers 
reason on more than one edge of the model. Investigating teachers’ CR can elucidate why 
teachers make specific mathematical decisions, such as skipping or reordering lessons, revising 
tasks, or modifying definitions. While some decisions may appear to be inappropriate for a given 
situation, these decisions are likely multi-faceted and nuanced in ways that elude clear notions of 
correct and incorrect, or right and wrong. By determining how and why teachers come to these 
decisions and identifying the aspects of CR teachers reason with most frequently, professional 
developers, teacher leaders, and mathematics teacher educators can build teachers’ capacity to 
reason differently and more robustly about these decisions. 

Our working hypothesis is that teachers who coordinate multiple CR aspects in their 
decision-making provide different learning opportunities for students than those who reason 

with only one or two CR aspects. In the preliminary analysis of data from teachers within our 
project in relation to the Instructional Pyramid, it is apparent that some teachers tend to reason 
with certain CR aspects more than others. In fact, many teachers reasoned with Viewing 
Mathematics from the Learner’s Perspective (Anticipating/Assessing) and Considering 
Mathematical Meanings (Teacher and Student Mathematics) yet used the other CR aspects less 
often. 

However, some teachers reasoned with multiple CR aspects as they made individual 
decisions. This suggests that some teachers may need support to recognize ways in which they 
are reasoning, to understand what they are not attentive to, and to develop productive ways to 
learn how to reason with different CR aspects so as to create different learning opportunities for 
their students. 

To this point, we propose two potential ways to characterize teachers’ CR in terms of its 
sophistication and its diversity. In this paper, we detail these approaches and provide data from 
our work with middle grades mathematics teachers to illustrate ways to capture differences in 
teachers’ CR as well as highlight CR aspects that are most/least used. Data discussed in this 
paper derive from our research question under investigation: What CR aspects do middle school 
teachers reason with as they plan and enact mathematical lessons? See Dingman et al. (2021) for 
detailed discussion of our overall research project. 
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A Leveled Approach to Characterizing CR 
Our first approach to capturing differences in teachers’ CR is a six-level framework that 

works to classify the varying levels of sophistication teachers incorporate as they reason about 
curriculum. This framework aims to capture the degree to which teachers use the various vertices 
and edges depicted in the Instructional Pyramid (see Figure 1) when making curricular decision. 
These six levels are: 

• Level 0: A teacher reasons only with the Reflect and Revise CR aspect. In this case, no 
vertices or edges are used in the reasoning. In these instances, the teacher is implicitly 
reasoning with one or more elements but the reasoning is not explicit. 

• Level 1: A teacher reasons with any single edge of the Instructional Pyramid. In doing so, 
the teacher reasons with one CR aspect and uses only two elements in the decision- 
making process. For example, a teacher reasons only with the Mapping Learning 
Trajectory CR aspect, which connects the two elements Curriculum and Mathematics. 

• Level 2: A teacher reasons with two edges connected by a common vertex on the 
Instructional Pyramid. In doing so, the teacher reasons with two CR aspects that connect 
three elements in their decisions. For example, a teacher reasons with the Considering 

• Mathematical Meaning (TM) and Mapping Learning Trajectory CR aspects, which 
incorporates the elements of Teacher, Mathematics and Curriculum (but no discussion of 
Students). 

• Level 3: A teacher reasons with three edges that form a face on the Instructional 
Pyramid. In doing so, the teacher reasons with three CR aspects that connect three 
elements but does not incorporate the fourth element in their reasoning. For example, a 
teacher reasons with the Considering Mathematical Meaning (TM), Mapping Learning 
Trajectory, and Analyzing Curriculum Materials CR aspects, which connect the three 
elements Teacher, Mathematics, and Curriculum on a complete face. 

• Level 4: A teacher reasons with two unconnected edges on the Instructional Pyramid. In 
doing so, the teacher incorporates all four elements that form the Instructional Pyramid 
but in a manner in which the two edges are not connected. For example, a teacher uses 
the Viewing Mathematics from the Learner Perspective-Anticipating/Assessing (A/A) 
and the Mapping Learning Trajectory CR aspects, which uses all four elements on two 
edges of the pyramid that are unconnected. Note that, even though a teacher is reasoning 
with fewer CR aspects in Level 4 in comparison to Level 3, all four elements are used in 
Level 4 reasoning, as opposed to only three of the four elements used in Level 3. 

• Level 5: A teacher reasons with three or more connected edges on the Instructional 
Pyramid. In doing so, the teacher reasons in a manner that connects all four elements of 
the Instructional Pyramid. For example, a teacher reasons with the Viewing Mathematics 
from the Learner Perspective (A/A) the Viewing Mathematics from the Learner 
Perspective - Intentionality of Task (IT), and the Mapping Learning Trajectories CR 
aspects, connecting all four elements in a path around the edges of the pyramid. 

 
As part of our research, we collected interview data from 15 middle grades teachers as they 

planned instruction for a unit on geometric transformations. These teachers were given the 
geometric transformations unit from the UCSMP series (Benson et al., 2009) and used this 
curriculum as the basis for planning their grade 8 unit pertaining to geometric transformations 
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(reflections, rotations, translations, and sequences of transformations). This topic was chosen as a 
content area that had traditionally appeared in secondary mathematics but that had now emerged 
in the grade 8 curriculum after the widespread adoption of the Common Core State Standards for 
Mathematics (CCSSM). The UCSMP unit on geometric transformations was chosen because of 
its unique approach to geometric transformations to construct the definition of congruence, 
which was rarely seen in past state standards but is now used in CCSSM. Teachers were 
interviewed before and after teaching lessons with the UCSMP curriculum. These interviews 
were partitioned in initial pass coding according to teachers’ mathematical decisions that 
emerged during the pre- and post-interviews and then coded for the various CR aspects seen in 
Figure 1. The codes for each decision (N) were then analyzed and classified by the levels 
described above. Our analysis illustrated considerable differences in teachers’ levels of reasoning 
when planning and reflecting upon their curricular decisions. We share the results from two 
teachers—Jill with 12 years of teaching experience, and Cathy with 8 years of teaching 
experience—to highlight these differences in Table 1. 

Table 1: Breakdown by level of teachers’ CR 
 

Teacher N Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 
Jill 161 10 

(6.2%) 
104 
(64.6%) 

36 
(22.4%) 

3 
(1.9%) 

1 
(0.6%) 

7 
(4.4%) 

Cathy 281 3 
(1.1%) 

120 
(42.7%) 

91 
(32.4%) 

6 
(2.1%) 

15 
(5.3%) 

46 
(16.4%) 

 
As seen in table 1, Cathy used a greater percentage of higher-level CR (levels 4 & 5) when 

making decisions than Jill. Further analysis of the data revealed trends on which vertices and 
edges each teacher uses most when making decisions. To provide an illustration for one of these 
teachers, 58% of Cathy’s Level 1 instances were on the Viewing Mathematics from the Learner 
Perspective (A/A) edge connecting the Student and Teacher elements, while nearly 70% of 
Cathy’s Level 2 codes involved either the Student or Teacher element as the connector between 
the two CR aspects used in her reasoning. However, Cathy’s Levels 3 and 4 instances saw an 
even balance across the four elements (student, teacher, mathematics and curriculum), while her 
Level 5 instances contained a heavy emphasis on either Mathematics or Curriculum. This led us 
to conclude that Cathy tended to reason more about the Student and Teacher elements in her 
instructional decisions, while her limited higher level reasoning involved her expanding her 
focus to the Mathematics and Curriculum elements. 

Using Heat Maps to Identify Use of CR Aspects 
Our second approach to analyzing teachers’ use of CR aspects involved the utilization of heat 

maps. After collecting and analyzing the pre- and post-interview data, we compared the 
frequency of reasoning with each CR aspect to the total number of decisions made by individual 
teachers to calculate a percentage of use for each CR aspect by teacher. Because teachers used 
multiple CR aspects to make decisions or teachers did not provide reasoning for some decisions, 
the percentages do not add to 100%. These CR percentages were used to create heat-map models 

- a graphical representation where data values are labeled with cool and warm colors. 
Warmer colors signify that the teacher reasoned with the CR aspect often, while cooler colors 
signify that the teacher reasoned with the CR aspect less often. Table 2 displays the scale we 
used to design the data-generated heat-maps. We determined that five colors allowed us to 
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differentiate among teachers more easily than three colors. We also note that green is the optimal 
range because if teachers reasoned with a CR aspect over 45% of their decisions, this often 
limited their use of other CR aspects. Using the Instructional Pyramid model of CR we 
developed a data-generated model for each teacher. 

 
Table 2: Color Scale for Heat-Map Models 

 
 Curricular Reasoning Percentage 

Purple 0-15% 
Blue 15.01-25% 
Green 25.01-45% 
Orange 45.01-55% 
Red 55.01%+ 

Data-Generated Models 
Our goal in creating the data-generated models for the teachers participating in our study was 

to highlight similarities and differences in reasoning and identify CR aspects that may not be 
used as often as others. This led to implications for teachers, teacher educators, and professional 
developers. A few notable patterns emerged when comparing the data-generated models across 
all teachers. First, we found that for 91% of the teachers in our study, the CR aspect Viewing 
Mathematics from the Learner Perspective (IT) was used the least-often in their decisions 
regarding their planning and enacting of mathematics lessons. These decisions connect the 
student and curriculum aspects of the Instructional Pyramid model of CR. Secondly, we found 
that 74% of our teachers used the CR aspect Viewing Mathematics from the Learner Perspective 
(A/A) the most often in their reasoning, with the remaining 26% of teachers using the CR aspect 
Considering Mathematical Meaning (TM) the most often. Both of these CR aspects are 
represented on the front face of the Instructional Pyramid of CR, connecting the elements 
teachers and students, and teachers and mathematics respectively. Importantly, the CR aspects 
with the highest use do not connect the elements of teacher, student, or mathematics to the 
curriculum while the CR aspect with the lowest use has the curriculum connection. In fact, 
across all these data, the majority of teachers reasoned with CR aspects on the front face of the 
Instructional Pyramid of CR (i.e., Viewing Mathematics from the Learner Perspective (A/A) and 
Considering Mathematical Meaning (TM/SM)) with greater frequency than the CR aspects 
connected to curriculum (i.e., Viewing Mathematics from the Learner Perspective (IT), 
Analyzing Curriculum Materials, and Mapping Learning Trajectory). These patterns have 
potential implications for professional development of teachers and pre-service teachers. 

Figure 3 displays data-generated models for two teachers in our study that highlight extremes 
to show the range in our data. Helen (left) was an example of a teacher in the mid-range with five 
of the six CR aspects in the green and the sixth being close to the less extreme mid-range (blue). 
Vance (right) was an example of a teacher who reasoned with fewer CR aspects. The majority of 
teachers’ models were more similar to Vance than Helen, with more variety in the colors on the 
model. In fact, only 17% of the teachers’ models had four or more CR aspects in the green mid- 
range. However, with all but one CR aspect outside of the mid-range, Vance displayed a more 
varied CR use with the more extreme-ranges (i.e., purple, red) present than many of the other 
models. We found that the majority of teachers (52%) had at least half of the six CR aspects in 
the green mid-range. The data were reasonably centered around the green mid-range. 
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Figure 2: Two Teachers’ Heat-Maps to Represent Their Curricular Reasoning 

Implications/Conclusion 
Using our two ways we can see how teachers are using their CR in two different ways. In the 

leveled approach, we found that teachers reasoned most often with CR aspects connecting the 
elements of teacher, student, and mathematics on the Instructional Pyramid, but reasoned much 
less frequently with those connected to the curriculum vertex on the pyramid. In the heat-map 
approach, we found that teachers reasoned most often with the Viewing Mathematics from the 
Learner Perspective (A/A) and Considering Mathematical Meaning (TM) as they planned and 
enacted lessons. 

Both ways highlighted above provide different and significant approaches to characterize 
teachers’ CR. The leveled approach allowed for the examination of the sophistication of 
teachers’ reasoning. As the levels of reasoning increased, teachers incorporated more of the four 
classroom elements (Teacher, Student, Mathematics, Curriculum) represented as the vertices on 
the Instructional Pyramid as well as more of the CR aspects represented as the edges on the 
Instructional Pyramid. As stated previously, our working hypothesis is that teachers who 
coordinate multiple CR aspects and subsequently focus their attention on greater numbers of 
elements provide different learning opportunities for students than those who reason with only 
one or two CR aspects and subsequently fewer elements. The leveled approach provides a 
method to examine how often teachers reason with greater sophistication (more CR aspects and 
elements). On the other hand, the heat map approach allows for a detailed analysis of how often 
teachers use different CR aspects. In the process, teachers can see the CR aspects that figure 
most prominently in their reasoning as well as the CR aspects used least often. To that point, the 
heat map approach can be used to provide support to teachers in developing their abilities to 
diversify their reasoning in order to coordinate more CR aspects into their decision making. 
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While both approaches provide more information about a single teacher, these findings have 
implications for teachers, teacher educators, and professional developers. The first is that current 
professional development and pre-service education appear to be developing teachers’ ability to 
reason with Viewing Mathematics from the Learner Perspective (A/A) and Considering 
Mathematical Meaning (TM) as those two CR aspects are more widely used by teachers in our 
study. In the heat-map models these were the CR aspects that were most often in the warm colors 
(i.e., red and orange) on teachers’ models. This suggests that teachers are reasoning with these 
aspects often. In our leveled model, we also found that these CR aspects are the ones that 
connect the elements of teacher, student and mathematics. Second, teachers’ reasoning with the 
other CR aspects that connect curriculum in the Instructional Pyramid: Analyzing Curriculum 
Materials, Mapping Learning Trajectories, and Viewing the Learner Perspective (IT) were not as 
widely used. This has implications for students as their teachers are generally reasoning less with 
the element of curriculum as they prepare and enact lessons. These results may not be surprising 
because professional developments have primarily focused on making decisions and reasoning 
from the front face of the Instructional Pyramid. We believe these ways of reasoning are 
important and should remain a key part of teacher education and professional development. 

Therefore, we recommend that teacher educators and professional developers include explicit 
activities and task that encourage teachers to make decisions and reason with the other CR 
aspects that include curriculum as all CR aspects are important to provide the best possible 
learning opportunities for students. 

These findings also have implications for teacher educators and professional developers, 
informing content to be taught. Based on initial work, we propose that the Instructional Pyramid 
model can be used to examine how teachers reason with the classroom elements and CR aspects 
discussed previously. This can allow stakeholders to analyze the factors and reasons that shape 
teachers’ decisions as they plan and implement mathematics lessons. The Instructional Pyramid 
model can also be used as a self-assessment for teachers to identify strengths and weaknesses in 
their CR. Through the use of both the leveled approach and the heat map approach, teacher 
educators can support teachers’ continuing development of the sophistication and diversity of 
their CR. 
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Fifth-grade mathematics textbooks from the five highest- and five lowest-income school districts 
in the United States were analyzed for cognitive demand in terms of level of verbs used 
according to Bloom’s Revised Taxonomy. Verbs that appeared most often were the three lowest 
levels of the six verb categories. The results are encouraging from an equity standpoint but 
discouraging in terms of cognitive expectations placed on students in school mathematics. 

 
Keywords: Elementary School Education; Curriculum; Equity, Inclusion, and Diversity; 

Math Textbooks; Cognitive Complexity; Quantitative Text Analysis 
The purpose of this study was to investigate the relationship of school districts’ economic 

status to the cognitive complexity of adopted fifth-grade mathematics textbooks. Teachers tend 
to associate students from low socioeconomic backgrounds with lower intelligence (Rist, 2000), 
and teachers’ beliefs can shape their instructional practices in mathematics (e.g., Beswick, 2012; 
Francis, 2015; Stipek, 2012). In many cases textbook selection is done by committees comprised 
of classroom educators and community members often representing particular interest groups 
(Watt, 2009). Textbook selection is thus intentional and complex. 

 

Methods 
In line with other studies (e.g., Al-hasanat & AbdRabbeh, 2016; Assaly & Smadi, 2015; 

Upahi & Jimoh, 2016), a Bloom’s-type taxonomy was used to analyze the cognitive complexity 
of mathematics textbooks. Fifth-grade mathematics texts were obtained from the five most and 
five least economically affluent U.S. school districts, as defined by median household income. 
They were scanned to PDF and optimized using Adobe Acrobat Pro DC software. Verbs in the 
sample texts were quantified Using NVivo qualitative data analysis software and coded using 
Stanny’s (2016) classification system that aligns with the categories in Bloom’s Revised 
Taxonomy: Remember, Understand, Apply, Analyze, Evaluate, and Create. A chi-square test 
was used to determine whether elementary mathematics textbooks used by lower- and higher-
income school districts differ in level of cognitive demand, as measured by verb choice. 

 

Results and Implications 
Results indicate that a significant relationship does not exist between school district 

economic status and cognitive complexity of adopted mathematics textbooks. This might 
indicate limits in the effect of median household income on textbook selection or of the small 
study sample. Analysis showed that Application (Apply) verbs tended to appear most often in the 
texts, followed by Understand or Knowledge (Remember) Verbs. As these are the three lower-
cognitive demand verbs, greater cause for concern might lie in cognitive demand of elementary 
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mathematics texts in general, rather than in differences by school district economic status. 
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Mathematics curricula are often the primary resource used in the teaching and learning of 
mathematics–in particular, they represent mathematical knowledge for teachers and students. 
Yet, there seems to be a discrepancy between the curricular materials written for teachers and 
students (e.g., more variety in the semiotic choices in text provided for teachers than for 
students). This paper illustrates a way to compare the language written for the teacher and the 
student in curricula. Drawing on the social semiotic theory known as systemic functional 
linguistics (SFL), we examine what meaning potentials can be associated with the exchanges of 
knowledge proposed in mathematical text. Examining a Unit on Similarity in an online 
mathematics curriculum widely used in the United States, the paper explores how the semiotic 
systems in text presented for the teacher and student may impact the students’ opportunity to 
learn and pose challenges in the instructional exchange between teacher and student. 

Keywords: Curriculum, Geometry and Spatial Reasoning, Instructional Activities and Practices, 
Communication 

Background and Theoretical Framing 
Brousseau (1997) proposed that the relationship among teacher, students, and mathematics is 

mediated by a didactical contract, a set of tacit responsibilities that bind the teacher, students, and 
content. For example, the contract makes the teacher responsible for students’ acquisition of 
knowledge at stake and the students responsible for engaging in the work the teacher organizes 
for them to acquire that knowledge (Herbst & Chazan, 2012). Similarly, in an instructional 
system, “a teacher has the responsibility to organize and sustain activities for students in which 
the work that students do can be described by appealing to a culturally current representation of 
the knowledge at stake” (Herbst & Chazan, 2012, p. 605). Among the work a teacher needs to do 
is manage instructional exchanges, which involves equating or reconciling seemingly unequal 
representations of knowledge, such as the work the students did on one or more tasks and the 
knowledge at stake in those tasks. The management of an instructional exchange requires 
teachers not only to apply the didactical contract to the task at hand but also identify what the 
students need to do and figure out what aspects of the mathematical task point to the knowledge 
at stake (Herbst & Chazan, 2012). The statement of the knowledge at stake in an instructional 
exchange makes use of various elements of the mathematical register but managing instructional 
exchanges also “requires the teacher to engage in serious interpretation of much more opaque 
signs in the realm of the students’ work” (Herbst & Chazan, 2012, p. 606). Mathematics 
curricula are one important medium that guides teachers on how to engage in instructional 
exchanges.  

Mathematics curricula play a crucial role in the teaching and learning of mathematics. 
Textbooks are often the primary resource used by teachers to plan and deliver instruction and 
students also rely on textbooks as a reference and study guide (Reys et al., 2004). Mathematical 
concepts in textbooks are written in a voice that is appropriate for students (Remillard, 2000) and 
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teachers are often regarded as mediators of the text (Love & Pimm, 1996). Given the prominent 
role of mathematics curricula, “making a wise selection is crucial because it determines the 
scope of mathematics that students experience and, to some extent, how teachers present the 
material and how students learn” (Reys et al., 2004, p. 65). While studies on the use of textbooks 
or curricula focus on the teacher or student, there is a lack of attention to the interactions between 
the teacher and student when using mathematical texts (Rezat, 2011) and the meanings construed 
in texts addressed to the teacher and students. As mathematical curricula often provide separate 
instructions for the teacher and student, semiotic resources in the teacher-facing and student-
facing instructions may differ, allowing for different experiences, meaning-making, and shaping 
how the teacher enacts their responsibility in an instructional exchange. Specifically, the 
language choices made in the text addressed to students may differ from those made in the text 
addressed to teachers and both of them may mediate when and how the teacher affects 
instructional exchanges. An analysis of the different language choices in these texts can provide 
us a first approximation at what work might exchange for what knowledge claims in instruction. 
The goal of this paper is to illustrate this way of using curriculum resources to analyze a priori 
the instructional exchanges that might take place in classes in which these resources are used. 

Methods 
Context 

We analyze a Geometry Unit on Similarity from the Illustrative Mathematics (IM) 
curriculum for grades 9-12 (Illustrative Mathematics Certified, 2023). Illustrative Mathematics is 
an independent nonprofit that provides high-quality K-12 instructional materials, rigorous, 
standards-aligned content, and engagement in mathematical discussion. The Unit on Similarity 
has students learn the definition of similarity in terms of dilations and rigid transformations. 
Students prove that if triangles have three pairs of congruent corresponding angles and three 
pairs of corresponding sides in a proportional relationship, the triangles are similar. They also 
draw conclusions about figures they have proven to be similar, such as, corresponding angles are 
congruent and corresponding sides are in a proportional relationship.  

In terms of structure, the unit consists of 16 lessons organized into four sub-sections: (A) 
properties of dilations, (B) similarity transformations and proportional reasoning, (C) similarity 
in right triangles, and (D) putting it all together. There is also a modeling prompt, called Scaling 
a Playground, that follows the first lesson. The modeling prompt provides students with an 
opportunity to choose and use appropriate mathematics and statistics to analyze empirical 
situations, helping students understand that they can use mathematics to better understand things 
they are interested in. During the task, students formulate a model, which can be a geometric, 
graphical, tabular, algebraic, or statistical representation that describes the relationships between 
variables in the situation.  

The IM curriculum provides text that is for the teacher (e.g., labeled under “teacher-facing”) 
and text that is for the student (e.g., labeled under “student-facing”). Each of the 16 lessons has a 
set of teacher-facing learning goals and student-facing learning goals. The teacher-facing 
learning goals describe mathematical, pedagogical, and language goals of the lesson for a teacher 
audience. While these goals are intended to be read by teachers, the actor they allude to is the 
students. For example, if a goal reads, “Comprehend that dilations take angles to congruent 
angles” (see Figure 1a), it construes for the teacher the meaning that students are ultimately to be 
able to comprehend that dilations take angles to congruent angles. In contrast, the student-facing 
learning goals are written in the first person, often starting with “let’s” and “I can,” and invite 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 293 

students to the lesson of the day. Likewise, the modeling prompt distinguishes sections for the 
intended audience, calling sections “teacher instruction” or “student facing statements.” 
Data Analysis 

We conducted an analysis of discourse that seeks patterns in linguistic data by drawing on a 
meaning-focused theory of language, systemic functional linguistics. In particular, we draw on 
Halliday and Matthiessen’s (2004) system of Transitivity in lexicogrammar, that states a clause, 
as a token of ideational meanings (i.e., goings-on in the world) can be analyzed by identifying 
processes, participants, and circumstances, which are “organized in configurations that provide 
the models or schemata for construing our experience of what goes on” (p. 175). The ideational 
metafunction of text construes meaning through the different types of processes within the 
Transitivity system. Analyzing the domain of experiential meaning in mathematics is helpful in 
understanding how teachers and students can be engaged with and connect to the learning 
experience (O'Halloran, 2005).  

Ideational meanings are construed through choices of processes, which can be Mental, 
Material, Relational, Existential, Verbal, Behavioral, or Operational. Processes are typically 
realized with verb choices in simple clauses but in more complex clauses they may be 
nominalized. Mental (sensing) processes may be realized with verb choices such as consider or 
think, material (doing) processes with verb choices such as draw or project. Relational clauses 
relate two separate entities, they “characterize and identify” (Dimmel & Herbst, 2015, p. 166) as 
in the statement of a mathematical definition. Operational processes, a process type specific to 
mathematical discourse identified by O'Halloran (2005) are often realized by choices of 
arithmetic and algebraic operation symbols or by the “words that in mathematics mean an 
operation” (Dimmel & Herbst, 2015, p. 167) or symbols that represent a mathematical action or 
function (e.g., a raised number or letter next to a letter or number indicating the operation “raised 
to the … power”). Existential processes show that “phenomena of all kinds are simply 
recognized to ‘be’” (Halliday & Matthiessen, 2004, p. 171). Existential processes stipulate the 
existence of something (Dimmel & Herbst, 2015). For example, in a proof context, the word ‘let’ 
in “let O be the center of a dilation” tells the student that there exists an entity, O, that they can 
utilize in doing the proof. 

The system of Transitivity “offers a range of options for ideational (content) meaning that is 
comprehensive of the ways language varies in presenting experience: as doing, sensing, saying, 
or being” (Schleppegrell, 2013, p. 22). For example, Verbal processes are enacted in the form of 
‘saying.’ Behavioral processes are enacted in the form of partly ‘doing’ and partly ‘sensing,’ 
projecting the outer reflection of the consciousness (e.g., observe). Identifying the ideational 
meaning that can be represented in the form of processes, we compare teacher-facing text and 
student-facing text presented in (1) the lesson goals and (2) the unit’s modeling prompt. The 
lesson goals span across 16 lessons, allowing us to see patterns in the text across lessons that 
vary in the ways they position the intended reader (the teacher or the student). Looking at the 
modeling prompt offers another perspective on how text is presented to the teacher and the 
student, how their interaction is supported, and how printed language may stand on its own or be 
supported by other modalities (e.g., visual, technological). In particular, we identify meanings in 
the text construed through choices from the transitivity system. In our analysis, we first 
determine the form and quantity of processes in the teacher-facing text and student-facing text 
within the lesson goals and modeling prompt. Subsequently, we compare the processes in each 
lesson or prompt between the teacher- and student-facing texts, determining whether the 
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processes are more or less aligned with similar meanings. Through the analysis of transitivity 
patterns, we consider the following questions: 

1. To what extent do the teacher-facing text and student-facing text draw on processes with 
similar meanings? 

2. What patterns can we observe in the processes used within and across the teacher-facing 
and student-facing texts? 

Findings 
The analysis of transitivity patterns displayed a contrast between the teacher- and student-

facing texts in the learning goals: More use of the mental (cognizing) processes in the teacher-
facing goals and more use of the material and verbal processes in the student-facing goals. The 
teacher-facing goals are represented in statements that start with verbs that indicate what the 
students should be able to know by the end of the lesson. In terms of instructional exchanges, 
these instructional goals refer to the claim that the teacher may be able to make on behalf of the 
student based on what the teacher sees the students doing. If a teacher-facing goal says, 
“Comprehend that dilations take angles to congruent angles” (Figure 1a), the teacher is expected 
to ensure that students mentally understand this idea, as comprehend realizes a mental process. 
At the same time, the corresponding student-facing goal says, “Let’s dilate lines and angles” 
(Figure 1b), representing the work students will do as taking action in the material world, doing 
the dilation. The distinction between the mental process in the teacher-facing goal and the 
material process in the student-facing goal is also highlighted in the difference between the 
words “dilation” and “dilate”. These are key technical terms in this unit that identify an 
important concept students will use to justify that triangles are similar. We can see a distinction 
between “dilation” in the teacher-facing goal and “dilate” in the student-facing goal by how often 
each form (verb or its nominalization) is used and which transitivity process co-occur with their 
use. 

 

Comprehend that dilations take angles to 
congruent angles. 

Prove that a dilation takes a line not 
passing through the center of the dilation to a 
parallel line, and leaves a line passing through 
the center unchanged. 

Let’s dilate lines and angles. 
I can explain what happens to lines and 

angles in a dilation. 

Figure 1a: Teacher-facing Goals Figure 1b: Student-facing Goals 

Figure 1: Learning Goals for Lesson 4: Dilating Lines and Angles 
 
“Dilation” appears five times in the teacher-facing goals across the unit. For all five clauses, 

“dilation” is introduced by a mental process (i.e., comprehend, prove, Figure 1a), emphasizing to 
the teacher that they should be supporting students’ understanding of and perception on the 
concept of dilation. In contrast, “dilation” appears only once in the student-facing goal when 
students are asked to verbalize (i.e., explain, Figure 1b) what happens in a dilation. “Dilate,” the 
verb form and material process, is more commonly shown in the student-facing goals, appearing 
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four times while appearing not once in the teacher-facing goals. In a general sense, the teacher is 
being asked to focus on having students sense what a dilation is while the student is being asked 
to do the dilation, or to dilate, or to narrate what they did (or verbalize). It then becomes the 
teacher’s responsibility to not only ensure that the students dilate different properties of figures 
but also to interpret such actions as comprehending the properties of dilation what it means for 
dilations to work. Whereasthis is evidence of how nominalization supports the development of 
mathematical knowledge that is more concise and advanced, it packs within it material actions 
that may but also may not always entail all the properties attributed to dilations.    

Relational processes play the important role of describing the qualities and characteristics of 
entities. In the context of a geometry curriculum, relational clauses are essential for making 
meaning as they provide a way to describe and establish the properties of and relationships 
among geometric objects. The relational processes in the teacher-facing and student-facing goals 
convey similar meaning but are represented differently. In particular, the relational clauses in the 
teacher-facing goal are presented as complex noun phrases in the student-facing goals. For 
example, a relational clause in the teacher-facing goal has an embedded clause that is linked by 
‘are similar to’ the noun group, the original right triangle: “the two smaller right triangles formed 
when a right triangle has an altitude drawn to its hypotenuse are similar to the original right 
triangle” (Figure 2a). In the student-facing goal, two complex noun phrases describe what is to 
be explored and found: “right triangles with altitudes drawn to the hypotenuse” and “similar 
triangles formed by the altitude to the hypotenuse in a right triangle” (Figure 2b). We see that the 
complex noun groups in the student-facing goals are more concise and simplified. Yet, they are 
more complicated in parsing the mathematical meaning, requiring more work from the students 
to unpack them. 

The material processes in the student-facing goals (i.e., explore, find, Figure 2b) provide a 
concrete basis for understanding what is presented to the teacher in a relational process that 
would otherwise be difficult without an example or a visual support. Through exploration, 
students can physically draw altitudes on right triangles and see how they relate to the 
hypotenuse. In addition, by finding similar triangles, students can see how similar triangles are 
formed by right triangles with altitudes drawn to the hypotenuse. As the material processes 
support students’ concept of similar triangles in a more tangible way, the teacher-facing goal 
presents the same meaning but highlights the cognitive action through the use of the mental 
process (i.e., justify, Figure 2a). The mental process is important because it involves cognitive 
processes such as critical thinking and reasoning, deepening the students’ understanding of the 
properties of similar triangles. The mental process also shows that the teacher supports students’ 
learning from doing to sensing the relationship between the original right triangle and the two 
smaller triangles. 
 

Justify that the two smaller right triangles 
formed when a right triangle has an altitude 
drawn to its hypotenuse are similar to the 
original right triangle. 

Let’s explore right triangles with altitudes 
drawn to the hypotenuse. 

I can find similar triangles formed by the 
altitude to the hypotenuse in a right triangle. 

Figure 2a: Teacher-facing Goals Figure 2b: Student-facing Goals 

Figure 2: Learning Goals for Lesson 13: Using the Pythagorean Theorem and Similarity 
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Operational processes are helpful in elaborating the material process because the operational 
processes articulate steps to carry out a particular action. For example, the operational process of 
multiplication in the teacher- and student-facing goals (Figure 3) supports the elaboration of the 
material process of dilating. While the relationship between the operational process of 
multiplication and material process of dilation remains the same, it is represented differently in 
the teacher-facing and student-facing goals. In the teacher-facing goal, the operational process of 
multiplication is directive; the teacher may instruct the students to determine that dilating results 
in multiplying all lengths (Figure 3a). The focus is on the process of understanding how dilating 
works and recognizing that dilation is equivalent to the sequences of operations. On the other 
hand, in the student-facing goal, the operational process of multiplication will come to be known 
and the student will understand the concept, knowing that when figures are dilated by a scale 
factor of k, all lengths in the figure are multiplied by k (Figure 3b). The operational process in 
both teacher- and student-facing goals is projected by the mental process (i.e., determine, Figure 
3a; know, Figure 3b), comprehending that dilate is multiply. The mental process reports that 
students are able to apply multiplication when thinking of dilations. For example, students can 
understand that by multiplying all lengths in the figure by a scale factor of k, dilating is able to 
change the size and dimensions of the figure but maintain its shape and proportions. 

 

Determine that dilating by a scale factor 
of k multiplies all lengths by k 

I know that when figures are dilated by a 
scale factor of k, all lengths in the figure are 
multiplied by k 

Figure 3a: Teacher-facing Goals Figure 3b: Student-facing Goals 

Figure 3: Learning Goals for Lesson 3: Measuring Dilations  
 

In the modeling prompt, the existential process especially plays an important role in setting 
the context. The existential processes in the teacher- and student-facing sections introduce the 
diagram (teacher is to tell students “this is a diagram of a playground”, Figure 4a; students are 
given “Here’s a playground for a school of 360 children in Springfield”, Figure 4b). The purpose 
of the existential process here is to introduce the diagram as a model of the actual playground 
(Figure 4a).  

In the student-facing section, there is no specific goal set for students that indicates the 
processes they will engage in. Instead, they are given a scenario about the playground with the 
diagram and asked to answer questions (i.e., “how many?”, “how much?”, Figure 4b) that 
prompt their solving the problems and making sense of the modeling task. The teacher-facing 
section (Figure 4a) guides teachers to engage in material and verbal process (i.e., display, ask, 
invite, tell, clarify) so that students can engage in the material process (i.e., use) and ultimately 
the mental processes (i.e., wonder, notice) as they “share” (verbal process). Teaching-facing 
components also emphasize the mental processes, such as considering how students will 
experience something when it happens (e.g., “notice”). In the student-facing instruction, details 
on the hypothetical context are provided, placing more emphasis on the existential processes.  
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Display this image of the original 
playground for all to see: 

 
Ask, “What do you notice? What do you 

wonder?” After some quiet think time to 
notice and wonder, ask students to share 
with a partner. Then invite students to share 
what they noticed and wondered with the 
class, and record the responses for all to see. 

Then display this diagram: 

 
Tell students that this is a diagram of a 
playground, and they will use it to design a 
new playground to fit different constraints. If 
needed, clarify that the fence of the 
playground only goes around the perimeter, 
not along the segments. 

Here’s a playground for a school of 360 
children in Springfield. 

 
1. The fence around the playground costs 

90 dollars per 50-foot roll. Laying the grass 
across the area costs 400 dollars per 500 
square feet. How much did the fencing and 
grass for this playground cost to build? 

2. How many kids per square yard can 
Springfield’s playground hold? 

3. There’s a new playground going up in 
nearby Wintermeadow. Wintermeadow has a 
budget about 3 times greater than 
Springfield’s. Recommend a playground 
shape and size that would fit Wintermeadow’s 
budget and hold at least 3 times as many kids 
as Springfield’s playground at the same 
density of kids per square yard. How many 
kids can your playground hold? 

Figure 4a: Teacher Instruction  Figure 4b: Student-facing Statement 

Figure 4: Modeling Prompt: Scaling a Playground 

Discussion 
The different semiotic resources used in the teacher- and student-facing components of 

curricula provide opportunities for researchers to anticipate how teachers and students make 
meaning of mathematical concepts and whether any differences in the meanings construed can 
be expected. The Illustrative Mathematics curricular texts showcase an intriguing relationship 
between the articulation of goals for teachers and students. While teachers are directed to 
approach these lessons with the mental processes students are to develop through the unit 
foregrounded, students are focused on the practical aspect of doing, from a material standpoint. 
Even when the student’s goal is to know something, the expression of what they are to know 
focuses on the material processes involved in dilation. The focus on the doing process, although 
it is emphasized in the students’ learning goals, is only a partial understanding of their learning 
experience. This raises questions about whether the objectives for students’ learning should 
involve more reflection around the concepts of dilation, and whether teachers require a better 
understanding of how they can connect the material processes students engage in with the 
cognitive outcomes that are expected. The discourse facing students often fails to represent their 
mental activities, making it challenging for them to explain their approach to a task. This issue is 
especially important in current approaches to mathematics, where a focus on developing 
students’ thinking is critical for advanced learning. While the field recognizes the importance of 
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justification and proof in mathematics, mathematics teachers need guidance in supporting 
students to articulate the ways they are thinking through meaningful classroom discourse.  

Effective mathematics instruction requires a continuum of modes, including spoken, written, 
stand-alone, and visual support, to construct activities that meet students’ diverse needs. 
Collaborative interaction, allowing for meaning to be construed between individuals rather than 
within, is a key way teachers can support students’ movement between doing and thinking 
through talk (Gibbons, 2003). Teachers can model this by thinking aloud themselves to show 
how material processes can be articulated in what students achieve in more abstract language, as 
implying a cognition of sorts. This movement between the observed and the inferred, encoded in 
language by the choice of material and mental processes can support students to communicate 
their thinking for others to engage with (Herbel-Eisenmann et al., 2013). Through such efforts, 
teachers can help their students develop a deeper understanding of mathematical concepts and 
communicate their thinking effectively. The instructional exchange between the teacher and 
students involves building on the language students bring and adding the technical and abstract 
languages unique to mathematics to enhance students’ understanding of mathematical concepts.  

Addressing the discrepancy in texts between the teacher- and student-facing goals can 
improve the quality and specificity of curriculum materials and equip teachers to better support 
students. The teacher can report what the student is doing using the material processes and align 
instructional goals with mental processes, enabling the teacher to manage the instructional 
exchange. The management of an instructional exchange not only complies with the didactical 
contract but also highlights how students are expected to demonstrate the specific knowledge at 
stake. The teacher has the responsibility to engage students in actions that instantiate the 
processes in the instructional goals, regardless of what students actually think, and help develop 
concrete understanding of abstract mathematical concepts, but then the articulation of what 
students have learned needs to be further supported. The next logical steps in capitalizing on this 
understanding would be to conduct research that addresses how teachers can become more aware 
of the role of language in positioning them and their students to engage in discourse. By 
conducting such research, researchers can work towards ensuring that curricular texts effectively 
support instructional exchanges and high-quality mathematics education that meets students’ 
individual needs and builds on their languages. 
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In the U.S., state guidance to schools in response to the COVID-19 pandemic was politicized. We 
used state-level political affiliation to explore whether access to curricular resources differed 
pre-pandemic or during pandemic remote teaching and teachers' reported control over 
curricular resources during pandemic teaching. We found that pre-pandemic the percentage of 
teachers in Republican states reported higher levels of resources overall, and use of core and 
teacher-created curricular resources in particular. They also reported having greater control 
over their curricular decision-making during the pandemic. There were no state-level differences 
in teachers’ level of preparation for pandemic teaching, but teachers in Democrat states 
reported a greater proportion of their students had sufficient resources for online learning. We 
discuss the implications of these findings in terms of teacher control and state policies.  

Keywords: Policy, Curriculum, Elementary School Education   

Purpose of the Study 
The purpose of this study was to report the curriculum resources used by elementary 

mathematics teachers before and during the COVID-19 pandemic as well as perceived teacher 
control related to making several curricular decisions with the onset of remote learning in March 
2020. The following research questions guided this study:  

1. Pre-pandemic, were there Republican and Democrat state-level differences in elementary 
mathematics teachers’ reported use of core, supplemental, and teacher-created curricular 
resources, or in the overall number of resources teachers used?  

2. During pandemic remote teaching, were there Republican and Democrat state-level 
differences in elementary mathematics teachers’ reported use of core, supplemental, and 
teacher-created curricular resources, or in the overall number of resources teachers used?  

3. During pandemic remote teaching, were there Republican and Democrat state-level 
differences in elementary mathematics teachers’ reported level of control over their 
curricular decision making, preparation to engage in remote teaching, or students’ access 
to sufficient technological resources to engage in remote teaching? 

Theoretical Perspectives 
We use Wahlström's (2023) following conceptualization of curriculum: “Curriculum is not 

only a stable body of knowledge in accordance with a discipline. It is also about meaning making 
and negotiation among different actors in society and the education system, as politicians, 
national education authorities, teachers, etc.” (pp. 260-261). Thus, how teachers interact with and 
implement curriculum is influenced by the context specific events (Doyle, 1992).  In our study, 
we investigated how, if at all, the teachers’ curricular decision-making processes differed by 
state policy.  
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Politics of Curriculum: Teacher Control 
In the U.S., there is historical precedent for the impact of politics on curricular resources and 

how stakeholders make decisions about those resources. For example, the practice of textbook 
adoption refers to the use of state funds to purchase selected textbooks for use by teachers in a 
given state whereas local funds may be needed to purchase textbooks and curricular resources 
not adopted by the state as a whole (Silver, 2021). Teachers often rely heavily on a core 
curriculum resource or textbook to select and implement content and instructional strategies; and 
thus, selecting textbooks from the abundance of available textbooks in the market becomes a 
political decision (Polikoff et al., 2020). Moreover, states often follow different procedures to 
adopt textbooks. For example, some states allow teachers to make suggestions on which 
textbooks they want to use while other states include parents and school boards on the textbook 
adoption committees. The degree to which materials purchased with state and local funds are 
mandated for use by teachers may also be politicized (Cohen & Ball, 1990) as can the degree to 
which state tests and teacher evaluation metrics are aligned with materials adopted by the state 
(Mathison & Freeman, 2003). Thus, how textbooks are selected, adopted, mandated, and 
evaluated at the state level has a direct impact on how much control teachers have over the 
implementation of their curricular resources. It is therefore important to consider external and 
sometimes political factors in addition to the many internal factors that influence teachers’ 
perceived control of curriculum (Emirbayer, 1992). 

Teacher’s control of the curriculum is one aspect of teacher autonomy. Autonomy may be 
defined as having two components, (a) general autonomy, including classroom standards of 
conduct, and (b) curricular autonomy, including selecting curricular materials (Pearson & Hall, 
1993). In this study, we focused on teacher curricular control, specifically the independent 
decisions teachers needed to make on selecting and using curricular resources and the degree to 
which teachers felt empowered to make curricular decisions in a way that benefits students 
(Dampson et al., 2019).  
Politics of Curriculum: The Context of COVID-19 

The need to shift to remote learning in the U.S. during the novel coronavirus (COVID-19) 
pandemic introduced a new and complex situation for K-12 teachers as they had to adjust many 
aspects of their curricular decisions. While all 50 states announced the closure of schools in 
March 2020, there was significant variation in terms of the guidelines for remote teaching and 
the resources teachers were provided with when schools were closed (Reich et al., 2020). For 
example, some states (e.g., Massachusetts, Illinois, and Kansas) published lists of resources, 
websites, and subscription applications to facilitate teachers’ need to address learning needs 
across grade levels and content areas as soon as schools were closed while others left teachers 
with both more freedom and less scaffolding for the unique teaching context of the pandemic. As 
the pandemic continued past the first few weeks of closure, states and districts continued to 
develop policies related to levels and types of controls on remote teaching and to the return to in-
person instruction. In order to adapt to shifting state policies and evolving understandings of the 
pandemic, teachers needed to be responsive in their decision-making (Baniahmadi et al., 2021). 
While we recognize that every state instituted different policies and procedures during the 
pandemic, historically those decisions have been influenced by state policies (Placier et al., 
2002). Additionally, evidence suggests the pandemic response in the U.S. was highly politicized 
with Republican policymakers more likely to endorse a swift return to "normal" while Democrat 
policymakers were more likely to endorse mask wearing and social distancing mandates 
(Grossmann et al., 2021). In this study, we explore the curricular resources used by teachers in 
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Republican and Democrat states prior to the COVID-19 pandemic and whether those curricular 
resources changed during the pandemic remote teaching. 
Teacher Control During the COVID-19 Pandemic  

Teachers all over the globe faced unique opportunities and challenges during the COVID-19 
pandemic. The transition to remote learning increased variability in terms of class locations, 
class times, types of curricula to be selected for students, course content to cover, instructional 
approaches, learning resources and location, technology use, the requirements for 
entry/completion dates, and communication medium (Huang et al., 2020). Such variability 
suggests that teachers may have had the potential to experience more control in terms of 
curricular use during remote teaching. However, when teachers have more control over 
curricular choices, they face several challenges in terms of curricular decisions. For example, 
teachers often struggle to select curricular resources that are appropriate to achieve the 
assessment requirements while also addressing students’ needs (Ormond, 2017), and these 
effects were likely magnified during the pandemic when student needs and access to resources 
varied across households (Baniahmadi et al., 2021). Additionally, how teachers use and perceive 
their control is influenced to some extent by teacher characteristics such as gender, age, teaching 
experiences, and contextual factors (Dampson et al., 2019).  

The COVID-19 pandemic also changed how curriculum was implemented and evaluated. 
During the transition from face-to-face to remote modalities, many teachers, administrators, and 
policymakers attempted to create appropriate and equitable learning environments for all learners 
(Aguliera & Nightengale-Lee, 2020; Huck & Zhang, 2021). Schools, especially those with fewer 
resources, were challenged to provide access to functioning technology and even to develop 
materials that were easily accessible to students who had limited access to technology (Doherty 
et al., 2022; Gross & Opalka, 2020). Teachers needed to use new teaching models that met 
requirements imposed by schools under the guidance of district and state policymakers while 
also exploring new online teaching resources. Teachers also needed to consider the resources that 
students have access to as well as other adjustments as they switched teaching modalities 
(Aguliera & Nightengale-Lee, 2020). During this period, teachers had to make many curricular 
decisions to optimize educational resources and promote educational equity (Zhou, 2020).  

Methods 
Teachers 

This study is part of a larger project, Project C3T2. The primary aim of the project is to 
understand and support the curricular decisions that teachers need to make in diverse curricular 
contexts to provide a coherent sequence of activities while being responsive to the needs of their 
students. The project was conceptualized prior to COVID-19 and was thus positioned to explore 
curriculum as schools shifted in relation to the pandemic. The data presented here are drawn 
from a survey administered in September 2020 to 524 third, fourth, and fifth-grade teachers from 
46 states. The majority of the teachers taught in public schools (90%) located in suburban (55%), 
urban (28%), and rural districts (17%).   
Survey 

Teachers were asked about their use of mathematics curricular resources in Spring 2020 prior 
to emergency closures of schools and during the pandemic remote instruction. For example, we 
asked the teachers why they started or stopped using a certain type of mathematics curricular 
resources when they moved to remote teaching. They were also asked about their level of control 
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over the usage of their curricular resources and about supports and barriers they experienced to 
successful remote teaching.   
State Politics 

We identified the 46 states represented in the data set as Republican, Democratic, and mixed 
based on how the state voted in the 2016 and 2020 presidential elections. That is, a state that 
voted for Former Secretary of State Clinton in 2016 and President Biden in 2020 was coded as 
Democrat, and a state that voted for President Trump in 2016 and 2020 was coded as 
Republican. States that voted Democrat in one election and Republican in the other were coded 
as mixed/purple. The analysis presented here focuses on Republican and Democrat states. See 
Table 1 for state politics coding. 

 
 

Table 1: State Politics Coding  
Politics States 

Democrat California, Connecticut, Delaware, Hawaii, Illinois, Maine, Maryland, 
Massachusetts, New Jersey, New York, Oregon, Rhode Island, Vermont, 
Virginia, Washington, and the District of Columbia. 

Republican Alabama, Arizona, Alaska, Arkansas, Florida, Idaho, Indiana, Kansas, 
Kentucky, Louisiana, Mississippi, Missouri, Montana, Nebraska, North 
Carolina, North Dakota, Ohio, Oklahoma, South Dakota, South Carolina, 
Tennessee, Texas, Utah and Wyoming. 

 
Defining Curricular Resources and Their Types 

Curricular resources were defined as including any curricular materials used by teachers for 
the purposes of planning, teaching, and/or assessment, such as (a) packaged curriculum; (b) 
individual lesson plans, activities, and materials; and (c) electronic and online resources and 
apps. In this study, examples were provided to teachers, including textbooks and teacher guides 
purchased by schools and districts (such as Everyday Mathematics or Houghton Mifflin Math), 
online curricula (such as EngageNY), online resources (such as IXL, Zearn, or BrainPop), 
materials downloaded from websites (such as TeachersPayTeachers or Pinterest), or materials 
teachers create for themselves. We categorized these resources into three categories, depending 
on how those resources are created and the purpose of the curricular resources, (a) core, (b) 
supplemental, and (c) teacher created. We categorized a curricular resource as a core resource if 
it addresses all or nearly all of the given standards for the grade level. Supplemental curricular 
resources were identified as those used as secondary resources along with the core curriculum. 
The goal of supplemental curricular resources was to extend activities from core curricular 
resources in order to meet the needs of individual learners, provide practice opportunities, and 
make the classroom more engaging. Thus, supplementary curricular resources might align with a 
subset of standards. Teachers-created curricular resources are the ones created by the teachers 
and shared with their colleagues personally or through online repositories. These resources are 
also used to extend the core curricular resources.  
Analysis 

Independent t-tests were used to compare Republican and Democrat states to answer the 
research questions. Data reflect two time points: Spring 2020 before the pandemic and remote 
pandemic teaching after March 2020. 
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Findings 
Teacher Use of Curricular Resources Pre-pandemic 

More than half of teachers in Republican states reported using core curricular resources while 
only about a third of teachers in Democrat states did. The 224 teachers sampled in Republican 
states (M = .52, SD = .50) compared to the 167 teachers sampled in Democrat states (M = .32, 
SD = .47) were significantly more likely to report they used a core curriculum pre-pandemic, 
t(370.128) = 4.163, p < .001.  

The teachers from Republican states (M = .56, SD = .50) compared to the teachers from 
Democrat states (M = .43, SD = .50) were significantly more likely to report they used teacher-
created curricular resources pre-pandemic, t(389) = 2.496, p = .006. There was no significant 
difference between teachers’ reported use of supplemental curricular resources in Republican (M 
= .47, SD = .50) and Democrat (M = .41, SD = .49) states pre-pandemic, t(360.567) = 1.214, p = 
.225. Overall, the teachers from Republican states (M = 3.05, SD = 1.75) compared to the 
teachers from Democratic states (M = 2.54, SD = 1.46) reported using significantly more 
curricular resources than their peers pre-pandemic, t(389) = 3.083, p = .001.  

Summary. Teachers from Republican states were using more curricular resources overall, 
more likely to have a core curriculum, and more likely to find teacher-created curricular 
resources (e.g., downloading from Teachers Pay Teachers or designing their own) to support 
student learning in their classrooms. There was no difference in the use of online supplementary 
resources such as IXL and BrainPop across Republican and Democrat states. 
Teacher Use of Curricular Resources During Pandemic Remote Teaching  

Although the use of core curricular resources declined during pandemic remote teaching 
across both Republican and Democrat states, the teachers sampled in Republican states (M = .44, 
SD = .50) continued to be significantly more likely to report using core curricular resources 
compared to teachers sampled in Democrat states (M = .28, SD = .45) during pandemic remote 
teaching, t(374.616) = 3.421, p = .001. There was again no difference between teachers’ reported 
use of supplemental curricular resources in Republican (M= .43, SD = .50) and Democrat (M = 
.43, SD = .50) states during pandemic remote teaching, t(389) = .473, p = .946. There was also 
no significant difference between teachers’ reported use of teacher-created curricular resources 
in Republican (M = .46, SD = .50) and Democrat (M = .41, SD = .50) states during pandemic 
remote teaching, t(389) = .918, p = .180. Overall, during pandemic remote teaching, there was no 
significant difference between the total number of curricular resources teachers reported using in 
Republican (M = 2.79, SD = 1.63) and Democrat (M = 2.55, SD = 1.49) states, t(389) = .868, p = 
.193. 

Summary. Despite expectations that teachers may need to find new and varied curricular 
resources to meet the needs of their students during pandemic remote teaching, the number of 
curricular resources teachers were using declined in Republican states and remained about the 
same in Democrat states. The decline in Republican states occurred in core, supplemental, and 
teacher-created resources, resulting in no state-level differences in any curricular category and no 
state-level differences in the overall number of resources used in Republican and Democrat 
states. 

 
Table 2: Total Number of Curricular Resources 

State Politics Time Point Minimum Maximum M SD 
Republican Pre-Pandemic 0 10 3.05 1.75 
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 Pandemic 
Remote 

0 11 2.70 1.63 

Democrat Pre-Pandemic 0 7 2.54 1.45 
 Pandemic 

Remote 
0 7 2.56 1.49 

 
Teacher Control During Pandemic Remote Teaching  

On a scale from 0 (“none at all”) to 3 (“complete”) control, the teachers from Republican 
states (M = 1.42, SD = .91) compared to the teachers from Democrat states (M = 1.15, SD = .94) 
reported having significantly more control over their curricular resources than their peers, t(389) 
= 2.894, p = .002. In fact, the majority of teachers in Republican states (54%) said they had 
"complete" control over their curricular use. Complete control was much less common in 
Democrat (27%) states. In contrast, the largest percentage of teachers indicated they had no 
control in Democrat (41%) as compared to 31% in Republican states. 

 
Table 3: Teacher Control over Curricular Resources in States 

Teacher Control Republican Democrat 
Complete 54% 27% 

A lot 48% 29% 
A bit 43% 30% 

None at all 31% 41% 
 

Student Access to Technology During Pandemic  
On a scale from 1 (“25% or less of students had sufficient access to technology”) to 4 (“75% 

or more of students had sufficient access to technology”) during pandemic remote teaching, 224 
teachers from Republican states (M = 2.92, SD = 1.00) compared to 167 teachers from Democrat 
states (M = 3.17, SD = .93) reported having significantly fewer students who had sufficient 
access to technology, t(328) = -2.354, p = .019.  

 
Table 4: Student Access to Technology  

Sufficient Access to Technology Republican Democrat 
76% or more 35% 45% 

41-75% 33% 34% 
26-50% 21% 13% 

25% or less 11% 8% 
 

Teacher Preparedness for Pandemic Remote Teaching 
On a scale from 1 (“not at all”) to 4 (“completely”) of how well teachers felt prepared for 

pandemic remote teaching, there was no significant difference between 222 teachers from 
Republican states (M = 1.51, SD = .65) compared to 167 teachers from Democrat states (M = 
1.51, SD = .65), t(360.248) = .500, p = 1.00.  

 
Table 5: Teacher Preparedness  

Teacher Preparedness Republican Democrat 
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Completely 0% 1% 
A lot 9% 7% 
A bit 33% 36% 

Not at all 58% 57% 
 

Discussion 
Our pre-pandemic findings support that state-level political differences may be worth 

exploring in curricular policy. In particular, these findings suggest that teachers in Republican 
states were more likely to use core curricular resources and more likely to use teacher-created 
curricular resources. In addition, teachers in Republican states were using more curricular 
resources than their peers in Democrat states pre-pandemic. There were no significant 
differences between Republican and Democrat state teachers in terms of supplemental curricular 
resource usage.  

During the initial remote teaching response to the pandemic, the number of resources used by 
teachers decreased somewhat for both Republican and Democrat state teachers. Although 
Republican state teachers continued to be significantly more likely to use core curricular 
resources than their peers in Democrat states, no differences were found between states for 
supplemental and teacher-created curricular resources and overall, there were no longer any 
differences in the number of resources used by teachers in Republican and Democrat states. 

Limitations in this study included that the data were generated from teacher self-report and 
that while there was an attempt to secure a sample across states, there were no structures in place 
to ensure that teachers were sampled equitably across Republican and Democrat political 
boundaries. Additionally, the timing of the survey (during the first fall semester after the initial 
onset of the pandemic) may have influenced teachers’ time and ability to respond as they were 
still engaging in rapid instructional shifts due to pandemic policies that differed across state 
lines. 

Educators and policymakers were concerned that teachers had to create new curricular 
resources when they moved to remote teaching (Huang et al., 2020), but the findings presented 
here suggest that many teachers were not focused on creating new materials during the initial 
pandemic push to remote instruction, and instead the findings related to teacher-created 
curricular resources are consistent with other research (e.g., Aguliera & Nightengale-Lee, 2020; 
Gross & Opalka, 2020) found that since teachers had to quickly pivot to new teaching models, 
they focused less on creating new curricular materials during the pandemic. Another potential 
reason for the decline in the overall number of resources teachers were using and in the 
likelihood for teachers to use teacher-created resources could be because teachers did not have as 
much experience creating curricular resources for fully remote/online teaching. Teachers 
continued use of core curriculum before and during the pandemic in Republican states also 
support the claim that teachers tended to use ready-made curricular resources instead of investing 
time in creating new curricular resources while dealing with other challenges.  

Research has shown that how rapidly states resumed face-to-face instruction was associated 
with political interests (Valant, 2021). In addition, the finding that Republican state teachers 
reported having significantly fewer students who had access to sufficient technology to engage in 
pandemic remote teaching may have influenced those states’ decisions to reopen schools even 
beyond politics. However, we do not have sufficient evidence if this factor influenced the 
findings of our study.  
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There is no doubt that teachers were asked to make rapid instructional changes as schools 
shut down and remote teaching was instituted across the country. These findings suggest that 
teachers in Republican states felt like they had more curricular control in responding to 
emergency shifts. However, there was no difference in how well-prepared teachers in Republican 
and Democrat states felt to meet the needs of remote instruction, with teachers across the country 
responding they felt, on average, between “not at all” and “a bit” prepared to take on the 
challenges. This finding suggests that though teachers may have control over their curricular 
resources, there may be other barriers that prevent them from taking advantage of their autonomy 
(e.g., lack of time, preparation, and technological support for online instruction).  

As suggested by Dampson and colleagues (2019), how teachers perceive and use their 
curricular control depends on contextual factors, including the modality of teaching and likely 
the impacts of the pandemic in their community. As a practical implication, how teachers benefit 
from and make use of teacher control is largely influenced by external factors, thus, we 
recommend policymakers consider providing teachers with the opportunities to learn about 
curricular decision-making and where they can find resources to make those curricular decisions. 
An additional recommendation may be to ensure that teacher’s voice is included in state 
legislatures and school board debates about curriculum when enacting policies that impact 
teachers’ usage of curriculum. Our research team is currently conducting a series of individual 
and focus-group interviews with teachers to explore how teachers’ curricular decisions are 
influenced by several factors such as teacher control in less extreme circumstances. 
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Perspectives, Objectives, and Method of Inquiry 
In a 2021 survey of 500 elementary teachers, most respondents (85%) reported using at least 

one online mathematics curricular resource. Teachers Pay Teachers (TPT) was the most widely 
used resource, with at least 40% of the teachers using it; Pinterest, another website offering 
teacher-made resources, was used by approximately 15% of the teachers (Baniahmadi et al., 
2021). Given this widespread use along with reports of use from the five case study teachers, we 
further investigated their use of TPT and Pinterest with a series of questions, asking them (a) 
which types of mathematics curricular materials from these sources they find most useful, (b) to 
provide examples of resources used from each website along with a rationale for their use, and 
(c) to share their strategies for choosing and evaluating the resources. 

Findings 
Although all five teachers reported using TPT and four teachers used Pinterest, the frequency 

of their use of these resources varied significantly. Mary, the teacher who reported rarely using 
TPT, only turned to these online resources when a standard was not addressed in the primary 
curriculum. Audrey and Sarah, second-grade teachers, reported using TPT once a week to 

enhance students’ learning. In contrast, Jamie reported using TPT every day, saying “I'd say 
materials I found on Teachers Pay Teachers or other sites like that is probably my primary 

source.” The teachers reported having complete control of their use of Pinterest and TPT; that 
is, the district did not require or monitor their use of these resources. Teachers, however, 
mentioned that they usually had to pay for these materials themselves. They reported using TPT 
for multidisciplinary project- and theme-based lessons. Audrey planned a week-long baseball unit 
in which students investigated how to make the Commissioner’s Cup hold a baseball. Sarah, a 
self- proclaimed lover of science, found a STEM unit focused on plant life cycles and pollination 
that highlighted cross-curricular connections, and students in Kasie’s class learned about the 
concept of area in their design of a leprechaun village for St. Patrick’s Day. The teachers 
reportedly used Pinterest less often than TPT, but they expressed appreciation for “creative” 
materials they could find for anchor charts and bulletin boards, as well as “ready-made” 
resources. When asked how they made decisions about the materials to use from TPT and 
Pinterest, teachers reported multiple criteria and processes utilized for their selection, including 
search filters; checking previews of particular materials to establish an appropriate level of 
mathematical “rigor,” and reading teachers’ reviews. They expressed appreciation for the 
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community of teachers engaged on TPT and Pinterest and the evaluations of resources written by 
current elementary teachers. 
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Tests of statistical significance often play a decisive role in establishing the empirical warrant of 
evidence-based research in education. The results from pattern-based assessment items, as 
introduced in this paper, are categorical and multimodal and do not immediately support the use 
of measures of central tendency as typically related to interpretations of measures of statistical 
significance. Responses from the duplicate implementation of selected pattern-based items 
(PBIs) in successive grades (3-8) as part of the statewide Interim Assessment Program in Texas 
are used to illustrate how non-parametric methods can be used to establish statistically 
significant comparisons of student results. Not all the repeat-item results improved across years. 

Keywords: Assessment, Policy, Research Methods, Systemic Change 

During an assessment window from August 31, 2018 through March 31, 2019 a series of 
non-dichotomous, or “pattern-based,” items, focused primarily on mathematics but also 
including reading items, were implemented with more than 400,000 students in grades three 
through eight on a statewide assessment program. The items were part of an opt-in Interim 
Assessment Program made available to districts by the Texas Education Agency (TEA). A 
central question addressed in a report to TEA (Stroup, 2020) was whether the greater information 
density of pattern-based items (PBIs) would provide significant, actionable insights into student 
learning outcomes. A central focus of this paper, however, is to use results from the statewide 
implementation to outline how measures of statistical significance can be established for PBIs.   

Results from pattern-based assessment items, as presented below, are categorical and 
multimodal and do not immediately support the use of measures of central tendency, as typically 
related to interpretations of measures of statistical significance. As will be illustrated with across-
grade results, using either a Fisher’s Exact Test or a Pearson’s Chi-squared Test we can evaluate 
the statistical significance of differences in the multimodal patterns of responses. Then, once a 
level of statistical significance is arrived at, projections onto axes of relative performance – e.g., 
assigning “partial credit” or using exact full credit scoring – can be used for comparisons of 
achievement-related outcomes for groups of students.  

Pattern-based items were developed by teachers and classroom-focused researchers to 
provide colleagues -- as part of supporting ongoing instruction -- with a more detailed “picture” 
of students’ understandings (Stroup, 2020). Consistent with this year’s conference theme, 
classroom assessments, support by shared display capabilities, immediate forms of feedback, and 
suggestions for further inquiry, should center on engaging all learners. Accordingly, pattern-
based approaches to assessment are meant to support students’ full participation in ongoing 
classroom-based teaching and learning.  However, educator reports of the effectiveness of 
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pattern-based approaches in supporting ongoing instruction may not be enough. We live at a time 
when phrases like “evidence-based practice” are assumed to denote a highly constrained set of 
methodological commitments. Absent ways of engaging in forms of hypothesis testing, centered 
on measures of statistical significance, it may be too facile for critics of understandings-focused 
classroom assessment (cf., Bennett, 2011) to attempt to limit the reach of educator-driven, 
pattern-based approaches to assessment. In response, the focus of this paper is on the use of PBIs 
to support making empirically warranted claims that might, for example, be plausibly related to 
differences in instruction between individual classrooms, schools, districts, or states and/or to 
differences in instruction organized in terms of temporal change, or “growth”, in student 
achievement.  

What is a Pattern-Based Item? 
Pattern-based items are developed to provide a significant, and fully scalable, alternative to 

current, dichotomously scored and analyzed, items. While PBIs may appear similar to standard 
multiselect multiple-choice items, they should be seen as fundamentally distinct, both in terms of 
how they are developed and in terms of how they are analyzed.  

For an individual assessment question with four responses – A, B, C, or D – both multiselect 
and pattern-based items allow the students to select, or endorse, more than one response (e.g., “A 
and C” or “B, C, and D”). While Rasch-based partial credit models have been explored since the 
early 1980’s (Masters, 1982), it remains the case that standard multiselect items have only one 
combination, the “exact match”, be scored as correct (“1”). All other combinations are typically 
scored as incorrect (“0”). While these “legacy” multiselect multiple-choice items might be 
viewed as an improvement over the more commonly used single-select multiple-choice items, 
the subsequent (non-polytomous) analyses, for both single-select and multiselect items, continue 
to be based, in most cases, on only two “states”, either 1 or 0.  

In contrast, the pattern-based items appearing on the Interim Assessments in Texas were 
developed to work with the full combinatoric space of student responses. This means that for the 
PBIs discussed below, there are sixteen possible selection combinations of the four available 
responses (or fifteen, if “no response” is not included). Rather than continue the current practice 
of reducing these states to only two states (i.e., correct/incorrect), the greater information density 
of pattern-based items (sixteen states versus two states) is meant to allow for more detailed, 
actionable insights related to student learning outcomes. More information about their students 
supports teachers in improving student outcomes. Pattern-based assessments can be shorter and 
more informative than legacy assessments in ways that are meant to directly support better 
instruction. Although not discussed in this paper, pattern-based items or tasks are not limited to 
interactions where the student selects among given responses (cf. Stroup [1996], Stroup & 
Wilensky [2000]). 

Differences in the patterns in responses of student groups to PBIs can be analyzed across 
scale and also over time, allowing for more detailed longitudinal evaluation of teaching and 
learning at the class, school, district, and state levels. Based on these uses of PBIs, our task is to 
provide a framework for establishing measures of item-level statistical significance as illustrated 
using observed differences in student results across grade levels. The framework is intended to 
serve as a widely-applicable, principled, approach to the determination of significance for 
comparisons using pattern-based items and tasks.  
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Implementation 
The students participating in the state-sponsored Interim Assessment Program were required 

to complete a series of single-select multiple-choice State of Texas Assessments of Academic 
Readiness (STAAR) items prior to then having the option to complete the pattern-based items. 
The directions stated: “The next set of questions is optional. These questions will not be counted 
as part of your score.” Moreover, due to terms agreed to by the Texas Education Agency (TEA) 
and the schools participating in the Interim Assessment Program, no datasets containing student-, 
school-, or district-identifiable data would be provided by the vendor to the Agency.  

Consistent with these terms, we received from the TEA two, large, fully anonymized, 
datasets containing only each student’s selections for the pattern-based items. As a result, the 
data cannot be used to provide an account of the makeup of the students who participated in the 
overall Interim Assessment Program or of those who then elected to complete the optional items. 
Comparisons between results for dichotomous legacy items and results for PBIs on the Interim 
Assessments are also precluded. To be able to illustrate how PBIs support comparisons across 
scale – e.g., comparing individual classroom results or school-wide results with statewide results 
– in the Report to TEA (Stroup, 2020) we augmented the datasets from the Interim Formative 
Assessment Program with datasets from a December 2018 pilot implementation of the same 
items in two elementary schools in central Texas.  

The average completion rate for the last item was more than 98% of the average completion 
rate for the first item. If there were difficulties with the implementation of items at scale, then 
one would expect much less consistency in the levels of participation. No issues with the 
statewide implementation were reported.  

Comparing changes across grades 
Even absent information about student, school, district, or temporal implementation (within 

the seven-month window) in the Interim Assessment Program dataset provided by the Texas 
Education Agency, the sensitivity of pattern-based items to one kind of overall student growth 
can be assessed by comparing results for items deployed across grade levels. The pattern-based 
item shown in Figure 1 assesses student understanding of equivalent ratios in relation to adding 
drops of blue food coloring to water to create a blue solution. As also shown in Figure 1, the 
fifteen letter combinations (“no response” is not included) can be shaded and sorted from lowest 
partial credit score (light shading) on the left, up to the full credit score (dark shading) on the 
right.  

Partial credit, in this context, is assigned in terms of the degree of match with the full-credit 
response. With PBIs, not selecting an incorrect response is typically assigned the same partial 
credit as selecting a correct response. For this item, then, full credit is assigned to selecting B, C, 
and D and not selecting A. The histograms of results shown in Figure 1 are sorted from zero 
partial credit for only selecting the one incorrect response, A, up to the full-credit response of 
BCD (where not selecting A is implicit in A not appearing in labelling of the histogram bin). The 
assigning of credit in this way is treated as a projection from the combinatoric space of the 
students’ actual selected responses onto a single axis of relative performance.  

Of course, other partial credit projections are also available. The most widely deployed 
among these alternatives might be the partial credit models used by most learning management 
systems (cf. Jones, [2016]).  Assuming that whatever model is deployed is consistent in how the 
multimodal results from pattern-based items are projected onto a partial credit axis, if statistical 
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significance is established at the level required, then comparisons of partial credit results may be 
used to represent relative changes in student outcomes or as an overall measure of effect. 

A key curricular transition in moving from late elementary grades to middle school grades is 
extending emergent multiplicative forms of reasoning about fractions to comparisons of ratios 
and proportions. To be able to assess the development of students’ ratio and proportional 
reasoning as they enter, and then begin to move through, middle school, this pattern-based item 
was included on both the grade 6 (N=58,947) and grade 7 (N=46,483) Interim Assessments.  To 
further situate how it is that the use of the same item across grade levels can be informative at 
both levels, we begin with a brief discussion of some of the state’s related curriculum standards.  

A Grade 6 mathematics Texas Essential Knowledge and Skills (TEKS) standard requires 
students to be able to “apply qualitative and quantitative reasoning to solve prediction and 
comparison of real-world problems involving ratios and rates” (6.b.4.B) and “give examples of 
ratios as multiplicative comparisons of two quantities describing the same attribute” (6.b.4.C). 
To satisfy the Grade 7 TEKS, students must be able to “solve problems involving ratios” framed 
more explicitly in terms of proportional reasoning (7.b.4.D). With the item shown in Figure 1, 
students are assessed on their ability to use “multiplicative comparisons of two quantities” (drops 
of food coloring and amount of water) in a real-world context to describe the “same attribute” of 
what would be the blueness of the resultant solutions.  

At both grade levels, students will often attempt to extend additive forms of reasoning to a 
task that requires multiplicative comparisons. Response A is intended to assess whether students 
are attempting to reason additively – adding 10 to both the number of drops and to the amount of 
water – about a task requiring multiplicative reasoning. The difference graph shown in Figure 1 
reflects a 6.8% decrease in this pattern of reasoning: moving from 16.4% of the grade 6 students 
selecting only A to 9.6% of the grade 7 students selecting only A.  

In the context of the design of pattern-based items, this decrease illustrates the significance of 
students’ not selecting a response in contributing to an overall assessment of the depth of their 
understanding. In contrast to this additive, incorrect, answer, response B correctly multiplies the 
5 drops of food coloring by 2 and the 40 milliliters of water by 2. Response D requires students 
to simplify the given ratio of 5 drops of food coloring to 40 milliliters of water to the equivalent 
“unit ratio” of 1 drop of food coloring to 8 milliliters of water, and then correctly multiply each 
quantity by 6. Response C also requires this simplification of the original ratio and then correctly 
multiplying each quantity by 0.2. Increasing depth of understanding is assessed in this pattern-
based item in moving from not selecting A, to selecting B, to selecting D and then, at the highest 
level of understanding, selecting C. 
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Figure 1. Analysis of differences in item results at scale. 

The graph in the middle of Figure 1 shows all the relative changes in the percentages for each 
of the combinations of responses. Although the shifts can appear complex across the various 
combinations, there remains general movement from lower partial credit responses to higher 
partial credit responses. The respective percentages receiving full credit are 7% for grade 6 and 
11% for grade 7 and the respective average partial credit scores are 47% and 56%. 

Table 1 shows the contingency table for the 15 combinations of responses for each grade 
level. 

 
Table 1: Observed frequencies of responses for IAP implementations of the same pattern-

based mathematics item in grades 6 & 7 
 

 
 
The selection of the respective combinations and the result across grades (no students took 

both grade-level assessments) can be reasonably assumed to be independent.  Then, for this 
comparison, the substantial number of students in all the cells at each grade level supports the 
use of a non-parametric Pearson's Chi-squared test with simulated p-value to evaluate statistical 
significance. With the p-value being 0.0005, these results are highly statistically significant.  

The very low p-value supports the subsequent claim that positive differences in the projected 
outcomes on this item are of high statistical significance. Specifically, the positive differences in 
full credit and partial credit results for grade 7 compared to grade 6 can be represented as 
statistically highly significant. This ability to show relative improvement over time from grade 6 
to grade 7, using any one of a number of possible projected metrics, illustrates the ability of 
pattern-based items to be used to assess changes in scores at scale. We would even argue that this 
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logical transfer of statistical significance would extend to the 6.8% decrease in moving from 
16.4% of the grade 6 students selecting only A to 9.6% of the grade 7 students selecting only A. 
Attending to students’ not choosing certain responses is important to the development, analysis, 
and pedagogical utility of PBIs.    

Extending the Utility of Reporting Effect in Terms of Partial Credit Projections 
The evaluation of variations in outcomes for specific within-year treatments – e.g., a new 

curriculum – or comparisons of longitudinal growth for given groups of students would require, 
as would be the case with existing legacy items, a more sophisticated research design than was 
possible within the structure of the Interim Assessment Program in Texas. We can, however, 
illustrate how the evaluation of statistical significance, when combined with partial credit 
projections, can provide an account of overall levels of standards-specific achievement across 
years. 

Five PBIs were repeated across grade levels. Figure 2 depicts the partial credit results for 
each of these items by grade level.  Each point represents between forty and sixty thousand 
students in each grade. Scores for three of the items increased in ways suggesting improvement 
in the levels of standard-specific attainment across the respective grades.  

 

  
Figure 2. Partial credit results for repeated pattern-based items deployed across the grade 

levels shown. 

Results for one repeated fractional-comparison question went up and then down. Of greater 
concern, however, is how the partial credit score for a volume item (the dashed line in Fig. 2) 
went down from grade five to grade eight.  It considers a new box with the same volume and one 
known dimension. 
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Volume appears in the state curriculum standards for each grade assessed. As shown in 
Figure 3, the question starts with a given rectangular box and considers a new box with the same 
volume and one known dimension.  

 

 
Figure 3. Volume item for which partial credit scores trended downward.  

The student is asked about various possible changes to the box that could keep the volume 
the same (Stroup, 2020). When we’ve asked educators what might explain the decrease in scores 
for the volume item, some have suggested there may be an over-reliance in upper grades on 
formalisms to give “the answer.” Students may come to rely on “the formula” (Volume = 
length*width*height) in a way that leaves them less able to think conceptually about how a 
specified change in one dimension could be compensated for with possible changes in the 
remaining dimensions.  

 Independent of what the explanations or the possible pedagogical responses might be for 
specific scores on a given item going up or down, the larger point, illustrated by the graph shown 
in Figure 2, is that the use of partial credit projections is a relatively transparent way to interpret 
results having statistical significance. Partial credit scores going up, or down, by some percent is 
likely to be more widely understood than, for example, using Cramer’s V as a way to discuss 
effect size. The generation of a Cramer’s V value between 0 and 1 can be considered relatively 
opaque, certainly in comparison to calculating partial credit. Moreover, the values used to 
distinguish between “weak” (0.1-0.3), “medium” (0.4 to 0.5), and “strong” (>0.5) associations 
using Cramer’s V are simply conventions that have evolved to become accepted standards in 
practice. As is illustrated in Figure 2 and in an earlier example, we would suggest using 
comparisons of partial credit results as a preferred way of characterizing relative differences in 
student outcomes. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 318 

Summary and Conclusion 
In order for assessments based on the use of pattern-based approaches to be more widely 

deployed as a significant, and fully scalable, alternative to current assessments using 
dichotomously scored and analyzed items, the results from PBIs must be useful to educators’ 
efforts to engage and support all learners. This, however, may not be enough. Results from 
assessments are frequently used to make statistically warranted claims about comparisons in 
outcomes. There need to be methods for evaluating the statistical significance of differences in 
PBI results for groups of students. The utility of PBIs for educators is addressed more directly 
elsewhere. This paper, instead, has focused on the issue of evaluating statistical significance.  
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Assessment is a topic of concern to all stakeholders in our educational system. Pattern Based 
Questions are an assessment tool which is an alternative to the standardized assessment tool, 
and they are based on generative learning pedagogy, which shows promise in engaging all 
learners and usefulness in teaching and learning but validity has not yet been empirically 
established. Pattern-based questions seek to provide a qualitative expression of student 
understanding. It is the purpose of this research to empirically explore a correspondence 
between student response patterns and the students’ expressed ways of thinking using a 
grounded theory approach and clinical interviews. Findings include rich descriptions of 
participants’ ways of thinking about equivalent fractions as written in the PBQ. One response 
pattern was clearly differentiated from the others. Future research is discussed. 

Keywords: Assessment, Rational Numbers & Proportional Reasoning, Undergraduate Education.  

Introduction 
Assessment is a concern for all stakeholders in education. Current quantitative standardized 

assessment has been critiqued for focusing on procedural understanding instead of conceptual 
understanding (Herman et al., 1992; Kohn, 2000; Schwartz, 1991; Stake, 1995), for promoting 
inequities in education (Knoester & Au, 2017; Noble et al., 2012; Stroup, 2009), for not 
accurately representing student knowledge (Noble et al., 2012; Stake, 1995), and for promoting 
teaching to the tests (Riffert, 2005). Pattern-based questions (PBQs) are a qualitative alternative 
which can be used at scale. PBQs are an assessment tool associated with a larger pedagogical 
theory called generative education (Stroup et al., 2004; Wittrock, 1974). (in prior work PBQs 
have been referred to as PBIs – pattern-based items and NDMC – non dichotomous multiple 
choice.) Learning environments designed using generative education pedagogy can provide 
students with opportunities to engage in activities and gain a deep understanding of meaningful 
mathematics (Duseau, 2019). As a tool of generative education, PBQs promote engaging all 
students by utilizing a “low threshold, high ceiling” (Papert, 1980/1993) approach. Students may 
participate at a low level of understanding (low threshold) or at a high level of understanding 
(high ceiling). Pattern-based questions seek to provide a qualitative expression of student 
understanding which does not reduce student understanding down to a single number. Some 
Educators believe that the response patterns of PBQs identify patterns in student thinking. This 
allows students to show what they do know instead of focusing on their deficits. Educators have 
created PBQs using what they know about students’ common understandings of mathematical 
material. To date, however, there has been no systematic investigation of the empirical warrant 
for the correspondence between students’ response patterns on PBQs and students’ verbalized 
understanding of mathematical concepts. Therefore, my research questions are: 

• Can this pattern-based question identify students’ ways of understanding equivalent 
fractions? If so, what are these ways of thinking? 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 320 

• Can some correspondence be established between students’ response patterns and 
students’ verbalized understanding of mathematical concepts? 

Theoretical Framework 
PBQs are an assessment tool associated with the larger pedagogical theory of Generative 

Design. Generative design is a pedagogical theory of learning and teaching in which students 
generate artifacts in order to actively engage in the mathematics, make sense of the mathematics, 
make connections to other mathematics, and to be creative (Stroup et al., 2004). Stroup, Ares, 
and Hurford (2004) describe generative design as a “space creating” pedagogy in which students 
create “a space - a coordinated collection – of expressive artifacts and actions in relation to some 
shared task or set of rules” (p. 839). This means the students are creating artifacts such as 
equations, functions, or expressions which share some property (or rule) and the collection of 
those artifacts should enlighten the students to some structure in mathematics. PBQs can be 
developed using that same space, or collection of student created artifacts because they represent 
the students own conceptions of a mathematical idea. PBQs are intended to display the current 
state of students’ understanding and support educators’ analyses of those understandings. 

This study framed the research through a constructivist lens and used grounded theory 
(Charmaz, 2014) and clinical interviews (Ginsburg, 1997) as tools. Charmaz’s (2014) 
perspective on grounded theory is appropriate because she claims a constructivist view of 
grounded theory as opposed to Glaser and Strauss who have a more post-positivistic view. 
Generative design, as discussed previously and as linked to the development of PBQs, has 
emerged from the constructivist tradition. 

Piaget is credited for introducing the clinical interview method to contrast with the 
standardized administration of tests. Piaget (1954) believed that children construct their own 
knowledge or understanding. His methodology of the clinical interview is aligned with his 
understanding of the constructivist perspective. Ginsburg (1997) wrote a more detailed 
description of the clinical interview and expounded upon the rationale for using the clinical 
interview. Ginsburg (1997) gave many reasons to use clinical interview methods, including 1) 
constructivist theory requires a method “that attempts to capture the distinctive nature of the 
child’s thought” (p. 58), 2) clinical interviews allow us to deal with fluidity of thinking, 3) 
clinical interviews work for the individual or the general, and 4) clinical interviews “embody a 
special kind of methodological fairness, especially appropriate in a multicultural society” (p. 58). 
The clinical interview allowed us to use questioning to probe the understandings associated with 
participants’ responses. 

Methodology 
For this study, participants were given an online assessment item via google forms. The 

online assessment was a “choose all” PBQ. After the assessment results were organized and 
examined using google sheets to organize and display response patterns, some participants were 
invited to participate in a clinical interview via Zoom. A retrospective protocol was implemented 
for these task-based interviews. The data was analyzed using Charmaz’s (2014) three types of 
coding.  
Participants 

I solicited participants from a local State University in Massachusetts. This is an important 
population to study and understand because this large population of students are admitted into 
college and university and are not prepared to take college level courses in mathematics. The 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 321 

current Massachusetts Curriculum Framework for Mathematics (DESE, 2017) proposes to 
prepare students to be college and career ready in mathematics. Specifically, they state “Students 
who are college and career ready in mathematics will at a minimum demonstrate the academic 
knowledge, skills, and practices necessary to enter into and succeed in entry-level, credit bearing 
courses in College Algebra, Introductory College Statistics, or technical courses” (DESE, 2017, 
p. 9). However, many students exit high school not yet prepared and ready to succeed in entry-
level, credit bearing courses at the public college level. This is a current concern of many 
colleges, universities, and the students themselves. 
The Assessment Item 

The assessment item was selected for this proposed research for three reasons. First, this item 
has been refined and implemented at a statewide level prior to this research (Stroup, 2019). 
Second, the participants have been previously exposed to the fraction concepts. I chose fractional 
equivalence which appears much earlier in the typical mathematics sequence, to ensure that 
students would have experience with the topic and would be able to engage in the concepts. By 
the time students reach the undergraduate level, one would expect that they have years of 
experience with fraction concepts and will have some fairly stable understanding of those 
concepts. Lastly, the fractional equivalence represents important ideas that impact the students’ 
success in their current courses. Fraction concepts continue to create obstacles to success for 
developmental mathematics students. Undergraduate developmental mathematics students have 
seen this material and this material still contributes to student difficulties in their current (and 
future) mathematics classes.  

The assessment item discussed in this research is shown in Figure 1.  
 

 
 

Figure 1: The assessment item, Equivalent Fractions 
 

The “low threshold” option for this item is option B. Students need only a foundational 
understanding of fraction equivalence to identify that option B is equivalent to the original 
fraction card. Options A and C give students some steps towards the “high ceiling” in that a 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 322 

deeper understanding of fractional equivalence is needed to understand that A and C are also 
equivalent to the original. Option D, which is not equivalent to the original card, introduces an 
alternative that can reveal important features of student thinking. For the response patterns of 
BD, teachers assume that the students are counting bars and for that way of thinking, any option 
that has three shaded bars will represent an equivalent fraction. This combination (BD) of one 
correct response and one incorrect response potentially gives us insight into how the student is 
thinking about the mathematics. This is an example of how a “correct” answer or an “incorrect” 
answer do not give the full picture, but the combination of response options makes clear the 
student thinking. 
The Interview 

Students with common response patterns were asked to participate in a virtual Zoom 
interview. The common response patterns will be informed by Stroup’s (2019) Interim 
Assessment Pattern-Based Item Report and the response pattern diagram created in Google 
Sheets.  

 
 

Figure 2: The Response Patterns Diagram from the Assessment Item 
 
Common response patterns are seen as “bumps” or modes in the response pattern diagrams 

because they are response patterns which are selected by students more frequently than other 
possible response patterns. Specifically, I chose participants who chose the B combination 
because there were such a high percentage of participants who chose that option. Additionally, I 
chose participants who chose any combination include the D option to examine the “BD” type of 
thinking. I also chose an arbitrary number of other response patterns to open up possibilities I 
may not have foreseen. Unfortunately, not all students who were invited to participate in an 
interview were agreeable. I was not able to get as much “BD” data as I wanted to. Additionally, 
some of the students who began with the “BD” combination changed their answers once the 
interview began.  

IRB consent forms were collected from participants before each interview. Interviews were 
conducted via Zoom to ensure safe COVID19 protocols. The zoom interview was recorded and 
automatically transcribed. 

During the interview, I asked participants to walk me through their thinking, explain how 
they approached the question, or how they made the decision to choose their specific response 
pattern. I attempted to avoid the question “why” because this can be interpreted as a judgmental 
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question and I was attempting to establish a comfortable, “no judgement” zone atmosphere 
during the interviews. I also avoided any use of the words “correct” or “incorrect”. I was not 
interested in finding “right” or “wrong” answers, I was only looking for patterns in participants’ 
thinking.  
Data Analysis 

Data analysis was done using Charmaz’s (2014) three types of iterative coding and memo 
writing. Initial coding was done by using “in vivo” (Charmaz, 2014) codes which are special 
words or terms used by the participants that appeared to represent a way of thinking used by the 
participant. Focused coding examined the initial codes (and the text data) to see if two codes 
could be combined or if one code could subsume a second code. Charmaz (2014) tells us to “use 
focused coding to pinpoint and develop the most salient codes and then put them to the test with 
large batches of data” (p. 114). As the focused codes were developed the text data was referred 
to constantly. The codes were examined and considered iteratively and at length. Then the text 
data was again coded using the focused codes to ensure that the “ways of thinking” identified 
real patterns in participants thinking and the focus codes were not an artificial creation of 
manipulating the initial codes. This iterative step took quite back and forth work because in some 
instances, participants used similar words when they had different ways of thinking and in other 
instances participants used different words to describe similar ways of thinking. The participants 
had difficulties explaining their thinking, which made analyzing the text data challenging.  

Lastly, theoretical coding can adopt concepts from the literature on the mathematical 
concepts to help structure emerging theories. For this research, there was limited structure. The 
concepts from the mathematics education literature will be compared to the ways of thinking 
(identified in the findings) in the discussion section.  

Memo writing was used throughout the analysis process to identify and record anything 
which stood out to me or to identify ideas that emerged during the entire process. Most of the 
memo writing reflected participants affect, or feelings about doing and discussing mathematical 
thinking and does not directly reflect students’ ways of thinking. 

Findings 
Students’ ways of thinking about this question varied considerably. I have identified six 

different ways of thinking about fractional equivalence. I have restricted myself to ways of 
thinking that the participants gave explicit verbal evidence of. If they did not say it, I did not 
assume it. The following list describes the participants’ ways of thinking. 

1. Visualize – Most students visually inspected the cards and tried to “match” to the 
original. Sometimes this involved “moving” and “fitting” pieces together. Some students 
were unable to visualize moving and fitting pieces together but could identify that “three 
rectangles shaded and three rectangles not shaded”, regardless of order, were equivalent. 

2. “3 shaded and 3 not shaded” is different than “3 shaded and 1 not shaded”. After visually 
matching up the original with response selection B, I often asked about response selection 
D because it also had three shaded rectangles. Many of the students were able to 
differentiate between the two cards saying that three shaded with three unshaded was 
different than three shaded with one unshaded. In some cases, this may have been an 
indication of understanding a fractional ratio, but some participants were unable to 
verbalize this. In one case, the participant simply noticed that the original was “50 – 50”, 
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and three shaded with one not shaded was “more shaded than not” and so it is not 
equivalent to the original. 

• ¾ not ½ - A number of students mentioned that three shaded with one unshaded was ¾ 
and that the original was ½ and that those were not the same. This might indicate the 
understanding of the fractional shading. 

• Counting pieces – there were two different types of counting pieces.  

1. One instance (Interview 6) of counting pieces was counting the number of shaded 
rectangles and matching three shaded rectangles to three shaded rectangles.  

2. In two instances (Interview 4 and 8) the participants tried to count pieces of 
different shapes and sizes and force the shaded number of pieces into a fractional 
ratio with the total number of pieces. 

• Rectangles only – In two instances (Interview 7 and 9) the participants considered only 
responses which were rectangles. They discounted response options A and C because 
there were shapes other than rectangles involved. 

• Area – One participant (Interview 10) calculated the area of the shaded region of the 
original and compared that to the calculated area of each of the options. This participant 
missed option A because of a small mathematical error.  

The following table indicates which interviews provided evidence of each type of reasoning. 
Additionally, this table gives their final response pattern and types of changes, if any. 

 
Table 1: Summary Table of Findings. This table indicates the interview number, the 

response pattern, the types of reasoning evidenced, and the type of change, if any. 
 

Int 
# 

Res
p. 

Vis
ual 

Sha
de vs 
not 

¾ 
not ½  

Cou
nt 

pieces 

Rec
t only 

Are
a 

Change 

1 AB
C 

* *     Stable 
2 BC *  *    Stable 
3 AB

C 
* *     Learni

ng 4 B * *  *   Unstab
le 5 B * *     Stable 

6 BD    *   Stable 
7 B * *   *  Stable 
8 B * * * *   Stable 
9 B * *   *  Stable 
10 BC *     * Learni

ng  
Changing Answers 

Half the participants changed their responses during the interview. From my earliest 
memoing, students’ changing their answers was a salient behavior, and it seemed to be relevant 
to the validity of these types of questions. The PBQ questions allowed students to modify their 
ways of thinking. I believe educators would be interested in knowing if a student was committed 
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to a solution or changed their answer and in what ways they may have made changes. All who 
changed answers moved from exhibiting a less “thought through” reasoning in the original 
response pattern to a more complete expression of understanding. There appear to be three types 
of changes involved. First is a stable change. Interview 1 changed from CD to ABC and 
interview 2 changed from AB to BC. Both of these changes were made immediately, and they 
could not describe why they had chosen the original response pattern. This scenario presents as 
though the participant was not initially motivated to think carefully about their response pattern. 
Once the change was made, the participants were stable in their thinking. The second type of 
change was called “active learning”. Interview 3 changed from B to ABC and Interview 10 
changed from C to BC. In these instances, participants made verbal indications that they were 
thinking about the questions as they were explaining their responses to me. Interview 3 made the 
comment “wait a minute, let me check ….”  and Interview 10 used the phrase “it’s going to be 
like, wait, 1234, wait … Oh”. These utterances seem to imply the participant was activing 
thinking about the problem. I called the last type of change unstable because the participant 
changed repeatedly and did not appear to understand why they were changing.  Interview 4 
changed from CD to B and used the phrases “It kind of would look the same, but, …”, “honesty, 
I don’t even know”, “I think it might be B”, and “I didn’t think so, but now I feel like it does”. 
These utterances do not indicate stability in their ways of thinking. 

Discussion 
The participants’ ways of thinking about equivalent fractions is consistent with the literature 

on rational number concepts. The participants changing answers is a healthy part of learning and 
does not challenge the validity in respect to the goals of a qualitative PBQ. Correspondence 
between the BD response pattern and the “counting pieces” thinking was evidenced and the 
correspondence between the other response patterns and participants ways of thinking were a bit 
blurred. 
Ways of Thinking and Rational Number Literature 

The participants use of the “visualize” way of thinking where the participant matches up the 
three shaded rectangles and three not shaded rectangles is consistent with the literature on “part – 
whole” conception of fractions (Behr et al., 1983; Kieren, 1980; Lamon, 2007; Pederson & 
Bjerre, 2021). This conception frames the fraction equivalence as “The part-whole interpretation 
of rational number depends directly on the ability to partition either a continuous quantity or a set 
of discrete objects into equal-sized subparts or sets” (Behr et al., 1983, p. 93).  This is seen 
clearly when the participants visualize three shaded and three not shaded rectangles. 
Furthermore, Behr et al. (1983) also refer to the part-whole conception as geometric regions and 
the participants certainly looked at the rectangles as geometric shapes.  

The “three shaded and three not is different from three shaded and one not” way of thinking 
about fractional equivalence is consistent with ratio as a relationship between two quantities 
(Behr et al., 1983; Keiren, 1980; Lamon, 2007; Pederson & Bjerre, 2021) because the 
participants were able to see that the relationship between the number of shaded rectangles and 
the number of not shaded rectangles was different and therefor the fractions were not equivalent. 
What is not clear from the participants responses, and perhaps because of the assessment item 
itself is if the participants can differentiate the equivalence of “relative magnitudes” (Pedersen & 
Bjerre, 2021, p. 144) because all the cards in the assessment item were the same size.  

The way of thinking which I called “¾ is not equal to ½” is consistent with the rational 
number concept of “fraction as a number” (Lamon, 2007, p. 635) because the participants were 
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able to name three shaded rectangles and three not shaded rectangles as the number ½ and they 
named three shaded rectangles and one not shaded rectangles as ¾ . Additionally, they 
understood that those two numbers were not an absolute equal amount.  We cannot be sure if 
they understood if ¾ and ½ were not equal relative amounts.  

The “calculate area” way of thinking is consistent with Behr et al.’s (1980) reference to 
geometric regions. Using the dots on the cards as unit lengths, this participant found the 
geometrical area of the original card and the four solution option cards and compared the 
absolute area to the absolute area.  

“Counting pieces” and “Only rectangles” are limited conceptions of fractional equivalence. 
In both cases these ways of thinking show participants difficulties with rational number concepts. 
These ways of thinking are still very real to the participants and important for the educator to be 
aware of to help students grow and develop better understandings of rational number concepts. 
Changing Answers 

Changing one’s response pattern is a natural extension of learning and as such it is 
encouraging that PBQs can have a role in providing a pathway, or context, for students to extend 
their understandings. There are a number of possible reasons for shifts in students’ 
understandings. Two shifts discussed were the stable change when a student changes 
immediately because they were not motivated to think carefully about the item when they first 
attempted it, but are now more motivated because they need to explain their thinking to the 
interviewer.  This also lends credence to the idea that explaining one’s thinking is valuable both 
to the student to organize their thoughts but also to the assessor to have a clearer idea of what the 
students’ thinking is. Another type of change was called “active learning”. In this change, 
students were willing to think while explaining and the student had an “ah-ha” moment during 
the interview. Both forms of changing answers are seen as corresponding to expressed shifts, or 
clarification, in students understanding. These shifts would not make the items invalid because 
they no longer represent the students’ thinking, validity is not fixed in relation to the initial 
responses but instead can include changes or updates that are what come to be seen as linked to 
selection a new combination of responses. Students whose understanding of a problem shifts 
from one way of thinking to another way of thinking can still find a response pattern which can 
represent the new way of thinking. Education involves developing more-fully integrated and 
robust forms of understanding. Assessment should be able to accommodate these shifts in 
understanding.  
Correspondence between Response Patterns and Ways of thinking 

There was a clear correspondence between the response pattern of BD and the counting 
shaded rectangles.  The other response patterns of B, BC, and ABC were not clearly aligned or 
corresponding with one particular way of thinking. I believe this is because there is overlap 
between the different types of thinking displayed by “visualization”, “3 shaded and 3 not 
shaded”, and “¾ is not ½”. These other types of thinking seem to stem from the part-whole 
conception. In a number of instances, the only difference between participants response patterns 
came down to small differences such as the ability to visualize if the shapes could “fit” together 
to create the same shaded shape as in the original card.   

Conclusion 
This PBQ does identify students’ ways of thinking and in at least one instance there was a 

clear correspondence between the response pattern and the ways of thinking about fractional 
equivalence. Ideally, every PBQ would be researched and refined to empirically establish 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 327 

validity. With validity established, PBQs could operate as an alternative to standardized 
assessments. Research should also be continued in the area of marginalized populations to 
establish if PBQs, which provide an opportunity for equity, can empirically be shown to provide 
a more equitable assessment tool.  

 

References  
Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.), 

Acquisition of mathematics concepts and processes (pp. 91 – 125). New York: Academic Press. 
Charmaz, K. (2014). Constructing grounded theory (2nd edition). Sage Publications.  
Duseau, K. (2019, April).  Generative Design: The Teachers’ Experience. [Paper Presentation]. The annual 

conference of the American Educational Research Association (AERA), Toronto, Canada. 
Ginsburg, H. (1997). Entering the child's mind: The clinical interview in psychological research and practice. 

Cambridge University Press. 
Herman, J. L., Aschbacher, P. R., Winters, L. (1992). A practical guide to alternative assessment. Association for 

Supervision and Curriculum Development, Alexandria, VA. 
Kieren, T. E. (1980). The rational number construct: Its elements and mechanisms. In T. E. Kieren (Ed.), Recent 

research on number learning (pp 125 – 150). Columbus, OH: ERIC Clearinghouse for Science, Mathematics 
and Environmental Education.  

Knoester, M., & Au, W. (2017). Standardized testing and school segregation: like tinder for fire? Race Ethnicity and 
Education, 20(1), 1-14. 

Kohn, A. (2000). Standardized testing and its victims. Education Week, 20(4), 46-47. 
Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In 

F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Reston, 
VA: Lawrence Erlbaum. 

Massachusetts Department of Elementary & Secondary Education (DESE), (2017). Massachusetts Curriculum 
Framework – 2017: Mathematics grades Pre-Kindergarten to 12, Massachusetts Department of Elementary & 
Secondary Education. https://www.doe.mass.edu/frameworks/math/2017-06.pdf  

Noble, T., Suarez, C., Rosebery, A., O'Connor, M. C., Warren, B., & Hudicourt‐Barnes, J. (2012). “I never thought 
of it as freezing”: How students answer questions on large‐scale science tests and what they know about 
science. Journal of Research in Science Teaching, 49(6), 778-803. 

Papert, S. A. (1993). Mindstorms: Children, computers, and powerful ideas, 2nd edition. Basic books. (Original work 
published in 1980) 

Pedersen, P. L., & Bjerre, M. (2021). Two conceptions of fraction equivalence. Educational Studies in 
Mathematics, 107(1), 135-157. https://doi.org/10.1007/s10649-021-10030-7 

Piaget, J. (1954). The construction of reality in the child (M. Cook, Trans.). Basic Book, Inc. publishers, New York. 
Riffert, F. (2005). The use and misuse of standardized testing: A Whiteheadian point of view. Interchange, 36(1-2), 

231-252. 
Schwartz, J. L. (1991). The intellectual costs of secrecy in mathematics assessment. In V. Perrone (Ed.), Expanding 

student assessment, (pp. 132-141). The Association for Supervision and Curriculum Development (ASCD).  
Stake, R. E. (1995). The invalidity of standardized testing for measuring mathematics achievement. In T. A. 

Romberg (Ed.), Reform in school mathematics and authentic assessment. (pp. 173 – 235). State University of 
New York Press. 

Stroup, W. M., Ares, N. M., & Hurford, A. (2004). A taxonomy of generative activity design supported by next-
generation classroom networks. In Proceedings of the twenty-sixth annual meeting of the Psychology of 
Mathematics Education, (pp. 1401-1410). Toronto: OISE/UT. 

Stroup, W. (2009). What Bernie Madoff can teach us about accountability in education. Education Weekly, 28(25), 
22-23.  

Stroup, W. M. (2019, October). Interim Assessment Pattern-Based Item Report. GenEd Corporation.  
Wittrock, M. C. (1974). A generative model of mathematics learning. Journal for Research in Mathematics 

Education, 181-196. 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 328 

IMPLEMENTATION OF A NEW MATHEMATICS CURRICULUM: THE CASE OF 
INQUIRY AND NORWEGIAN TEACHERS 

Suela Kacerja 
University of South-Eastern Norway 

suela.kacerja@usn.no 

Trond Stølen Gustavsen 
University of South-Eastern Norway 

trond.gustavsen@usn.no 

Teachers are important actors in implementing a new curriculum as they are responsible for 
interpreting and enacting it in the classrooms. In our study, we focus on how inquiry becomes 
visible when mathematics teachers (grades 1-7) work with the implementation of the new 
Norwegian curriculum. In a preliminary analysis of data from interviews with teachers and 
observation of their teaching, we found that some elements of inquiry have become prominent in 
the teacher intended and enacted curriculum and we identified some challenges. 

Keywords: curriculum; inquiry; mathematics teachers 

Introduction 
In the present paper, we introduce an ongoing four-year study of the implementation of the 

new mathematics curriculum in Norway focusing on teachers for grades 1-7. Teachers are the 
ones who need to translate curriculum into teaching to achieve its objectives, which is not a 
straightforward task (Zumwalt, 2004; Remillard & Heck, 2014). As Remillard (2005) argued, 
one of the reasons for the failure of previous reforms in the USA is a failure to acknowledge the 
role of the teacher, and that the curriculum depends on the teachers’ ability and willingness to 
implement it. In addition to teachers’ self-reporting of curriculum implementation, there is a 
need to also look at classroom teaching (Roehrig et al., 2007). Given the central role of the 
teacher, it is relevant to focus on their interpretation of the curriculum and how they work with it. 

The current mathematics curriculum in Norway for grades 1-10 is in use since 2020 
(Ministry of Education and Research, 2019) with its constituting elements, the subjects’ 
relevance, six core elements, the competence aims and assessment for each year and schedule. 
The new curriculum focuses on students as good problem solvers, on discovering relationships 
within mathematics and its connections with other subjects (Norwegian Directorate of Education, 
2020). It emphasizes student active ways of working with the subject, exploring and 
communicating about it. The core curriculum (Ministry of Education and Research, 2017), with 
the core values and principles for education, is also relevant for mathematics. 

In this paper we focus on exploration (“utforsking” in Norwegian) as one of the six core 
elements (together with problem solving) that appears around 32 times in the competence aims. 
In mathematics, the term “exploration” is described as searching for patterns and relationships, 
focusing on strategies and approaches on how to solve problems, and discussing to achieve a 
common understanding (Ministry of Education and Research, 2019). The verb to explore is 
extensively used in all the subjects’ curricula, and a broader definition emphasizes elements such 
as to experience and experiment to foster curiosity and wonder, sense, search, discover, observe 
and scrutinize, to examine different sides of an issue through open and critical discussion, and to 
test or try out and evaluate work methods, products or equipment (Ministry of Education and 
Research, 2018, p. 16). This latter definition is close to the inquiry concept (Artigue & Blomhøj, 
2013), as we will argue for in the theoretical part. Given its visibility, in our paper, we focus on 
inquiry and investigate the research question: how is inquiry visible in Norwegian mathematics 
teachers' intended and enacted curriculum? 
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Theoretical perspectives 
We use a theoretical framework proposed by Remillard & Heck (2014) to place our study in 

the mathematics curriculum studies. We distinguish between the official part of the curriculum or 
the intended, what the students should learn, and the operational part or what is implemented in 
school. In the official part of the curriculum, there are all the elements of the curriculum 
explained in the introduction, in addition to national assessments and to the designated 
curriculum consisting of instructional packages about the curriculum, district instructional plans 
and annual school plans. In line with Pepin et al. (2013) who argued for values and culture being 
part of the curriculum, we argue for the core Norwegian curriculum to be part of the official 
mathematics curriculum. The operational curriculum consists of the teacher-intended 
curriculum, the enacted curriculum and student outcomes. In the teacher intended curriculum the 
focus is on the individual teacher, how he/she interprets the official curriculum and makes lesson 
plans. We consider part of the teacher-intended curriculum also the teachers’ collective work 
with resources which is missing in Remillard and Heck (2014). The enacted curriculum is what 
happens in the mathematics classroom, how the planned lesson unfolds as the teacher interacts 
with the students and with the tasks. 

Previous research has identified different factors that can support or hinder the 
implementation of a curriculum. The teachers’ commitment to curriculum reform (OECD, 2019; 
Smith & Their, 2017), their alignment of beliefs about teaching and learning to curriculum 
reform (OECD, 2019; Gujarati, 2011; Roehrig et al., 2007), students’ and teachers’ competence 
and teachers’ professional networks (Alrichter, 2005; Gujarati, 2011), clarity of the innovation 
(Alrichter, 2005), supporting leadership and available resources (OECD, 2019; Smith & Thier, 
2017; Priestley et al., 2014; Roehrig et al., 2007) are among the pinpointed supporting factors. 
On the other hand, teacher misunderstanding or misinterpretation of content and pedagogy 
(OECD, 2019), teacher workload and insufficient time (OECD, 2019; Gujarati, 2011; Priestley et 
al., 2014), complexity of the innovation (Alrichter, 2005) and abstruse documents with unclear 
guidelines (OECD, 2019; Smith & Thier, 2017; Priestley et al., 2014), primacy (fear of 
undermining) of traditional subject areas (OECD, 2019; Priestley et al., 2014) and tensions 
between child-centered reforms and high-stakes exams (OECD, 2019), classroom norms, lack of 
time and lack of materials (Gujarati, 2011) are all hindering factors for a successful 
implementation. In a study of a science curriculum implementation, Rogan and Aldous (2005) 
identified a tendency of teachers to interpret the curriculum in superficial ways, or to use new 
curriculum concepts on the same old content or methods similarly to Priestley et al. (2014). 

Artigue and Blomhøj (2013) discuss inquiry as a pedagogy derived from the work of Dewey. 
Amongst the ten identified concerns of inquiry-based mathematics education there are: working 
with relevant problems, giving students autonomy and responsibility to explore problems in 
collective collaboration and the teacher to guide them, and a focus on developing problem 
solving skills and habits of mind (p. 809). There is a focus on the teacher building upon students’ 
reasoning and connecting on their experiences, a dialogic classroom culture sharing a common 
purpose, and on students posing questions, collaborating, and inquiring (engage, explore, 
explain, extend, evaluate) open questions with many solution strategies. Artigue and Blomhøj 
emphasize the inquiry process as a way of being, and real-life situations, hands-on activities, and 
learners’ experience, accompanied by reflective inquiry, as important elements in Dewey’s 
theory to question the reduced view of inquiry often found in curricula. Skovsmose (2001) 
distinguished between mathematics teaching in traditional ways with an authoritative teacher and 
one right answer, as seen in the exercise paradigm, and mathematics teaching in a landscape of 
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investigation where students have a more active role and there is not a one-to-one 
correspondence between a task and an answer to it. One can see the characteristics of the 
landscapes of investigation as connected to the inquiry-based teaching of mathematics. 

In the Norwegian curriculum as discussed in the introduction, the core element of exploration 
is presented together with problem solving. Karseth et al. (2020) connect the widespread use of 
the verb “to explore” in the curriculum to an active role of the students in teaching and learning. 
As presented in the introduction, the concept includes a range of meanings from exploring and 
searching for patterns, experimenting, observing, sensing and scrutinizing etc. Because of these 
characteristics, we see the core element of exploration as being about inquiry in mathematics. 

In our study, we focus on the teachers’ intended mathematics curriculum and its enactment in 
their teaching as in the framework by Remillard and Heck (2014). Inside that part of the 
framework, we identify inquiry by using Artigue & Blomhøj’s (2013) elements. 

Methods 
We analyze data from the first of four yearly qualitative data collections in a project 

investigating the implementation of a new National curriculum (from 2020) focusing on 
Mathematics and three other subjects. Four primary schools (grades 1-7) were selected based on 
factors that could impact curriculum implementation, such as economy, urban/rural location, and 
school size. In the mathematics part of the study, nine mathematics teachers participated, and 
data were collected through four semi-structured group interviews and six observed lessons. 
Ethical guidelines were followed. The authors took field notes from the non-participatory 
observations and a pre- and post-interview in connection with each observation. An interview 
guide focusing on identifying teachers’ experienced changes in the curriculum and changes in 
their practice because of the new curriculum was designed. We looked for elements of inquiry in 
the interviews and observations and identified teacher’s expressed challenges. In our preliminary 
analysis, we focus on those pieces of data where inquiry is involved and identify its 
characteristics by referring to the theoretical perspective. 

Results and discussion 
To answer the research question, how is inquiry visible in Norwegian mathematics teachers' 

intended and enacted curriculum, we have focused on different elements of the curriculum in the 
Remillard and Heck (2014) framework. By talking to the teachers, we have focused on the 
teacher intended curriculum, and by looking at the classroom teaching we have focused on the 
teacher enacted curriculum. In the interviews, teachers described the emphasis on core elements 
in mathematics as a change. As one teacher puts it, “the biggest change is …a methodological 
freedom and problem solving, a greater focus on the path to the goal than on the goal” meaning a 
focus on the working processes with mathematics tasks and less on the answer itself. Many 
teachers highlighted this together with mathematical talk, as changes in the curriculum. Both are 
seen as connected to inquiry, to discussing different solution methods, and to students being 
prepared to explain their own work. The teachers pointed thus to more active students, who need 
to find out and make things themselves and work practically, and to the teacher as a supervisor. 
This fits with the definition of exploration in the curriculum according to Kvamme et al. (2020), 
but also with characteristics of inquiry pointed out by Artigue and Blomhøj (2013). Other 
characteristics of inquiry in the interviews were the open tasks, problem solving, where there is 
not just one solution and where one is “forced [to think] outside the box” and see connections, 
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focusing on different strategies and ways of solving tasks, which is in line with a landscape of 
investigation (Skovsmose, 2001). 

Our findings suggest that inquiry has become more prominent in the teacher-intended 
curriculum. However, teachers also reported challenges in implementing it. Many emphasized 
that students are not used to exploring and inquiry, “it’s a totally new way of thinking, and I love 
it, but the kids aren’t always there” as a 3rd grade teacher said. Similarly, a teacher for grades 5-7 
also mentioned that students are used to find a right answer to a mathematical task and not to 
explore. This corresponds to the traditional mathematics classroom or the exercise paradigm by 
Skovsmose (2001). The students’ knowledge and experiences, as factors in implementing the 
curriculum are also pinpointed by Alrichter (2005) and Gujarati (2011) in addition to classroom 
norms. Since inquiry means a higher focus on student activity, teachers need to “give up control 
in one way or another” and this can be a challenge for first grade students. 

Inquiry, and exploration, is seen as depending on the group of students, the grade, their 
school experience, and their previous knowledge. One teacher claimed that students should have 
a basic understanding in mathematics before they can do the rest. This reinforces suggestions 
from previous studies (Alrichter, 2005; Gujarati, 2011; Roehrig et al., 2007) that teacher 
knowledge and beliefs about teaching and learning are important for curriculum implementation. 
It is experienced as challenging not having textbooks that correspond to the new curriculum, the 
teachers feel they are left alone to interpret the curriculum, and it takes time to find and adapt 
resources. A last challenge in connection with inquiry is the evaluation of the competence aims, 
“you have to decide on something more concrete that you consider, whether they have gained 
anything from this inquiry”, since as another teacher similarly pointed out “it is very big things”. 

In the observed mathematics lessons, we found that inquiry-based teaching was implemented 
in different ways. While some teachers emphasized open-ended tasks and encouraged problem-
solving skills and habits of mind, others relied on closed, structured tasks. This latter is in 
contrast with a definition of inquiry (Artigue & Blomhøj, 2013). In many cases, teachers used 
collaborative activities allowing students to work together to find solutions. However, in some 
cases the group work was not purposeful in terms of students exploring, but it was more an 
example of superficial interpretation of the curriculum as in Rogan and Aldous (2005). In many 
cases, teachers emphasized multiple strategies, mathematical conversations, and student 
autonomy, and took a guiding role, as in inquiry-based mathematics teaching (Artigue & 
Blomhøj, 2013). In our observations, students suggested strategies or asked questions around 
different strategies in solving problems posed by the teacher. But we did not observe examples of 
students posing their own questions out of curiosity or extending problems and trying to solve 
them, which is emphasized in inquiry-based learning. This can partially be explained by what the 
teachers said in the interviews, that students are not used to inquiry or not ready for that, and that 
the teachers need to give up control (which maybe takes time). 

Conclusion 
The teachers’ interpretation of the curriculum is crucial. In our study, we found that some 

elements of inquiry are present in the mathematics teachers’ intended and enacted curriculum, 
but we also identified some challenges. The preliminary results reported in this article can be 
used for further research on designing curriculum resources to support teachers' implementation 
of the curriculum. As well, the results emphasize the importance of combining a focus on both 
the intended and enacted curriculum for creating a more complete picture of the implementation 
of a new curriculum. 
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A teacher solidarity co-design framework was used to inform the co-design of a middle school 
math curriculum involving teachers, mathematics education researchers and graduate 
students.  Incorporating teacher and student voice, positioning teachers as experts in their 
classrooms, and using feedback cycles were all methods used to create the mathematics content 
and context.  Results showed that there can be tension around what content to emphasize in the 
co-design process and that students tend to engage and converse more when the context is 
familiar to them which can cause lessons to take longer than originally intended.  Groups 
pursuing a co-design process should maintain open communication between members, keep the 
process iterative and be open to modifications so that expertise can be highlighted, ultimately 
culminating in experiences that are meaningful for students. 

Keywords: Curriculum, Culturally Relevant Pedagogy, Affect, Emotions, Beliefs and Attitudes  

The purpose of this research was to enact and study a co-design model for creating 
mathematical lessons for students in which the content is something that is relatable to sixth 
grade math students experiencing high levels of poverty. Many curricula do not incorporate the 
experiences of the modern sixth grader so co-design with teachers and students was utilized to 
attend to students’ interests in the selection of problem contexts and storylines.  From the initial 
planning, through the first drafts, to the implementation, teachers, researchers, and math 
educators collaborated to create this content using ideas from students, relayed through teachers, 
to create a curriculum that leverages contexts of student interest to learn and practice 
mathematics concepts. 

Through the codesign process, the researcher wanted to know how co-designing curriculums 
are going to help teachers. as well as how does this ultimately provoke student interest in 
mathematics.  The researcher also wondered how involving teachers from the beginning would 
allow them to feel part of the team and allow them to vocalize their thoughts and opinions on the 
curricula, knowing that their feedback would be used to make lessons better.  The guiding 
research question was: how do teachers discuss/reflect upon lessons based on student interest in 
which they have been a part of codesigning?  Ultimately, the researcher anticipated that teachers 
would better understand the goals of the instructional materials, and when content is designed 
around students’ interests, students will be more engaged and eager to participate in mathematics 
lessons. In this report, the co-design process was used for curriculum development and the data 
was analyzed using several different frameworks which influenced some of the lessons learned 
and how these conclusions were drawn. 

Theoretical Frameworks  
There are three key frameworks guiding the co-design process that was implemented while 

developing the sixth-grade math curriculum and subsequent analysis of data.  The frameworks 
include teaching and learning as sociocultural endeavors, a teacher solidarity co-design 
framework, and a theory of teacher and student affect towards mathematics.  These three theories 
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-- sociocultural learning, teacher solidarity co-design framework and affect theory in 
mathematics -- and their relevance to this study are outlined below. 

  Teaching and learning are a collaborative process. The development of curricula with 
teachers, students, and other math education professionals should be a collaborative process as 
well. Lave (1988) proposes that learners and learning can be thought of as being situated in a 
social context where the tendency is to reproduce similar experiences and use prior, well-known 
solutions as a kind of guiding force (Packer, 2001). Traditional mathematics curricula that ask 
students to look at a strategy for solving a certain problem, followed by procedural practice, is 
only setting up those students to reproduce this version of what it means to do 
mathematics.  Problems that are situated in contexts familiar to students can help them learn new 
solving strategies for familiar problems as well as give them a foundation to use new strategies in 
unfamiliar contexts (Lave, 1988, in Greeno, 1994).  A curriculum design process that leverages 
teacher knowledge about their students and considers direct input about student interests can help 
students infer that the work they are putting forth is relevant and something they can relate to.   

 Furthering the idea that teaching and learning are socially constructed, there is a need to 
acknowledge the intricacies of power that come with creating a working group -- in particular, a 
curriculum design team.  Researchers with PhDs and many years of experience in academia can 
be positioned in design groups as hosts while teachers can be seen as guests, just like teachers 
can assume the host role with their students as guests in a classroom environment. This 
positionality can be challenging as hosts have the privilege of choosing when to extend 
hospitality towards guests to make them feel included and that their expertise is welcome (Barton 
& Tan 2020). The co-design framework that was employed to acknowledge and counteract this 
phenomenon was drawn from Phillip’s (2022) teacher-solidarity co-design framework. In this 
framework, teachers are seen as experts in the many aspects that make up their professional 
settings (i.e., a blend of context and content expertise) and these points of view are used to guide 
lesson design. The design process acknowledges that teachers and researchers are positioned 
within a larger system of academia that places these individuals in different positions of power in 
many different ways.  Validating teacher expertise and agency also aims to “counteract the 
deprofessionalization of teachers and teaching within the larger context of neoliberal reform in 
schools” (Phillip 2022 et al., pg. 60).  Keeping these principles in mind during collaborative 
design helped in neutralizing the guest/host relationship that can be common in co-design 
processes.  

Teacher affect toward a curriculum will influence how they teach it.  Teachers who have a 
say in the design of a curriculum may be more inclined to follow the creators’ intended design, 
since they were part of the design process.  One of McLeod’s (1992) major facets of the affective 
experience of mathematics is that students have beliefs about themselves and mathematics that 
“play an important role in the development of their affective responses to mathematical 
situations” (pg. 578).  Extending this idea, teachers also have affective responses to mathematical 
situations and teachers can have emotional responses toward their teaching.  The curriculum they 
are teaching from can be something they have positive/negative attitudes towards.  By including 
teachers in the design process and using their opinions to help shape what curriculum looks like 
can create positive, pre-teaching connections with problem contexts and discourse patterns, 
which can make the implementation smoother and easier for the teacher; this may translate to 
better student engagement and understanding of the instructional materials. 
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Methods 
In the beginning of the project, a small group of education material designers wanted to 

create math lessons that incorporated learning about and thinking through executive functions.  
From these initial steps, math education researchers and executive function scholars were 
included in conversations. Through the funding agency, a school district was included, and 
teachers/administrators joined the team.  Once this team had banded together, a virtual meeting 
of teachers, administrators and researchers was held to discuss key goals and objectives for this 
new mathematics curriculum.  Student voice, criticality, interactive games, and computer 
simulations were all things that were decided as important to incorporate into lessons. 

A team made up of three sixth grade math teachers, two math education professors, and two 
graduate students worked together to create the mathematics part of the curriculum.  The 
Common Core State Standards for Mathematics were the motivating content as well as input 
from the teachers about which standards they felt were more challenging for students or tend to 
be more emphasized in their state’s testing.  The group chose to focus on three key 6th grade 
math topics: statistics, equations and expressions, and ratios and rates.  A 15-lesson unit was 
developed for each of these topics; units also included an end of unit project, and four mini 
assessments.  During the first unit creation around equations and expressions, the larger group 
split into subgroups with each group tasked to develop 4-5 lessons (each lesson had a student 
facing page, a teacher facing page, and lesson slides).  Each group was given specific 
standards/concepts to follow while they created their own theme in which they centered their 
problems around.  For example, in our first iteration, the first group was assigned expressions 
from the Common Core State Standards for Mathematics 6.EE.A and chose to center their 
lessons around a grocery shopping context based on the relatability the creator’s students had by 
having been grocery shopping alone or with parents/guardians.   

Other themes like creating a story line and using graphic novel illustrations were ideas that 
were generated through conversations with teachers about their students’ interests.  Surveys were 
sent to students and read by teachers to collect ideas about interests and hobbies that were used 
to generate themes in the curriculum.  The team was also able to collaborate with professional 
artists who created the graphic designs from suggestions made by lesson developers.   

In order to track progress, a Google Sheet was created, and it helped to inform team members 
of how sections were coming along as well as aid in transitional lessons between teams.  This 
first round of lesson design took about two months before the unit was “finalized”.  After 
teachers implemented the lessons, researchers performed interviews with them asking about how 
lessons went, what aspects students liked/disliked, timing, balance of practice and conceptual 
learning, layout/design of materials, etc.  These interviews helped to inform how to make 
modifications for this unit and the next unit design. 

Results 
Preliminary results show that all co-designers have a desire to create something that has a 

positive impact on students but there is a real struggle of getting a large group of people to agree 
on what this looks like.  The first key result is that there was a disconnect between research and 
teacher goals in how to balance the number of procedural/fluency problems and conceptual 
problems in each lesson.  “It’s more that procedural side lacking, and I want to see more” (post-
unit interview 5/19/22, Teacher A) said one teacher.  Another said, “they need more work” (post-
unit interview 5/18/22, Teacher B) referencing the lack of procedural practice.  Teachers face 
end of year state testing which impacts their evaluations, so they requested more fluency practice 
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be embedded into the lessons so that students can get used to solving problems like those on the 
state tests.   

Researchers initially proposed lessons focusing more on conceptual knowledge with only a 
few practice problems that still relied on contexts fitting the lesson’s theme.  The goal of 
conceptual understanding is to go beyond learning algorithmic procedures and learn 
mathematical concepts deeply (Schoenfeld 1988).  For example, error analysis questions were 
used in a rates and ratios unit for students to identify and discuss common mistakes made while 
creating tables using a constant rate.  These types of questions are non-procedural in that students 
cannot simply follow a step-by-step guide to find a solution, they must critique the argument and 
reasoning made while searching for a flaw.  These types of questions take more time for students 
than a problem that asks them to simply fill out a table, given a particular ratio.  Researchers find 
these types of conceptual problems are better for student understanding of mathematics, but 
researchers do not face the same pressures that mandatory testing has put on teachers so finding a 
balance where students can gain a deep understanding and know how to use procedures is 
important. 

There was evidence found that some teachers leveraged the context as a jumping off point for 
other conversations related to students’ interests.  In the statistics unit, students generated their 
own qualitative and quantitative questions. During the implementation of this lesson, the teacher 
had an interaction where a question was posed about a favorite artist. This teacher took up that 
question to have conversations around art, which is not something usually discussed in math 
courses. Here’s what she said about her experience, 

“And it [the question] was able to open the doors of their knowledge to different stuff and it 
just brought in more knowledge for them. I thought it was great because it opened doors, they 
just, it just, it opened their world a little bit.” (Teacher A, interview 5/19/22) 
In the algebra unit, a teacher was able to use the fast-food context to broaden the discussion 

to one of economics and health as seen in the quote below. 

“The whole idea is to make you realize that fast-food is a cheap easy way to get in this 
economy, right now. But it's not healthy because we should be getting by with 2000 calories 
per day and your meal just added up to 1900”. (Teacher B, interview 5/18/22) 
Both examples show teachers taking time to tap into students' funds of knowledge (Schenkel 

et al. 2021) to enhance their learning experience and make mathematics have a more personal 
meaning.   

A consequence of students being more interested in context were issues with the timing of 
implementation in the classroom.  Designers aimed to create 50-minute lessons with each part of 
the lesson given approximate time frames.  Classroom teachers gave feedback that the timing of 
most tasks took about three times longer than originally intended by the developers due to more 
conversations and students engaging in the curriculum.  In the second iteration of lesson design, 
the designers were able to take the feedback and modify lessons to still aim to keep 50-minute 
lessons but make the content shorter by reducing the number of practice problems embedded and 
shortening discussion prompts.  When teachers implemented these shorter lessons, they were 
able to get through the lessons in the allotted time frame and said the lessons were still well 
balanced.  
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Discussion 
Working as a team to accomplish a goal can be extremely rewarding, even though conflicts 

are bound to come up throughout the process.  Finding a balance between conceptual and 
procedural problems came from the commitment to incorporating student and teacher voice into 
curriculum design.  Further, as Penuel et al (2007) suggested, ensuring a cyclical process in the 
co-design model allows these voices to have real impact on the curriculum’s redesign and future 
units.  The more teachers can vocalize comments and concerns in all phases and design, the more 
likely they will enact the lessons as they were designed.  Since student voice was also used to 
identify interesting contexts, lessons enacted with fidelity should engage students more. 

We saw this increase in student engagement while teachers were doing their first rounds of 
implementation, which led to the lessons being much lengthier than anticipated.  Encouraging 
students to pull from their funds of knowledge can help math content to have more meaning and 
be more entertaining to engage with.  Students who were using numbers and logic while 
discussing things they enjoy are in better positions to learn how to engage in discussions about 
important issues that are facing our world today.  Co-designing mathematics curriculum with 
experts in math learning as well as experts in local students (i.e. teachers) can help to create 
lessons that hopefully have positive long-term impacts on student learning and understanding of 
mathematics in their world. 
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Building Thinking Classrooms (Liljedahl, 2021) provides teachers with a new method of 
designing and sequencing tasks called “thin slicing,” which emerged from variation theory. The 
results of the present study indicate that an analysis of the dimensions and ranges of variation 
within such a task offers insights into learning opportunities available. Specifically, identifying 
instances where variation has not been adequately positioned against a background of sameness 
can highlight potentially limited opportunities for students to notice the intended mathematics. 
The results of this analysis can inform design decisions and modifications to the task before 
implementation increasing the potential of the task to support student learning. 

Keywords: Instructional Activities and Practices, Curriculum, and Professional Development. 

Building Thinking Classrooms (Liljedahl, 2021) is rapidly growing in relevance and impact 
in mathematics education across North America. Experienced teachers and preservice teachers 
are studying the book, sharing implementation experiences at conferences, and participating in 
professional development to learn new strategies for increasing student thinking in the 
classroom. In the summer of 2022, we selected the text as a tool for professional development for 
a cohort of experienced teachers. In this paper, we focus on one pedagogical strategy presented 
in the book called thin slicing. Designing thin sliced tasks involves writing a carefully sequenced 
series of problems utilizing small, incremental changes to support students’ development of new 
mathematical knowledge building from their current ways of understanding. Liljedahl (2021) 
provides guidance for designing these task sequences grounded in variation theory (Marton et al., 
2004), but much is left for teachers to work out in their classrooms. We, as mathematics teacher 
educators, are interested in how teachers are taking up this practice. Specifically, we are 
interested in the variations teachers use when designing thin sliced tasks and the possible 
learning opportunities afforded by this task design. 

Literature Review and Framework 
The National Council of Teachers of Mathematics (NCTM) recommends the use of 

intentionally sequenced tasks to build procedural fluency from conceptual understanding by 
informally drawing on students’ prior knowledge, assessing students’ preconceived ideas that 
may serve as intellectual motivation for the concepts being learned, or transitioning students 
from simple, concrete representations to more complex and abstract representations (Boston et 
al., 2017). A practice that aligns with NCTM’s recommendation is the use of problem or number 
strings. Problem strings are carefully sequenced tasks for the purposes of facilitating students’ 
understanding of mathematical relationships to develop certain numeracy strategies (Carpenter et 
al., 2003; DiBrienza & Shevell, 1998; Fosnot & Dolk, 2002; Harris, 2011) and providing rich 
discussion opportunities in classrooms (Bofferding & Kemmerle, 2015).  
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While problem strings originated at the elementary level, the practice is extending to 
secondary classrooms (Harris, 2011; Liljedahl, 2021; Wieman et al., 2021). Liljedahl (2021) 
introduces thin slicing as a method of task design similar to problem strings that uses principles 
of variation theory (Marton et al., 2004) to foster student thinking around curricular content. 
Liljedahl distinguishes the sequencing of tasks as thin slicing, in which there are incrementally 
small increases in challenge from one task to the next as students’ abilities increase, from thick 
slicing, where the increase in challenge between tasks is much greater (see Liljedahl, 2021, 
p.151). Liljedahl suggests that teachers can design thin sliced tasks using their current curricular 
resources to move students from their current mathematical conceptions to deeper 
understandings while keeping students in the flow of learning, avoiding the disruptions of 
frustration and boredom.  

In mathematics education research, task design and sequencing are often informed by 
learning trajectories and learning progressions which describe ways students may develop new 
mathematical conceptions (Battista, 2011; Confrey, 2012). A hypothetical learning trajectory (as 
opposed to an actual learning trajectory) is a description of the learning goal, the learning 
activities and a prediction of how students' thinking will develop by engaging the activities 
(Simon, 1995). For some topics, there are collections of tasks for which the design and sequence 
have been shown to effectively support students as they develop more sophisticated 
mathematical reasoning and understanding in relation to a specific learning goal (e.g., Battista, 
2012). However, not all mathematics topics in the K-12 curriculum have been studied from the 
perspective of learning trajectories, and existing learning trajectories continue to be refined 
(Confrey, 2012). Furthermore, each learning trajectory must assume a starting point and offers 
one possibility among many (Rich et al., 2017).  

Teachers are in the classroom each day implementing tasks and determining what works for 
their students. The design principles of thin sliced tasks and problem strings offer teachers a way 
to create tasks based on a sequence they think will support students to advance their 
understanding of a particular mathematical idea, defining a hypothetical learning trajectory that 
is then tested in the classroom. Because thin slicing is a new method of task design for many 
teachers, additional resources to support the design, analysis, and implementation of such tasks 
are not readily available.   
Variation Theory 

In Building Thinking Classrooms (BTC), readers are introduced to two principles of variation 
theory to guide the development of thinly sliced curricular tasks: learners see variation against 
the backdrop of sameness, and a required condition for learning is that only one thing is varied at 
a time (Liljedahl, 2021). Variation theory describes the necessary conditions for learning, with 
the aim of enabling the learner to engage in novel situations in powerful ways (Marton et al., 
2004). Learning “implies seeing or experiencing critical aspects of an object of learning,” where 
the object of learning defines the content and the objective to be learned (Kullberg et al., 2017, p. 
560). The teacher’s goal is to provide learning opportunities that offer students different ways to 
see or experience the critical features of the object. What the learner sees or notices during the 
learning process is impacted by past experiences and social, cultural, environmental, and 
mathematical dispositions and practices (Watson & Mason, 2006). If a learner does not learn the 
intended objective, it is because they were not able to discern the critical features of the object of 
learning which can only occur when learners have experienced variation against a background of 
sameness.  
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In mathematics education, Gu et al. (2004) propose two forms of variation, conceptual 
variation and procedural variation, to provide a deliberate and reasoned way to utilize variance 
and invariance in mathematics teaching. Conceptual variation is the use of examples of a concept 
to discern its features and non-examples of the concept to distinguish it from others. Procedural 
variation is dynamic and engages students in a sequence to see connections among concepts and 
processes and to facilitate problem solving strategies and solutions. Procedural variation includes 
varying a problem to provide scaffolding for higher level concepts or extensions resulting in 
generalizations; developing multiple methods for solving a problem; and applying the same 
solution method to a group of similar problems. 

Variation Theory and Task Analysis. Variation theory can be used to analyze mathematical 
tasks or chosen examples to determine opportunities for learning (e.g., Kullberg et al., 2017; 
Watson & Mason, 2006). Aligning with procedural variation (Gu et al., 2004), Watson and 
Mason (2006) advocate for the use of variation to design exercises that foreground mathematical 
structure leading to generalizations. Students enact a procedure on intentionally varied problems 
as part of a mathematical exercise and then reflect on the results to generalize a new 
mathematical relationship. Before implementation, the exercises can be analyzed for the 
potential dimensions of variation, which are aspects of the task that may be varied. Identifying 
what is available for the learner to notice through variation exposes the underlying mathematical 
structure and learning opportunities present in a task. For a given task or exercise, the analysis of 
what is varied (dimensions of variation) and how it is varied (range of permissible variation) 
helps the teacher predict opportunities for student learning, a helpful tool for lesson planning. 
The predicted learning outcomes from task analysis sometimes align with what is learned by the 
student, but it is possible that the task designer’s choices of variation do not always produce the 
desired student learning (Watson & Mason, 2006). While discrepancies between the intended 
object of learning and what is actually learned can be caused by the learning environment or the 
learner’s prior knowledge and experience, the task itself can also impact the learner’s ability to 
discern the critical aspects of the object of learning. If there is no variation with respect to a 
particular object of learning, then it is guaranteed that students will not have an opportunity to 
learn it (Gu et al., 2004; Kullberg et al., 2017). As teachers experiment with the principles of 
variation theory to design thin sliced tasks, the potential discrepancies between the intended 
learning objective and actual learning may result in frustration or discouragement for both 
teachers and students, possibly leading to time-consuming cycles of task implementation and 
refinement or abandonment of the task design method completely.  

To support teachers in this type of design work, we examined a set of initial thin sliced 
designs from a group of experienced secondary math teachers. Following Watson and Mason’s 
(2006) example of analyzing tasks before implementation, we conducted a similar analysis to 
better understand the features of the initial task designs by the group of teachers. The results of 
our analysis support the design of thin sliced tasks. The purpose of this paper is to illustrate how 
the tools of variation theory can be used to analyze thin sliced tasks to answer the following 
questions: what variations are present and what opportunities for learning are available to 
students in thin sliced tasks designed by teachers using the BTC framework?  

Methodology 
Participants & Data Collection 

The teachers in the present study are part of a larger, five-year teacher development program 
that advances mathematics teacher leadership. All teachers have at least five years of experience 
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teaching secondary mathematics and were nominated by their district for the program. For this 
report, we draw on 19 teachers’ submissions from the first summer of professional development 
coursework. The course assignment we analyzed involved teachers working in groups of two or 
three to design thin sliced mathematics tasks for topics of their choice using variation theory and 
the BTC framework as a guide. Teachers were directed to select topics in their current 
curriculum for which they wished to consider alternative teaching methods. While the tasks were 
designed in groups, each teacher wrote their own analysis of one of the group’s tasks. Both the 
tasks and teacher reflections were analyzed. Consistent with Liljedahl’s (2021) description of 
how teachers can design thin sliced task sequences, the assignment asked teachers to reflect on 
how to ensure the goal of the task sequence was clear, how they could “slice” the mathematical 
content to incrementally increase the challenge for students as their abilities increase, and how to 
extend student learning by varying only one thing at a time. 
Data Analysis 

The research team analyzed a total of eight tasks and the corresponding teacher reflections. 
Analyses involved iterative stages of qualitative coding by the four authors of this paper 
(Saldaña, 2015). In the first stages of coding, the team utilized open coding with teachers as the 
unit of analysis to understand teachers’ design decisions. The team first examined the 
mathematics in each task, elements of variation, and teachers’ learning goals. To support 
reliability in coding, all four team members coded one teacher’s submission together as a group 
and then pairs of team members double coded the remaining 18 teachers’ submissions. Building 
on these early observations, the team shifted the unit of analysis to be individual mathematics 
tasks, rather than teachers. Subsequently, the team engaged in refined coding of the eight tasks 
looking for themes related to the objective or object of learning for each task; the type of 
variation; and whether the object of learning could be reached based on the variation observed. 
Emergent themes, such as variation for the purpose of practice or for illuminating patterns, were 
recorded in matrices (Saldaña, 2015). Throughout this process, the team specifically looked for 
disconfirming evidence (Creswell & Miller, 2000).  

In the final stage of coding, the team refined codes based on the work of Watson and Mason 
(2006). Tasks were coded for dimensions of the task that could be varied; of those dimensions, 
which ones were fixed; of those dimensions, which ones were open for variation; what was the 
possible range of variation; and what range of variation was chosen by the task designer. The 
team found that by distinguishing the possible range of variation from the chosen range helped to 
characterize the learning opportunities available to students. Again, all tasks were double coded 
by pairs of researchers with the lead author coding all eight tasks. The research team met 
together to discuss and came to consensus on codes related to dimensions and ranges of 
variation.  

We acknowledge that the analysis of the tasks depends on our own mathematical 
perspectives and teaching experience. All researchers identify as university-based mathematics 
teacher educators, and most have taught in K-12 schools. Two members of the research team are 
faculty in mathematics departments and two are members of education departments. 

Findings 
We observed a wide range of objectives and task structures as the teachers applied BTC 

recommendations to create their first thin sliced tasks. For this paper, we focus on the analysis of 
two tasks because they are instructive in revealing the relationship between the objective and the 
chosen dimensions of variation. One task was designed to help students develop new 
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mathematical knowledge (Task 1: Exploring Negative Exponents), and one task was designed 
for skill practice (Task 2: The Quadratic Formula). We analyzed the open dimensions of 
variation and the chosen range of variation leading to the opportunities for learning in each task. 
Task 1: Exploring Negative Exponents   

The teachers’ stated goal for the Exploring Negative Exponents task is to use patterns to help 
students draw “their own conclusions about the reciprocal nature of negative exponents.” The 
teachers thinly sliced the concept of negative exponents into five “task cards” intended to be 
given to students in sequence. Card 1 (Figure 1) is a review of prior knowledge to establish the 
meaning of a base and exponent. The equations are exponential, with the open dimensions of 
variation being the base, exponent, and its equivalent value. The chosen range of variation for 
each of these dimensions is positive integers. The opportunity for learning is to recall the 
relationship between base, exponent, and the equivalent value they define. 

 
Figure 1. Exploring Negative Exponents Task Cards 1 and 2 

In Card 2 (Figure 1), two dimensions of variation are closed: the value of the base and the 
unknown value. The base of the exponential expression is always 3, and the unknown is always 
the equivalent value of the exponential expression. The exponent is an open dimension of 
variation for which the range is constrained to positive integers from 1 to 5. It is intended that 
students complete the task sequentially beginning with 3!, and students are encouraged to look 
for a pattern. The opportunity to learn is that the values of the equivalent expressions for each 
exponential increase by a factor of 3 as the exponent value increases by 1.    

In Card 3 (Figure 2), three aspects are varied relative to the previous card: the base, the order 
of the exponents, and the inclusion of 0 as an exponent. Students are encouraged to complete the 
pattern sequentially beginning with 2J. With these changes, the opportunity to learn now 
includes a recognition that the pattern in the equivalent values for each expression is multiplied 
by a factor of ½ as the exponent decreases by a value of 1. Students also have the opportunity to 
conjecture that 2- follows the same pattern, if this was not already known.  
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Figure 2. Exploring Negative Exponents Task Cards 3, 4, and 5 

In Card 4 (Figure 2), only one aspect is varied relative to the previous card: the value of the 
exponents. By extending the range of variation to include negative exponents, students have the 
opportunity to conjecture the equivalent values for 25!, 25", and 25$. Students are then asked to 
predict	25J. Since there are no explicit instructions for how to do this, some students may 
continue to extend the pattern, concluding that 25J will be 1/32.   

In Card 5 (Figure 2), there are four aspects that are varied from the previous: the base, the 
value of the exponents, some equivalent expressions are provided, and the position of the 
problems into two columns rather than one. The juxtaposition of the two expressions with a base 
of 4 with exponents of n and −𝑛 opens the opportunity to notice the reciprocal relationship 
between 4? and 45?. Because the students have been prompted to discover patterns, they have a 
way to determine the missing information if they do not yet see the reciprocal relationships.   

If students use a calculator for Cards 4 and 5, the reciprocal relationship may not be available 
for them to notice. While this means that students could complete Card 4 without observing the 
intended relationship, the implementation of the task in the classroom could provide a rich 
discussion of the equivalence of fraction and decimal representations and the recognition that 
one representation is more advantageous in this instance for pattern recognition.  

Task 2: The Quadratic Formula 
 For the Quadratic Formula task, the teachers’ stated goal is to help students “feel 

confident substituting and then following the order of operations” to find the solution(s) to the 
quadratic equation. Each equation in Figure 3 is one “slice” presented to students sequentially. 
The open dimensions of variation for the task include the form of the equation (set equal to 0 or 
not); the values for coefficients a, b, and c; the number of unique solutions; and whether the 
solutions are rational or irrational. For each slice, the a, b, and c values are varied, and the range 
of variation only includes integers.  

 
Figure 3. The Quadratic Formula Task 

For Slices 1-5, the form of the equation remains consistent with 0 on one side of the equal 
sign. In Slice 1, the choices for a, b, and c result in solutions that are rational (in this case one 
integer and one non-integer). There is an opportunity for students to identify where a, b, and c 
are located in a quadratic equation set equal to zero with the quadratic, linear, and constant terms 
in descending order. There is also an opportunity to notice that values of a, b, and c can be 
positive integers, and solutions can be integer or non-integer rational numbers. In Slice 2, the 
only aspects varied relative to the previous slice are the values for a and c. There is an 
opportunity for students to recognize, conjecture, or ask the meaning of an implicit coefficient of 
1 and to recognize the effect of a = 1 in the quadratic formula. In Slice 3, the value of b is a 
negative integer, while a remains 1, and c is a positive integer. There is an opportunity for 
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students to see that the b-value can be a negative integer. There is also the opportunity for 
students to notice the effect of a negative b-value in the quadratic formula. In Slice 4, the choices 
of a, b, and c yield irrational solutions, giving students an opportunity to notice that irrational 
solutions are possible for quadratic equations. In Slice 5, the choices of a, b, and c yield one 
unique solution giving students an opportunity to notice that there may only be one unique 
solution for a quadratic equation, and the one solution can be rational (non-integer). 

In Slice 6, the form of the equation is varied because it does not have 0 on one side of the 
equal sign. There is an opportunity for students to notice that quadratic equations are not always 
given in the same form. Students may have an opportunity to notice that determining the c value 
will require computation, but this observation is not certain. The introduction to the lesson (not 
shown in Figure 3) includes a discussion of how to identify a, b, and c when the equation is set 
equal to 0, but there is no indication that the form of the equation will be varied during the 
discussion. While students may notice that the equation is not equal to 0, there is not an explicit 
opportunity to notice how this impacts the value of c. Students are encouraged to check their 
solutions by substitution, which could provide the opportunity to recognize that something is 
incorrect if they choose 𝑐 = −1	(rather than 𝑐 = −3). It is also possible that students recognize 
that 𝑐 = −1 is incorrect by graphing the left and right sides of the equation as two functions and 
examining the intersection points. However, if students graph only the left side and examine the 
x-intercepts, they will not have an opportunity to recognize that the solution is incorrect.  

In Slice 7, there are two varied aspects from the previous slice: b is 0 (as opposed to a 
positive or negative integer) and the equation is set equal to 0 again. There is an opportunity for 
students to notice b can be 0. There is also the opportunity for students to notice the effect of  
𝑏 = 0 in the quadratic formula.  

Discussion   
When designing a task with variation theory, the open dimensions of variation and the 

constraints on the range of variation impact what students have the opportunity to notice. In the 
present study, the teachers chose constraints on the range of variation for different reasons, such 
as illuminating mathematical patterns or anticipating student difficulties. For the Exploration of 
Negative Exponents task, the teachers’ goal was for students to recognize the reciprocal 
relationship between positive and negative exponents of 2 and generalize this relationship to a 
base of 4, concluding that 4? and 45? are reciprocals. The choice of constraints on the 
dimensions of variation and ranges of variation was guided by the teachers’ desire for the 
students to recognize a pattern resulting in a generalization. For instance, the teachers explained 
that Cards 2 and 3 were intended to help students “recognize that increasing the exponent by one 
creates a subsequent answer that’s a scalar multiple of the base.” This targeted goal of pattern 
recognition and generalization resulted in very few open dimensions of variation and a small 
range for variation of open dimensions. Consequently, the task adequately provided variation 
against a background of sameness. This task provides an example of how students can enact a 
procedure on carefully varied problems illustrating a pattern that ultimately leads to a 
mathematical generalization (Gu et al., 2007; Watson & Mason, 2007).   

In contrast, the Solving Quadratic Equations task was designed to increase students’ 
“confidence substituting in numbers and then following the order of operations,” resulting in 
different reasons for the teachers’ selection of constraints of variation than the exponent task. 
The teachers’ reported design decisions indicated that they wanted students to attend to (1) 
coefficients of the quadratic: positive, negative, and zero values for b; positive and negative 
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values for a, including a = 1; (2) solutions to a quadratic equation can be rational and irrational; 
(3) there can be one or two unique solutions; and (4) quadratic equations are not always set equal 
to 0. These ranges of variation do not account for all variation in quadratic equations. For 
instance, it is possible that 𝑐 = 0, but 𝑎 ≠ 0, and a quadratic equation can have zero real 
solutions. We point out these additional variations not to argue that this task should include all of 
them, but rather to highlight that the teachers’ decisions about what to constrain were not focused 
on illustrating the full range of variation related to quadratic equations. We conjecture that the 
teachers intentionally chose constraints to address students’ challenges with numerical 
computation. For instance, the teachers included an implied 𝑎 = 1, likely because this is 
something they want to reinforce with students, but they did not intentionally choose 𝑏 = 1 or 
𝑐 = 1. Additionally, b is varied in Slices 2 and 3 from a positive integer to a negative integer, 
and in Slice 7,	𝑏 = 0. We conjecture that the teachers wanted to highlight various b-values to 
address common errors when evaluating the expressions −𝑏 and 𝑏" in the quadratic formula. 
Variation theory suggests that varying too many aspects of a problem unrelated to the targeted 
concept might not provide the background of sameness needed to highlight the intended concept. 
For example, if students have difficulty understanding the meaning of −𝑏 when 𝑏 is negative, 
they will likely get an incorrect answer in the quadratic formula but not have an opportunity to 
focus on the concept that led to the incorrect answer because there are many places where the 
computation error could have occurred. For this task, the goal of learning how to use the 
quadratic formula had a subgoal of accurately evaluating expressions for positive and negative 
integers. Since the variation of b values occurred at the same time other dimensions were varied 
(e.g., form of equation, values of a and c), students may not have had the opportunity to observe 
patterns in evaluating −𝑏 and 𝑏" for positive and negative b-values. Another draft of this thin-
sliced task might highlight the nuances of working with −𝑏 and 𝑏" by offering a more static 
background by closing some dimensions of variation. This task provides an opportunity for some 
students to develop efficiency and accuracy with the quadratic formula, which are components of 
procedural fluency (NRC, 2001), but opportunities for developing fluency may be missing for 
students who have difficulty with the necessary numerical computations.  

Conclusion 
Well-designed thin sliced tasks can provide opportunities for students to learn curricular 

content while developing their mathematical thinking and reasoning (Liljedahl, 2021). With any 
task design method, there is much to learn about the nuances of design and possible learning 
opportunities afforded in the task as well as limitations in the design. This report illustrates how 
the elements of variation theory (Watson & Mason, 2006), specifically the juxtaposition of 
sameness and variation within and across dimensions, can be used to highlight the learning 
opportunities available in thin sliced tasks. The analytic approach used here to identify the 
dimensions of variation along with the ranges of variation seems a promising tool for teachers 
and mathematics teacher educators to reflect on their thin sliced task designs. Such reflection 
before implementation may inform task revisions resulting in increased opportunities for 
students to learn the intended objectives. Additionally, by examining why particular dimensions 
of variation were constrained and by considering the resulting opportunities to learn, teachers 
may identify important mathematics to discuss or call attention to when consolidating ideas 
(Liljedahl, 2021) at the conclusion of the learning activity. 
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The paper reports on the developments of a repository of quantitative assessments used in 
mathematics education contexts. This repository centralizes assessments and the associated 
validity evidence. The repository is public and freely available and has potential to inform 
future quantitative mathematics education scholarship. 

Keywords: Assessment, Measurement 

Finding and selecting quantitative instruments to use in mathematics and statistics 
education can be difficult for scholars for many reasons. First, it is not always easy to ascertain 
if there is a suitable instrument to measure a desired construct. Second, many published articles 
report results based on analyses of data from instruments they used, but they do not always 
publish the full instrument used. A third reason is that some manuscripts describe an 
assessment but do not provide details about the validity evidence related to the assessment's 
intended uses or score interpretations. Broadly speaking, validity describes the degree to which 
evidence supports an intended claim (AERA et al., 2014; Messick, 1989). A goal to fostering 
scholarship is building a strong knowledge base that uses assessments with strong validity 
evidence (Authors., 2022A; Kane, 2013). A searchable database of mathematics education 
assessments may help to address that goal, which is the objective of this research project. The 
purpose of this submission is to describe the creation of a new database of mathematics and 
statistics education assessments that will be broadly available to scholars. A result of 
addressing this purpose is to provide the mathematics and statistics education scholarly 
community with a tool that may help individuals locate possible assessment for use, review 
validity evidence about the assessment, as well as review available literature associated with 
the respective assessments. 

 

Literature 
Prior to 2014, there was scant discussion of validity and quantitative assessment within 

mathematics education scholarship (Author, 2017). In the last decade, there has been a 
substantial increase in scholarship exploring the degree to which validity and validity evidence 
is discussed in mathematics and statistics education as well as scholarship focusing on how 
those validity arguments are communicated (e.g., Pellegrino et al., 2016; Walkowiak et al., 
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2019; Wilhelm & Berebitsky, 2019). As more assessments are described in journal articles, it 
can be time intensive to search journals for instruments that match a desired construct as well 
as their validity evidence. Moreover, there are documented differences in the journals that 
institutions access, which is an equity issue as well as an issue of building robust research 
(Authors, 2022B). With a greater attention paid to the quality of information collected on 
quantitative assessments 

 
in mathematics and statistics education scholarship, there is a pressing need for providing 

the fields of mathematics and statistics education scholars with a means to efficiently and 
effectively explore available measures used. 

 

Methods 
In the spring of 2020, 41 participants attended a BLINDED conference in Las Vegas. 

Participants of the conference included mathematics education faculty, researcher 
scientists, psychometricians, assessment developers, and graduate students. The goal of the 
conference was to create an understanding of validity within mathematics education contexts 
and solicit recommendations from experts about information necessary to build a repository of 
quantitative mathematics education instruments. Based upon the recommendations from the 
experts who attended the conference, a synthesis procedure was developed for identifying and 
categorizing validity evidence, interpretation statements, and use statements of quantitative 
instruments. This conference participants were divided into six synthesis groups: (1) 
Elementary (K-6) Tests and Instruments; (2) Secondary (7 - 12) Tests and Instruments; (3) 
Undergraduate and Graduate Mathematics Tests and Instruments; (4) Statistics Education (K - 
20) Tests and Instruments; (5) Teacher Education Tests; and (6) Teacher Education 
Instruments. 

Each group searched for instruments that fell within their group’s parameters, identified if 
the instruments should be included into the repository, searched for validity evidence 
associated with the included instruments, and identified and categorized the existing validity 
evidence for each instrument. The validity evidence was categorized using the sources outlined 
in the Standards for Educational and Psychological Testing ([Standards] AERA et al., 2014). 
The Standards describe five validity sources: test content, response process, relations to other 
variables, internal structure, and consequences from testing/bias. Reliability is a related 
component of the Standards but is not one of the five sources. These sources and resulting 
evidence types (Figure 1) provided the foundation for our categorization. In addition, each 
instrument that was found by each synthesis group was tagged with key features, such as, the 
population being tested, the construct measured by the instrument, the types of items present in 
the instrument, etc. These instruments and the associated evidence are what were used to 
create the repository. 

 

Product Development 
From the work of the six synthesis groups, we created a free online digital repository for 

the categorization of instruments that also describes their associated validity evidence. To 
access the repository, users will create a log-in and briefly acknowledge the user agreement. 
Once logged in users have access to instruments, validity evidence, and training modules about 
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validity. The website was designed to be user friendly, accessible, and evidence in the 
repository is aligned with the Standards (AERA et al., 2014). The repository has several 
important design features explained below: search features, researcher portal, and ease of 
adding new instruments. 

Design Feature: Search Features 
The database will have a search feature that will allow users to input any desired text and 

search for instruments based on that text entry. In addition, they will be able to search by any 
of the tagging features. We intentionally created tagging features consistent across all six 
synthesis groups, and ones customized to each group, so researchers can easily sort and search 
for instruments. Tagging features were common to all six synthesis groups and include: 
Synthesis Group, Population, Grade Level, Construct, Type of Instrument, Mode of Delivery, 
and Item Type. 

 
 

Figure 1: Validity Evidence Types 

 
Design Feature: Researcher Portal 
There will be a researcher portal that will have training modules, both written and video 

based. These will provide users of the repository with educative content pertaining to ideas 
related to validity and validation and on the proper use of the repository and instruments the 
user may want to use for their own purposes. Once logged into the researcher portal, 
instruments can be saved to users’ “favorites” or shared. Users will also be able to provide 
feedback on the results of an instrument or download the search results for a particular search. 
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Figure 2: Search Engine and Tagging Features 

Design Feature: Ease of Adding New Instrument 
Initially, assessments were added by the project leaders based upon the work of the 

synthesis groups. However, users can now submit a request electronically to include an 
instrument in the repository, along with the associated validity evidence and tagging features. 
Once an instrument is submitted, a repository curator will vet the materials to ensure the 
inclusion criteria have been met. Once the criteria have been met, the instrument will be 
included in the repository. If it cannot be included, then the project leader will communicate 
what additional information is needed to include the instrument. 

 

Figure 3: Adding a New Instrument Conclusions 

A goal of this project was to produce a repository that could be used by scholars seeking a 
quantitative instrument for use in mathematics or statistics education contexts. Through 
developing the repository, it may be easier for scholars to locate assessments for a given 
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construct or evaluate two viable instruments considering their validity evidence and claims. 
Moreover, this repository has a propensity for others to locate an instrument and improve 

it, or to gather greater or more robust validity evidence. As a result of the repository, we argue 
it offers a start to promote equity through using assessments aligned to a desired construct and 
suited for an appropriate population. Engaging all learners in mathematics education and 
assessing whether we are engaging all learners in mathematics, should be based on research 
conducted from high- quality studies. Foundational to such studies are instruments with proper 
validity arguments. 
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A coherent curriculum is important for supporting students’ learning of mathematics. While a 
single teacher textbook is created with coherence in mind, teachers are now using multiple 
materials to plan and teach mathematics. Additionally, teachers are held accountable to multiple 
professional obligations that can also affect coherence. This study reports on findings from 
interviews with nine elementary teachers about how they are conceptualizing mathematics 
curricular coherence across multiple curricular materials and multiple professional obligations. 

Keywords: Curriculum, Elementary School Education  

According to researchers, curricular coherence is an important component of a high-quality, 
equity-oriented mathematics curriculum (McNail et al., 2021; Wilkerson, 2021). Curricular 
coherence in mathematics is described as the connection of concepts and practices within and 
across grades (Wilkerson, 2021). Supporting these connections can deepen students’ 
understanding of mathematics content (Cuoco & McCallum, 2018). While there has been 
significant research on curricular coherence within one curricular material (Remillard & Kim, 
2020), progressions of mathematical ideas (Cai, 2014), and consistency across multiple contexts 
(Schmidt & Prawat, 2006), there is little understanding of (1) how teachers’ professional 
obligations influence their decision-making about coherence and (2) how teachers are creating 
coherence across multiple materials. To better understand how teachers conceptualize and make 
decisions about coherence, our study explores the research question, How do elementary 
teachers make decisions related to mathematics curricular coherence? 

Theoretical Framework 
Herbst and Chazan (2011) explain that a teacher’s decision-making is influenced by many 

professional obligations. These come from four sources: the discipline the teacher is 
representing, the individual students the teacher is serving, the socio-cultural context the 
classroom is situated in, and the institution(s) governing particular policies and sanctions. As 
teachers are making decisions about curricular coherence, one obligation they are attending to is 
the disciplinary obligation, which says that mathematics instruction must be a valid 
representation of the knowledge, practices, and applications of the discipline of mathematics. For 
curriculum designers, this obligation can be a primary focus, which allows for the creation of a 
coherent mathematical storyline. However, teachers also attend to additional obligations, 
including individual obligations, interpersonal obligations, and institutional obligations. These 
other obligations influence teachers’ decision-making related to curricular coherence. The 
individual obligation says that students bring uniquely diverse traits and experiences that a 
teacher must be responsive to and incorporate into instruction. Based on Bruner’s (1960) 
conceptualization of the interrelation of the teacher, curriculum, and students and Foster et al’ s 
(2021) mathematics curriculum as a story framework, we conceptualize teachers as the mediator 
between students and curriculum who digest the curriculum and represent the content and 
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storyline in ways relevant to their students. We consider student engagement as part of the 
individual obligation because teachers must consider what will be engaging for each individual. 
The interpersonal obligations says the teacher has a role in facilitating how the individual 
students within the classroom environment interact with one another to share time, resources, 
and space in socially and culturally specific ways. This obligation has connections to pedagogy 
that facilitates these interactions. The institutional (schooling) obligations says there are 
organizations that condition and constrain a teacher’s practice; these include obligations to the 
department (e.g., mandates for the use of particular curricular materials), to the school (e.g., 
calendar, bell schedule), and to the district in which the school is situated (e.g., assessment 
instruments, scope and sequence mandates). The many professional obligations that teachers are 
held accountable to can influence their decision-making about curricular coherence. 

Methods and Analysis 
To better understand what factors influence decisions elementary teachers make related to 

mathematics curricular coherence, we first administered a survey to 524 teachers across 46 states 
to gain a broad understanding and then began conducting interviews for a deeper understanding. 
This paper reports on findings from our first set of interviews, with nine teachers from schools in 
two states. Five teach at a public school in the Midwest (Sunshine Elementary) and four at a 
public school in the Southwest (Creekside Elementary). The teaching experience of these 
participants ranges 1-26 years and averages 9.5 years. The participants all teach elementary, 
which provides an interesting grade band to study because these teachers are thinking about 
curricular coherence both within and across subject areas (though the focus of these interviews 
was on mathematics curriculum). Two 60-minute interviews were conducted with each teacher, 
followed by a 60-minute group interview with teachers from the same school. We asked the 
teachers about the curricular materials (mandated and nonmandated) that they use, including 
which they use as well as how and why they use them. We also asked about the types and 
reasons for adaptations they make to their curriculum. While these questions provided some 
insight into teachers’ reasons and strategies for creating curricular coherence, we also asked 
questions explicitly about coherence. These questions asked teachers to describe the connections 
they are making within one lesson, between lessons in a typical week, and between units across 
the year as well as within one curricular material and between multiple materials. Thematic 
analysis of each interview transcript was conducted to code for patterns and nuances in teachers’ 
decision-making about coherence. 

Findings 
All nine teachers reported using multiple curricular materials to teach mathematics. This 

ranged from 6 to 14 different curricular resources, including materials they designed themselves. 
Since a primary curricular material (i.e., teacher textbook) is created by the curriculum designer 
with coherence in mind, we asked teachers whether they found it challenging to create coherence 
across so many materials. Surprisingly, all but three reported it was not challenging. Amanda 
(the veteran teacher with 26 years of experience) explained, “I guess I've been doing it for a long 
time, so it's not harder. I can see that for a new teacher, it might be harder.” Cristina (with two 
years of teaching experience) mentioned that she found it challenging to support students in 
learning concepts when different curricular materials use different vocabulary. These different 
responses suggest that more experienced teachers may find it easier to create coherent 
mathematics lessons.  
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Some teachers reported incoherence within their primary resource. For instance, Sarah felt 
that her main curriculum did not sufficiently cover the topic of elapsed time for her students, 
which meant she needed supplementary materials. Amanda reported something similar but with 
converting between fractions and mixed numbers. 

Some of the things they present for the kids to do, like with fractions, to take an improper 
fraction and turn it into a mixed number, they never explicitly teach the kids. They just 
expect they already know why or something. I don't know if that was supposed to be taught 
in third grade. But we get to the point where we're like, okay, you're supposed to identify 
mixed numbers based on these improper fractions. And they don't know how to do it. So then 
I have to teach that. And it's not really in the curriculum. 
Here, both teachers were attending to disciplinary and individual obligations to meet the 

needs of their students who needed more practice with particular topics before progressing in the 
curriculum. 

     As teachers talked about coherence, their focus was often on content, with few mentions 
of mathematical practices. When considering their institutional obligations, this was not entirely 
surprising since they are held accountable to standardized tests that primarily assess content. The 
teachers at Sunshine Elementary reported that they were required to teach all of the content in 
their curriculum, not by the end of the school year, but by the standardized testing date in the 
spring. This meant a focus on breadth over depth in order to touch upon many mathematics 
topics over a shorter period of time. For these teachers, the institutional obligation to prepare 
students for the test was often in tension with the disciplinary obligation to focus on 
mathematical understanding. 

     To guide the coverage of topics and create some degree of curricular coherence, teachers 
reported following the sequence of units in the pacing guide provided by their school district 
(i.e., institutional obligation) as well as the sequence of topics in their mandated primary 
curriculum material (i.e., disciplinary and institutional obligations). The teachers at Sunshine 
Elementary reported that some grade level teams aligned these, whereas other grades (within the 
same school) did not. This meant some teachers were better set up than others to create 
coherence between some of their disciplinary and institutional obligations.  

     The teachers reported supplementing their primary material with other materials for 
various reasons. As mentioned earlier, sometimes this happened when teachers felt their primary 
material did not sufficiently cover a particular topic. Another common reason teachers reported 
supplementing their materials to provide coherence focused on the goal of student interaction 
and engagement (i.e., individual and interpersonal obligations). For instance, Amanda explained, 
“I have to also think, do I have something that's more engaging, that teaches that same content, 
maybe in a better way?” She was tying the individual obligation of engaging students with the 
disciplinary obligation of teaching content better.  

     Sometimes teachers combined engagement with differentiating. Marvel expressed, 

Well, I guess the reason that I would use something besides just our curriculum would be to 
make those connections because kids think in different ways. And the way that I'm teaching 
it, or the way that even [the curriculum] is teaching- wants me to teach it- might not really 
connect with some of the kids. 
     Sometimes engagement also meant connecting to students’ lives or other real world 

situations, which integrate individual and disciplinary obligations. Cristina shared, 
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I used the apples from their breakfast bags. I gathered them, and I used them to act out the 
situation as a form of differentiating. And so making a connection to, you know, the 
situations that are being given, like real life word problems, and then using it in the 
classroom so that they can understand what is, what these words mean. 
     Sometimes engagement meant what the students would find most enjoyable or fun. When 

describing one supplementary material, Kasie mentioned that her students “really enjoy their 
videos, and I think that helps with the kids' engagement.” Similarly, when evaluating which 
curricular materials to use, Amanda mentioned, “I can just look at those materials, and figure out 
which ones I think the kids would really get into.” Likewise, Cristina justified her frequent use of 
an activity, 

So really just like games that they're familiar with, activities that they're familiar with, like I 
mentioned in our last interview, bingo. They love bingo. So I tried to make my lesson, make 
the practice more engaging for them. And making connections like a little within these 
materials is, this is everything that we've been practicing. So now let's use it to help us gain 
more understanding. 
     Victoria reported that finding engaging resources was a challenging connection to make, 

“And the reason it's challenging too is because I want to make sure that it's a video or content 
that keeps them interested and it's not just a person talking online or you know, I want it to still 
be fun and animated-interactive for them.” She also added that self-paced videos promote some 
independence and agency in the learning process, as students can pause and rewind their video as 
needed.  

     Teachers also indicated that they wanted more support to meet individual obligations. For 
example, Cristina expressed needing more support in working with English language learners, “I 
do wish there was more guidance because not only do I wish there was more support or like 
more examples of how to work with students who need more differentiation, but also students 
who are English language learners.” She mentioned that each lesson in her curriculum has a 
“box” with suggestions for how to support English language learners but meeting the individual 
needs of her own students required more nuance than the suggestions in the boxes. 

Discussion 
There is no doubt that a coherent curriculum is important for supporting students’ learning of 

mathematics. As teachers thought about instruction, their decisions related to curricular 
coherence were influenced by many professional obligations that sometimes took the focus off of 
the disciplinary obligation (which is crucial for creating coherence). It seems that stronger 
coherence between policy makers (who mandate what should be taught, and how and when it is 
assessed), curricular materials (which may include content and pedagogical suggestions that can 
be more or less engaging or culturally relevant for particular students), and teachers’ professional 
obligations could better set up teachers for success in creating curricular coherence. We invite 
the field to consider, to what extent can mathematics curricular coherence be realized in schools, 
given the existing policies and structures of schooling? 
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One core component of the Our Mathematical World program, co-developed with 3rd-5th 
grade teachers and students, is a storybook series showcasing PULSE (Pause, Understand and 
Remember, Lay It Out, Solve, Evaluate), a novel metacognitive problem-solving approach that 
integrates executive function and problem-solving skills. Each book features Black and Latine/x 
youth engaged in problem solving in community-focused contexts, with math content increasing 
in difficulty across the series. After initial design, books were translated to Spanish by scholars 
representative of different Latine/x communities.  

After implementation, both teacher and student feedback indicated students’ engagement and 
enjoyment, and most students indicated that reading the books made them feel like strong math 
learners. Feedback from multiple implementation phases was also used to further develop and 
improve the books, in line with the goal to promote students’ math identity, executive function, 
and problem-solving skills, as well as math-specific vocabulary.  
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Introduction 
There is considerable research to show that mathematics teachers’ beliefs and their classroom 

practices are intricately connected (Pajares, 1992; Thompson, 1985). The need for equity in 
mathematics education continues to be important in teacher preparation, since “ensuring the 
success of each and every learner requires a deep, integrated focus on equity in every program 
that prepares teachers of mathematics” (AMTE, 2017, p. 1).  

Theoretical Perspective 
Teacher education must engage candidates in discussion about their beliefs focusing on “the 

nature of the student-teacher relationship, the curriculum, schooling, and society” (Ladson-
Billings, 1995, p. 483). We used the work of Aguirre, Mayfield-Ingram, & Martin (2013) and 
focused on teacher beliefs about mathematical competencies and identities.  

Methods 
Twenty-two elementary PSTs and six secondary PSTs from a Midwestern public university 

participated in this study. This poster reports on the responses to the first question in the pre-
questionnaire which was administered on the first day of the semester:  In your opinion, why is 
mathematics important for students to learn? 

Results 
Four distinct types of reasons were revealed in all responses as shown in Table 1 below.   

Table 1: Distinct types of reasons in all responses for question 1 
 

  Elementary level Secondary level 
1 Foundational subject 3 13.6% 1 16.7% 
2 Mathematical thinking 5 22.7% 2 33.3% 
3 Problem solving 6 27.3% 3 50.0% 
4 Tools 13 59.1% 5 83.3% 

 
Some of the responses covered two or three types on the list. We also found that the ranking 

of the four types of reasons was the same between elementary and secondary level PSTs, despite 
the differences between the exact percentages from both groups.  

Conclusion 
Based on the results provided in the previous section, we made two observations. First, 

secondary level PSTs were more likely to mention two or three reasons in their responses. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 361 

Secondly, despite the different experiences the two groups had with mathematics, the distinct 
types of reasons they provided and their rankings were identical.  
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Positioning theory has been used in research to understand how elementary student teachers are 
positioned while working with their mentor teacher. While this research has identified four 
general positions, there remains a lack of clarity about these positions, particularly in how they 
differ. This study explores three contrasting student teacher-mentor teacher pairs to explore how 
different student teacher positions are constructed. Through qualitative coding of interviews that 
followed a math lesson observation, an emerging framework is proposed along two dimensions: 
interactional positioning and actional positioning. Within each dimension, two sub-dimensions 
are proposed: discursive patterns and intellectual authority within interactional positioning and 
teaching experiences and planning experiences within actional positioning. This framework 
provides a foundation for further research on student teacher positions. 

Keywords: preservice teacher education; elementary school education 

Both teacher self-report (Levine, 2006) and external metrics and research (National Council 
for Accreditation of Teacher Education, 2010; Ronfeldt & Reininger, 2012) have shown that 
student teaching is an integral component of teacher preparation. Given that student teaching 
occurs in a mentor teacher’s classroom and in close proximity to a mentor teacher, it is important 
to understand the nuances of student teacher-mentor teacher relationships.   

Many scholars have utilized positioning theory to study student teacher-mentor teacher 
relationships (Bullough & Draper, 2004; Campbell & Lott, 2010; Chen & Mensah, 2018; Hart, 
2020; Mosvold & Bjuland, 2016; Valencia et al., 2009), as positioning theory provides distinct 
definitions that differentiate roles and positions (Hart, 2020). Davies and Harré (1999) defined 
roles as “static, formal and ritualistic” (p. 32); the fixed, long-standing roles of student teacher 
and mentor teacher are entrenched components of teacher education. Conversely, positions are 
“seen as dynamic and fluid in nature” (Hart, 2020, p. 3) and are context specific (Chen & 
Mensah, 2018). As such, positioning theory allows for deeper investigation into the nuances of 
student teacher-mentor teacher relationships.  

Research on student teacher positioning has established four general positions. Some student 
teachers are positioned as observers or workers in a classroom (Campbell & Lott, 2010; Chen & 
Mensah, 2018). Other student teachers are positioned as learners of teaching (Campbell & Lott, 
2010; Chen & Mensah, 2018) or as teachers in training (Mosvold & Bjuland, 2016), where the 
focus is on mimicking their mentor teacher (Valencia et al., 2009). Still other student teachers are 
positioned as collaborators with the mentor teacher, where the student teacher offered ideas and 
both student teacher and mentor teacher were learning. (Campbell & Lott, 2010). Finally, some 
student teachers are positioned as classroom or fellow teacher, where the student teacher 
contributes to constructing classroom norms (Chen & Mensah, 2018).  

While the names and conceptions of these four general positions have been established in the 
literature, there is little clarity on what differentiates these positions, particularly in how they are 
constructed. To explore this, our study was guided by the following research question: How are 
different student teacher positions constructed as elementary student teachers work with their 
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mentor teacher around mathematics instruction? Specifically, we sought to 1) identify 
dimensions by which the positions differ and 2) develop an emerging framework that describes 
each position by dimension.   

Theoretical Framework 
Harré and van Langenhove (1999) defined positioning theory as the “study of local moral 

orders as ever-shifting patterns of mutual and contestable rights and obligations of speaking and 
acting” (p. 1). Positioning theory does not assume that all people involved have equal access 
toward performing any action (Harré, 2012), as these contestable rights and obligations inform 
potential boundaries of peoples’ actions. For student teachers, how they are positioned provides 
different access to rights and obligations, and therefore, possibilities for action.  

Position and positioning are two important, interconnected constructs within positioning 
theory. Positions have been defined as “a complex cluster of generic personal attributes, 
structured in various ways, which impinges on the possibilities of interpersonal, intergroup and 
even intrapersonal action” (Harré & van Langenhove, 1999, p. 1). Positions are dynamic and 
fluid as they occur within a particular context (Hart, 2020; Mosvold & Bjuland, 2016), and 
relatedly, are manifested through discourse (Hart, 2020). Herbel-Eisenmann et al. (2015) suggest 
that studying communication actions (e.g., gesture, physical position, etc.) allows for 
understanding discursive practices and interactions beyond just speech.  

Positions are constructed through positioning, which has been defined as “the discursive 
process in which people use action and speech to arrange social structures through locating 
people in conversations” (Herbel-Eisenmann et al., 2015, p. 188). An important component of 
positioning is that it occurs at a moment in time, which contributes to the fluidity of positions 
(Wood, 2013). Positioning can occur when a person positions someone else or when a person 
positions themself (Kayi-Aydar & Miller, 2018). 

Drawing upon this previous literature, we define position as a complex cluster of attributes 
that impinges (or affords) the possibilities of action, which is temporary and assigned through 
positioning. Conversely, we define positioning as the discursive process whereby communication 
actions locate oneself and others in moments in time.  

Method 
Data Context 

The three mentor teachers in this study were members of a cohort of elementary teachers 
who received funding to complete an Elementary Mathematics Specialist (EMS) certification 
program and serve as teacher leaders in their schools for four additional years. At the time of this 
study, they had completed their two-year EMS program and a semester of their teacher leader 
service component. They had engaged in several leadership activities, including leading 
mathematics professional development in their schools and district, presenting at regional 
conferences, and working with colleagues and administrators to improve mathematics teaching 
in their schools. Ms. Erin was a fourth-grade teacher with 11 years of teaching experience. Ms. 
Molly was a third-grade teacher with 12 years of teaching experience. Ms. Julia was a 
kindergarten teacher with 16 years of experience. All names are pseudonyms. 

The three student teachers in this study were enrolled in a program that included two 
mathematics methods courses during the previous school year (except for Jamie, whose program 
only required one methods class). These courses emphasized both mathematics, with a heavy 
focus on fractions and whole number operations, and pedagogy, with a focus on eliciting and 
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responding to student thinking. In the Fall semester, student teachers were placed in elementary 
schools three days a week and rotated through different grade levels every two weeks. In the 
Spring semester, when data for this study was collected, they were placed with one teacher at the 
same school where they observed in the Fall. They were expected to gradually take over most of 
the instruction in that class, under the supervision of the mentor teacher.  
Data and Participants 

The data for this study come from three student teacher-EMS mentor teacher pairs: Elise and 
Ms. Erin; Michelle and Ms. Molly; and Jamie and Ms. Julia, respectively. All names are 
pseudonyms, and pseudonyms were chosen so that each student teacher-mentor teacher pair 
begins with the same letter. Ms. is included to indicate who is the mentor teacher. Data included 
seven interviews, each following an observation of a mathematics lesson. Two interviews were 
conducted each with the pairs of Elise and Ms. Erin, and Michelle and Ms. Molly, while three 
interviews were conducted with Jamie and Ms. Julia. Interviews were conducted via Zoom and 
lasted 11 to 48 minutes, for an average of 25 minutes. Interviews elicited participants’ reflections 
on the math lesson, the planning of that lesson, their classroom responsibilities, as well as their 
goals for upcoming math teaching. All interviews were audio recorded and transcribed. The 
interviewer previously worked on this research project but is not one of the authors of this paper. 
Data Preparation and Analysis 

Analysis began by listening to the interviews and open coding for the various ways student 
teachers (ST) were positioned, which was informed by the literature and theoretical framework. 
Through discussion, an initial list of positionings was created, which was then used in a second 
round of listening to reduce the data. In data reduction, the authors listened separately and 
reconvened to agree on interview excerpts that did not include positionings of the ST. These 
excerpts were excluded, and a condensed transcript was prepared where excluded excerpts were 
summarized, and all other parts of the interview were fully transcribed.  

These condensed interviews were then coded for different positionings by first employing the 
codes that emerged in the earlier listening rounds and adding and refining codes as needed. The 
first and second authors coded the first three interviews together, and then separately coded and 
came back to negotiate discrepancies for the remaining four interviews. After analyzing all the 
interviews, we then collapsed and grouped codes. First, we differentiated between positionings 
that emerged through ST’s engagement (or lack of engagement) in the practices of teaching—
what we call actional positionings—and positionings that occurred in interactions between 
mentor teacher (MT) and ST during the interview—what we call interactional positionings. Next, 
we separated the actional positionings into teaching experiences or planning experiences. 
Finally, we separated the interactional positionings into discursive patterns (i.e., patterns of MT 
and ST engaging together in the interview) or intellectual authority (i.e., to what extent the ST 
can make decisions or judgements). Table 1 summarizes the final organization of our data, which 
functions as the dimensions by which we analyze the positionings. 
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Table 1. Dimensions of Student Teacher Positions 
 

Dimension Definition Example 
Interactional 
Positioning 

Discursive 
Patterns 

Engagement between MT and ST in 
interview. 

MT made space for ST: “Do you 
want to share what your thoughts 
were?” 

 Intellectual 
Authority 

To what extent the ST can make 
decisions or judgements.  

MT as expert: “I didn’t ever think 
to do that until MT” showed me. 

Actional 
Positioning 

Teaching 
Experiences 

The qualitative nature of ST’s 
teaching experiences. 

ST overlooked by MT: I wish 
“there were a way to conference 
with” all students. 

 Planning 
Experiences 

The qualitative nature of ST’s 
planning experiences. 

ST with independence: “I’ve taken 
the math book home a few times” 
to plan. 

Findings 
As we explored our three cases, we saw distinct differences between the interactional and 

actional positionings of each student teacher. Using these interactional and actional positionings, 
we drew upon the previous literature on student teacher positions to identify how each student 
teacher was predominantly positioned: Elise as a learner of teaching, Michelle as a collaborator, 
and Jamie as a co-teacher. (Note that we use co-teacher rather than classroom or fellow teacher 
[Chen & Mensah, 2018] to highlight that ST and MT are still working together.) To facilitate 
presentation and reading of the findings, we first name how the student teacher was 
predominantly positioned and then present the corresponding positionings. However, this is the 
reverse of our analysis process, where we first focused on positionings, and then utilized the 
positionings to consider how the student teacher was predominantly positioned.  

In the following sections, we explicate how different positionings constructed each student 
teachers’ position. Organized by case, we first discuss interactional positionings, then actional 
positionings. As shown in Table 1, interactional positionings include discursive patterns and 
intellectual authority while actional positionings include teaching experiences and planning 
experiences. Given space limitations, we identify prominent positionings from each case that 
exemplify the predominant position for that student teacher.  
Case 1: Elise and Ms. Erin 

Elise was a student teacher in Ms. Erin’s classroom. Through the interactional and actional 
positionings detailed below, Elise was predominantly positioned as a learner of teaching.  

Interactional Positioning. Two prominent interactional positionings that represent Elise’s 
case are Ms. Erin not making space for Elise in the interviews and both Elise and Ms. Erin 
positioning Ms. Erin as the expert. In this paper, we use the phrase “make space” to describe 
when a MT asks if the ST would like to share or offers the opportunity for the ST to share during 
the interview. In this sense, Ms. Erin only made space for Elise once in each interview. 
Moreover, when Elise did talk, her statements were brief; she only made three multi-sentence 
verbal statements in the first interview and six such statements in the second interview. This 
contrasted with Ms. Erin, who talked for extended periods in both interviews. Discursively, Ms. 
Erin’s lack of making space for Elise contributes to her predominant position of learner of 
teaching as it indicates that Elise’s thoughts and ideas are not as valuable as Ms. Erin’s.  
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When considering intellectual authority, Elise positioned Ms. Erin as the expert in both 
interviews. For example, in the second interview, Elise said, “Ms. Erin is so good at seeing 
[student] work and automatically being able to tell where some holes are. And so I'd say going 
forward, that's a huge goal for me.” Elise is grounding her goals in Ms. Erin’s practice, which 
she views as the desired standard. Ms. Erin also positioned herself as the expert. When recalling 
Elise’s taking over of classroom instruction, Ms. Erin explained that Elise “hasn't been afraid to 
take over. So that's good, I feel like. And she knows that, you know, she can turn to me if she 
gets stuck.” Here, Ms. Erin reaffirmed herself as the expert, where she can provide guidance and 
support to Elise, who is still learning to teach. In both their discursive patterns in the interview 
and their interactions in the classroom, Elise and Ms. Erin’s positioning of Ms. Erin as the expert 
enforces Elise’s predominant position as a learner of teaching. 

Actional Positioning. As expected, given the student teacher role, all student teachers had 
opportunities to teach and plan math lessons. The actional positionings (i.e., teaching experiences 
and planning experiences) detailed for each case focus on the qualitative nature of each student 
teachers’ opportunities and experiences with teaching and planning math lessons. 

Regarding teaching experiences, Ms. Erin and Elise overlooked opportunities for Elise to 
gain more teaching experience. For example, as Ms. Erin reflected on the “kind of weak” 
assessment of the first lesson, she wished “there were a way to conference with [all students as] 
that would be better [as an assessment than a worksheet], but there’s 26 [students in the class].” 
Here, Ms. Erin overlooked the possibility of Elise conferencing with students, which could have 
strengthened the lesson’s assessment and provided Elise with more teaching experience. 
Separately, Elise identified that “walking around, listening, [and] assisting in any way has been 
really impactful” for her learning. By engaging in these basic actions, Elise lost opportunities to 
engage meaningfully and strategically with students during conferencing. In these examples, Ms. 
Erin and Elise both positioned Elise as a learner, rather than doer, of teaching by overlooking 
opportunities for Elise to engage in the key responsibilities of assessing student thinking and 
conferencing intentionally.  

Elise’s lack of confidence with math was mentioned in both interviews, including that it 
resulted in math being the last subject she took over teaching. In the first interview, Ms. Erin 
said, “[Elise’s] like, I just wanna watch you for a little bit longer.” By implicitly conveying a 
theory of learning to teach through observing, rather than doing, Elise reinforced her position as 
a learner of teaching. In the second interview, Elise said, “I think the ultimate thing that changed 
since we [last] talked is now I'm leading every math lesson. And Ms. [Erin’s last name]’s of 
course there to jump in when she needs to or offer that support.” Even as Elise took over more 
teaching responsibilities, the hierarchy in their relationship (i.e., Elise as learner of teaching, Ms. 
Erin as expert) persisted, since Ms. Erin would “jump in” when needed.  

Regarding planning experiences, there were times when Elise and Ms. Erin planned together 
and times when they did not. When the interviewer asked about the planning that went into the 
first lesson, Ms. Erin said she “probably didn't do a very good job of involving [Elise] in it this 
time, because [Ms. Erin] was planning it by [herself], (pause, then to Elise) sorry about that. We 
planned the Graham Fletcher part separately.” Not only is Elise missing out on planning 
experiences, but Ms. Erin is implicitly acknowledging they should be planning together, because 
these are important opportunities for Elise to learn about teaching.  
Case 2: Michelle and Ms. Molly 

Michelle was a student teacher in Ms. Molly’s classroom. Through the interactional and 
actional positionings detailed below, Michelle was predominantly positioned as a collaborator.  
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Interactional Positioning. Two prominent interactional positionings that represent 
Michelle’s case are Ms. Molly’s consistency in making space for Michelle in the interviews and 
equal status, including shared intellectual authority, between Michelle and Ms. Molly. Ms. Molly 
explicitly made space for Michelle six times in the first interview and four times in the second 
interview, though Michelle did not always take the space. Two examples of Ms. Molly making 
space were “did you want to kind of share what your thoughts were, and I can share what my 
thoughts were” and “do you wanna talk a little bit about the, how the fractions were connected?” 
Ms. Molly positioned Michelle as a collaborator by communicating value for her thoughts 
through consistently making space for her, which contrasts Elise’s experience with Ms. Erin. 
This consistent making space for Michelle during the interviews exemplifies the discursive 
nature of her predominant position as a collaborator. 

Michelle’s predominant position as a collaborator is also exemplified through the distribution 
of intellectual authority in Ms. Molly’s classroom, which is frequently shown through Michelle 
and Ms. Molly’s references of equal status in their relationship. For example, in the first 
interview, Michelle mentioned that Ms. Molly once said, “this is your classroom just as much as 
it is mine,” which “lets [Michelle] know that [she] can try new things.” This demonstrates that 
Ms. Molly positioned Michelle as a collaborator who is provided with authority, intellectual and 
otherwise, in the classroom. In the second interview, Ms. Molly said that through their “constant 
communication,” she thinks she and Michelle “depend on each other a lot,” that they “work 
really well together,” and that “everything is a team.” Here, Ms. Molly positioned Michelle as a 
teammate of hers and someone she depends upon, which reinforces her predominant position as 
a collaborator who has equal status to Ms. Molly.  

Actional Positioning. Regarding teaching experiences, Michelle, and Ms. Molly’s ability to 
transition teaching responsibilities in the moment exemplifies Michelle’s equal status in the 
classroom. Michelle said that “when [Ms. Molly] has to step out for one of our students…I’ll just 
jump in and start teaching. And then sometimes, I’ll be like, okay, I need to take a step back and 
[Ms. Molly’ll] just jump in and start teaching.” These smooth transitions between who is 
teaching in the classroom demonstrates Michelle and Ms. Molly’s equal status and close 
collaboration, which reinforces Michelle’s predominant position as a collaborator. 

Regarding planning experiences, Michelle mentioned in the first interview that they “plan 
lessons after school together.” Michelle also contrasted her experience working with Ms. Molly 
to her roommate’s experience student teaching at another school. Michelle said her roommate’s 
mentor teacher “goes home at the end of the day and just chooses to plan at home. And she just 
sends her like on her own to plan things. If she has questions, she can't really reach out to her,” 
whereas Michelle and Ms. Molly “text all the time.” By drawing on the contrasting experience of 
her roommate, Michelle reinforced the collaborative nature of her and Ms. Molly’s relationship, 
which exemplifies her predominant position as a collaborator.  
Case 3: Jamie and Ms. Julia 

Jamie was a student teacher in Ms. Julia’s classroom. Through the interactional and actional 
positionings detailed below, Jamie was predominantly positioned as a co-teacher. 

Interactional Positioning. Three prominent interactional positionings that represent Jamie’s 
case are Jamie interjecting in the interviews, Ms. Julia deferring to Jamie in the classroom, and 
Jamie making decisions about student learning. Across the three interviews, Jamie interjected to 
confirm Ms. Julia’s statements 71 times (e.g., “mmhmm,” “yeah,” etc.). Similarly, Ms. Julia 
interjected to confirm Jamie’s statements 15 times. Jamie also often added on to the conversation 
or answered the interviewer’s question first, demonstrating that her interjections were not 
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deferral to Ms. Julia’s response. Jamie’s interjections to confirm and add on to the conversation 
in an organic way demonstrate her equal discursive status with Ms. Julia, which contrasted with 
Ms. Molly’s make space for Michelle and Ms. Erin’s lack of making space for Elise. This 
exemplifies how Jamie was discursively positioned as a co-teacher. 

Jamie was also positioned as a co-teacher through the intellectual authority she was both 
afforded by Ms. Julia and took up herself. In reflecting on the lesson, Ms. Julia said, “I kind of 
talked to [students], too. I was like, are you willing to share if we need you to? Like I didn’t 
wanna be like, you are going to share.” Here, Ms. Julia positioned Jamie as a co-teacher by 
deferring to Jamie regarding which students would share their strategies. This is particularly 
noteworthy because Ms. Julia thought ahead and intentionally planned her language when 
circulating so that Jamie would have intellectual authority over the eventual discussion.  

Jamie also took up intellectual authority in the interview and in the classroom. For example, 
when the interviewer asked if there was anything further Jamie or Ms. Julia wished to discuss at 
the end of the interview, Jamie explained that in small groups, she “kind of used the kids to help 
create [the story problems]” by taking “turns asking them…what was your favorite dessert, and 
then that's what I'll base the problem around.” Here, through answering the interviewer’s open-
ended question and establishing intellectual authority to make instructional decisions in the 
classroom, Jamie demonstrated her position as co-teacher.  

Actional Positioning. Regarding teaching experiences, Jamie had several opportunities for 
more independent teaching than Elise or Michelle. For example, in the first interview, Ms. Julia 
mentioned that Jamie and Ms. Julia led different activities in the classroom. This trust in Jamie’s 
instruction to be independent of Ms. Julia exemplifies Julia’s predominant position as a co-
teacher. Furthermore, in the first interview, Jamie and Ms. Julia mentioned that Jamie taught the 
class on her own for several days when Ms. Julia was absent or pulled to teach in another 
classroom. Both Jamie and Ms. Julia appeared comfortable with this situation; there were no 
comments of concern, stress, or uncertainty. This also indicates Ms. Julia’s trust in Jamie as well 
as Jamie’s confidence in herself as a teacher, particularly given this happened early in Jamie’s 
student teaching semester. Jamie’s opportunities for independent teaching and her and Ms. 
Julia’s trust in her as a teacher reinforces Jamie’s predominant position as a co-teacher. 

Regarding planning experiences, Jamie also had some independence from Ms. Julia. While 
they “did a lot of [planning] together” (second interview) or “sat down at the beginning of the 
week and…plotted out what activity [they’re] gonna do each day” (third interview), Jamie also 
said she had "taken the math [curriculum] book home a few times and kind of typed up, like 
what the book says, and then kind of brought it to school the next day" (second interview). In 
addition to planning with Ms. Julia, Jamie also had the opportunity to plan lessons on her own 

Discussion 
This study introduces two dimensions of positioning that construct student teacher positions: 

interactional positioning and actional positioning. Within each dimension, there are two sub-
dimensions: discursive patterns and intellectual authority within interactional positioning, and 
teaching experiences and planning experiences within actional positioning. Each position is then 
described along these dimensions, using examples from the three cases in this study. Together, 
the dimensions and examples create an emerging framework that provides conceptual specificity 
and distinction between the student teacher positions of learner of teaching, collaborator, and co-
teacher. This emerging framework, summarized in Table 2, can support further research on 
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student teacher positions as well as teacher education structures for student teaching, particularly 
mentor teacher training.  

 
Table 2. Emerging Framework of Student Teacher Positions by Dimension 

 
  Learner of Teaching Collaborator Co-Teacher 
Interactional 
Positioning 

Discursive 
Patterns 

MT does majority of the 
talking and makes little 
space for ST. 

MT makes space for ST, 
which the ST may or may 
not take. 

ST interjects and 
organically participates in 
discussion without MT 
making space. 

 Intellectual 
Authority 

MT is the expert. The 
goal is to watch their 
practice and emulate it. 

MT communicates value 
and appreciation for ST 
ideas and presence.  

MT defers to ST in some 
decision making and 
provides some 
independence. 

Actional 
Positioning 

Teaching 
Experiences 

ST is overlooked 
sometimes and gets less 
opportunities to engage in 
teaching practice. 

ST engages in teaching 
regularly and transitions 
easily between them and 
MT. 

ST has some teaching 
experiences independent 
of MT.  

 Planning 
Experiences 

Sometimes MT plans 
without ST.  

ST often plans with MT 
and can reach out with 
questions.  

ST has opportunity to 
plan alone.  

 
Importantly, this study does not seek to suggest a hierarchy of student teacher positions. For 

example, we do not view a position of co-teacher as inherently better than a position of learner of 
teaching. Rather, we believe there are different affordances and constraints that come with each 
position, and that each position may be most ideal for different student teachers or even the same 
student teacher at different points in their student teaching experience. Relatedly, given the 
fluidity of positions and the in-the-moment focus of positioning, we want to reiterate that while 
each student teacher was predominantly positioned as one position, there were examples in each 
case where the positioning in that moment would have aligned with a different position.  

Given the limitation of space, we restricted the data presented in this paper to the 
observation-debrief interviews. Individual interviews were also conducted at the end of the 
semester with each student teacher and mentor teacher. One next step for this work is to analyze 
those interviews and consider how that data complements the data presented in this paper. 
Another next step is to analyze the storylines within each case and across the cases, as storylines 
are an important construct in positioning theory that are not always explicitly or thoroughly 
addressed in research (Herbel-Eisenmann et al., 2015).  
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As a field, we are amid the latest in a series of technological that wars we have faced. In the 
1960s, 70, and 80s, technological conservatists worried the hand-held electronic calculator 
would cause students to lose their ability to calculate by hand (see Usiskin, 1978 for a rebuttal of 
the ‘crutch’ argument). Today, the descendants of those same technological conservatist 
reactionaries worry that the use of artificial intelligence (AI) in schooling will develop a 
generation of individuals reliant upon AI tools. Rejecting this Luddite reaction, I conceive of an 
AI-infused mathematics teacher education as “a mathematics teacher preparation that uses AI—
in its various forms—to the fullest extent possible in service of accomplishing the mathematics 
teacher educator’s (MTE’s) other simultaneous goals (e.g., social justice, cultural relevance, 
mathematical rigor, etc.)” AI, then, is not as a threat but as an instructional aid: an object to be 
used to enhance the learning of mathematics (Berger, 1973), not only for mathematics teachers 
(MTs) but also for MTEs.  

Conceiving of AI as instructional aid, I presume a systems thinking approach to the teaching 
of mathematics. That is, I assume that it is the role of the teacher to manage the numerous 
resources, people, spaces, and experiences at their disposal to best meet the engagement and 
learning needs of all children in their classrooms. If the goal is to best manage these resources, 
then, it is necessary that MTs learn to best manage AI in the service of teaching mathematics.  

Johnson and colleagues (1980) described affective indicators of computer literacy as those 
attitudes, values, and motivations we have towards computers and their use (e.g., fear or 
confidence, aversion or preference). They, in turn, described nine characteristics of computer 
literacy which I recast to consider an AI literacy for MTs and MTEs. AI literacy for MTs and 
MTEs suggests that teachers are (1) not anxious, but (2) confident about their ability to use AI 
programs; they value the (3) automation AI can enable, (4) the effort it can offload, (5) the 
information it makes available, and (6) the economic benefits of these; and they (7) enjoy, and 
actively seek opportunities to use AI in the teaching of mathematics. None of this is possible 
without (8) positive past-experiences with AI or (9) using AI in their free time.   

Foucault’s historio-philisophical method of mirrors as levers (Fendler, 2010)—Foucault’s 
ironic approach to history suggests that sometimes mirrors make the best levers, that is, 
sometimes looking back can give us tools to change our present—enables me to recast lessons 
from the Great Calculator Debate (Barrett, 1974) to disrupt the current backlash against and 
aversion towards the use of AI by mathematics teachers. Consider this quote by Wheatley in 
which I replace calculator with AI in to make explicit the way I use history as a lever: “we 
encourage teachers to consider [AI] as an instructional aid and to explore ways of using them as 
an integral part of the teaching/learning process” (1979, p. 21). Wheately’s and others’ 
polyphonic voices speak historically about the calculator, contemporaneously about the present, 
and prophetically about the future.  
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Nationally, there is a gap between the ambitious and equity-oriented mathematics pedagogies 
that pre-service teachers may learn in their university methods classes and the more traditional 
instruction that they typically try in their field placements (Horn & Campbell, 2015). This pilot 
study seeks to bridge this gap through a novel teacher learning collaborative with teacher 
candidates and cooperating teachers together, focused on the high-leverage practice of leading 
a discussion (Shaughnessy et al., 2021). Baseline findings were grim: mathematics 
“discussions” in teaching placements rarely included multiple student strategies or moved 
beyond “show and tell.” However, the first learning cycle of the collaborative expanded teacher 
learning opportunities: one teacher candidate tried three dot talks and elicited and connected 
many strategies. Discussing her teaching video supported teachers’ rich reflection on Agency, 
Ownership and Identity (Schoenfeld, 2020; 2022). 

Keywords: Preservice Teacher Education, Elementary School Education, Classroom Discourse  

Objectives 
Nationally, there is a "gap" between the ambitious and equity-oriented practices that pre-

service teachers may learn in their university methods classes and the more typical and 
traditional instruction that they almost always try out in their field placements (Horn & 
Campbell, 2015). In general, adoption of ambitious and equity-oriented teaching practices by 
schools and districts is a difficult problem, and is constrained by many factors including 
available curricula, testing, lack of sustained PD support, and competing demands on the time of 
administrators and teachers (Cobb et al., 2018; Schoenfeld, 2022).  Powerful teacher learning can 
occur in learning communities, however, there is a relative scarcity of adequately facilitated 
teacher learning spaces that support teachers to both reflect on concrete instances of practices 
and make connection to broader principles and theories of ambitious and equity-oriented 
instruction (Horn & Little, 2010; Horn et al., 2017; Louie, 2016).   

This paper is a preliminary report of findings from a pilot teacher learning collaborative, 
which will run from January through May, 2023.  The collaborative is facilitated by the author 
and includes 4 TCs, their 4 cooperating teachers (CTs), and 3 other teachers at one elementary 
school site in Northern California.  The CTs were highly recommended by the program 
coordinator as experienced and skilled teachers and mentors; all four teach dual language 
immersion in Spanish and English and have lived near the community where they teach for at 
least 10 years.  However, the teachers have self-reported that they have less knowledge about 
supporting academic discourse in mathematics.  

The collaborative will meet approximately monthly for a “video club” professional 
development (PD).  The author will also observe and support the four co-teaching pairs (TCs 
with their CTs) approximately twice per month in the role of university clinical coach of the 
TCs.  This preliminary report focuses primarily on analysis of baseline data, plus some analysis 
of the first learning cycle of the teacher collaborative in February 2023.  Analysis of the baseline 
data is crucial to understanding the opportunities and obstacles TCs face.  The first learning cycle 
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offers insights about creating expansive opportunities for TC learning.  The research questions 
are: 

1. Prior to the start of the teacher collaborative, what opportunities do TCs have to practice 
and receive coaching feedback on the high-leverage teaching practice of leading a 
discussion in mathematics?  What challenges constrain these opportunities? 

2. What new opportunities and/or challenges are created for TCs in the first learning cycle 
of the teacher collaborative? 

Theoretical Framework 
The pilot intervention draws on known techniques for creating powerful teacher learning 

spaces, including a “video club” format to ground discussions in real teaching practice (van Es & 
Sherin, 2008) and the use of the Teaching for Robust Understanding framework to support 
principled reflection on practice (Schoenfeld, 2020; 2022).  The TRU framework includes five 
dimensions: (1) Content, (2) Cognitive Demand, (3) Equitable Access, (4) Agency, Ownership 
and Identity, and (5) Formative Assessment.  The intervention is innovative in that it (1) 
integrates support for TC and CT learning and (2) integrates the time-consuming work of 
coaching teachers in new pedagogies with the existing duties of clinical coach observations. 

The teacher collaborative focuses on the high-leverage teaching practice of leading a group 
discussion (Ball & Forzani, 2009; Shaughnessy et al., 2015), one of two high-leverage practices 
that are central to our university’s math methods course.  Mathematical discussions, particularly 
those that go beyond “show and tell” to connect multiple student strategies, offer opportunities 
for teachers to learn about all five dimensions of TRU, and especially about Agency, Ownership 
and Identity.  Key components of leading a discussion that particularly support Agency, 
Ownership and Identity include recording students’ ideas, orienting students to each other’s 
ideas, responding to unexpected or incorrect answers, and noticing and disrupting inequitable 
patterns of participation.  Nevertheless, the practice is somewhat rare; one large-scale study 
found that even after substantial PD work in a large district, when asked to videotape their “best” 
mathematics lessons, only about half of the lessons included a discussion and only half of those 
went beyond “show and tell” (Horn, 2017). 

Methods of Inquiry 
Planned data sources for the teacher collaborative include a pre- and post- survey, video 

of PD sessions, video of at least one classroom coaching visit per TC in which that TC is trying 
out a new pedagogical practice, and written observation notes from all other coaching visits.  At 
the time of this writing, the teacher learning collaborative has completed one learning cycle 
including two PD sessions and one video recording of a TC trying math talks which was shown 
in the second PD session.  At least 2 additional learning cycles are planned for the remainder of 
Spring 2023. 

In addition, written observation notes from my coaching observations prior to the start of 
the teacher collaborative are analyzed as a source of baseline data.  I conducted 46 coaching 
visits with 6 TCs in Fall 2022, prior to the start of the teacher collaborative.  12 of these coaching 
visits (26%) occurred during mathematics instruction.   

Both the 12 baseline observations and the TC video used in the first learning cycle of the 
teacher learning community were coded based on: 
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1. Class format: tutoring individual students, pair/group work and/or whole group 
2. Whether the observation included a discussion, defined broadly as any whole group (5+ 

students with teacher) activity in which students took talk turns longer than a few words, 
3. Opportunities to practice components of leading a discussion, listed in Table 1. 

Results will be presented as code percentages plus qualitative excerpts from transcript and/or 
field notes to illustrate the nature of the learning opportunities for TCs. 

Results 
Baseline Data 

Of the 12 baseline observations from Fall 2022, only 7 included a discussion of any 
kind.  The remaining observations involved tutoring individual students (2 observations) or 
teacher demonstrations to the whole class (3 observations).  Of these 7 observed discussions, the 
opportunities for feedback on specific aspects of leading a discussion are listed below. 

 
Table 1: Number and percentage of learning opportunities in observed discussions 

Launching and concluding the discussion 7 (100%) 
Recording students’ ideas 0 (0%) 
Orienting students to each other’s ideas 6 (86%) 
Treating mistakes and unexpected answers as resources for learning 2 (29%) 
Noticing and disrupting inequitable participation patterns 6 (86%) 

 
In all 7 observed discussions, TCs had the opportunity to launch and conclude the discussion. 

However, none of the TCs recorded student ideas during the observations, and it was unusual for 
students to give unexpected or incorrect responses.  This is because most of the discussions were 
either about a fairly easy question, such as “How do you know the corner of the paper is 90 
degrees?” or involved one or two students coming to the front to presenting correct, standard 
solutions in a “show and tell” format (Stein et al., 2008). Although most discussions included 
some opportunities to orient students to each other’s ideas and to notice and disrupt inequitable 
participation patterns, these opportunities were not as in-depth as they would have been for more 
open-ended tasks in which students considered partial or incorrect reasoning and connected 
multiple solution strategies. 
First learning cycle 

In the first PD session, the teacher learning community discussed the value of eliciting 
student thinking about multiple strategies, strategies for orienting students to each other’s ideas, 
and helping them connect ideas.  A TC with some previous familiarity with number talks (from 
my math methods course) then volunteered to lead a sequence of three dot talks and be 
videotaped for the “video club” PD.  The second PD session introduced math talks (including 
number talks, dot talks, and other variations), a pedagogical practice with which all CTs were 
previously unfamiliar.  The majority of the session was spent in a video club session analyzing 
the TC’s dot talks.  This created new, important learning affordances for learning by both the TC 
and all participating teachers. 

First, the presenting TC had the opportunity to practice all five aspects of leading a 
discussion during her dot talks.  She used three dot talks from youcubed.org (2019) as a basis for 
a 43 minute discussion with a group of six students.  Students generated a total of 30 strategies 
for the 3 dot talks. During the first dot talk, the teacher practiced recording students’ ideas by 
turning to each of the first four students and asking them to verbally construct a number sentence 
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for their dot pattern as she wrote each number sentence on the board.  After that, students came 
to the whiteboard to record their own ideas, including number sentences.  The inclusion of so 
many varied strategies offered the TC rich opportunities to help orient students to each other’s 
ideas, for example by asking what was different about a given strategy and two opportunities to 
respond to incorrect answers, for example by allowing other students to disagree and then the 
presenting student to revise her own answer.  She disrupted inequitable participation patterns by 
supporting one lower-status student who was hesitant to present; by the last dot talk, all six 
students shared and were positioned as competent. 

Discussion of this video during PD created important learning affordances for all 
participating teachers.  Transcript excerpts showing teacher talk relating the dot talk video to 
different TRU dimensions are shown in Table 2. The session inspired future learning 
opportunities: two of the remaining three TCs made plans to try math talks, while the fourth 
made plans to support student talk in small groups. 

 
Table 2: Teacher Talk during Professional Development Session - Learning Cycle 1 

Access I would say more access, there’s access for everyone.  Everyone has a different 
approach for it. - TC 

Agency, Ownership, and 
Identity 

I think also agency because the students are able to solve the problem different ways 
and explore - CT 

Cognitive Demand We connected that to cognitive demand, because the kids will push each other, “why 
are you saying that?” - CT 

 
      At the time of this writing, data from two additional learning cycles has just been 

completed, and not yet analyzed; post surveys are in process and not yet available.  However, 
there are some early indications that the learning affordances of the first learning cycle were 
made available to the group as a whole: participants requested to continue focusing on math talks 
for the remainder of the school year; all four teacher candidates tried math talks and shared their 
video in PD sessions; 11/11 (100%) participants responding to a March exit ticket recommended 
that math talks should be required of all candidates in the credential program; the five 
experienced teachers who participated in the closing PD session reported that they had tried 
between one to six math talks each and felt that more students were becoming more comfortable 
explaining their thinking. 

Discussion and Conclusions 
Baseline data showed that prior to the PD, TCs coached by the author had very little 

opportunity for supported practice leading a discussion in mathematics in their teaching 
placements.  TCs had opportunities to lead whole class instruction in mathematics, but typical 
instructional routines in placement classrooms (as in most U.S. math classrooms) offered little 
opportunity for TCs to elicit multiple strategies from students, record student thinking, orient 
students to each other’s thinking, or respond to unexpected or incorrect student strategies.  

The first learning cycle of the teacher learning community offered a promising intervention 
in that it created a new opportunity for one TC to (1) try an instructional routine - math talks - 
that allowed her to practice all of these elements of leading a discussion and (2) share a video of 
her new practice with the collaborative and reflect in ways that created opportunities for all 11 
participating teachers to reflect on all of these elements of practice.   Next steps could include: 
(1) Supporting all elementary candidates to rehearse math talks in the math methods course, (2) 
Incorporating at least one observation of a math talk into the 16 coaching observations conducted 
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by clinical coaches with every TC (about 125 TCs/year), and (3) Seek grant funding to offer a 
one hour PD on math talks to all CTs and optional video clubs at school sites. 
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Limited literature addresses how elementary preservice teachers (PSTs) can advance their 
thinking about hierarchical geometric relationships. Informed by a commognitive perspective, 
we investigated this phenomenon as a matter of discursive change, focusing on word use, visual 
mediators, and narratives. We report on a teaching experiment involving a PST whom we call 
Mariah. Mariah’s progress seemed to be driven primarily by metalevel changes in her word use 
and interpretations of diagrams. These changes supported shifts in her narratives regarding 
hierarchical geometric relationships. Instructor moves related to these discursive changes 
involved brokering between multiple discourse communities. Our analysis reveals nuances of 
communication that we do not see highlighted in the literature on PST education. 

Keywords: Communication, Geometry and Spatial Reasoning, Preservice Teacher Education  

There is little literature regarding the thinking or learning of elementary preservice teachers 
(PSTs) concerning hierarchical geometric relationships (Browning et al., 2014). Hierarchical 
geometric relationships refer to set–subset relationships between different types of shapes based 
on their properties (Fujita & Jones, 2007). Some articles frame their findings in terms of deficits 
in PSTs’ thinking (Fujita & Jones, 2007; Pickreign, 2007). Others report results of intervention 
studies but do not illuminate the learning process (Brunheira & da Ponte, 2019; Yi et al., 2020). 
The literature and our teaching experience have shown us that reasoning about and representing 
hierarchical geometric relationships can be challenging for PSTs. For this topic and many others, 
the field needs accounts of PSTs’ thinking and learning that contribute insights and support 
theoretically grounded instructional sequences. 

Clues and Unanswered Questions in the Literature 
Yi et al. (2020) conducted an intervention study and reported evidence that PSTs’ geometry 

knowledge for teaching 2-D shapes can improve significantly over a three-week period. The 
description of their instructional sequence mentions one activity in which PSTs “used Venn 
diagrams to categorize [quadrilaterals] based on their similar and different properties” (p. 5) but 
does not elaborate. The assessment included items on quadrilateral properties and relationships 
(among others) but did not address some challenging aspects (e.g., categorization of trapezoids). 
Thus, Yi et al. offer some evidence of improvement, but their account does not explain PSTs’ 
difficulties with the topic of hierarchical relationships or how those difficulties can be overcome. 

Brunheira and da Ponte (2019) report on a teaching experiment focused on classification of 
quadrilaterals and prisms. They offer examples of a PST’s work that involves what seem to us 
two contrasting interpretations of Venn diagrams (p. 76), rather than a shift in thinking about the 
hierarchical relationships among the shapes. This distinction is left unexplored. The authors 
report progress in PSTs’ reasoning but also lingering difficulties, and they suggest the need to 
explore “other factors” such as “language interpretation and logical reasoning” (p. 80). 
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Overall, the literature leaves us with unanswered questions. It does not provide insights into 
PSTs’ geometric thinking, nor does it document viable learning processes for specific topics 
(Browning et al., 2014). We believe a key to understanding PSTs’ thinking and supporting their 
learning related to hierarchical geometric relationships lies in those aforementioned “other 
factors” that we have not seen deeply explored in the literature to date. 

Theoretical Framework 
This study is primarily informed by a commognitive perspective, according to which 

thinking and communicating are one and the same. Through this lens, learning takes the form of 
discursive change. In the case of an individual PST, we can characterize aspects of their 
mathematical discourse at points in time, and thus document changes that took place in their 
discourse. These changes are tantamount to changes in the person’s thinking (Sfard, 2007). 

We focus here on word use, visual mediators, and narratives as properties of discourse. 
Mathematical discourse involves specifically mathematical vocabulary, along with everyday 
words: “Although shape- and number-related words may appear in nonspecialized, colloquial 
discourses, literate mathematical discourses as practiced in schools or in academia dictate their 
own more disciplined uses of these words” (Sfard, 2007, p. 571). Mathematical discourse often 
involves symbolic artifacts that serve important roles as visual mediators of mathematical 
communication. In our case, Venn diagrams are a symbolic artifact of particular interest. 
Narratives are statements that are “subject to endorsement or rejection, that is, to being labeled as 
true or false” (p. 572). Narratives regarding properties of quadrilaterals and relationships based 
on those properties are central to the topic of hierarchical geometric relationships. 

We draw on related literature to characterize the role of the instructor in our study as a broker 
between discourse communities: “By definition, a broker is someone who can facilitate 
communication and fluidity of practices between different communities and who has 
membership status in all the different communities” (Zandieh et al., 2017, p. 97). In the case of 
Zandieh et al., the communities of interest were the local classroom community and the broader 
mathematical community. Their analysis examined ways in which an instructor helped to link 
student practices with elements of practice from the broader mathematical community. This 
connection to a “broader mathematical community” relates to Sfard’s (2007) notion of a leading 
discourse. The leading discourse has special status relative to individual discourses. At the same 
time, the broker as interpreter is concerned with honoring students’ thinking so that “interpreting 
between communities facilitates the students’ sense of ownership of ideas” (p. 98). 

In keeping with the view of learning as discursive change, we are interested in how an 
instructor of elementary PSTs supports that change process. The notion of brokering moves is 
consistent with the participationist nature of Sfard’s (2007) framework, and we have found it to 
be a useful way of framing the instructor’s role. In the case of our study, there are four types of 
discourse communities involved: the broader mathematical community and the state standards, 
both of which are leading discourses; the non-leading discourse of other PSTs and “people” who 
were mentioned by the instructor but not present in the sessions; the collective discourse between 
Mariah and the instructor; and Mariah’s individual geometric discourse. 

According to Sfard (2007), studies guided by the commognitive framework should be able to 
address the following questions: 

1. Focus on the object of learning: In the case under study, what kind of change was 
supposed to occur as a result of learning? 
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2. Focus on the process: How did the students and teacher work toward this change? 
3. Focus on the outcome: Has the expected change occurred? (p. 566) We address each of 

these points in our Method and Results sections below. 

Method 
We conducted an individual teaching experiment with Mariah (pseudonym). She was 18 

years old and identified as a Black, Caribbean-American woman. She had been accepted into an 
Elementary Education program at a large research university in the Southeastern United States. 
The sessions took place in the summer before she began the program. The instructor (and first 
author) was 44 years old and identified as a White male. The teaching experiment spanned three 
one-hour sessions. These were conducted via Zoom and involved Google Slides and the Desmos 
Geometry Tool. The learning goal was for Mariah to engage in a geometric discourse based on 
official definitions, emphasizing set–subset relationships, and involving the use of diagrams to 
represent those relationships. The culminating task was to construct “one big diagram” involving 
several types of quadrilaterals and to explain the relationships between them. 

In Session 1, Mariah was asked about her meaning for the term Venn diagram and her 
interpretations of various diagrams. She was asked to generate examples of diagrams to represent 
relationships, both mathematical and non-mathematical. Mathematical topics of discussion 
included the square–rectangle and parallelogram–rhombus relationships. In Session 2, the 
instructor introduced the distinction between inclusive and exclusive definitions. Mariah was 
invited to think about the implications of definitions. She discussed various relationships and 
associated diagrams involving sets and subsets. She worked to create a diagram to represent the 
rectangle–rhombus–square relationship. In Session 3, Mariah explored trapezoids and considered 
both inclusive and exclusive definitions for trapezoid. Mariah worked to produce “one big 
diagram” to represent the hierarchical relationships between quadrilaterals, parallelograms, 
rectangles, rhombi, squares, and trapezoids. 

The instructional sequence was extracted from a geometry unit that the instructor had taught 
in a course for PSTs the previous semester. The summer teaching experiment with Mariah 
provided the opportunity to closely study the thinking and learning of an individual PST through 
the lens of discursive change. In this context, we asked the following research questions: 

1. How did Mariah’s discourse related to hierarchical geometric relationships change over 
the course of the teaching experiment? 

2. What brokering moves did the instructor use to support Mariah in shifting her discourse?  

Videos of the Zoom sessions were transcribed for analysis. The analysis in answer to 
Research Question 1 was informed by the commognitive framework, together with previous 
experience teaching the topic of hierarchical geometric relationships and initial investigations of 
PSTs’ thinking related to this mathematical topic (Whitacre & Caro-Rora, 2022). Our analysis of 
Mariah’s discourse focused on the following aspects: (a) her word use, especially concerning 
diagrams, definitions, and hierarchical relationships; (b) her interpretation and use of symbolic 
artifacts, especially Venn diagrams; and (c) her narratives concerning quadrilateral properties 
and relationships. We identified patterns in the data to produce summary characterizations of 
details of Mariah’s discourse in each of the sessions. We made chronological comparisons within 
and across sessions to identify shifts in aspects of Mariah’s discourse. 
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To answer Research Question 2, we analyzed the same data set with a focus on the 
instructor’s utterances. Building on the answers to Research Question 1, we investigated the 
interactions that preceded and appeared to facilitate or support the observed shifts in Mariah’s 
discourse. This analysis is informed by the notion of brokering (Rasmussen et al., 2009; Zandieh 
et al., 2017) because the instructor’s role was marked by a focus on communication and 
clarification. Through our ongoing analyses, we continue to refine these characterizations of the 
interlocutors’ interactions and the process of change that took place across the sessions. 

Results 
In answer to Research Question 1, we highlight changes in Mariah’s discourse in terms of 

word use, visual mediators, and narratives across the three sessions of the teaching experiment. 
We present characterizations of her discourse and changes in her discourse in chronological 
order. In answer to Research Question 2, we highlight the instructor’s brokering moves and 
relate them to shifts in Mariah’s discourse. 
Shifts in Mariah’s Discourse 

Session 1. Mariah initially indicated that a “Venn diagram” was for representing similarities 
and differences (i.e., she used the term Venn diagram to indicate a diagram that consisted of 
overlapping circles and was used for the purpose of comparing and contrasting). In Session 1, 
she began distinguishing between two types/interpretations of diagrams, which she named 
“compare and contrast diagrams” and “container diagrams” (Figure 1). She also introduced the 
language of “genre and subgenre” to describe the set and subset depicted in a “container 
diagram.” Mariah initially talked about different arrangements of circles as determining the type 
of diagram: (a) overlapping circles were for showing similarities and differences, as in a 
“compare and contrast diagram,” whereas (b) a circle within a circle showed a “genre and 
subgenre” relationship, as in a “container diagram.” 

 

“Compare and contrast diagram” “Container diagram” 
 

Figure 1: Mariah’s initial interpretations of Venn diagrams 
 

The properties that Mariah voiced, together with her answers to “Is it still?” questions (e.g., 
“If we move this vertex of the parallelogram construction until it becomes a rectangle, is it still 
a parallelogram?”), constituted her working definitions of specific quadrilaterals as of Session 
1: Mariah talked about rectangles and parallelograms inclusively regarding their side lengths 
(e.g., she endorsed the narrative that a square is a “subgenre” of rectangle). At the same time, 
she talked about parallelograms exclusively regarding their angles (i.e., she endorsed the 
narrative that a rectangle was not a type of parallelogram). 
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Session 2. Mariah became aware of the terms inclusive and exclusive as applied to definitions 
of geometric shapes. She was able to distinguish between the two types of definitions and relate 
them to diagrams when asked to do so, but she rarely used these terms spontaneously. 

Mariah recognized that for container diagrams, different arrangements were possible (beyond 
the circle-in-circle archetype in Figure 1), and these indicated the nature of various possible 
“genre and subgenre” relationships. She distinguished different arrangements of circles from 
types/interpretations of diagrams. Regarding container diagrams, overlap took on a different 
meaning in Mariah’s discourse: “subgenre of both” (Figure 2b). Similarities were shown in 
membership in a larger set (Figure 2a), rather than in an overlapping region. She indicated that 
she did not think it would make sense for the “Dogs” and “Cats” ovals in Figure 2a to overlap. 

 
Figure 2: Progress in Mariah’s use of “container diagrams” 

 
When asked to create a container diagram for rectangles, rhombi, and squares, Mariah 

worked through four versions (Figure 3). In the first two, she spoke about rhombi as exclusive 
regarding angles. Given an inclusive definition of rhombus, she then described a square as a 
“subgenre of both” rectangle and rhombus, eventually settling on the fourth version (far right). 
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Figure 3: Mariah’s “container” diagrams for the rectangle–rhombus–square relationship 

  
Session 3. In this session, “inclusive” and “exclusive” became part of Mariah’s individual 

discourse—not only terms she understood, but terms that she used repeatedly and spontaneously. 
Mariah also fluently used “container diagrams” to represent hierarchical relationships, including 
nested and overlapping relationships. She was eventually able to create diagrams to represent 
how several types of quadrilaterals were related, to explain each of those relationships based on 
definitions, and to explain how those relationships were represented in her diagrams. Mariah 
spoke about trapezoids exclusively. However, she was able to construct the two “container 
diagrams” shown in Figure 4, corresponding to the two different definitions of trapezoid. 

  
Treating Trapezoids Inclusively Treating Trapezoids Exclusively 

 
Figure 4: Mariah’s “container” diagrams relating several types of quadrilaterals Brokering 

Moves 
 

The instructor did not impose narratives regarding hierarchical relationships. He alternated 
between acting as an interviewer inquiring about Mariah’s thinking and acting as a broker 
informing Mariah about other discourses that would not otherwise have been available during 
their interactions (e.g., sharing information about standards). We identified four specific 
subtypes of brokering moves that appeared to support Mariah in shifting her discourse: 

Sharing information about a non-leading, or peer, discourse. To motivate the need for 
discussion of types/interpretations of diagrams, the instructor began by sharing his observation 
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(from courses for PSTs) that people often use and interpret diagrams and the term Venn diagram 
in different ways. This introduction set the stage for Mariah to share her interpretations and 
helped establish the need for these kinds of clarifications. Similarly, the instructor shared that 
people use “can be” and “can’t be” in different ways when discussing geometric relationships; 
thus, it was important for people to make explicit what they meant by “can be” when discussing 
such relationships. Mariah clarified that she meant “can be considered” and subsequently used 
specific phrasing more consistently (e.g., “a square can be considered a rhombus”). 

Promoting and valuing individual contributions to the collective discourse. Once it was 
clear that Mariah herself had varying interpretations of diagrams, it became important to use 
terms to name types/interpretations of diagrams in the interest of clear communication. The 
instructor invited Mariah to suggest names, and she introduced “compare and contrast diagram,” 
“container diagram,” and “genre and subgenre.” Mariah and the instructor consistently used 
Mariah’s language from that point on, which enabled clear communication. It also signaled that 
Mariah’s contributions were valued by making them part of the collective discourse. 

Sharing technical terminology from a leading discourse. The instructor introduced 
terminology to name relevant distinctions that arose in Mariah’s talk about quadrilaterals, 
especially the terms inclusive and exclusive definitions. Mariah subsequently distinguished 
between these two types of definitions and considered the implications of choices of definition 
for hierarchical relationships between quadrilaterals. 

Sharing meta-rules from a leading discourse. The instructor shared information about the 
state’s standards, especially the fact that the glossary used inclusive definitions for quadrilaterals, 
including for trapezoid. Thus, it was highly relevant for Mariah as a PST to become familiar and 
comfortable with those definitions. Mariah transitioned from classifying quadrilaterals based on 
her implicit, personal definitions to doing so based on explicit, official definitions. 

Discussion 
Our learning goal for the instructional unit was achieved: There were noteworthy changes in 

Mariah’s geometric discourse, culminating in her ability to construct “one big diagram” relating 
all the types of quadrilaterals that were discussed, based on their explicit definitions, and to 
explain the relationships shown in her diagram. Given the reported difficulties that PSTs have 
with this topic (Fujita & Jones, 2007; Pickreign, 2007), and the challenges of communication 
arising from different ways of using and interpreting language and diagrams (Whitacre & Caro- 
Rora, 2022), this outcome is a feat. Furthermore, our findings provide insights into Mariah’s 
learning process: (a) the major changes in Mariah’s discourse were meta-level changes; (b) these 
changes were facilitated by the instructor’s brokering moves, which primarily involved 
interpreting between communities; and (c) progress in Mariah’s reasoning about hierarchical 
geometric relationships was driven primarily by changes in her word use and interpretation of 
diagrams, not by changes in the logic of her narratives themselves. 
Meta-level Changes 

We find that the major shifts identified in Mariah’s discourse were meta-level discursive 
changes, meaning that they happened at the level of discourse about discourse (Sfard, 2007). 
These were primarily shifts in word use and interpretation of symbolic artifacts: (a) from “Venn 
diagram” meaning overlapping circles with a compare-and-contrast interpretation to “compare 
and contrast diagram” vs. “container diagram,” (b) from associating overlap in circle diagrams 
with similarities under the compare-and-contrast interpretation to also being able to interpret 
overlap in a container diagram using the “genre and subgenre” interpretation (i.e., “a subgenre of 
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both”), and (c) from thinking/talking about each quadrilateral in her individual manner (e.g., 
treating parallelograms as inclusive in terms of side lengths but exclusive in terms of angles) to 
thinking/talking explicitly about inclusive vs. exclusive definitions and considering the 
implications of definitions on hierarchical relationships—better connecting her individual 
discourse to the leading discourse on quadrilateral properties and relationships. 
Teacher Educator as Broker 

The instructor made several brokering moves to support Mariah in transforming her 
discourse. These moves involved interpreting between discourse communities by (a) sharing 
information about a non-leading, or peer, discourse; (b) promoting and valuing individual 
contributions to the collective discourse; (c) sharing technical terminology from a leading 
discourse; and (d) sharing meta-rules from a leading discourse. 

We speak in terms of a leading discourse because there are at least two leading discourses 
that were relevant in our teaching experiment. As in the case of Zandieh et al. (2017), the broader 
mathematical community was one of these. For example, the instructor, a mathematics teacher 
educator, shared the fact that there is not a consensus definition of trapezoid in mathematics 
textbooks or other authoritative sources. In this case, the leading discourse was the broader 
mathematical community. However, another leading discourse at play in the teaching experiment 
was determined by the state standards. Because Mariah was a preservice teacher, the standards 
were highly relevant and justifiably treated as authoritative by the interlocutors. This dimension 
may not arise in the case of undergraduate students studying linear algebra, as in Zandieh et al. 

Contributions to the Literature on Elementary PSTs and Geometry 
This study offers contributions to the literature regarding PSTs’ geometric thinking and 

learning. First and foremost, given a thoughtfully designed instructional sequence and support in 
the form of the instructor making key brokering moves, Mariah was able to transform her 
discourse in ways indicative of substantial progress. In our view, her progress toward the 
learning goal did not involve shifts from incorrect ideas to correct ones; instead, the process 
involved making distinctions to facilitate communication. The available literature on the topic of 
PSTs’ geometric thinking is limited and may have thus far ignored nuances of word use and the 
roles of symbolic artifacts such as Venn diagrams as visual mediators in the learning process. 

Responding to the call from Brunheira and da Ponte (2019) to investigate “other factors” that 
might explain PSTs’ difficulties with this topic, such as “language interpretation and logical 
reasoning” (p. 80), our findings indicate that attention to language interpretation has the potential 
to support PSTs’ learning in this area. Logical reasoning did not seem to be an issue for Mariah. 

Mariah’s successful learning process, together with our additional teaching experiments and 
investigations into PSTs’ geometric thinking, indicate that the instructional sequence that we 
employed is potentially viable. A noteworthy feature of the instructional sequence is its 
explicitness about communication and the need to share interpretations, discuss terminology and 
facts about leading discourses, as well as to adopt local terminology (e.g., “container diagram” 
and “genre and subgenre”) that functions as if shared in the classroom community (Rasmussen & 
Stephan, 2008). Our findings also inform revisions to the instructional sequence. Most notably, it 
was crucial to Mariah’s progress in Session 2 to work with an explicit and official definition of 
rhombus. This and other iterations of the teaching experiment have highlighted advantages to 
earlier introduction of official definitions, after exploration of quadrilateral constructions and 
discussion of properties. 
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Limitations and Conclusion 
Naturally, we do not regard Mariah as representative of all elementary PSTs. In our ongoing 

research, we are analyzing data from another iteration of a teaching experiment on this topic, 
involving a pair of PSTs. We have also collected data from two sections of a course for PSTs 
taught in Spring Semester 2023. We have observed consistent patterns in PSTs’ thinking about 
the term Venn diagram and in the need to make the kinds of distinctions regarding language and 
interpretations that were made in the teaching experiment with Mariah. 

We reiterate the point that the field needs accounts of PSTs’ mathematical thinking and 
learning that contribute insights and support theoretically grounded instructional sequences. In 
the case of hierarchical geometric relationships, we have made substantial progress in that 
regard. We have also found Sfard’s (2007) framework to be useful for the purpose. 

Our findings relate to the conference theme of Engaging All Learners in at least three ways: 
First, as noted in answer to Research Question 2, the instructor valued Mariah’s language and 
contributions, so that the teacher–student relationship was not one directional. By adopting 
Mariah’s terms (e.g., “container diagram”) and making them part of the collective discourse, he 
supported changes in her discourse without devaluing her ideas. Second, the meta-level focus of 
the instructional sequence (i.e., consisting of discussion of how people use and interpret terms 
and diagrams) is inclusive of multiple perspectives and does not treat them as correct vs. 
incorrect. Instead, it emphasizes communication and the need to “speak the same language” 
across multiple discourse communities, as an approach to supporting learning. Third, the 
instructor modeled these practices in his interactions with Mariah, who is a PST and stands to 
benefit from examples of how to teach mathematics in ways that honor students’ ideas, including 
their use of language and symbolic artifacts. These kinds of instructional experiences can help 
prepare PSTs to teach mathematics in ways that engage all learners in their future classrooms. 
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Proof is a fundamental aspect of mathematics. However, in the high school curriculum, it often 
receives uneven attention that is focused on form rather than understanding. One avenue for 
addressing this issue is to change and strengthen teachers’ conceptions of proof. To explore this 
idea, we followed a group of teachers as they participated in a summer mathematics research 
experience. During this experience, proof was not an isolated exercise but part of the 
mathematical process of discovery. In this study, we analyzed pre- and post-survey data and 
participants’ critique of proofs to uncover the influence of the mathematics research experience 
on their concept of proof. We present data on the criteria participants used to evaluate proofs, 
their conception of proof, and how the mathematics research experience changed their 
conception of proof. 

Keywords: Reasoning and Proof, Preservice Teacher Education, Teacher Knowledge, High 
School Education 

Introduction 
Since proof is critical to mathematical activity, both educators and mathematicians agree that 

it should be part of the mathematics curriculum for all students. Stylianides et al. (2017) pointed 
out that even though proof is central to the learning of mathematics, it “has a marginal place in 
ordinary mathematics classrooms” (p. 237). The National Council of Teachers of Mathematics 
(NCTM,1989, 2000) has long recommended that students at all grade levels recognize reasoning 
and proof as a fundamental aspect of mathematics. Unfortunately, this has been unevenly 
implemented in topics outside of Geometry (Thompson et al., 2012).  

Historically, proof has been part of the high school geometry curriculum in the United States. 
According to Harel and Sowder (1998) it was only with the New Math that proofs were included 
in secondary algebra courses. But then, “the death of the ‘New Math’ almost put an end to 
algebra proofs in school mathematics” (p. 234). Historical precedent, textbook design, and a 
narrow interpretation of the standards continue to influence how proof is taught and learned in 
schools, particularly in secondary schools. Thus, most students in American secondary 
classrooms experience proof first, and sometimes only, in the context of a Geometry course 
(Zaslavsky et al., 2012). Even then, proof tends to be taught as a separate topic, not as an integral 
component of how we do mathematics (Knuth, 2002b).  

CadwalladerOlsker (2011) argued that the way in which mathematical proof is introduced in 
high school is implicitly focused on the formal act of proving at the expense of the construction 
of knowledge. Furthermore, teachers’ experiences in college might reinforce this formalistic 
view of proof (Selden, 2012). Reid and Knipping (2010) summarized studies that examined 
teachers’ understanding of proof. They noted, 
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[…] there seems to be not much difference when compared to students’ understanding of 
proof. If this is the case then the level of students’ understanding might be best improved by 
addressing teachers’ understanding of proof itself, rather than exposing them to new methods 
of teaching about proofs and proving. (p. 71) 
In this study, we examined the views of proof held by teachers who participated in a summer 

mathematics Research Experience for Undergraduates (REU). Although the purpose of the REU 
program was not to modify participants’ views of proof, we conjectured that the experience of 
doing mathematics research would have some effect in this direction. Teacher’s beliefs about 
proof are relevant to their practice.  As Stylianides and Stylianides (2022) stated, "teachers’ 
knowledge and beliefs about proof shape their readiness, willingness, and capacity to support 
students’ engagement with proof” (p. 1). They further argued that our field lacks productive 
ways to introduce students and prospective teachers to a notion of proof that would help them see 
proof as relevant and important. Our research provides a potential example of engaging teachers 
with proof. With this in mind, we addressed the following research questions: 1) What criteria 
did REU participants use to evaluate proof? 2) What are the REU Participants’ conceptions about 
the role of proof? 3) How did the REU program influence their conception of proof?  

Literature 
Researchers have found it useful to make distinctions between the different roles of proof in 

the classroom. For instance, Hanna (1990) distinguished between proofs that prove and proofs 
that explain. She stated that, “in the classroom the key role of proof is the promotion of 
mathematical understanding” (p. 5). Similarly, Schoenfeld (2009) argued that “Proofs are hardly 
‘mere’ confirmation, verifying one’s intuitions. For the mathematician, proof is a way to figure 
out how things work” (p. xiv). Looking at the function of proof in the work of mathematicians, 
de Villiers (1999) enumerated various roles of proof in mathematics: to verify that a statement is 
true, to explain why a statement is true, to communicate mathematical knowledge, to discover or 
create new mathematics, and to systematize statements into an axiomatic system.  

Nevertheless, many teachers hold a narrow view of proof. Ko (2010), summarizing studies 
on teachers’ views of proof, found that teachers, 

[…] do understand that proof serves as a means of verifying the truth of a statement. Only a 
few teachers stated that proof serves the functions of communicating mathematics, helping 
students make discoveries, and systemizing results, and none of the teachers mentioned proof 
as a means of providing intellectual challenge. (p. 1115) 
Moreover, when evaluating proofs, teachers and students seem swayed by the appearance of 

a proof rather than the logic of it. When teachers were asked to judge student proofs, about half 
the teachers rejected correct proofs written as verbal justifications (Tabach et al., 2010). In 
addition, understanding is not always seen as a goal of a proof. Stylianou et al. (2015) found that 
college students selected proofs written as deductive arguments as best, even though they 
believed they were not helpful in providing understanding. 

In a study aimed at examining secondary mathematics teachers’ conceptions of proof, Knuth 
(2002a, 2002b) interviewed 16 in-service mathematics teachers. Knuth investigated (a) teachers’ 
conceptions about the role of proof, (b) what constitutes proof for teachers, and (c) what teachers 
found convincing. Following de Villiers (1999), Knuth classified these teachers’ views of proof 
as a means of verifying, explaining, communicating, creating, and systematizing knowledge. In 
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addition, Knuth found two additional roles of proof in the secondary classrooms: developing 
thinking and displaying thinking. Most teachers identified developing thinking skills as a 
primary role of proof, but none identified promoting understanding as a role. Knuth also asked 
teachers about the centrality that proof should have in the secondary mathematics curriculum. 
Although their views were diverse, most teachers thought proof was more appropriate for 
advanced mathematics courses. Knuth reported that teachers with a more formal interpretation of 
proof were more likely to limit student exposure to proof. Most teachers stated that proof should 
be addressed in geometry courses (Knuth, 2002b). 

The teachers in Knuth’s study primarily used four criteria to determine whether an argument 
constituted proof: valid methods, mathematically sound, sufficient detail, and knowledge 
dependence. In addition, features of the argument, familiarity with the argument, or the method 
of proof used, rather than the mathematical substance of the argument, often determined whether 
an argument was convincing for teachers. This is consistent with other studies. Harel and Sowder 
(1998) found that college students focus their attention on the format of proof, not on the content. 
Stylianou et al. (2015) found that undergraduate students’ proof choices were strongly influenced 
by surface characteristics.  

It is also important to point out that what teachers identify as proof and what they find 
convincing is not always the same. In Knuth’s (2002a) study, “teachers seemed to reach a 
stronger level of conviction regarding the truth of a proof’s conclusion by testing it with 
empirical evidence” (p. 410). Lesseig et al. (2019) found that preservice teachers used different 
criteria to evaluate arguments than when they decided what proofs they would present to 
students. Ko (2010) argued that teachers should be provided more opportunities to engage in 
proof. Moreover,  

Since mathematics teachers’ conceptions of mathematical proof influence not only the 
experiences they provide for their students but also the expectations they hold for their 
students in learning proof (Knuth & Elliott, 1997), having a robust understanding of proof is 
important for teachers. (Ko, 2010, p. 1124). 

Methodology 
The work of Knuth (2002a, 2002b) served as a foundation for our study. The primary 

distinction was that the four secondary mathematics teachers and 11 pre-service teachers in our 
study were participants in a mathematics Research Experience for Undergraduates (REU). The 
eight-week REU program explored research topics in graph theory that allowed participants to 
explore research questions, generate examples, form generalizations and conjectures, and to 
provide careful justification. The different conceptions of proof were not directly addressed 
during the program, but rather, proof was experienced as an integral part of the mathematics 
research process. An education component was implemented each week to help participants 
translate their mathematics research experience to their classrooms. According to the Conference 
Board of the Mathematical Sciences (2012), “Teachers who have engaged in a research-like 
experience for a sustained period of time frequently report that it greatly affects what they teach, 
how they teach, what they deem important, and even the ability to make sense of standard 
mathematics courses” (p. 65). 

The first data source used in this study was a survey instrument given at the beginning and 
end of the REU that included the following prompts: “What is proof? What is the role of proof in 
Mathematics? and What is the role of proof in the classroom?” The post-survey included the 
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additional prompt, “Describe any changes since the beginning of the program and why your 
thinking has changed.” The second data source was a proof instrument given during the fourth 
week of the REU that asked participants to provide the strengths and weaknesses of a series of 
proofs. It also included the question, “What other roles does proof play in the high school 
classroom?” Four proofs from this instrument (paragraph, two-column, algebraic, and visual) 
were analyzed. The paragraph and two-column proof were correct geometric proofs of the 
proposition that complements of congruent angles are congruent. Both were based on the same 
argument but presented differently. The other two were informal arguments (one algebraic and 
one visual) showing that the sum of the first n consecutive positive integers equals n(n-1)/2. 

To answer the first research question (What criteria did REU participants use to evaluate 
proof?) each critique was coded using the criteria outlined by Knuth (2002a) —valid methods, 
mathematically sound, detail, and knowledge dependent. We used the constant comparative 
method (Glaser & Strauss, 1967) to refine and adjust our definitions to account for statements 
that could not be coded using Knuth’s original criteria. This process continued until all 
disagreements were resolved. Once each critique was coded in terms of the criteria used, we 
determined whether the criterion was used to identify a strength or weakness and then further 
analyzed the data for patterns. A similar approach was used to answer the second research 
question (What are the REU Participants’ conceptions about the role of proof?). For this 
question, the survey prompts were initially coded using the seven roles identified by Knuth 
(2002a): to verify that a statement is true, to explain why a statement is true, to communicate 
mathematical knowledge, to discover or create new mathematics, to systematize statements into 
an axiomatic system, to develop logical thinking skills, and displaying thinking. 

To answer the final research question (How did the REU program influence their conception 
of proof?), we identified statements in their initial and final responses where they discussed the 
nature of proof and compared those responses. In addition, we used open coding to generate 
codes for their responses to the prompt, “Describe any changes since the beginning of the 
program and why your thinking has changed.” We then used those codes to look for themes 
across the participants. 

Findings 
The findings of this study will be presented according to the three research questions 

addressed. Each section provides a perspective on the conception of proof that teachers with 
mathematics research experience hold and whether these experiences have the potential to 
change teachers’ conceptions of proof. 
Criteria Used to Evaluate Proof 

The teachers in Knuth’s study primarily used four criteria to determine whether an argument 
constituted proof: valid methods, mathematically sound, sufficient detail, and knowledge 
dependent. We found all these criteria in our analysis, but to different degrees. The knowledge-
dependent criterion was primarily used to evaluate a proof by induction that was not included in 
the data for this paper, so it was removed. In addition, detail was a common theme in our 
participants’ critiques, but often in connection with other categories such as mathematical 
soundness or communication. Hence, detail was used as a subcode. For instance, if a teacher 
stated that a proof needed more detail in the mathematical argument, it would have been coded 
mathematically sound with the detail subcode. It would have also been identified as a weakness. 
The other criterion that we found (communication, understanding why, concreteness, and 
generality) were also found in the work of Knuth, but are included here because they were 
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prominent in the critiques provided by our teachers. Table 1 provides the main criteria used by 
our teachers to evaluate proof and the associated definitions. 

 
Table 1: Criteria Used to Evaluate Proof 

Criteria Definition 
Methods “The focus of the teachers who applied this criterion was 

primarily on the method (or perhaps the form) used in 
producing an argument rather than on the reasoning behind it” 
(Knuth, 2002a, p. 395). 

Mathematically Sound “These teachers focused explicitly on the validity of the 
reasoning presented in an argument” (Knuth, 2002a, p. 396) 

Communication The teacher focused on communicating mathematical ideas to 
the audience. 

Understanding Why The teacher’s focus went beyond just proving a statement is 
true to focusing on why it is true or to student conceptual 
understanding 

Concreteness The teacher commented on the inclusion of a concrete feature, 
visual reference, or specific example that helped the reader. 

Generality The teacher commented on “arguments that established the 
truth of a statement for all relevant cases” (Knuth, 2002a, p. 
399). 

 
Table 2 provides the criteria used by the participants to evaluate the four proofs (visual, 

algebraic, paragraph, two-column) analyzed for this paper. The 2 in the upper left-hand corner of 
the table represents two participants who made a positive statement about methods when 
critiquing the visual proof.  

Table 2: Distribution of Criteria Used 
 Visual Algebraic Paragraph Two-Column Total 
 Pos Neg Pos Neg Pos Neg Pos Neg  

Methods 2 4 8 1 2 6 6 3 32 
Mathematically Sound 1 2 2 4 1 6 4 3 23 
Communication 1 1 1 7 4 5 7 2 28 
Understanding Why 1  1 2 1 2 1 1 9 
Concreteness 10        10 
Generality  4 1  1    6 

 
Note, the values represent the number of teachers who used each criterion for a particular proof. 
There were teachers who used a criterion to make both a positive and negative statement about a 
proof, the teacher in this case would have been included under both the positive and negative. In 
addition, data for the pre-service and in-service teachers were merged due to the small number of 
in-service teachers and our focus on other patterns within the data.  

In terms of the criterion used, we found evidence that participants were often focused on the 
formal aspects of proving, which is consistent with the findings of CadwalladerOlsker (2011). 
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There were 32 instances where participants used the method of proof as a criterion, 16 of these 
specifically referenced format. In contrast, there were nine instances where understanding why 
was used as a criterion. Communication (28) and mathematical soundness (23) were also used 
often. Although there was a strong emphasis on format, the teachers in this study attended to 
students’ abilities to communicate and understand through proof. This contrasts the finding of 
Ko (2010) that “few teachers stated that proof serves the function of communicating 
mathematics” (p. 1115) and Knuth (2002b) who found that none of the teachers in his study 
identified understanding as a role. We do not know whether this difference is a result of their 
experience with mathematics research, but this possibility deserves the attention of further 
research. 

Knuth (2002b) found that features such as familiarity and method, rather than the substance 
of the argument, often determined whether an argument was convincing. This finding was also 
observed in our data. Consider the data from the two-column and paragraph proof, which were 
based on the same argument, but presented differently. Participants identified the paragraph 
proof as having the most weaknesses. Six participants made negative comments about the 
methods of the proof with one student stating that the proof “lacked structure and a more formal 
foundation.” One participant stated that it left “some logical steps to the reader.” The participants 
were divided on whether communication was a strength or weakness for the paragraph proof. 
Four felt that it was a strength given that the “vocabulary was very simple” and that it would not 
confuse a reader who was not strong in mathematics. On the other hand, five felt that it was a 
weakness because it did not “use mathematical language.” 

Contrast this with the critique of the two-column proof, which had more positive comments. 
Seven participants mentioned communication as a strength, with one stating that it made “every 
step clear to the reader.” Six participants mentioned methods as a strength of the proof, with five 
of these referencing the formalism of the proof. “Utilizing the given information to develop a 
clear outline” and “Laying out each statement clearly with reasoning on the side” were among 
the features of the proof that were considered positive. 

Method, communication, and mathematical soundness were more often considered a strength 
of the two-column proof and a weakness of the paragraph proof, even though both proofs 
contained similar information. This supports the claim that features such as familiarity and 
method, rather than substance, determine whether an argument is convincing. These data suggest 
an interplay between participants’ conceptions of proof, their evaluations of proof, and their prior 
experiences with proof. It may not be enough to simply change teachers’ conceptions of proof or 
the criteria they use to evaluate proof, without also addressing deeply engrained beliefs and 
traditions regarding proof.  

The criteria used to evaluate a proof differs depending upon the type of proof. For instance, 
observe the data for the visual proof. Ten of the 12 participants who critiqued the visual proof 
commented that the concreteness was a strength, with one commenting that using specific 
examples “made the logic clearer.” Concreteness was not used as a criterion for the other proofs. 
When discussing weaknesses of the proof, participants were concerned about the generality of 
the proof (four participants). The participants still commented on the communication, methods, 
and soundness of the visual proof, but their comments also included the additional criteria of 
concreteness and generality, which is quite different from the distribution for the other proofs. 
The variety observed in our data not only illustrates that teachers evaluate proofs using different 
criteria that may reflect different conceptions of proof, but that proofs differ in terms of the 
characteristics and potential roles they project.  
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Role of Proof 
At the beginning of the research experience, 14 participants gave initial responses to the 

prompt, “What is the role of proof in Mathematics?” We found evidence of all five of Knuth’s 
(2002b) original roles of proof with all 14 participants suggesting that one of the roles was to 
verify that a statement is true. Five participants cited communication as a role of proof, and only 
two participants saw the role of proof as explaining why a statement is true.  

Interestingly, in their initial responses to “What is the role of proof in the classroom?”, more 
participants (five) said that explaining why a statement was true was important. Knuth (2002b) 
noted that the teachers’ comments in his study suggested that they were talking about 
understanding the steps of the proof, rather than the underlying concepts. In our data, two of the 
five, both pre-service teachers, suggested that proofs promote understanding. The other three 
emphasized that explanation was helpful to “show students” why things work and are true. 

All fifteen participants responded to the prompt about the role of proof in the classroom at 
the conclusion of the REU. We again found evidence of all five of Knuth’s (2002b) original 
codes and one of his additional codes related to teaching (developing logical thinking skills, 
Knuth, 2002a). Similar to the initial responses, the two roles of proof cited most often were to 
verify a statement was true (10 participants) and to explain why a statement is true (seven 
participants).  

There were two key differences in the statements coded as proof as explanation in the pre- 
and post-survey data. First, more participants emphasized understanding of mathematics in the 
post-survey. Second, while some participants initially suggested the importance of “showing 
students” why, their focus on the post-survey shifted away from a teacher-focused model to 
discussing how proofs can help students deepen their own understanding of mathematics. 

The finding of teachers citing proof as verification was consistent with Knuth’s (2002b) 
findings. However, the role of proof as explanation was mostly absent in responses from teachers 
in Knuth’s (2002b) study, but emphasized by many participants in our study, especially after the 
completion of the REU. In addition, we found two roles of proof cited by our participants that 
were not present in Knuth’s (2002a, 2002b) studies: proof to foster abstract thought and proof as 
a means of giving students mathematical authority. Two participants discussed the role of giving 
students mathematical authority, with one participant stating, “it (proof) allows more 
mathematical independence because you are able to determine for yourself something is true.” 
Impact of the Summer Mathematics Research Program 

At the beginning and end of the REU, participants were asked to respond to the prompt, 
“What is proof?” In their initial responses, the participants viewed proof to be a static end-
product. They made statements like, “proof is a way of definitely stating some idea to be true,” 
“proof is the formalization of a process,” and “proof is a demonstration of a mathematical 
theory.” In their final responses, the participants seemed to view proof as more of a process 
rather than an end-product. They emphasized that proof was a way of reasoning and 
communicating. One participant said, “rather than memorizing properties or theorems, proofs 
should be a natural way to describe a process.” Another participant stated, “a proof is the 
reasoning we use for mathematics.” 

On the final prompt, participants were asked how their thinking had changed since the 
beginning of the REU. Two themes arose that gave insight into these shifts in views of proof. 
First, several participants referred to their work on generalization during the REU; generalization 
was a critical aspect of the process of doing mathematics research. One participant stated that 
their research helped them realize that “not all proofs are about generalization, but all 
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generalizations necessitate proof to explain why they are correct.” This quote suggested a shift to 
viewing proof as part of the larger process of doing mathematics. Schoenfeld (2009) stated that, 
“for the mathematician, proof is a way to figure out how things work” (p. xiv). The participants 
started to view proof as a useful tool in their work of developing generalizations. 

 Second, several participants commented at the beginning of the REU that they preferred 
formal proofs due to their prior mathematical experiences. At the conclusion of the REU they 
saw the value of informal proofs as they can often “best represent student thinking and can be 
less confusing.” Ko (2010) argued that instruction in proof is often influenced by the teacher’s 
conception of proof. In this case, one might conjecture that as our participants’ views of proof 
started to shift during the REU, their view of proof instruction also changed.  

Discussion 
Our findings are consistent with previous studies on teachers’ and undergraduate students’ 

conceptions of proof. Specifically, we found that many participants emphasized the form or 
appearance of a proof over its substance and prioritized verification among the roles of proof. 
Knuth (2002b) suggested that one way to help give teachers a robust understanding of proof was 
for them, “as students, to experience proof as a meaningful tool for studying and learning 
mathematics” (p. 403). The evidence reported in this paper suggests that the REU may have 
contributed to qualitative changes in teachers’ perception of proof and the role of proof in the 
mathematics classroom. The REU seems to have helped participants understand that students can 
use proof for themselves rather than simply exposing students to proof through direct instruction. 
Indeed, participants reported seeing proof as a process used to explain and promote 
understanding. This new perspective on the role of proof may explain how participants viewed 
the role of informal proof and the value of using them with high school students. Nevertheless, 
participants still favored proofs that were more formal when evaluating them. This conflict is not 
surprising given the observations of other researchers (e.g., Tabach et al., 2010). 

Our study was a small, self-selected sample of teachers that cannot be easily generalized. 
Nevertheless, we believe we have documented that authentic mathematical experiences for 
teachers can shift their understanding and conceptions of proof. Research evidence (Stylianides 
& Ball, 2008; Ko, 2010) suggests that these shifts in conceptions will improve the instruction 
that their future students’ experience with proofs and proving. 
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We report our systematic design of nine clinical simulations that we hypothesized would, through 
systematic variation, support prospective teachers to develop an aspect of Mathematical 
Knowledge for Teaching. We report tentative findings from the case of Kristy, a prospective 
teacher whose experience across the simulations illustrates the potential and the limitations of 
our design. 
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Increasingly, mathematics teacher educators have been developing and using various forms 
of simulation to prepare prospective secondary mathematics teachers (PTs). In their report on the 
2019 Simulations in Teacher Education conference in Louisville, KY, Mikeska at al. (2021) 
noted that research “using systematic and structured variations around specific design parameters 
. . . would be useful to supporting claims about how simulations work best, for whom, and under 
what conditions” (Implications for Teacher Education, para. 1–3). In this paper we report a case 
study of one PT, Kristy, and her evolving understandings of student reasoning as she engaged in 
clinical simulations that we designed to systematically support PTs’ learning. 

Design Principles 
Our designs were grounded in Variation Theory (VT; Marton, 2015). The first tenet of the 

theory is that instruction involves intended objects of learning. Our intended objects were three 
qualitatively distinct student approaches to generalizing from sequences of spatial figures: a 
numerical approach (Rivera, 2007), a constructive figural approach (Rivera & Becker, 2008) in 
which one perceives figures as composed of disjoint components, and a deconstructive figural 
approach (Rivera & Becker, 2008) in which one perceives figures in terms of intersecting 
components. A second tenet is to orchestrate experiences so that critical features of the objects 
vary while other features are held constant. In theory, this variation is necessary for students to 
begin to conceptualize distinct objects of learning by contrasting features. For this work, critical 
features of the approaches were strict adherence to numerical data, perception of figures as 
composed of disjoint elements, and perception of figures as composed of intersecting elements. 
A third tenet is to support abstraction by orchestrating multiple experiences that represent critical 
features of each object while varying irrelevant features. Following these principles, we 
constructed a framework of variations to guide our design of nine clinical simulations by 
controlling variation in approach and variation in task across simulations. 

For each type of approach (Figure 1) and Task (Figure 2) we created a protocol to guide an 
actor to simulate one approach with respect to one task. We assigned character names to each 
student: Nell for numerical approaches, Suzy for constructive figural approaches, and Michael 
for deconstructive figural approaches. Each protocol describes essential actions and statements 
representing critical features of each approach. For example, Suzy would describe the Patterns in 
the Tiling Task as five central tiles with additional tiles appended to each branch, while Michael 
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would describe the same Patterns as perpendicular rows of tiles that overlap at the center. To 
ensure that each PT would experience the critical features of the simulated approach, we trained 
actors to simulate resistance if the PT directed them toward alternative approaches. 

We grouped protocols so that Approach would vary within each group, but Task would vary 
only across groups. We designed three learning cycles, each incorporating one group of 
simulations. Based on VT we predicted that experiencing three simulations of different 
approaches to the same task, in close temporal proximity, would lead PTs to discern critical 
differences among approaches. We expected that multiple simulations of each approach across 
cycles would help PTs develop abstract conceptualizations of each approach. Our data collection 
and initial analysis were based on the following research questions: 

1. To what extent does a PT who experiences clinical simula*ons of three approaches to a 
single mathema*cal task discern cri*cal differences among simulated approaches? 

2. To what extent does a PT who experiences clinical simula*ons of three approaches 
across mul*ple cycles develop abstract concep*ons of those approaches? 

 
Figure 1: Dimension of Approach 

Numerical Approach (Nell) Constructive figural (Suzy) Deconstructive figural (Michael) 
Makes a table of values and looks 
for patterns 

Perceives patterns as constructed 
from disjoint components 

Deconstructs patterns into 
intersecting components 

 
Figure 2. Dimension of Task 

Tiling Task 

 
 

Chairs Task 

 

Theater Task 

 

Implementation and Data Collection 
We implemented our learning cycles in a methods course over a fourteen-week semester with 

seven prospective secondary mathematics teachers. Most relevant to this report are three PT 
activities from each cycle: Doing the Task and anticipating possible student approaches; 
participating in three live, one-on-one clinical simulations; and debriefing the simulation 
experience to reflect on the experience of the simulations. 

Analysis and Findings 
We hypothesized that data about differences that PTs discerned among simulated approaches 

would most likely emerge in post-simulation debriefing or in planning for the Chairs simulations 
and Theater simulations. We anticipated that data about PTs’ conceptualizations of each 
approach would be most likely found in their planning conversations. Therefore, we chose to 
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focus our initial analysis on transcripts of small-group and whole-group conversations during 
pre-simulation planning and post-simulation debriefing across the Cycles. We are at an early 
stage of analysis, so we chose to focus initial analyses on conversations involving Kristy, a 
masters student participant. We chose Kristy because we noted, during the planning activity for 
Theater Task simulations, that she spontaneously expressed the approaches she anticipated each 
simulated student would use. We decided that tracking Kristy’s progression from her planning 
for Tiling through her planning for Theater simulations would be a fruitful start. 

Findings and Discussion 
From our analysis, we found that Kristy discerned critical differences between numerical and 

figural approaches starting from the Tiling simulations. Repeated experience across the Tiling 
simulations and Chairs simulations led her to associate specific approaches with the characters 
Nell and Suzy and to accurately predict the approaches that those characters would apply to the 
Theater Task. Kristy recognized that Michael simulated a qualitatively different approach than 
the other two. However, her conceptualization of Michael’s approach was not yet robust enough 
for her to predict Michael’s response to the Theater Task. 

Prior to the Tiling simulations Kristy and her peer, Denise, compared how they had each 
solved the Tiling Task. Kristy perceived each Pattern constructively as five central tiles, with 
four tiles added to make Pattern 2 and two sets of four tiles to make Pattern 3. This led her to 
5+4(n-1) as a constructive generalization. However, she expressed confusion about the reasoning 
behind one of Denise’s expressions, 5n-(n-1). Denise described the approach in purely numerical 
terms: 

I looked at this first one, right? So I'm like, five times one is five. Okay, good. Right, now we 
have five times two. Because the pattern two, but then [the total is] 10 minus one. And then I 
noticed that this [total for pattern 3] was now [fifteen] minus two. So then . . . [the next 
values] are gonna be [twenty] minus three, then [25] minus four, and so on. 
Denise and Kristy anticipated that students would be much more likely to use the images 

than to reason from numerical data, as Denise had done. 
After experiencing the Tiling simulations, Kristy provided evidence that she discerned the 

three approaches as distinctly different. However, she had not anticipated Michael’s approach: 
I did not even consider [Michael’s] way. . . I had to stop and think, “I know what he’s trying 
to say, but I don’t even know how to get to a generalization from this.” . . . In a real-life 
scenario, we might be more comfortable [saying], “Let me work this out really quick,” but I 
felt more pressure – “I should know this answer.” . . . A student might have a way of solving 
a problem that you didn’t even consider, but it is equally as valid. You have to learn how to 
be flexible with that. 
At this stage, Kristy saw Michael’s approach as different, but was not certain that she 

understood. 
Kristy planned for the Chairs Task with a peer, Toni. Kristy again described the Patterns 

constructively: two rows of chairs across the top and bottom of each figure, with a pair of chairs 
added to the ends of each figure: “For four tables, it's four, four, [and] two. For five tables it's 
five, five, [and] two. So I think for n tables, it's just two n plus two.” As the PTs anticipated ways 
that students might approach the task, Kristy anticipated two different possibilities: A numerical 
approach or a constructive figural approach. 
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[Someone] is gonna say four [tables] and 10 [chairs]. And they're gonna say five and 12 and 
six and 14, they're gonna say [the number of chairs is] always double [the number of tables] 
plus two. My guess is someone [else] is not going to look at the pattern in the picture. They'll 
just look at number of tables, number of chairs and say, “It's always something plus two.” . . . 
[A student] might [also] see the ends as two groups of three, and then the middle. I could see 
someone doing that. 
Note that at this stage, Kristy’s descriptions differentiate between approaches that “look at 

the pattern in the picture” and those that attend strictly to numerical data. Her conceptions of 
these approaches do not seem to be attached to any one character, and do not include a 
deconstructive approach. This latter fact is important in light of Kristy’s anticipation of student 
approaches in the subsequent planning for the Theater Task. 

Kristy approached the Theater Task with a constructive figural approach while her planning 
partner, Diana, used a numerical approach. The first author overheard Kristy anticipating that in 
the simulation, Nell would use an approach similar to Diana’s, Suzy would approach the task in a 
way similar to Kristy, and Michael would do something different that Kristy could not yet 
predict. The first author paraphrased Kristy’s observation for another group: 

Instructor: Michael so far, for [Kristy], has caught her off guard each time. Is that correct? 
Kristy:  It's something I never have expected. 
We note that, at this stage, Kristy associated two qualitatively distinct approaches to 

generalizing with specific simulated students: Nell would attend to numerical data, and Suzy 
would attend to figures in ways that Kristy would recognize. She discerned that Michael’s 
approach was distinctive from those of Nell or Suzy, but was not yet able to anticipate how 
Michael might approach the task. 

Conclusions 
Mikeska et al. (2021) noted an ongoing need to examine how design of simulations impact 

PTs’ learning. We designed a set of simulations designed to systematically vary within and 
across subsets of simulations to support PTs’ conceptualizations of distinct student approaches to 
linear and quadratic generalizing tasks. To a limited extent, Kristy’s case suggests that VT can be 
a productive theory of action for designing simulations. Kristy’s experiences of the simulations 
led to increasing awareness of distinct approaches to figural generalizing tasks and increasing 
capacity to describe critical features of those approaches. That knowledge and capacity are 
important components of Mathematical Knowledge for Teaching. However, Kristy’s experiences 
may not have supported her in developing an understanding robust enough to anticipate 
approaches involving deconstructive perceptions of figures. This suggests a need for ongoing 
inquiry into how to design and orchestrate simulations to strengthen learning opportunities. 
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Aligned with the AMTE Standards for Preparing Teachers of Mathematics, Bay-Williams et. al.  
constructed an Identity Survey and research team to composed of several institutions ranging 
from R1 to private teaching universities. The team implemented the common Identity Survey and 
research design in 2021 and has initial results to share. Participants will learn about the design 
and explore the initial quantitative and qualitative data outcomes.  

Keywords: Teacher Beliefs, Teacher Educators, Undergraduate Education 

Introduction 
In 2020 the Association of Mathematics Teacher Educators (AMTE) published the Standards 

for Preparing Teachers of Mathematics, along with supplementary materials which included an 
instrument for developing an understanding for how preservice (PST) and inservice (IST) 
teachers develop their identity as ‘teachers of mathematics’ to replace their identity of ‘learner of 
mathematics’ (Association of Mathematics Teacher Educators, 2017; Bay-Williams et al., 2021). 
This instrument has been given at several institutions across the United States with elementary 
and secondary preservice teachers over three years, and the team has quantitatively and 
qualitatively analyzed the data.  

The instrument has several sections, including qualitative and quantitative questions to 
uncover how PSTs make the essential shift from ‘learners of’ to ‘teachers of’ mathematics (Allen 
& Schnell, 2016; Anderson, 2007; Dunleavy et al., 2021; Leatham & Hill, 2010). Further, it is 
clear that principles of equity are essential in teaching and developing the identity of successful 
teachers of mathematics, but it is not clear how to build the required political and equitable 
knowledge (Berry III, 2019; Gutiérrez, 2013a, 2013b). Mathematics teacher organizations have 
published materials to assist and support mathematics teacher educators in this work 
(Association of Mathematics Teacher Educators, 2017; National Council of Teachers of 
Mathematics, 2018, 2020b, 2020a), however there is a lack of research focused on the PST that 
this instrument hopes to fill (Bay-Williams et al., 2021). The instrument in its final form borrows 
activities from Leatham and Hill’s (2010) work on middle school mathematics teachers as well 
as Silver, Strong, & Perini’s (2000) work on multiple intelligences in developing an 
understanding of how individuals build their identities. 

Discussion 
The development of identities in PSTs is an essential topic that needs more research, more 

data, and more study. This initial study has shown some interesting differences between 
elementary and secondary attitudes towards developing their own identity. Elementary PSTs 
have a wide range of emotional attitudes towards their own mathematical thinking, and 
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secondary PSTs have a much more narrow and positive view. While it may not be surprising to 
mathematics teacher educators that elementary PSTs find themselves struggling in learning 
mathematics, a large number of them also had low anxiety, high confidence, and high enjoyment 
of mathematics. These emotional outcomes can be used to build as strong foundation of 
mathematics identity in these future teachers.  

In the secondary PSTs, they had a very high opinion of their mathematics skills, confidence, 
and enjoyment of mathematics, despite the fact they also had a great deal of anxiety. And even 
though they have such high opinions, they did not write about mathematics as being an essential 
component of their identity. The disconnect between their opinion of their skills and what they 
considered important about themselves creates an opportunity for supporting them in creating a 
stronger mathematics identity. 
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The National Council of Teachers of Mathematics (2014) has articulated that to create, 
support, and sustain a culture of access and equity within mathematics education, teachers must 
be “responsive to students’ backgrounds, experiences, cultural perspectives, traditions, and 
knowledge” (2014, p. 1). Further, the Association of Mathematics Teacher Educators (2020) 
emphasized that we must develop mathematics teachers who “implement practices that draw on 
students’ mathematical, cultural, and linguistic resources/strengths” (2020, p. 2). Thus, teacher 
education programs are considering: How do we prepare mathematics teachers for this work? 

I share one approach for developing preservice teachers’ ability to recognize, appreciate, and 
incorporate other cultures into the classroom: education abroad. Research from education abroad 
indicates that when students are immersed in a different culture, they develop a sense of cultural 
awareness and the capacity to work across cultures (Marx & Moss, 2011). Therefore, education 
abroad has the potential to support preservice mathematics teachers in developing the mindset 
and skills to draw on their future students’ backgrounds and cultures. 

 The Developmental Model of Intercultural Sensitivity (DMIS; Bennett, 1986) provides a 
framework for this work. It establishes a continuum of ways to respond to cultural difference 
ranging from monocultural to intercultural. Monocultural is “the experience of one’s own culture 
as ‘central to reality’” (Bennet, 2004, p. 62); while intercultural is “the experience of one’s own 
beliefs and behaviors as just one organization of reality among many viable possibilities” 
(Bennett, 2004, p. 62). There are two categories related to monocultural (Denial and 
Polarization), two categories within intercultural (Acceptance and Adaptation), and a category 
(Minimization) which is considered a transition between monocultural and intercultural. The 
Intercultural Development Inventory (IDI; Hammer & Bennett, 1998) is a validated instrument 
that places respondents along this continuum.  

This poster shares details of a semester-long education abroad program in the United 
Kingdom that was designed specifically for preservice mathematics teachers. Data were 
collected from 13 preservice teachers who participated in this program over the course of 3 
years. Data sources include the IDI, interviews, and journals. The average IDI score for these 
thirteen preservice teachers at the start of the program was 82.33, reflecting a category of 
polarization. By the end of the program, the average IDI score was 97.05, reflecting a category of 
minimization. This difference in pre-post means is statistically significant (t=2.179, df=12, 
p<.001), meaning that preservice teachers demonstrated higher levels of intercultural sensitivity 
following participation in this program.  

While the IDI data and analysis of student interviews/journals suggest that education abroad 
has potential for developing mathematics teachers who are prepared to work across cultures, this 
poster focuses on sharing details of this program. I describe the semester schedule, course 
requirements, student internships, stakeholders, key features of the program, and other important 
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logistics so that others are provided with a full picture of this program as a means of considering 
the possibilities of implementing this type of work (or components of this work) elsewhere. 
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Introduction, Perspectives & Context 
THE STUDY PROMPT: In this activity, we are exploring first thoughts on teaching students 
to simplify expressions. How would you teach students to simplify these expressions: -(x-y),   
2-(x+3), 2-(x-3)? Write a detailed step-by-step explanation of what you would say and write 
symbolically. 
This exploratory study examines whether the hypothetical learning trajectory (Simon, 1995) 

and cognitive strategy (Kinach, 2002) that the author uses in her middle grades/early secondary 
mathematics methods course (n = 18) to develop pre-service teachers’ mathematical knowledge 
for teaching (MKT) integer subtraction and structural analysis of integer subtraction expressions 
to determine the multiple meanings of the “-” symbol (i.e, subtract, negative, opposite) could be 
expanded to serve as the foundation for a new HLT on MKT for simplifying algebraic 
expressions. The prompt above was used for this purpose.  

 Participants, Data Collection, Analysis 
The 18 methods students were invited to share their first thoughts on ways to explain 

simplifying the prompt expressions to students “from scratch” by preparing their explanations on 
google slides. Everyone reviewed the slides prior to class, and then analyzed them through 
whole-class discussion. Analysis of the data entailed downloading the slides, counting instances 
of accurate interpretation of the “-” symbol, and listing the alternative strategies used to explain 
simplifying the expressions.  

Results 
Anticipating PSTs would apply the previously learned definition of integer subtraction        

(p-q=p+-q) and the structural analysis of subtraction expressions to determine the meaning of the 
“–” symbol within algebraic expressions, the mathematics teacher educator was surprised by the 
varied ways PSTs interpreted the “–” symbol. While illustrating flexible thinking, some 
explanations exhibit the same student difficulties identified in early algebra research (Booth, 
1984; MacGregor & Stacey, 1997; Tirosh, Even & Robinson, 1998; Kieran, 2007). Others call 
for additional instruction on syntax to accurately interpret the “–” symbol while others call for 
instruction on transformation properties (e.g., opposite of a sum = sum of the opposites) and the 
field axioms (e.g., identity element, distributive property of multiplication over addition, 
commutative property). To flesh out the MKT task sequence for simplifying algebraic 
expressions the poster will list examples of student difficulties identified in early algebra 
research, detail PSTs strategies for each of the prompt expressions, and propose a revised task 
sequence and reading list for the MKT learning trajectory on simplifying algebraic expressions. 
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This poster explores elementary preservice teachers’ [PSTs] suggestions to help children 
with partitioning circles into odd number of parts. Learners often know how to partition a 
continuous model from a very early age (Empson, 1995), through various partitioning schemes 
(Hackenberg et al., 2016). Learners use various models to demonstrate partitioning scheme such 
as length, rectangle, and circular fraction models (Tunç-Pekkan, 2015). While these models are 
beneficial in scaffolding equal partitioning knowledge, circle models are more challenging than 
other models for students to partition (Boyce & Moss, 2022), especially equipartitioning a circle 
into odd numbers (Zolfaghari, 2023). This suggests that circle models can add an extra layer of 
difficulty for equal partitioning into third and fifth. The research question we explored is: What 
strategies do PSTs suggest to support a second-grader’s partitioning of a circle into thirds? 

To answer the research question, 23 PSTs responded to the following task (Figure 1), and 
their written responses were categorized using thematic analysis (Saldaña, 2013). 

 

 

A 2nd grade student (who has demonstrated how to accurately 
partition a rectangle into thirds) partitioned a circle in the way 
demonstrated on the left. If you were the teacher of this student, 
how would you facilitate instructions to support them to 
accurately partition the circle into thirds? Be specific in your 
explanation. Clarify how you will use any drawings or 
manipulatives to facilitate the instructions. 

Figure 1. Task Given to PSTs of a Second-Grader’s Partitioning a Circle into Thirds 

Findings and Discussion 
PSTs’ writing had three basic themes (see Table 1). First, PSTs' suggestion to distinguish 

rectangle and circle partitioning relates to studies demonstrating conceptual connections among 
models (Rau & Matthews, 2017). Children perform better with partitioning rectangles into thirds 
and fifths than partitioning circles, indicating the need to map relevant concepts they learned via 
rectangle models to transition and scaffold understanding of equipartitioning circles. The PSTs 
described partitioning the circle into “easier parts like ½ and ¼” to find the center of the circle 
relates to ideas of human’s tendency to favor symmetry (Lipka et al., 2019). Cutting circles into 
a half and fourth might help children find the center. PSTs also suggested real life modeling of 
cutting round food items such as pizza to share among three friends.  

 
Table 1: PSTs’ Instructional Strategies Suggested for Equipartitioning a Circle into Thirds 
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Rectangle and Circle Distinction 
 

Finding the Circle’s Center 

 

Real-world Modeling 
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Eliciting student thinking is a core practice of ambitious mathematics teaching, yet it is one 
practice that is difficult for novice teachers to do consistently and proficiently. To better 
understand how to support pre-service teachers (PSTs) to enact this practice, our study sought to 
investigate how secondary PSTs engage in eliciting when they experience instructional dilemmas 
during whole-class mathematics discussion. We analyzed video-recorded data of 18 PSTs’ 
instruction in a university-based early field experience setting in a College Algebra course. The 
findings shed light upon aspects of eliciting student thinking that PSTs need support with as they 
encounter common dilemmas of leading whole-class discussions. 

Keywords: Preservice Teacher Education, Instructional Activities and Practices, Classroom 
Discourse 

Eliciting student thinking is a necessary component of ambitious mathematics teaching 
practice (NCTM, 2014), yet it is one practice that PSTs may have had little experience with even 
as modeled by their own K-12 teachers. The practice sits at the intersection of PSTs’ 
mathematical knowledge for teaching and PSTs’ relational work with students (Shaughnessy & 
Boerst, 2018). Understanding what is difficult for PSTs to do when eliciting student thinking, 
particularly early in their teacher preparation program, can inform the design of teacher 
preparation curriculum to improve the preparation of PSTs to enact this ambitious practice 
skillfully as beginning teachers. In this study, using data collected from PSTs’ teaching in an 
early field experience, we focused specifically on instances of eliciting preceding and following 
instances where breaks could be perceived in the instructional flow during whole-class 
discussion phases of the lesson. This focus was in service of the goal to understand the 
relationship between PSTs’ nascent practice with eliciting student thinking and their fluency with 
leading whole-class discussions. Specifically, this study was guided by the question: What are 
the characteristics of secondary mathematics PSTs’ practice of eliciting student thinking 
immediately prior to, and after resolving, breaks in instructional flow during facilitation of 
whole-class discussions in an early field experience? 

Conceptual Framework 
The Eliciting Cycle 

Building from existing work that articulates eliciting using a cyclic metaphor (Shaughnessy 
& Boerst, 2018; TeachingWorks, 2020), we conceptualize an eliciting cycle as an episode of 
instruction that involves back-and-forth moments of the teacher providing additional 
questioning, revoicing, and providing clarification (Continued Eliciting), and student response 
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(Response). Cycles are initiated by an elicitation (often a question) which launches the eliciting 
cycle (Initial Elicitation) as well as the teacher moves that close the episode before moving on to 
a new topic (Cycle End). In actual classroom practice, it is not uncommon for the Initial 
Elicitation or Continuing Eliciting practice to receive no response from students, so this potential 
outcome (No Response) is also considered in the model presented in Figure 1. 

 
 
 

 

 

 

 

 

 

Figure 1: Model of Eliciting Cycle and its Constituent Phases 

Instructional Dilemmas During Eliciting Cycles 
Existing work has attended to teachers’ experiences with challenging moments during 

instruction—where teachers face uncertainties about how to proceed or must make choices that 
leave them unable to address important obligations of teaching (Lampert, 1985; Kennedy, 
2016)—and how teachers reason about and address these challenging moments during 
instruction. We contend that attending to these moments is crucial in that teachers’ responses to 
these moments may result in outcomes such as reduced cognitive demand of instruction (Stein, 
Grover & Henningsen, 1996) and support for students to engage in productive struggle 
(Warshauer, 2015). Research has shown that PSTs find several aspects of leading whole-class 
discussions challenging, including practices specific to eliciting such as lack of response to 
elicitations (Ghousseini, 2015). Our study seeks to understand how PSTs approach eliciting that 
occurs before, during, and after they have resolved breaks in the instructional flow—what we 
call instructional interruptions—that could be indicative of PSTs’ facing instructional dilemmas 
while leading whole-class discussions. The results can offer insights about how to design 
activities and learning experiences to specifically address PSTs’ challenges when engaging in 
eliciting cycles during whole-class discussions. 

Methods 
Context and Data Collection 

In our collaborative, multi-year NSF-funded project across three universities, we 
implemented an early field experience where PSTs planned, enacted, and reflected on lessons 
they taught in an entry-level university mathematics course. PSTs received real-time coaching 
and feedback from a mathematics teacher educator (MTE), who also served as the instructor of 
the teaching methods course that PSTs were concurrently taking. These lessons were recorded 
using Swivl technology (http://www.swivl.com).  
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Data was collected in Fall 2018 at one site where the PSTs taught in a College Algebra 
course. Each lesson was co-taught by a pair of PSTs, while the other 16 PSTs observed and 
provided instructional support while placed individually to work with small groups.  
Data Analysis 

A timestamped transcript was generated for each eliciting cycle in the three recordings in 
which the speaker was identified to the greatest extent possible given the limitations of the video 
recording (inaudible, speaker off-screen, etc.). Because each PST that was teaching wore an 
audio tracking device, it was always clear which PST was speaking.  

First, we coded the phases of the eliciting cycle (Initial Elicitation, Continued Eliciting, 
Response, No Response, and Cycle End) by identifying an initial elicitation. Then, we marked 
the Initial Elicitation phase to include any teacher moves or context that was provided leading up 
to this initial elicitation. To identify the Cycle End, we considered teacher moves that likely 
signaled to a student that discussion of the elicitation that began that cycle had ended, such as 
when PSTs explicitly summarized the discussion or shifted to the next problem. Across the three 
lessons, there were 40 eliciting cycles with a median length of 1.5 minutes.  

Next, we reviewed each lesson to identify moments during the recordings in which there was 
a break in the instructional flow, potentially indicating that PSTs were experiencing an 
instructional dilemma. The criteria for identifying these moments were: (a) there was a pause in 
the teacher action where PSTs had to make a choice or (b) an MTE intervened during the PSTs’ 
lesson. We refer to such moments as instructional interruptions to acknowledge that the situation 
may not have been perceived as problematic by the PST(s) involved. Each instructional 
interruption was composed of three parts: Start, Tension, and Stop. Tension was identified as the 
(part of the) phase of an eliciting cycle that most directly caused the interruption (e.g., student 
provided an incorrect response). Backing up 30-60 seconds, Start was identified as the (part of 
the) phase of an eliciting cycle that directly prompted the “tension” (e.g., PST asked a question). 
Stop was identified as the (part of the) phase of an eliciting cycle in which the PST(s) reflected a 
closure in their response to the tension (e.g., providing the correct answer after receiving an 
incorrect response from a student). For this brief report, we chose to analyze only the cases PST 
pairs handled themselves (i.e., instructional interruptions that did not involve MTE intervention 
and coaching). Interruptions that involved difficulty with classroom resources or classroom 
management but did not otherwise appear to impact the teacher’s eliciting practice were also 
omitted from the data set. In total, this data set of eliciting cycles across three lessons featured 25 
instructional interruptions that met our criteria for inclusion.  

Results and Discussion 
Across the episodes of eliciting that occurred during instructional interruptions, we found 

PSTs used a variety of strategies to manage the moments of tension in each episode. First, for 
episodes of interruptions that featured a repeated lack of student response (n=5), PSTs tended to 
make their elicitations more specific after one or more phases of students not responding. In one 
example, a PST’s initial elicitation requested a process (“If we have a graph that is exponential 
and want to create a model or equation from that, how do we do that?), but after receiving no 
response from students, their subsequent elicitations changed to request a single answer (“What 
equation do you typically use for exponential functions?”). Another common approach when met 
with a repeated lack of student response was for PSTs to repeat relevant information or provide 
specific hints. For instance, one PST was waiting for additional responses after a student 
introduced an incorrect initial response. After waiting a few moments, she asked a follow-up 
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elicitation that also served as a hint (“What was the objective from Tuesday?”). When she 
received no responses, she followed with a more specific hint (It’s a different kind of function”), 
to which one student offered a partially correct answer. As in the example, this pattern of making 
the elicitation more specific, reiterating relevant information, and then providing hints, did 
typically prompt students to provide at least a partial response to the initial elicitation. However, 
the openness of the initial elicitation was often reduced (e.g., from requesting an explanation or 
the process a student used to requesting a single answer), resulting in eventual student responses 
that tended to be single answers as opposed to sharing their mathematical processes or 
underlying thinking.  

A second finding was that, across a variety of types of instructional interruptions, PSTs often 
sought clarification about a student’s response by engaging in continuing eliciting to ask a 
simpler question until they appeared to understand the student’s thinking. Sometimes, this 
strategy was used to encourage students to expand on a response that had initially caused a PST 
to pause for a few moments before continuing their eliciting practice. Other times, it was used by 
the PST to encourage the student to share more. In one instance, a PST used this strategy to take 
up the only short and incomplete student response they received after several No Response 
phases. In one example, a student had shared their process for finding a common denominator of 
two rational expressions. The PST took time to pause after receiving this response, but then 
asked a series of follow-up questions to clarify ambiguities that were present in the students’ 
words:  

PST: So you’re going to multiply each other’s denominator? Are you just going to multiply 
the denominator, or…? 
Student: The entire fraction 
PST: So you’re going to say the top and bottom? 
Student: Yeah 

Although some of these cases may have been instances of funneling (Wood, 1998), other 
instances—as in the previous example—were explicit attempts to fully elicit, unpack, and 
understand aspects of a student’s process and thinking before proceeding with the mathematical 
goals of the lesson and eliciting cycle. Less frequently, PSTs asked open-ended and ambiguous 
follow-up elicitations that appeared to serve a similar purpose, including “Could you say more” 
and “Could you elaborate?”. It was also rare for PSTs to involve more than just the student who 
gave the initial answer in this clarification, such as asking someone else to explain what a 
particular student may be thinking.  

Conclusion 
Our findings offer a glimpse into the baseline practices of secondary PSTs who have 

knowledge about the practice of eliciting student thinking but are making their initial attempts at 
enacting the practice in their own teaching. These findings shed light not only on the tensions 
they encounter (lack of student response; making sense of a student’s contribution) but also on 
the moves they make to address and manage these tensions. While the findings show that PSTs 
are tenacious in their attempts to elicit student thinking, we contend that it would be beneficial 
for PSTs to have opportunities to plan for ways to respond to common dilemmas of leading 
whole-class discussions. This could reduce the occurrence of instructional interruptions but, 
more importantly, could also support PSTs in responding to these situations in ways that do not 
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reduce the openness of the mathematical inquiry and, ultimately, the cognitive demand (Stein, 
Grover & Henningsen, 1996).  
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This study investigated the effect of teaching rehearsals on 22 preservice secondary mathematics 
teachers (PSMTs) who were in their first mathematics pedagogy course. The objective of the 
teaching rehearsal was to introduce PSMTs to student-centered teaching. PSMTs worked in 
groups to complete a learning cycle consisting of analyzing a mathematics task, preparing to 
teach the task, implementing the task with their peers (the teaching rehearsal), and reflecting on 
their experience. Although PSMTs struggled to teach using student-centered practices, they 
gained more insight into student-centered practices via self-reflection and class discussion that 
was centered on PSMT’s experiences during the rehearsal. Through the learning cycle, PSMTs 
also started to develop a vision for creating a classroom culture that values student thinking.  

Keywords: High School Education; Instructional Activities and Practices; Preservice Teacher 
Education; Teacher Educators 

Preservice secondary mathematics teachers (PSMTs) bring previous mathematical 
experiences to their university courses. Many PSMTs experienced a traditional teacher-centered 
math classroom environment, where direct instruction was prevalent (Prescott & Cavanaugh, 
2006). In contrast, the national K-12 mathematics recommendations call for a student-centered 
approach to teaching mathematics that emphasizes understanding in addition to procedural skill 
(NCTM, 2014). Moreover, students should be engaged in making conjectures and explaining 
their reasoning in mathematic courses (National Council of Teachers of Mathematics [NCTM], 
2000; National Governors Association Center for Best Practices & Council of Chief State School 
Officers [NGACBP & CCSSO], 2010). 

Recommendations for mathematics teacher preparation programs note that K-12 preservice 
teachers (PSTs) need to experience student-centered teaching as a learner to be able to enact 
those practices with their own students (Association of Mathematics Teacher Educators 
[AMTE], 2017; NCTM, 2014). Furthermore, PSTs need to practice implementing student-
centered pedagogy (AMTE, 2017). However, PSTs have few opportunities to enact student-
centered pedagogy due to the structure of the practicum experience (Wilson et al., 2002; Winsor 
et al., 2018) or to the role of the cooperating teacher (Borko & Mayfield, 1995; Solomon et al., 
2017). Recently, teacher educators have used teaching rehearsals to increase PST’s opportunities 
to implement student-centered pedagogy (e.g., Arbaugh et al., 2019; Lampert et al., 2013). Prior 
to this study, our mathematics department did not use teaching rehearsals with PSMTs. We 
hypothesized that using teaching rehearsals with PSMTs taking an introductory pedagogy class 
would introduce PSMTs to student-centered practices in a structured environment. The purpose 
of this study was to investigate how teaching rehearsals focused on student-centered pedagogy 
might help PSMTs gain an initial understanding of how to implement student-centered pedagogy 
in future teaching.  
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Relevant Literature 
Pedagogies of Practice 

Teaching rehearsals are often situated within a pedagogies of practice framework, which 
posits that core teaching practices should be at the center of teacher education programs (see 
Grossman et al., 2009). Without opportunities to practice student-centered pedagogy, teachers 
are often unsuccessful at applying student-centered pedagogy in their classroom (Grossman & 
Dean, 2019). Additionally, because the art of teaching is complex, Grossman and Dean stated 
that, “Attending to practice links the focus on skill with the focus on knowledge” (p. 158), 
resulting in teachers viewing their teaching practices as mastered and usable knowledge. Core 
practices that serve as the focus for pedagogies of practice vary (Grossman & McDonald, 2008). 
Some core teaching practices include launching an activity, managing student engagement, 
responding to students, and assessing student understanding (Lampert et al., 2013).  

Principles to Actions (NCTM, 2014) also emphasized the importance of specific teaching 
practices that help students develop a conceptual understanding of mathematics. The eight 
Mathematics Teaching Practices were created to provide teachers with " a core set of high-
leverage practices and essential teaching skills necessary to promote deep learning of 
mathematics” (NCTM, 2014, p.3). Some practices include “Implement tasks that promote 
reasoning and problem solving”, “Pose purposeful questions”, and “Elicit and use evidence of 
student thinking” (NCTM, 2014, p. 8). In both university and classroom settings, the 
identification of core practices helps break down the complexity of teaching. Moreover, it helps 
teacher educators focus their efforts on impactful teaching practices. 
Approximations of Practice: Teaching Rehearsals 

One way for PSTs to learn a core practice is through an approximation of practice. 
Ghousseini and Herbst (2016) defined approximations of practice as “activities in which novice 
teachers engage in experiences akin to real practice that reproduce some of the complexity of 
teaching” (p. 83). Teaching rehearsals are considered an approximation of practice and are 
structured as part of a learning cycle that requires the PSTs to interact with the practice, teach 
using the practice, and then reflect on their experience (Kazemi et al., 2016). Janssen et al. 
(2015) noted that teaching rehearsals can vary according to their level of focus, level of 
authenticity, and level of scaffolding.  

Focus. The level of focus in a teaching rehearsal can vary from focusing on a single 
component of a practice to focusing on a full practice (Janssen et al., 2015). Many reported 
teaching rehearsals have focused on one specific teaching practice during the learning cycle (e.g., 
Arbaugh et al. 2019; Lampert et al., 2013). At the secondary level, Campbell and Elliott (2015) 
focused on having PSMTs build a definition of a mathematics topic from an investigation. 
Arbaugh et al. (2019) focused on specific kinds of questions PSMTs could use to elicit student 
thinking while engaged in problem solving.  

One challenge of focusing on a particular practice is that the PSMTs may miss how teaching 
practices, such as NCTM's (2014) Mathematics Teaching Practices, are interdependent. Smith 
and Stein (2018) noted that teaching practices do not occur in isolation. For example, one of 
NCTM’s (2014) practices is that teachers facilitate meaningful mathematical discourse. Teachers 
who effectively facilitate mathematical discussions do so in part because they use three other 
practices: they have clear goals for the lesson, they ask purposeful questions, and they elicit and 
use student thinking (Smith & Stein, 2018). Additionally, these afore mentioned teaching 
practices depend on implementing a high-level task (Smith & Stein, 2018). Tasks classified as 
high-level are more likely to help students reason mathematically, have multiple entry points, 
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have varied solution strategies, and promote connections between mathematical ideas (NCTM, 
2014; Smith & Stein, 2018).  

Authenticity. The level of authenticity of teaching rehearsals depends on where preservice 
teachers implement their practice lessons. Previous studies (e.g., Campbell & Elliott, 2015; 
Lampert et al., 2013) valued a high level of authenticity while implementing practice lessons. In 
those studies, PSTs engaged in teaching rehearsals in a controlled environment before also 
implementing the lesson in front of actual students. Campbell and Elliott (2015) found that 
implementing a practice lesson in an authentic setting allowed PSMTs to be responsive to a 
particular classroom environment, which they noted is an important part of teaching. 

However, other studies did not have PSMTs teach in an actual classroom (e.g., Arbaugh et 
al., 2019; Dotger et al, 2014). Dotger et al. (2014) purposefully used clinical simulations to give 
PSMTs a shared experience. They found that the use of the simulation, along with the collective 
reflection, illuminated the PSMTs “mathematical knowledge, instructional abilities, and practices 
in need of refinement” (p. 599). Arbaugh et al. (2019) used mathematics education graduate 
students as practice secondary students so that the PSMT would have a “low-risk approximation 
of practice” (p.24). The authors found evidence of PSMTs’ growth in several dimensions of 
teaching, such as increased knowledge of students and connecting knowledge of students with 
specific teaching practices. 

Scaffolding. Finally, the level of scaffolding can vary with the level of feedback and support 
the teacher educator gives during the teaching rehearsal (Janssen et al., 2015). Many teacher 
educators pause preservice teachers’ teaching during their rehearsal to give feedback (Arbaugh et 
al., 2019; Averill et al., 2016; Lampert et al., 2013). Lampert et al. (2013) used scaffolding 
during rehearsals to draw the PSTs’ attention to certain practices, pausing the PSTs during the 
rehearsal to suggest a next teaching move, or to give an evaluation of a certain teaching move 
employed by the PST. 

In contrast, Peercy and Troyan (2020) have suggested that a lower amount of scaffolding 
during rehearsal may be beneficial. They found that directive statements from the mathematics 
teacher educators led to the teacher educators being positioned as the expert and the 
contributions of PSMTs to be less emphasized. Conversely, when discussions of the teaching 
enactment emphasized PSMTs’ contributions, the PSMTs “had more opportunities to engage and 
consider questions about the work of teaching” (p. 10). In short, Peercy and Troyan (2020) 
suggested that mathematics teacher educators must carefully consider and respond to PSMT 
thinking during approximations of practice in a similar manner to how they ask PSMTs to 
respond to student thinking. 

Research Question 
Previous studies involving teaching rehearsals were designed to include a narrower focus 

(Arbaugh et al., 2019; Campbell & Elliott, 2015; Lampert et al., 2013), an authentic setting 
(Campbell & Elliott, 2015; Lampert et al., 2013), and a high level of scaffolding (Arbaugh et al., 
2019; Averill et al., 2016; Lampert et al., 2013). However, we hypothesized that a broader focus 
might give PSMTs in their first pedagogy course a better idea of what student-centered teaching 
entails. Additionally, we hypothesized that a controlled setting—having PSMTs teach their 
peers—might create a low-risk teaching environment for the PSMTs. Our research question was: 
How do PSMTs react to participating in a teaching rehearsal focused on implementing a high-
level task using student-centered pedagogy? 
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Methods 
Participant and Course Description 

This study took place at a midwestern university with 22 PSMTs who were in their first 
secondary mathematics pedagogy course. The overarching goal of the course was to introduce 
PSMTs to the field of mathematics education via examination of Principles and Standards for 
School Mathematics (NCTM, 2000). The second author served as the instructor of the course. 
His pedagogy consisted of having PSMTs experience standards-based teaching, read about and 
discuss different pedagogical moves, and implement student-centered pedagogy. The first author 
attended the course both as an observer and researcher, working closely with the second author 
to design the teaching rehearsal and learning cycle.  
Research Design 

We designed the learning cycle to have PSMTs interact with the content of the lesson, plan to 
teach the lesson, teach the lesson (the teaching rehearsal), and then reflect on their experience 
(Kazemi et al., 2016). However, to elevate the voices and ideas of the PSMTs (Peercy & Troyan, 
2020), we included an additional part of our learning cycle, based on observations of PSMTs’ 
teaching and their initial reflections. The final part of our cycle included a whole-class 
discussion, asking PSMTs to read and respond to an article on eliciting student thinking 
(Reinhart, 2000), and providing PSMTs feedback on their rehearsal. To close, PSMTs reflected 
on the final segment of the teaching cycle. 

To begin the learning cycle, PSMTs worked in groups of four to analyze a preselected high-
level task. Prior to the learning cycle, the instructor chose six articles from The Mathematics 
Teacher that included a high-level task, instruction for implementing that task, and focused on 
using student-centered practices (NCTM, 2000, 2014). PSMTs analyzed the task by completing 
the tasks, developing learning goals based on the task, and describing how the task differed from 
a more traditional lesson on the mathematical concept. 

During the planning phase of the cycle, the PSMTs were to plan their lesson using the 
launch-explore-discuss model (Smith & Stein, 2018). PSMTs continued to work in groups of 
four, planning the launch of the task, questions they would pose to students, and writing a 
description of how they would facilitate a whole-class discussion. 

PSMT groups taught their lessons to fellow PSMTs, who were instructed to act as students. 
PSMTs started each lesson by stating what grade level the lesson was intended for, which 
allowed their classmates to act appropriately. We did not give feedback during the PSMTs’ 
implementation of the task to give more weight to the PSMTs’ own thoughts and actions (Peercy 
& Troyan, 2020).  

After implementing the high-level task, PSMTs completed a written reflection on what they 
learned from planning and implementing their task. PSMTs also reflected on their experience as 
“students” and how they might use that information as a teacher. We used observations of 
PSMTs’ teaching and their initial reflections to inform the design of the final part of the cycle. 
For the final part of the learning cycle, we started by having a whole-class discussion that was 
focused on their actions as teachers and ideas they referenced in their initial reflections. We also 
had the PSMTs read an article that focused on specific teaching practices that teachers can use as 
they plan questions that elicit student thinking (Reinhart, 2000). Then we gave each group 
written feedback on their lesson implementation related to those practices. Finally, we asked 
PSMTs to write a final reflection related to feedback received and the article’s content. 
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Data Collection 
During the learning cycle, the first author observed all class sessions and took field notes. 

From each group of PSMTs, we collected their task analyses, lesson plans, and initial reflections 
as teachers. From each individual PSMT, we collected their initial reflections as student 
participants and their final reflections. We also videotaped each group’s teaching rehearsal and 
the whole-class discussion. For the purposes of this paper, we focused on the lesson videos and 
the three reflections completed by the PSMTs. 
Data Analysis 

We analyzed data at two points in the study. Our initial analysis included generate themes 
from the teaching rehearsal videos and the initial reflections. We used the generated themes to 
inform the structure of the whole-class discussion and the final reflection of the learning cycle. 
Because we did not have preconceived notions of what kind of themes we were looking for, we 
used open coding (Merriam & Tisdell, 2016) to analyze the data and then combined the codes 
into themes. For the second analysis, we analyzed their final reflections and coded according to 
the themes we found in the initial analysis. We then compared how the PSMTs discussed the 
generated themes in their initial reflections to how they discussed them in their final reflections. 

Findings 
Two broad themes emerged from our initial data analysis. The first theme of eliciting and 

using student thinking (NCTM, 2014) was based on the disconnect between our observations and 
their initial reflections as teachers during the teaching rehearsal. The second theme of student 
engagement and learning was based on their reflections as student participants. We used these 
themes to structure our whole-class discussion. One part of our discussion focused on 
recognizing how different types of questions promoted or hindered student thinking. The second 
part of our whole-class discussion focused on the level of student engagement in response to 
using a high-level task or the implementation of the task by the teachers.  

In the following section, we organized our findings based on the themes we generated. We 
include a brief description of key findings at each stage of the learning cycle. Our intent in 
presenting the findings in this manner is to illustrate differences between PSMTs actions as 
teachers and their responses throughout their reflections. 
Eliciting and Using Student Thinking 

PSMT actions as teachers. In the initial analysis, we found that PSMTs struggled to ask 
open-ended questions during their lesson to elicit student thinking. At the conclusion of each 
teaching rehearsal, the PSMTs tended to ask closed-ended questions, most requiring one-word 
responses, to their students (fellow PSMTs). When the PSMTs did pose an open-ended question, 
they often offered little wait time before they rephrased the question, making it easier for the 
students to answer. For example, in Group 5, the PSMT leading the discussion started by asking 
students how they would know where to shade when graphing a linear inequality. After a brief 
pause where no one answered, the PSMT followed up with: “Which region would you shade?” 
Then continuing to provide little wait time, the PSMT asked, “Would you shade above the line or 
below the line?” which relegated the question to a single-word answer.  

PSMTs seemed to overlook the importance of using student thinking as they led whole-class 
discussions. PSMTs circulated around the class during the student work time but did not 
document any student work or comments that could be used during the whole-class discussion. 
Five of the six groups started their whole-class discussion by asking for volunteers without 
purposefully highlighting student work they had seen as they walked around.  
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Initial reflections. In their initial reflections as teachers, PSMTs were not able to critique 
themselves about the ways they elicited (or failed to elicit) student thinking during their lessons. 
When asked about the strengths and weaknesses of their lessons, PSMTs focused on external 
factors like timing or how well the groups worked together, making no mention of how their 
teaching actions might have influenced student learning.  

Several PSMTs did note, however, how anticipating student thinking before the lesson would 
have benefitted their teaching. Group 1 said, “We learned that preparation is key…If we prepare 
for multiple scenarios, it will increase our chances of being able to help students complete high-
level tasks.” Group 4 said that “When preparing the task, you almost want to know how your 
students will answer,” and Group 5 added that “It would also be good to think ahead about some 
possible problems that may arise and think about how to solve them." 

Final reflections. As part of the final reflection, PSMTs were asked to reflect on what 
changes they would make to their lesson, based on instructor feedback and ideas found in the 
article. In the final reflection, PSMTs were more specific about the ways they struggled to elicit 
student thinking while teaching, when compared to their initial reflections. Two PSMTs 
observed how their whole-class discussion became more of a lecture. One PSMT noted, “A lot of 
the class discussion was just me talking and a lot of that was because we were running out of 
time, but also I didn't know how to get the students to actually respond.” Several PSMTs noted 
that the article helped them realize lecturing or asking closed-ended questions requires students 
to do little thinking. One PSMT even said the article “helped me realize how little many students 
do think.” 

Several other PSMTs commented on the need for planning more intentional questions to pose 
during the lesson because they realized their questions did not require much student thinking. 
One PSMT realized they were “asking a lot of questions that required one-word answers instead 
of whole responses. We weren't asking the right questions since we were clearly asking students 
to regurgitate something from memory and not to really answer and consider the question.” The 
idea of preparing questions beforehand seemed new to most of the PSMTs, with one of them 
commenting, “I always just assumed questions were something that came up when students were 
confused and weren’t planned ahead to invoke specific kinds of thinking. I really like this idea, 
though!” 
Student Engagement and Learning 

PSMT actions as teachers. In the initial analysis, PSMTs tended to revert to traditional 
teaching methods during their teaching rehearsals, rather than student-centered teaching 
practices. Despite engaging in discussions focused on launching a high-level task, several groups 
altered the task, lowering the cognitive demand of the task, making the task easier for the 
students to solve. Many groups seemed uncomfortable with student struggle. For example, 
Group 5 began their lesson with a review of mathematical concepts instead of a launch question. 
Group 2 posed a launch question but quickly transitioned to showing examples because they 
sensed confusion among the students. 

Several groups also reverted to lecturing at some point during their lesson. PSMTs in Groups 
4 and 5 both attempted posing questions to elicit student thinking but ended up offering their 
own lengthy explanation instead. During a task focused on determining the distance formula by 
deriving it from the Pythagorean Theorem, Group 6’s whole class discussion focused on 
presenting the connection versus allowing students to share their own discoveries.  

Initial reflections. We were surprised by PSMTs’ reflections about their experiences as 
“practice students”. Even though PSMTs struggled to identify and critique student-centered 
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practices in their own teaching, they were able to identify benefits of experiencing student-
centered practices as students. One PSMT said, “It [the task] made me think through the process 
of finding possibilities on my own and not just being given information and memorizing it,” and 
another said she learned to “ask what they [students] see rather than telling them what they’re 
supposed to see.” Other PSMTs noted the benefits of not telling students the answers right away, 
with many discussing how figuring out something on their own or in a group led to better 
understanding of the topic. PSMTs also expressed the importance of students having a 
conceptual understanding, rather than just a procedural understanding. PSMTs noted how the 
tasks in which they engaged fostered connections which led to that deeper understanding. One 
PSMT commented that “As a teacher, I want to make sure to integrate the “how” of math more 
often into my lessons than my own high school teachers did.” 

Final reflections. Several PSMTs, in their comments on the article, referenced giving 
students time and space to think and struggle during a task. One PSMT said the article helped her 
learn that “students are capable of a lot and if teachers just give them all the answers, then 
students will never learn how to do it on their own.” A few PSMTs commented that in high 
school they were not given enough time to think through problems, which resulted in a lack of 
understanding and waiting for teachers to provide the students with a method and solution. 
PSMTs noted that as teachers they want to provide students with sufficient time to think though 
problems to promote learning and understanding. 

Additionally, many PSMTs discussed the desire to establish a classroom culture focused on 
students’ conceptual understanding. PSMTs mentioned wanting a classroom where students are 
comfortable sharing ideas and asking questions. One PSMT noted that, in his future classroom, 
he wanted to “replace lectures with sets of questions. Just like the author says, my initial instinct 
is to teach a concept in the form of a lecture where I can just tell the students what they should 
know. However, this does not encourage critical thinking.” 

Discussion 
Teaching a lesson that had the structure of launch-explore-discuss allowed PSMTs to 

experience aspects of student-centered instruction. During their lessons, PSMTs struggled 
implementing student-centered practices, specifically, eliciting and using student thinking. This 
was not surprising because it was likely these PSMTs’ first time implementing a high-level task. 
Moreover, we did not focus on specific practices of the lesson beforehand, which may have led 
to PSMTs’ struggles.  

On their initial reflections, PSMTs commented favorably about experiencing student-
centered practices as a learner during the teaching rehearsal but struggled to give specific 
critiques of their own teaching. Prescott and Cavanaugh (2006) note that preservice teachers 
view their past school experiences “through the lens of the student rather than the teacher” (p. 
429). PSMTs did not have enough teacher knowledge/experiences to effectively critique 
themselves.  

In their final reflections, PSMTs were able to identify more specific teaching practices they 
could employ during teaching rehearsals. Consequently, PSMTs began developing a vision for 
their future classrooms that went beyond specific practices and instead focused on a classroom 
culture that values and uses student thinking. 

The structure of the learning cycle helped facilitate PSMTs’ understanding of student-
centered instruction. The broad focus of the teaching rehearsal allowed the PSMTs to experience 
of the complexity of student-centered teaching. Moreover, PSMTs started to understand the kind 
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of classroom culture that promotes student thinking. Although other studies using rehearsals 
have successfully targeted a single teaching practice (e.g., Arbaugh et al., 2019; Campbell & 
Elliott, 2015; Dotger et al., 2015), this study demonstrates that a broad focus can also be 
beneficial.  

The lack of scaffolding during the teaching rehearsal, in addition to the broad focus, allowed 
us to build on practices and ideas that were lacking in PSMTs teaching and initial reflections as 
we designed the end of the learning cycle. This served to “create room for TL [teacher learner] 
voices in the pedagogies of rehearsal” (Peercy & Troyan, 2020). The whole-class discussion, our 
feedback, and reading the practitioner article helped PSMTs focus on specific teaching strategies. 
PSMTs were then able to critique in their own teaching and reflect on how to use student-
centered pedagogy. The actual teaching experience gave PSMTs a reference point during 
discussions focused on teaching at the conclusion of the learning cycle because it was no longer 
hypothetical for them. In the final reflection, PSMTs’ comments about future practices were tied 
to their experience as teachers during the rehearsal, to our whole-class discussion, and to the 
feedback.  

Additionally, although Campbell and Elliott (2015) noted that “practice-focused designs are 
better tied to and derived from the activity of teaching in schools” (p. 151), the lack of 
authenticity did not seem to have negative consequences in this study. Rather, PSMTs were able 
to experience teaching in a low-risk setting with no pressure to “get it right” when they taught 
the lesson again in front of students. The low-risk setting gave PSMTs more time and space to 
reflect on their teaching. The final reflection at the end of the learning cycle seemed to prompt 
new understanding of ways to change their teaching moving forward. This finding is similar to 
studies that show the value of PSMTs reflecting on their own beliefs and being given space to 
examine and challenge those beliefs (Conner et al., 2011; White et al., 2005). 

Conclusion 
PSMTs had many favorable reactions to participating in a teaching rehearsal focused on 

high-level task implementation. They had a chance to experience teaching for the first time in a 
student-centered manner. PSMTs were able to use their teaching experience to reflect on the 
kinds of teaching practices and classroom cultures that elicit student thinking. One limitation of 
the study was that PSMTs did not complete a second teaching rehearsal. In their final reflections, 
PSMTs were able to describe specific practices they would like to use in their future teaching. 
Another teaching rehearsal would have provided PSMTs the chance to use those practices.  

This study furthers the field of teaching rehearsals. The teaching rehearsal in this study 
differed from rehearsals in previous studies in its level of focus, scaffolding, and authenticity. An 
implication of this study is that a broad level of focus in a teaching rehearsal could help PSMTs 
gain a sense of the complexity of student-centered instruction. Additionally, a low level of 
scaffolding during the rehearsal allows for highlighting PSMTs’ own ideas and actions. Finally, 
the lack of authenticity did not detract from the experience of PSMTs, which suggests that other 
universities may find it helpful for PSMTs to have similar experiences early in their university 
programs. 
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This study will investigate a teaching intervention designed to improve prospective teachers' 
abilities to coordinate levels of units within their understanding of fractions. Unit coordination is 
a well-defined construct within the literature in terms of how students understand fractions and 
progress through understanding them. However, much is to be learned about the specific ways in 
which we can identify and impact this understanding within undergraduate mathematics content 
courses for future teachers. This study will consider an intervention that allows prospective 
teachers to explore fractional situations whose solutions require the coordination of three levels 
of units. We hypothesize participants might better understand and internalize this coordination 
through explorations and activities in classroom settings.  Specifics for data collection/analysis 
and next steps are shared. 

Keywords: Teacher Knowledge; Mathematical Knowledge for Teaching; Rational Numbers 

Proficiency with rational numbers, including fractions, has and continues to be a serious 
challenge for many teachers and students. It is all too common that learners feel overwhelmed 
and underprepared when it comes to understanding fractions and fraction operations (e.g., Ball, 
1990; Bentley & Bosse, 2018; Borko et al., 1992; Izsák et al., 2010; Menon, 2009; Olanoff et al., 
2014; Rathouz, 2010; Rizvi & Lawson, 2007; Schneider & Siegler, 2010; Stafylidou & 
Vosniadou, 2004; Tirosh, 2000). More specifically, in a previous study of preservice PreK-8 
teachers’ (PSTs’) fraction knowledge (Busi et al., 2015; Stevens et al., 2018), we found 
considerable evidence that many PSTs struggled with the reasoning needed for fluency with 
fractions. Subsequently, we investigated ways to improve PSTs’ fraction content knowledge 
through changes in our pedagogy (Stevens et al., 2018). It became clear through this 
investigation that one of the major challenges for PSTs is the coordination of units in fractional 
situations.  

It is well established (e.g., Norton & Wilkins, 2012; Steffe & Olive, 2010; Wilkins & Norton, 
2011) that understanding fractions relies on the levels of units a learner can coordinate 
simultaneously when faced with a fractional context. Specifically, to reach the higher levels of 
reasoning with fractions, learners must be able to coordinate three levels of units simultaneously 
(3UC) – meaning they can anticipate the outcome of this coordination before they do it. Having 
this anticipation is known as interiorizing the ability to coordinate units. Alternatively, if 
someone is unable to anticipate the outcome of the coordination, they may either not have 
acquired this coordination or may be coordinating the units in action as they solve the problem.  

Through our most recent work (Stevens et al., 2021), we have established and refined an 
observation protocol for identifying 3UC with PSTs. This process involves examining them 
solving fractional problems either live or through recorded video. By witnessing PSTs’ work and 
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thinking as it happens, we are better able to identify PSTs’ ability or inability to coordinate three 
levels of units. However, there remains questions in regard to best practices for supporting PSTs 
who are identified as lacking 3UC. In this study, we will investigate a teaching intervention to 
determine its effects on building and improving 3UC for PSTs.  

Theoretical Framework  
An existing developmental trajectory of fraction schemes and operations serves as our 

framework. This trajectory was first validated for upper elementary and middle school students 
(Norton & Wilkins, 2012; 2013; Wilkins & Norton, 2011) and later validated for PSTs (Busi et 
al., 2015; Stevens et al., 2018).  These schemes and operations can be grouped into three bands 
of developmental knowledge of fractions with each subsequent band relying on an increasing 
number of levels of units the learner can coordinate: fractions as solely part-whole concepts 
(only requires the coordination of one level of unit); fractions as measures (requires the 
coordination of two levels of units); and fractions as fractional numbers (requires the 
coordination of three levels of units) (Hackenberg et al., 2016).  Our previous work discovered a 
majority of PSTs were not proficient in being able to reason about fractions as fractional 
numbers, which corroborates existing research (e.g., Chinnappan, 2000; Olanoff et al. 2016; Son 
& Crespo, 2009; Son & Lee, 2016). The catalyst for moving into this more sophisticated way of 
thinking about fractions is to be able to coordinate three levels of units (Steffe & Olive, 2010).  
We are currently focused on how we might better support the development of 3UC in PSTs; 
therefore, this study focuses specifically on the 3UC portion of this developmental trajectory of 
fractions.  (For more information about this hierarchy, please see Norton & Wilkins (2009), 
Wilkins & Norton (2011), Norton & Wilkins (2012), Busi et al., (2015), Steffe (2002), Steffe & 
Olive (2010).) 

Methods 
Participants and Instrument 

Participants in this study are 20-30 undergraduate students enrolled in the first of two 
required mathematics content courses for PSTs at a southeastern university. The first course in 
this sequence focuses on number concepts and operations, with significant time dedicated to 
developing fraction understanding. Students in two sections of this course are participating in the 
study.  

Because the motivation for the study is to investigate teaching strategies that may improve 
PSTs’ ability to coordinate units, a written 3UC assessment will be used, as was done in previous 
studies (Stevens et al., 2018; 2021). This written assessment will be completed by participants as 
they are video recorded so the researchers can view the work and thinking as it happens rather 
than only having access to final written work. Participants will be asked to share aloud their 
reasoning as they complete their work. This assessment consists of eight questions specifically 
designed to assess 3UC ability of PSTs (Stevens et al., 2021). An example of a question is 
provided in Figure 1 below. 
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Figure 1: Example of 3UC Assessment Question 

Intervention and Data Collection 
The intervention for this study is a fraction unit taught in the participants’ mathematics 

content course for prospective teachers. The intervention unit will take approximately two weeks 
and will cover meanings of fractions, comparing fractions, fractional equivalence, and relating 
fractions to other forms of rational numbers. Data collection will take place before and after the 
fraction intervention unit in a pretest/posttest format.  

This unit was chosen as the intervention specifically for its focus on unit coordination. The 
problems and explorations to be used center on modeling fractions in ways that require PSTs to 
acknowledge and manipulate multiple levels of units in a single context. The intervention models 
include pattern blocks, number lines, circular area models, noncircular area models, and set 
models.  For example, PSTs could be asked to reason, with any of the above-mentioned models 
and without reverting to a procedure, how many tenths are in a given length, area, or set that 
represents three-fifths of a whole. In order to support this argument, PSTs must relate the size of 
fifths and the size of tenths to the whole as well as to each other. 

Participants will complete the eight-item assessment designed to determine whether or not 
they were able to coordinate three levels of units simultaneously. This will be done as a class 
assignment where each participant will record themselves solving the problem. For each item, 
the PSTs will be asked to provide both a solution and a demonstration of their reasoning by 
talking through their thinking as they solve. Sharing one’s reasoning is a well-established class 
norm for these students.  

The recordings afford the researchers the ability to observe work and reasoning. This is an 
essential portion of the study because it enables the researchers to watch the participants’ 
approaches in action, rather than solely evaluating written evidence of their strategies after they 
submitted the assessment. Upon submission of these video recordings, the researchers will 
review each video and label each participant as either having or lacking 3UC. 

The assessment begins with two items with no accompanying representations or context. For 
example, PSTs will be posed the following question: “Envision 2/3 of a whole. Now consider 
1/12 of the same whole. How many 1/12s are in the 2/3 you originally envisioned?” For these 
items, the PSTs will be asked to solve and share their thinking freely. The remaining six items 
are written within a specific context (e.g., an amount of pizza or the length of a jump rope) and 
provide a specific representation (e.g., a portion of a circle or a line). For these items, the PSTs 
will be asked to use the provided representation to diagram their reasoning. The fractions used in 
both sections are varied in structure; the denominators either allow for halving strategies (e.g., 
relating 3/4 and 1/8) or require strategies other than halving (e.g., relating 3/5 and 1/15). The 
representations are also varied in form; the referent whole is either a circle, a portion of a circle, 
a rectangle, or a line. Previous explorations of developing students’ understanding of fractions 
proport that success with varied denominators and representations is required for true fluency 
(e.g., Siegler et al., 2010). 

To help further investigate the intervention and its impacts, interview data will be collected 
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from a subset of participants. Specifically, we will be interviewing two participants who showed 
change from pretest to posttest as well as two participants who did not. These interviews will be 
conducted in an open interview format and will be framed around participants’ work on the 
eight-item assessment. The open format approach is designed to give participants autonomy by 
having initial organic conversations with the researchers and then the ability to prepare their 
thoughts before the actual interviews (Robinson et al. 2021).  
Data Analysis 

PSTs who have interiorized the ability to coordinate three levels of units have an immediate, 
productive plan to solve a 3UC fraction task and can anticipate the results irrespective of context, 
denominator choice, or representation; they do not rely on their written work to discover a 
productive strategy in action (Hackenberg et al., 2016). This is the core criterion used when 
viewing and evaluating the participants’ work.  

The evaluation will take place based on the participant’s ability to process the different unit 
sizes and their relative nature quickly and meaningfully to each other. For example, if a problem 
involves thirds, ninths, and the whole unit, our data analysis focuses on how immediately and 
deliberately the participant moves to see the number of ninths per whole, the number of thirds 
per whole, and finally the number of ninths per third. Because there is an inherent level of 
subjectivity to this analysis (Stevens et al., 2021), each participant’s video will be evaluated by 
all four researchers in this study independently. The researchers will then discuss their 
evaluations and come to a consensus based on the evidence provided by the comparisons. This 
analysis design helps to ensure reliability of rating each participant’s interiorization of 3UC. 

The researchers hypothesize that interacting with the fractional intervention unit may impact 
the PSTs’ ability to coordinate units. To fully examine this hypothesis, data will be analyzed 
with a mixed methods design. From a quantitative standpoint, pretest and posttest data will 
capture each participant’s ability with 3UC – ultimately each participant will be labeled as either 
“yes” or “no” for both pretest and posttest. Those data will be analyzed for differences using the 
McNemar test for a dichotomous dependent variable as we have done with previous 3UC data 
(Busi et al., 2015). From a qualitative standpoint, the open interview data will be analyzed using 
a thematic approach (Kiger & Varpio, 2020).  

Discussion 
Through this study, we hope to begin to better understand how teaching fractional  concepts 

within the context of mathematics content courses can impact PSTs’ ability to coordinate units. 
Research has shown that the ability to coordinate three levels of units is critical in understanding 
fractions in meaningful ways (Norton & Wilkins, 2012; Steffe & Olive, 2010; Wilkins & Norton, 
2011). Our initial hypothesis is that teaching fractional units centered on the conceptual bases of 
fractional meaning, comparing fractions, fractional equivalence, and relating fractions to other 
forms of rational numbers can have a positive impact on PSTs’ ability to coordinate units. 
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This paper reports on a sub-study of a National Science Foundation funded project to investigate 
preservice elementary teachers’ (PSETs) mathematics learning through an integrated STEM 
inquiry in a mathematics content course. In particular, PSETs participated in a 3D printing 
STEM module to explore and visualize the symmetry of a variety of crystal lattice structure 
solids. The results show that the PSETs perceived the STEM module to be engaging. Their 
learning increased in STEM teaching and learning. 
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Science, Technology, Engineering and Mathematics (STEM) education aims to ensure 
STEM literacy for all learners (Bybee, 2013) and it is critical to start STEM education in 
elementary school if not earlier. The recent movement in STEM education advocates an 
integrated approach that uses inquiry-based learning to engage students in solving complex 
problems that reflect real-world situations. This approach enables teachers and students to see 
how concepts and skills learned in school are connected and applied in the context of real-world 
issues (Buckner & Boyd, 2015; Bybee, 2013). As such, it is likely to enhance motivation for 
learning and improve student interest, achievement, and persistence (National Research Council, 
2014). Elementary teachers need professional training to teach STEM in their classrooms in their 
professional training. Experiencing STEM inquiries in college courses enable pre-service 
elementary teachers (PSETs) to understand how STEM disciplines are connected and thus gain 
relevant knowledge and skills for future teaching. As PSETs take mathematics content courses in 
their teacher preparation program, integrating STEM inquiries into these courses affords 
excellent opportunities for PSETs to develop deeper understanding of how mathematics concepts 
are applicable in the real world, and broaden their perspectives on the roles of mathematics in 
solving STEM problems. In this paper, we address the following research question: To what 
extent does the integrated STEM module engage PSETs’ learning?  

Integrated STEM Approach 
In this project the STEM module is considered “Integrated STEM Inquiries” because they 

are designed to enhance PSETs’ mathematics learning in the context of science, technology, 
and engineering. Prior research has shown the advantage of engaging students in a n  
integrated STEM inquiry which requires the application of multiple STEM concepts and 
skills, as opposed to focusing on instruction in discrete subject areas. Teachers benefit from 
integrated STEM inquiry projects that complement and even reinforce their existing 
curriculum.  
Inquiry-based Learning is a unique approach to the design of engaging activities that enable 
students to investigate authentic topics and enact learning processes that transcend traditional 
methods of instruction. Hands-on elements such as designing artifacts or conducting experiments 
are embedded within inquiry-based learning, allowing PSETs to work in teams or small groups, 
PSETs and instructors to work side-by-side, and the creation of new opportunities for relevant, 
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productive classroom norms. In the inquiry-based learning environment, PSETs experiment with 
concepts in mathematics and the application of mathematics in other STEM disciplines. 
Scaffolded Knowledge Integration (SKI) guides the design of the IME STEM inquiry module. 
It is developed by Marcia Linn and colleagues and is employed to encourage PSETs to develop 
an integrated understanding of a complex domain and emphasize collaboration, problem solving 
skills, and critical thinking. The main tenets of SKI are: (a) make learning relevant to students, 
connected to prior knowledge, and related to their physical surroundings; (b)make students’ 
thinking visible, asking them to describe how they recognize new ideas, and to reorganize and 
connect new prior ideas; (c) provide social supports for pair and group collaborations; and (d) 
provide opportunities for reflection and revisiting what students have learned. By applying SKI, 
PSETs learn the desired content, reflect, and collaborate, and  instructors have ample 
opportunities to engage, support and enhance PSETs’ mathematics learning.  
3D Crystal Structure of Solids Visualization and Printing  provides PSETs a context  for 
geometry in science and engineering. We developed five Graphical User Interface (GUI) 
applications using more than 2,000 lines of codes in Python and JavaScripts languages for 
PSETs to explore primitive cubic (cP) structure, face-centered cubic (fcc) structure and ideal 
perovskite structure. These structures can be observed in metal polonium (cP), sodium chloride 
or rock salt (fcc), silver chloride (fcc), Calcium Titanate (perovskite) and Strontium Titanate 
(perovskite). They are selected for visualization and printing not only because they preserve a 
great deal of symmetry and have solid structures that align with the course content, but also 
because they are relevant to daily lives (e.g. salt) or state-of-art research in energy. Solar cells 
with perovskite structures have shown remarkable progress in improving energy conversion 
efficiency, and thus are thought to be a frontier energy solution with great importance in current 
material science research. Figure 1 illustrates an alignment of integrated STEM approach (Wang 
et al, 2020). 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Crosscutting concepts in the 3D Crystal Structure of Solids Module  
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Reflective Practices According to Dewey (1933), it is not the experiencing itself but 
reflective thinking on that experience that generates learning. Critical reflection is a high level of 
the reflective thinking process to look for the meaning of experience. This process involves 
assessing, inquiring, analyzing, synthesizing, and making connections between related factors 
(Dewey, 1938; Brookfield, 1995; Ash & Clayton, 2009). Kolb (1984) developed a holistic model 
of the experiential learning cycle taking the original intellectual experiential work from 
educational theorists such as Piaget and Dewey. Kolb’s model demonstrates a learning cycle 
starting with a concrete experience, following reflective observation, abstract conceptualization, 
active experimentation, and finally back to the starting point of concrete experience. We adapted 
Kolb’s learning cycle to guide and document PSETs’ learning experiences through their critical 
reflections.  

Methods 
Thirty-nine PSETs enrolled in a mathematic content course in a large university in the US 

participated in the implemented integrated STEM module, 3D Crystal Structure of Solids: 
Visualization and 3D Printing. First, all PSETs attended four 75-minute class meetings, which 
provided them a context for understanding how geometry (e.g., regular polygons, platonic solids, 
symmetry, etc.) is applied in science and engineering. After they are exposed to the STEM 
module, they also participated in the community-based experiential learning (CBEL) as a course 
component. The CBEL activity is designed to provide PSETs with early teaching experiences 
as they facilitate the STEM module in afterschool programs. The CBEL course experience 
closes the gap of PSETs’ lack of understanding of t h e  knowledge and skills needed for 
future teaching, and thus is pedagogical and links PSETs’ academic learning (mathematics), 
personal development (e.g.,  attitude  toward  math  and STEM education, civic engagement, 
etc.), and their future workplace skills (teacher). For this paper, we will use PSETs’ critical 
written reflections as data sources to gain a better understanding of their learning through 
integrated STEM modules.  

Results 
Guided by the research question, PSETs’ perceived learning were assessed through their 

critical reflections in two categories: their engagement in STEM learning and in STEM teaching.  
PSETs’ Engagement in STEM Learning almost all PSETs reported that they learned about 
using 3D printers in their reflections. Some PSETs’ reflection quotes are as follows: 

• “…I have learned how to use a 3D printer, such as how to turn it on, heat it up, and 
connect the software on the computer to the printer. I also understand how to use the (3D 
modeling) software and how to control the size and placement of the solid in addition to 
learning how to split an object in half.”  

• “By doing the STEM module/ 3d structure I was able to get a better understanding of 
what 3d printing is and how it works. By using crystalline structures, I was able to see 
how the printer would have to go layer by layer.” 

• “Then for the 3D lattice structure assignment, we needed to rotate the shape and check 
what type of symmetry it had. I learned how the STEM module/3D crystal structure 
solids can compare and find their radius and volumes.” 
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• “I learned about the radius and volume of the spheres of the crystalline structure and how 
they affect the way the structure looks. If the radius is bigger, the lines between the 
spheres are smaller.” 

PSETs’ Engagement in STEM Teaching 
By participating the CBEL activity facilitating the STEM module with a group of elementary 

students at the local community centers, many PSETs found the activity engaging. Some PSETs’ 
reflections are as follows:  

• “Our CBEL experience allowed me to appreciate teaching more than before. Having my 
group of students be excited to learn and create/explore STEM through 3D printing and 
crystal lattice structures was heartwarming”  

• “I learned that students get excited when they see the engagement you have with them. 
You can make it fun and exciting while it still connects to the STEM/3D structure.” 

• “they were excited and how they understood what they had learned when I was showing 
them the different types of symmetry and how many lines of symmetry did the shape 
have. Using this in my future teaching classroom will be beneficial way to the students 
and for me to see that they understood the lesson.” 

• “What I can do with this topic that I learned in class I can show the students an example of a 
3D shape that I had created and ask them questions about what type of symmetry it is. Then 
they will be doing a hands-on activity that the students can build, and they can write on paper 
what type of symmetry it has.” 

Conclusion  
The results of this study support the practice of incorporating the integrated STEM module in 

a college mathematics content course for PSETs. The integration of 3D printing technology and 
integrated STEM injury in the module supports hands-on learning and visualization for geometry 
and measurement concepts, making complicated concepts more accessible and understandable 
for PSETs. While 3D printing technology was new to most of the participants, they were able to 
learn the technology and tried to problem solve when issues occurred. Seeing how mathematics 
concepts are connected to and used in chemistry, engineering, and technology helps PSETs 
contextualize their understanding of these concepts in a deeper, connected, and applicable 
manner. Considering this is an ongoing project, PSETs’ critical reflections also voiced their 
needs in a more coherent and transparent curriculum design for the mathematics content course.   
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There is emerging evidence that professional noticing is embodied. Yet, there is still a need to 
better under embodied noticing at a fundamental level, especially from the preservice teachers. 
This study used traditional and holographic video, along with eye-tracking technology, to 
examine how preservice teachers' physical act of looking interacts with their professional 
noticing. The findings revealed that many participants focused on less sophisticated forms of 
mathematical noticing of students’ reasoning. Additionally, results from eye-tracking data 
suggest that the more participants described students’ conceptual reasoning, the more likely they 
were to focus on how recorded students used their hands to engage in the mathematics. 

Keywords: Teacher Noticing; Technology; Preservice Teacher Education.  

Professional noticing involves attending to key pedagogical events and interpreting those 
events based on one’s knowledge and experience(s) (Jacobs et al., 2010; van Es & Sherin, 2021). 
At the same time, noticing is an “embodied way of accessing, exploring, and engaging with the 
world of classroom events” (Scheiner, 2021, p. 88). Thus, what teachers perceive and attend to 
both informs and is informed by the environment they notice within, and their physiological 
resources (eyes, body positioning, etc.). The notion of noticing as tied to the senses is not new, 
with analyses and conceptual descriptions focusing both on what teachers see and hear in a 
classroom context (van Es & Sherin, 2002). Because of its ability to convey both realistic 
auditory and visual information, traditional video is the most common medium for studying 
noticing (Santagata et al., 2021). Yet recently, teachers’ professional noticing has been examined 
with a new format of media that conveys more physiological information than traditional video. 
Extended reality (XR) is an umbrella term for media that blends the digital and physical worlds 
and has been used to examine noticing through virtual reality via 360 video (Buchbinder et al., 
2021; Kosko et al., 2021) and digitized humans (Huang et al., 2021). The medium allows for 
novel ways for decomposing practice by not only articulating what might be attended to in a 
scene, but where one may look and/or listen within one’s recorded environment (Weston & 
Amador, 2021). Rather, such media have higher degrees of perceptual capacity, or “a medium’s 
capacity for aspects of the scenario to be perceivable” (Kosko et al., 2021, p. 286). This higher 
degree of perceptual capacity has allowed for study of how written descriptions and embodied 
attending (where one looks) are associated (Kosko et al., 2021; Walshe & Driver, 2019), as well 
as facilitating teachers’ growth in noticing by discussing their physical actions associated with 
attending (Weston & Amador, 2021). In addition to XR-based media, scholars have also used 
other technology, such as eye-tracking (Huang et al., 2021) and field of view (Kosko et al., 2021) 
to examine physiological factors related to noticing.  

This paper builds upon the emerging literature on embodied noticing by focusing on the use 
of holographic representations of practice (Kosko, 2022) and . Past scholarship on XR and 
noticing has focused predominately on 360 video, which allows for to look in any direction in an 
omnidirectionally recorded scenario; thus, breaking away from a fixed location such as those 
recorded by traditional video (Buchbinder et al., 2021; Walshe & Driver, 2019). By contrast, 
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holographic representations convey the depth and volume of recorded subjects (Kosko, 2022). 
Thus, a teacher viewing a holographic student can lean in to look at them writing on their desk 
and also move to different sides of that student. We conjecture that this added affordance better 
approximates the sense of being with an actual flesh-and-blood student and may allow for a 
better understanding of noticing as a construct. Although there is mounting evidence for noticing 
as an embodied act, there is a need to better understand embodied noticing at a fundamental 
level. Thus, the purpose of the present study is to examine how PSTs’ physical act of looking 
interacts with their professional noticing. To do so, we examined data from PSTs’ eye-tracking 
and written noticing when viewing both holographic and standard video of students solving 
fraction division tasks.  

Background Literature & Theoretical Perspectives 
Professional Noticing of Children’s Mathematics 

Professional teacher noticing involves selecting aspects from perceived experience to attend 
to and interpret those aspects for the purpose of shaping the contexts and interactions around 
them (van Es & Sherin, 2021). As people begin their teacher education and are asked to attend to 
children’s mathematical thinking, they initially attend to generic aspects such as student 
participation or their teacher’s classroom management. Teachers’ interpretations of these events 
are similarly limited to either generic descriptions of students or a focus on students’ answers to 
the math problem (Stockero et al., 2017; van Es et al., 2017). Over time, what teachers attend to 
and how they interpret become more specific and student-centered. van Es et al. (2017) suggest 
that teachers transition to focusing on students’ procedural reasoning before learning to attend to 
and interpret their conceptual reasoning at hand. Jacobs et al. (2010) observed a similar trend. 
Examining how teachers attended to children solving 43 × 6, Jacobs et al. (2010) observed some 
teachers described how children wrote specific numerals and added them in a certain order 
whereas other teachers attended specifically to children’s use of partial products (i.e., 40 × 6 and 
3 × 6). This led to the claim that “the skill of attending to children’s strategies” (p. 193) to be of 
primary importance in developing teachers’ knowledge for teaching mathematics.  

The notion of more effective professional noticing being student-centered has found support 
in research examining the embodied nature of noticing. For example, Kosko et al. (2022) 
recorded where PSTs looked when viewing a 360 video of a lesson on the Commutative Property 
of Multiplication. They found that when PSTs looked more directly at students, as opposed to 
students being located at the edge of PSTs’ field of view, they were more likely to describe 
students’ reasoning about the Commutative Property. PSTs who looked more directly at the 
teacher in the 360 video were more likely to describe aspects of classroom management such as 
use of groups to facilitate learning. Others have observed similar trends regarding where PSTs 
look in viewing a 360 video and the quality of their mathematical noticing (Buchbinder et al., 
2021; Weston & Amador, 2021). In addition to XR-related scholarship, use of eye-tracking 
technology provides additional support for the embodied nature of noticing. Results from such 
work suggests that more experienced, knowledgeable teachers have shorter eye-gaze durations 
when looking at students in a classroom, but that they look at students more often than PSTs 
(Dessus et al., 2016; Cortina et al., 2015). Indeed, PSTs have less focused gaze behavior to the 
point that though they have longer durations of focus on students, the total amount of time 
looking at any one student is less than more experienced teachers (Stahnke & Blömeke, 2021). 
Rather, experienced teachers spend more time looking at students overall, as experienced 
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teachers attend to multiple students for short durations per gaze but for a larger number of gazes 
across a lesson.  

Professional noticing is both a psychological and embodied act (Scheiner, 2021). To better 
understand how physiological factors correspond with teachers’ attending and interpreting of 
children’s mathematics, there is a need to use technology that corresponds with the use of such 
physiological resources. In the next section, we review aspects of immersive representations of 
practice and how they facilitate study of embodied noticing.  

 
Immersive Representations of Practice 

There are various “different ways that practice is represented in professional education” 
(Grossman et al., 2009, 2058), with traditional video being the most common in teacher 
education (Austin et al., in press; Christ et al., 2017). However, XR-based experiences like 
virtual reality and 360 video are becoming more prevalent (Austin et al., 2022; in press) and have 
been found to support PSTs’ engagement and understanding of pedagogy (Buchbinder et al., 
2021; Ferdig et al., 2020; Gandolfi et al., 2021; Walshe & Driver, 2019). XR-based 
representations are more immersive than traditional media because they have higher degrees of 
perceptual capacity and, thus, “convey [more] aspects perceivable through human experience” 
(Austin et al., in press, p. 2). Figure 1 juxtaposes a diagram of a user-teacher viewing a standard 
video on a screen versus a 360 video. For a standard video, teachers must view what is on the 
screen and provided to them by the videographer. For 360 video, teachers may choose to look 
elsewhere at a different group of students or at some other aspect in the classroom.  

 

         
Figure 1: Traditional video versus 360 video with illustration of a teacher in VR. 

 
 XR facilitates embodied cognition, which is based on the “reactivation and reuse of 
processes and representations involved in perception and action” (Fincher-Kiefer, 2019, p. 10). 
For example, Buchbinder et al. (2021) had students record their own teaching with 360 video and 
then rewatch them. Rather, preservice teachers (PSTs) reflected while teaching as well as while 
viewing the 360 video of their own teaching. By being able to look at multiple students and 
themselves in the 360 video, PSTs were able to attend to “aspects of teaching pertaining to both 
their own teaching and to their student learning” (p. 301). The ability to look, spatially, in any 
direction allowed for a more nuanced connection to their lived experience of teaching the lesson 
than standard video would have alone (Walshe & Driver, 2019; Weston & Amador, 2021). 
Similar connections to embodied cognition have been made when PSTs view 360 video of 
others’ teaching. For example, Kosko et al. (2022) observed that PSTs who looked more directly 
at students, and not the teacher, during the recorded class discussion were more likely to describe 
the mathematics concepts students were engaging. Rather, by centering students in their field of 
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view, PSTs were more likely to describe the mathematics they were learning at a conceptual 
level.  

Although scholarship on 360 video is promising, XR is a broad field with an ongoing 
turnover of technology-mediated solutions. A recent innovation that requires attention is 
holograms. Holographic representations of practice record “3D images onto a space” (Yoo et al., 
2022, p. 2) and convey “a sense of depth and volume such that the viewer can move around and 
closer/further from the recorded hologram” (Kosko, 2022, 1). There is preliminary evidence that 
viewing holograms of students can facilitate more detailed noticing than standard video alone 
(Kosko et al., 2022). One potential rationale for Kosko’s (2022) findings is that the volumetric 
aspects of the holographic recordings signal the human eye to focus on events perceived to be 
proximally closer. Gibson (1966) conjectured that the human eye is drawn to aspects proximally 
closer due partly to the distance that light travels between further and closer events. Figure 2 
provides a rough illustration of how holographic representations of students may signal the eye 
to look more closely at the student’s desk, and, by consequence, they work they are doing with 
the mathematics at hand. The same recording in the format of traditional video would allow light 
to travel from the same distance anywhere on the screen, with only the perception of movement 
(not proximal distance) to signal attention to the teacher’s eyes. In the current paper, we used 
eye-tracking glasses to examine for this facet. 

 

             
Figure 2: Perceptual distance of elements in a holographic student recorded. 

 
 More sophisticated teacher noticing involves attending to students’ mathematics at a 
more conceptual level (Jacobs et al., 2010; van Es et al., 2017). There is evidence that such 
noticing corresponds with physiological data associated with looking more specifically at 
students (Kosko et al., 2022). In this paper, we sought to further explore this relationship by 
using eye-tracking technology to study patterns in where PSTs focus when observing students’ 
mathematics, but also by incorporating holographic video to examine for the effect of spatial 
information. Thus, the purpose of the present study is to examine how PSTs’ physical act of 
looking interacts with their professional noticing. To do so, we examined data from PSTs’ eye-
tracking when viewing both holographic and standard video of students solving fraction division 
tasks. 

Method 
Participants & Data 

Participants included a convenience sample of 13 PSTs from a Midwestern U.S. university 
and majoring either in primary (n=11), middle grades mathematics (n=1) or secondary 
mathematics education (n=1). Data were collected in Fall 2022 from participants enrolled in a 
required educational technology course that preceded their mathematics methods coursework. 
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Participants predominantly identified as female (12 females; 1 male) and White (9 White; 3 
Black; 1 as Asian, White, & Black)—the sole male participant identified as Black. As noted, 
participants were enrolled in an educational technology course. Students enrolled in this class 
receive course credit for participating in research studies, and each participant in this study 
received such credit. 

Participants engaged in one-on-one sessions in which they wore eye-tracking glasses and 
viewed a set of recordings of two students. The eye-tracking glasses were Pupil Labs Core and 
include two 120Hz cameras recording pupil movement (one camera per eye) and one 30Hz 
camera recording in the direction the participant’s head is pointed. Raw data from the glasses are 
transformed into viewable video with eye-gaze superimposed via the Pupil Labs software 
(Ehinger et al., 2019). PSTs’ eye-tracking video while viewing recordings of students were a 
primary source of data.  

Video viewed by participants included recordings of two students, Ben and Katherine, who 
solved tow fraction division problems using a length-based manipulative (Cuisenaire rods). The 
total video was 8 minutes 14 seconds long and included a scene of Ben working independently to 
solve the fraction division tasks of 6÷$

#
 and 4÷$

#
, followed by Katherine solving these 

independently, and then a scene with Ben and Katherine discussing how they solved 6÷$
#
. For 

example, in solving 6÷$
#
, Ben laid out 6 purple rods and 24 white cubes underneath (4 white 

cubes per 1 purple rod) before partitioning into four equal groups and counting all the 1s in the 
first three groups to find an answer of 18. Katherine also laid out 6 purple rods, but created 
groupings of 3 white cubes, identified each group as $

#
, and counted the number of groups to find 

an answer of 8 (see Figure 3).  
 

 
 

 
Figure 3: Illustration of Ben (top) & Katherine’s (bottom) work for 6÷𝟑

𝟒
. 

 
The video included child actors playing the role of students using specific mathematical 

strategies. Both their actions and dialogue were scripted, which Herbst (2017) distinguishes as a 
useful feature in specific representations of practice. We used DepthKit software and Azure 
Kinect depth-sensing cameras to record a holographic video of the student actors. The recording 
can be viewed on a holographic display such as a LookingGlass Portrait (used in the present 
study) or as a standard video on a flatscreen device (i.e., tablet, computer screen). Figure 4 
illustrates how viewing the holograms on the LookingGlass allowed for participants to move 
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their heads to the sides to see different angles of students, and that students’ use of manipulatives 
appeared to be physically closer than students’ faces/bodies (see also Figure 2). After viewing 
either a standard or holographic version of the video, participants then assessed each students’ 
fraction reasoning and were solicited to provide at least two examples of evidence from the video 
to justify their assessment.  
 

   
Figure 4: Scene from the holographic video from three different viewing perspectives. 

 
Analysis & Results 

Analysis in this paper focused on 13 PSTs’ written noticing regarding what they attended to 
and interpreted of students’ fraction thinking. For each participant, we also qualitatively 
examined videos of their eye-tracking data to examine for patterns in how and where PSTs 
looked when observing the recorded students. Finally, we examined for how themes from 
observed from written noticing and video viewing corresponded, and whether the medium of 
viewing affected this interaction (standard vs holographic video).  
 
PSTs’ written noticings. We used Systemic Functional Linguistics (SFL) to examine PSTs’ 
written noticing. SFL analyzes of how grammar conveys meaning. In this study, we focused on 
the grammatical resource of reference chains. Reference chains are constructed grammatically  
through the repeated use of referents throughout a text. As a referent is included in text, the 
participant can connect it to prior references, and transform, expand, or clarify the conveyed 
meaning of what they reference (Eggins, 2004). In the present study, we focused on how 
participants referenced fractions and students’ thinking. Following Kosko’s (2022) approach to 
examining PSTs’ written noticing, we used reference chains to examine the sophistication 
reasoning that mathematics teachers assessed and used these hierarchical themes as a priori 
categories in our own analysis.  

Table 1 provides brief excerpts from five participants demonstrating one of four levels of 
sophistication. At the lowest level (Level 0), PSTs referenced a student’s ability to find the 
answer and use procedures. For example, the participant in Table 1 references the number of 
“groups” in the fraction division problem, but only once and used it to support the reference 
chain for finding a correct answer via “solving the problem.” At Level 1, PSTs’ reference chains 
conveyed a focus on assessing children’s ability to create and use fractional parts (i.e., 
partitioning). For example, the PST in Table 1 used the transitive processes (in bold) to “split” 
and “divide”, but also “counted” the cubes in each group. At no point in this excerpt or the whole 
of this participant’s writing did they reference coordination of parts to a whole but focused 
predominately on the child’s partitioning and counting such partitions. At Level 2, PSTs 
referenced children’s efforts to coordinate parts to the whole. The excerpt in Table 1 illustrates 
this with the participant’s references to “groups of 3 to represent ¾” and noting that one white 
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block represented ¼ of a purple. Such referents are significant in that they explicitly convey 
particular entities as relationally bound to other objects. Level 3 noticings were characterized by 
references to children’s coordination of non-unit fractions. In Table 1, the PST at Level 3 had 
referenced Katherine’s grouping of three white blocks into groups labeled as ¾ each. In the 
excerpt below, the PST focused on how Katherine counted the ¾ groups within six wholes. 
Thus, this participant went beyond mere reference to part-whole coordination and referenced the 
student’s operation with non-unit fractions. In this case, it was counting how many ¾ fit in 6.  

Table 1: Excerpts of PSTs’ Written Noticing by Classification 
Level 0 
Ben = 46.2% 
Katherine = 30.8% 

[Katherine] was able to solve the problem correctly  
     while explaining the method she used to solve it.  
She also understood how many “groups” were needed  
     to solve the problem.  

Level 1 
Ben = 38.5% 
Katherine = 30.8% 

Ben counted each cube  
and split them  
     into groups correctly  
but did not divide by the fraction. 

Level 2 
Ben = 0.0% 
Katherine = 15.4% 

[Katherine] knew // she had to break the blocks up into groups of 3  
     to represent ¾ // 
since one small block represented ¼.  

Level 3 
Ben = 15.4% 
Katherine = 23.1% 

Katherine separated the white blocks  
     into multiple groups of ¾  
and then counted how many groups she had  
     to get the answer.  

 

The first two authors qualitatively analyzed participants’ written noticing independently 
before comparing findings. We used the weighted Kappa statistic and found sufficient agreement 
for participants’ written noticing of Ben’s (κ = .434) and Katherine’s (κ =.590) mathematics. As 
indicated in Table 1, the distribution for which PSTs attended to fraction reasoning differed by 
the student they assessed. The bulk of participants focused on either students’ answers or their 
partitioning for both Ben (84.6%) and Katherine (61.5%), with only two participants assessing 
both Ben and Katherine’s coordination of non-unit fractions (Level 3).  

Eye-tracking video. Next, we sought to understand where participants focused their 
attention. To do this, we used the Pupil Core eye-tracking glasses and recorded pupil fixation 
using two eye-directed cameras and one camera pointed to where the head was directed. Each 
participant’s gaze was calibrated, with an accuracy within 0.6 degrees and we recorded video 
with eye-gaze dots for each participant’s viewing of the standard and holographic recordings. 
Next, the first and third author qualitatively examined participants’ eye-gaze patterns for 
emergent themes. Early in analysis, it was clear that PSTs viewing the holograms focused more 
prevalently on student work area (see Figure 5). This followed our initial conjecture that the area 
appearing physically closer would draw more attention by participants eye-gaze behavior. 
However, after an iterative process of examining for emergent themes, we noticed that some 
participants viewing both video and holograms followed students’ hands more closely. It was 
whether and how participants’ eye-gaze followed students’ hands that mattered. Consider the 
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center and right-hand images in Figure 5 where one participant is looking at the desk area, but 
not specifically following the student’s hand movements (middle). By contrast, the image on the 
right is from a participant whose gaze went between what the student wrote (labeling 3 white 
rods as ¾) and the rods the labels applied. Overall, 7 participants did not follow students’ hands 
and 6 did. Interestingly, participants whose eye-gaze followed Ben and Katherine’s hands while 
they solved the fraction division problems tended to be the same participants who referenced 
either part-whole reasoning or coordination of non-unit fractions.  
 

               
Figure 5: Two PSTs’ eye-gaze not attending to student’s hands while viewing standard 
video (left) and holographic video (middle), versus following student’s hands (right). 

Discussion 
 More sophisticated professional noticing involves attending to students’ conceptual 
reasoning of mathematics, while less sophisticated noticing is either focused on procedures, 
answers, or generic aspects of classroom management (van Es & Sherin, 2021). The level of 
sophistication in teachers’ noticing corresponds with physiological data with teachers focusing 
on more generic aspects of teaching looking at the classroom teacher instead of students (Kosko 
et al., 2022; Weston & Amador, 2021). Likewise, teachers who focus more on students tend to 
talk more in depth about the mathematics and students’ conceptual understanding of it 
(Buchbinder et al., 2021; Kosko et al., 2022). Findings from the present study expand upon such 
scholarship by going beyond whether a teacher looks at a student and examining how they look 
at the student. Although many PSTs looked at Ben and Katherine’s written work, only those 
PSTs who followed the students’ hands as they coordinated the Cuisenaire rods referenced 
students’ part-whole reasoning and coordination of the fractions.  
 Kosko (2022) observed that PSTs who watched holographic videos of Ben and Katherine 
were statistically more likely to describe their reasoning with more detail than those who 
watched these students with traditional video. Yet, findings here are less clear. PSTs’ viewing 
holograms did focus more on students’ desk area, but this did not necessarily translate to more 
sophisticated noticing either via writing or eye-tracking behavior. One potential reason for this is 
the sample in each study. Kosko (2022) studied PSTs late in their coursework with more 
experience in classroom field placements, and the sample here included PSTs with little field 
experience. Such a difference is worth further study. Sherin et al. (2008) argued that new 
technologies applied to the study and facilitation of professional noticing require study with 
larger samples and in varying contexts. Future work here will include a larger sample, with a 
focus on examining variation in its effect due to PSTs’ prior field experiences.  
  Findings from this study are preliminary but provide additional empirical evidence for the 
embodied nature of professional noticing. Following Jacobs et al. (2010) and Kosko et al. (2022), 
findings here strongly support the notion of noticing as embodied and more effective noticing as 
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student-centered. One clear practical implication is for teacher educators to decompose practice 
in video (standard, holographic, or 360) by attending to how students are coordinating 
manipulatives with their hands and/or how and when they write about their mathematics. 
Regardless, this paper builds upon prior scholarship suggesting noticing is embodied (Kosko et 
al., 2021; Scheiner, 2021).  
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Ambitious mathematics teaching is a vision of teaching that views learners as sense-makers 
who bring valuable assets to a space of collaborative inquiry and where learners are given 
opportunities to engage in authentic, challenging tasks that support the co-construction of deep 
conceptual understanding (Huinker & Bill, 2017). Principles to Action: Ensuring Mathematical 
Success for All outlines research-based mathematics teaching practices intended to guide the 
development ambitious teaching (NCTM, 2014). In concert with these practices, the equity-
based practices advocated by Aguirre et al. (2013) constitute a set of core practices that align the 
vision of ambitious teaching to the critical work of nurturing positive mathematical identities and 
developing agency in PK-12 learners (Aguirre et al, 2013; Huinker & Bill, 2017). 

Preparing prospective teachers (PTs) to enact instructional practice cultivating equitable 
learning opportunities and rooted in principles of ambitious teaching is a challenging, 
multifaceted issue in teacher education. In particular, PTs need to develop understanding of the 
undergirding ideas of the mathematics teaching practices and equity-based teaching practices. 
Further, PTs need to be able to point out instructional practice that represents the enactment of 
those ideas. The practices are commonly developed in university coursework and the application 
of practice is observed in clinical experience settings. The Standards for Preparing Teachers of 
Mathematics (AMTE, 2017) highlight the importance of explicitly linking methods coursework 
to clinical experiences and assert that opportunities to integrate research-informed theory and 
pedagogical practices in PK-12 classrooms are critical to PTs’ professional development. 

This project is an exploratory inquiry aspiring to better understand how PTs in an elementary 
methods course and associated clinical experience construct meaning of the mathematics and 
equity-base practices. I seek to uncover connections PTs’ are making between pedagogical 
practices discussed in methods coursework to instructional practices observed and enacted in the 
clinical experience. Concurrently, the project aims to reveal how PTs’ express their commitment 
to a vision of ambitious teaching. The PTs in this inquiry were enrolled in a methods course and 
a corresponding clinical experience in an elementary classroom. In an end-of-course reflection 
assignment PTs were prompted to describe connections they made between the mathematics and 
equity-based practices and their experiences of teaching and learning in the clinical placement. 
The assignment also asked PTs to describe how their emerging identity as an ambitious teacher 
of mathematics was influenced by their engagement in the course and their interactions with 
learners in the elementary classroom. The reflection assignment served as a primary data source 
and was coded using the descriptive elements of the mathematics teaching practices and equity-
based mathematics teaching practices. Preliminary data analysis indicates that PTs made some 
connection between foundational ideas of mathematics and equity-based teaching practices and 
instructional practices observed and enacted in the clinical experience. In my poster session I 
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will share emerging themes from the data that point to questions for future research studies. I 
will also discuss PTs’ interpretations of the principles of ambitious teaching. 
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Whole-class discussion of open mathematics tasks is an instructional practice K-12 mathematics 
educators report has the potential to engage all learners. Because this practice has not been 
extensively and systematically researched, this study aims to describe and analyze the 
engagement and experience of learners in open mathematics tasks. Drawing on a holistic 
conceptualization of engagement with behavioral, cognitive, affective, and aesthetic dimensions, 
the study specifically analyzes the engagement of three elementary preservice teachers as they 
participated in tasks and accompanying discussions in their elementary mathematics methods 
course. The three preservice teachers were selected because of their varied mathematical 
identities. While the engagement of the three focus preservice teachers varied, results suggest the 
openness of the tasks was an important factor in making their engagement possible. 

Keywords: Instructional Activities and Practices; Affect, Emotion, Beliefs, and Attitudes; 
Preservice Teacher Education  

In the effort to engage all learners in mathematics, a vital source of knowledge is the 
experiences of mathematics educators in the field. This knowledge includes instructional 
practices for which mathematics educators report anecdotal benefits for engagement across 
learners. While a practice may not yet have been formally and extensively researched, the fact 
that practitioners ‘on the ground’ are noticing a practice making an impact is reason to further 
explore the practice’s potential. One such practice that has gained popularity in recent years is 
the use of open mathematics tasks for whole class discussion. These tasks—including “Which 
One Doesn’t Belong?” (WODB, Danielson, 2016), “Notice and Wonder” (N&W, Fetter, 2021; 
Ray-Riek, 2013) and “How Many?” (HM, Danielson, 2018)—stand out in that they not only 
have multiple entry points, possible strategies, and solutions, but have ways learners can 
approach, interact with, and solve the tasks that an educator may not even anticipate. 
Practitioners and practitioner resources report that working with and discussing these tasks have 
positive impacts for the engagement and mathematical identities of a wide range of learners 
(Danielson, 2016; 2018; Illustrative Mathematics, 2021; Newell & Orton, 2019; Ray-Riek; 
Rumack & Huinker, 2019).  

However, the field of mathematics education has yet to systematically examine these impacts 
and to identify characteristics of the tasks that may contribute to the impacts. In this regard, open 
mathematics tasks are a “black hole” of research, meaning they are “an instructional practice for 
which there is a scarcity of blind-peer-reviewed research evidence supporting its efficacy, yet has 
attained critical gravity in the teaching field” (Matney et al., 2020, p. 247). My study aims to cast 
light on the practice by reporting and analyzing a specific population’s engagement with and 
experience of the tasks: preservice elementary teachers (PSTs). PSTs are a population of interest 
because they were recently K-12 students and because elementary PSTs often require 
intervention to address the narrow and sometimes negative mathematical experiences of their 
past (Ball, 1990). Two research questions guided my study: “How do PSTs engage with and 
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experience open mathematics tasks?” and “What aspects of PSTs' engagement and experience 
can be attributed to the tasks' openness?” 

Theoretical Framework 
In addressing the two research questions, it is necessary to consider theories that inform how 

tasks play a role in influencing learners’ engagement and those that identify innate characteristics 
with which these specific tasks may make a connection. Three theories inform this work: 
sociocultural positioning theory (Hand & Gresalfi, 2015; Langer-Osuna & Esmonde, 2017), a 
theory of aesthetic experience (Sinclair, 2001, 2004; Wong, 2007) that stems from the work of 
Dewey (1934), and self-determination theory (SDT, Ryan & Deci, 2017, 2020). Sociocultural 
positioning theory provides a framework for considering the tasks’ role, while aesthetic 
experience and SDT offer ways to think about what it means to be human. 

Sociocultural positioning theory highlights the role context plays in shaping events in a 
classroom. This context includes the way members of the classroom position one another, which, 
for the teacher, includes the selection and implementation of tasks. In essence, positioning theory 
asserts that “what someone does in a particular activity is always done in relation to what one has 
opportunities to do” (Hand & Gresalfi, 2015, p. 191). Tasks are one way the environment 
structures a learner’s opportunities. 

While positioning theory provides a foundation from which to consider the role of tasks, 
aesthetic experience and SDT identify innate aspects of being human with which tasks may 
connect. Recent theoretical literature on aesthetic engagement (e.g., Sinclair, 2001, 2004; Wong, 
2007) builds on ideas from Dewey (1934), who asserted that aesthetic engagement is necessary 
in order to live a fulfilling life. Sinclair (2001) specifically addressed educational implications of 
aesthetics, explaining that “aesthetically rich learning environments…legitimize students’ 
expressions of innate sensibilities and subjective impressions—they ‘work with’ such 
perceptions rather than exclude or deny them” (p. 26). 

SDT’s robust empirical research base is a helpful complement to aesthetic theory’s more 
philosophical foundation. SDT asserts that all humans have basic psychological needs in addition 
to physical needs: autonomy, competence, and relatedness. Autonomy—or the extent to which a 
person feels regulation over their own experiences and behavior—is particularly relevant for this 
study. People who act autonomously engage in behaviors “whole-heartedly” (Ryan & Deci, 
2017, p. 10). 

Conceptual Framework 
As conceptualizations of engagement vary widely, it is necessary to specify the definition of 

engagement I am using for this study. I draw upon the conceptualization of engagement put forth 
by Middleton et al. (2017): 

The in-the-moment relationship between someone and her immediate environment, including 
the tasks, internal states, and others with whom she interacts. Engagement manifests itself in 
activity, including both observable behavior and mental activity involving attention, effort, 
cognition, and emotion. (p. 667) 

Particularly important to highlight in this definition is the consideration of engagement in the 
moment, the acknowledgement of internal and external factors, and the understanding of 
engagement as having behavioral, cognitive, and emotional components. As elaborated below, I 
also include aesthetic experience as a component of engagement, meaning engagement is not 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 450 

only a ‘taking up of’ but a being “caught up in” (Wong, 2007, p. 209). 
It is also important to define what it means for a mathematics task to be open. Literature 

(e.g., Leikin, 2018; Mitchell & Carbone, 2011; Silver, 1995) has proposed ways to classify 
openness in mathematics tasks. These frameworks typically address two dimensions: number of 
possible strategies or approaches and number of possible solutions, with some reference to entry 
points and problem posing. Drawing on each of these frameworks as well as elaboration made 
necessary by recently emerging tasks, I propose that tasks can be open along three dimensions: 
multiple entry points, multiple strategies, and multiple solutions. There is also a range of extent 
to which tasks are open along each dimension. Figure 1 depicts this relative openness along 
dimensions, including the approximate openness of the four tasks used in this study (WODB, 
HM, N&W, and a word problem [WP] of high cognitive demand).  

 

 
Figure 1: Dimensions of Openness in Mathematics Tasks 

Methodology 
When examining an existing practice that has anecdotally reported benefits, it makes sense to 

draw on multiple relevant methodologies rather than being narrowly confined to one. This 
pragmatic approach (e.g., Coyle, 2010; Frost & Nolas, 2011; Frost et al., 2010; Morgan, 2007) 
allows for strategic choice of specific methods that best capture the phenomenon in question. 
This study draws on three methodologies: case study, ethnography, and grounded theory. Case 
study (Merriam, 1998) is most strongly represented in this report, as case study involves 
thorough consideration of a clearly defined phenomenon such as individual PSTs’ engagement 
with open mathematics tasks. Ethnography (Macgilchrist & Van Hout, 2011) is relevant because 
of its emphasis on the participant’s perspective, which is necessary to emphasize when creating a 
holistic representation of engagement. Grounded theory (Glaser & Strauss, 1967) allows for new 
ideas to emerge rather than relying solely on previously defined constructs, which is particularly 
useful when considering a practice that is itself relatively new. 
Context 

This study was conducted at a large Mid-Atlantic public university in a semester-long 
undergraduate elementary mathematics methods course for PSTs. I worked with three sections of 
the course, all taught by the same instructor. This report focuses on the cases of three PSTs from 
one section of the course. There were 12 PSTs enrolled in the course. The PSTs were majority 
White and female; one PST was male. 
Methods 

The instructor of the course and I collaborated to choose four tasks for the PSTs to engage 
with as part of their elementary mathematics methods course. Three of the tasks (WODB, HM, 
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N&W) did not have pre-determined answers and were of the most interest for this study. The 
fourth task was a word problem (WP) of high cognitive demand that allowed for multiple 
strategies but was implemented for the purpose of comparison as it only had one solution. Figure 
1 above provides an approximate sense of the openness of each task in terms of entry points, 
strategies, and solutions. 

The images and/or prompts for each task are included in Figure 2. The WODB task presented 
PSTs with four addition expressions and asked PSTs to choose which one did not belong and to 
explain why. Any of the four options was justifiable, and there were many possibilities as to why 
each one might not belong. In the HM task, PSTs were asked to consider an image of a large box 
of chalk. PSTs were prompted to choose what to count in the image and to be prepared to share 
what they counted (including the unit) and their counting strategy. For the N&W task, PSTs were 
shown three bulk packages of different brands of toilet paper and were asked to share what they 
noticed about the image and what they wondered. For the WP, PSTs needed to figure out the 
number of boxes of two types of cupcakes given the total number of cupcakes, boxes, and 
parameters as to how many cupcakes of each type could fit in a box. 

 
Figure 2: Open Tasks Used in Study 

WODB from Heon (2013); HM image from Color Splash (n.d.); N&W images from 
Charmin (n.d.), Quilted Northern (n.d.), Angel Soft (n.d.); WP task from Hallman-

Thrasher and Spangler (2020). N&W images representative, may not match exact task. 

The instructor facilitated the tasks during four separate class sessions. I attended each of 
these sessions to video-record and observe. For each task, the instructor presented the task and 
accompanying prompt. The PSTs were given 3-5 minutes to work individually. Then, the 
instructor facilitated a discussion of the task. The length of the discussions ranged from 
approximately 10-24 minutes. Following each task, participants responded to a 5-item 
questionnaire that asked them about their strategies and emotions during the task and discussion, 
the appeal of the task, and how the task compared to how they typically thought about and 
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experienced mathematics. I also solicited volunteers to participate in a semi-structured interview 
at the conclusion of the semester, during which I asked participants about their overall 
questionnaire responses as well as their specific impressions of the tasks. During the interviews, I 
used video-stimulated recall to ask participants about their experience of specific parts of the task 
sessions. In addition to the task session recordings, questionnaire responses, and interview 
transcripts, I also collected identity webs PSTs completed at the beginning of the semester. For 
the identity web assignment, PSTs described their identity as a mathematics learner by sharing 
and reflecting on memories of their experiences with mathematics prior to the course.  

Because practitioners have reported that these tasks engage a wide range of learners, I began 
my analysis with PSTs’ identity webs to get a sense of their relationship with mathematics. For 
the analysis for this report, I aimed to select three PSTs who varied in terms of the valence of 
their past experiences with mathematics. I also considered variation in the number of 
contributions PSTs made to discussions (since this is also information that would be immediately 
available to practitioners). If possible, I prioritized PSTs who had participated in an interview, 
since the most information was available in terms of their engagement. 

After selecting three PSTs, I examined their questionnaire responses—and, if available, 
interview transcripts—for evidence of cognitive and emotional engagement as well as aesthetic 
experience. I coded deductively (Maxwell, 2013) according to established constructs as well as 
inductively (Glaser & Strauss, 1967), using constant comparison to identify themes. Generally 
speaking, items coded as cognitive engagement involved how students were thinking and 
affective engagement involved how students were feeling (Fredricks et al., 2004; Middleton et 
al., 2017). Aesthetic experience included items related to curiosity, creativity, and exploration 
(Sinclair 2001, 2004; Wong, 2007), as well as the opportunity to express oneself (Ryan & Deci, 
2017). I also made note of any reports of behavioral engagement (i.e., a PST describing what 
they were doing). Then, I returned to the videos and transcripts of the task sessions to code for 
behavioral engagement, paying attention to PSTs’ actions throughout the task sessions, not only 
the numbers of times they contributed to the discussion or to the content of their contributions. I 
made note of any evidence of cognitive, affective, and aesthetic engagement as well.  

Because I did not collect PSTs’ individual written work or notes, I did not include these 
items in my analysis. These artifacts may have offered additional insight; however, as 
demonstrated in the results, I was able to glean considerable information about PSTs’ 
engagement from their own reports and from my observations. 

Identifying themes across each individual PST’s engagement and experience from the 
collected data, I crafted profiles of the three PSTs, provided in the results below. Finally, I 
examined all of the coded items for instances that could be clearly linked to the openness of the 
tasks. 

Results 
Out of 12 participating PSTs, 10 were present at every task session. From those 10, I 

identified three who ranged from negative to positive valence in terms of their past experiences 
with mathematics and also ranged in the number of contributions they made during class 
discussions. The three PSTs were Andrew, Faith, and Katie (pseudonyms). Andrew presented as 
male, and Faith and Katie presented as female. Andrew did not choose to participate in a follow-
up interview, while Faith and Katie did. The profiles of their engagement are presented below. 
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Andrew: Mixed Past, High Verbal Participation, Engagement Task-Dependent 
Andrew’s identity web reported a mix of past experiences with mathematics. He described 

his elementary and middle school experiences as negative—that he was “always one class 
behind” and one year was “awful”—but that high school math was “awesome” and in college he 
encountered his first math class that “made sense.”  

Andrew contributed verbally in three of the four task discussions and had the largest number 
of contributions overall (15) in comparison to his peers. In the WODB, his contributions 
included building on others’ strategies as well as offering his own ideas both simple and 
complex. When not speaking, he continually looked towards the board or occasionally towards 
his device. During the WP discussion, he leaned back in his chair as he looked towards the board 
or towards who was speaking. He offered insight into what the variables would represent in 
solving the task with a system of equations. He did not speak during the HM discussion, and was 
often on his device, an activity which at times may not have been related to the task. However, 
he spoke frequently during the N&W discussion, offering several observations and wondering 
about the implications of the numbers in the image.  

After all four tasks, Andrew reported that his strategy involved starting with something 
“easy” or obvious. Otherwise, his engagement seemed to take on a different quality in the WP 
and HM tasks as opposed to the WODB and N&W tasks. In his questionnaire responses 
following the WP and HM tasks, he mentioned evaluating others’ strategies as too complicated, 
and, for the HM task, losing interest. He also essentially reported no emotions for these tasks. 
For the WODB and the N&W tasks, he reported continuing past his initial responses to consider 
possibilities that were less obvious and to listen to others’ strategies in order to build or add on. It 
was also during these tasks that he reported emotions directly related to the task, feeling 
“challenged” by the WODB and “involved” with and enjoying the N&W task. His reports 
ventured into the aesthetic, explaining that the WODB was appealing because of “the ability to 
have your own answer” and for the N&W, that he “honestly could’ve kept going for awhile.” 
During the N&W discussion, he shared that he had looked up more about the information in the 
task because he was “really curious,” and exclaimed, “I’m fascinated by this.” 
Faith: “Overall” Positive Past, Low Verbal Participation, Engagement Informed by Peers’ 
Ideas 

On Faith’s identity web, she stated explicitly that she “overall enjoy[s] math,” using 
adjectives like “amazing” and “great” in describing past experiences and even recalling that she 
“loved” tests (including timed ones). Any negative aspects she mentioned had to do with specific 
teachers or struggling with emphasizing grades.  

Faith contributed verbally to two out of the four task discussions and contributed to each of 
those two discussions once. In the HM task, she shared her strategy for counting and multiplying 
the rows and columns of chalk. In the N&W, she asked about the definition of a term and 
asserted the importance of an additional consideration. Despite relatively low verbal 
contributions, however, her behavior suggested she was paying attention, as she usually looked 
toward the board or at the person speaking, reacted by nodding or laughing, and occasionally 
spoke with others at her table about the task. Faith shared that she usually participates more 
actively but did not feel the need to speak up once someone shared the same idea that she had 
been thinking or when the conversation had already moved in another direction. In other words, 
her behavioral engagement was impacted by her peers’ sharing of ideas.  

Her cognitive and emotional engagement were also influenced by her peers; after the 
WODB, HM, and N&W tasks, she mentioned being surprised and interested by others’ 
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strategies. Her detailed recall of the strategies suggested she was cognitively as well as 
emotionally engaged with them. After the N&W discussion she explained she was uninterested 
initially but became interested once she heard how others viewed the task differently.  

Faith felt most comfortable with the WP, stating she tends to think more “logically.” In this 
regard, she set her math identity in contrast to the openness of the other three tasks. However, 
she acknowledged that this perception of math “as one-dimensional right or wrong” was “how it 
always has been presented” to her. She contrasted this description with social studies, which she 
described as “full of ideas and engaging conversation or different opinions.” She was open to 
shifts in her perceptions and identity, however, as she mentioned the WODB causing her to 
question her “previous beliefs about math” and, in general, shared that being able to determine 
her own answer was “very weird and eye opening for people… like me who think logically with 
one set answer to like expand ideas and be like… there is no right answer.” 
Katie: Somewhat Negative Past, Moderately High Participation, Freed to Engage by the 
Absence of “Right” and “Wrong” Answers 

On Katie’s identity web, she made the general statement that she “always had to try harder” 
at math, and that it “doesn’t come easily.” She did not remember much about elementary school 
math but mentioned struggling and studying hard in middle and high school. In her interview, 
she explained she must be an “English and people person,” as a family member had a “math and 
science brain” and never seemed to have to work at it like she did. She feels more of a 
connection with language-oriented subjects because they were more creative and open-ended.  

Katie’s engagement was fairly consistent across all four tasks. She raised her hand several 
times during all four discussions. She contributed verbally to each discussion, with a total of 
seven contributions. When she was not actively participating, she usually looked towards the 
board or at the task on her own computer screen. She sometimes wrote in her notebook, and 
occasionally spoke with others at her table about the task. In her interview, Katie stated that this 
high level of participation was not typical for her in math-related classes in general but was 
probably typical of her participation in this class. 

Katie’s cognitive engagement was evident in her verbal contributions and on her 
questionnaire. Her contributions included pointing out patterns in the WODB, asking about how 
to use variables to correctly represent the objects in the WP, sharing counting strategies and 
pointing out differences in numbers of colors in the HM, and sharing information she noticed in 
the N&W. She described her strategies in detail on her questionnaire responses and mentioned 
listening to others’ ideas both out of interest and to compare them with her own.  

Katie reported similar emotions across all four tasks, feeling motivated, content, and curious, 
as well as interested and excited to hear what others had to say. She initially felt confused about 
the WP but felt excited after “figuring it out.” A key for Katie seemed to be the opportunity to 
share without expectation of being right or wrong and the ability to be assured of her own answer 
because she was the one who determined it. After the WODB, she stated, “I have always 
experienced math as right or wrong. This is much better and more encouraging.” Even though 
she assessed the WP to be “a pretty average word problem,” she did feel “freedom” in being able 
to solve the problem in her own way. She mentioned freedom to “do what [she] wanted” with the 
HM and that she could just “speak [her] mind” in the N&W. She specifically identified the desire 
to share something unique in the N&W as different from her past experiences, as the expectation 
to do math in a prescribed way prevented creativity. 
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Discussion 
While each of the PSTs’ engagement varied and for different reasons, the openness of the 

tasks played a role in how each of them engaged with and experienced the tasks.  
The role of the tasks’ openness can most plainly be seen in the PSTs’ own references. All 

three PSTs mentioned having a different experience because of the ability to choose their own 
answer or being freed from the pressure of finding one right answer. Andrew identified this 
aspect as the most appealing part of the WODB task, adding that “it would have improved how 
[he] saw math if [he] had seen something like this” in his previous experiences. Katie explained 
that the N&W task was “appealing because it didn't stress [her] out or include anything [she] 
couldn't do.” Sociocultural positioning asserts that the teacher’s acts—including choice of 
tasks—can make certain identities available to students and not others (Langer-Osuna & 
Esmonde, 2017). It seems the openness of these tasks afforded the opportunity for PSTs to 
identify as mathematically capable. The tasks also seemed to allow PSTs to be the “arbiter” of 
their own mathematical experience rather than not being able to have their own “personally felt 
emotion guiding the selecting and assembling of the materials presented” (Dewey, 1934, p. 68). 

All three PSTs mentioned the wide range of possibilities of answers, which both gave them 
multiple opportunities to engage with the task and made them interested to hear and engage with 
ideas that others would share. When I asked Faith how typical it was for her to be surprised by 
what others had to share in a math-related class, she stated typically she was not. Math for Faith 
had always been that “you have a right answer, and you have all these wrong answers,” 
communicating that usually in math, there was no room for anything to surprise her.  

The way the tasks positioned PSTs is also evident in the opportunities that PSTs had that they 
would not have otherwise had if the task were not open. Andrew, Katie, and Faith all talked 
about looking for unique or challenging ways to interact with the tasks. While this desire could 
be a goal as part of a math task that allows for multiple strategies (a freedom Katie felt with the 
WP), the multitude of possibilities in being able to determine one’s own answer was a significant 
shift for the PSTs. In the discussion of the HM task, Katie was inspired to find something 
different to count after hearing another PST’s idea of counting chalk that looked used versus 
chalk that looked unused. For Faith, the opportunity to share with such wide parameters was so 
unusual that she worried that the idea she shared in the HM task was somehow “cheating.” In the 
N&W task, Andrew described his fascination with the image and took the initiative to look up 
more information, an action that likely would not have taken place had the task been aiming for 
one correct answer that could be solved with the information given. It seems that Andrew’s 
sensibilities were awakened (Sinclair, 2001) through the process of engaging with these open 
tasks.  

In essence, in response to the first research question regarding engagement and experience 
with open mathematics tasks, PSTs demonstrated engagement in all dimensions (cognitive, 
behavioral, affective, aesthetic) to degrees that varied by PST and to some extent by task. The 
WODB and N&W tasks seemed to be the most engaging across PSTs and dimensions. With 
regards to the second research question, PSTs’ engagement with and experience of the tasks was 
linked to the tasks’ openness. PSTs’ own reports support this claim, as well as the fact that 
aspects of the experience to which PSTs responded would not have been possible if the tasks 
were not open. It is also striking that the WODB and N&W tasks—which were the most open in 
terms of entry points and strategies and open to a high degree in terms of number of solutions—
saw considerable engagement from three PSTs who differed from one another in terms of their 
past experiences with mathematics. 
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Implications 
Of course, the openness of the tasks in this study was only one of a myriad of intertwined 

factors shaping PSTs’ engagement—aspects like the PSTs’ characteristics, other PSTs, the 
instructor’s prompts, and the content of the tasks were also influential—but the openness was, 
nevertheless, a factor. The possibility that the openness of these tasks prompted PSTs to fully 
engage in a way that contrasts with their previous experiences suggests the benefits of further 
research on these tasks. More generally, these results suggest that the openness of tasks in 
mathematics is a characteristic to be more consistently considered in task design. Finally, the fact 
that these results are consistent with mathematics educators’ reports about learners’ engagement 
with these tasks highlights the importance of listening to and following up on what practitioners 
are noticing in the field. 
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Given the ubiquity of curriculum materials and complexity of their usage, it is imperative that 
teacher education programs prepare prospective teachers (PSTs) to use curriculum materials. In 
this paper, we focus on what PSTs notice when they are interacting with curriculum materials, 
and how their initial impressions of curriculum materials influence their later understandings of 
curriculum materials. We found that PSTs’ 20-second impressions may be indicative of their 
longer impressions of curriculum materials, which can include their preferences, values, beliefs, 
and approaches to using curriculum materials. We suggest that teacher educators expose PSTs 
to a variety of curriculum materials to better support PSTs in planning and enacting lessons. 

Keywords: curriculum; preservice teacher education; teacher noticing; instructional activities and 
practices  

Research indicates that teacher education programs need to do more to prepare teachers to 
learn to use curriculum materials in adaptive and flexible ways (Drake et al., 2014). Given that 
88% of mathematics teachers reported having a designated commercially published textbook 
(Banilower et al., 2018) and that research on teacher-intended curriculum with prospective 
secondary teachers (PSTs) emphasizes the complexity of using materials (e.g., Lloyd & Behm, 
2005; Van Zoest & Bohl, 2002), it is imperative that teacher educators support PSTs in learning 
to interact with curriculum materials. Furthermore, AMTE (2017) stresses the importance of 
preparing beginning teachers of mathematics to plan and use curriculum materials (Indicators 
C.2.2 and C.1.4) and for programs to provide opportunities to learn to teach mathematics 
(Standard P.3). 

To leverage the potential of curriculum materials, Drake et al. (2014) advocate for PSTs to 
have more experiences reading, interpreting, analyzing, and making decisions about how best to 
use a variety of materials. This requires teacher educators to design experiences that draw on 
PSTs’ knowledge and dispositions towards curriculum and extends this to productively engage 
them in interacting with materials. Our study is part of a larger research project intended to 
understand how PSTs learn to use curriculum materials and to develop methods for productively 
engaging PSTs in this learning. In this paper we focus on what PSTs notice when they are 
interacting with curriculum materials, and how their initial impressions of curriculum materials 
influence their later understandings of curriculum materials. 

Theoretical Framing 
We frame our study using two complementary theoretical perspectives, the perspective that 

there is a participatory relationship between teachers and curriculum materials (Remillard, 2005) 
and that teachers generate documents through documentation genesis (Gueudet & Trouche, 
2009). To describe the ways in which teachers participate with instructional materials and 
develop documents through the processes of instrumentation and instrumentalization (Pepin, 
Gueudet, & Trouche, 2013) we use the Curricular Noticing Framework (Authors, year), which is 
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informed by the work in the professional noticing of children’s mathematical thinking (Jacobs, 
Lamb, & Philipp, 2010). Curricular noticing is comprised of three interrelated skills: Curricular 
Attending, Curricular Interpreting, and Curricular Responding, which “enable teachers to 
recognize, make sense of, and strategically employ opportunities available within their 
curriculum materials” (Authors, Year, p. x). Figure 1 depicts the relationships between these 
frameworks. 
 

 
Figure 1: Relationships between Theoretical and Analytical Frameworks 

Purpose of the Study 
Our study focuses on PSTs’ noticing of different sets of curriculum materials and aims to 

inform the work of teacher educators in developing ways to support PSTs to use curriculum 
materials with intentionality. We address the following questions: 

1. What do prospective teachers notice when given the first page of a lesson from two 
different sets of curriculum materials for a short amount of time (i.e., what are their first 
impressions)? 

2. How might prospective teachers’ first impressions be related to their later understanding 
of the full lessons from both sets of curriculum materials? 

Methods 
Participants & Data Collection 

The participants of the study were six PSTs enrolled in a 6-12 mathematics teacher 
certification program, either not yet enrolled in or enrolled in the first of two mathematics 
teaching methods courses. Note that all names are pseudonyms, and, in the results, we use the 
pronoun they to refer to each PST. 

Each PST participated in a semi-structured interview which lasted approximately 45 minutes. 
We video-recorded the interviews using both a regular video camera facing the PST and eye-
tracking glasses that the PST wore. See Figure 2 for images from the recordings. Note that the 
red circle indicates the PSTs gaze (I.e., what they were looking at). 
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Figure 2: Images from the Video Recording from the Face Camera and Glasses 

 
To address our research questions, we conducted two parts of the interview where we gave 

PSTs materials and asked them to talk aloud. For the first part, we gave them 20 seconds to 
describe what they noticed when we gave them the first page of a lesson from CPM Algebra 
Core Connections (Dietiker et al., 2014) [CPM] and then another 20 seconds when we gave them 
the first page of a lesson from Meaningful Math Algebra 1 (Fendel et al., 2014) [MM]. After 
each 20-second exposure, we asked each PST what they noticed. During the second part of the 
interview, we gave them an unlimited amount of time to look at the full lessons and compare. 
We then asked questions about what they noticed and their comparisons, including what they 
imagined might be supportive of both students and teachers. 
Data Analysis 

We imported the video produced by the eye tracking glasses into Tobii Labs analysis 
software. The eye-tracking glasses allowed us to see what PSTs were looking at during the semi-
structured interviews and then utilize software to visualize what and how long they looked at 
various items (i.e., heat maps) and the order in which they looked at them (i.e., gaze plots). We 
also utilized the eye tracking video to open-code the verbal data--“identifying any segment that 
might be useful” (Merriam & Tisdell, 2016, p. 204), writing summaries of what PSTs noticed 
during both sections of the interview, and then consolidating our summaries into themes. 

Results 
Following analysis, we noticed connections across PSTs’ 20-second exposures, their untimed 

comparisons, and the portion in which we asked them follow-up questions. Notably, PSTs had 
ideas in the initial 20-second portion of the interview that remained consistent or grew stronger 
in subsequent portions of the interview. Table 1 summarizes our findings. 
 

Table 1: Summary of Findings 

PST 
Part I: 20 seconds Consistencies Found between 

Part 1 & Part 2 

CPM MM  

Eddy Instructional; Student tasks and 
activities; Organized; Clear 
objective; Student engagement 

Highlighted key concepts and 
vocabulary; Supportive of 
teachers; Learning goals; 
Instruction manual 

Instruction manual; Student 
activities 

Cam Lesson goals Organized; Lesson goals Lesson goals 
Jim Organized; Wordy Organized; Easy to read Wordy; Easy to read 
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Andy PST summarized lesson; Wordy; 
Difficult to discern what's going 
on; No visuals 

PST summarized lesson; Lesson 
goal; Key words 

Wordy; Visual representations; 
Key words 

Mike Clear lesson goals; Summary 
of the lesson; Lesson length 

Clear; Not distracting; Concise; 
Easy to read 

Clarity; Concise structure 

Ken Objective; Lesson length; 
Standards; Suggested activities 

Lesson length; Materials needed; 
Lesson description 

Lesson components & Structure 

 
For each PST, we found consistencies between their first impressions (i.e., the 20-second 

exposure) and their later noticings. Some PSTs attended to formatting in the curriculum 
materials, either commenting on their own preferences or how different curriculum materials 
were formatted. Aspects of formatting that PSTs mentioned involved features such as how pages 
were organized, the number of words that they noticed, and how readable they felt the materials 
were. Specifically, PSTs noted features such as vocabulary words, the visuals that were present, 
and lesson goals/objectives/intent. In addition, we found that some PSTs were consistent in their 
noticings with respect to how they wanted to use the curriculum materials and the manners in 
which the lessons were organized and/or structured.  

Overall, we found that each PST had at least one idea that they voiced during the first portion 
of the interview and preserved throughout the rest of the interview. Their idea was 
often something that they elaborated on in the later portion of the interview without prompting, 
as well as something that they emphasized as important to them when we asked them questions. 
In the next sections we describe the findings in more detail for each PST. 
Eddy 

Eddy’s focus was on looking for activities students will do and how they will do them. They 
mentioned looking for “explicit instruction” and guidance related to leading discussions with 
students to support student learning. During the 20-second portion of the interview, Eddy’s heat 
map indicated significant time spent on the CPM section about the suggested lesson activity, 
aligning with their desire to know what the teacher might be doing and how to develop the 
experience for students. Additionally, Eddy stated that MM, “read more like an instruction 
manual” during the 20-second portion of the interview. While comparing materials, Eddy stated: 

Um, this (CPM) lesson plan seems to not, uh, maybe I just haven’t read it yet, but doesn’t 
give like explicit instruction on like how the discussion is happening, whether it’s like as a 
class or individually or like with a partner. And this one (MM) is a little more explicit and 
like having students work in groups and then later come together as a class. But I mean, it 
doesn’t say that you can’t do that, but this one seems very, uh, more, uh, straightforward in 
terms of just following instructions. 

Cam 
Cam noticed the goal/objective of each lesson in the initial 20-second portion of the 

interview, while reading more thoroughly, and after reading. After reading, Cam described how 
CPM and MM approached representing relationships, where they both did this, and how they had 
slight differences in their respective approaches. Cam mentioned CPM having more suggested 
activities for teachers, while MM seemed more formalized for establishing procedures and 
getting students to interpret what was happening in each visualization. During the 20-second 
exposure, Cam’s gaze plot for CPM indicated looking at the lesson objective, moving to other 
portions of the page, and then re-visiting the lesson objective. This suggests Cam may have 
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engaged in sense-making while they were reading and potentially re-visited what they felt was 
important to understand the lesson. During questioning at the end of the interview, Cam talked 
about MM and how it aligned with what they felt was the intent of the lesson, saying: 

I think I mentioned this in an earlier question, but the intent it (MM) says it’s setting the 
groundwork for students to learn techniques of graphing and making connections and graphs. 
So, it’s not about regular rigorously graphing functions yet. It’s about being able to look at a 
graph and get a general idea of what’s going on and what the graph represents maybe 
without, you know, specific data points necessarily. 

Jim 
A prominent finding throughout Jim’s interview was their focus on how “wordy” curriculum 

materials appeared. During the initial 20-second portion of the interview, Jim identified CPM as 
“wordy”. In the latter portion of the interview, Jim noted that CPM “being so wordy can cause 
some confusion.” Jim continued to emphasize wordiness after reading, describing how easy it 
was to read the materials and even comparing CPM’s ease of reading to that of MM. Eye-
tracking picked up on this theme of wordiness as well, as heat maps indicated flickering attention 
to the initial first page in CPM and more sustained reading in the first page of MM (see Figure 
3). 
 

 
Figure 3: Heat Map of Jim’s 20-second Exposure to CPM (left) and MM (right) 
 

Andy 
Wordiness was also attended to by Andy, as they stated after seeing CPM initially during the 

20-second portion that it “was very wordy and it was hard to discern what was actually going on. 
It’s kind of, yea, it wasn’t easy to, there wasn’t any pictures or anything. Okay. So, it was hard to 
figure out what’s going on.” Andy’s challenges related to making sense of the lesson in CPM 
contrast with their sense making of MM. While comparing CPM and MM, Andy stated that MM 
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is, “a lot better than...” CPM because MM “...has questions for me and minimal text to talk about 
it,” whereas CPM is “too wordy.” Andy’s heat maps contrasted with Jim’s, even though they 
both had similar conclusions related to CPM being too wordy. Andy’s heat maps suggested a 
focused attention on one portion of the CPM text, possibly engagement in sense-making. We did 
not see with this MM, but instead saw smaller heat centers across the page, likely indicating 
sustained reading (see Figure 4). Large clusters of focused attention may be related to Andy’s 
impressions of wordiness and challenges to make sense of the curriculum material. 
 

Figure 4: Heat Map of Andy’s 20-second Exposure to CPM (left) and MM (right) 
 

In addition to wordiness, Andy also attended to key words. Andy noticed key words in MM 
during the initial 20-second portion of the interview, while comparing the materials, and later in 
the interview. Andy stated how helpful they found key words and that they find them to be 
something they need most in a lesson. Andy went on to state: 

I think (what) I need the most is just to be able to construct a lesson plan (that) is okay. The 
key words, the key terms, the key, uh, like discrete, continuous, dependent, independent, uh, 
words like that...The wagon train problem, um, or the questions are good examples and the 
key terms are good to keep in mind. 

Mike 
During Mike’s interview he noticed structure. In the 20-second portion of the interview, 

Mike emphasized a preference for clarity related to the lesson objective and concise summaries. 
Later on in the interview, Mike continued to emphasize structure and indicated that MM’s 
conciseness was more useful when preparing to teach a lesson, as compared to CPM. Mike’s 
gaze plots provided further evidence of this, indicating a linear progression through the CPM 
page, but returning to core problems and the lesson objective after already noticing the suggested 
activities section on the page. Mike’s gaze plot for MM, though, was completely linear with no 
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visual revisiting (see Figure 5). Mike’s gaze plots may be a sign that conciseness, clarity, and 
ease of reading can be indicated through less visual revisiting. 
 

 
Figure 5: Gaze Plot of Mike’s 20-second Exposure to CPM (left) and MM (right) 

 
Ken 

Ken noticed structure as well but had a different sense than Mike as far as what it meant. Ken 
emphasized an ability to identify various lesson components, such as lesson length, lesson 
objective, required materials, and what the teacher and students would be doing as indicated both 
verbally and with the eye-tracking glasses. In the latter portion of the interview, Ken was asked 
about what seemed important while comparing the lessons. Ken responded: 

Uh, the structure. So, like what would the teacher be doing was like the big thing, and like it 
was easy to find out what the teacher’s doing in this one (CPM), cause, like, writes all of it 
down. But this one (MM), I’m still kind of trying to piece together what the teacher’s exactly 
supposed to do. 

Ken’s sense of structure in identifying lesson components indicated a preference towards CPM, 
stating that MM’s structure was confusing and that they would, “have to read it like word-for-
word...(to) see exactly what the teacher is supposed to do.” 

Discussion 
PSTs search for specific things when looking at curriculum materials related to their own 

preferences. When interpreting curriculum materials, they approach the materials in various 
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manners, looking for key words or concepts, as well as how they might facilitate or enact a 
lesson, treating the curriculum materials like an instruction manual. What PSTs look for, or 
attend to, when they look at curriculum materials is noticeable through eye-tracking technology, 
as indicated specifically by gaze plots and heat maps. Through interpretations of these tools, 
PSTs preferences and approaches are discoverable, as shown in features such as sustained focus 
on one area, revisiting other areas, rapid gazes, and linear progression through the materials. 
Overall, PSTs’ 20-second impressions may be indicative of longer impressions of curriculum 
materials, which can include their preferences, values, beliefs, and approaches to using 
curriculum materials. 

In the work of preparing PSTs to engage students and support learning, it is imperative that 
PSTs familiarize themselves with various curriculum materials. Awareness of different 
curriculum materials and familiarity with them can help PSTs understand various approaches to 
the teaching and learning of mathematics, as well as how they might plan for and enact lessons. 
In other words, preparing PSTs to plan with curriculum materials is essential to the future work 
of engaging students in their classrooms. 

This work of exposing PSTs to different curriculum materials is important because PSTs 
make initial judgements which can be developed and sustained over time. Teacher educators 
have opportunities to discuss what PSTs notice in a safe, low-stakes environment, such as a 
methods course. Taking the time to do this work is important because PSTs have beliefs, values, 
and orientations to materials, which may or may not be aligned with engaging and supporting 
each and every mathematics learner. Helping PSTs work with curriculum materials might assist 
them in thinking through their personal judgements before making decisions related to 
curriculum materials, as well as help them plan lessons efficiently and effectively. 
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For centuries, there has been a debate about the role of undergraduate education in society. 
Some have argued that universities should focus on practical skills and knowledge to prepare 
students for the workforce, while others have supported the idea that universities should 
prioritize providing a broad understanding of disciplinary knowledge and practices. In this 
paper, we leverage data collected from 32 interviews to explore how instructors of the 
undergraduate geometry course for teachers (GeT) talk about the various tensions they 
experience in their work. Three distinct ways of talking about tensions emerged from the data: the 
tension as a dilemma that needs to be managed, the tension as a place to take sides, the tension 
as an opportunity to reframe aspects of the work. In closing we draw connections between these 
patterns in the data and the two perspectives about the role of undergraduate mathematics 
courses in preparing PTs for the work of teaching. 

Keywords: Undergraduate Education, Geometry and Spatial Reasoning, Preservice Teacher 
Education, Teacher Educators 

This research has been founded on a reasonable conjecture that more knowledgeable teachers 
would be better prepared to lead instruction of higher mathematical quality and that the latter 
outcome should result in better mathematics learning from students. Efforts to flesh out that 
conjecture have produced substantial progress in refining conceptualizations of the phenomena 
involved, particularly teacher knowledge and its indicators. While at one time, teacher 
knowledge of mathematics was thought of as only disciplinary knowledge and indicated with 
degrees achieved or courses taken, research using those operationalizations of the construct have 
shown conflicting results (Begle, 1979; Monk, 1994). Also, a mathematics degree or the accrual 
of mathematics credits have not been reliable predictors of success in teaching (Hill, 2012; 
McDiarmid & Wilson, 1991). This has led scholars to promote a conceptualization of the 
mathematical knowledge needed for teaching based on an analysis of the recurrent work of 
teaching (Ball, Lubienski, & Mewborn, 2001). Relatedly, there has also been groups of scholars 
reconsidering the ways that undergraduate mathematics courses might be adapted to better meet 
the needs of prospective teachers (PTs) by equipping them with such knowledge (Adler et al., 
2014; Appova et al., 2014; Speer & Wagner, 2009; Wasserman et al., 2022). While these two 
bodies of scholarship have done much to advance the field’s conceptualizations of the knowledge 
needed for teaching and the role that undergraduate mathematics courses might potentially play 
in developing that knowledge, there has yet to be an adequate accounting of the perspectives of 
instructors who teach these undergraduate mathematics courses regarding these 
conceptualizations (Lai, 2019). 

In this report, we build on previous work in which we drew on interviews conducted with 32 
GeT instructors (Herbst et al., 2023) to report on how instructors perceive their position and the 
work they do in the GeT course in relation to institutional stakeholders. In those previous reports, 
we characterized the tensions that we detected beneath instructors’ descriptions of the GeT 
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courses they teach. The 5 tensions that emerged in those reports can be understood as the 
dilemmas that can result from an instructor’s consideration of the following questions: 

1. The content tension: What is the content students need to learn in the GeT course? 
2. The experience tension: What experiences can support students’ learning in the GeT 

course? 
3. The students tension: Who are the students that populate the GeT course and what do 

they need and want from the course? 
4. The instructor tension: Who am I and how have my experiences prepared me to teach 

the GeT course? 
5. The institutions tension: Which institutions might benefit from, and support GeT 

improvement? 

In the section entitled Prior Results, we elaborate on these tensions by illustrating ways that the 
answer to these questions can present instructors with a dilemma (Berlak & Berlak, 1981/2011; 
Lampert, 1985; Elbow, 1983)—forcing the GeT instructors to choose between two different 
courses of action, both of which are problematic for different reasons. These two distinct courses 
of action help illustrate the poles of the tension (or horns of the dilemma). More than simply 
identifying and defining those tensions according to their poles, our prior work accounts for 
these tensions as emerging from two distinct ways of organizing the work specific to teaching 
undergraduate mathematics courses for teachers: undergraduate mathematics education versus 
secondary mathematics teacher preparation. 

In those prior reports, our focus was primarily on identifying the tensions, in terms of their 
poles, for the group of instructors. In this report, we leverage the same data corpus to explore the 
variability in the ways that different instructors experience these tensions—as a dilemma that 
needs to be managed, as a place to take sides by identifying with one pole of a particular 
tension, or as an opportunity to reframe aspects of their work by satisficing the demands from 
both poles of the tension. The study was guided by the following questions: What are the 
different ways that instructors relate to the tensions in their work that can be detected in the ways 
that instructors talk about those tensions? How can these differences be accounted for in terms of 
the ways of relating to the ongoing debates regarding the role of undergraduate mathematics 
courses in preparing PTs for the work of teaching? 

Prior Results 
In our previous work (Herbst et al., 2023), we have detailed five tensions that emerged from 

our interviews with instructors. Here, we provide a very brief description of those tensions to 
provide the necessary background for engaging with the results of this paper. The content 
tension describes the kinds of challenges an instructor might face when it comes to making 
decisions about the content addressed within a GeT course. On the one hand, instructors must 
consider the type of knowledge that future high school geometry teachers need to acquire to be 
effective in their roles. On the other hand, these courses also serve as an opportunity to expose 
mathematics majors to centuries of geometric research, including advanced ideas and evolving 
approaches to posing and addressing geometric questions. This creates a tension in course design 
as instructors must navigate the expectations of both groups of students and find a way to 
provide meaningful and relevant instruction to all. 
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The experiences tension relates to the types of practices students enrolled in the course are 
expected to be apprenticing into and the ways that their experiences in the course accommodate 
that apprenticeship. As an undergraduate mathematics course, students enrolled in the GeT 
course could reasonably be expected to be engaged substantively in mathematical practice valued 
in the disciplines: thinking about mathematics, doing mathematical activities (such as 
conjecturing, proving) and learning to communicate about mathematics according to disciplinary 
conventions (such as the process of publishing or writing in LaTeX). However, since these 
courses are also service courses for PTs, it is reasonable to expect that students will have the 
opportunity to apprentice into the work of teaching (such as learning how to address the entire 
class, pose questions to students, and respond to student contributions and inquiries). Similar to 
the content tension, our data suggests that attending to both kinds of practices may be 
challenging for instructors of the GeT course. 

The students tension arises from the instructors' need to consider the diverse group of 
individuals enrolled in the course and how the instruction can cater to their individual needs. 
While the course is often purportedly offered to satisfy the needs of PTs, it also includes students 
pursuing different majors, such as pure mathematics, physics, or engineering. PTs have unique 
needs and expectations for the course. For instance, it has been suggested that they require 
explicit discussions on how the mathematical ideas and practices learned in the course are 
connected to the high school geometry course (Kilpatrick, 2019). Furthermore, it has been 
recommended that PTs would benefit from clear discussions on the pedagogical practices used to 
support mathematics teaching and learning (Wasserman et al., 2022). However, other students 
have conflicting expectations for the course, such as the hope that it would provide opportunities 
to learn new geometric content useful beyond the requirements of any specific profession. 

The instructor tension highlights the challenges that instructors face in preparing to teach a 
course that requires expertise in multiple domains. In the case of the GeT course, instructors 
need to have a solid understanding of both mathematics education and mathematics research, 
which are two distinct but related areas of expertise. On the one hand, formal education and 
practical experience in mathematics education can help instructors develop the pedagogical skills 
and knowledge needed to effectively teach high school geometry. This might include experience 
teaching the subject, writing textbooks, supervising student teachers, or conducting research on 
effective teaching practices. On the other hand, the GeT course also requires instructors to have a 
deep understanding of the theoretical aspects of mathematics, particularly as they relate to proof 
and mathematical reasoning. This might involve experience conducting research in mathematical 
fields or engaging in other activities that require advanced mathematical skills. However, few 
instructors are experts in both of these areas of knowledge. This can create challenges in their 
work, particularly when they are required to make decisions or provide guidance that draw on 
both kinds of expertise. 

The institutions tension stems from the complex set of demands placed on instructors by 
various institutions that support and oversee the course. Instructors are expected to navigate and 
reconcile the sometimes-conflicting expectations of both the mathematics department and teacher 
education programs. On the one hand, instructors rely on the mathematics department for 
guidance on the content and structure of the course. They must ensure that the course meets the 
department's standards and expectations for an upper-level undergraduate mathematics course. 

On the other hand, instructors must also take into account the requirements and expectations 
of teacher education programs. In many institutions, the GeT course was originally designed to 
fulfill a programmatic requirement related to preparing PTs for the unique challenges of teaching 
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high school geometry, and as such, must meet the standards and expectations of these programs. 
Instructors must ensure that the course provides opportunities for pre-service teachers to develop 
the knowledge and skills necessary to effectively teach the subject, as well as to meet any 
program-specific requirements. While some GeT instructors recognize the importance of 
balancing the demands of both institutions, in practice, it can be challenging to reconcile the 
sometimes-divergent expectations and requirements. 

To be clear, the nature of all five of these tensions are such that they are not easily resolved, 
even if instructors recognize them and avail themselves of resources that might help them 
manage those tensions. Furthermore, our data reveals that not all instructors experience these 
tensions in the same way, as evidenced by the ways they speak about the tensions. In this paper, 
we hope to elaborate on these differences and help account for them as drawing crucially from 
longstanding debates about the societal role of universities, in general, and university 
mathematics departments, in particular. 

Literature Review/Theoretical Framework 
For centuries, there has been a debate about the role of universities in society. Some have 

argued that universities should focus on practical skills and knowledge to prepare students for the 
workforce (Eliot, 1869; Cappeli, 2015), while others have argued that universities should 
prioritize providing a broad understanding of disciplinary knowledge and practices (Newman, 
1891; Roth, 2014). The debate is relevant to mathematics departments, with some arguing that 
undergraduate mathematics courses should provide practical skills for future teachers (Hill et al., 
2007; Leikin et al., 2018; Wasserman et al., 2018), while others prioritize educating individuals 
about the broader knowledge and practices drawn from the discipline of mathematics (Yacek & 
Kimball, 2017, see also Kimball, 2015; Silverman & Thompson, 2008). These ongoing debates 
have meaningful connections to the tensions that we will elaborate on in the closing remarks. 

Methods 
As part of a multi-year project aimed at developing an inter-institutional network for 

instructors of Geometry for Teachers (GeT) courses, data was collected through online 
video-conferencing interviews with GeT instructors. The purpose of the interviews, conducted 
over the first two years of the project, was to gain a better understanding of the problem space 
individual instructors may identify as worthwhile for the community to address. Audio and video 
records of the interactions were captured and transcribed for analysis. The interviews followed a 
semi-structured protocol with three sections. The first section, which is the exclusive focus of 
this analysis, consisted of 16 questions aimed at understanding the nature of the course, such as 
the profile of students taking the course and how faculty in the mathematics department came to 
teach the geometry for teachers’ course. In addition, instructors were asked about the role they 
saw the course playing in improving capacity for high school geometry teaching, including how 
students' mathematical experiences in secondary schools could be influenced by the course. 

We conducted interviews with a total of 32 instructors (21 men and 11 women) from 30 
universities across the United States. All of the participating institutions were public, but they 
varied in size and focus, with some being primarily undergraduate-focused and others being 
doctoral-granting. All of the interviewees had recently taught a geometry course for prospective 
secondary teachers. Of the 32 interviewees, 30 were faculty members at various ranks, and the 
remaining two were graduate students in mathematics or mathematics education programs 
located in mathematics departments. 
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Analysis 
Initially, the transcript data from the interviews was initially analyzed for the tensions alone. 

Because our goal was to identify these tensions for the group of instructors, rather than describe 
the variability in how individuals experience these tensions, we used the instructors’ testimonies 
(regardless of form) to enrich the description of each of the poles in tension. That said, in that 
round of coding, we did notice that the data was not uniform, there were different ways that the 
tension was emerging in the data. In our second round of coding, we went back to the data and 
coded the instructors’ speech about the tensions according to these distinctions, which we 
illustrate in the following section. 

Results 
In this section, we describe the three different ways that we observed GeT instructors relate 

to the five tensions that could be detected in the ways that instructors talk about those tensions. 
To be clear these distinctions showed up across the data drawn from all five tensions, but due to 
space constraints, we elect to illustrate them across only two of the five tensions: the content 
tension and the instructor tension. 

In some cases, instructors talked about the tension as a dilemma that needs to be managed— 
making it clear in their speech that they were explicitly aware of the tension in their work. In 
these cases, instructors included more explicit expressions regarding the challenges they faced in 
managing their own or others’ expectations about how to handle the two, often conflicting, poles 
of the tension. For example, in the course of describing the GeT course, one instructor talked 
about the content tension in the following way: 

One of our algebraists, we don’t have any geometers like no one who has geometry as their 
area, so one of the algebraists started borrowing a set of notes from someone down at [blinded 
university] and kind of made a book out of it. The book is slow in the sense that they tried to 
make half the semester about trying to prove how points are arranged on a line. Then 
eventually halfway through the semester we have two lines it’s—it's really, really basic and 
very, very axiomatic and very formal. And it's probably really not the optimal out of 
arrangement for math for teachers. So, there are benefits to taking that approach but I think 
there are a lot of fall backs 

In this quote we see an instructor acknowledging the tension by noting the ways that a GeT 
instructor might find themselves in a situation in which they are assigned to teach a course that 
has been previously designed in ways that are less than optimal for PTs. That said, while 
identifying this kind of organization (with a focus on a rigorous set of axioms, such as those 
formulated by Hilbert, 1899) as suboptimal for PTs, the instructor was also able to admit that this 
organization has its benefits, perhaps the ways that such an organization highlights disciplinary 
concepts such as the importance of consistency and completeness in axiomatic systems. 

This way of talking about the tension also surfaced in the ways that some instructors talked 
about the instructor tension. For example, when responding to the question “In what ways is it 
important for mathematicians to be involved in teaching and improving this course?”, one 
instructor talked about the instructor tension in the following way: 

So, I do think it's important for mathematicians to teach this course. I think it's important for 
them to teach the course with the guidance from math educators and from the knowledge in 
the field. You know, it's not like I think mathematicians should take this and just say we're 
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going to do this our way, you know, come what may. But um, so I think it's important that it 
is done with the guidance of math educators, but ultimately it's a surprisingly mathematically 
sophisticated course. I think that it's mathematically sophisticated enough that 
mathematicians should be teaching it. Like it's, you know, even if you're not going to teach 
non-Euclidean geometry, the appreciation for the connections to and the differences to non-
Euclidean geometry and just all these kind of very subtle mathematical things that come up 
in the context of the course I think do require a pretty high level of mathematical education. 

Here we see an instructor acknowledging the tension by recognizing the importance of the 
knowledge and experiences of both the mathematician and mathematics educator as playing a 
crucial role in shaping the course. And while this individual ends up noting the importance for 
mathematicians in teaching the course, they recognize the unique knowledge that mathematics 
educators bring to the table with regards to the design of the course. 

In other cases, instructors talked about the tensions as a place in which they had taken a 
side—identifying with one pole of a particular tension. In these cases, instructors failed to 
represent the tension as something they experienced as tensionful, and instead used the 
opportunity to provide descriptions and sometimes justifications related to their personal 
alignment or misalignment with one or the other poles in tension. For example, when asked about 
the importance for the field that the GeT course be taught to PTs, one instructor who identifies as 
a mathematician talked about the content tension by saying: 

Um, I would hope that um, it is not just the material that they would teach in a high school, 
uh, but that it does include more. So, I guess in my case, the non-Euclidean geometry I'm 
doing, they would not do that in high school, but you need to have a little bit more about the 
idea of what else is out there other than just let's prove side, side, side criteria and for 
triangles or whatever it is that they're going to be doing in high school. 

Different from the prior quotes, this instructor provides less evidence for an awareness of the 
content tension. Instead, the instructor takes sides by sharing details about the decisions they 
have made to align themselves with the side of the tension that argues for the need to focus on 
geometry from a more advanced perspective, rather than the knowledge needed by teachers. 

Similarly, when asked about the organization of the course another instructor, who had been a 
high school teacher, talked about the content tension by saying: 

So, when I was in undergrad, I took a college geometry course. And we did nothing that 
looked like high school geometry in that course. So, I did not feel like it prepared me for 
being a high school geometry teacher that I became. We need to make a decision about what 
are the components that will be important or valuable for future teachers. 

Like the prior quote, this way of talking about the content tension provides little assurances that 
the instructor recognizes the tension. Instead, the instructor takes sides by aligning themselves 
with the other pole of the tension, namely the need to focus the course on supplying the 
knowledge needed to teach geometry. 

We also observed instructors prone to talk about the instructor tension in ways that revealed a 
propensity to take sides. For example, when asked why it’s important for mathematicians to be 
involved with the GeT course, one instructor talked about the instructor tension by saying: 

Well, you know mathematicians know what proof is. They just have a broader perspective of 
– and I mean who else would [teach the course] if it wasn’t us. I guess it would be math 
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education specialists. Math education specialists just don’t have the same perspective that we 
do. Even when they’re teaching calculus, they sometimes don’t see how it’s put together 

When comparing this way of talking about the instructor tension with those from the previous 
subsection, we can see an individual who seems to lack the sensitivity necessary to recognize and 
acknowledge competing perspectives about the kind of knowledge and expertise needed to 
design and teach the GeT course—taking the stance that those trained as mathematicians are 
really the only appropriate choice for staffing the course. 

Lest we begin to think that mathematicians might be alone in this lack of sensitivity, here we 
offer another example, from an instructor who identifies as a mathematics educator. When asked 
questions about how the course is staffed and the expectations for the course are made, this 
instructor brought up the instructor tension by saying: 

The one issue that I have with it at a school like mine is that outside of me, the other people 
don't have a direct connection to K12 education. They are math faculty members who think 
they know what happens in schools, but they do not. They'll say, schools do this and this but 
I taught high school geometry for six years and I would beg to differ. 

Like the previous quote, the instructor here seems equally unaware or unconcerned with the 
competing perspectives about the requisite expertise needed by instructors of the GeT course. 
Here the individual seems to have decided that having a direct connection to K12 education and 
knowing what happens in schools is the only or most important kind of knowledge to highlight. 

Finally, we also observed instructors handling the tension by reframing aspects of their work 
in ways that satisficed one or both of the poles of the tension—electing to settle for a suboptimal 
solution to lessen the sense that there is a salient tension to wrestle with. In these cases, 
instructors had ways of talking about one or more of the poles of the tension in ways that were 
quite different from the ways that others had talked about the same tension. 

Related to the content tension, some instructors found ways to reframe, and therefore 
minimize, the challenges related to the content tension by redefining one of the two bodies of 
knowledge. For example, to justify the choice to focus on more advanced mathematical topics, 
one instructor said, 

So I want them to get depth and breadth of topics which are related to geometry that they will 
be teaching at the secondary level but also beyond that; in the sense that we are touching on 
non-euclidean geometry, we are explaining the big ideas behind the axioms. This course is 
supposed to introduce them to axiomatic structure ... I don't feel that it's okay for a teacher to 
graduate without even seeing what non-euclidean geometry is. I think it's just a part of their 
general education. 

That is, rather than frame non-euclidean geometry as part of the more advanced perspectives of 
geometry (as so many instructors do), this instructor identifies this topic as belonging to the the 
“general education” needed for all secondary mathematics teachers—suggesting non-euclidean 
geometry to simply be part of the canon of knowledge needed by all undergraduates. 

Related to the instructors’ tension, we also observed instructors engaged in this kind of 
reframing. For example, when asked about the needed characteristics of individuals that teach 
the GeT course, one instructor said, “There's only two of us [in the mathematics department] that 
like really give a sh*t about geometry.” Here, we see an instructor taking the attention off of the 
typical poles of the argument related to the instructors’ tension by naming a purportedly more 
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pressing concern about staffing the course, namely instructors are generally unwilling to teach it. 
This way of talking about the instructors’ tension draws the listeners attention away from issues 
related to the educational and practical experiences of an instructor and reduces the conversation 
about faculty qualifications to one about willingness, or perhaps motivation to teach the course. 

Discussion/Conclusion 
In this paper, we have described the different ways that instructors talk about the various 

kinds of tensions that exist within their work. We see these three ways of talking about the 
tension as potentially having some meaningful differences not only in the ways that a given 
individual might experience a tension, but also in the ways that an individual participates in the 
broader arguments about the role of the university. To begin, the way in which an instructor 
positions themselves relative to the longstanding debates about the role of the university in 
society could play a substantial role in the way they make sense of the content tension and the 
instructor tension. If the priority for universities and mathematics departments is on preparing 
students for the workforce, then it follows quite naturally that the purpose of the GeT course is to 
prepare PTs for the work of teaching by supplying PTs with an instructor who is uniquely 
qualified to support them in gaining the knowledge needed for teaching; and for this, no one is 
more uniquely qualified than a mathematics educator well versed in the work of a geometry 
teacher. If on the other hand, the priority for universities and mathematics departments is to 
prepare well rounded students with a broadly defined education that can be used flexibly in a 
variety of contexts, then the purpose of the GeT course is to avoid the trap of focusing too 
narrowly (on a single profession) and instead focus on supporting students in gaining the canon 
of disciplinary knowledge that has been built up across many centuries; and for this, no one is 
more qualified than a mathematician well versed in such knowledge. These two examples 
illustrate how an individual with those views might find themselves prone to relating to the 
content and instructor tensions by taking sides. Of course, the source of the variation here does 
not rest solely with the individual, as instructors work in different kinds of institutions (e.g., 
liberal arts, technical schools, land grant institutions) which have historical ties to these larger 
arguments that have led them to organize their programs in ways that might make these 
competing perspectives more salient. With that as a background, we make sense of the instances 
in which an instructor elects to deal with the tension by reframing aspects of their work as 
somehow the opposite of taking sides. That is, by reframing the poles of the tension, we see ways 
that the instructor can avoid the need to take sides with colleagues by settling for a less than 
optimal solution. We think such a technique could be a useful skill set for an instructor needing 
to navigate and (perhaps) avoid difficult or contentious conversations with colleagues seeking to 
come to agreement about challenging aspects of the work. Finally, we see those places in which 
an instructor talks about the tension as a dilemma to be managed as neither one of taking sides or 
reframing, but as a decision to hold the poles of the tension, in tension. In his work Embracing 
Contraries, Elbow (1983) argues for the importance of undergraduate instructors coming to see 
tensions in the work as inherent dilemmas stemming from the very nature of teaching. In this 
way, Elbow himself conceives of tensions as objects deserving not only our careful attention, but 
deserving an embrace that holds together the integrity of the work of teaching in all of its 
complexities. While we are still mulling these difference over, in terms of what they might mean 
for instructors’ participation in larger discourses, our intuition leads us to believe that when it 
comes to the work of an instructor, the propensity to perceive of the tensions as dilemmas to be 
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managed as the more productive than the propensity to treat the tensions as a problem to be 
solved (by taking sides or reframing). 
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Theoretical Framework and Research Question 
The Conference Board of the Mathematical Sciences (2010) recommends, “before beginning 

to teach, an elementary teacher should study in depth, and from a teacher’s perspective, the vast 
majority of K-5 mathematics, its connections to prekindergarten mathematics, and its 
connections to grades 6-8 mathematics” (p. 23, emphasis added) in addition to courses in 
mathematical pedagogy. Mathematical tools (e.g., manipulatives) are helpful in developing 
understanding of the mathematical concepts (National Research Council, 2009). Thus, teacher 
educators need to explicitly engage future teachers in using mathematical tools to represent 
abstract mathematical ideas to help learners make sense of how and why those procedures work 
the way they do (Morris & Hiebert, 2017). We investigated the impact of using such tools in 
ways that align with NCTM’s (2014) vision for teaching mathematics in an elementary 
mathematics content course on teacher candidate learning and dispositions. The research 
question guiding this exploratory study was: In what ways and in what topics, did implementing 
NCTM’s (2014) effective mathematics teaching practices impact teacher candidate (TC) learning 
and/or dispositions in an undergraduate elementary mathematics content course?  

Methodology and Findings 
 The TCs were enrolled in a 100-level elementary mathematics content course for teachers at 

a mid-sized public university in the mid-Atlantic United States. To document their learning and 
changes in mathematical dispositions, seventy-nine TCs responded to a survey at the start and 
end of the course (to compare pre/post responses). This survey asked TCs to rate their 
understanding of each of the course’s learning goals on a Likert Scale from 1-4 with 1 meaning, 
“I don’t know what this (statement) means” and 4 meaning “I fully understand what this means 
and can explain completely and accurately with confidence.” We then used thematic qualitative 
analysis methods to summarize emergent themes for the open-ended questions following.  

Summary of Results and Implications 
TCs reported growth in understanding the mathematical content explored from a teacher’s 

perspective on the post-survey – most noteworthy was their deepened understanding of fractions. 
The themes that emerged from responses of the open-ended questions suggest that TCs’ 
dispositions grew as a result of implementing NCTM’s (2014) effective teaching practices. Many 
TCs came into the class with very negative opinions of mathematics but left the course believing 
that mathematics was something they could do and understand because of the manipulatives and 
rich mathematical discourse. While the limitations of self-reported data are well documented, 
these responses help to provide insights to the valuable learning experiences teacher education 
courses can provide for future teachers and provide insights to how we can help future teachers 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 478 

develop positive mathematical identities so that beginning teachers can create their math classes 
to be an enjoyable and worthwhile experience for every student! 
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There is often a disconnect for preservice teachers (PST) between the knowledge gained 
from university-based and PK-12 field-based experiences (Zeichner, 2010). The purpose of this 
study is to combat this disconnect by working to understand how PSTs, university instructors 
(UI), and mentor teachers (MT) draw upon and integrate academic knowledge (AK) and 
practitioner knowledge (PK) while co-planning secondary mathematics instruction in a third 
space. Co-planning in a third space allows for the interplay of multiple knowledge sources in 
inclusive and potentially transformational ways (Zeichner, 2010). For this study, we have 
defined AK as knowledge learned through interactions during university-based coursework, PK 
as anything learned through classroom-based experiences (McCulloch et al., 2020; Zeichner, 
2010), and integrated knowledge (IK) as the mental collaboration of both AK and PK. 

This case study was conducted with participants from a secondary mathematics education 
methods course at a large midwestern university during the Fall of 2022. Participants included 
two PSTs, two UIs, and one MT. Both of the UIs and the MT served as co-principal investigators 
for this study. Data were collected in four phases: initial background questionnaires, initial 
planning questionnaires, the co-planning session, and post co-planning questionnaires. Self-
reported data from questionnaires and transcripts from the co-planning session were coded 
according to role (i.e. PST, MT, or UI) and knowledge type (i.e. AK, PK, and IK). Data from the 
co-planning session were also coded by topic (i.e. pedagogy, students, mathematical content).  

Consistent with the literature, there were more self-reported instances of AK and PK by PSTs 
than instances of IK (Zeichner, 2010). A closer analysis of these knowledge types revealed 
several interesting findings. First, it was observed during the co-planning session that the 
interplay of both AK and PK played a role in the continual development and refinement of PSTs’ 
instructional decisions. This process of development and refinement may be a means of better 
understanding how AK and PK become integrated over time. 

Second, it was difficult in several instances to delimit if the knowledge referenced was 
learned in a university setting, a PK-12 setting, or some combination of both. It is reasonable to 
consider that participants may find it challenging to remember if knowledge they possess first 
originated in a methods course or from a classroom experience. Furthermore, it is reasonable to 
acknowledge that although one may have been exposed to an idea in one context, the 
development of that idea may be attributed to another context. 

Third, the current definitions of each knowledge type are either not clear enough, are a 
misrepresentation of the body of knowledge they seek to describe or may need further 
elaboration. For example, PK may be better defined as the refinement or adjustment of AK. It 
should also be considered that the interplay between knowledge types, or IK, may be best 
understood as a continuum rather than as a discrete category. For example, some study 
participants merely combined AK and PK while others seemed to tightly weave AK and PK.  
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We conclude that the notion of identifying and integrating AK and PK is not so clean cut and 
provides fruitful opportunities for further discussion.  
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In this study, we investigated preservice mathematics teachers’ growth and application of their 
emotional intelligence skills after participating in monthly social emotional learning (SEL) 
workshops for an academic year. SEL workshops were led by a local nonprofit specializing in 
universal prevention tools for systemic changes that benefit individuals and communities. We 
interviewed three preservice teachers who participated in all the workshops about their 
experiences with SEL skills in their personal lives, practicum experiences, and how they will use 
it in their future classrooms. We found the most common SEL competency areas they discussed 
were responsible decision making and social awareness. The undergraduate preservice 
mathematics teachers were clearly able to identify instances in both their personal and 
professional lives where they observed SEL skills being used. 

Keywords: Affect, Emotions, Beliefs, and Attitudes; Instructional Activities and Practices; 
Communication; Preservice Teacher Education 

In the United States there is a national shortage of mathematics teachers, and it is even more 
difficult to hire and keep highly qualified mathematics teachers in rural areas (Monk, 2007). This 
was especially true in our area, so we applied for, and received, a grant from the National 
Science Foundation to give full support to sixteen preservice teachers for the last two years of 
school if they double major in mathematics and mathematics education. In addition, they must 
participate in two learning community events each month during the school year. One of these 
learning community events would take place with our local nonprofit, Peacemakers Resources. 
Our relationship with this nonprofit represents a collaboration between our university and a 
partner in our local community to build trauma-informed approaches in schools. During the 
monthly meetings, the staff and students would learn about Social Emotional Learning (SEL) 
and how to use SEL skills in their classrooms.   

Researchers (Felitti, 2002; Shonkoff, Boyce, & McEwen, 2009) have documented adverse 
child experiences (ACEs) and trauma impact how students’ brains develop and function. 
Subsequent researchers have found teaching social emotional learning to students can reverse the 
effects of chronic stress (Thompson, 2014). Additionally, Ottmar et al. (2015) stated teachers 
trained in SEL are more capable of perusing ambitious mathematics teaching and Durlak et al. 
(2011) found students showed an 11 percentile-point gain on standardized achievement tests. 
Because of this research, we incorporated the SEL training into our teacher preparation project. 
We created this partnership to help prepare our preservice teachers to engage all students and 
design learning environments that take students’ emotional and learning needs into account.   
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Research Question 
The following question guided our research study: how have preservice teachers 

demonstrated growth and application of their emotional intelligence skills after participating in 
an SEL learning community for one year?  

Theoretical Framework 
Learning happens through social practices and people construct their understanding of ideas 

through active participation in learning communities. Communities of practice (CoP) (Wenger, 
1998) was our theoretical framework for this study. When people are learning, they are “active 
participants in the practices of social communities and constructing identities in relation to these 
communities” (Wenger, 1998, p. 4). Our preservice teachers engaged in a required SEL learning 
community for one year as part of their teacher preparation project. They had shared experiences 
centered around their mathematics coursework, SEL workshops, and learning community 
activities. The community of practice framework guided the organization and structure of our 
teacher preparation project with eight preservice teachers.  

Methods 
As part of a five-year long grant project on preparing preservice teachers to teach 

mathematics in high need rural areas, we investigated three of the preservice teachers’ growth 
and application of their SEL training. These students completed their junior year at a public 
university in the Midwest. The students double majored in mathematics and secondary 
mathematics education. All three students participated in the community of practice activities, 
including the SEL workshops with the local nonprofit. The first workshop was a full day training 
to introduce them to the impacts of trauma on brain development, ACEs, historical trauma, and 
strategies to build resilience (SEL). They then participated in monthly two-hour workshops on 
integrating SEL skills for personal and professional practice. At the end of the academic year and 
the workshops, we interviewed three preservice teachers using semi-structured interviews 
(Glesne, 2011). The interviews were each completed with one preservice teacher, two of the 
researchers who participated in the SEL trainings, and the leader of the SEL training.  

Each interview lasted approximately twenty minutes. We allowed for discussion around each 
question and follow up. We asked the preservice teachers four questions: 

1. How are you using what you learned in our SEL sessions in your personal life? 
2. How are you seeing SEL in your practicum experiences?  
3. What is your vision for incorporating SEL into your future classroom? 
4. Do you have any suggestions for the SEL training next year?  

The interviews were videotaped and transcribed. We recruited a faculty member from the 
Social Work department at our university with expertise in SEL to join our research team, then 
together we created an analytic framework (see Table 1) based on work from the Collaborative 
for Academic, Social, and Emotional Learning (CASEL, 2022). We used CASEL’s five broad 
but interrelated competency areas of SEL. We then used CASEL’s examples of each of the five 
categories as subcodes (common examples). 

After creating the analytic framework, we examined all the transcripts as a team of three (two 
researchers who participated in the SEL training and social work faculty member) and used the 
framework to document anytime a student discussed SEL. We first documented it as one of the 
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five competency areas followed by a common example. We did this process together, getting one 
hundred percent agreement before moving on. We coded two of the interviews a second time to 
check for consistency. We then tallied each time we documented a competency area during the 
interview.  

 
Table 1: Social Emotional Learning Competencies 

 
Competency Definition Common Examples 

Self-Awareness Accurately recognizing one’s 
emotions and thoughts, and their 

influence on behavior 
 

Self-efficacy; growth mindset; 
sense of purpose 

Self-
Management 

Regulating throughs, emotions, and 
behaviors in different situations and 

being able to set and achieve 
personal and academic goals 

 

Courage to take initiative; 
setting personal and collective 

goals; identifying and using stress-
management techniques 

Social awareness Taking the perspective of and 
empathizing with others from 

diverse backgrounds 

Empathy and compassion; 
showing concerns for other’s 

feelings; taking others’ perspectives 
 

Relationship 
skills 

 

Establishing and maintaining 
constructive relationships with 
diverse individuals and groups 

 

Developing positive relationships; 
communicating effectively; 

collaborative problem-solving 

Responsible 
decision-making 

 

Making ethical and respectful 
choices about personal behavior and 

social interactions 

Demonstrating curiosity and 
open-mindedness; making reasoned 

judgment after analyzing 
information; evaluating impacts 

Results and Discussion 
During analysis, we coded each time the preservice teachers shared things related to the five 

SEL competency areas and the 40 corresponding examples (CASEL, 2022). Through analysis, 
we found social awareness and responsible decision-making were the most common competency 
areas discussed by the preservice teachers (see Table 2).  

 
Table 2: Competency Frequency by Preservice Teacher 

 
 Self-

Awareness 
Self-

Management 
Social 

Awareness 
Relationship 

Skills 
Responsible 

Decision-Making 
Katie 
Lola 

4 
2 

6 
5 

9 
3 

8 
3 

7 
7 

Noah 
Total 

3 
9 

4 
15 

10 
22 

0 
11 

9 
23 
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Self-Awareness 
We documented a total of nine comments fitting the definition of self-awareness making it 

the least frequently observed. The most common expressions of self-awareness included self-
efficacy, growth mindset, and sense of purpose. Noah demonstrated a growth mindset in 
reflecting on how he is seeing SEL in his practicum experiences. After discussing successful and 
unsuccessful teachers he has observed during this time, Noah reflected on the positive teachers 
he has observed:  

Noah: I am kind of observing practices I want to use as a future teacher. And because I’ve 
had kind of the experiences, learning about the SEL stuff, I know what to look for and 
know what works and why it works and stuff like that. 

This is an example of Noah showing a growth mindset in relation to his self-awareness.  

Katie also demonstrated several examples of self-awareness. When speaking about how the 
SEL trainings have influenced her, she demonstrated a growth mindset, a sense of purpose, and 
self-efficacy in reflecting on her experiences: 

Katie: Another thing I felt like when I got into mathematics, I was more introverted, and 
(these) experiences definitely made me more extroverted and like I feel better to express 
opinions and like answer questions in class. And it just made me a better student as well 
and person. 

Author: Why do you think that is? I am just curious.  
Katie: Well, I think in a way like the first couple of SEL sessions that we had just kind of like 

forced me out of my bubble. Like, here is all these new people, talk to them. So seeing 
that like, oh, that went well. Like, I actually made connections really well. Like it just 
gave me the confidence I needed.  

This understanding of self-awareness is important because recognizing one’s strengths and 
limitations leads to professional identify formation as a new mathematics educator. It is 
important for them to have a strong sense of self-efficacy and a growth mindset.  
Self-Management 

Self-management builds upon self-awareness. This was the third most common SEL 
competency area the preservice teachers discussed during their interviews. The most common 
expressions of self-management were identifying and using stress-management strategies, 
showing the courage to take initiative, self-management skills, and setting personal and 
collective goals. We documented self-management 15 times.  

Lola had five instances where she showed reflection on self-management. An example of this 
in relation to stress management was when she spoke about needing to take breaks, breathe, and 
doing hot yoga since starting the SEL trainings: 

Lola: I definitely take a break and breathe sometimes. So, I definitely use those mindful 
moments. Also, just like expressing my emotions more rather than just bottling it up all 
the time. So, that is how I use it in my personal life. I also just do like breathing exercise 
more to calm down and stuff so. There was a lot of deep breathing this morning.  

Author: Is this a new thing or have you always done it? 
Lola: No, I haven’t done that before, and I also started taking hot yoga as I feel there is a lot 

of SEL in that.  
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Katie displayed six instances of self-management. Her discussions around self-management 
focused on her showing the courage to take initiative and setting personal and collective goals 
for her future classroom. Katie spoke of wanting to be attentive to her students’ needs. After 
speaking about a teacher, she observed who was very attentive to what students might need she 
said: 

Katie: I want to incorporate that, but I guess that’s more on me. That’s more of like a 
personality trait than it is something that I incorporate into my classroom.  

Katie was also very reflective on how she viewed the future SEL workshops the next year. She 
spoke of the importance of getting to know the new eight preservice teachers who would be 
joining the group.  

Noah also spoke of ideas related to self-management four different times during his 
interview. While sharing how he is using what he learned in his personal life, Noah reflected 
how it is important: 

Noah: Knowing what makes me happy and how can I add more of that to life.  
Noah identified aspects of a trauma-informed classroom that prioritizes students' wellbeing and 
self-regulation: 

Noah: I’m going to just create a classroom environment where students feel like they are set 
up for success. They know I want their success; they know their peers want them to 
succeed and stuff like that. And this taking time throughout the day, even though it feels 
like there’s a lot to get done in a class to get the students into the mindset of learning 
before getting into the learning.  

The preservice teachers reflected on the how they were using or would use self-management 
skills in their personal lives or future classrooms.  Demonstrating personal and collective agency 
is essential to a diversity-informed mathematics education environment where all students can 
thrive.  
Social Awareness  

Documented 22 times, social awareness was the second most common theme of the SEL 
competencies during the interviews. Common occurrences of social awareness were taking 
others’ perspectives, showing concern for the feelings of others, and showing empathy and 
compassion for others.  

When Noah was asked about how he is using SEL skills after the trainings in his personal life 
he demonstrated taking others’ perspectives: 

Noah: I think overall it is just kind of being more mindful of kind of like the place where 
other people are coming from. I mean, with my job, I work with a bunch of students from 
different backgrounds and things like that. And it is kind of just taking a step back and 
thinking about, okay, what are they going through? What are their motivations behind 
their actions and stuff like that, and kind of seeing them as people rather than the 
problems or the successes they have and stuff like that.  

When Noah was asked about using SEL in his future classroom he stated: 

Noah: Just seeing students as students and as people who have backgrounds.  
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Noah’s last statement represents a critical element of trauma informed pedagogy. Social 
awareness reflects educators’ ability to ensure their students are felt and heard in the classroom. 
Relationship Skills 

We found students mentioned ideas related to relationship skills a total of 11 times making it 
the fourth most observed SEL competency. Noah did not have any instances where he mentioned 
ideas related to relationship skills. The times we documented relationship skills for both Lola and 
Katie were focused around communicating effectively, developing positive relationships, and 
practicing collaborative problem-solving.  

Lola spoke of a teacher she observed several times and how they had an active learning 
classroom environment that she would like to implement when she begins teaching. This is an 
example of collaboratively solving a mathematics problem together at the whiteboard, she said:  

Lola: Like the kids are at a whiteboard and they are communicating with one another. And 
one student has a marker, so there is only one person writing. So, it is more 
communication based.  

Katie also had eight instances where she spoke related to relationship skills. Many of the 
ideas were how the training had influenced her in her personal life and as a student. She spoke of 
resolving conflicts constructively. First, she reflected on how the SEL workshops had influenced 
her ability to manage her relationships with her roommates. She said:  

Katie: Now instead of like yelling at them to do the dishes I can understand. You didn’t do 
the dishes like maybe we should have a conversation about this.  

Katie also spoke of how the learning community activities have helped her develop positive 
relationships: 

Katie: Well, I think in a way like the first couple of sessions that we had just kind of like 
forced me out of my bubble. Like, here’s all these new people talk to them. So, seeing 
that like, oh, that went well. Like I actually made connections really well. Like it just 
gave me the confidence I needed.  

We found this to be a powerful statement of the positive aspect of developing relationship skills. 
Central to developing a healthy classroom community, relationship management skills reflect the 
ability to constructively engage with diverse groups.  
Responsible Decision-Making 

Documented 23 times, responsible decision-making was the most common competency when 
the preservice teachers were discussing their noticing and learning of SEL skills. Common 
occurrences of this were identifying solutions for personal and social problems, reflecting on 
one’s role to promote community well-being through reflecting on SEL skills, demonstrating 
curiosity and open-mindedness to shifting perspective and evaluating the idea of interpersonal 
impacts.  

 
Lola spoke about ideas she wanted to do in her future classroom in relation to how she would 

help build a community of students. She stated: 
Lola: I personally would like to help students make their own agreements to like what their 

core values are. What they want to see in their classroom. 
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When Katie was reflecting on what she has learned through the SEL trainings, she explained 
how her mindset has shifted from how she would start the school year with her future students.  

Katie: At first, I feel like I was a little scared to take an entire week not devoted to math. I 
feel like a lot of opinions that I’ve heard are like you got to start with the math. You don’t 
have enough time in the year to get through it all. But, then like what we’ve been talking 
about with like mindful moments and then when the teacher came in to talk about how 
she uses that week, like, I am not scared of it anymore. Like, the math can wait a week.  

Katie demonstrated curiosity and open-mindedness to shifting her perspective of how the first 
few days of school should look and evaluated the idea of interpersonal impacts. A few minutes 
later Katie reflected on the trainings: 

Katie: The only thing left was that I feel like this is giving me a good perspective of what 
teaching is and I’ve seen more that it’s not just about teaching content. It’s not just about 
math. It’s about connections and meaningful relationships.   

Noah also reflected on how the SEL sessions might influence his future classroom. Noah 
reflected:  

Noah: I feel like my own classroom feels so far away even though it really isn’t. So, I should 
be thinking about these things, but I’m not thinking about these things all the time and 
I’m kind of the person where I’m like, I don’t know what I don’t know until I need to 
know that. I’m like, I should have thought about that before. So, it’s definitely been nice 
to kind of have this experience to think ahead, kind of reflection on what I want my 
classroom to look like and kind of emulate some of the positive experiences I’ve 
observed and had in classrooms.  

The most common theme we found in relation to the preservice teachers’ reflections of SEL 
skills was responsible decision-making. When reflecting on things they learned throughout the 
academic year and through their field experiences they found many examples of SEL. They 
made reasoned judgements, and demonstrated curiosity and open-mindedness based on what 
they saw and learned, ultimately embracing their role in promoting personal, family, and 
community well-being.  

Conclusions 
Researchers (e.g., Durlak et al., 2011; Ottmar et al., 2015) have documented the importance 

of training preservice teachers in SEL. Our preservice mathematics teachers participated in 
monthly SEL workshops. After one year, the preservice teachers demonstrated growth in their 
emotional intelligence skills in relation to the five broad SEL categories (CASEL, 2022). The 
most common competency areas in which they spoke of growth were social awareness and 
responsible decision making. Social awareness is critical because it will allow a teacher to be 
cognizant of their students and understand and empathize with students from diverse 
backgrounds. Responsible decision making is important because it supports teachers in making 
caring and constructive choices that benefit the collective well-being and promote student 
learning for all students.   

Our teacher preparation project created a learning community where students were active 
participants. Through these experiences the students demonstrated growth in different ways. 
Katie spoke of how the participation made her a better student and gave her the confidence to be 
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more outgoing and build more relationships as a mathematics student. Noah shared that the 
experiences have allowed him to see students as people rather than problems. Lola shared she 
was better able to manage stress after the trainings. While all three of the interviewed students 
learned and grew in different ways, we found the learning community participation and SEL 
workshops to be extremely beneficial for the students and us as the authors.  

This training helped preservice teachers design classroom environments that take students 
and learning into account, including students with a history of trauma exposure. The dearth of 
literature regarding the integration of SEL content in preservice teacher education calls for the 
articulation of methods that both successfully build SEL skills and pedagogical approaches. In 
this case, a CoP approach was used that paired personal integration of SEL practices with 
professional identity formation. Preservice mathematics educators indicated emerging personal 
SEL skills that integrated well with their pedagogical formation. With this study, our preservice 
teachers also documented a growth in skills central to resiliency that will support them in 
persisting in rural mathematics education positions. 
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Elementary preservice teachers (EPSTs) can sometimes trace feelings of mathematics anxiety 
or mathematics teaching anxiety to their own negative experiences as elementary students 
(Brown et al, 2011; Hobden & Mitchell, 2011). Teachers who performed poorly in mathematics 
class often come to dread teaching mathematics themselves (Brown et al, 2011), and EPSTs, 
having often focused on subject areas outside of mathematics, are particularly prone to this dread 
(McCulloch et al., 2013; Swars 2009). Based on these experiences, many EPSTs may hope to 
help their future students avoid negative experiences in the mathematics classrooms, which can 
risk translating into setting up students to avoid difficult or stressful situations in mathematics 
entirely. In this case, mathematics classes risk becoming less about teaching students the 
mathematical content and more about trying to ensure that students do not grow to dislike 
mathematics in the way they do. Gellert (2000) found that EPSTs desire to teach elementary 
mathematics in ways children would find fun, like focusing on games, competitions, and similar 
activities. While it is certainly beneficial for students to enjoy mathematics, some of these 
methods risk communicating that teachers must externally introduce fun into the classroom 
through activities that distract students from the mathematics. The implication is that 
mathematics is not innately fun or engaging for students. To thrive in mathematics, students must 
become comfortable with and willing to handle difficult problems (Bishop, 2012). Encouraging 
students to accept struggling with mathematics is then a necessary aspect of mathematics 
education; however, some EPSTs may not believe this themselves. 

In this study, we present our findings to the following questions: What assumptions do 
elementary preservice teachers make about their students' feelings towards mathematics? and In 
what ways do these assumptions impact their future classroom plans? Thirty-seven EPSTs 
completed mathematics autobiographies in which they discussed their perceptions of students’ 
mathematical experiences and their plans to manage these experiences in their own future 
classrooms. Using an emergent coding process (Creswell, 2017), we categorized these responses 
according to participants’ overall perception of students’ feelings, their reasoning for their 
perceptions, and the ways they planned to teach mathematics in their future classrooms. 
Participants most commonly perceived students’ opinions of mathematics to be negative (46%), 
with 59% of those respondents citing that students felt negatively about mathematics due to bad 
teachers and 65% believing the negative perception is due to the intrinsic difficulty of 
mathematics. The majority of EPSTs planned to emphasize “fun” (54%), hands-on activities 
(54%) and classroom collaboration in their classrooms (43%), with a desire to foster student 
confidence (22%); EPSTs form these plans under the assumption that all students must have had 
the same mathematics experiences that they did. This suggests the participants perceive learning 
mathematics as an inherently harmful or traumatic experience that must be carefully mitigated 
within their classrooms. 
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This study investigated how 155 pre-service teachers solved three pattern generalization 
problems in a two-part written test and sequenced them for teaching purposes to demonstrate 
their curricular noticing. Participants’ solutions were analyzed using inductive content analysis, 
which showed that only 8.4% of PSTs produced correct answers to all three problems, and 
14.2% proposed the same sequence as the researchers. As criteria for their sequencing, 52.9% 
used the problem’s difficulty, variously associated with visuality, complexity, and feasibility, and 
11% used their own understanding of how to solve the problem. It was also suggested that some 
participants’ incorrect problem-solving influenced their curricular noticing. Implications for 
helping pre-service teachers improve their curricular noticing ability are discussed. 

Keywords: pre-service teacher education, problem solving, teacher noticing 

Introduction  
The purpose of this study was to examine elementary pre-service teachers’ (PSTs) problem 

solving abilities and their curricular noticing through problem-solving and problem-sequencing 
activities. With increased interest in curricular and pedagogical innovation in mathematics 
education, curricular noticing (Dietiker et al., 2018; Males et al., 2015), including proper 
sequencing of problems to scaffold students’ understanding, has emerged as critical as noticing 
students’ mathematical thinking (Dietiker et al., 2018; Males et al., 2015; Remillard, 2005). 
Thus, Males et al. (2015) extended the construct of noticing to teachers’ treatment of curriculum 
materials and coined the term curricular noticing, defined as “the process through which 
teachers make sense of the complexity of content and pedagogical opportunities in written or 
digital curricular materials (p. 88).”  

Teachers’ ability to effectively use curriculum materials is a key component of teaching 
expertise and quality of instruction (Dietiker et al., 2018; Males et al., 2015; Remillard, 2005). 
For example, Amador et al. (2017) found that non-routine fractional tasks may support PSTs’ 
interpretations of core mathematical properties of tasks they encounter in curricular materials. 
Also, Males et al. (2015) examined how PSTs engaged with curricular materials by asking them 
to create a lesson plan after providing Grade 6 teacher materials on the division of fractions from 
four curricular programs.  

Although several studies have investigated PSTs’ curricular noticing in fractions, research 
has rarely been conducted on pattern generalization, which has been emphasized as important for 
advancing learners’ algebraic reasoning (Kaput, 1999; Radford, 2008). Also, as noted, Males et 
al. (2015) investigated PSTs’ curricular noticing by having them create lesson plans with 
curricular materials from four sources provided by the researchers. However, PSTs may not be 
ready for noticing with such a range of curriculum materials. Rather, in the early stages of 
teacher preparation, they may need to develop a lens for curricular noticing in a controlled 
situation with specific tasks or activities.  
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In this study, the act of curricular noticing was channeled through sequencing three particular 
problems rather than through the provision of multiple curriculum materials. The following 
research questions guided this study: (1) How do the PSTs solve the three pattern generalization 
problems? (2) What reasoning do the PSTs think is required to solve each of the three problems? 
and (3) How do the PSTs sequence the three problems and rationalize their sequencing?  

Theoretical perspectives: Curricular Noticing 
Teacher noticing is one of the key teaching practices that PSTs should begin to develop in 

teacher education programs. Jacobs et al. (2010) described this construct as involving the three 
interrelated processes of attending to students’ mathematical thinking, interpreting its meaning 
and importance, and making instructional decisions to further support their mathematical 
reasoning. In this construct, the first two components are required to attain the third component 
successfully, which is the core of noticing. Jacobs et al. termed this combination of interrelated 
processes as professional noticing, in that teacher’s noticing has the specialized purpose of 
making appropriate pedagogical decisions. Dietiker et al. (2018) later expanded the professional 
noticing framework to include curricular noticing, consisting of three aspects, attending, 
interpreting, and responding. Attending involves “looking at, reading, and recognizing aspects of 
curricular materials,” interpreting refers to “making sense of that to which the teacher attended,” 
and responding requires “making curricular decisions based on the interpretation (e.g., 
generating a lesson plan, a visualization, or an enactment)” (p. 89).  

As a framework in this study, we followed Dietiker et al.’s (2018) conceptualization of 
curricular noticing. However, because PSTs have few opportunities to engage in teaching in a 
classroom, we focused on one activity from each component of the curricular noticing 
framework to design a task using prompts corresponding to the three interrelated curricular 
noticing skills. We limited to asking PSTs to solve three problems to examine how they 
perceived the problems (Attending), to report what they thought was required to solve them to 
probe how they comprehended the problems (Interpreting), and to sequence the three problems 
with rationales to investigate how they would use them in lesson planning (Responding). 

Methods 
Data in this study comprised the responses to a written task. The 155 PSTs enrolled in 

several sections of a mathematics methods course at a large Southwestern university. The 
participants were enrolled in an elementary teacher education program leading to certification to 
teach from pre-K to eighth grade in the state where the data were collected. The PSTs had 
completed three mathematics content courses about number and operations, geometric reasoning, 
and algebraic reasoning before taking this methods course. The written task used in the study 
consisted of two parts (see Fig. 1). In the first part, the PSTs were asked to solve three pattern 
generalization problems developed by Stump et al. (2012) and to explain the 
reasoning/knowledge required to solve the problems. In the second part, they were asked to 
determine the proper sequence of the three problems to support student learning and to explain 
the rationale for their sequencing.  

 
 

Part 1: Problem Solving  
The following three problems are designed to help students learn to generalize pattern relationships. 
For each problem, (1) find an expression that you could use to find the nth term, and then (2) provide 
the kind of reasoning/knowledge required to solve each problem. 
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A. Hidden rectangle 
Investigate the relationship between the number of rectangles that can be found in a row of squares 

and the length of the row by filling in the table. Remember that a square is a special kind of rectangle. 
For example, in the second figure, count each square and the rectangle formed from two squares, so 
there are three rectangles in the second figure. 

 
 

B. Herringbone paRerns 
Shown below are the first three patterns in a sequence of herringbone designs. Investigate the 

relationship between the width of the pattern and the total number of line segments in the design by 
filling in the table. 

 
 

C. Number of squares 
Investigate the number of squares in each of the rectangles (including the hidden squares) by filling 

in the table. Find if there is a connection between the width of the rectangle and the total number of 
squares. For example, in the second figure, there are four 1x1 squares and one 2x2 square for a total of 
five squares. 

 
 

Part 2: Sequencing the Three Problems 
Revisit the three problems above and sequence the three problems in the best order for teaching upper 
elementary grade students (6-8th grade). Then provide your rationale for sequencing the three problems 
in that order. 

Figure 1: Main Task of This Study 

We applied an inductive content analysis approach (Grbich, 2007), which involved five 
processes: (a) reading each PST’s response and creating codes based on the raw data, (b) 
identifying the correctness and themes of the responses, (c) creating categories and subcategories 
based on features of the PSTs’ responses and solutions, (d) coding the categories and 
subcategories, and (e) interpreting the data quantitatively and qualitatively.   

Findings 
PSTs’ Solutions 

To probe how the PSTs solved the three pattern generalization problems, we examined 
whether they correctly identified the relationships and generalized expressions for the 
relationships they presented in their solutions. Table 1 shows the valid number sequence each 
problem contains, the generalized expressions for the number sequences identified, and the 
frequency of PSTs’ correct/incorrect responses. 
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Table 1. Correctness of PSTs’ Responses  
 

Problem number sequence Generalized 
expression 

Frequency (n = 155) 
Correct  Incorrect No attempt 

Hidden rectangles 1, 3, 6, 10, 15… 𝑛& + 𝑛
2  

13  
(8.4 %) 

129 
(83.2 %) 

13 
(8.4 %) 

Herringbone 
patterns 2, 6, 12, 20, 30… 𝑛& + 𝑛 88 

(56.8 %) 
52 

(33.5 %) 
15 

(9.7 %) 

Number of squares 2, 5, 8, 11, 24… 3𝑛 − 1 51 
(32.9 %) 

97 
(62.6 %) 

7 
(4.5 %) 

 
As shown in the above table, there was a wide range of differences in correct and incorrect 

responses across the three problems. Only a small number of PSTs (8.4%) produced correct 
answers to all three problems. In particular, the incorrect responses were predominant in the 
hidden rectangles problem. 

 
PSTs’ Thoughts about Required Skills and Understanding 

When asked about the necessary reasoning to solve each problem based on what they did to 
solve it, the PSTs proposed various ideas, from which three main themes emerged as common 
across all three problems: (a) knowing formulas, (b) explaining and identifying relationships, and 
(c) using problem-solving strategies. Also, generic statements and restating the generalized 
expression without additional explanations appeared across all three problems. For the hidden 
rectangles problem and the number of squares problem, geometry knowledge was additionally 
mentioned as a prerequisite for problem-solving. Table 2 shows PSTs’ ideas about the required 
skills and understanding for solving the three problems.  

 
Table 2. PSTs’ Ideas about Required Skills and Understanding 

 Examples Hidden 
rectangles 

Herring-bone 
patterns 

Number of 
squares 

Knowing 
formulas 

• Use the formula 
• Remember the formula 
• Know the arithme2c sequence formula 
• Know the quadra2c func2on formula 

19 
(12.3%) 

21 
(13.5%) 

23 
(14.8%) 

Explaining 
/identifying 
relationships 

• You must recognize that the number of 
rectangles is not increasing by a constant 
difference or ra2o. 

• Each new rectangle adds 2 small squares and 1 
hidden square, increasing by 3 each 2me. 

41 
(26.5%) 

22 
(14.2%) 

11 
(7.1%) 

Problem-solving 
strategies 

• Use a table 
• Trial and error: No dis2nct difference, so I made 

my own formula through trial and error. 
• Draw it out 

11 
(7.1%) 

17 
(11.0%) 

13 
(8.4%) 

Generic statement 
without specifics 

• Ability to find the paPern 
• Logical thinking 
• Algebra 
• Find rela2onships 

27 
(17.4%) 

53 
(34.2%) 

24 
(15.5%) 
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Simply Restating 
the generalized 
expression  

• For (n + 1): Each place’s answer is always that 
place x that place + 1 

• For 3n + 1: Mul2ply 3 and add 1 

20 
(12.9%) 

27 
(17.4%) 

45 
(29.0%) 

Geometry 
knowledge 

• Need to know the defini2on of a square 
• Know that a square is also a rectangle 
• Need to see the rectangles inside rectangles 

30 
(19.4%) 

0 
(0 %) 

24 
(15.5%) 

Other • It is hard. 
• Unsure how to solve. 
• I don’t know 

0 
(0 %) 

4 
(2.6%) 

3 
(1.9%) 

No response  7 
(4.5%) 

 

11 
(7.1%) 

12 
(7.7%) 

 
PSTs’ Suggested Problem Sequences and Rationales 

PSTs were asked to sequence the three problems to support students’ learning. Considering 
the cognitive demand and complexity, we agreed that the following is the proper sequence (C-B-
A): C-Number of squares problem, B-Herringbone patterns problem, and A-Hidden rectangles 
problem. Table 3 shows the sequences PSTs proposed.  

 
Table 3. Proposed Sequence by PSTs 

 Problem A Problem B Problem C 
First order 59 (38.1%) 

A-B-C: 18 (11.6%) 
A-C-B: 41 (26.5%) 

9 (5.5%) 
B-C-A: 4 (2.3%) 
B-A-C: 5 (3.2%) 

71 (45.8%) 
C-A-B: 49 (31.6%) 
C-B-A: 22 (14.2%) 

Second order 54 (34.8%) 
B-A-C: 5 (3.2%) 
C-A-B: 49 (31.6%) 

40 (25.8%) 
A-B-C: 18 (11.6%) 
C-B-A: 22 (14.2%) 

45 (28.8%) 
A-C-B: 41 (26.5%) 
B-C-A: 4 (2.3%) 

Third order 26 (16.5%) 
B-C-A: 4 (2.3%) 
C-B-A: 22 (14.2%) 

90 (58.1%) 
A-C-B: 41 (26.5%) 
C-A-B: 49 (31.6%) 

23 (14.8%) 
A-B-C: 18 (11.6%) 
B-A-C: 5 (3.2%) 

No response 16 (10.3%) 

 
Twenty-two (14.2%) of the PSTs proposed the same sequence we proposed (C-B-A), 

including the 13 PSTs who solved all three problems correctly, whereas nine who produced the 
sequence of C-B-A did not solve all three problems correctly. Overall, Problem C was most 
frequently placed first in the recommended order, Problem A in second place, and Problem B in 
third. 

The PSTs’ justifications for their proposed sequencing of the problems are summarized in 
Table 4: 

 
Table 4. PSTs’ Justifications for Their Sequence 

Category Examples Frequency 
Difficulty • Easier to harder (without explanation) 

• Easy: Start with the one that has a clear common difference 
• Easy: Start with the one that formula can be used 
• First, Problem C because it is easy to see the pattern, then 

82 
(52.9%) 
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Problem B because it is easy to visualize, then Problem A 
because recursive reasoning can be confusing 

Scaffolding • Problem A is the easiest, and Problem C is similar to Problem A 
• Because the first two build at each other and help them 

understand the third one.  

20 
(12.9%) 

PSTs’ own 
understanding/skills 

• Starting with Problem C makes sense to me. I was able to 
understand this better than the others.  

• Problem B was complex for me, so I would not use it with 
students. 

• I will suggest the order in which I could complete them.  
• Problem B was more difficult for me, so I feel that the kids would 

also have difficulty understanding.  

17 
(11.0%) 

Knowledge of 
geometry 

• It requires knowing “squares are rectangles.” 
• It is hard to find all of the hidden squares. 

10 
(6.5%) 

Prior knowledge • Use of known formula 
• Solving Problem B requires knowledge of exponents 

6 
(3.9%) 

Importance • Problem C is the most important 1 
(0.6%) 

General  • Critical thinking 
• Need to understand algebra 

6 
(3.9%) 

No response  13 
(8.4%) 

 
More than 50% of the PSTs used the problem’s difficulty as a criterion for the proposed 

sequence. However, we noted that the PSTs referred to the difficulty in many different ways, 
such as visuality, complexity, feasibility for directly applying formulas, and connections with 
multiple mathematical topics. We also noted that about 11% of the PSTs sequenced the problems 
based on their own understanding and skills, often mentioning what was easy or difficult for 
them. Although this category was also related to how the PSTs defined difficulty, we reported 
this rationale separately because these PSTs offered purely subjective interpretations based on 
their own abilities. Some PSTs also explained that Problems A and C were related because of 
their connection with geometry and juxtaposed them in the sequence. It is worth noting that the 
PSTs’ incorrect problem-solving might have influenced their proposed sequence. For example, 
many PSTs produced incorrect answers by counting only 1x1 squares, resulting in 
straightforward arithmetic sequences, which they felt were easy.  

Discussion and Implications 
Gaps to Fill in PSTs’ Understanding and Execution of the Problem 

We noted that only a small number of PSTs (8.4%) found correct answers in all three 
problems. It is worth noting that these PSTs did not rely on the mechanical application of 
existing arithmetic or geometric formulas. Instead, they first looked for the problem's structure 
and generated patterns.  

Some of our observations are worth further discussion when reviewing the incorrect 
responses. First, we found that most errors in the two problems (hidden rectangles problem and 
number of squares problem) occurred due to misunderstanding the problems. Specifically, when 
PSTs did not count all rectangles or squares (e.g., only counting 1x1 unit squares), they ended up 
with straightforward arithmetic sequences, such as the sequence with a common different 1 or 2. 
We intentionally used tasks that could create more than basic arithmetic or geometric sequences 
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where the common difference or common ratio was not apparent using geometric contexts. 
However, unlike our expectations, our tasks could not fully facilitate many PSTs’ in-depth 
investigative work. We conjecture that many PSTs were familiar with working on typical 
number patterns neatly presented for directly applying formulas. Their prior experience of what 
and how they learned pattern generalization does matter. If PSTs’ prior experiences in pattern 
generalization were mainly focused on a rule-driven approach, it would be necessary to provide 
opportunities for PSTs to investigate atypical number patterns that may integrate other domains 
of mathematics, such as geometry.  

Second, many PSTs who could identify the correct number patterns still failed to present 
generalizable expressions. This result was particularly prevalent in the herringbone pattern 
problem (e.g., 75% of the incorrect cases). A few apparent strategies included guess and check, 
as the generalized expression only worked for some, not for all terms. Also, regardless of the 
correctly identified number patterns, some PSTs presented the general form of an arithmetic 
sequence, considering the difference between the first and the second terms as the common 
difference for the entire patterns, showing the application of formulas in a rote manner. In 
Common Core State Standards for Mathematics (National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010), students are expected to explore 
patterns using various modes of representations, such as physical materials, drawings, tables, 
words, and symbols, to make sense of the regularities and to see the changes quantitively and 
abstractly. If this kind of exploration was not a substantial part of PSTs’ prior experiences, they 
need to have such experiences in the teacher education program.   

 
Instructional Sequence: What Matters 

When asked to sequence the three pattern generalization problems, we noted that a small 
number of PSTs (22 PSTs, 14.2%) suggested the instructional sequence of the problems that was 
the same as the researchers’ sequence. Apparently, the PSTs who misunderstood the problems 
and yielded simple arithmetic sequences for the hidden rectangles problem and the number of 
squares problem were unable to sequence the problems properly. Of these 22 PSTs, 13 PSTs 
were those who solved all three problems correctly. This result implies that teachers’ content 
knowledge is necessary, although we cannot say it is the only sufficient factor for the appropriate 
instructional decisions.  

In examining PSTs’ justifications for their proposed sequence, “difficulty” was the most 
predominant reason. However, we noted that there was no consensus on what it meant by 
“difficulty.” While some PSTs simply said “from easier to harder” without explanations, other 
factors, such as visuality, complexity, the feasibility of direct application of arithmetic sequence 
formula, and the connection with other topics, were also addressed. It is also noted that about 
11% of PSTs relied on their own problem-solving ability and comfort/confidence level in 
sequencing the problems, assuming that students’ problem-solving ability and 
comfort/confidence level would be similar to theirs. Also, this tendency might hinder PSTs from 
eliciting and interpreting students’ thinking and offering appropriate interventions as needed, 
especially when students’ approaches are different from PSTs’. Thus, teacher educators need to 
provide more opportunities for PSTs to examine and analyze strategies different from theirs and 
decipher the reasoning behind those approaches. It is not our intention to suggest that there is a 
pre-defined instructional sequence, and that PSTs need to master the pre-determined sequence. 
Instead, we suggest PSTs need to be aware of various factors that should be considered in the 
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decision of instructional sequence and to build the ability to discern what factors should be 
foregrounded and backgrounded.  

This study contributes to the current literature on curricular noticing and the knowledge base 
of teacher education. In particular, this study has implications for teacher educators working on 
designing mathematics education courses for PSTs and researchers interested in a better 
understanding teachers’ knowledge and pedagogical strategies. That is, the findings of this study 
suggest that elementary mathematics teacher education programs need to include more curricular 
noticing activities in the form of sequencing tasks and other activities that enable PSTs to 
experience curricular noticing in the early stages of their teaching careers. This study also 
suggests the importance of further investigations of PSTs’ curricular noticing ability as 
demonstrated in other mathematics teaching contexts.  
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Preservice teachers (PSTs) are expected to possess a relational understanding (i.e., knowing 
how to do and why) of mathematics for ambitious instruction. This study aimed to shed some 
light on the possibilities of supporting PSTs’ development of relational understanding of 
fractions through engaging them in writing collective argumentation. Drawing data from a 
larger project; we explored the development of a PST’s understanding of fractions through the 
engagement of collective argumentation. The results indicated that the PST’s relational 
understanding of fractions developed from both structural and content perspectives. Some 
educational implications for teacher education are discussed.   

Keywords: Mathematical Knowledge for Teaching, Preservice Teacher Education, Number 
Concepts and Operations, Elementary School Education 

Developing mathematical understanding is the core of mathematics education. Skemp (1976) 
conceptualized that one’s mathematical understanding can be considered as a continuum moving 
from instrumental (processing procedures or mathematical facts without understanding how they 
are connected) to relational (knowing how and why mathematical facts and procedures are 
related). In the field of mathematics education, there is agreement that we should engage All 
students in meaningful mathematics by supporting students in developing a relational 
understanding of mathematics (Hiebert, 1997; Ma, 2020; NCTM, 2014; Van de Walle et al., 
2020). Given teachers' mathematical knowledge for teaching (Ball et al., 2008) plays an 
influential role in affecting students' opportunities of engaging in developing a relational 
understanding of mathematics (Hill et al., 2005), it is essential to prepare preservice teachers 
(PSTs) with a relational understanding of mathematics (AMTE, 2017). This study serves this 
broad goal: promoting PSTs’ relational understanding of mathematics, with a focus on fractions. 

The data of this study draw from a larger project which was designed to promote PSTs’ 
fraction proficiency via engaging them in writing collective argumentations online (WCAO), an 
approach asking PSTs to write their justification for how and why a certain mathematical 
strategy (e.g., the common denominator strategy for ordering fractions) works (Liu, 2021). The 
larger project focused on the topic of fractions and the population of PSTs because of the 
following three major reasons. First, fractions play a fundamental role in mathematical learning, 
which can predict students' overall mathematics achievement in upper elementary, middle 
school, and high schools (Bailey et al., 2012; Brown & Quinn, 2007; Hansen et al., 2017; Siegler 
et al., 2012; Torbeyns et al., 2015). Second, students are often struggled with fractions and lack 
an understanding of fractional procedures (Booth & Newton, 2012; Carpenter, 1981; Cramer et 
al., 2002; Gómez & Dartnell, 2019; Liu & Jacobson, 2022; NMAP, 2008; Siegler & Pyke, 2013; 
Stafylidou & Vosniadou, 2004). In other words, although fractions are especially important, 
students’ understanding of fractions is limited, which makes improving students’ fraction 
learning opportunities urgent. Scholars argued teachers’ fraction knowledge might play a role in 
this situation, which is related to the third reason that teachers, including pre-and in-service 
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teachers, possess inadequate fraction knowledge for teaching fractions for understanding 
(Olanoff et al., 2014).  

Situating in the broad context of the large project, the current study aims to shed light on 
understanding the possibility of improving PSTs’ relational understanding of fractions and 
exploring an effective analytical approach to capture the progress toward a more relational 
understanding. Specifically, we zoomed in on one case, a PST named Hope, in which she used 
the common denominator strategy to solve a fraction ordering task to answer the following 
research question: What relational understanding has the PST developed after engaging in 
WCAO? 

Theoretical Background 
A Continuum of Mathematical Understanding: From Instrumental to Relational 

This study employed a constructivist perspective that individuals construct mathematical 
understanding and meanings by connecting what they know and the new information they 
encounter. Skemp (1976) proposed that one's mathematical understanding can be thought of as a 
continuum that progresses from instrumental to relational (see Figure 1). Instrumental 
understanding refers to a situation in which an individual's knowledge is primarily made up of 
isolated facts, meaningless procedures, and rules learned by rote (see the left circle in Figure 1). 
On the other hand, a relational understanding enables an individual to comprehend how and why 
mathematical concepts and procedures are logically related (see the right circle in Figure 1). Van 
de Walle et al. (2020) argued that "understanding is a measure of the quality and quantity of 
connections a new idea has with existing ideas. The greater the number of connections to a 
network of ideas, the better the understanding" (p. 20). Thus, a more relational understanding can 
be understood as a process of making more qualified connections between mathematical ideas to 
one’s network.  

 

 
Figure 1: An Illustrative Model of Understanding Development (Van de Walle, 2020, p.20) 

 
Toulmin’s (1958/2003) Model for Collective Argumentation 

As shown in Figure 2, according to Toulmin (1958/2003), an argument involves some 
combination of claims (statements whose validity is being established), data (support provided 
for the claims), warrants (statements that connect data with claims), rebuttals (statements 
describing circumstances under which the warrants would not be valid), qualifiers (statements 
describing the certainty with which a claim is made), and backings (usually unstated, dealing 
with the field in which the argument occurs).  

In order to explore how a person’s relational understanding of a certain mathematical object 
shifts, it is crucial to analyze both the quality and/or quantity of new connections an individual 
made between mathematical ideas. In this study, we adapted Toulmin’s (1958/2003) model as an 
analytical framework because this model has been widely used in mathematics education 
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literature to analyze how collective argumentation developed in a social setting concerning the 
content and structure of arguments (e.g., Krummheuer, 1995; Zhuang & Conner, 2022). In 
addition, Toulmin’s (1958/2003) model provides us with a tool to identify how mathematical 
ideas are connected by examining how argument components (e.g., claims, warrants) are 
constructed. 

 
Figure 2: Structure of a Generic Argument (adapted from Toulmin, 1958/2003) 

 
To frame one’s understanding, this study followed the idea from Conner (2008) to use colors 

to denote different types of argument components: given data (green square), claim or data claim 
(blue square), explicit warrant (yellow circle), implicit (brown circle). This allows us to explore 
the structure of an argument and analyze the content of a specific argument component. In this 
way, from the lens of the structure of an argument, we assess the quantity of the connections 
according to the structure of an argument; and from the lens of the content, we assess the quality 
of the connections. These two lenses together help us to determine to what extent an individual 
develops a more relational understanding. For the purpose of this specific study, we focused on 
three main core components of argument (i.e., claim, data, warrant). If a component functions as 
both data in one argument and as a claim in a sub-argument, we label it as a data/claim. 
Sometimes, parts of an argument may not be explicitly stated but can be inferred were labeled as 
implicit.  

Methodology 
Setting and Participant 

This study is part of a larger research project which aims to promote PSTs' fraction 
proficiency by engaging them in writing collective argumentations for each of the eight 
commonly used fraction comparison strategies (e.g., the common denominator strategy, the 
number line strategy, the fraction bar strategy) in an online setting (Liu, 2021). To assess the 
impact of the intervention on PSTs' fractional understanding, the larger project employed a 
pretest-post-test design. Each participant was asked to order 2/3, 3/4, and 3/8 from the smallest to 
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the greatest using as many strategies as they could on a paper sheet and orally explain their 
solutions at the beginning and the end of the project (We refer to them as pre-and post-test). A 
reflective interview was also conducted at the end of the larger project.  

We adopted Yin's (2014) selection procedure of typical cases (details see p. 46) and 
identified Hope as a typical case to focus on. Hope was a white female who engaged in a WCAO 
session using the common denominator strategy to order 2/3, 3/4, and 3/8. Hope was 
purposefully selected for this study because she expressed an interest in engaging in WCAO due 
to her fluency with fraction-related procedures but not confident with her conceptual 
understanding of fractions. Hope was in the second year of her undergraduate teacher education 
program and had completed two mathematics content courses (rational numbers and geometry) 
so far. We focused on examining Hope’s understanding of the common denominator strategy 
because this strategy is the most wildly taught and used procedure-oriented strategy and was the 
strategy that Hope felt “the most comfortable with when we started this project” and “would just 
kind of default to it” before joining the project. 
Data Source and Analysis 
     The data source used in this study includes the pre-and post-tests, where Hope used the 
common denominator strategy to order three fractions with explanations, and her reflective 
interview after the WCAO. The data has been video-recorded and transcribed for analysis (see 
Figure 3, for the sake of space, here, only show the beginning part of the transcript).  

 
Pre-test Post-test 

 
 

Hope said while she gave the above solution in 
the pre-test, “I want to find a common 
denominator. So, this is, so between 3 and 4, the 
obvious one is, 2, is 12 to me. But then I also 
have to include eight, So, instead I'm going to 
use 24, and I should use a factor tree, but in my 
mind, the numbers just kind of pop out. And so, 
I'm going to set up my little tables to make these 
all out of 24. 24 is, yeah, it is divisible by three. 
So, to get to 24 from three, you have to multiply 

Hope talked while she gave the above solution in the post-
test, “I believe next I'm going to do the common denominator 
strategy, which this was the strategy that I was the most 
comfortable with when we started this project and like, I 
would just kind of default to it. Yes. Okay, So I'll start by 
listing out my fractions two thirds, three fourths, and three-
eighths. So, the goal is to find a number where each 
denominator is a factor of it. And we want to find the least 
common multiple of these three fractions. So, like off the top 
my head obviously, I know what it is, but what younger 
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it by eight. So, I'm going to do the same thing on 
the top. So, two times eight becomes 16 and 
24. And to get from four to 24, you have to 
multiply by six. So again, do the same thing on 
the top. And to get from eight to 24, you have to 
multiply by three. So, I'm going to multiply the 
top by three. And so, these two, this one [3/8] 
and this one [2/3] are kind of like the 
denominators are, I always think of them as like 
inverses of each other, because 8 times 3 is 24 
and then 3 times 8 is 24. But now we can just 
compare the numerators. So, we have 16, 18, 
and 9…”  
 

students will likely be taught to do is list out multiples of 
these denominators until they find one in common. So, 3,6, 9, 
12, 15, 18, 21,24,27 And then we'll move on to 4, 8, 12, 16, 
20, 24. So now I see that two of these have 24 in common. 
So, then I can check and see if eight would also go into 24, 
which evenly in which it will. So, 8, 16, 24. So that means 
that my least common multiple is 24. So now I'm going to 
setup fractions to convert them. So, 3 over 4 to something 
over 24, two thirds to something over 24. And what was last 
three eighths, something over 24. So, 3 over 4 to something… 
over 24, So, we want to multiply the denominators of each 
fraction by whatever factor it takes to make them into 24. But 
we also have to multiply that same number to the top in order 
to keep the fractions proportional. Because if we only 
multiply it a four by six to get it to 24. And we said it was 3 
out of 24. That's not going to be the same ratio as three-
fourths. Three-fourths isn't equivalent to this number. And so, 
what we're really doing is multiplying each number by one 
but by different versions of one to increase that number. So 
now I'm going to setup fractions to convert them... So, 3 over 
4 to something over 24... So, to get four to 24, we have to 
multiply by six. So, six times three is 18. So, three-fourths 
becomes 18 over 24. So, we're really multiplying this fraction 
by six over six, which is the same as multiplying by one, but 
this just scales it up …” 
 

Figure 3. Hope’s Pre-and Post- Written Response and Partial of the Transcript of Her 
Verbal Response  

 
We applied adapted Toulmin's model to explore Hope’s understanding of the common 

denominator strategy in the pre-and post-tests through her participation in WCAO. Any 
differences in diagramming were discussed among researchers until a consensus was reached. 
We identified her talking about the common denominator strategy in her reflective interview 
after the WCAO to triangulate and contextualize our results. 

Results 
In this section, we report our results of Hope's understanding of the common dominator 

strategy in terms of structure and content changes from pre-test to post-test. The following 
Figure 4 shows the basic structure of Hope’s argument from the pre-test and post-test. We found 
that she made two typical changes regarding an argument's structure and content. From the 
structure perspective, we saw Hope made two warrants from implicit to explicit, and added more 
warrants to justify her claims post-WCAO. Additionally, from the content perspective, Hope 
transferred from talking about the specific task only to talking about the common denominator 
strategy in general, especially the fundamental ideas. She used more than one warrant to support 
a claim after the WCAO. These changes suggest Hope has developed a more relational 
understanding of the specific strategy after engaging in the WCAO session.  
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Figure 4. Toulmin’s Model of Hope’s Argument in the Pre-and Post-Test 

Structure Changes 
As Figure 4a and Table 1 show, Hope made seven claims and supported these claims with 

five explicit warrants and two implicit warrants in the pre-test. Hope made eight claims and 
supported the claims with nine explicit warrants in the post-test, as Figure 4b shows. Thus, Hope 
made one more claim backed up with two warrants and transferred two warrants from implicit to 
explicit after the WACO engagement. These results indicate that Hope increased the number of 
connections after engaging in WCAO.  

 
Table 1. Summary of the Structure Changes 

Argumentation 
Component Pre-test Post-test Changes 

Claims 7 8 +1 
Explicit warrants 5 9 +2 

Implicit warrants 2 N/A Transferred two 
warrants from implicit to explicit  

 
Content Changes 

 From comparing the content of specific argument components, we found that Hope made 
two essential changes: a) understanding the fundamental idea of the common denominator 
strategy and b) understanding the rationale of the procedure for finding equivalent fractions. 

Understand the Fundamental Idea of the Common Denominator Strategy. One 
fundamental idea of the common denominator strategy is to understand why we want to apply it 
to compare 2/3, 3/4, and 3/8 rather than compare them directly. Hope developed her answers 
after WCAO. As we mentioned, the common denominator strategy was the fraction comparison 
strategy that Hope was "most comfortable with" and "just kind of default to” use. But she did not 
think about the why questions before WCAO. As Hope expressed in her reflective interview, 
"For common denominators, and I just thought of it as, oh, you know, we have the same 
denominator, so we can just add [compare] them." This expression suggests an implicit 
connection between the "same denominator" and "just [compare] them." However, Hope could 
articulate this connection explicitly after WCAO. She stated in the reflective interview, "It as we 
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have a common denominator so that we only have to look at the numerator because before we 
were comparing two variables [denominator and numerator] and [now] we are only comparing 
one [numerator]." This statement shows Hope made connections between the number of 
variables, the affordance of the common denominator strategy, and the goal of fraction 
comparison, suggesting progress in understanding the fundamental idea of the common 
denominator strategy after WCAO.  

The connections Hope made between the number of variables and the affordance of the 
common denominator strategy supported her in providing more warrants to her claim in the post-
test. For instance, Hope claimed in the pre-test that "now we can just compare the numerators" 
without providing an explicit warrant of why we can only compare the numerator after she 
transferred all the fractions into the fractions with a common denominator 24. In contrast, in the 
post-test, Hope made a more precise claim that "By finding the common denominator we've 
made, so that we only need to look at the numerator," and provided an explicit warrant by stating 
that "Because every denominator is the same, so we know that all of the pieces are the exact 
same size... So, we only order the numerators from least to greatest." This example shows 
progress in Hope's relational understanding of the common denominator strategy, in which she 
transformed an implicit warrant (previous knowledge about only comparing the numerator) into 
an explicit warrant (using the common denominator strategy to make "all of the pieces are the 
exact same size," that is, to control one variable).  

Understand the Rationale of the Procedures for Finding Equivalent Fractions. After 
WCAO, Hope also understood why we must multiply the same non-zero whole number by the 
numerator and denominator when finding equivalent fractions. Hope said in the reflective 
interview that she "knew you multiply by the numbers" but "wasn't understanding exactly how 
we create those equivalent fractions [works]" before WCAO. Nevertheless, she learned that "it 
[transferring to equivalent fractions] stays the same because you're really just multiplying by one 
and scaling it up by doing, like, four over four" from engaging in WCAO.  

 The new insight Hope gained that "you're really just multiplying by one" seemed to 
support Hope in providing two new explicit warrants to justify why the finding equivalent 
fraction procedure works in the post-test. Her first warrant used indirect reasoning, in which 
Hope stated in the post-test, “[For 3/4], because if we only multiply a four by six to get it to 24 
[only multiply the denominator]. And we said it was 3 out of 24. That's not going to be the same 
ratio as three-fourths. Three-fourths isn't equivalent to this number.” Here, Hope justified the 
rationale of multiplying the same number by the numerator by showing the mathematical conflict 
created by not doing so (3/24 "is not going to be the same ratio as" and "isn't equivalent" to 3/4).   

 The second warrant justified why the procedure of multiplying the same non-zero whole 
number to the numerator and denominator can maintain equivalence by connecting to the 
multiplicative identity property one that “a x 1 = 1 x a = a” and the fact that 1= n/n (	𝑛	 ≠ 0). 
Hope stated this idea specifically in the post-test as follows,  

What we're really doing [multiply the same number to the numerator or denominator] is 
multiplying each number [each fraction] by one but by different versions of one to increase that 
number [the denominator]. So [for fraction ¾] to get four to 24, we have to multiply by six. So, 
we're really multiplying this fraction by six over six, which is the same as multiplying by one, 
but this just scales it up. So, six times three is 18. So, three-fourths becomes 18 over 24.  

Hope’s above understanding could be expressed in an algebraical form that,  
𝑎
𝑏 =

𝑎 ∙ 𝑛
𝑏 ∙ 𝑛 =

𝑎
𝑏 ∙
𝑛
𝑛 =

𝑎
𝑏 ∙ 1 =

𝑎
𝑏 		=

𝑐
𝑑 	(𝑛	 ≠ 0) 
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For the case of ¾, this reasoning process could be expressed as,  
3
4 =

3 ∙ 6
4 ∙ 6 =

3
4 ∙
6
6 =

3
4 ∙ 1 =

3
4 = 	

18
24	(𝑛	 ≠ 0) 

 The above results showed that Hope had improved her relational understanding of the 
common denominator strategy by making connections between the procedure of finding 
equivalent fractions, indirect reasoning, ratio, different versions of one, and the property after 
engaging in WCAO.  

Conclusions and Implications 
We identified what relational understandings Hope developed from both the structural and 

content perspectives by examining Hope's use of the common denominator strategy in the pre-
and-post-tests through Toulmin's (1958/2003) model. These findings exemplified that Toulmin's 
model could be a useful analytic tool to characterize the progress of a person’s relational 
understandings by concerning both the content and structure lens. These two lenses provide a 
more comprehensive picture of understanding a person's development of relational 
understanding of mathematical concepts. Hope's case also shows that although a PST has 
mastered a strategy for solving tasks correctly, plentiful spaces for expanding their relational 
understandings exist. Collective argumentation (e.g., WCAO) could be an effective pedagogical 
approach because it allows PSTs to address their learning needs using their strength in 
mathematical procedures. Through engaging in collective argumentation, furthermore, WCAO 
provides a context for preservice teachers to understand collective argumentation better, which 
may support them in learning to implement collective argumentation in their future teaching. 
This study urges us to explore further how engaging in the WCAO session impacted Hope and 
other participants' development of rationale understanding of mathematical concepts.  

We also notice this study's limitation in that we only examined one critical case study of 
Hope. We studied how Hope developed her conceptual understanding of fractions before and 
after participating in WCAO. Although we cannot claim that the findings will generalize to other 
learning of mathematical concepts with the WCAO approach, the findings may be generative for 
teaching and learning mathematics through an online collaborative learning community. 
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La modelación matemática, vista como estrategia didáctica, busca entender la matemática como 
una herramienta que permite la resolución de problemas en contextos extra-matemáticos. Los 
tipos de contextos que se pueden utilizar en modelación matemática suelen ser diversos, siendo 
los principales aquellos relacionados con situaciones de la vida cotidiana y los relacionados con 
otras ciencias como la física, química, biología, entre otras. En la presente investigación se 
describe una situación cuyo contexto se relaciona con la literatura infantil, que desencadena un 
proceso de modelación matemática. La implementación de esta se llevó a cabo con profesores 
en formación de educación primaria. Los resultados muestran las representaciones informales 
que los profesores y las profesoras utilizaron y las diferentes estrategias para llegar a la 
respuesta correcta. 

Palabras clave: Mathematical representations, Modeling, Elementary School Education 

La modelación es un proceso que da inicio mediante la conceptualización de una situación 
problema, para posteriormente buscar su simplificación y estructuración, que culmine con un 
proceso de matematización donde se usa o desarrolla un modelo matemático. Los resultados 
matemáticos son trasladados de nuevo al dominio extra matemático donde el problema estaba 
localizado (Niss, et al., 2007). De acuerdo con Pollak (1969, 2007) las etapas que contempla el 
ciclo de modelación matemática son: Identificación de una pregunta del mundo real que se 
quiere entender; Selección de objetos particulares importantes para la pregunta hecha e 
identificar relaciones entre ellos; Decición cuáles son útiles e ignorar los que no lo son; Traslado 
de esta versión en términos matemáticos, para la obtenención de fórmulas matemáticas para esta 
pregunta determinada y resolver el problema. 

De acuerdo con California State Board of Education (2015), las situaciones de modelación 
matemática comparten características como los siguientes: son desconocidas, memorables, 
relevantes, tienen más de una respuesta correcta, tienen un proceso de resolución extenso, son 
complejas, los estudiantes descubren procesos, no tienen límites fijos, son cíclinas y no aparecen 
en un lugar en particular. Para Lesh y Doerr (2003), los problemas planteados en una perspectiva 
de modelación, buscan que el estudiante descubra ideas y construya procesos y habilidades que 
se necesitan para dar respuesta a problemas de la vida real, a diferencia de una vista más 
tradicional donde se necesita conocer previamente los requisitos y herramientas en situaciones 
descontextualizadas.  

En la investigación de Robledo (2019) se especifican los principales contextos que se utilizan 
en los examenes PLANEA (Plan Nacional para la Evaluación de los Aprendizajes). Los reactivos 
de dicha prueba, plantean problemas que involcuran contextos de la vida cotidoana del alumno 
(compras, rutas, tiendas), así como problemas relacionados con el estudio de otras ciencias como 
física, química o biología. Algunos estudios también describen entre los contextos principales, el 
uso de matemáticas lúdicas (Quiroz, 2015) como lo son problemas relacionados con juegos de 
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azar, o desarrollos tencológicos o videojuegos. La investigación actualmente busca reconocer 
estas tipologías y describirlas en el uso y desarrollo de situaciones basadas en modelación 
matemática. La presente investigación tiene como objetivo el diseño de una situación basada en 
la modelación matemática donde se utilice un contexto desde la literatura infantil. Posterior a 
esto, es de interés reconocer las representaciones iniciales que surgen en el proceso de resolución 
de la situación, mediante su aplicación con la metodología ACODESA.  

Representaciones iniciales 
El estudio de representaciones matemáticas ha sido el objeto de la Teoría de las 

Representaciones Semióticas de Duval (año). Para esta teoría, el aprendizaje de las matemáticas 
se propicia mediante el tránsito entre diferentes representaciones entre las que destacan: la 
algebraica, la gráfica, la numérica, entre otras. Ahora bien, estas representaciones son en su 
totalidad aceptadas por la escuela como válidas en el estudio de las matemáticas, por lo que 
pueden clasificarse como representaciones institucionales. Sin embargo, estudios recientes han 
mostrado que los alumnos difícilmente establecen representaciones institucionales cuando dan 
respuesta a un problema basado en modelación.  

Ante una situación no rutinaria, basado en un contexto matemático, se produce un 
pensamiento diversificado que lleva a los alumnos a dar respuestas expresadas mediante 
representaciones, que se alejan de aquellas representaciones descritas en la Teoría de las 
Representaciones Semióticas. Estas representaciones no institucionales han sido estudiadas por 
diversos autores como Hitt y Quiroz (2017).  

La representación funcional espontánea (RFE) es aquella que emerge de la acción que realiza 
un objeto frente a una tarea no rutinaria. Las representaciones iniciales, poseen un carácter 
funcional y espontáneo, ya que estas surgen de manera natural y persiguen una meta de 
aprendizaje. Es importante el estudio de estas representaciones ya que nos ayudan a comprender 
el proceso de aprendizaje de conceptos matemáticos. Además de esto, también se debe prestar 
atención en cómo estas evolucionan hacia representaciones institucionales, mediante un proceso 
de objetivación inmerso en tareas de colaboración y comunicación entre los sujetos. Por lo cual, 
un concepto también importante son las representaciones grupales, las cuales se centran en la 
evolución de estas cuando son sometidas a un proceso de discusión, comunicación, 
argumentación, comparación y validación frente a una tarea que requiere el trabajo en equipo en 
el aula de matemáticas. (Hitt y Quiroz, 2017). 

Metodología de la investigación 
La investigación se enmarca en un paradigma fenomenológico. Existen diversas maneras en 

las que se pueden interpretar las experiencias, además de que el significado que se le dé a estas 
constituye la realidad. Es por esto por lo que se dice que la realidad es socialmente construida. 
(Valenzuela y Flores, 2012). Se hace uso de una metodología cualitativa, puesto que se busca 
describir y comprender el problema de investigación (Valenzuela y Flores, 2012). Las 
carcaterísticas de la población fueron docentes en formación inicial de educación primaria de 
cuarto semestre. La muestra estuvo compuesta por 15 docentes, de los cuales fueron 10 mujeres 
y 5 hombres.  

La aplicación se llevó a cabo en una sesión de 90 minutos. Las técnicas utilizadas para la 
recolección y el análisis de los datos fueron el análisis de documentos y las observaciones 
participantes. Se apoyó de una videocámara para el llenado de los instrumentos diseñados. 
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Diseño de investigación y Situación propuesta 

Para la realización de la investigación se siguió el siguiente diseño, el cual consta de 3 
etapas: 

Etapa 1. Diseño: En esta primera etapa, se llevó a cabo una revisión de literatura, esto 
primeramente para encontrar un tema interesante e innovador. Una vez encontrado este, se 
procedió a revisar artículos, libros, tesis, tanto en inglés como en español. Después se realizó un 
diseño preliminar de la situación de investigación el cual fue sometido a un juicio del expertos, 
para así recibir recomendaciones y hacer los cambios que fueran pertinentes.  

Etapa 2. Aplicación: Una vez que la situación de investigación (SI) fue modificado y mejorado, 
se llevó a cabo la aplicación de este. Durante la aplicación del instrumento se utilizaron distintas 
herramientas, así como cámaras fotográficas y de video, hojas de máquina, cuadernos, plumas.  

Etapa 3. Análisis: Una vez que se recolectaron los datos se llevó a cabo una base de datos para 
que a través de ella fuera más sencillo analizar la información. Durante esta etapa también se 
realiza el escaneo de información relevante. 

La situación propuesta nace del libro infantil “El regreso del gato ensombrerado” del autor Dr. 
Seuss. El problema establece lo siguiente: 

En el libro “El regreso del gato ensombrerado” del Dr. Seuss, el Gato, para apoyar 
a los niños a limpiar el desastre, saca de su sombrero a sus amigos. Primero sale de 
su sombrero Gatito A.  Gatito A es del tamaño del sombreo del Gato (incluyendo el 
sombrero del Gatito A). Del sombrero de Gatito A, salió Gatito B. Así fueron 
apareciendo Gatitos hasta que llegó Gatito Z. 
¿Cuánto mide Gatito Z? (Ver figura 1) 
 

 

Figura 1. Imagen del libro de Dr. Seuss 

 

Discusión actual 
La investigación ctualmente se encuentra en fase de análisis de datos. Los resultados 

preeliminares muestran que los docentes en formación dieron respuesta a la situación planteada 
utilizando diferentes procedimientos. Los procedimientos fueron planteados mediante la creación 
de representaciones funcionales espontáneas, que contienen elementos pictográficos, pero 
también elementos matemáticos como números, figuras geométricas y algunos algoritmos. 
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El contexto utilizado fue muy interesante para los futuros profesores, quienes analizaron en 
un primer momento el cuento completo, y posteriormente mediante los cuestionameintos 
atendieron la problemática planteada.  

Se busca que mediante el análisis se puedan identificar los elementos de cada una de las 
representaciones y organizar los tipos de procedimientos que se realizaron para la resolución de 
la situación planteada.  
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In this study, we sought to understand what might be learned about preservice teachers’ 
mathematics learner and mathematics educator identities in the context of a problem-solving 
focused mathematics content course. Twenty-two preservice teachers participated in this study 
as part of their undergraduate teacher preparation program. We implemented a narrative 
identity lens which operationalized stories as identity with a sociocultural understanding of 
learning. In our findings we discuss examples of how mathematics learner identity influenced 
mathematics educator identity, and vice versa. In addition, we emphasize the importance of the 
way that preservice teachers define mathematics and how this influences mathematics identities. 

Keywords: Preservice Teacher Education, Problem Solving, Instructional Vision, Affect, 
Emotions, Beliefs, and Attitudes 

The purpose of studying identity in mathematics education is to emphasize the whole 
person—inclusive of but expanding beyond one’s mathematical skills and knowledge (Lerman, 
2009). In this sense, mathematics identity research enables a broad view of “what counts as 
mathematics” and where mathematics learning occurs (Saxe, 1988, p. 14). Researchers of 
mathematics identity acknowledge the multiple identities that an individual holds and seek to 
understand how those identities interrelate (Berry 2008; Gresalfi & Cobb, 2011; Wenger, 1998). 
These multiple identities are enacted in the many roles that one performs (Darragh, 2015). In the 
context of teacher education, an undergraduate preservice teacher plays the roles of both learner 
and teacher while simultaneously enacting countless other identities, perhaps of roommate, 
artist, first-generation student, etc.   

Undergraduate preservice teachers enroll in a university with already well-developed 
concepts of what it means to play the role of teacher (Lortie, 1975). Still, the formal action of 
enrolling in a teacher education program suggests an intentional step toward developing one’s 
understanding of this role. This particular juncture of entering a teacher-education program 
seems an appropriate context to take up calls for more research understanding the link between 
learner and teacher identity (Graven & Heyd-Metzuyanim, 2019; Lutovac & Kaasila, 2018). By 
maintaining a whole-person-view of preservice teachers’ multiple identities, we aim to contribute 
to further understanding of both mathematics learner and mathematics teacher identities.  

A Problem-Solving Focused Mathematics Content Course 
Preservice teachers can be expected to teach similarly to how they were taught without some 

means of intervention to create a “break with experience” (Ball, 1990, p. 11). The context of this 
study is a mathematics content course for primarily first-year undergraduate preservice teachers 
that attempts to intervene in this cycle of teaching. In doing so, instructors of this course not only 
teach content knowledge, but model pedagogical strategies that preservice teachers might adopt 
in their future practice to engage all students in learning. 

The curriculum developers of this problem-solving focused course assume that enrolled 
students have generally experienced a traditional, teacher-centered mathematics classroom in 
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which direct instruction of procedures to follow is the norm (Masingila et al., 2011). They push 
back on a traditional, or instructionist model of teaching (Sawyer, 2006), and have designed the 
course to encourage learning through collaboration and discussion. In this way, the course holds 
promise for interrupting previously developed conceptions of what it means to learn and to teach 
mathematics. Given this background, the course is an appropriate setting for understanding 
participants’ existing and developing roles of both learner and educator. Our research was guided 
by the following research question: What might be learned about preservice teachers’ 
mathematics identities of learner and educator in the context of a problem-solving focused 
mathematics content course? 

Mathematics Identity 
Researchers of mathematics identity have called on the field to be explicit in defining the 

construct to ensure theoretical and methodological coherence and also to prevent the term from 
becoming synonymous with other related but different constructs such as beliefs or attitudes 
(Darragh, 2016; Sfard & Prusak, 2005). In response to this call, we first describe key features of 
mathematics identity and then expand further on two sub-constructs of mathematics identity: 
mathematics learner identity and mathematics educator identity. 

A key feature of mathematics identity is performance—identity is what we do (Darragh, 
2015). In addition to this, mathematics identity can be viewed as storied—it is the stories we tell 
(Sfard & Prusak, 2005). One has multiple identities and may perform them at the same time 
(Berry 2008; Darragh, 2015). Not only this, but these multiple identities interact together and 
need not be confined to the mathematics classroom. For example, Berry (2008) found that 
alternative identities, such as religious identity or athletic identity, contributed to the success of 
African American boys by helping them to overcome barriers that may have otherwise limited 
their access to more advanced mathematics. From a socio-cultural perspective, these 
performances of identity are formed within one’s social environment while simultaneously 
shaping that environment (Wenger, 1998). In addition to these key features, mathematics identity 
over the last few decades has split into sub-categories of learning and teaching (Darragh, 2016; 
Graven & Heyd-Metzuyanim, 2019; Graven & Lerman, 2020). 
Mathematics Learner Identity 

Mathematics learner identity can be thought of as a category under the “umbrella” of 
mathematics identity concerning the identities of those learning mathematics. Darragh and 
Radovic (2020) defined mathematics learner identity as 

a socially produced way of being, as enacted and recognized in relation to learning 
mathematics. It involves stories, discourse and actions, decisions, and affiliations that people 
use to construct who they are in relation to mathematics, but also in interaction with multiple 
other simultaneously lived identities. (p. 582) 
Though researchers may use the more general term mathematics identity, the content of their 

studies have largely focused on mathematics learners. For example, Cribbs et al. (2021) 
developed a questionnaire intended to be a proxy for mathematics identity. They found that the 
constructs of recognition and interest were predictors of whether learners participating in their 
study were likely to pursue a STEM-related career. Similarly, Bishop (2012) used the term 
mathematics identity and focused on learners. Bishop’s work displayed how discourse between 
two seventh-grade students not only revealed their mathematics learner identities but also how 
those identities influenced and shaped one another as learners.  
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Mathematics Educator Identity 
Mathematics educator identity is the act of being or becoming a mathematics educator and a 

sense of belonging to mathematics education (Graven & Lerman, 2020; Skott, 2019). Many 
researchers adopt the term mathematics teacher identity as their studies involve practicing 
educators with the titles of “mathematics teacher” or “elementary teacher.” For example, Drake 
et al. (2001) studied elementary teachers and found that mathematics teacher identity influences 
whether a teacher is likely to adopt reform-oriented mathematics instruction. For cases such as 
this, Lutovac and Kaasila (2018) suggested the term mathematics-related teacher identity to 
acknowledge the fact that not all mathematics teachers are specialists in mathematics (i.e., 
elementary vs. secondary school teachers). Building on this, we are proposing a shift in 
terminology from mathematics teacher identity or mathematics-related teacher identity to 
mathematics educator identity.  

In using this term, we hope to expand what it means to be a mathematics teacher. In the 
context of a school, this shift in language acknowledges that counselors, librarians, 
administrators, and personnel indeed contribute to a mathematics learner’s development. Beyond 
the school, this term acknowledges the mathematics educating role that family members and 
community stakeholders play. In addition, adopting mathematics educator identity carries 
implications for researchers of mathematics identity. This shift necessarily expands a currently 
limited research scope focused on professionals with titles similar to “mathematics teacher” to 
include the many contexts where mathematics learning occurs and the influence of a wide range 
of educators who are in fact teaching mathematics.  

Regardless of terminology, some researchers investigating mathematics identity have 
considered both mathematics learner and educator identities. For example, Gujarati (2013) 
studied the mathematics identities of three elementary teachers through autobiographies, 
interviews, and observations. Though she did not explicitly describe learner and educator 
identities as subsets of mathematics identity, Gujarati found that her participants’ previous 
negative experiences as mathematics learners positively influenced who they had become as 
mathematics teachers. In addition, Maloney and Matthews (2017) found that a teacher’s care for 
students, mediated by a sense of connectedness in the classroom, is crucial for students’ 
development of a positive mathematics learner identity and perceived relevance of mathematics, 
especially for traditionally disenfranchised students. These examples show how a distinction 
between mathematics learner and mathematics educator identities is helpful for understanding 
how these dual identities are enacted. 

Narrative Identity 
We approached this research with the theoretical lens of narrative identity. Drawing 

primarily on Sfard and Prusak’s (2005) operationalization of stories as identity and Wenger’s 
(1998) communities of practice, narrative identity emphasizes stories as a reification of identity 
while simultaneously viewing mathematics identity through a broader socio-cultural lens 
(Langer-Osuna & Esmonde, 2017). Sfard and Prusak (2005) viewed identity as the many stories 
that one says about themselves, and especially the first-person stories that one shares to 
themselves. Instead of viewing identity as an abstract and elusive “core” of one’s person, 
narrative identity defines identity as the stories one tells. This definition makes identity 
accessible to researchers through methods that elicit stories of both learners and educators such 
as interviews or autobiographies (Langer-Osuna & Esmonde, 2017). These stories may take the 
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form of actual or designated identities. Actual identity stories are told in the present tense while 
designated identity stories envision oneself in the future.  

In the narrative identity framework, learning is inherently linked to identity because learning 
is defined as shifts in participation recognized by others (Esmonde, 2017; Lave & Wenger, 
1991). Wenger (1998) discussed the importance of discourse in defining identity and emphasizes 
the lived experiences within a community that shape one’s identity. This perspective views an 
individual’s identities as constantly evolving and shaping one another through one’s participation 
in a community. In other words, the stories one shares are reflections based on their experiences 
of participation in a community context. 

These perspectives of identity-as-stories and learning in the context of a community are 
compatible in that an individual’s acts of participation in a social setting inevitably become the 
stories they share about their experiences (Darragh 2013; Langer-Osuna & Esmonde, 2017). For 
the purpose of understanding preservice teachers’ mathematics learner and mathematics educator 
identities, these stories allow insight into how participants simultaneously embody these dual 
identities. Furthermore, the problem-solving mathematics content course provides a setting to 
frame preservice teachers’ experiences as stories. Applying the narrative framework in this study 
allows for operationalization of participants’ identity-as-stories while contextualizing the 
influence of the problem-solving mathematics content course.  

Data Collection and Analysis 
This study took place at a private university in the northeastern United States. Participants in 

this study were recruited across three sections of the problem-solving focused mathematics 
content course. This course is a requirement for preservice teachers beginning in early childhood 
and elementary teacher-preparation programs. The course sequence covers two semesters for a 
total of six credits, however, data collected in this study focused solely on the first semester of 
the course.  

The purpose of the study was explained to participants, and they were invited to volunteer by 
submitting three artifacts of data. The first two artifacts were a written mathematics 
autobiography, which was an assignment as part of the course, and an online questionnaire 
developed for this study. These two artifacts were collected within the first week of the semester 
to establish participants’ mathematics identities at the beginning of the course. A third data 
artifact took the form of a semi-structured, in-person interview in the final weeks of the semester 
to understand how the course may have influenced participants’ mathematics identities. In total, 
22 preservice teachers participated in the study and were evenly spread across all three sections. 

To organize data, interviews were transcribed and then all artifacts were uploaded into and 
analyzed via MAXQDA software (VERBI Software, 2021). Data were analyzed following 
Corbin and Strauss’ (2008) approach to qualitative research. Analysis began with immersion in 
the data by reading through all data artifacts that were collected. Memos were written after 
reading through each artifact. Data were then coded using comparative analysis focused on 
similarities and differences between incidents and axial coding to understand how concepts 
broadly relate to one another (Corbin & Strauss, 2008). The researchers made passes through the 
data until conceptual saturation was achieved and themes were developed. The data excerpts 
displayed below were selected because of their richness in exemplifying the themes we 
generated when analyzing data; however, we do not intend to suggest that this is an exhaustive 
display of all such examples from the data set. 
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Results and Implications 
Based on our review of relevant research literature, we predicted that the context of a 

problem-solving focused mathematics content course would produce valuable insights into 
understanding preservice teachers’ mathematics learner and mathematics educator identities. 
Below we share the results from our study. Note that all names used are pseudonyms. 
Mathematics Educator Identity Influences Mathematics Learner Identity 

As preservice teachers in this study were not yet teaching in field placements outside of the 
university, their mathematics educator identities took the form of designated identities. One’s 
designated identity “[consists] of narratives presenting a state of affairs which, for one reason or 
another, is expected to be the case, if not now then in the future” (Sfard & Prusak, 2005, p. 18, 
emphasis in original). 

For example, Julie’s personal background and experiences have resulted in a passion for 
educating elementary students with special needs. This designated identity as an educator 
directly influenced Julie’s mathematics learner identity by generating motivation and a sense of 
purpose for her work in the problem-solving focused mathematics course. She maintained a clear 
focus on her role of teaching future students while enacting the role of mathematics learner. Julie 
shared: 

I know that, like, the point of doing this right now is not to learn how to find the least 
common multiple, or, like, what the factors of the prime factorization of a number is. It's 
more like understanding how to teach it, which is like what I want to do. So, it's more 
beneficial to me. … [I] see myself developing as, like, a better critical thinker, which I know 
will help me in teaching and like other ways of my life. I, like, kind of see the purpose now. 
Julie maintained awareness of her designated identity of mathematics educator throughout 

the course which supported her current role as a mathematics learner. In another example, we 
asked participants at the end of the semester what they might title their time in the content course 
as if it were one chapter of their broader story related to mathematics. Julie titled her chapter as 
“math benefitting my future.”  

In contrast with Julie, some preservice teachers’ mathematics educator identities negatively 
influenced their mathematics learner identities. For example, Sadie did not view mathematics as 
relevant to her designated role as an educator. She shared, “I want to be an early intervention 
specialist. So that's why, like, this class does nothing for me, not, like, not, like, nothing, but you 
know, I would rather not take it.”  

Though Sadie’s goal is to be an educator, she did not see her future role specifically 
involving mathematics. When asked generally how the content course was going, Sadie shared,  

It's going fine but I don't like it. I'd say it's just, like, thinking about math in a different way, 
which is … I don't want to think about math in a different way. So that makes it difficult. But 
in general, I feel like I have an okay understanding of it. 

With our definition of mathematics educator identity, we believe that Sadie would still very 
much play a role in educating her future students in mathematics, even if her specific title is 
“intervention specialist.” In this role she may not directly teach mathematics but, at the very 
least, her mathematics identity will shape and be shaped by the future school community that she 
participates in. At most, it is quite possible that her desired role as an intervention specialist 
would involve directly working with students to facilitate and assess their learning in 
mathematics. Regardless of the specifics of Sadie’s future role, it is clear that Sadie’s designated 
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mathematics educator identity shaped her role as a learner because she did not see mathematics’ 
relevance to her goals. Sadie’s story exemplifies how mathematics educator identity may shape 
mathematics learner identity in a negative way. 
Mathematics Learner Identity Influences Mathematics Educator Identity 

One unit in the course was intended to teach students about place value and required problem 
solving in bases other than base 10. This particular unit seemed to highlight how mathematics 
learner identity influences mathematics educator identity as many students articulated how their 
experience as learners in this context facilitated an awareness of how their future students might 
feel. For example, Jeff shared, 

Like, it was difficult, but I feel, like, that was the most valuable thing, like, or the not 
necessarily the most valuable, but it definitely sticks out the most in my mind in terms of 
when I had a moment where I was, like, Whoa, like, that was, like, an eight-year-old in my 
classroom. You know, I mean, like, me now, like, that's gonna be someone in my classroom. 
You know? 

Jeff’s experience in his role as a learner prompted him to consider his future role as an educator. 
Julie also had a similar experience and connected it to her role as an educator. She shared, 

… in the beginning, we learned in different base systems and, like, basically, the goal of it 
was for us to be as confused as our students will be when we're teaching them base 10, 
because they have no idea what we're talking about. And so, like, I think it definitely, like, 
shed light on, like, how, like, I literally have to start from zero when teaching when, like, I 
always forget that, like, when I go into a class, I have some form of, like, a background 
knowledge of an idea. 
In the excerpts above, Jeff and Julie’s remarks show how the problem-solving course created 

an experience that was challenging for them as learners, which in turn caused them to consider 
their future role as educators. Mathematics teacher educators may leverage this influence by 
intentionally creating similar learning experiences for preservice teachers and prompting 
reflection on their mathematics educator identities. 
Defining Mathematics 

In analyzing our data, we were consistently cognizant of how preservice teachers defined 
what it means to do mathematics and what it means be successful at mathematics. Our findings 
suggest that the context of the problem-solving focused mathematics content course intervened 
by challenging students’ definitions of “mathematics” and, in their stories, exposed both their 
mathematics learner and mathematics educator identities. 

Problem-solving definitions of mathematics. Some preservice teachers understood 
mathematics as problem-solving based and student-centered instead of procedural and lecture 
based. For example, Julie articulated her identity of mathematics learner by viewing the 
mathematics classroom as “a space where you’re supposed to be able to…ask questions, 
develop, be curious.” In her autobiography, she reflected on a previous positive experience in 
which a mathematics instructor “prioritized giving each student an opportunity to make mistakes 
in order to learn and grow.”  

Julie connected her current success in the course to the way that she defines mathematics as 
problem-solving based instead of her previous experiences defining mathematics as procedural. 
She said,  
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You have to, like, genuinely understand the concepts in order to … get the right answer. And 
I think in math, like algebra, and calculus, and things like that… it's really just, like, plug and 
chug. And so that's definitely, like, changed. … And I just feel, like, I'm also, like, I'm doing 
well in the course. And so, like, that has definitely continued to, like, boost my confidence 
and … my understanding of, like, if I just, like, focus and put effort into it … I can do it. 

Julie’s problem-solving focused definition of mathematics shaped her mathematics learner 
identity by not only helping her to define herself as successful in mathematics but has also 
motivated her to engage in learning and doing mathematics. 

Procedural definitions of mathematics. Other students defined mathematics as procedural 
and this negatively affected their mathematics learner identities. For example, Georgia shared,  

Yeah, no, math is, like, not my thing. I'm way more, like, English, history. But I've always, 
like, tried math; I've just never been good at it. I'm not good at, like, memorizing things 
because if you give me, like, a problem,, like, I'll solve it with an equation, but then, like, 
when you have a quiz or test and they don't give you all the equations, you have to memorize 
those. 

Georgia viewed mathematics as an exercise of memorizing procedures for testing performances. 
Because she had historically struggled with performing well on tests, she did not view herself as 
good at mathematics. The way that Georgia defined mathematics ultimately became the measure 
that she used to assess her sense of belonging to mathematics, and in this case, negatively 
affected her mathematics learner identity and inhibited meaningful learning. 

Not only did a procedural definition of mathematics negatively affect some students’ learner 
identities, but it led to resistance in learning mathematics through the problem-solving methods 
that were implemented in the course. For example, Ainsley defined mathematics as sequential 
and building on itself. She said,  “… everything builds upon each other in math. So, if you're, if 
you get one thing wrong, you're gonna keep getting it wrong throughout the course of the exam.” 
She also, like Georgia, was concerned about understanding this sequence of mathematics for the 
purpose of achieving a grade. Ainsley became frustrated with the course because she felt she did 
not receive the supports that she needed to learn mathematics, which would be true if learning 
mathematics is following a set of procedures in a well-guided sequence of topics. Ultimately, 
Ainsley resisted learning mathematics as intended by the course instructors and outsourced her 
learning to online videos. “I've found that I've watched more YouTube videos to learn what we're 
doing than what the teacher is teaching us. So, I've been getting most of my information and 
knowledge off of YouTube videos.” 

This act of resistance to learning mathematics through problem solving based on one’s 
definition of mathematics also appeared through the language participants used to talk about the 
course and the way they perceived it. For example, Elyse said,  

… this math hurts my head, it confuses me; it makes me hate math more than I have in the 
past, because math in the past for me has been, like, a lot of equations in formulas, like that, 
which is why I've learned to like it. That style. And this is just totally, like, totally different. 

Elyse defined mathematics as procedural and resisted learning it in this course by 
compartmentalizing it as “this math,” refusing to define what she was learning as actually being 
mathematics. Similarly, Denise shared, “I really liked math, okay. This, however, is not like 
normal math.” 
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Redefining mathematics throughout the course. Some students discussed how their 
definitions of success in mathematics have changed over the course of the semester. At the 
beginning of the semester, Alyssa was asked if she considers herself a “math person,” to which 
she responded, “I do not consider myself a math person because I am not very good at it and am 
more interested in/ better at language.” In the post-interview, Alyssa described her experience 
reflecting on her evolving views: 

So, I've always enjoyed math, but I feel I've never been like good at it. Just because, like, I've 
struggled with it throughout my years of high school, I guess. But … I feel like this course 
has kind of, like, involved different interpretations of [solutions] too, which I thought I 
wouldn't enjoy. But I've started to like it because, like, it helps me learn … different ways to 
get it, like, what I've been saying so many times. … I guess, like, the process [of] getting 
there has kind of become, like, my definition of how to be good at math. Rather than, like, 
just knowing the solutions. 

Alyssa voiced how the course helped her to redefine what it means to be good at mathematics as 
focused on engaging in the process rather than focused on correct answers. 

In the same interview, Alyssa was asked if she now sees herself as “good” at mathematics. 
She said, “I think I’m approaching being good at math.” When pressed farther and asked, “What 
if I asked if you’re good at problem solving, what do you think?” Alyssa said, “Yeah, I think 
that, like, that would be more, like, I’d be like, yeah, I’m good at problem solving.” Throughout 
the semester, there was a shift in the way that Alyssa defined what it means to be good at 
mathematics and how she was beginning to see herself as enacting that role of what it means to 
be good at mathematics. Interestingly, she did claim to be good at “problem solving” but not 
necessarily “mathematics.” Implications for mathematics teacher educators may be to help 
preservice teachers unpack how they are defining mathematics and any baggage that is being 
carried with that definition. In this way, preservice teachers might begin to redefine what it 
means to do and to be successful at mathematics, which will result in shaping mathematics 
identities. 

Concluding Remarks 
A limitation to this study is that, though we each have familiarity with the course and 

experience teaching it, we did not observe students in this setting and instead relied solely on 
their stories as evidence. However, our research offers greater understanding of the ways in 
which preservice teachers’ mathematics learner and mathematics educator identities are shaped. 
The context of a problem-solving focused content course created experiences that challenged 
participants’ schemas of mathematics and prompted reflection of their roles as both learners and 
educators. The way in which preservice teachers in this study defined mathematics shaped their 
respective mathematics identities. This resulted in differences in the ways that participants 
engaged in learning mathematics and also how they envisioned their future role of teaching their 
students mathematics.  

Future research on this influential power of defining mathematics is needed, including how 
mathematics teacher educators might support preservice teachers to redefine mathematics and, in 
doing so, shape their mathematics identities. In addition to this, we have presented several 
examples of how mathematics learner and mathematics educator identities interrelate and 
influence one another. Acknowledging the complexity of these interactions, it is possible that 
mathematics teacher educators might create specific interventions for learners to shape their 
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educator identities. Similarly, it may benefit mathematics teacher educators to prime preservice 
teachers to maintain a focus on their future role as educators for the sake of engaging them in 
learning in the present moment. 
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Research on pre-service teachers’ discussion practices has focused on decompositions of 
practice into subskills, while acknowledging the importance of the role of context, identity, and 
relationships between interactive moves. We focused on 66 elementary preservice teachers’ 
(PSTs’) framing-launching moves in discussions after problem-solving in a MursionTM custom 
simulation. PSTs used five moves: gathering information about student processes, focusing on 
problem features, task and non-task oriented social interactions, and partner talk. Empirical 
findings of PSTs’ intentions and tacit actions coupled with study findings of the diversity in 
PSTs’ framing moves, highlight the complexity of teacher decision making involved in discussion 
subsills such as framing. We argue that PSTs’ framing moves are motivated by an array of 
intentions including the mathematics aims of discussions. 

Keywords: Preservice Teacher Education, Teacher Knowledge.  

Inquiry into mathematics teachers’ discussion practice has focused on relationships between 
teacher and student moves (Bishop et al., 2022; Leatham et al., 2015; Stockero et al., 2022). Yet 
inquiry into preservice teachers’ (PSTs’) discussion practices highlights discussion subskills 
within decompositions of practice (Grossman et al., 2009) including planning (Tyminski et al, 
2014) and questioning (Moyer & Milewicz, 2002). Shaughnessy et al. (2021) hypothesized that 
discussion practice contains three areas: framing-launching, orchestrating, and 
record/representing content (p. 455). Framing-launching a discussion within decomposition of 
practice involves teacher moves including focusing attention on mathematics but differs from 
launching a task in that a goal of the launch is to prepare students to share ideas about strategies 
rather than prepare students for problem-solving.  Mathematics teacher educators need a better 
understanding of specific moves teachers use for framing-launching mathematics discussions to 
develop pedagogical learning trajectories for teacher discussion practice needed to inform 
development activities for PSTs. We report on PSTs’ framing-launching (Shaughnessy et al., 
2021, p. 455) of discussion after problem-solving, which we will refer to as framing. We argue 
that PSTs’ framing moves are motivated by factors that include but are not limited to 
mathematical aims for discussions. 

Drawing from Steffe and D'Ambrosio's (1995) description of constructivist teaching, we 
view learning to teach as dynamic testing of practice. Such testing involves the use of tacit and 
explicit theories involved in educative interactions such as social and socio-mathematical norms 
(Yackel & Cobb, 1996). Generalizations of normative behavior can reproduce societal inequities, 
yet PST and student interactions can also challenge generalizations. PSTs’ experience with 
unexpected student responses, can produce disequilibrium in understandings of norms. PSTs 
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interact as model builders (Ulrich et al., 2014), creating practices by informal tacit testing of 
utility and productivity of interactive moves in mathematics discussions with students. 

Research into PSTs’ preparation for (and engagement in) discussions describes intentions 
(e.g. Tyminski et al., 2014) and moves (e.g. Shaughnessy & Boerst, 2018) PSTs use. PSTs 
design discussions to provide students with opportunities to share, learn from sharing, and/or 
compare strategies (Tyminski et al., 2014). PSTs also use intuitive skills to elicit students’ 
problem-solving process or probing students’ understanding about the problem (Shaughnessy & 
Boerst, 2018). Many PSTs launch interactions with students by asking what they did when 
solving the problem, “What was your first step when you solved the problem?” (Shaughnessy & 
Boerst, 2018, p. 52). Some PSTs probe to gather evidence of what students noticed about task 
features or understood about their problem solving process by asking, “So can you kind of tell 
me what this row that you wrote stands for or what that number is?” (p. 46). PSTs may also 
utilize other moves that support learning about students’ thinking, such as encouraging students 
to write or facing students when asking a question (Shaughnessy & Boerst, 2018) 

In-service teachers select student work for discussion using the mathematics potential of the 
work, but also historical patterns of student participation and mathematical understanding 
(Dunning, 2022). While decompositions of practice (Grossman et al., 2009) play an important 
role in developing PSTs’ practice (Jacobs & Spangler, 2017), discussion is complex and 
contextual, it involves teachers’ interactive moves influenced by factors including teachers’ view 
of learning (Simon, 2008); teachers’ identities (Drake, 2006), views of learners’ participation 
(Dunning, 2022), learners’ needs (Sztjan, 2003), learners’ identities (Rubel et al., 2022), and 
learners’ lived experiences (Van Es et al., 2022). These findings taken together suggest further 
inquiry into PSTs’ subskills of discussion practice (e.g. Tyminski et al., 2014; Shaughnessy et 
al., 2021) using frameworks for analyzing interactions (e.g. Bishop et al., 2022) to describe 
PSTs’ framing of mathematical discussions after problem-solving.  

Studies of teacher discussion practice have focused on teacher moves in relation to students’ 
mathematics. For example, Leatham et al. (2015) defined mathematically significant pedagogical 
opportunities to build on student thinking (MOSTs) as a tool to explore teachers’ use of students’ 
mathematics in discussions. Bishop et al., (2020) described three categories of teacher moves: 
confirm/correct, probe/publicize, engage, where confirm/correct moves “did not use students’ 
mathematical contributions” (p. 15). Instead, teachers shared their thinking, acknowledged or 
evaluated student responses. Probe/publicize moves used probing questions to understand 
student thinking and revoicing to highlight student responses. Engaging moves directed students 
to engage with others' ideas by asking students to restate, reason about, or apply another 
students’ approach. Bishop et al. (2022) also classified student contributions: participate (sharing 
of facts or procedures), explain (sharing strategies without justification), and “substantive 
reasoning” (p. 15). Less clear was how teachers developed discussion practices. 

To unpack the development of discussion practices, we report findings from analysis of data 
from a larger study of PSTs’ moves to facilitate discussions with students after problems solving 
in the context of an online virtual custom simulation of discussion. Based on coding of 66 PSTs’ 
framing moves in a discussion after problem solving we identified five framing moves: (a) 
gathering information about student processes; (b) focusing on features of the problem; (c) task-
oriented social interactions, (d) non-task oriented social interactions; and (e) partner talks. We 
argue that these initial moves were motivated by factors beyond mathematics. 

Use of Mixed-Reality Simulations (MRSs) has increased in teacher education (REF). MRS 
including human-in-the loop MursionTM simulations encompasses real and virtual environments 
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(Gundel et al., 2019). MRSs provide a low-risk environment (Dieker et al., 2014; Piro & 
O'Callaghan, 2019) for PSTs to develop teaching related theory, practice (e.g., Hudson et al., 
2019), and beliefs (e.g., Bautista & Boone, 2015; Gundel et al., 2019). This study uses a 
MursionTMclassroom custom simulation (Grant & Ferguson, 2021) as the context for PSTs to 
facilitate discussions of mathematics after problem-solving. Prior findings using this simulation 
include PSTs reports that after facilitating a mathematics discussion in the simulation, they felt 
more prepared, confident, and their teaching anxiety reduced (Grant & Ferguson, 2021). Our 
findings extend literature on MRSs’ impact from efficacy to describing practice. 

Methods 
Participants were 23 PSTs in elementary mathematical method courses (fall 2018, spring 

2019, fall 2019) at a Mid-Atlantic university and 43 PSTs in elementary methods courses (spring 
2021) at a Midwestern university. Analysis of PSTs’ framing of discussions after problem-
solving is part of a larger study to describe PSTs’ development of discussions after problem-
solving.  

In this study, we analyzed PSTs’ framing moves in a Mursion™ classroom simulation. 
Mursion is a real-time software that creates realistic and interactive environment by blending 
artificial intelligence and trained simulation specialists who control the speech and movements of 
avatars (virtual students) in a virtual environment during the simulation (Dieker et al., 2014; 
Grant & Ferguson, 2021). PSTs sit in front of a screen, with a camera and microphone (Figure 
5). Five avatars appear on screen, sitting behind a desk with name cards on the desk (e.g., 
Savannah, Ethan, Dev, Eva, Jasmin, Harrison, etc.). Avatars’ actions and utterances are 
controlled by a simulation specialist (off screen) who can see and hear the PSTs (Figure 6). 
Avatars respond as elementary students providing answers, explanations, and asking questions. 
Further, the avatars reflect various physical and social student characteristics such as hair color, 
phenotype, quick to volunteer, and talkative through their actions or engagement. While the 
PSTs were interacting with avatars, we refer to these avatars as students, to highlight the realistic 
nature of the custom simulation for the PSTs. 

 
Figure 5. Mursion™ Simulation Room 

 
Figure 6. Avatars in Virtual Environment 

Study Design 
Mursion™ simulation provides an opportunity for PSTs to practice core practices (Jacobs & 

Spangler, 2017) of teaching. In a custom simulation (Grant & Ferguson, 2021), PSTs had 
opportunities to orchestrate a mathematical discussion about student’s solutions to a problem 
solving task. In the elementary mathematics method courses, the simulation was used as a 
microteaching environment (Grossman et al., 2009; Ledger et al., 2019). PSTs were directed to 
elicit students' reasoning and justification, and to help students make meaningful connections 
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across strategies generated through problem-solving to strengthen mathematical understanding 
(Graeber, 1999; Jacobs & Spangler, 2017; Smith & Stein, 2018). The mathematical discussion 
focused on student solutions of "Harry the Dog Problem” (Figure 7). 

 
Figure 7. Harry the Dog Problem 

 
We provided 6 solutions to "Harry the Dog Problem”, and told the PSTs that the solutions 

were generated by the students during problem-solving (Table 2). PSTs did not know which 
avatar had which solution. The PSTs were given five to eight minutes to engage the avatars in 
the Mursion™ simulation with the goal of facilitating discussion after problem-solving to 
generate mathematical sense-making. We expected PSTs to ask questions to elicit students' 
thinking by encouraging them to use good mathematical explanations to make sense of problem 
solutions. PSTs were cautioned not to provide any hints or verify students' answers. Each PST's 
simulation was video recorded, and the de-identified transcripts of the recordings constitutes the 
data for this study. 

 
Table 2: Students’ Solutions Provided to PSTs Before Facilitating the Discussion  

Solution 1 

 
 

Solution 2 

 

Solution 3 

 
Solution 4 

 

Solution 5 Solution 6 
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Coding and Analysis 
The objective of the coding process was to describe how PSTs framed discussion after 

problem-solving. We coded the initial discussion interactions between PSTs and the students, 
drawing on Shaughnessy and Boerst's (2018) classification of PSTs’ moves of eliciting students’ 
problem-solving process and probing students’ understanding about the problem. We also 
identified new moves PSTs used to support learning about students’ thinking (Table 3). All 
PSTs' framing moves were coded by two members of the research team to guarantee consistency 
throughout the data (Braun & Clarke, 2006).  

 
Table 3: PSTs’ Discussion Moves in Mathematical Discussion 

Framing Moves to Initiate Discussion Description 
Gathering students answers or strategies (see elicit 
students’ thinking, Shaughnessy & Boerst, 2018) 

PSTs initiate the discussion by posing questions to 
learn students’ answers or strategies for the problem 
solving process (e.g., Can you tell me how you solved 
the problem?) 

Focusing on features of the problem (see probing 
students’ understanding; Shaughnessy & Boerst, 2018) 

PSTs initiate the discussion by posing questions to 
learn students' understanding of key mathematical 
features of the problem or draw students’ attention to 
key points of the problem (e.g., How many dogs are in 
the line?). 

Other Moves (Social Moves) Description  
Task oriented social interactions (see also other moves 
to support student thinking; Shaughnessy & Boerst, 
2018) 

PSTs initiate the discussion by engaging in task 
oriented social interactions. They pose task oriented 
questions to elicit students' emotions or opinions 
regarding the task or problem solving process to 
prepare them for the discussion.(e.g., Do you 
remember the Harry the Dog problem?). 

Non-task oriented social interactions (see other moves 
to support student thinking; Shaughnessy & Boerst, 
2018) 

PSTs initiate the discussion by engaging in non-task 
oriented social interaction to greet or gauge students’ 
energy before digging into the problem solving process 
(e.g., How are you today?). 

Partner Talk (see other moves to support student 
thinking; Shaughnessy & Boerst, 2018) 

PSTs initiate partner talk, directing students to engage 
in a conversation with peers to talk about each other’s 
process and answer (e.g., I want you to turn to your 
partner and talk about how you solved the problem?). 

 
 

Findings 
Overall, majority of the PSTs initiated the discussion after problem solving by gathering 

student answers or strategies (Table 4). Fifty seven of 66 PSTs (86%) framed discussions by 
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gathering student answers or strategies, a framing move that involves the PSTs selecting a 
volunteer or one student to share. The student responded by providing an answer (e.g. eight) or a 
descriptor of their approach (e.g. multiplied, created a chart). For example, PST1 chose 
Savannah to begin the discussion by inviting her to share the problem solving process. 

PST1:  Hi guys! So, we are going to talk about the Harry the dog problem again. So, do 
you guys want to walk me through, kind of what your thought processes were 
when you were doing the problem? Savannah, do you want to go ahead and start? 

Savannah:  Okay! So, I did multiplication. And I did seven times three is twenty one and 
eight times three is twenty four but we only have twenty three dogs. So, I got 
seven. 

Alternatively, some PSTs who gathered students' answers or strategies to initiate the 
discussion solicited volunteers to share their solution. Specifically, 30 of 57 PSTs (53%) who 
used the gathering student answers or strategies moves invited a volunteer rather than selecting a 
specific student. For example, PST2 affirmed Harrison’s request that the class go over the 
problem and again asked for a volunteer.   

PST2:   Let's ask the question! Who can give me a solution to the problem? 
Harrison:  It was kind of hard. Yeah, I don't know. Yeah, it was a pretty tough one. Are we      

gonna go over it at all? 

PST2:   Yes. Can somebody give me what they got? And we'll talk about it. 
Savannah: Oh, Well, I yeah, I think it was five. 
Seven of 66 PSTs (11%) drew students’ attention to problem features. PST3 selected a 

student and invited him to share key mathematical features of the problem, an important move to 
support problem solving discussions.  

PST3:  … So the first thing we're going to look at is who can raise their hand and tell me 
what keywords that you found when going into this that you saw immediately that 
stood out to you that would help you go about answering this question. Harrison 

Harrison:  Oh, well, I mean, just the 23 stood out to me right away, just because I mean, you 
know, I know it's gonna be a math problem. And you know, just set the scene of 
like, how many dogs were in the line ahead of Harry. 

Some PSTs who attempted to draw students’ attention to problem features (see Table 3), 
solicited volunteers rather than selecting a student to initiate the discussion. PSTs 4 and 5 used 
the number of dogs in line and invited a volunteer to discuss a key feature of the problem.  

PST4:  Okay, class, let's begin with going over the problem. We want to get some 
information. So how many dogs are in line? 

 
PST5:  So, we've been working on the Harry the dog problem, it's a math problem, but a 

dog and he's in line to get washed with a bunch of other dogs, right? And it says 
that Harry is the 23rd dog in line, or is he the 24th dog? Now, this question set up 
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a little bit odd and it's a different interpretation. So I'm going to see how many of 
you, go ahead and raise your hand, has have Harry is the 24th dog in line? 

 
Table 4: A Breakdown of the Discussion Moves in Mathematical Discussion Used by PSTs 
 Framing moves Other moves (Social Moves) 

Gathering 
student 

answers or 
strategies  

n (%) 

Focusing on 
features of the 

problem 
n (%) 

Task oriented  
n (%) 

Non-task 
oriented 

n (%) 

Partner talk 
n (%) 

Mid-Atlantic 
University 

(n=23) 

21 (91%) 
 

2 (9%) 1 (4%) 7 (30%) --- 

 Selecting a 
volunteer  
12 (57%) 

Selecting a 
volunteer 
2 (100%) 

   

Midwestern 
University 

(n=43) 

36 (84%) 
 

5 (12%) 10 (23%) 17 (40%) 5 (12%) 

 Selecting a 
volunteer 
18 (50%) 

Selecting a 
volunteer 
4 (80%) 

   

 
Other Moves 

Twenty four of the 66 PSTs (36%) engaged in non-task oriented social interactions before 
framing the mathematical discussion. These teachers made an effort to greet or gauge student 
energy, readiness for discussion.  For example, PST6 began with an emotionally focused 
question about feelings  

PST6: How are we doing today? 

Jasmine:  Hi, really good. I like your scarf. 
PST6:  Thank you. I like your shirt. 

Jasmine:  Thank you. 
PST6:  So does anyone want to start off with their problem? Anyone want to explain to 

me what they did for Harry the dog?  
Eleven of the 66 PSTs (17%) engaged in task oriented social interactions before framing the 

mathematical discussion. These PSTs concentrated on initiating the discussion by posing more 
task-oriented questions to elicit avatars' emotions or opinions regarding the task or solving 
process, and prepared them for the discussion. For example, PST7 began with a mathematically 
focused question about students’ opinions as a social interaction for readiness of the discussion, 
i.e., “Good morning class! Today, we are going to talk about the Harry the dog problem. Do you 
guys remember that?”. These PSTs set the stage for student mathematics engagement by first 
initiating non-task or task-related social interactions attending to students as humans. 

Five of 43 PSTs (12%) at the Midwestern University invited students to partner talk to 
discuss their problem-solving process and answers before initiating a whole class mathematics 
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discussion. PST8 let the students engage in a small group mathematical conversation for 
readiness of whole class discussion. 

PST8:  We are going to talk again, I know you might have already once, but I want to 
talk again about the Harry the dog problem. So, in the problem, it says, (reading 
the problem). I saw all of you do your problems and how you solved it. Could you 
partner talk really quick and talk about how you solved it and then we will meet 
together and about like 10 seconds, take 10 quick seconds. How did you solve it? 
Can you talk to your partner? 

Some PSTs who used social interactions before framing the mathematical discussion (8 PSTs 
at Mid-Atlantic university, 32 PSTs at Midwestern University) used at least two social moves 
prior to initiating discussion of mathematics. One of the eight PSTs (13%) at the Mid-Atlantic 
university and eight of 32 PSTs (25%) at the Midwestern University engaged in at least two 
different social interactions before framing the mathematical discussion (e.g., using a non-task 
oriented social move with a task oriented social interaction; using a non-task oriented social 
move with partner talk). 

Discussion 
PSTs discussion practice has been studied using decompositions of practice (Grossman et al., 

2009). As anticipated, PSTs at both universities typically framed discussion after problem-
solving by gathering information about student processes (Shaughnessy & Boerst, 2018). PSTs’ 
framing moves focused on gathering information about student processes, focusing on features 
of the problem, and social interactions, rather than focusing on mathematics reasoning of a 
selected work sample. 

At first glance, PSTs’ initial move may seem inefficient in that with student solutions 
available, PSTs could choose to begin with a student work based on mathematical potential 
(Leatham et al., 2015). Yet Dunning (2022) identified teachers’ use of factors including student 
historical patterns of participation and mathematics understanding in selecting student work for 
mathematics discussions. Additionally, Tyminski et al. (2014) noted that PSTs’ intention for 
discussions often focused on more general aims such as strategy sharing to enable students to 
learn from others’ work. The complexity involved in teacher decisions associated with 
discussion subskills including framing-launching (Shaughnessy et al, 2019) suggests additional 
study of “interactive detail” and “teacher voice'' is needed (Jacobs & Spangler, 2017, p. 704) to 
contribute to our understanding of PSTs’ modeling of students as mathematics learners. 
Additionally, PSTs’ assumptions about learning (Simon, 2008) coupled with details of 
interactions are needed to discern how PSTs are developing discussion practices.  

PSTs' views of students’ mathematics develop through interactions (Steffe & D'Ambrosio, 
1995). PSTs as model builders take interactive moves (e.g., Bishop, 2022) that shape 
mathematical discussions (Ulrich et al., 2014). Interactive moves are influenced by factors 
beyond mathematics including teacher identities (Drake, 2006), learner identities (Rubel et al., 
2022), and perceptions of learner participation (Dunning, 2022). In our study, PSTs’ relied on 
hearing students’ processes to frame discussions, yet framing moves also attended to students as 
humans and mathematicians. Taken together, the research findings support the argument that 
PSTs’ framing moves are motivated by intentions beyond mathematical aims of discussions. 
Additional exploration of factors such as student identities that motivate PSTs’ framing moves is 
needed to model PSTs’ discussion practice.   
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The use of technology for teaching and learning mathematics and science has been advocated 
for many years in standards documents such as NCTM (2000) Mathematics Principles and 
Standards, the NRC (1996) National Science Education Standards, and the AMTE (2017) 
Standards for Preparing Teachers of Mathematics. In particular, AMTE envisions that well-
prepared beginning teachers are proficient with the use of technology to support students’ 
mathematics sense making and reasoning in the learning of mathematics. Additionally, research 
has shown that online tools and manipulatives support teachers’ differentiation of instruction to 
meet the needs of diverse students (Bouck, Flanagan, &  Bouck, 2015; Shin et al., 2017). 
However, research has shown that preservice teachers (PSTs) demonstrate low levels of 
technology literacy with respect to knowledge and skills (e.g., Dincer, 2018). While teachers 
report being unprepared and unsure about how to use technology to promote students’ learning 
with understanding (e.g., Albion, Tondeur,  Forkosh-Baruch, & Peeraer, 2015; Ertmer, 2005). 

Research suggests that integrating pedagogy, content, and technology is an effective 
approach for preparing teachers to use technology for teaching (Lee & Hollebrands, 2008; Niess, 
2005). In its standards, AMTE (2017) recommends the use of practice-based experiences that 
provide PSTs opportunities to learn from their own teaching, as well as the teaching of others. 
This study investigated 34 PSTs’ development of TPACK (Mishra & Koehler, 2006) during a 
technology-focused initial methods of teaching secondary mathematics and science course 
incorporating practice-based experiences using online technologies for student learning.  

Throughout the initial methods course, the use of online technologies for teaching and 
learning was modelled by the teacher as well as the students. The students worked in pairs on a 
microteaching lesson study project that required them to teach with online mathematics or 
science technologies. This allowed the PSTs to learn to teach with online technologies through 
their own teaching, as well as the teaching of their peers. The microteaching project involved 
each pair’s development of two technology-based, inter-related lessons, including bridging 
activities and formative assessments; the teaching (and video recording) of each lesson (one by 
each partner); feedback from their instructors and peers; and a report including self-analysis of 
their video and the feedback they received, as well as revisions of their original lesson plans. 

Data sources for the investigation of PSTs’ TPACK included lesson plans, self-analysis 
reports, and lesson revisions, as well as self-report surveys about their learning. Descriptive and 
qualitative data analysis revealed that the PSTs developed their knowledge of online 
technologies for teaching (e.g., GeoGebra Classroom, Teacher Desmos, simulations) and 
pedagogical ways of using these technologies to facilitate student learning, in some cases from 
having no knowledge of a technology to using it proficiently for students’ learning. Survey 
results revealed high mean scores for PSTs’ development of TPACK, including pedagogical 
knowledge (1.35 on a scale of 1 high to 5 low), technological knowledge (1.23) and 
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technological pedagogical content knowledge (1.76). The results highlight that one methods 
course can facilitate substantive growth in PSTs’ preparation to teach with online technologies.   
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Teachers tend to notice a variety of classroom information (e.g., teacher and student actions, 
classroom management); therefore, guidance on noticing specific aspects of teaching, especially 
for preservice teachers (PSTs), is essential (Carlson et al., 2017; Sherin & van Es, 2005; Star et 
al., 2011; Star & Strickland, 2007; Stockero, 2014). To help guide teachers’ noticing, van Es and 
Sherin (2002) proposed three key aspects of noticing:  

a) identifying what is important or noteworthy about a classroom situation; (b) making 
connections between the specifics of classroom interactions and the broader principles of 
teaching and learning they represent; and (c) using what one knows about the context to 
reason about classroom interactions. (p. 573)  
Jacobs, Lamb, and Philipp (2010) extended the construct of teacher noticing to professional 

noticing of student’s mathematical thinking (SMT) “as a set of three interrelated skills: attending 
to children’s strategies, interpreting children’s understanding, and deciding how to respond on 
the bases of children’s understanding” (Jacobs et al., p. 172, emphasis added). Researchers have 
begun studying the interrelatedness of professional noticing skills (e.g., Hine & Lesseig, 2021; 
Thomas et al., 2021; Vogler & Prediger, 2017; Walkoe et al., 2019). 

The research question guiding our study was how do PSTs’ individual skills of attending to 
and interpreting SMT differ from their interrelated noticing of SMT? The interrelatedness of the 
three professional noticing skills may be conceptualized as a linear progression of attending, then 
interpreting, then responding to SMT. We hypothesize that the interrelatedness of professional 
noticing skills is not linear but co-develop as illustrated in figure 1. 

In this poster, we share our frameworks for analyzing our PSTs’ written justifications for the 
individual subskills of attending to and interpreting SMT, nine potential subtypes of professional 
noticing (Authors, under review) addressing the interrelatedness of attending to and interpreting 
SMT and results of analyzing our PSTs’ written justifications for the individual skills of 
attending to and interpreting SMT and subtypes of professional noticing.  

 
Figure 1: Conceptualization of interrelatedness of professional noticing skills 

 
We provide evidence that the subtypes of professional noticing provide insights into our 

PSTs professional noticing that are masked by analyzing their written justifications for the 
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individual skills of attending to and interpreting SMT and that the linear development of 
professional noticing may actually not benefit PSTs’ learning to notice student mathematical 
thinking. We hypothesize that some subtypes of professional noticing are not possible given the 
interrelated nature of attending to and interpreting SMT. 
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Reports on a research project designed to implement an adapted Lesson Study cycle whereby 
pre-service mathematics teachers co-create a lesson with an experienced expert instructor and 
observe the instructor teach the lesson. Results show development in the pre-service teachers’ 
attention to elements of planning such as anticipation and pedagogical choices during 
instruction.  
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Introduction 
This paper reports on a study designed to show how an adapted lesson study (Isoda, 2007) 

can enhance pre-service teachers' early experiences in constructing mathematical tasks for use in 
the classroom. Teachers engaged in lesson study assume shared responsibility for the teaching 
lessons they create, observe the effectiveness of these materials as they are taught, and then work 
to revise lessons for future use (Lewis, 2002). For the purposes of this study, lesson study refers 
to an improvement cycle in which teachers collaborate to set learning goals, study curricular 
materials, plan a lesson that will help students meet those goals, see the lesson taught by an 
experienced expert teacher, and reflect on its effectiveness using observational data and artifacts 
of student learning. 

We have created and studied communities of planning and practice (Wenger, 1999), in a 
number of iterations, by implementing and studying a cycle of pre-service teachers designing 
lessons which promote inquiry and learning for understanding; the implementation of those 
lessons by a master teacher (observed by the pre-service teachers); and co-reflection on the 
lesson by the inservice and pre-service teachers (see e.g. Meagher, Özgün-Koca & Edwards, 
2009; Meagher, Edwards & Özgün-Koca, 2011). Drawing on the different steps of the original 
instantiation of this process, we call this the CRAFTeD (Call for lesson; Referendum, Advising 
session; Fine-tune; Teach-Experience; Debrief) cycle. Based on a number of iterations of the 
process, we have found that the key component of this cycle is that pre-service teachers see their 
own Lesson Plan implemented by a master teacher which (a) gives them a different level of 
investment in the lesson than if they watched exemplary lessons, and (b) they see their lesson 
plan implemented without having the pressure of teaching the lesson themselves whereby their 
concentration may be alerted to such aspects as classroom management, teaching style, and their 
interactions with the students. 

In studies undertaken in the past (Meagher, Özgün-Koca & Edwards, 2009; Meagher, 
Edwards & Özgün-Koca, 2011), we have studied the implementation of the CRAFTeD cycle 
with pre-service secondary mathematics teachers working with an experienced expert teacher to 
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design and implement a lesson for high school students. In the current study we report on 3 years 
of implementation of the cycle with pre-service secondary mathematics teachers, working with 
an experienced university professor, to design and implement a lesson for pre-service elementary 
mathematics teachers in a university content class for the latter group. 

As in the previous studies, the research questions guiding the research and the analysis are: 
(i) how do pre-service teachers co-create a lesson with an experienced expert instructor, and  
(ii) what is the particular impact of ownership of the lesson on pre-service teachers' learning. 

Literature Review and Relationship to Research 
There is now a large body of literature (Fernandez, Cannon & Chokshi, 2003; Fernandez & 

Yoshida, 2004; Huang, Takahashi & da Ponte, 2019; Isoda, 2007; Lewis, Perry, & Murata, 2006) 
on the importance and effectiveness of lesson study approaches in improving teaching, curricular 
content, and instructional sequences. Hart, Alston & Murata (2009) draw on a plethora of 
research studies to argue that while many professional development models such as action 
research place teachers at the center of the research, lesson study is unique in the focus that is 
brought to bear on a “live lesson.” They assert that, during lesson study “teachers notice certain 
aspects of teaching and learning, and this implicit and organic noticing does not happen in 
artificially replicated professional development settings” (p.1). Lesson study approaches can also 
provide for more focused professional development than many traditional professional 
development models (Gersten et al., 2014; Lewis, 2002). Furthermore, developing communities 
of practice (Wenger, 1999) and lesson study groups (Fernandez, 2002) can help teachers to adopt 
a more research-based focus in their lesson planning and to develop a shared repertoire of 
communal resources which can transcend individual contributions. Most research thus far has 
focused on inservice teachers: our research involves implementing an adaption of the lesson 
study approach for pre-service teachers. 

Our research applies lessons learned from lesson study approaches to address the problem 
that teaching methodologies advocated by methods instructors in teacher preparation programs 
are not readily observed by pre-service teachers in actual classroom settings, a disconnect that 
has become more pronounced in the age of high-stakes standardized testing. While university 
methods instructors laud the merits of student-led inquiry, exploration, and discovery-based 
teaching methods, secondary mathematics teachers in too many schools “set aside” such teaching 
in favor of instruction directly focused on student preparation for high-stakes, multiple choice 
state tests (Seeley, 2006). In an age where testing dominates the landscape of too many 
classrooms, it becomes increasingly difficult to provide teachers-in-training with models of high-
quality mathematics instruction in school environments. The proposed study explores a possible 
response to this situation. As secondary-level math PSTs construct lessons to be taught to 
prospective elementary school teachers with the guidance of their mathematics education 
professor, all parties benefit. The secondary-level teachers learn nuances of planning, 
implementing, and assessing instruction. The prospective elementary teachers gain a deeper 
understanding of the content that they will soon explore with their own students. By providing 
pre-service teachers with opportunities to collaborate across grade levels, we create synergies 
that lead to deeper understanding of content and pedagogy. 

Methods and Methodologies 
The cycle 

The design of the CRAFTeD cycle is as follows: 
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Figure 1: The CRAFTeD Cycle  
 
The basic sequence of the original cycle and the revised cycle is (i) A class of pre-service 

high school teachers write Lesson Plans on a given topic and then worked together to develop 
improved lessons/short units designed often for technology-rich environments; (ii) an 
experienced expert instructor reviews the lessons/short units and presented an initial redesign; 
(iii) the experienced expert instructor teaches the lesson, observed in person or on video by the 
pre-service teachers; (iv) the pre-service teachers and the experienced expert instructor meet 
together to reflect on and redesign the lesson based on their experiences in the classroom. 

In changing the target population of the lessons from high school students to pre-service 
elementary teachers and drawing on previous experiences with the cycle, there were a number of 
noteworthy changes in our approach. 

(a) The content of the lesson was now to be taken from the mathematics curriculum for 
elementary school teachers (e.g. comparing partitive and quotitive models of division for whole 
numbers). As we will see below in the data analysis this provided some interesting challenges for 
the secondary pre-service teachers as they thought about elementary content in a deep conceptual 
manner. 

(b) Rather than planning multiple lessons and then voting to select a single lesson during 
what had been called the Referendum stage, the class, which tended to be relatively small, 
worked as a whole group on the lesson. 
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(c) The new version of the cycle placed greater emphasis on researching and studying 
curriculum with a bank of research papers related to the topic created for the class to work with.  

The purpose of the cycle is to examine: 
(i) how do pre-service teachers co-create a lesson with an experienced expert instructor, and  
(ii) what is the particular impact of ownership of the lesson on pre-service teachers' learning. 

The pre-service secondary teachers (i.e., research lesson planners) 
The pre-service secondary mathematics teachers (c. n=12 for each of three years) were 

engaged in routine activities that comprise a mathematics teaching methods course, which met 
for two 75-minute sessions each week for 15 weeks, at a large public Midwestern university. The 
methods course was one of a two-course methods sequence; these courses being the pre-service 
teachers’ only methods courses in the program. Prior to taking or along with the methods courses 
the pre-service teachers take foundations of education and mathematics content courses. The 
course was designed specifically for pre-service secondary school mathematics teachers, who 
engaged in activities focused on pedagogical issues (e.g., constructing lesson plans and grading 
rubrics, creating technology-oriented math activities) and content issues (e.g. solving 
mathematics problems, assessing student work). As part of the course the pre-service secondary 
teachers engaged in one iteration of the CRAFTeD cycle. 
The pre-service elementary teachers (i.e., students experiencing the research lesson) 

The pre-service elementary teachers (c. n=12 for each of the three years) were engaged in a 
mathematics content course which met for four 50-minute sessions each week for 15 weeks, at 
the same university. This course was one of a two-course sequence which all pre-service 
elementary teachers, regardless of specialization (e.g. Language Arts, Early Childhood), are 
required to complete. The students, typically first years and sophomores, take these courses early 
in their degree programs. The course focused on developing the pre-service elementary teachers’ 
mathematical knowledge for teaching (Ball et al., 2008), and grounded that development in the 
core elements of the elementary school curriculum (e.g. operations on the real numbers). Each 
week, the pre-service elementary teachers worked in small groups on problem sets that required 
them to push beyond “the tacit understanding that characterizes and is sufficient for personal 
knowledge and performance” (Ball, 2000, p. 245). The lesson created by the secondary pre-
service teachers, therefore, was planned to fit into this weekly problem-set activity schedule. 
The teacher of the research lesson 

The teacher of the lesson was a professor in the mathematics department of the large public 
Midwestern university. He and the instructor of the secondary mathematics teaching methods 
course had nearly a decade of experience co-facilitating lesson study cycles with inservice K-12 
teachers from local school districts. In addition, the two instructors collaborated on the 
development of the mathematics content course and its weekly problem-set activities. 
Data Collection 

The data collected during each CRAFTeD cycle in order to answer the study’s research 
questions were: 

• Field notes from an in-class visit by the expert instructor who initiated the cycle 
• Curriculum study exchanges via an online discussion board  
• Lesson Plan created by the pre-service teachers 
• The revisions suggested by the expert instructor via an in-class visit 
• Revisions of the lesson plan by the pre-service teachers  
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• The final implemented Lesson Plan 
• Videotape and fieldnotes from the lesson as taught by the expert instructor 
• Field notes from the debriefing sessions between the pre-service and expert instructor. 
• Reflection papers by pre-service teachers on the entire cycle. 

Analysis 
Using the coding book from the previous versions of the project, the data was initially coded 

through a deductive coding process for direct answers to the research questions with two basic 
codes: “cocreation” (CC) and “their own lesson” (TOL) as well as codes for each stage of the 
cycle. The data was then re-analysed using open coding and the constant comparative method 
(Cresswell & Poth, 1998) to examine emerging patterns within the broad categories of the first 
round of coding. Sub codes such as Classroom Management, and Pedagogical Choices emerged 
at this stage. Quotes exemplifying the quotes were organized and exemplary quotes for each of 
the codes chosen to support the analysis. The analysis is presented in the order of the cycle. 

Results 
Call for Lesson 

The Call for a Lesson occurred during the second week of the university semester. The call 
was for a lesson to be implemented in a mathematics content class for elementary education 
students, not for 6-12 grade students. As noted earlier, the mathematics content class focuses on 
developing the pre-service elementary teachers’ Mathematical Knowledge for Teaching (MKT) 
(Ball et al., 2008); for example, the curriculum focuses on comparing partitive and quotitive 
models of division for whole numbers rather than learning to perform the standard algorithm for 
division. The expert instructor, who was from the mathematics faculty, visited the class in-person 
or virtually to inform the secondary PSTs about the nature of the class, its curriculum and 
students and share the topic of the lesson. He also shared what would be covered by the day of 
the lesson and related textbook pages. In each iteration of the cycle, the most striking aspect of 
the Call for a Lesson was the pre-service teachers’ reaction to the content which they expected to 
be trivial for them. As the cycle progressed we saw the challenge the content presented for the 
secondary pre-service teachers. We see this exemplified in the following PST quote from 2019: 
“The idea of building a lesson plan based on subtraction at first seemed easy, but there is a lot of 
thinking involved when explaining how to subtract two numbers. Because we are math educators 
doing mental subtraction in our head or solving a subtraction problem on paper seemed simple 
but when breaking down the math problem we must take into account that we are trying to 
explain to younger students.” 
Research and Plan 

Following the Call for the Lesson the secondary PSTs take 20-25 minutes in the next series 
of lessons (5-6 weeks) to work as a whole class on the lesson. The secondary PSTs learned from 
each other, as they synthesized different ideas and experiences, and this process began to 
normalize collaboration in teaching. There were also inherent challenges, such as limited time 
and space for individual contribution. During the three iterations of the cycle the number of PSTs 
has been approximately 12 so this was manageable as a whole class activity. 

A key aspect to the Research and Plan step of the cycle was the time spent on engaging in 
research on best practices for teaching the content of the lesson. An online` discussion forum was 
created which was used to locate/share resources and to allow asynchronous brainstorming about 
the lesson. This discussion centered on both content and pedagogical aspects of the lesson 
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including the study of materials from practitioner journals, youtube videos, internet resources, 
and selections from the research literature that focus on elementary teachers’ mathematical 
knowledge on the topic of the research lesson. 

The research phase, in  each iteration, was an eye-opening experience for the PSTs in the 
richness of the seemingly straightforward topic for the lesson. They might think of an operation, 
e.g. subtraction or division of whole numbers, from a purely procedural perspective; but, when 
they began researching the conceptual underpinnings, they were challenged and humbled as they 
sought profound understanding of fundamental mathematics (Ma, 2010). As one PST in the 2019 
cohort put it “Going into the lesson study, I thought subtraction was a fairly simple topic and that 
just reading the material provided by [the instructor] was simple enough. It wasn’t until after we 
researched the topic and found articles such as “Subtraction: More Than Just Take Away”, by 
Snow, that I realized how important the wording of problems can be.” 

This phase also engaged the PSTs in developing their MKT as they began to consider more 
closely how someone learns about the meaning of subtraction and where they might have 
difficulty. This PST Quote from 2019 reflects a locus of learning for many of the PSTs: “By 
investigating more about the topic, we learned what students typically struggle with, and we 
were able to incorporate this . . . into our lesson plan.” 
Advising Session and Fine Tune 

An advising session with the expert instructor to discuss the draft lesson plan was scheduled 
for the middle of the semester (roughly the seventh week). This 30-45 minute session took place 
during a regular methods class meeting time. The draft lesson plan was shared with the expert 
instructor before this in-class visit, so that he can review it and formulate initial questions and 
feedback. When the expert instructor visited, one of the PSTs introduced the research lesson plan 
including the reasoning behind some of the design decisions. Following that, the expert 
instructor shared his critique, suggesting improvements orally as the PSTs took notes. 

Receiving critical feedback was not easy at first. This PST Quote from 2019 typifies the 
PSTs reaction: "Once we had finished our rough draft of the lesson and presented it to [the expert 
instructor], I was completely taken aback by the amount of constructive criticism he had towards 
our lesson. I thought we had put together this amazing lesson where we not only required our 
students to think but also have explanations and representations for their thinking processes, only 
for [the expert instructor] to come in and nitpick all of the details we had so carefully 
constructed. He asked us questions regarding our wording and our timeline of the lesson that I 
had not even thought about, but once we took those questions into account our lesson came out 
even stronger." By training the attention of the PSTs to details such as the clear wording of 
questions and the appropriate amount of time needed for a productive, inclusive, whole-class 
discussion, they began to appreciate the amount of detailed, thoughtful, behind-the-scenes work 
involved in effective lesson planning.  

The Fine Tuning of the lesson was done collaboratively and occupied approximately 25 
minutes of each class in the weeks leading up to the teaching of the research lesson. The revised 
research lesson plan was shared with the expert instructor a week before implementation, 
providing an opportunity for him to share any last minute questions or concerns and make any 
needed adjustments.  
Teach/Experience 

The research lesson was taught by the expert instructor; and was recorded using Swivl. The 
secondary PSTs were invited to observe the research lesson in-person and take field notes. 
Usually 2-4 PSTs observed the lesson in person and those who were unable to attend the live 
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lesson, watched the recording. As is the custom in a research lesson, the PST observers did not 
engage with the students but concentrated on collecting evidence of their learning (e.g. through 
their work and peer discussions). Even though the expert instructor enacted the planned research 
lesson faithfully most of the time, there were times when he deviated from the plan, typically 
through in-the-moment decisions such as choosing to explore a novel, unanticipated student idea 
or suggestion.  

The key aspect of the teaching stage of the lesson is the level of investment the PSTs bring to 
the experience. In teacher education programs lesson plans are typically abstract exercises and 
are never taught. The CRAFTeD cycle provides the opportunity to see the lesson taught and it is 
a deeply meaningful experience for the PSTs. As one PST in a Quote from 2019 put it: "For most 
of the education classes I’ve taken thus far, I have created lesson plans, but I have never been 
able to actually see one through, so being able to watch this lesson come to life was very 
exciting. While it was cool to see certain things in the lesson go well, it was also helpful to see 
the snags in the lesson as well." 

In planning for the lesson the PSTs picture how it might be taught and, therefore, they are 
able to notice and value the pedagogical choices made by the expert instructor. For example, this 
PST Quote from 2019: "One thing I had not thought much about were transitions from one 
activity or thought process to the next. [The expert instructor] did this so well.” The PSTs also 
saw value in how the expert instructor was able to implement research-based best practice 
strategies they had discussed in the research phase of the cycle. This PST Quote from 2021 is 
typical of the connections the PSTs made: "From our in-class discussion of Arbaugh (2010): ‘A 
teacher who revoices students’ ideas can clarify a mathematical relationship, identify or insert 
important mathematical vocabulary, or allow a misconception to be a place for learning’ (p. 46). 
[The expert instructor] took special care in revoicing the student ideas that were presented into 
solid information for everyone. He did not create the knowledge, the students did that, but he 
made sure to repackage it for everyone to grasp it and walk away with the same understanding." 
Other PSTs reflected other aspects of the teaching such as in this PST Quote from 2020: “In the 
actual lesson, [the expert instructor] told the students to “represent” multiple ways. I think that 
was a really good word for this because the students ended up trying to visually show the 
different ways they solved the problem. This reminded me of our “Developing Symbolic 
Meaning” (Lapp et al., 2013) reading where they discussed that providing representations of 
mathematical ideas internalizes those ideas for students.”  
Debrief 

During the first class after the research lesson, the expert instructor visited the methods class 
and participated in a 45-minute debrief (i.e. a post-lesson discussion). Staying true to the typical 
lesson study structure, the enacting teacher, in this case the expert instructor, shared his thoughts 
on the research lesson first. Following that we opened up the floor to PSTs to share their 
observational data and takeaways. The discussion usually centered around positives (what 
worked), what went according to plan, what could be improved, and what changes would lead to 
that improvement. Reflection on the lesson and plans for improvement are an important aspect of 
the lesson studies and its importance was recognised by the PSTs, for example in this Quote 
from a PST in 2021: "Lastly, this study showed me the importance of reflection. Upon reflecting 
on this lesson, I am able to see what could have gone more smoothly and what went well. This 
reflection can inform future lessons with my students and can allow me to make changes if I 
teach this lesson again. Reflecting can also allow me to see what I should have anticipated and 
can help me better predict my students’ responses." 
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Analysis & Discussion/Conclusion 
This study was designed to implement the six stage CRAFTeD cycle we developed to 

provide pre-service teachers enrolled in a mathematics methods class a rich and meaningful 
experience in writing lesson plans and to answer the following research questions: (i) how do 
pre-service teachers co-create a lesson with an experienced expert instructor? and (ii) what is the 
particular impact of ownership of the lesson on pre-service teachers' learning? 

This study was not on a large scale but the data presented above provides evidence that there 
is a tangible development in understanding of lesson planning as well as many basic and more 
nuanced issues of teaching when the CRAFTeD cycle is implemented. 

The key benefits of the CRAFTeD cycle, and the findings in response to research question 
(i), as evidenced in the three iterations reported on in this paper and in answer to the research 
questions are (a) particularly in the collaboration with the expert instructor, the development of 
the PSTs’ MKT as they research the content of the lesson in the framework of elementary 
content from an advanced viewpoint (b) the investment the PSTs make in the lesson knowing 
that it will be actually taught and the enhanced ability for writing a lesson plan to be a learning 
experience because of the full CRAFTeD cycle. 

In regards to the relationship with the expert instructor, as was seen in the quotes above that 
were typical of the PSTs experience, the instructor’s framing of his class to emphasize MKT was 
very beneficial to the PSTs. This framing, and their research on their lesson topic, developed key 
components of MKT such as knowing multiple representations of a concept, knowing common 
misconceptions for students learning the topic, and knowing how a particular topic fits with 
learning trajectories for that topic. The other main positive aspect arising from the relationship 
with the expert instructor was the quality of the feedback on their work and the necessity of 
working with the feedback since the lesson will actually be taught. 

In regards to the impact of the ownership of the lesson on pre-service teachers' learning i.e. 
the findings in response to research question (ii), as can be seen in the quotes in the results 
section the PSTs clearly had a very different level of investment in the quality and impact of the 
lesson since it would be a live lesson. This level of investment manifested both in the 
construction and writing of the lesson but, perhaps more importantly, in observing the teaching 
of the lesson: the PSTs were highly attuned to the pedagogical choices of the expert instructor as 
well as being highly attuned to the learning of the students engaged in the lesson. 

We believe the CRAFTeD cycle provides a variant model on traditional Lesson Study that 
can be very effective in the development of pre-service teachers. 
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This study investigated what 12 prospective mathematics teachers (PTs) in a middle school 
mathematics method course reported during a video-stimulated recall interview about their 
experiences when they were engaged in a doing math task that yielded an Opportunity for 
Productive Struggle (OPS). We investigated their reported feelings during the OPS, what 
mathematics they made sense of as a result of it, and the relationships between their feelings and 
sense making. We found that PTs’ feelings did not predict the nature of their sense making and 
that regardless of how they felt during the OPS, the majority of them (66.67%) reported that 
engaging in the OPS resulted in mathematical sense making. Other PTs reported pedagogical 
sense making. We suggest future research to expand on our findings. 

Keywords: Instructional Activities and Practices, Preservice Teacher Education 

Productive struggles are opportunities for learners to make sense of mathematics within their 
zone of proximal development (Vygotsky, 1978) and deepen their understanding of mathematical 
ideas and the relationships among those ideas (e.g., National Council of Teachers of 
Mathematics [NCTM], 2014; Peterson & Viramontes, 2017). Hence, this concept is crucial for 
all learners at all learning levels, including prospective mathematics teachers (PTs) who will be 
charged with enacting the teaching practice support productive struggle in learning mathematics 
(NCTM, 2014) in their future classrooms. Research about productive struggle has identified 
ways PTs struggle as learners and what might make their struggles productive. For example, 
researchers (e.g., Zeybek, 2016) who have investigated PTs’ productive struggles when engaging 
them in high cognitive demand tasks (Stein et al., 1996) have highlighted the important role of 
such tasks in supporting PTs to gain a deeper mathematical understanding. Thus, it seems that 
the use of high cognitive demand tasks might generate opportunities for productive struggle. Past 
researchers have focused on better understanding PTs’ struggles (productive or otherwise) once 
they have been identified (e.g., Ducloux et al., 2018). Existing studies have provided some 
information about how to support PTs to engage in productive struggle themselves (e.g., 
Rahman, 2022) and to support their students’ productive struggle (e.g., Anthony, 2021). Based 
on prior work, we can anticipate which aspects of instruction provide rich opportunities for 
productive struggle, but little is known about how the various PTs in a class respond to that same 
opportunity. Better understanding how PTs experience such opportunities—what they report 
having felt and made sense of—would provide useful information for better supporting 
productive struggle. Thus, we investigated the research question What do prospective 
mathematics teachers report having experienced when reflecting on their engagement in the 
same opportunity for productive struggle? 

Literature Review 
Researchers who study struggle have used the term productive struggle in different ways. 

Some have used it broadly to encompass when learners engage in a task that has an unclear path 
for them to solve, as long as they work towards the goal of the task without the teacher 
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decreasing the level of cognitive demand of the task (e.g., Warshauer, 2015; Zeybek, 2016). 
Others have used the term to reflect a specific research situation, such as “a student persisting in 
a digital learning task while maintaining a likelihood of future success” (Krumm et al., 2022, 
p. 514). Kamlue and Van Zoest (2022b) defined mathematically productive struggle as the type 
of struggle that occurs when students “delv[e] more deeply into understanding the mathematical 
structure of problems and relationships among mathematical ideas, instead of simply seeking 
correct solutions” (NCTM, 2014, p. 48). Across all these uses is the idea that productive struggle 
supports learning and that other types of struggles do not. 

Two themes arise across studies that have focused on productive struggle with PTs. Some 
researchers have explored how PTs facilitated productive struggle in their classes. For example, 
Anthony (2021) found that 10 middle grades mathematics and science pre-service teachers who 
learned about productive struggle in their mathematics methods courses still struggled with 
creating and sustaining productive struggle with students in their field experience. Similarly, 
Rahman (2022) investigated the learning opportunities of seven PTs enrolled in a middle school 
mathematics methods course who were teaching high cognitive demand tasks to their peers. 
They reported that these PTs had opportunities to learn about productive struggle through the 
process of selecting tasks and responding to students’ struggles. 

Other researchers have investigated PTs’ productive struggle when engaging with high 
cognitive demand tasks. For example, Ducloux et al. (2018) directly interviewed 32 prospective 
elementary, middle, and secondary teachers from three different mathematics content courses for 
teachers to investigate their struggles after engaging in a non-routine problem-solving task. The 
participants in the study reported experiencing both negative aspects of struggles 
(e.g., frustration, too challenging) and positive aspects of struggles (e.g., perseverance, 
collaborative struggle). Zeybek (2016) investigated 48 middle grades pre-service teachers’ 
struggles in a geometry class and stated that for her participants’ struggle to be productive, the 
participants needed to engage in a high cognitive demand task similar to what Warshauer’s 
(2015) study suggested. Finally, Kamlue and Van Zoest (2022a) investigated 18 PTs’ struggles 
when engaging with a doing math task (Stein et al., 1996) and noted that mathematically 
productive struggle could occur outside the intended learning goal. That is, since doing math 
tasks do not have an obvious solution path, the authors observed the PTs introducing ideas that 
did not help them solve the problem, but that they came to better understand as a result of trying 
to use these ideas. 

From the above, we notice that high cognitive demand tasks provide learners with 
opportunities to struggle productively because of the nature of these tasks—they require students 
to engage with conceptual ideas and often do not have an obvious path to the solution (Stein et 
al., 1996). Warshauer (2015) also pointed out that if teachers maintain the high level of cognitive 
demand of a task when noticing students’ struggles, those struggles can become productive 
because the teachers let the students make sense of mathematics with which they are struggling. 
However, what we as a field do not know is how various PTs in a class respond to the same 
opportunity for productive struggle. Thus, the purpose of this study was to answer this research 
question: What do prospective mathematics teachers report having experienced when reflecting 
on their engagement in the same opportunity for productive struggle? 

Theoretical Perspectives 
Our research is based on a participationist perspective (Vygotsky, 1987). That is, we see 

learning as taking place through learners’ interactions with more knowledgeable others, such as 
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their teacher and their peers. Drawing on this perspective and the research described above, we 
defined an Opportunity for Productive Struggle to be a situation where (a) the PTs were engaged 
in a doing math task (Stein et al., 1996) and (b) the teacher had positioned the class to engage in, 
and was facilitating a discussion about, collaborative sense making of a peer’s high-leverage 
contribution (Leatham et al., in press). 

To further unpack PTs experiences, we drew on Goldin’s (2000) theoretical framework that 
described the relationships between affect and heuristics. Hannula et al. (2004) provided an 
example of how Goldin illuminated interactions between students’ feelings and their cognitive 
processes: 

The feeling of bewilderment in approaching a problem in mathematics may simultaneously 
suggest that certain standard problem interpretations or problem-solving strategies do not 
work… [a]ffective states may evoke heuristic strategies; thus frustration may evoke a major 
change in strategy. (p. 110) 
This framing suggests the importance of asking PTs about their feelings when engaging in an 

Opportunity for Productive Struggle. 

Methodology 
The participants in this study were twelve (of nineteen) PTs in a middle school mathematics 

methods course who agreed to be interviewed. Five (of seven) PTs were taking it as the first 
mathematics methods course in a program leading to a secondary mathematics education degree. 
Seven (of twelve) were taking it as their second mathematics methods course as middle school 
mathematics majors in an elementary teacher education program. We used video-stimulated 
recall interviews to ask the PTs about what they had experienced when engaged in an 
Opportunity for Productive Struggle. The context was a lesson centered on the doing math (Stein 
et al., 1996) Frog Problem (see Figure 1; for more details, see Andrews, 2000, and Dixon and 
Watkinson, 1998). The PTs engaged in activities around the Frog problem for three ninety-
minute sessions, beginning with two teams of PTs physically modeling their peers’ suggested 
ways to achieve the fewest number of moves using chairs set up at the front of the room. They 
had opportunities to develop their ideas about the mathematics of the Frog Problem and the 
mathematical practices (NCTM, 2014; NGACBP & CCSSO, 2010) they used in solving the 
problem by participating in whole-class discussions, small-group discussions, and written 
reflections. 
 

Figure 1: The Frog Problem Prompt and Representation of Two Frog Teams of Size Three 
 
The researcher-identified Opportunity for Productive Struggle discussed in this report 

occurred at the beginning of the third session and was six minutes long. It was chosen because it 
fit the two criteria of an OPS identified in the Theoretical Perspective section above: (a) the PTs 
were engaged in the Frog Problem, a task that met the doing math criteria (for more details, see 
Kamlue & Van Zoest, 2022b) and (b) the teacher had identified an incorrect PT’s explanation 
(See Figure 2) as a high-leverage contribution and positioned the class to engage in mathematical 
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sense making about it. This OPS provided the opportunity to better understand the difference 
between exponential and quadratic equations and included multiple PTs’ contributions to the 
whole-class discussion about the PT explanation in Figure 2. 

 
 

Figure 2: The (Incorrect) Explanation that Initiated the Opportunity for Productive 
Struggle 

 
The audio-taped and transcribed video-stimulated recall interviews began by showing the PT 

a video of the selected Opportunity for Productive Struggle (OPS) to help them to recall the 
experience. This report analyzed the responses to these questions (and follow-up probing): 

1. Please describe what you were experiencing in this [OPS]. 
a. Do you remember what kind of thoughts you had? 
b. Do you remember how you felt at that time? 

2. What mathematics did you make sense of as a result of that [OPS]? 

The first and third author independently read through the transcripts and holistically 
identified a word that captured how each PT described feeling during the Opportunity for 
Productive Struggle and a phrase that captured what they described making sense of as a result of 
their experience. They then discussed their coding, developed code names and definitions, and 
refined them with the help of the second author. The data was then re-coded using the refined 
codes (see Figure 3 and 4 in Results & Discussion section for the resulting code names and 
definitions).  

Results & Discussion 
We report here on the PTs’ reflections on what they experienced as they engaged in the 

interaction that we had identified as an OPS. (See Figure 2 for the explanation that initiated the 
OPS). We first report on the code names and definitions that we developed in our first level 
analysis of the data (Figures 3 and 4). We then report on our second level analysis of those codes 
(Figure 5). 

 Figure 3 shows code names and definitions that arose from our analysis of the PTs’ 
responses to the first interview question—Do you remember how you felt at that time? 

 
Code 
Name Definition Illustrative quote from our data 

unsettled  When PTs said “nervous”, 
“confused”, or “frustration” 

“I think I might have been a little confused on where [the 
classmate’s idea] was coming from…” 

neutral When PTs expressed no feeling or 
said “bored” or “fine” 

“Honestly, kind of bored…I expected like way more math 
because [this class] seems to me more like education class…” 
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settled When PTs said “acceptable”, 
“connected”, “validated, or “good” 

“I felt good because I was able to connect it back to 
something I already knew…” 

Figure 3: Code Names and Definitions for PTs’ Feelings during the Opportunity for 
Productive Struggle 

 
Figure 4 provides code names and definitions that arose from our analysis of the PTs 

responses to the second interview question—What mathematics did you make sense of as a result 
of that [OPS]? 

 
Code Name Definition 

Mathematics An insight or outlook that provides definitions, justifications, questions, explanations of the 
logical concepts, techniques, tools, or skills identified when applied to a problem. 

Teaching The teacher’s use of techniques, tools, or skills in an articulate form intended to accomplish a goal 
for students. 

Other A characteristic that belongs to a person (Trait) and responses where what the PT made sense of 
could not be inferred (CNI) 

 

Figure 4: Code Names and Definitions for What PTs Made Sense of from the Opportunity 
for Productive Struggle 

 
Figure 5 provides the following information for each PT: the PT’s reported feelings during 

the OPS (column 2), their reported sense making as a result of the OPS (column 3), and the type 
of sense making (column 4). We noticed that the PTs experienced the same OPS differently in 
two ways: different feelings and different types of sense making. First, they felt differently when 
engaging in the same task. Six PTs felt unsettled, three PTs felt neutral, and three PTs felt 
settled. Second, the PTs responded differently when they were asked to answer the same 
question: what mathematics did you make sense of as a result of that [OPS]? Eight PTs made 
sense of mathematics, three PTs made sense of teaching, and two PTs made sense of other 
categories than mathematics and teaching—all as a result of engaging in the same OPS. 

There were no clear patterns between PTs in the elementary and secondary programs 
(column 1). There also were no clear patterns related to the feelings the PTs expressed across the 
types of their sense making; it is noteworthy that each of the sense-making categories had one PT 
categorized as having a neutral feeling. Two PTs did not provide clear evidence of something 
they had made sense of, and thus their responses were categorized as other. PT11 talked about 
increasing their “confidence” and PT12 simply described what happened during the OPS. 

There were three PTs’ whose sense making was categorized as teaching, one in each feeling 
category—settled, neutral, and unsettled. Although each of these PTs talked about a different 
aspect of teaching, they all focused on supporting students. PT8 expressed making sense of the 
critical role of clarifying questions to support students’ justifications, PT9 gained insight into the 
selection of tasks that support student learning, and P10’s response was about supporting 
students as they struggle to communicate their mathematical thinking. The fact that all three of 
the PTs in this category thought deeply about a critical aspect of teaching as a result of 
participating in this OPS suggests that engaging PTs in making sense of their peer’s thinking 
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about a high cognitive demand task in a methods course has both pedagogical as well as 
mathematical benefits. 
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PT Reported 
feeling Reported sense making as a result of the OPS Type of sense 

making 

1 

unsettled 

“I know when I said increased by two each time I was talking about there 
[CNI*] and the problem was like a pattern inside a pattern...[the little 
pattern], was the little pattern in [the big pattern], was by twos and then the 
big obvious pattern wasn’t by twos...” 

mathematics 2** “...I kept thinking this is an exponential because there needs to be an x in 
the exponent…” 

3 “I would just say I have learned about the importance of variables in an 
equation and like the importance of explaining your variables.” 

4 “I would say that everything has structure. You just need to like dig a little 
deeper and find [the answer]. And then I, the problem will be easier.” 

5 neutral “...look carefully into the equations…” mathematics  

6 

settled 

“Like breaking apart student work and understanding the different parts” 

mathematics 7 “...I was able to understand, um, what, like what the numbers meant in the 
equation, like what they represented” 

8a*** “I think like justification in mathematics, like an explanation. There needs 
to be a proper justification of like why it [CNI] works…” 

8b settled 
“...So I think thinking really deeply about like, clarifying questions I could 
ask if this was like a student of mine, or um, like asking questions that 
might get them to provide me with a proper justification…” 

teaching 

9 neutral “...it’s more like just good teaching practices than math itself…[for 
example:] What makes a good problem? What makes a bad problem?” teaching 

10 unsettled 
“...[difficulty explaining equations to peers] is testing my patience a lot, 
which is good because I know that that will be pushed when I’m a teacher 
[because my students will also struggle to explain equations]” 

teaching 

11 unsettled 
“...So [the discussion] was very nice; hearing other people's thought 
processes and ideas and trying to make sense of something that confuses 
me as well. … when the entire class and the teacher agree[ed] with [me] [it 
increased my confidence]” 

other 

12 neutral 
“...I would say [the course instructor] put a lot of emphasis on us knowing 
about exponential functions, and [the instructor] had us do an 
assignment…” 

other 

Notes:  *CNI means cannot be inferred. **Bold indicates a PT in the secondary education program. 
***PT8 reported two explicit pieces of information. 

 
Figure 5: PTs’ Reflections on their Engagement with the Opportunity for Productive 

Struggle 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 552 

For the eight PTs whose sense making was categorized as mathematics, four expressed 
feelings that were categorized as unsettled, three settled, and one neutral. There were no 
noticeable patterns related to the feelings the PTs expressed. What is noteworthy was the range 
of mathematics that the PTs reported making sense of during the OPS. PT1 described “a pattern 
inside a pattern,” reflecting their increasing awareness of nonlinear situations. PT2 discussed the 
structure of an exponential equation and their realization that the Frog Problem did not fit that 
structure. PT3 and PT7 reported making sense of representations, such as “variables” and 
“numbers,” respectively. PT4 and PT6 emphasized techniques for solving challenging 
mathematics problems, and PT8 focused on the importance of justification. Thus, it appears that 
regardless of how they felt during the interaction, the majority (66.67%) reported that discussing 
a PT’s high-leverage contribution during a doing math task resulted in mathematical sense 
making.  

Conclusion 
This study discussed what 12 prospective mathematics teachers (PTs) reported having 

experienced when reflecting on their engagement in an Opportunity for Productive Struggle in 
their middle school mathematics methods course. The way in which the PTs reported making 
sense of mathematics suggests that most of them were engaged in mathematically productive 
struggle (Kamlue & Van Zoest, 2022b). Thus our work provides further evidence that doing 
math tasks (Stein et al., 1996) support productive struggle. 

Our finding that the PTs’ feelings did not predict the nature of their sense making suggests 
that even when PTs feel unsettled, they can make sense of important mathematical and 
pedagogical concepts. This finding supports the idea that rushing in to relieve their struggle may 
undermine the benefits of high cognitive demand tasks (Warshauer, 2015). Our findings also 
suggest that generating Opportunities for Productive Struggle in mathematics methods courses 
may support PTs to learn about teaching as well as about mathematics. Rahman (2022) found 
that PTs learned about productive struggle through selecting tasks. It may also be possible that 
engaging PTs in worthwhile tasks in a way that models effective pedagogy can lead to 
pedagogically productive struggle—the type of struggle that occurs when delving deeply into 
understanding the relationship between ideas about teaching and student learning—as well as 
mathematically productive struggle (Kamlue & Van Zoest, 2022b). 

This study provided some insight into how different PTs experience the same Opportunity 
for Productive Struggle. The variety of ways that the PTs in the class experienced this same 
opportunity illustrates the complicated nature of teaching—teachers need to generate learning 
opportunities for each of their students knowing that the students will not all respond to that 
opportunity in the same way. Better understanding the different ways PTs experience rich tasks, 
such as the Frog Problem, can inform teacher educators’ preparation for using these tasks with 
their PTs. 

Extending the research reported here to a larger participant group might reveal additional 
patterns. Our data was based on PTs’ reports of what they made sense of as a result of an 
Opportunity for Productive Struggle; it would also be useful to have a measure of whether PTs 
actually gain the better understanding of a mathematical idea that a given Opportunity for 
Productive Struggle provides. 
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Mathematical problem solving is defined as a “situation in which a goal (i.e. the answer) is to 
be attained and a direct route to the goal is blocked" (Kilpatrick, 1985, p.2). As the focus shifts to 
how to nurture a good problem solver (Schoenfeld, 2007), distinct challenges have emerged 
when the area of mathematical problem solving met the area of teacher education.  

Son and Lee (2021) suggested five categories for conceptions of problem solving: (1) 
problem solving as a means to achieve other ends; (2) problem solving as a means to finding a 
solution; (3) problem solving as a skill requiring steps/procedures; (4) problem solving as 
employing multiple approaches/strategies; (5) problem solving as art. This poster examines the 
conceptions of problem solving on middle/secondary preservice teachers using the categories 
from Son and Lee (2021), as well as how a selected problem-solving activity potentially 
challenged their conceptions.  

 Ten middle/secondary preservice teachers from a Midwestern public university 
participated in this study. They completed a pre-questionnaire on the first day of class, including 
two questions: 1. In your own opinion, what are mathematical problems? Give an example of a 
mathematical problem. 2. What does mathematical problem solving mean to you? Tell me one of 
your most recent mathematical problem-solving experiences. At the end of the first week, each 
participant individually solved the Census Problem.  

 Each participant’s answers in the pre-questionnaire were analyzed and coded into one of 
the five categories suggested by Son and Lee (2021). Each of their documentations on solving 
the Census problem was examined to identify the situations where they experienced a stuck 
moment. At the end, we looked at how these moments potentially challenged their previously 
held conceptions on mathematical problem solving. 

 Echoing what was reported by Son and Lee (2021), Category 2 (problem solving as a 
means to finding a solution) has the largest number of participants. Table 1 below summarizes 
the stuck moments reported by participants under each type of category.  

 
Table 1: Stuck Moments Reported Under Each Category 

 Category 1 Category 2 Category 3 
How is chocolate pudding related 1 4 3 
I don’t know the house number 1 3 2 
Could there be multiple answers 1 0 1 
Not enough information to solve 1 0 2 

 
 The reported stuck moments directly challenged the conception in Category 3. The 

participants under Category 2 were more likely to settle with any answer they deduced without 
questioning whether there could be no answer or multiple answers. Hence only the first two stuck 
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moments were reported by them. A problem designed with multiple solutions, or no solution 
may better challenge this type of conception.  

References 
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem 

solving. Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives, 1-15. 
Schoenfeld, A. H. (2007). Problem solving in the United States, 1970–2008: Research and theory, practice and 

politics. ZDM Mathematics Education, 39, 537-551.  
Son, J. W., & Lee, M. Y. (2021). Exploring the relationship between preservice teachers’ conceptions of problem 

solving and their problem-solving performances. International Journal of Science and Mathematics 
Education, 19(1), 129-150. 

  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 556 

REFLECTING ON AND EVALUATING TASKS: WHAT HAPPENS WHEN 
LEARNING GOALS ARE NOT MET? 

Dana Olanoff 
Widener University 

dolanoff@widener.edu 

Neet Priya Bajwa  
Illinois State University 

nbajwa@ilstu.edu 

Jennifer M. Tobias  
Illinois State University 

jtobias@ilstu.edu 

Rachael M. Welder  
University of Nevada, Reno 

rwelder@unr.edu 

We (a team of mathematics teacher educators) engaged in designing a series of multiplication 
tasks with the goal of deepening prospective teachers’ (PTs’) specialized content knowledge of 
multiplication. In this paper, we discuss the learning goals and design elements from one of the 
tasks in our sequence. We highlight how we evaluated PT responses to the initial version of the 
task to determine that the task was not meeting our learning goals. Then we detail task 
modifications that were made after reflecting on what we learned from implementing the task 
across three semesters at three universities.    

Keywords: Number Concepts and Operations, Preservice Teacher Education  

Introduction and Theoretical Background 
Mathematics teacher educators (MTEs) play an important role in helping prospective 

teachers (PTs) become well prepared beginning teachers of mathematics (Association of 
Mathematics Teacher Educators, 2017). Research has shown that engaging in meaningful, 
cognitively demanding tasks during their teacher education will improve PTs’ instruction when 
they enter the classroom (Watson and Mason, 2007). In order to develop these types of tasks, 
MTEs must have clear, shared, and targeted learning goals (Jansen et al., 2009). In addition to 
defining these learning goals, MTEs must assess the implementation of their tasks to determine if 
the learning goals are being met, and then make progressive modifications to the tasks in the 
cases where the learning goals are not met (Berk and Hiebert, 2009). In this paper, we share our 
work designing, modifying, and implementing one task in a sequence focused on PTs’ 
understanding of the array model of multiplication. We discuss our learning goals for the task, 
and how we modified the task when it was apparent that the learning goals were not being met. 

We began our work by engaging in a task design cycle that we designed (Tobias et al., 2014), 
in which a task from an elementary curriculum is modified into a task for PTs. Our task design 
cycle includes an iterative process involving six steps. The process begins by selecting a 
children’s task, followed by modifying that task for PTs to align with our learning goals. Next, 
the modified task is implemented with PTs and data are collected. This is followed by analyzing 
the data and reflecting on the implementation, and re-designing the task based on the reflection 
on our implementation and analyses. The third through sixth steps are repeated with further 
implementation, analysis, reflection, and redesign. 

We designed a four-task sequence revolving around the array model of multiplication. Our 
overall goals for the entire sequence were for PTs to: 

1. Understand how the array model can be used to represent multiplication, 
2. recognize the distributive property as a driving force behind multiplication algorithms, 
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3. connect base 10 block models to the partial products and standard algorithms, and 
4. recognize the standard multiplication algorithm as a partial products algorithm. 

 
With these goals in mind, we began with a third-grade multiplication task which asked how 

many mailboxes were contained in a 12-by-12 array. Our first task presented PTs with a 29-by-
23 grid, representing a rectangular array of mailboxes in a mailroom. We asked PTs to use the 
picture to find three different methods for determining the total number of mailboxes or unit 
squares (1-by-1) in the grid (e.g., by decomposing the provided grid-array into different 
combinations of smaller regions). Our second task, the focus of this paper, asked PTs to make 
connections between a base 10 block model of 29 x 23 and the mailbox problem from task 1. In 
task 3, we asked PTs to relate a base 10 block model to symbolic representations of the standard 
and partial products algorithms for whole-number multiplication. In our final task, we asked PTs 
to solve 16x25 in three different ways.  

Methodology 
A total of 11 sections of elementary content courses across three universities participated in 

our task sequence over three semesters (semester 1: 5 sections, semesters 2 and 3: 3 sections 
each). The courses were designed such that PTs were introduced to a task first then given time to  
work on the task individually and in small groups. This was followed by whole class discussions 
focused on solutions and solution strategies.  

The data collected included PTs’ written work on every task and instructor field notes. Since 
not every instructor taught the task sequence at the same time, field notes and reflections were 
used to make minor modifications to the tasks during the semester, prior to the next instructor 
teaching. After every instructor completed the task sequence, we examined PTs’ work for themes 
which then informed larger task modifications prior to the reimplementation of the task sequence 
the next semester. In this paper, we focus on our second task, because this task was modified 
considerably for two reasons: a) the learning goals for this specific task as well as our task 
sequence overall were not being met by this task, as students were making surface level 
connections as opposed to those we intended for them to make through the task, and b) we 
expanded the original task with each iteration as we considered things students attended to or 
missed, leading us to critically examine our learning goals for this task as we engaged in the task 
design cycle.            

Results 
What we report here are our findings from the versions of our second task. We discuss PTs’ 

work and reasoning for each iteration, as well as task modifications that we made across 
iterations.   
Task 2 Version 1 

Our original version of task 2 asked PTs to analyze a base 10 block representation (see 
Appendix for a full picture of the task) to determine if the base 10 blocks represented the original 
29-by-23 grid and explain why or why not. In analyzing the data from this version of the task, we 
determined that PTs were successful in recognizing that the representation matched (97% said 
yes it matches). However, 38% of those focused solely on the fact that both representations 
contained 667 unit squares, rather than connecting the base 10 blocks to the original grid in any 
meaningful way. In addition, 27% reasoned that the base 10 block representation matched 
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because it shows 29 rows with 23 columns, which was the same as in the mailbox problem, but 
did not account for how the base 10 blocks were used in the model. Only a few PTs justified that 
the base 10 blocks match the mailbox problem because it is a way of chunking the grid to assist 
in the original multiplication. Table 1 provides some examples of each of these types of PTs’ 
responses on Task 2. 

Table 1: PTs’ Reasoning on Task 2 

# Does this model [base-ten block representation of 29 x 23 grid] represent the 
mailbox problem? If so, how? Please provide your reasoning. 

1 “Yes, this model represents the mailbox problem because all of the boxes added 
together provides the same outcome as the other block representations are. 
Because they are the same outcome this means that each model represents the 
answer for this situation.” 

2 “667 is the same amount as the mailboxes problem. Same amount of boxes. It 
shows 23 x 29 as well. 29 rows, 23 columns.” 

3 “Yes, this model represents the mailbox problem. The way it was broken down 
into base 10 blocks shows how you could have broken the mailbox problem. 
Breaking it down into the base 10 blocks allows it to be easier to add it all 
together problem.” 

 
Task 2 Version 2 

As discussed above, our results indicated that almost 40% of PTs responded that the 
representations were the same because they both resulted in an answer of 667. We felt that these 
responses were not in line with our learning goals for either the task sequence, or for Task 2 
specifically. We intended for this task to be an opportunity for PTs to make connections between 
the grid model and the base 10 block model, seeing the base 10 block model as an efficient way 
to chunk the grid to make the multiplication easier. This would in turn act as a segway into 
making sense of the distributive property, and our follow up tasks that focused on the property’s 
use in the standard and partial products multiplication algorithms. In our task analysis, we 
decided that by providing a correct base 10 block partition of a 29-by-23 grid, and asking if this 
matched the original grid, despite asking for justification, we allowed answers that only focused 
on the product, rather than understanding how both models showed the multiplication of 29-by-
23, and different ways of figuring out this product. In modifying the task, we focused explicitly 
on the goal for PTs to see the issue with only matching the answer to the multiplication problem. 
The new task directions became: “A student said that you can create a replica of the 29-by-23 
grid with 6 flats, 6 rods, and 7 small cubes. Is this student correct? Why or why not? Support 
your reasoning by drawing the grid with these given pieces below.” Part two of this task asked 
PTs to create the 29-by-23 grid with the fewest number of base 10 blocks possible. 

In analyzing this version of Task 2, we found that PTs were successful at answering the 
yes/no question, i.e., recognizing that you cannot create a replica of the grid with 6 flats, 6 rods, 
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and 7 small cubes (91.5% said no you cannot create a replica). However, when compared to the 
first version of our task, we found differences in how PTs’ reasoned about the replica. In our 
modified task, the majority of PTs either focused on the fact that 6 flats will create a row of 30, 
and thus be too big, that at most 4 flats would be able to fit in the grid, that the given blocks 
cannot create a rectangle, or the grid itself is not “big enough” for the blocks to fit without 
breaking a block apart (72.6% of PTs). Only two PTs (2.2%) focused solely on the answer of 667 
and incorrectly concluded that a replica could be made. Thus, in our modified task we found that 
PTs were largely focusing on an aspect of the array not related to the total of 667 to determine if 
the blocks could be used to create a replica. 

Discussion 
The purpose of our second task was to introduce an array representation with base 10 blocks 

to model the mailbox problem with the underlying goal of moving PTs towards developing and 
understanding the distributive property and its role in whole number multiplication algorithms. 
Our second task specifically was designed for PTs to explore how base 10 blocks can be used to 
represent an array situation as well as begin to recognize partial products and how they can be 
combined to find a total. In the first version of this task we found that by giving PTs a correct 
base 10 block representation, over half (65%) either only focused on the total of 667 being the 
same or only focused on the number of rows and columns being the same in both 
representations. Thus, the majority of PTs did not reason about base 10 blocks, nor need to, to  
determine that the base 10 block representation matched the mailbox problem. This indicated 
that providing a correct base 10 block representation did not compel PTs to reason about 
multiplication in ways we were intending. Results from our modified task indicated that over 
90% of the PTs determined that they could not create the array with 6 flats, 6 rods, and 7 small 
cubes and all but two of them provided reasoning that was not based on the answer, and instead 
focused on an aspect of the array itself (e.g. length of one side, or the fact that the given base 10 
blocks would not create a rectangle). Thus, our modified task was much better at reaching our 
learning goals and focused PTs’ attention towards how base 10 blocks could be used to represent 
and partition the grid, rather than draw their attention towards the total amount. 

Conclusion 
As part of engaging in our cyclical task design cycle, we considered modifications to our task 

sequence after the first round of implementation. These modifications were based on the fact that 
the original task did not help PTs meet the learning goals for the task sequence. Overall, through 
reflecting on our implementation and the above-mentioned results, we learned that we needed to 
consider ways to help PTs focus more explicitly on the two numbers being multiplied in an 
array, rather than only the total number of units. We found one way to do this was by modifying 
our task to ask PTs to design their own model, rather than reasoning about one that we provided.  
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The interactions that teachers have with students through the questions and statements that 
teachers make—referred to herein as teaching moves (Jacobs & Empson, 2016)—can have 
profound impacts on student success (e.g., Carpenter et al., 1989). Given this, it is vital to train 
preservice teachers (PSTs) to teach in ways that are responsive to children’s mathematical 
thinking (CMT) and that use CMT to engage learners and target their needs (e.g., Jacobs & 
Spangler, 2017; NCTM, 2014). Instructional practices are influenced by factors such as 
pedagogical beliefs (e.g., Peterson et al., 1989; Staub & Stern, 2002), and little is known about 
what factors influence the teaching moves PSTs use in their work with students.  

This poster presents findings from an exploratory mixed-methods study that investigated 
what cognitive and affective factors were related to the number of teaching moves that 40 
elementary PSTs made when engaging with six different student work samples—drawn from a 
noticing instrument (Jacobs et al., 2022). Specifically, quantitative data was collected through 
measures of mathematic anxiety (MA; Ganley et al., 2019), instructional beliefs (Schoen et al., 
2019), executive functions (EFs; Younger et al., 2022), and pedagogical content knowledge 
(PCK; see Learning Mathematics for Teaching Project (LMT), 2011). Qualitative data was 
collected from written responses to student work produced by PSTs and follow-up interviews.    

Teaching moves within written responses and follow-up interviews were coded using 
provisional coding (Miles et al., 2014) and analyzed through constant comparative analyses 
(Glaser & Strauss, 1967). Correlational analyses were then used to explore the relationships 
between the aforementioned factors and the number of teaching moves PSTs made.  

After correlating factors with the number of teaching moves PSTs make, results suggest that 
working memory, as measured by filtering accuracy (r(36) = .364, p<.05) and mean reaction 
time (r(36) = .364, p<.05), facts-first beliefs (r(38) = -.474, p<.01), the number of collegiate math 
courses PSTs have taken (r(38) = .466, p<.01), and scores on the Number Concepts and 
Operations (r(38) = .454, p<.01) and Rational Number LMT (r(36) = .382, p<.01) tests, are all 
significant. In addition, the emotionality (r(38) = -.313, p <.05) and worry (r(38) = -.324, p<.05) 
subscales of MA were significant for rational number work samples but not for whole numbers. 

The results of the present study suggest that facts-first beliefs, EF filtering, rational number 
LMT scores, and the number of collegiate mathematics courses PSTs had taken are significantly 
related to the number of teaching moves that PSTs make when engaging with both sets of student 
work samples. In addition, MA and rational number LMT scores were specifically related to the 
number of teaching moves PSTs made when engaging with work samples related to rational 
numbers. While we acknowledge that the work of understanding these relationships transcends 
number of teaching moves alone, these findings draw attention towards factors that predict the 
number of teaching moves PSTs make, thereby laying the foundation for future research to 
consider whether these factors also influence the types of teaching moves. 
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SimulaTE is studying teaching simulations as formative assessments of pre-service teachers’ 
(PST) practice of eliciting and interpreting students’ mathematical thinking. Preparation and 
protocols that promote reliability and validity of the simulations as formative assessments will 
enhance their effectiveness and generalizability. Teacher educators who use the simulations 
document each PST’s performance to generate relevant feedback for the PST. As part of a 
coordinated set of validity studies, six researchers were prepared on the documentation protocol. 
Consistency of documentation within the group and with the simulation developers’ judgments 
provided evidence supporting reliability and validity of the documentation protocol. 

Keywords: Assessment, Mathematical Knowledge for Teaching, Preservice Teacher Education, 
Teacher Educators 

Framing and Purpose of the Study 
Mathematics teacher preparation ideally produces skillful and capable professionals whose 

classroom teaching will promote ambitious goals for student learning and counter chronic 
disparities in educational outcomes for students. Achieving this goal requires early and frequent 
engagement in practices of teaching with formative feedback to develop sophisticated 
knowledge, skills, and dispositions necessary for nurturing young learners of mathematics. 

Formative assessment is a crucial component in teacher preparation (Darling-Hammond et 
al., 2005; AMTE, 2017) because it provides pre-service teachers (PSTs) with feedback they need 
to improve their practice (Grossman, 2010). It requires seeing teaching practices in action, but 
traditional field settings are limited in terms of frequent accessibility and the opportunity to work 
on specified facets of teaching. Simulations are an approximation of practice that can provide 
early, frequent, and substantive formative assessment opportunities while engaging PSTs in 
selected mathematics teaching practices. 

PSTs enter preparation with knowledge, skills, and dispositions toward teaching that need to 
be surfaced, refined, or in some cases, counteracted (Boerst et al., 2020; Shaughnessy & Boerst, 
2018a; Shaughnessy et al., 2020). To this end, efforts at the University of Michigan have resulted 
in a library of teaching simulations for elementary PSTs. The underlying premise is that PSTs’ 
learning will be enhanced by performances of teaching practices that reveal the current state of 
their knowledge, skills, and dispositions and informing actions that facilitate growth (Shute, 
2008; Hattie & Timperley, 2007). This study’s purpose is to investigate reliability (consistency) 
and validity (accuracy) in the process for documenting performances to generate timely, 
interpretable, and actionable feedback.  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 564 

Teaching Simulations as Formative Assessments 
Using the teaching simulations as formative assessments involves three interacting roles: 

1. The PST prepares for, engages in, and debriefs what they learn via the teaching practice 
of eliciting and interpreting student thinking with a Simulated Student. 

2. The Simulated Student is an adult prepared to follow a provided profile and to respond in 
specific ways to anticipated questions and prompts. 

3. The Teacher Educator (TE) documents the PST’s performance during the simulation and 
debriefing interview and provides formative feedback based on the performance. 

Figure 1 illustrates the full formative assessment process. Two components are underlined in the 
figure to indicate the parts of the process investigated in this reliability and validity study. 

 

 
 

Figure 1: Structure of Teaching Simulations as Formative Assessments 
 
Mathematics content in the simulations is high-leverage for elementary mathematics teaching 

(Shaughnessy et al., 2012) in that the tasks represent core disciplinary content and the student 
work and specifications of the role depict evidence-based recreations of student thinking about 
that content. Figure 2 is an excerpt of key elements of one simulation assessment. 

 
Mathematics topic: Multi-digit addition  
• The student’s process: The student is using the column addition method for 

solving multi-digit addition problems, the student is working from left to right. 
• The student’s understanding of the ideas involved in the 

problem/process: The student has conceptual understanding of the 
procedure including why combining is necessary (and when and how to 
combine).  

• Other information about the student’s thinking, language, and 
orientation in this scenario: The student talks about digits in columns in terms of the place value 
of the column. The student uses the term “combining” to refer to trading/carrying/regrouping. 

Sample PST prompts Sample Responses 
What did you do first?” “I added the tens: 2 + 3 + 1 and I got 6.” 
“How did you get from 623 to 83?”  “I had to combine the 6 and the 2.” 
“Why did you need to combine those numbers?” “Because they’re both tens.” 

 

 
Figure 2: Excerpts from a Sample Teaching Simulation Protocol 

 
By design, the student discloses aspects of their process and understanding only when asked. 

Consequently, the PST must prompt deliberately for each piece of information about the 
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student’s process and understanding. In the debriefing interview, the PST is asked to recount 
what they learned about the student’s process and understanding in similar detail, including the 
particular evidence that supports their claims. In the interview, the PST is also asked about the 
mathematical underpinnings of the student’s process and understanding; their responses provide 
evidence of their mathematical knowledge for teaching (MKT) the targeted content.  

Documentation of performances is undertaken at a very fine grain size to provide information 
about multiple components of the teaching practice. For each performance, documentation 
involves judgments for about 75 items, varying slightly depending on the particular content and 
task. Most judgments for the simulation documentation indicate whether or not the PST elicited 
or probed for specific pieces of information, and whether or not they took various actions (e.g., 
asking the student to write, posing a new problem) in doing so. Items regarding respect for the 
student’s thinking are also included. In the debriefing interviews, items about process and 
understanding are judged in terms of whether correct/incorrect claims are offered and whether 
evidence for correct claims is provided or acknowledgement of lack of evidence and a proposed 
means of asking for it. The interview documentation includes judgments of correct or incorrect 
statements about the mathematics of the task and the student work. This documentation results in 
ratings for eight performance categories, listed in Table 1. These ratings generate feedback for 
the TE to discuss with the PST about strengths and areas for growth in their performance. 

Reliability and Validity of Documenting PST Performances 
Method for Producing Documentation Data 

A crucial step in the process is documentation of the performance which links the enactment 
of the assessment to formative feedback. To use the simulation assessments effectively, TEs 
must consistently and accurately document performances so that the feedback is relevant to 
experience of the situation and tailored to support PSTs’ growth. To examine this step, six 
mathematics education researchers (2 PhDs, 1 PhD student, 2 MAs, 1 BA) who work with 
multiple teacher education programs were prepared on the documentation procedure for four 
assessments (2 on multidigit operations, 2 on methods for comparing fractions). For each, the 
preparation included a meeting in which the developers introduced and provided practice with 
the content, student protocol, and documentation; independent documentation of performances 
from video samples of PST performances, then comparison and negotiation of judgments; and a 
follow-up meeting with the developers to discuss discrepancies and remaining questions. 

The researchers next independently documented 16 videorecorded performances, four from 
each of the four assessments. These recordings were made as various members of the 
development group had enacted the simulation assessments in past years with 16 participants 
who were mostly PSTs and a few early career elementary teachers (to generate a range of 
performances). To mirror the expectation that the documentation occurs in real time, the 
researchers documented both the simulation and interview portions by watching the recordings 
uninterrupted. The researchers’ documentations were then analyzed in two ways.  
Method of Analysis 

First, to investigate inter-rater reliability, researchers’ documentations were compared within 
the group using Fleiss’s Kappa, which measures the degree of agreement among multiple raters 
on multiple items, accounting for the probability of chance agreements. Values range from 0 (no 
agreement) to 1 (perfect agreement), with values above 0.6 considered substantial agreement, 
and above 0.8 near perfect agreement. See the third column of Table 1 for reliability results. 

Second, to investigate validity, researchers’ documentations were compared to a standard 
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documentation, which was the collective judgment of the development team to document the 
same 16 performances. Unlike the research team, the development team had produced their 
documentation from multiple viewings and collective negotiation to determine appropriate 
documentation. In the validity analysis, each researchers’ judgments were compared to the 
developers’ standard documentation using Cohen’s Kappa. The six researchers’ Cohen’s Kappa 
values were then averaged. Ranging from -1 to 1, negative values represent greater non-
agreement and positive values greater agreement. Values above 0.6 indicate substantial 
agreement and above 0.8 near perfect agreement. See the fourth column of Table 1 for results. 
Results and Interpretation 
 

Table 1: Fleiss’s and Cohen’s Kappa Values by Performance Category 
Performance Category Total Items Fleiss’s Kappa Cohen’s Kappa 

Eliciting Process 28 0.86 0.86 
Interpreting Process 38 0.86 0.86 

Probing Understanding 26 0.75 0.72 
Interpreting Understanding 112 0.83 0.78 

Applying MKT 39 0.95 0.96 
Other Math Knowledge/Skills 22 0.89 0.80 
Attending to Student Thinking 16 0.90 0.94 

Respecting the Student 16 0.96 0.90 
 
As can be seen in the Fleiss’s Kappa results in Table 1, inter-rater agreement among the six 

researchers was at least substantial (Landis & Koch, 1977) for all performance categories and 
can be considered near perfect for all but one. These results offer evidence that the researchers 
documented the performances quite similarly to one another, with the most common differences 
for Probing Understanding during the PST’s interaction with the student. 

Cohen’s Kappa results in Table 1 indicate strong agreement (Landis & Koch, 1977) between 
researchers’ documentation and the development team’s standard judgments, characterized as at 
least substantial for all eight performance categories and near perfect for six. The most common 
differences between researchers and the development team were in Probing Understanding 
during the PST’s interaction with the student and Intepreting Understanding in the interview. 
Conclusions and Next Steps 

The preparation researchers received and structured guidance the protocol provided appear 
sufficient to support documentation of performances that is reliable across different individuals 
for a variety of the simulation assessments. Additionally, the preparation and guidance supported 
valid judgments in documentation in that the researchers’ and developers’ judgments matched to 
a high degree. These results provide promise that teacher educators can take up these complex 
formative assessment tools for use in their own programs. The performance areas of lesser 
reliability and validity (Probing Understanding, Interpreting Understanding) suggest that 
preparation should emphasize and guidance highlight key decisions on items in these categories. 
Important next steps in validation studies of the simulation assessments will examine, via 
stimulated recall interviews, how TEs in the field document performances and investigation of 
the relevance of feedback generated from the assessments that TEs share and discuss with PSTs 
to support their growth in the teaching practice of eliciting and interpreting student thinking. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 567 

Acknowledgments 
This material is based upon work supported by the National Science Foundation (NSF) Grant 

No. 2101343. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the NSF. 

References 
Association of Mathematics Teacher Educators. (2017). Standards for Preparing Teachers of Mathematics. 

Available online at amte.net/standards.  
Boerst, T. A., Shaughnessy, M., DeFino, R., Blunk, M., Farmer, S. O., Pfaff, E., & Pynes, D. (2020). Preparing 

teachers to formatively assess: Connecting the initial capabilities of preservice teachers with visions of teaching 
practice. In C. Martin, D. Polly, & R. Lambert (Eds.), Handbook of Research on Formative Assessment in Pre-
K through Elementary Classrooms (pp. 89–116). IGI Global. https://doi.org/10.4018/978-1-7998-0323-2 

Darling-Hammond, L., Pacheco, A., Michelli, N., LePage, P., Hamerness, K., & Youngs, P. (2005).  Implementing 
curriculum renewal in teacher education: Managing organizational and policy change. In L. Darling-Hammond 
& J. Bransford (Eds.), Preparing teachers for a changing world: What teachers should learn and be able to do 
(pp. 442–479). John Wiley & Sons. https://doi.org/10.5860/choice.43-1083 

Grossman, P. (2010). Learning to practice: The design of clinical experience in teacher preparation. AACTE & NEA 
policy brief.  

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. 
https://doi.org/10.3102/003465430298487 

Landis, J. R. & Koch, G. G. (1977), The measurement of observer agreement for categorical data. Biometrics, 33, 
159–174. https://doi.org/10.2307/2529310 

Shaughnessy, M., & Boerst, T. (2018). Uncovering the skills that preservice teachers bring to teacher education: The 
practice of eliciting a student’s thinking. Journal of Teacher Education, 69(1), 40–55. 
https://doi.org/10.1177/0022487117702574 

Shaughnessy, M., Boerst, T., Sleep, L., & Ball, D. L. (2012, April). Exploring how the subject matters in pedagogies 
of practice. Paper presented at the annual meeting of the American Educational Research Association, 
Vancouver, BC. 

Shaughnessy, M., DeFino, R., Pfaff, E., & Blunk, M. (2020). I think I made a mistake: How do prospective teachers 
elicit the thinking of a student who has made a mistake? Journal of Mathematics Teacher Education. 
https://doi.org/10.1007/s10857-020-09461-5 

Shute, V. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189. 
https://doi.org/10.3102/0034654307313795 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 568 

SCAFFOLDING PRESERVICE TEACHERS’ THINKING ABOUT EQUITY-BASED 
MATHEMATICS TEACHING PRACTICES 

Alesia Mickle Moldavan  
Georgia Southern University 

amoldavan@georgiasouthern.edu 

Laurel Dias 
Utah Valley University 

laurel.dias@uvu.edu 

This study examines how preservice teachers recognize and justify equity-based teaching 
practices within a mathematics task incorporating a multicultural children’s story. Referencing 
Aguirre et al.’s (2013) equity-based teaching practices, the researchers designed a reflection 
guide to assist preservice teachers in recognizing ways tasks can be used to affirm students’ 
mathematics identities, draw on multiple resources of knowledge, and challenge spaces of 
marginality while going deep with mathematics to leverage multiple mathematical competencies. 
Findings indicate that the preservice teachers effectively used the reflection guide to recognize 
the practices and reference various components to justify each practice. Recommendations 
suggest that preservice teachers have explicit opportunities to use similar tools alongside 
strategic tasks to think deeply about equity-based teaching practices to develop their instruction. 

Keywords: Preservice Teacher Education; Elementary School Education; Instructional Activities 
and Practices; Equity, Inclusion, and Diversity 

Purpose 
Bridging theory into practice can be challenging for preservice teachers (PSTs) in developing 

equity-based teaching practices. Although PSTs learn about theoretical approaches to promoting 
equity, they often struggle to recognize and justify specific practices in classroom contexts 
(Hollins, 2015; Zeichner, 2010). Recommendations for mathematics teacher education suggest 
that PSTs have structured learning opportunities to plan for and use equity-based pedagogy that 
elicits access, support, and challenge to advance students’ learning (Association of Mathematics 
Teacher Educators [AMTE], 2017). It is when PSTs have opportunities to develop their 
disposition, knowledge, and skills to recognize and justify such pedagogy that they can begin to 
understand what equity-based mathematics instruction looks like, particularly instruction that 
acknowledges students’ assets respecting the whole learner and their world (AMTE, 2022). One 
way to position and empower PSTs with the tools to understand equity-based teaching is by 
exploring example mathematics tasks through contexts of reflective teaching (Zeichner & Liston, 
2010). We posit that mathematics tasks that strategically reference multicultural children’s 
stories with connections to mathematical concepts can serve as a catalyst for eliciting equity- 
based teaching practices. More specifically, stories representing mathematics learners from 
linguistically, ethnically, and socioeconomically diverse settings can affirm students’ 
mathematics identities, draw on multiple resources of knowledge, and challenge spaces of 
marginality to provide students opportunities to go deep with mathematics as their multiple 
mathematical competencies are leveraged, the foundation of Aguirre et al.’s (2013) equity-based 
teaching practices. This study reports on one aspect of PSTs’ work engaging with mathematics 
tasks using multicultural children’s stories to examine equity-based teaching practices during 
elementary mathematics methods courses. Our guiding research question was: How do PSTs 
make use of a reflection guide to recognize and justify equity-based teaching practices within a 
mathematics task incorporating a multicultural children’s story? 
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Theoretical Framework 
We approach this research with equity-based teaching, as defined by Aguirre and colleagues 

(2013), to cultivate positive mathematics identities and strengthen student learning. The five 
equity-based practices noted in Table 1 (i.e., P1-P5) are recognized as key intentional and 
complex elements. While the practices are noted individually, they may occur simultaneously or 
in various combinations; yet it is recommended that integrating all practices is critical to 
empower students mathematically. To support PSTs’ understanding of the practices, we 
developed a Reflection Guide for Equity-Based Teaching Practice with key components of each 
practice noted to guide PSTs’ understanding as they reflected on each practice (see Table 1). Our 
prior experiences observing PSTs as they recognized and justified equity-based teaching 
practices in a mathematics task, or designed their own tasks, indicated the need for a tool to 
scaffold PST understanding. We do acknowledge that the noted components do not constitute the 
only components for reflection of each practice. Instead, they serve as starting points from which 
deeper conversations must be had. We posit that such conversations can be enhanced with tasks 
grounded in multicultural children’s literature. 

 
Table 1: Reflection Guide for Equity-Based Teaching Practices 

Equity-Based Teaching 
Practices 

Key Components for Reflection 

P1. Going Deep with 
Mathematics 

a. Multiple mathematical strategies/representations included 
b. Opportunities to engage in conversation about the mathematical concept and explain/justify thinking 
c. Opportunities to “make sense” of mathematics and problem solve 

P2. Leveraging Multiple 
Mathematical 
Competencies 

a. Multiple entry points are offered for how to approach the task allowing students with different strengths and 
levels of confidence to make mathematical contributions 

b. Opportunities for student collaboration through mathematical discussions or solving complex problems 

P3. Affirming 
Mathematics Learners’ 
Identities 

a. All students are encouraged to make mathematical contributions and build confidence as problem solvers 
b. Mathematical identities are recognized and validated 
c. Student persistence and reasoning are promoted 

P4. Challenging Spaces 
of Marginality 

a. Opportunities for students to demonstrate and connect their experiences and mathematics knowledge to the 
mathematics concept 

b. Students are encouraged to generate mathematics questions to probe issues 

P5. Drawing on 
Multiple Resources of 
Knowledge 

a. Opportunities for students to learn about their own and others’ backgrounds/experiences during mathematics 
b. Students’ multilingual and multicultural abilities are affirmed and supported while learning mathematics 
c. Opportunities to explore the impact of race and racism in mathematics learning 

Opportunities to learn about mathematics from family and community members 

 

Research Methods 
We used a qualitative case study (Yin, 2014) that encompassed two elementary mathematics 

methods courses across two urban, public four-year institutions, one in the Mountain West and 
the other in the Southeast of the United States. Participants included 38 PSTs who self-identified 
as female (n=38) seeking elementary teaching certification. Their demographics could be further 
described as Hispanic/Latinx (n=3), White (n=25), Black (n=3), and Asian (n=1). Any PSTs who 
selected multiple races were counted as Multiracial (n=6). 
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Task Design 
We designed a mathematics task using the multicultural children’s story “Just a Minute: A 

Trickster Tale and Counting Book,” written and illustrated by the Mexican-American author 
Yuyi Morales (2003). The task connected to the K.CC.B4 content standard, “Understand the 
relationship between numbers and quantities; connect counting to cardinality.” All but 
components P3c, P4b, P5c, and P5d were identified when we self-evaluated the task using the 
Reflection Guide for Equity-Based Mathematics Teaching Practices. 

Our PSTs had the opportunity to engage in the task during their respective elementary 
mathematics methods courses. The task was assigned at the beginning of the semester and 
accompanied by an introductory overview of equity-based teaching practices where excerpts of 
Aguirre et al. (2013) were consulted as assigned readings to guide class discussion. The task 
began with the reading of the multicultural children’s story. In the story, Grandma Beetle delays 
leaving with Señor Calavera as she counts various objects numbered one to ten in preparation for 
her birthday celebration. After reading the book, PSTs shared their noticings and wonderings 
about the story and were tasked with preparing their own party favor for Señor Calavera. Each 
PST chose an item that described their culture, language, or interests to bring to the party and a 
number between one and ten. Then, PSTs used a graphic organizer to create various 
representations of their number. PSTs met in small groups to discuss the representations of each 
person’s chosen item and reflect on the similarities and differences between the items and 
representations. Key takeaways from the small groups were shared in a whole group discussion 
where PSTs also considered how mathematics can be used to learn about students’ cultures, 
languages, and interests. Finally, each PST independently completed a survey created using the 
Reflection Guide for Equity-Based Mathematics Teaching Practices. 

Data Sources and Analysis 
Qualitative data was collected and coded for analysis. The data sources include the PSTs’ 

responses to the survey and our memos as facilitators of the task. Responses to the survey were 
analyzed for patterns and themes (Gibbs, 2007), providing insights into how PSTs thought about 
equity-based teaching practices in the task. We used descriptive and in vivo coding (Miles et al., 
2018) to examine the PSTs’ response justifications, coding for the components outlined in our 
Reflection Guide for Equity-Based Mathematics Teaching Practices. The codes informing the 
themes were organized in a coding chart and cross-checked for coder reliability to safeguard the 
trustworthiness of the analysis (Grbich, 2013). Then, we calculated our codes to find the 
percentage of PSTs who identified individual components of each practice. This percentage 
provided insight into what PSTs recognized and how the reflection guide scaffolded PSTs to 
elaborate on different components in their justifications. Analytic memo-writing was also used to 
assist with extracting and synthesizing relevant data to guide the findings. 

 

Findings 
We found the Reflection Guide for Equity-Based Mathematics Teaching Practices to be an 

effective tool for scaffolding PSTs’ recognition and justification of equity-based teaching 
practices. Here we share sample PST survey responses to demonstrate how PSTs recognized 
each practice in the context of the task. 

For P1, typical responses mentioned P1a and P1b but not P1c as follows: “The number we 
chose was represented in multiple ways (pictures, numbers, word form). We had the opportunity 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 571 

to converse with our peers, explaining the representation we chose and why.” Interestingly, P1c 
was the component PSTs failed to justify the most in their responses. Perhaps adult learners did 
not experience sense-making in the task because it was designed for kindergarten students. 

In P2, many PSTs recognized both components of the task. Most PSTs’ justifications focused 
on language accessibility; for example, “This task doesn’t really require a lot of language/writing 
proficiency and is a task that has a low threshold, high ceiling. There are so many ways students 
could represent numbers and then talk about why they chose their representations.” 

Most PSTs recognized components P3a and P3b in alignment with the research team. One 
response typical of the justifications stated: “Identities were validated in this task by being able 
to choose a “party favor” that represented one’s culture/interests. Students engaged in the task, 
although their representations looked different.” PSTs frequently justified the choices given to 
students in the task as how they built confidence and had their mathematical identities validated. 

P4a was included in 82% of PSTs’ justifications. Once again, many PSTs identified student 
choice as a mechanism for elevating this practice. One student wrote, “Having students choose 
an item related to their culture or experience allows students to dig deeper into what they can use 
to represent this number.” When justifying this practice PSTs highlighted choice as a way for 
students to connect with their experiences and prior knowledge. 

Finally, P5 was more often justified by component P5a than P5b. PSTs tended to focus more 
on learning about students’ backgrounds than how multilingual or multicultural abilities were 
affirmed. For example, “I enjoyed learning about everyone’s item they would bring. It taught me 
a lot about them and things I did not know before. This is a fun way to connect our backgrounds, 
learn math, and learn about each other!” Many more PSTs recognized this practice as getting to 
know their peers’ backgrounds rather than seeing the abilities and strengths their peers bring to 
the classroom. 

Most PSTs’ justifications focused on the same ten components of equity-based teaching 
practices that the research team identified during their self-evaluation (see Figure 1). The four 
components not identified (P3c, P4b, P5c, and P5d) by the research team were all mentioned by 
less than 20% of the PSTs in their justifications. This alignment demonstrates the tool’s 
effectiveness in scaffolding PSTs’ recognition of equity-based mathematics teaching practices. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Equity-Based Mathematics Teaching Practices in PSTs’ Justifications Conclusion 

 
Mathematics teacher education must provide opportunities for PSTs to develop their 

understanding of equity-based teaching practices. Innovative tools like the Reflection Guide for 
Equity-Based Mathematics Teaching Practices can help PSTs recognize and justify each practice 
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in the context of mathematics tasks. It is when PSTs can think deeply about each practice that 
they can begin to make strategic choices that lead to integrating all equity-based teaching 
practices in their instruction (Aguirre et al., 2013). Also, mathematics teacher educators can 
make use of such tools to teach to PSTs’ strengths in specific practices while also acknowledging 
practices needing additional work. Then, particular components can be explored by 
implementing tasks that elicit such practices, like those connecting multicultural children’s 
stories, to ensure equitable teaching that engages all learners. 
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Number talks, a popular mathematics teaching routine in the United States, may offer early 
support for prospective teachers (PSTs) to engage in ambitious instruction. Studies on teacher 
noticing, particularly attention, show a need for understanding what PSTS attend to as 
significant in teaching. There are few studies on what PSTs attend to in their enacted NTs. In this 
study, we analyzed interview transcripts of 11 PSTs to identify themes that show what they 
attended to as significant in their enacted NTs. We found three themes in relation to establishing 
a safe learning environment, allowing the PSTs to focus on students’ conceptual understanding, 
and inviting students to see multiple strategies of others. Discussions and implications are 
offered in relation to mathematics teacher education and research. 

Keywords: Elementary School Education, Instructional Activities and Practices, Teacher 
Educators 

Purpose 
Prospective teachers (PSTs) are expected to learn how to engage in ambitious mathematics 

instruction (Kazemi, Franke, and Lampert, 2009; Lampert et al., 2010) that is also equitable for 
all students (e.g., Jackson & Cobb, 2010). This kind of teaching is inherently challenging for 
teachers, particularly PSTs. Number talks (NTs), instructional routines in which students use 
mental mathematics to solve computational problems (Humphreys & Parker, 2015; Parker and 
Humphrey, 2018; Parrish, 2014), may offer one way for PSTs to engage in ambitious and 
equitable instruction; that is, instruction that provides opportunities to develop deep conceptual 
understanding for all students. NTs create a participation structure that may support “students to 
take back the authority of their own reasoning” (Humphreys & Parker, 2015, p. 1). The 
routinized nature of NTs can offer support for PSTs to engage in aspects of ambitious instruction 
as novices.  

In our recent work (Authors, 2021a, 2021b, and 2021c), we reported our observations of 
variation in beginning teachers’ enacted NTs in terms of what made novice teachers’ NTs more 
or less ambitious. We found that features of ambitious NTs include going beyond simply asking 
students to share their strategies to evaluate or compare strategies of peers, and using 
mathematical errors to help students make sense of how strategies work. Our findings offer 
insights about how to support novice teachers in learning to implement ambitious NTs. Similar 
to the need identified by Matney, Lustgarten, and Nicholson (2020) for more empirical evidence 
regarding the effects of NTs for K-12 students, we suggest that the field also needs empirical 
evidence with respect to NTs enacted by PSTs to better understand how NTs may be used to 
support novice teachers to develop their toolkit for ambitious instruction. In this paper, we draw 
on theories of teacher noticing to explore what PSTs notice in their enacted NTs. There is a rich 
body of literature on teacher noticing in mathematics education, which offers perspectives into 
what teachers notice in their own and others’ instruction, and how such noticing influences 
teachers own interactions with students (e.g., Jacob, Lamb, & Philipp, 2010; Star & Strickland, 
2008). Taken together, PSTs’ noticing within the space of enacted NTs may be a targeted 
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opportunity for PSTs to develop understanding of ambitious and equitable instruction. As such, 
this paper aims to understand what PSTs notice in their enacted NTs. 

Theoretical Perspectives 
We draw on teacher noticing, more specifically attention, as our perspective to examine what 

PSTs notice in their enacted NTs. Researchers take different approaches to teacher noticing (e.g., 
Jacob et al., 2010; Star, Lynch, & Perova, 2011; Star & Strickland, 2008; van Es & Sherin, 2002, 
2021). One of the common components of those approaches is attention, which we take to mean 
“identifying what is important or noteworthy about a classroom situation” (van Es & Sherin, 
2002, p. 573). Building on the work of Star and colleagues’ (2008, 2011), we focus on attention 
as a key first step of teacher noticing. If PSTs are unable to identify that certain classroom events 
have occurred, then they are likely to fail to engage in subsequent components of teacher 
noticing, such as deciding how to respond (Jacob et al., 2010) or making connections between 
particular events and broad principles of teaching and learning (van Es & Sherin, 2002). 
Therefore, we propose that PSTs will have difficulty in learning to implement ambitious NTs if 
they are not able to identify significant features of their own NTs. 

Star and colleagues (2008, 2011) examined PSTs’ attention in mathematics methods courses 
designed to support PSTs in developing their attention skills. In the data collection, the 
participants watched two different videos of experienced teachers in the beginning (pre-
assessment) and at the end of the courses (post-assessment), respectively. After watching the 
videos, participants were asked to recall classroom features and events in observation categories, 
including classroom environment, mathematical content, and communication. As a result of 
comparing both assessments, the researchers found that the PSTs experienced improvements, 
high or modest, on all observation categories. Their studies suggest that PSTs can improve their 
noticing skills with support. The suggestion raises a question of whether and how NTs could 
support PSTs in improving their noticing skills. 

In a recent study, Wood (2021) worked with PSTs in her elementary mathematics methods 
course to understand what they could notice about students. The PSTs explored, planned, and 
rehearsed two separate NTs during simulations in which they interacted with a group of avatar-
students, followed by reflection on their NTs. The researcher found that NT simulations provided 
the PSTs with opportunities to learn to notice about students, including recording representations 
of students’ thinking and probing students to make mathematics visible. Wood’s study suggests 
that NT simulations could help PSTs improve noticing skills when the simulations take place 
within a cycle of enactment and reflection. Taken together, Star et al. (2008, 2011) and Wood 
(2021) suggest that NT may support PSTs to develop their noticing skills, especially attention, 
within the cycle in actual classrooms. However, the field knows little of PSTs’ attention in 
implementing NTs working with students in classrooms. These perspectives from these studies 
on teacher noticing led us to investigate what PSTs attend to as significant in their enacted NT. 

Methods 
Context, Participants, and Data Sources 

The research site was in mathematics methods courses taught by the first author for 
elementary school teachers at a small southwestern university. Data was gathered in Spring 2021 
as part of a research project that investigated how to support PSTs in learning to implement the 
eight effective mathematics teaching practices recommended by National Council of Teachers of 
Mathematics (NCTM; NCTM, 2014). Twenty-one PSTs agreed to participate in data collection, 
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including electronic submissions of course assignments, including their Number Talk Project. 
The Number Talk Project consisted of PSTs engaging in a learning cycle to plan, rehearse and 
implement their NT plan. At the end of the learning cycle, PSTs video-recorded themselves 
enacting their revised NT in their field placement classroom. PSTs also submitted a written 
reflection paper based on watching their NT video. Eleven of the 21 PSTs participated in 30-
minute semi-structured interviews in which they reflected on their enacted mathematics 
instruction as well as NTs from the perspectives of the NCTM’s teaching practices (e.g., posing 
purposeful questions). The interview protocols included asking PSTs to identify at least three 
moments in their NT video that were significant and elaborating on why those moments were 
significant. We obtained 33 episodes that were described by the PSTs as significant. This paper 
used the NT-related parts of the interview transcripts of 11 PSTs as data sources. 
Data Analysis 

There were three steps we took to analyze the interview transcripts using a thematic analysis 
(Saldaña, 2015). First, the authors coded interview transcripts of four PSTs to create initial 
analytic codes of what the PSTs perceived as significant in their enacted NTs. We began with 
codes from Star and colleagues’ categories- classroom environment and communication and our 
prior works (Authors, 2021a, 2021b, and 2021c) and remained open to any emerging codes (e.g., 
encouraging flexible approaches to). We coded the transcripts independently and met together to 
compare independent codes and resolved the disagreements by consensus. Second, we applied 
the initial codes to the other seven interview transcripts to refine the codes. The refined codes 
include classroom environment, the benefits for the PSTs (e.g., supporting students’ conceptual 
understanding), and the benefits for their students (e.g., learning from multiple strategies). Third, 
we compared and contrasted codes within and across the 11 PSTs to identify salient themes. As a 
preliminary result, we identified three salient themes regarding classroom environment, PSTs, 
and their students, respectively, which will be detailed in the next section. 

Results 
We identified three themes through our data analysis. These themes are related to classroom 

environment, conceptual understanding, and students’ strategies. We present a few excerpts as an 
example of each theme. Each excerpt came from a particular moment perceived by the PSTs as 
significant in their enacted NTs. The first theme we observed was that PSTs attended to the 
classroom environment created during NTs. PSTs noticed NTs must be spaces in which students 
should feel safe enough to share their strategies and take intellectual risks with their peers. One 
PST said,  

It was the fourth student sitting across from me. Um, I feel this was significant only because 
she was really shy to share throughout, and then at that point was when she tried to share 
something, … but she was really, really quiet so when I asked her to explain again, she got 
really shy and she just, like, shut down… To those kinds of students, it was sad because she 
wanted to share, but when I didn't hear her she didn't want to repeat herself again, and so I 
just feel like it was like a learning lesson for me for the future when working with shy 
students, and developing classroom culture. (PST09). 

In this excerpt, the PST described an event in which a female student tried to share her ideas but 
she shut down because “she was really shy to share throughout.” The PSTs attended to a 
classroom culture that NTs might foster when working with shy students. The same PST said 
when identifying another moment that in NTs, students “have a growth mindset” and they are not 
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“afraid to share their answers even though it could be wrong.” This short excerpt shows the PST 
saw NTs as an environment for students to take intellectual risks. 

The second theme we observed was that PSTs noticed that NTs help them focus on students’ 
conceptual understanding. PSTs attended to ways to support students’ conceptual understanding 
during NTs by going beyond how students solved problems. One PST said,  

I had a student who asked me to stack the numbers. She wanted me to stack them, and I just 
thought that was super interesting because that’s what her brain instantly went to…That 
specific student wasn’t like, I wouldn’t say that she wasn’t conceptually thinking, like, 
wasn’t about to conceptually think, but that was something, like, a rule or procedure that she 
instantly, her brain instantly went to that she has been taught to do. And so, this is the line of 
thinking that she might be going down. So, it was important to me because I kind of noted 
that she might not be that conceptual (PST07). 

This excerpt highlights how PSTs focused their attention on conceptual understanding as a part 
of NTs.  The PST observed a student “instantly” using a conventional algorithm (“She wanted 
me to stack them”). We noticed similar kinds of attention across PSTs in the ways NTs N helped 
PSTs attend to students’ conceptual understanding. 

The third theme we observed was that PSTs noticed that NTs increased students’ 
opportunities to share multiple strategies. PSTs attended to how students sharing strategies 
benefitted the class overall. One PST said,  

It was good to do because there were a lot of people [students] who came up with different 
ways to find the answers, and then that helped the students who didn’t find the answers to 
think of a new technique that they could use (PST10). 

This excerpt shows that the PST attended to how the NT was beneficial for students: Students 
learned from their classmates’ strategies (“that helped the students who didn’t find the answers to 
think of a new technique”). 

Discussions and Conclusion 
We discuss two points in relation to the results. First, PSTs attended to features of their 

enacted NTs that were helpful (or challenging) to them as novice teachers. In doing so, PSTs 
attended to important elements of learning to teach ambitiously and equitably including 
developing a safe classroom environment, supporting students to develop conceptual 
understanding, and supporting students to learn from one another. While we did not analyze their 
enacted NTs, this provides evidence that NTs might be a "useful container" for PSTs to develop 
and refine teaching practices related to ambitious and equitable instruction.  

Second, PSTs need support to develop their noticing, particularly attention, during teacher 
preparation programs. In our study, the PSTs were able to hone significant features of their own 
NTs related to ambition and equitable instruction with the support of engaging in the learning 
cycle in the mathematics methods courses. Like what Wood (2021) suggested in the context of 
NTs with simulation, PSTs need to engage in planning, rehearsing, enacting their plans, and 
reflecting on their enacted NTs in a supportive environment such as a mathematics methods 
courses to develop a sense of how to do NTs ambitiously.  
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Bramlett and Drake (2013) suggest that the ability of teachers to teach proof is crucial for 
students to learn and develop formal and informal proofs. Teachers need to be involved in the 
process of proving and have a firm understanding of the critical role of proofs in order to 
effectively engage their students in proving activities. It is unrealistic to expect K-12 teachers to 
educate students on proof if they themselves are not given opportunities to engage deeply in the 
process of proving and understand its significance (Bramlett & Drake, 2013). According to 
McClain (2010), it is important for teachers to help students understand proof and engage in 
proving tasks. However, there has been little research on how to teach proof in secondary school 
mathematics. Steele (2012) suggests that teachers should have the knowledge and skills to 
identify whether mathematical arguments constitute proofs or not and determine what counts as 
proof across different representations. Pedagogical beliefs toward proof may be influenced by 
teachers' beliefs about the nature and role of proof in mathematics, its role in school 
mathematics, and their beliefs about themselves as mathematical thinkers. In this case study, the 
researchers leveraged a qualitative method – case study – to study a pre-service teachers’ belief 
about the process of proof and the role of visualization and technology in teaching proof. 

Keywords: Reasoning and Proof, Calculus, Preservice Teacher Education, Technology 

Introduction  
This study aims to investigate the ways in which the integration of dynamic geometry 

software (DGS) and visual representations can enhance the understanding of proof in calculus 
concepts among pre-service secondary mathematics teachers. The study focuses on the teaching 
and learning of proof by using technology and aims to contribute to the field of mathematics 
education. The research question guiding the study focuses on the ways that dynamic technology 
integration and visual representations can support teachers' experiences and beliefs regarding the 
process of proving calculus concepts. The study is inspired by the works of Raman (2003), 
Stylianides (2009), Abbaspour (2022), and the National Council of Teachers of Mathematics 
(NCTM) Catalyzing Change in High School Mathematics (2018) and aims to investigate the 
effect of visual representations connected to key ideas through technology on teachers' 
understanding of the proof process. (Raman, 2003; Stylianides, 2009; Abbaspour & Safi, 2022, 
NCTM, 2018). 

Rationale of the Study 
The National Council of Teachers of Mathematics (NCTM) has consistently emphasized the 

importance of proof in mathematics education in its Principles and Standards for School 
Mathematics (2000) and Catalyzing Change in Middle School Mathematics (2020). However, 
the Association of Mathematics Teacher Educators (AMTE) Standards for Preparing Teachers of 
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Mathematics (SPTM) does not provide clear guidance on how to teach proof in school 
mathematics, and in fact only mentions proof six times. Although the document highlights the 
importance of argumentation, justification, and teachers' roles in helping students understand the 
limitations of notions, it does not provide specific standards related to proof. Generally, 
additional research is needed in ways to engage current and future teachers more intentionally 
(Safi, 2020) more effectively.  There is a need for more research on this topic as the current 
standards, suggestions, and current practices may not be sufficient for preparing teachers to learn 
and teach proof (AMTE, 2017; NCTM, 2000, 2020). After considering the guidelines and 
practices related to teaching proof in mathematics, it becomes apparent that there is a need to 
improve the content of teacher preparation programs in this area. Since there is a lack of specific 
recommendations for preparing teachers to teach and learn proof, it is reasonable to conclude 
that further research is required to identify how to address this issue. 

Methodology 
This research study aims to investigate the impact of using DGS as an intervention to 

enhance the understanding and construction of proofs related to calculus concepts and theorems 
at the secondary school level (Abbaspour Tazehkand, 2022). Since this topic has not been 
explored before, the study employs a qualitative research approach (Creswell, 2014) using a 
multiple case study design (Merriam, 1998; Creswell, 2013). This approach allows the researcher 
to achieve an in-depth understanding of the subject matter by examining a variety of cases. To 
ensure that the study captures a range of perspectives, the maximum variation method is used to 
select participants (Creswell, 2013;Abassian, 2018). Multiple sources of information are 
collected from each participant to obtain a comprehensive understanding of each case.  

The study planned to use various methods to collect data, including questionnaires, audio and 
video recording, artifact collection, and interviews. Participants provided consent and were asked 
to participate. Data collection consisted of one pre-interview and three post-interviews, as well 
as recorded videos of students working on assignments, student artifacts submitted online, and 
audio and video recordings of whole-class and group discussions. Three assignments were 
required for the study, and post-interviews were conducted after each assignment. The interviews 
were semi-structured, allowing for flexibility in question selection and modification based on 
student responses to class activities and assignments. 

 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 580 

 
Figure 1: The Conceptual Framework 

This study focuses on the interplay between preservice and in-service secondary mathematics 
teachers, dynamic interactive technology such as GeoGebra, and exploring calculus concepts and 
theorems. Teachers are the main focus of the study because achieving the goal of helping 
students make sense of calculus concepts requires teacher preparation programs and pedagogical 
support. The study fuses different aspects of mathematical teaching and learning to investigate 
secondary mathematics teachers' understanding of proof and reasoning, including justification 
and proof, teacher content knowledge, and technology and dynamic visual representations. 
Technology-enabled peer feedback activities, coupled with socialization opportunities, promote 
enhanced interaction and feedback generation (Cuocci et al., 2023). The study will analyze the 
interplay between technology and participants' experiences with proof and justification, as shown 
in Figure 1, to dig deeper into the dynamic setting of teaching proof. The study's definition of 
mathematical reasoning and proof is directly linked to mathematical activities, including 
identifying patterns, making conjectures, checking the validity of the conjectures, and proving 
arguments. The framework developed by Stylianides (2008) is suitable for the study's theoretical 
framework, which guides the selection and design of tasks and interventions. The study's focus 
on pre-service and in-service secondary mathematics teachers benefits from the pedagogical 
component of the framework. Additionally, the study examines the distinction between inductive 
and deductive reasoning and the relationship between the two. The framework provides a way to 
connect different modes of reasoning to the process of proving. Stylianides (2005) has analyzed 
the curriculum to identify opportunities for reasoning and proving tasks, categorizing them into 
two groups: those that begin with widely accepted truths and proven arguments using inductive 
reasoning, and those that begin by observing limited cases, identifying patterns, making 
conjectures, and ultimately generalizing mathematically.  

The case of Skylar  
Skylar is a recent  graduate student who is new to teaching mathematics. Prior to this study, 

she had only supervised AP classes and had no formal teaching experience. Unlike some of her 
peers in the Mathematics Education master's program, Skylar did not have any familiarity with 
NCTM's Principles and Standards for School Mathematics. However, Skylar's mother is a 
mathematics teacher who specializes in Calculus and Algebra for college-bound seniors. Skylar 
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shared that she has always enjoyed math and consistently earned high marks in advanced 
courses. When asked about her experience with algebra, Skylar expressed a fondness for the 
subject's logical structure and the satisfaction of finding solutions to algebraic problems. 

During the interview, Skylar was asked about her understanding and beliefs regarding 
mathematical proofs. Initially, she defined proof as "showing how you get the answer." 
However, when asked about the difference between justification and proof, Skylar seemed 
uncertain and used the terms interchangeably, with no clear distinction between them in her 
explanation. Despite providing definitions, her descriptions of the two terms were very similar: 

I think proof is more numbers, more number based and then the justification is okay well how 
did you use those numbers and why did you use those numbers, why did you use those steps 
to get the answer… and you're proving why you got those numbers.  
Skylar's view on mathematical proof was discussed in the second half of the interview, where 

she defined it as explaining the reasons for arriving at a solution to a numerical problem, but 
struggled to distinguish between proof and justification: 

Researcher:   You use the word “because”. 
Skylar:    Uhum. 

Researcher:   So, we are talking about the whys? 
Skylar:    Right. 

Researcher:   But in the beginning you had a different definition. You told me that proof 
means that we need to know the hows… Has something changed in the past 
20-25 minutes? 

Skylar:   I think it is the same thing. The hows and the whys are closely related… This 
is how I did it, and this is why I did it. If you answer both questions, you are 
proving yourself. 

 
To understand Skylar's perspective on mathematical proofs, she was asked about the 

definition of proof and when it can be considered complete. Skylar demonstrated a strong 
understanding of proof construction and validity, and recognized the social element of evaluating 
proofs. She believed that all students can learn mathematical proofs and suggested that middle 
school is the ideal time to start learning. Skylar had encountered more proofs in Calculus, but as 
a K-12 student, she worked with proofs more in Geometry and had to memorize several of them. 
Although proving required a lot of memorization, she emphasized the importance of 
understanding the reasoning behind each proof. Skylar preferred symbolic representations over 
visual ones, but acknowledged the usefulness of visual representations in verifying statements or 
reasoning. She believed that students are often taught to rely more on numbers and variables than 
diagrams, and admitted that she was not well-prepared to help students work with visual 
representations: 

I think it definitely needs to be practiced, but I don't know. I think it's hard, because I know 
for me like if I was told I have to teach visually I wouldn't necessarily even know how… I 
would definitely need help.  
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Skylar was asked about generalization and its relationship to mathematical proofs. She 
displayed a solid grasp of what generalization means, describing it as the process of making a 
statement more widespread and applicable to a broader range of categories. However, Skylar's 
response to the question surprised the researcher as it contradicted the study's framework. Skylar 
believed that generalization is the opposite of proof, as it involves creating an overarching 
umbrella statement, while proofs require finding specific details. While Skylar did not recall 
engaging in any activities related to constructing mathematical conjectures, they stressed the 
importance of understanding proofs as a matter of justifying why one is undertaking a particular 
approach, with a proof being considered complete if all elements of a statement can be justified. 

Skylar's work on the geometric series assignment showed a reliance on external resources 
such as course materials and the internet. She did not provide any visual representations and 
substituted numbers into formulas without explaining why they worked. However, she 
demonstrated an ability to construct conjectures by connecting the formula for the sum of the 
geometric series with the series given in the assignment. Skylar was less confident in her ability 
to construct a conjecture for the general case, but she identified the denominator of the first 
fraction in the assignment and wrote that the sum could be calculated by plugging in the 
denominator as x. Her reliance on memorization and external resources demonstrated her 
perception of how mathematics was taught in colleges and universities. 

 

 
Figure 2: Skylar’s response to the conjecture task 

 
The students were given a DGS to interact with, connecting it to the general form of the 

geometric series to calculate the series sum. Skylar understood the DGS and interpreted the 
sliders, connecting it to the general form and deepening their understanding. During an 
interview, Skylar explained that they relied on memory for the conjecture problem and found the 
formula by going back to notes and looking online. Skylar initially struggled with visualizing the 
series but eventually understood after group discussions. They expressed a desire to teach 
geometric series visually to their future students.  
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Figure 3: The conjecture GeoGebra task 

 
Skylar found it difficult to visualize the geometric series and was unsure how visual 

representations were created. After discussing with her class group, she began to understand the 
visuals for other examples. During the interview, she expressed that she would use visual 
representations to teach the geometric series to her future students. 

I think I would start with the visual and be like okay so what do we think… how do we solve 
that… You can either give them the equation at that point and be like Okay, this is the 
equation that most people use let's see how they compare, or you can try and work through 
it, I would need more practice with how to work through… I think it's important as a teacher 
to give both (numerical and visual). I know that's definitely something where I always am like 
let's just get to the math, but I think as a teacher, you always have to, try to do both mathematics, 
or the numerical values and then also a visual representation… I think, also with series and how 
numbers are formed, I think giving both options give every different type of learner a different 
way of finding that example or finding out how. It would be so I think that I would start with the 
visual. And then maybe teach the numerical side of it and then go back to the visual. 
During the investigation, the researcher asked Skylar why she didn't describe visual 

representations as mathematical. Skylar explained that she always thought of numbers and 
equations built by variables when working on a problem. She emphasized that this was because 
she was taught math that stressed the use of representations other than visuals. She noted that in 
school, students were required to prove everything symbolically and then might be given a visual 
representation to certify their work. While Skylar recognized the benefits of working with visual 
representations, her experiences as a student and the emphasis on symbols were hindering her 
ability to visualize mathematical ideas: 

I think mathematics, in my mind is numerical. There’s no other way… I was taught and there 
is no other, like I was taught numerically… when I think mathematics, I think numbers, paper 
and pencil. 
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     Figure 4: Skylar’s response to the proof activity 

 
Skylar's submitted work on proof did not focus on proving her conjecture, instead, she 

simply repeated what she had previously written in response to task 1 of assignment II. The work 
only demonstrated that the formula she presented worked for a specific numerical case. Skylar 
used two formulas, one of which she discovered by referring to her notes from Calculus II, and 
the other she developed by working with DGS and connecting it to the denominator of the first 
term of the geometric series. In attempting to prove the validity of the formula she remembered; 
Skylar provided an example that worked. The researcher noted that Skylar needed to be 
reminded about the connection between generalizations and proofs and connected her work to 
her original perception that proof was the opposite of generalization. If Skylar had accepted 
generalization as part of the process of proving a statement, she may have realized that 
demonstrating one case did not establish its validity in general form, and that it was impossible 
to numerically check if her conjecture and remembered formula worked for all natural numbers 
since there are infinitely many cases.Skylar was tasked with using a DGS to understand a 
dynamic visual representation of the geometric series and connect it to the proof. While Skylar 
initially found the DGS confusing, she eventually realized the role of each slider and connected it 
to the series. However, she tended to focus more on the symbolic representation at the bottom of 
the DGS than the visual representation, and her understanding of the DGS was only superficial. 
Despite this, she successfully answered the first two prompt questions for the task. 
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Figure 5: The proving GeoGebra task 

 
She found it challenging to make sense of the DGS this time as it did not use area of shapes, 

which was different from previous DGS. Working with the DGS on her own did not help her 
find the similar triangles. However, after breaking down each part and studying them one by one 
in class discussions, she understood the proof and the similar triangles. Skylar mentioned that she 
was not a visual learner and did not trust visual proofs, but acknowledged the importance of 
visual representations and classroom discussions for learning: 

They (teachers) are good at explaining how this applet works for what we’re learning, and I 
think that’s really cool, and I think it like, if you look at the bigger picture it's okay, these 
teachers are helping other teachers. A lot of your information doesn't come by working by 
yourself, it actually comes from learning and talking to other teachers as well. There are ways of 
proving we're talking about in an Algebra class, and you think algebra, you think numerical 
values… but you can take it more to a geometry standpoint. More of shapes and stuff like that, 
and I think that's the hard part, especially like I know in my curriculum it goes Algebra and then 
Geometry like Algebra one, Geometry, Algebra two... I know my… my Algebra one kids would 
never understand that.  

Skylar reported that the three assignments did not significantly alter her understanding of 
geometric series and proofs. She expressed frustration at what she perceived as repetitive 
problem-solving. However, she found exploring different visuals and connecting them to other 
representations a useful challenge. Skylar believed that using multiple representations helps in 
making sense of proofs and answering "why" questions. She thought technology could facilitate 
group discussions related to proving activities. Skylar's belief in using visual representations 
developed to the point where she expected her future students to make sense of DGS and visual 
representations as well as numerical and symbolic representations. 

Conclusion 
Skylar demonstrated a good understanding of mathematical proof as a means to support a 

claim through reasoning. Initially, Skylar equated proof with explanation and justification, but 
later she connected it to providing reasons when faced with "why" questions. However, she 
acknowledged the need to improve her understanding of different types of reasoning and their 
connection to mathematical proofs, such as inductive and deductive reasoning. Skylar's case 
illustrates how a student's experiences can shape their beliefs and perspectives towards 
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mathematical concepts. Initially, Skylar valued numerical and symbolic representations more 
than visual representations, but through interventions, she came to recognize the importance of 
visual representations in understanding mathematical concepts. She even expressed interest in 
using visual representations in her future teaching but needed help in implementing them.Skylar 
struggled with recalling instances where she was required to construct conjectures as a K-12 
student, which affected her confidence in coming up with conjectures. Nonetheless, she showed 
her ability to connect key ideas to visual representations, even though she had difficulty 
constructing the visuals herself. Skylar found dynamic geometry software (DGS) helpful in 
visualizing geometric series concepts, particularly the first two DGS. Although she found the 
third DGS less helpful, she still made sense of the proof of the sum of the geometric series by 
working with the DGS connected to the proof. Overall, Skylar believed that DGS played a 
positive role in visualizing dynamic concepts and enhancing understanding. 
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Teachers often struggle to bridge cultural connections between school mathematics and real-
life applications to engage all learners (Brown et al., 2019). Cultural immersion experiences can 
be used to study mathematics as a cultural practice and develop mathematical identities to build 
cultural competence (Addleman et al., 2014; Smolcic & Katunich, 2017). This study reports on a 
cultural immersion field experience assigned to preservice teachers (PTs) in an elementary 
mathematics methods course to develop skills to recognize, interact with, and support the 
learning of mathematics as a cultural practice. The study examined the research question: How 
do PTs leverage cultural immersion field experiences to connect elementary mathematics content 
and inform culturally-responsive mathematics instruction?     

Ten PTs were asked to learn about the local community surrounding their assigned internship 
schools within the context of their elementary mathematics methods course. More specifically, 
the PTs studied the local community paying particular attention to distinctive cultures different 
from their own. They spent 30-60 minutes participating alongside the community members in 
hands-on experiences and interactions (e.g., interviews) to learn how they used mathematics. In a 
reflection paper, they were asked to (a) describe the community visited, including a statement 
about why that particular community was selected and how its culture differed from their own; 
(b) how members of the community used mathematics; (c) how the observed mathematics could 
be connected to elementary mathematics content; and (d) how their understanding of 
mathematics as a cultural practice informs culturally-responsive mathematics instruction. I 
analyzed PTs’ responses using a priori coding aligning with culturally relevant and sustaining 
practices (Ladson-Billings, 1995; Paris, 2012). Then, I looked for codes using in vivo and 
descriptive coding techniques (Saldaña, 2016). The codes informed themes capturing how the 
PTs leveraged the cultural immersion field experience as related to the research question. 
Analytic memos were also used to ensure transparency and researcher fidelity (Grbich, 2013).  

The PTs had unique opportunities to learn about varying cultures in their local community 
while simultaneously connecting elementary mathematics content and culturally-responsive 
mathematics instruction. PTs visited lumber facilities, construction sites, and restaurants relevant 
to their students. They interviewed cooks, pastry chefs, electricians, estimators, pipe welders, and 
well drillers. Mathematics was discussed in terms of operations with whole numbers, decimals, 
and fractions to calculate orders with suppliers, cut materials, bend pipes, estimate materials, 
measure ingredients, and price inventory. PTs associated state standards with the concepts and 
suggested how to make mathematics relevant to students by recognizing mathematics from their 
communities. One PT noted, “The more places students can see mathematics used, the more 
students can make connections between mathematics and their lives, thereby keeping them 
motivated and building on their cultural strengths.” Implications indicate that PTs must have 
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learning opportunities to develop cultural awareness and relate it to their instruction. Cultural 
immersion experiences can be a resource for this work to prepare culturally competent teachers.   
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Nationally, and at Crestmont University (pseudonym), secondary mathematics teacher 
candidates (TCs) often feel underprepared with classroom management, with consequences for 
career longevity and their learners. TCs at Crestmont University repetitively vocalized concerns 
with how to enact ambitious and responsive mathematics instruction while attending to 
classroom management. Mixed-reality simulations have the potential to provide TCs with a safe 
environment to build their skills. This study examined how simulations can be used with 
secondary mathematics TCs to engage in practice with classroom management while attending 
to lesson objectives, and to understand how such experiences impact TCs’ self-efficacy with 
responsive, standards-based mathematics teaching. The findings focused on positive perceptions 
of learning despite anxiety, building discourse communities, and the actions of future educators.   

Keywords: Preservice Teacher Education, Instructional Activities and Practices, Technology & 
Equity, Inclusion, and Diversity 

Purpose & Conceptual Frameworks  
Teacher education programs (TEPs) have a short time to prepare TCs for the complex work 

of teaching (Grossman et al., 2009). A disproportionate number of new teachers exit the 
profession in the first five years, overwhelmed by the many challenges that they face (Ingersoll, 
2003; Sebastian et al., in press) including those associated with classroom management. Yet, the 
type of learning opportunities that TEPs provide to TCs has the potential to positively impact 
career longevity (Kennedy, 2016). When TCs have learning opportunities to practice that which 
they will be expected to do in the classroom, such practice experiences can improve their sense 
of readiness and efficacy (Grossman, et al., 2009; Ronfeldt et al., 2014), ultimately contributing 
to higher levels of teacher retention (Ball & Forzani, 2009; Sebastian & Krishnamachari, 2023). 

In fields like medicine and aviation, novices often have opportunities to participate in 
simulated practice experiences that let them make mistakes, try new techniques, and grow in a 
safe environment (Brown, 1999; Cruickshank & Metcalf, 1993; Sebastian & Krishnamachari, 
2023). Recently, more mathematics educators (Ayalon & Wilkie, 2020; Ghousseini & Herbst, 
2016; Schack et al., 2013) are examining the use of simulations as approximations (Grossman et 
al., 2009) to better prepare TCs. Approximations provide TCs with opportunities to engage in 
practices proximal to teaching (Grossman, et al., 2009). As researchers (e.g., Amandor et al., 
2021) continue to explore the influence of various approximations on TCs’ practice, there is an 
emphasis on understanding how TCs perceive, “how the approximation process support[s] their 
own development and teaching” (p. 486). Mursion’s mixed-reality platform features a live actor 
remotely controlling digital avatars of students in real time, allowing TCs to practice realistic 
interactions with simulated students. Unlike in field placements, which may vary by day and 
location, in simulations, instructors can standardize experiences, match the level of difficulty to 
TCs’ needs, and offer immediate feedback (Issenberg et al., 2005; Sebastian et al., in press).  

Teachers see classroom management as a source of stress, a cause of burnout, and an area of 
weakness in both their practice and preparation (Brouwers & Tomic, 2000; Dicke et al., 2015; 
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Veenman, 1984). Even in structured TEPs, TCs often receive little practice in classroom 
management, leaving them unaware of their own weaknesses and unprepared for classroom 
challenges (Freeman et al., 2014). In a classroom management simulation, the TC is placed in 
the role of the teacher and tasked with motivating student avatars and addressing off-task 
behaviors, while attending to the lesson objectives and can both practice and receive feedback. 
(Pankowski & Walker, 2016). Coaching in simulated environments has been shown to drive 
growth in TCs’ skills and self-efficacy with classroom management (Cohen et al., 2020). 

As a professor at Crestmont University, I heard concerns with classroom management from 
my secondary mathematics TCs, who did not take a course on classroom management, within 
our TEP. Thus, while they felt competent in their mathematics knowledge, when we discussed 
tenets of ambitious or standards-based instruction (Thomas, 2021; Walkowiak et al., 2018) such 
as building discourse communities and having learners actively engaged in investigation and 
discovery, it was evident that the TCs had concerns over how to implement such pedagogy while 
maintaining classroom management. Thus, if I wanted my TCs to build self-efficacy pertaining 
to their readiness to deliver ambitious and equitable mathematics instruction (Bartell, 2013), we 
had to first overcome some of their fears with classroom management and their reluctance to let 
students take the lead and have power. The purpose of this pilot, mixed-methods study was to 
examine how simulated technology can be used to help secondary mathematics TCs engage in 
repeated practice in classroom management simulations, offering a safe, standardized, and 
targeted complement to their field placement opportunities. Additionally, I wanted to understand 
how the TCs perceived these experiences and how such experiences impacted their self-efficacy 
with responsive (Thomas & Berry, 2019), standards-based mathematics teaching.  

Research Questions 

1. How do teacher candidates perceive and react to simulated classroom management 
practice opportunities? 

2. How do teacher candidates respond to coaching on simulated practice? 
3. How do teacher candidates perceive the usefulness of simulation and coaching 

experiences in supporting their self-efficacy in the delivery of ambitious or standards-
based mathematics instruction? 

Methods 
Site and Sample 

Crestmont University is a Research 1 (R1) institution in the Southeastern United States. The 
sample for this study included two cohorts of secondary mathematics TCs and four secondary 
mathematics doctoral students. The first undergraduate cohort consisted of five TCs, in their 
second semester in the TEP, who had a year remaining in the program. The second cohort of six, 
accelerated Master’s program (AMP) students were in their final semester in the TEP. Doctoral 
students were included due to their enrollment in the final course with AMP students and to offer 
comparative insight into how previous, mathematics teachers respond to the simulations.  
Data Collection  

All participants completed individualized simulations. The participants were told in advance 
that within the simulation, they would be working with 6th grade learners in their classroom to 
establish classroom norms for their mathematics learning community (ideally in the first few 
days of school). They were encouraged to reflect upon how they would approach this 
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opportunity. In each thirty-minute session, the students completed two simulations, receiving 
individualized coaching on strengths and ways to improve between the two rounds. All 
simulations and coaching sessions occurred remotely over Zoom and were video recorded. 

During simulations, the coach took qualitative notes on the participant’s reactions to minor 
incidences of off-task student behavior and noted a series of “hits” or “misses” that occurred 
throughout the simulations. The coach ranked each response/interaction in both simulation 
rounds on a scale of 1-4, such that: 1 indicated the need for a more timely response; 2 represented 
the need for a more direct and specific feedback with the learner; 3 represented the need for the 
teacher to be more succinct and cognizant of how much class time was used to redirect the 
behavior, leading to the lack of learning opportunities for other students; and, 4 represented the 
need for a more calm and composed interaction with the learner. Scores from the first round 
helped to guide the coaching conversation whereas scores in the second round provided evidence 
of participant improvement, especially in the ascent from timely to succinct. The coaching 
protocol progressed through the following stages:  

• Asking TCs to identify how they felt about their performance.  
• Coaching to provide affirmation for practices done well, supported with examples. 
• Telling the TCs what to focus on in the next round accompanied by an example; stated as, 

“I noticed _____ in your last simulation. The next time the student does ____ I want for 
you to try _____.” 

• Modeling the practice by the coach.  
• Asking the TCs why this approach might be more appropriate and responsive. 
• Rehearsing such that the coach pretends to be a learner engaging in a behavior and the 

TCs practice implementing the coaching feedback. 
• Telling the TCs any final improvements and providing positive encouragement.  

Following simulations, all students participated in recorded focus group interviews of three 
to four, to gauge their perceived learning opportunities. Sample interview questions included: 
what aspects of the simulation did you find valuable for reflecting upon your own practice as a 
novice mathematics teacher; how did the coaching impact your instruction in the next simulated 
session; and, how does your self-efficacy with classroom management impact your mathematics 
teaching practices? Further, before and after each simulated experience, the TCs completed pre 
and post surveys on their self-efficacy with classroom management to monitor growth over time 
(Tschannen-Moran & Woolfolk, 2007). 
Data Analysis 

Coaching sessions, simulation sessions, and focus groups were recorded and transcribed. 
Fieldnotes from coaching and focus groups were also examined and analytic memos were 
written intermittently to document emerging themes. Dedoose, a qualitative data analysis 
software platform, was used for coding; the coding scheme focused on TCs’ perceptions of the 
practice opportunities. Pre and post scores for self-efficacy were quantitatively analyzed for TCs’ 
growth and triangulated with other data sources such as ranking for coaching (and growth from 
one simulation to the next) and clinical field observations collected through the TEP. Measures 
were taken to ensure credibility such as engaging in peer debriefs.  
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Findings  
Positive Perceptions of Learning Despite Anxiety  

TCs favorably viewed the simulations as influential learning opportunities despite the 
uncomfortableness that many of them experienced; these moments demonstrate important 
approximations in which TCs most often saw the need to be more specific in their expectations 
for learners. For example, a majority of the TCs initially acknowledged the students’ behavior 
but made very vague comments about their expectations or they repetitively framed their 
statements as questions without being direct in what behaviors they would hope to see in their 
classroom community. This also uncovered some of their assumptions about cultural 
competency, as it relates to dominant ideals of cultural practices with forms of communication. 
When the TCs missed opportunities to have direct and specific interactions with the student 
avatars, the minor behaviors persisted, and the TCs generally became more anxious and 
frustrated; yet, many of them said later in interviews, that they were glad that they had these 
experiences in a simulation for the first time rather than with real children.  
Building Mathematics Discourse Communities 

In focus groups, the majority of the participants discussed how building their self-efficacy 
with classroom management positively impacted their perceptions of establishing discourse 
communities that give more ownership to their learners. Additionally, those students who 
approached the simulation as a collective experience in which teacher and students worked 
together to construct norms in their mathematics classrooms, generally had more favorable 
experiences. For instance, in these observations, TCs unpacked the importance of teacher and 
learner contracts and establishing norms collectively around what it means to contribute ideas, 
“respectfully” address the ideas of others, and engage in group work while working through 
mathematics tasks (to name a few).  
Actions of Future Mathematics Teacher Educators  

An unexpected finding is that, of the four doctoral students, two’s first reaction was to 
immediately attempt to send the student avatar to the principal’s office, while the other two 
became emotionally overwhelmed. When later questioned about these experiences, the doctoral 
students made comments about how they had not interacted with 6-12 learners in a long time or 
how they had taught “advanced” learners when in this setting. Some of them talked openly about 
questioning their own practices in hindsight, especially those whose first reaction was to attempt 
to send students out of the room. I believe that this shows that even our doctoral students who are 
typically entrusted with teaching courses for TCs need further professional development on what 
it means to be a culturally responsive mathematics teacher educator (Bartell, 2013).  

Discussion and Significance  
If we want TCs to engage in ambitious and equitable mathematics teaching practices then 

TEPs must provide TCs with a variety of opportunities to learn to teach mathematics in methods 
coursework (Grossman et al., 2009). While clinical experiences offer important learning 
opportunities, additional approximations, like simulations, can be incorporated and tailored to 
focus on aspects of teaching that TCs rarely get to practice in field-placements, like classroom 
management (Sebastian & Krishnamachari, 2023). In order for novice teachers to enact effective 
teaching practices, they need to feel prepared to navigate the social contexts of mathematics 
teaching and learning. This work, though on a small-scale, found that TCs positively perceived 
the simulation and coaching experiences and felt an improved sense of readiness to implement 
equitable instructional practices in mathematics like building mathematics discourse 
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communities. More work is needed to better understand and develop the types of simulations and 
supports that can best assist TCs to develop their practice and build self-efficacy in secondary 
mathematics education while engaging in repeated simulated practice over time.  
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Due to the sudden and unexpected move to remote learning in 2020 influenced by COVID-19, 
both mathematics teacher educators (MTEs) and prospective elementary teachers (PTs) faced a 
new challenge in creating a productive remote teaching and learning environment. In this study, 
we used Parrish’s (2014) addition strategies and Thanheiser’s (2009) conception of multidigit 
numbers to analyze 41 prospective elementary teachers’ responses in Number Talks (NTs) from 
two online asynchronous mathematics content courses for prospective elementary teachers. We 
found that (1) the order in which NTs are posed influences the strategies used, (2) some PTs 
identified the sameness of strategies differently than us (MTEs), and (3) PTs’ conception of digits 
developed over time. In online asynchronous NTs, all PTs are asked to share their strategies 
before they see strategies provided by other students. This allowed all students to contribute and 
for instructors to observe and trace every PT’s use of strategies over time. Therefore, we argue 
that asynchronous NTs can be a way to pursue the engagement of all learners in both face-to-
face and online learning environments. 

Keywords: Preservice Teacher Education, Online and Distance Education, Number Concepts and 
Operations. Equity, Inclusion, and Diversity. 

Purpose of the Study 
Discourse and participation are essential in mathematics learning (Boaler, 2002: Ernest, 

1994; Lampert, 1990; Sfard, 1998; Staples, 2007; Wood, 1999) for two reasons: 1) To allow all 
students to share their own and engage with each other’s mathematical thinking, and 2) to have a 
way for instructors to access their students’ mathematical thinking (Carpenter et al., 1996; 
Franke et al., 2001; Kazemi et al., 2016). Focusing on students’ mathematical thinking supports 
both students’ learning of mathematics and instructors’ learning of students’ mathematical 
thinking (Durkin et al., 2017; Jacob & Spangler, 2017; Yackel & Cobb, 1996). Discourse-rich 
practices like Number Talks can support instructors in making sense of student thinking (Han & 
Thanheiser, 2021; Laustgarten & Matney, 2019; Stott & Graven, 2015). However, Number Talks 
are typically synchronous activities so implementing them asynchronously presents a challenge. 
Due to the sudden move to remote learning in 2020 influenced by COVID-19, both mathematics 
teacher educators (MTEs) and prospective elementary teachers (PTs) faced a new challenge in 
creating a productive remote teaching and learning environment.  

To address this new challenge, we developed and implemented an online asynchronous 
version of Number Talks (NTs) with PTs in mathematics content courses for elementary 
teachers. We (Han & Thanheiser, 2021) demonstrated how NTs can be successfully enacted in 
online asynchronous learning. We argued that NTs can serve as a tool for more equitable 
learning and as a formative assessment in online asynchronous learning. In this study, we build 
on this prior work and argue that online asynchronous NTs can serve as a tool to engage all 
learners (in both face-to-face and online learning) by providing space for all learners to share 
their mathematical thinking. We also argue that the teachers can have a better understanding of 
their students’ mathematical thinking since teachers can attend to all learners’ mathematical 
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thinking (rather than just a few students who share). In this study, we examined 1) the impact of 
purposeful sequencing of NT problems, 2) the strategies that sequencing elicited, 3) how PTs 
view their strategies as the same and different, and 4) PTs’ conceptions of digits. Our research 
questions were: 

1. Do the different sequences of NTs affect PTs’ use of strategies? 
2. How do PTs view each other’s strategies as the same and different? 
3. Can NTs support PT’s development of conceptions of digits? 

Literature Background / Theoretical Framework 
Number Talks 

Number Talks (NTs) are typically five to fifteen minutes of whole-class discussions on 
mental computations and/or mental problem-solving (Gerstenschlager, & Strayer, 2019; Han & 
Thanheiser, 2021; Humphreys & Parker, 2015; Johnson & Partlo, 2014; Okamoto, 2015; O’Nan, 
2003; Parrish, 2011, 2014; Parrish & Dominick, 2016; Sun, et al., 2018; Woods, 2018, 2021, 
2022). Parrish (2014) suggested five key components of NTs: a) classroom environment and 
community, b) classroom discussions, c) the teacher’s role, d) the role of mental math, and e) 
purposeful computation problems. The teacher poses a purposeful computation problem or 
investigates students’ strategies, elicits specific strategies, and/or makes connections between 
similar or different strategies. Students engage in private-think time to mentally solve the 
problem first and then the teacher facilitates a whole-class discussion. Parrish (2014) categorized 
addition strategies, which can be elicited during NTs, into eight categories (counting all, 
counting up, breaking each number into its place value, making landmark or friendly number, 
doubles/near doubles, making tens, compensation, and adding up in chunks). 

NTs serve to engage students in mental math so that they strengthen their number sense and 
computation skills (O’Nan, 2003; Parrish, 2011; Johnson & Partlo, 2014; Parrish, 2014; 
Okamoto, 2015) by practicing mental math through purposefully selected computation problems 
followed by classroom discussions to debrief various strategies. NTs can play an essential role in 
developing accuracy, flexibility, and efficiency for computation and number sense (Han & 
Thanheiser, 2021; Okamoto, 2015; O’Nan, 2003). In NTs, students are asked to share their 
mental strategies and justify their thinking. Justification leads to better math understanding 
(Parris, 2011; Staples et al., 2012). NTs can also provide more equitable mathematics classrooms 
(Han & Thanheiser, 2021; Sun, Baldinger, & Humphreys, 2018) by allowing all students to 
participate and valuing all ideas. In online asynchronous NTs, every participant gets to share 
their thinking and see everyone else’s thinking (Han & Thanheiser, 2021). NTs can help students 
to develop ownership of their mathematics learning (Parish, 2014) by helping them recognize 
what they can make sense of (Han & Thanheiser, 2021). Also, NTs serve to establish a 
classroom community in which all student thinking is valued and students are given time to 
complete their thinking (Parish, 2014; Woods, 2018, 2022). Students’ private thinking time is 
essential to make sense of mathematical tasks (Anthony & Walshaw, 2009; Kelemanik et al., 
2016; Staples, 2007). Establishing a classroom culture of mutual respect is essential for creating 
a safe environment for effective NTs (Parrish, 2014). This includes sharing incorrect answers, 
invalid strategies, unfinished strategies, etc. In face-to-face classrooms, making various strategies 
public on the board can elicit that there is more than one way to solve a problem (Lustrgarten & 
Matney, 2019). Also, NTs allow for comparing across strategies to determine their similarities 
and differences. This kind of reflection allows students to develop a deeper understanding of 
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mathematics. (CCSS, 2010; Durkin et al., 2017; Jacobs & Spangler, 2017; NCTM, 2000; Yackel 
& Cobb, 1996). However, despite the wide use of NTs among teachers, schools, professional 
development, and teacher education, there is little rigorous research about if and how Number 
Talks support students’ development of whole number conceptions and operations (Matney et 
al., 2020). Woods (2018, 2022) demonstrated that the Math Talk community (questioning, 
explaining mathematical thinking, the source of mathematical ideas, and responsibility for 
learning; Huffered-Ackles, 2004) was improved through NTs in third-grade classrooms. Woods 
(2021) studied PTs learning through the implementation of NTs through video simulations. PTs 
reported that they noticed students’ different ways of thinking and strategies. They also learned 
the importance of public records, opportunities for students to participate, and support students to 
expand and revise their thinking.  
Prospective Elementary Teachers’ Conceptions of Whole Number and Operation 

PTs typically enter mathematics content courses for teachers being able to perform addition 
and subtraction algorithms but unable to explain why they work (Browning et al., 2014; 
Thanheiser, Browning, et al., 2014; Thanheiser, 2009; 2010; 2018; Thanheiser, Whitacre, et al., 
2014). This is because PTs are typically taught how to use the standard algorithms but do not 
connect the digits in the number to the values. For example, the number 321 would be interpreted 
as 3 next to a 2 next to a 1 (concatenated digits only) or 300 ones and 2 next to a 1 (concatenated 
digits plus) rather than as 3 hundreds, 30 tens, or 300 ones combined with 2 tens or 20 ones, 
combined with 1 one (reference-units or groups-of-ones) (Thanheiser, 2009; 2010; 2018). The 
concatenated digit conception restricts PTs’ ability to explain regrouping conceptually and leaves 
them with a view of math that is not based on sense-making. Thus, NTs can be used as one way 
to allow PTs to rediscover the sense-making of digits and using numbers meaningfully. 

Methods 
We analyzed 41 PTs’ responses in NTs from the two online asynchronous courses. Both 

courses were the first in a sequence of three mathematics content courses for elementary teachers 
in the United States. The courses were taught by the same instructor in Spring 2020 (23 PTs) and 
Fall 2020 (18 PTs). In Spring 2020, the course was suddenly moved to remote learning due to 
COVID-19. Since the school is on a quarter system this means that the whole course was moved 
from the first day. So, the PTs and the instructor participated in an online, asynchronous course 
despite never intentionally signing up for that format. The online asynchronous class was 
delivered through Google Slides and an Online Discussion Forum (in our case, D2L). The 
instructors did know in advance of Fall 2020 that the course would be online and asynchronous. 
Students were aware in Fall 2020 that they were registering for an online format of the course. 
No PTs in the study were exposed to different types of addition strategies (Parrish, 2014) or 
conceptions of whole number (Thanheiser, 2009; 2010; 2018) prior to the NTs. 

We followed the part of the Online Asynchronous Collaboration (OAC) model of instruction, 
which supports teachers to develop their mathematical knowledge for teaching (MKT) (Clay et 
al., 2012; Silverman & Clay, 2009). The OAC model consists of six sequenced activities: “1) 
reviewing an expert model, 2) creating initial responses to the task, 3) listening to/viewing 
others’ responses, 4) reviewing and commenting on others' responses, 5) discussing, and 6) 
revisit initial responses” (Clay, Silverman, & Fischer, 2012, p. 767). We did not use the first 
activity, reviewing an expert model, since NTs do not begin with sharing the instructor’s 
strategies. OAC allows a slow pace of learning, makes all participants’ ideas public and 
permanent, increases access to others’ various thinking and understandings, and enables 
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participants to return to their and others’ previous thoughts to reinforce their understanding. 
We analyzed the first two NTs from Spring 2020 (S1 and S2) and the first three NTs from 

Fall 2020 (F1, F2, and F3). The difference between the sequences is that in the Fall we started 
the sequence purposefully with F1, while the remaining NTs were the same, S1 = F2 and S2 = 
F3 (see Table 1). For each NT, we provided the problem through a Google Slide and asked PTs 
to solve the problem without writing anything down. Then we asked the PTs to share their 
strategies (written explanation on how they computed the NT problem) through D2L. To ensure 
every PT shared their own strategies, we utilized the function: Users must start a thread before 
they can read and reply to other threads in each topic in D2L. Once PTs posted their responses, 
they were able to see everyone else’s responses. After their initial sharing, we asked PTs to look 
for other solutions. In this way, all PTs had to share their strategies to participate in the NTs. In 
both Spring 2020 and Fall 2020, we asked the PTs to look for strategies that were (a) the same as 
their own and (b) different from their own and to use the comment function in D2L to respond to 
the solution and to explain how their solutions were the same and/or different. 

  
Table 1: Number Talks Problems 

Term Spring 2020 Fall 2020 
 S1 S2 F1 F2 F3 

Problems 13+18 99+98 15+16 13+18 99+98 
Timing Week 4 Week 5 Week 1 Week 2 Week 4 

Number of Participants 22  23 18 18 18 
Number of Total Strategies 23 24 23 22 18 

 

Analysis to answer the first research question and the third research question focused on each 
PT’s use of strategies in each NT and across NTs. We had specific goals and anticipated 
strategies for each NT (see Table 2). Although Parrish (2014) did not include the standard 
algorithm as a category, we anticipated the algorithm as a strategy that PTs would use based on 
their experiences with school mathematics (Thanheiser, 2014). Analysis to answer the second 
research question focused on how PTs’ use of strategies in F2 and F3 are similar and/or different 
compared to S1 and S2, respectively. 

 
Table 2: Goal and Anticipated Strategies (Parrish, 2014) for Each NT 

NT Goal  Anticipated Strategies 
S1 

13+18 
Introduce NT to the PTs. Observe PTs’ initial 

strategy use. 
the standard algorithm, breaking 
each number into its place value, 

adding up in chunks, 
S2 

99+98 
Will PTs use the same strategies as S1 or 

different? Can 99+98 elicit making landmark 
or friendly numbers strategy? 

the standard algorithm, breaking 
each number into its place value, 

making landmark or friendly 
numbers, compensation, 

F1 
15+16 

Introduce NT to the PTs. Obverse PTs’ initial 
strategy use. Can 15+16 elicit doubles/near 
doubles and making landmark or friendly 

numbers strategies, which were not used in 
S1? 

the standard algorithm, breaking 
each number into its place value, 

making landmark or friendly 
numbers, 

doubles/near doubles,  
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F2 
13+18 

Will PTs use the same strategies as F1 or 
different? Will doubles/near doubles and 

making landmark or friendly numbers show up 
based on the inclusion of F1? Will 

compensation strategy emerge? 

the standard algorithm, breaking 
each number into its place value, 

adding up in chunks, making 
landmark or friendly numbers, 

doubles/near doubles, compensation, 
F3 

99+98 
Will PTs use the same strategies as F1 and F2 
or different? Will doubles/near doubles and 

making landmark or friendly numbers show up 
based on the inclusion of F1? 

the standard algorithm, breaking 
each number into its place value, 

making landmark or friendly 
numbers, doubles/near doubles, 

compensation, 
 

We analyzed PTs’ strategies through two different lenses: addition strategies by Parrish 
(2014) and conceptions of digits (Thanheiser, 2009). Through our initial analysis by using 
Parrish’s (2014) categorization, we realized that some PTs used concatenated concepts of digits 
(Thanheiser, 2009). Thanhesier’s (2009) original framework requires three-digit whole numbers 
to differentiate reference units and groups of ones, concatenated digits plus and concatenated 
digits only, respectively. Since Thanheiser (2009) found that the concatenated digits plus 
conception “arises only in numbers with three or more digits,” (p. 279), that conception was left 
out of our analysis. Since we asked for two-digit addition problems, we simplified the categories 
in Thanheiser’s (2009) framework into sufficient (reference units or groups of ones) and limited 
(concatenated) categories referring to the ability to explain regrouping.  

Two researchers categorized PTs’ strategies individually and reconciled them. For example, 
in F1, one PT responded, “When I first look at this problem, my brain immediately added 
15+15=30. Then, because one of the numbers is actually 16, instead of 15, I added a 1 to my 
answer to get 31.” We highlighted 15+15=30, 16=15+1, 30+1=31, and matched the response to 
doubles/near doubles strategy since the student began with 15+15=30. We matched this 
student’s response to sufficient conception of digits because the digits were clearly referred to as 
their place value. Responses were coded as the standard algorithm if the response described the 
standard algorithm without mention of place value, but as breaking each number into its place 
value if the response used the standard algorithm in conjunction with mention of place value to 
explain regrouping. For example, one response to F2 13+18 was “I know 1+1= 2, then I added 
3+8 = 11. I took the 1 from 11 adding it to 2 = 31.” Since there is no evidence that the student 
understood the “1 from 11” as one 10, this response was coded as the standard algorithm and 
limited conception of digits. Another response for F2 included “My mind automatically places 
the 13 above the 18... 3+8 is equal to 11. Since we are working on the ones side, and your sum is 
greater than 10, you’re going to subtract 10 from the 11, leaving you with 1. The 10 will be 
added in the tens place, making the problem 1+1+1 in the tens place.” This response includes a 
specific reference to place value to justify the regrouping in the standard algorithm. As such, this 
response was coded breaking each number into its place value. However, this response showed a 
limited conception of digits since the PT referred to the numbers in tens place as 1 and 3. 

Results 
Most of the PTs used the instructor’s anticipated strategies (shaded in Table 3) in all NTs. 

Three exceptions emerged: we did not anticipate using the compensation strategy in S1 but one 
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PT used it, we did anticipate using the compensation strategy in F2 but no PT used it, and we did 
anticipate using the standard algorithms in F3 but no PTs used it. We think these exceptions 
were important. Unexpected use of strategies showed why instructors need to make sense of 
PTs’ mathematical thinking and how NTs allowed PTs to safely bring their own way of sense-
making to the class discussion. More specifically, the emergence of unexpected strategies 
showed the importance of carefully examining instructors’ anticipated strategies. Instructors can 
reflect on the emergence of unexpected strategies and use this information in their future NT 
planning (as we included compensation strategy as an anticipated strategy in F2). When 
instructors do not observe their anticipated strategies, they can then think about how to elicit 
those strategies.  

We did not expect drastic differences between S1 & S2 and F2 & F3. However, we 
anticipated some differences, including the use of doubles/near doubles and making landmark or 
friendly numbers strategy in F2 and the use of doubles/near doubles in F3. We were able to 
observe some meaningful differences. First, some PTs successfully used the doubles/near 
doubles strategy for F2 (3 PTs) and F3 (4 PTs) and the making landmark or friendly numbers 
strategy for F2 (1 PT), which were not the strategies used in S1 and S2 (shaded in dark gray in 
Table 3). Among 4 PTs who used the doubles/near doubles strategy in F3, two PTs used the 
doubles/near doubles strategy in F1 and the other two PTs did not. Second, no PT used the 
standard algorithm in F3 (shaded in dark gray in Table 3) while 1 PT used the standard 
algorithm in S2. Third, no PT used the compensation strategy in F2 whereas one PT used it in 
S1. As a result, the NTs S1 and F2 and the NTs S2 and F3 showed different distributions of 
strategy use. Our hypothesis is that the doubles/near doubles strategy in F1 influenced PTs to 
find a strategy other than the standard algorithm, breaking each number into its place value, or 
compensation strategies in F2 and F3. Some PTs explained their strategies in F2 by referring to 
F1, such as “When I began to solve the problem, I thought about the fact that I could take 3 away 
from the 8, and add it to the 3, making it 16+15, like last week’s problem,” and “I took 2 away 
from 18 and added it to the 13. Making it 15+16. I know that 15+15 is 30, so I added one more 
to arrive at 31.” 

 
Table 3: Prospective Teachers’ Use of Strategies for Each Number Talk  
Number Talks Strategies S1 

13+18 
S2 

99+98 
F1 

15+16 
F2 

13+18 
F3 

99+98 
Standard Algorithm for Addition 3 1 1 4  
Breaking Each Number Into Its Place Value 16 9 12 13 4 
Making Landmark Or Friendly Numbers  9 1 1 9 
Doubles/Near Doubles   9 3 4 
Compensation 1 5   1 
Adding Up In Chunks 3   1  
Total Strategies 23 24 23 22 18 

 

Most PTs well identified the same and different strategies in both Spring 2020 and Fall 2020. 
However, we found a few examples that PTs identified as the same strategies, but we viewed 
them as not the same strategies (see Table 4). In S1, we categorized provided strategy as the 
compensation strategy and another strategy as breaking each number into its place value 
strategy. Although both PTs started by making 20, they used different strategies to make 20. 
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However, the second PT identified the two strategies as the same strategies. In F1, although we 
categorized both strategies as breaking each number into its place value strategy, one PT started 
with adding tens and another PT started with adding ones. We have more instances where the 
PTs identified as the same strategies regardless of the order of adding tens and adding ones. 
Since the PTs did not know about the strategy categories by Parrish (2014), their reasoning for 
the sameness did not rely on it. Our hypothesis is that some PTs captured some parts of the 
strategies and compared them and determined that those are the same strategies. 

Table 4: Strategies Provided by a PT and Strategies Identified as the Same by another PT 
NT Strategy Provided by a PT  Identified as the Same by another PT 

S1 (13+18) 18+2=20; 20+10=30; 30+1=31 10+10=20; 3+8=11; 20+11=31 
F1 (15+16) 10+10=20; 20+6+5=31 10+6+10+5; 5+6=11; 10+10=20; 20+11=31 

 

PTs’ use of limited conceptions of digits decreased over time in both Spring 2020 and Fall 
2020 (see Table 5). Also, the number of PTs who drew on limited conceptions of digits and their 
percentages in F2 and F3 were lower than S1 and S2, respectively. Again, our hypothesis is that 
this difference is due to the different sequences of NTs. It is possible that F3 had a lower number 
of PTs drawing on the limited conception of digits than S2 because F3 was the third NT of the 
term. So, PTs in F3 were more familiar with other strategies than the standard algorithm or 
breaking each number into its place value strategies compared to S2.  

Table 5: Prospective Teachers’ Conceptions of Digits Across the Number Talks 
Conceptions of Digits S1 (13+18) S2 (99+98) F1 (15+16) F2 (13+18) F3 (99+98) 
Sufficient 15 19 16 16 16 
Limited 8 (34.8%) 5 (20.8%) 7 (30.4%) 6 (27.2%) 2 (11%) 
Total 23 24 23 22 18 

 
In response to the first research question, “do the different sequences of NTs affect PTs’ use 

of strategies?”, we found that different sequences of NT do, indeed, affect PTs’ use of strategies. 
As we discussed earlier, PTs’ use of strategy in F2 and F3 showed slightly different distributions 
compared to S1 and S2. We observed doubles/near doubles and making landmark or friendly 
numbers strategy in F2 and doubles/near doubles strategy in F3. Moreover, in F3, no PTs used 
the standard algorithm, and the making landmark or friendly numbers strategy was used the 
most (9 out of 18 PTs). Throughout the five NTs, F3 was the only case where breaking each 
number into its place value was not the dominant strategy. We interpreted this difference as due 
to the fact that a) F1 elicited strategies that were not observed in S1 and S2 (doubles/near 
doubles and making landmark or friendly numbers strategy) b) PTs in F2 and F3 were more 
familiar with the strategies other than the standard algorithm or breaking each number into its 
place value strategies compared to S1 and S2 since PTs in Fall 2020 had one prior NT (F1) 
before they were asked to solve F2 and F3. 

In response to our second research question, “how do PTs view each other’s strategies as the 
same and different?”, we found that most PTs successfully identified the sameness and 
differences between the strategies. However, as we explained earlier, there were some instances 
where the PTs identified their strategy as the same as other strategies, but we viewed them 
differently. We interpreted that these discrepancies occurred because we focused on the details of 
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the strategies whereas some PTs captured and compared some parts of the strategies. 
In response to the third research question, “can NTs support PT’s development of 

conceptions of digits?”, we found that the number of PTs who used limited conceptions of digits 
(concatenated) decreased in both Spring 2020 and Fall 2020. We acknowledge that we do not 
have enough evidence to argue that NTs were the main cause of PTs’ improved conception of 
digits. However, participating in online asynchronous NTs required all PTs to explain their 
strategies. PTs had to share their strategies in a way that made sense not only to them but also to 
their peers and instructor. This process can allow PTs to reflect on their thinking and explanation 
so that they seek ways to improve their explanations. Therefore, we think NT can be one way to 
support PTs’ development of the conception of digits. 

Discussions/ Conclusions/ Implications 
Online asynchronous NTs allowed instructors to observe every PT’s use of different 

strategies over time, how different sequences of NTs can elicit different strategies, how PTs 
identified the same and different strategies, and how NTs can support the development of PTs’ 
conception of digits. We found that in online asynchronous NTs, all PTs can share their 
strategies and compare and contrast their strategies with others, which is related to higher 
participatory equity (Reinholz & Shah, 2018). These aspects are hard to be examined in face-to-
face NTs due to time constraints. As such, we were able to have a more comprehensive 
understanding of PTs’ use of strategies and conception of whole numbers and digits. This result 
aligns with our previous study (Han & Thanheiser, 2021). Therefore, we argue that online 
asynchronous NTs can be a way to pursue the engagement of all students in both face-to-face 
and online learning environments. In a face-to-face or synchronous online classroom, the 
instructor can provide asynchronous NT through Google slides and Online Discussion Forum 
functions. Then, the instructor can attend to all students’ strategies and their conception of digits. 
Also, as we mentioned earlier, examining whether some students used the strategies that the 
instructor did not anticipate could be crucial for making sense of students’ strategies and 
planning future NTs. 

We do not argue that NTs directly caused PTs’ use of different strategies and the 
development of conceptions of digits. However, we think online asynchronous NTs did shed 
light on possible strong relationships because we could not assume these relationships in face-to-
face or synchronous online NTs. In future research, we can have pre and post-tests on PTs’ 
flexibility (use of different strategies) and conception of digits, and conduct interviews to elicit 
these relationships in detail.  
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This paper reports on our investigation of online community building efforts with mathematics 
teachers. We aimed to better understand mathematics teacher interest and persistence in a 
sequence of online workshops focused on ambitious instructional practice. We theorize that 
situational interest is related to teachers’ decisions to persist in online professional development 
and that an indicator of situational interest is teachers’ descriptions of their local institutional 
context. We found that teachers who described a supportive institutional context were more 
likely to persist in our online workshops, while teachers who described tensions around 
instructional practice in their local schools were less likely to persist. Our findings suggest that 
situational interest may be an important construct to unpack to enhance community-building 
efforts and support teacher instructional improvement. 

Keywords: Mathematics Teacher Education, Online Professional Development, Situational 
Interest  

Objectives and Purpose 
Studies of effective professional learning opportunities continue to demonstrate that 

sustained collaboration with colleagues is a key factor of teacher learning and instructional 
improvement (Darling-Hammond et al., 2017; Desimone, 2009; Sancar et al., 2021). 
Communities provide teachers with opportunities for sustained collaboration with colleagues, 
engagement in generative discourse, and mutual support (Horn & Garner, 2015; Ronfeldt et al., 
2015; van Es, 2012). Communities emerge over time (Grossman et al., 2001; Dean, 2005) and 
the emergent process includes persistent interaction and collaboration (Lave & Wenger, 1991). 
Online environments offer flexibility around teacher interaction and collaboration with 
colleagues (Fletcher et al., 2007), enhancing potential for teacher persistent participation that is 
required for community building. We conjecture that it is important to sustain and ultimately 
cultivate teachers’ interest in online professional learning opportunities to promote persistence 
and achieve community-building efforts. In this report, we argue that teachers’ descriptions of 
their local institutional context can be an indicator of their interest in online professional learning 
programs and their persistence. 

Theoretical Framework 
Social life involves participation in multiple and potentially intersecting communities of 

practice (Wenger, 1998). Communities of practice are defined by norms and practices, a shared 
repertoire, and a joint enterprise. Teachers participate in a community of practice within their 
local school. This local community can be defined by instructional norms and practices, a shared 
curriculum, and goals to support student learning (Cobb et al., 2003). Teachers can also engage 
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in a variety of online and optional professional development programs that allow them to pursue 
professional learning goals and build community (Lantz-Anderson et al., 2018). Relationships 
exist between the norms and practices that define teachers’ local community and learning 
opportunities presented by professional development programs and these relationships may 
impact teachers’ interest in the program – an essential component for building community. 

We posit that teacher interest is related to their persistence in professional development 
programs. Interest is both “a psychological state and a predisposition to re-engage content over 
time” (Renninger, 2009, p. 106). Interest can develop over time and is often categorized along a 
continuum from situational interest to individual interest. Situational interest is triggered by a 
context or phenomenon and can fade as quickly as it is sparked. Individual interest is a more 
enduring form of interest that is not tied to a specific trigger and has been related to persistence 
(Ainly et al., 2002; Renninger & Hidi, 2020). While the development of interest can be non-
linear (Rotgans & Schmidt, 2011), continued arousal of situational interest can support 
development of individual interest (Rotgans & Schmidt, 2017). Thus, there is a need to identify 
indicators of teachers’ interest so that teacher educators can cultivate and sustain teachers’ 
interest and increase their potential to persist in professional development programs.  

Teachers’ experiences within their local institutional context could influence their interest in 
a professional development program. Herbst et al. (2011) theorized the practical rationality, or 
the concept that teachers’ instructional decisions are situated within the context of an institution 
that has a set of affordances and constraints for instruction. Similarly, Horn and Garner (2022) 
argue that teachers are likely to align their instructional practices with those that are normative 
within their school, otherwise they will be “adding the labor of trailblazing to the already 
considerable work of teaching” ( p. 13). Horn and Garner (2022) argue further that teachers must 
see the utility of instructional strategies to their local context to apply them in their classes. 
Furthermore, recent work has suggested that teacher intentions to participate in professional 
development is associated with their recognition of the potential utility of the program to 
improve their classroom practice (Fütterer, 2023; Zhang, 2019). Thus, we argue that teachers’ 
institutional context may shape their perception of the applicability of professional development 
learning opportunities to their classroom practice and ultimately their interest and persistence in 
the program.  

Taken together, we argue that mathematics teachers’ interest in online programs can be 
characterized along a continuum from situational to individual interest. While teachers with 
individual interest are more likely to persist in an online program, it is important to identify 
teachers with situational interest early in the program so teacher educators can cultivate and 
sustain their situational interest and ultimately support their persistence. We conjectured that 
teachers’ descriptions of their local institutional context may be an indicator of their interest in a 
professional development program. Therefore, we investigated the following question: What 
relationships exist between teachers’ descriptions of their local institutional context and their 
persistence in a sequence of online workshops? 

Methodology 
This research was conducted as part of a collaborative, online, and optional professional 

development program that features a sequence of three 6-week workshops. The workshop goals 
included supporting mathematics teachers in developing discourse-rich and evidence-based 
instructional practice by engaging in problem-solving, examining student math work, and 
connecting these experiences to canonical models of mathematics instruction such as the 5 
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Practices (Stein et al., 2008). Workshops activities focus on using student mathematical thinking 
as a starting point for rich conversations and the development of lessons that help students build 
on their current understandings. Across the workshops, the conversation foci evolve from, for 
example, what teachers attend to in student work to how to respond to students based on what 
they notice.  

This study included 26 mathematics educators who participated in at least one of these 
workshops. Participants’ classroom experience ranged from 3-25+ years. 75% of the participants 
identified as female and 25% identified as male. Participant racial breakdown is as follows: 70% 
White, 18% Black, 2% Latino, 8% Asian, 2% Native Pacific Islanders.  

Data sources included participant persistence data from our workshops and transcripts of 1-
hour semi-structured interviews of our participants following their completion of workshop one. 
The interview included questions intended to gather information about participant institutional 
context such as: how would you describe the culture of your school and district? We used open 
and axial coding procedures to analyze participants’ responses to these questions and additional 
descriptions of their institutional context in the interviews. During research meetings we 
reviewed the transcripts and developed descriptive codes. We condensed codes into categories 
and developed themes that reflected commonalities in the categories. Once we developed 
common understandings of the data and coding scheme, we individually coded the rest of the 
data set. We brought uncertainties about codes to the research team and discussed the data and 
codes until consensus was reached. We generated the persistence data with a numerical coding 
system, where the digits one through three were used to denote the number of workshops 
completed by each participant. We looked across the themes in teachers’ descriptions of their 
local institutional context and persistence in our workshops to identify relationships.   

Results 
This section introduces the themes from our analysis of how teachers talked about their local 

institutional culture and associations with their persistence in our online program. We identified 
two themes in how teachers described the institutional contexts of their schools and districts. We 
characterized these themes as supportive and tensions. When participants described a supportive 
culture, they discussed support and flexibility with curriculum and mentioned things like, “they 
leave it to our professional opinion as to how to conduct the class and teach the curriculum. I can 
choose which curriculum I want to use, the supplements I want to use, and there's no scripted 
teaching, so I can teach the students anyway I would like” (Vic). Participants also frequently 
discussed support around “best practices.” For example, Gail noted that her math supervisor is 
“very supportive of best practices and not just best practices, but best practices for us.” 
Participants also described opportunities for collaboration with colleagues during regular 
meeting times built into their schedule. For instance, Mia said, “We are very fortunate in my 
building to have common planning to talk about curriculum and student work and things like 
noticing and wondering.” 

When participants described tensions in their culture, they discussed a strict oversight over 
their instructional practice. For example, Clair mentioned, “But my director told me I should be 
doing, "I do, you do, we do." … and then I was observed doing a lesson that included doodle 
notes in my lesson. One of the comments in my observation was, "Coloring is not an appropriate 
activity for eighth grade students.”” In addition, Pat mentioned, “it was so bad that we would 
have to have fake lesson plans for the days of the district walkthroughs. Because there was what 
we were really doing and then there was the stuff we did during walkthroughs.” Participants also 
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described an inconsistent or unclear vision for instructional practice in their schools. For 
instance, Ari mentioned, “my principal sees the value in teacher collaboration and instruction 
that builds on student thinking, but she also wants us to focus on standardized test prep, which 
the two don't really merge. So it's like, what do you value? Do you value conceptual 
understanding or that students get the right answer for a test?”  

We noticed an association between how participants described their local institutional 
context and their persistence in our workshops. First, regarding persistence, 12 participants 
completed three workshops, eight participants completed two workshops, and six participants 
completed one workshop. Of the 15 participants who described a supportive context only, 10 
completed three workshops and 5 completed one or two workshops. The nine participants who 
described tensions completed one or two workshops. The two participants who described 
tensions and a supportive context completed three workshops.  

In summary, participants’ descriptions of a supportive context suggest they teach in a 
context that is potentially conducive to ambitious instruction. For example, we shared evidence 
of participants discussing support with “best practices” and autonomy in their classes to “try 
things out” (Vic, Gail). Thus, the potential applicability of our workshop learning opportunities 
to these participants’ classes may have sustained their situational interest in our program. On the 
other hand, participants who described tensions in their context suggest lack of potential to 
experiment with ambitious practice in their specific context. Clair’s descriptions suggested that 
her school values “I do, you do, we do” - a common practice that emphasizes speed and accuracy 
with procedures - and is critical of efforts towards innovative practice. As Clair, for example, 
began engaging in our workshop that focused on discourse-rich instructional practice, she may 
have perceived these practices as not possible in her classroom on a consistent basis. This 
disconnect between learning opportunities and what is possible in teachers’ classrooms may have 
led to fading situational interest and ultimately a lack in persistence in our workshops. 

Discussion and Conclusions 
We argue that online settings are an effective place for building communities of teachers 

because they can provide access to generative collaboration and interaction that might not be part 
of the norms and practices within teachers’ local institutional context (e.g., Cobb et al., 2003). 
Despite being disconnected from teachers’ schools and districts, our findings suggest a potential 
relationship between institutional context and persistence in online programs. These findings are 
similar to past work suggesting that the utility of professional development is related to teachers’ 
intentions to participate in the program (e.g., Fütterer, 2023; Zhang, 2019). We extend this work 
and conjecture situational interest as one way of explaining the relationship between teachers’ 
local context and persistence – teachers who describe tensions around pedagogical decisions in 
their schools are less likely to see the utility of the professional development foci for their local 
settings. In these cases, accordingly, we would expect to see situational interest fade.  

Our findings suggest that one indicator of situational interest and potential to persist in an 
online program is teachers’ descriptions of their local institutional context. Using this indicator to 
identify teachers with situational interest early in a professional development program may be 
important for engaging all learners and enhancing community-building efforts. While a portion 
of teacher attrition in our online workshops may be attributed to reasons such as family situations 
or changes in teaching assignments, it may be useful to tailor programs to teachers who are 
situated in contexts with tensions and have potential to lose situational interest in the program. 
This might include having discussions about how teachers can adapt instructional practices so 
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that the practices, initially, represent small shifts beyond the norms for instruction in teachers’ 
local context. Future research is needed to better understand teacher situational interest and its 
relationship to persistence in online programs and their institutional context. 
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This study grew out of the findings of an earlier one in the context of a semester-long graduate 
course on teaching mathematics for social justice, which revealed that participant teachers were 
unconvinced of their agency to address frustrations with administrative expectations and job-
related limitations. To address these concerns an intentional pairing of two courses was created. 
Teaching Math for Social Justice (TMfSJ) and Mathematical Modeling (MM) in the Classroom 
were paired with the purpose of increasing teacher agency. Data came from teachers’ reflective 
writings, forum discussions, and a final collaborative project. Preliminary findings suggest that 
teachers were assured of the impact of social justice math lessons on their students, found 
strength in collaboration, and were willing to start small to bring about change within their 
classrooms and school systems. The study has implications for teacher preparation.  

Keywords: teacher agency, teaching mathematics for social justice, mathematical modeling. 

An earlier study (Joseph & Reimer, 2022) examined teacher beliefs in a 16-week graduate 
course in Teaching Mathematics for Social Justice (TMfSJ) in the MA in Mathematics Education 
program. Data came from the “Teacher beliefs survey” (Enterline, S., Cochran-Smith, M., 
Ludlow, L., & Mitescu, E., 2008), and reflective writing assignments. Results showed that 
teachers were convinced that they could bring about positive change in the lives of their students 
and their communities but were challenged by systems working to inhibit them. They were 
frustrated by their inability to freely design lessons to meet the needs of their students and work 
alongside them in co-creating curricula. Furthermore, even though they were convinced that 
math education needs to be refreshed, they reported feeling helpless in the face of the policies 
that govern them. They also seemed reluctant to include social justice in their lessons since it 
might mean bringing politics into the classroom. 

The current study followed with an intentional pairing of two courses: Teaching Mathematics 
for Social Justice (TMfSJ), and Mathematical Modeling in the Classroom (MM).  As the 
techniques of mathematical modeling lend themselves to “reading and writing the world with 
mathematics” (Gutstein, 2006), we intended to enhance the teachers’ perception of their agency 
to bring about change in their classroom/school/community in this pairing.  

We sought to address the following questions through this study: a) To what extent does the 
combination of TMfSJ and MM support the development of teacher agency? and b) How is 
teacher agency evidenced within their designing and implementing lessons that focus on 
mathematical modeling within a social justice context? 

Theoretical Framework 
Priestley, Biesta, & Robinson (2015) provide a conceptual model of agency as something 

that is both temporal and relational, that can be developed through responses to experiences in 
one’s environment. Drawing on the seminal work of Emirbayer and Mische (1998), Priestley et 
al. (2015) theorized that teacher agency can also be both temporal and ecological. Hence, agency 
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is not so much an individual’s ability but rather something that can be achieved based on the 
context. Our goal through the courses was to provide this context.   

If education reform is a goal, one must begin by empowering teachers, who are the agents of 
change in institutional instructional practice (Bridwell-Mitchell, 2015). Teachers as agents is a 
concept that has been researched extensively in education (Villegas and Lucas, 2002; Buchanan, 
2015; Biesta, Priestley, & Robinson, 2015; etc.) particularly in the context of preparing culturally 
responsive teachers (McGee Banks & Banks, 1995, Darling-Hammond, 2002).  Villegas and 
Lucas (2002) offer a vision of culturally responsive teachers who, in response to perceived 
inequities in schools, construct their classroom activities based on what their students already 
know with the intention of extending into new avenues of knowledge. In order to do this, 
teachers are making decisions every day in their classrooms that impact their students, their 
colleagues, and themselves. But many mathematics teachers, while actively engaging their 
agency, do not view their teaching as ‘political acts’ except when it involves social justice tasks 
(Gutiérrez, 2016). The goal of the courses was to build on their perceptions of themselves as 
change agents and highlight all aspects of this work within and outside the classroom. 

The Earlier Study 
This study explored in-service teachers’ beliefs about teaching mathematics for social justice 

throughout a sixteen-week online graduate course. Twelve teachers (9 women, 3 men) in the 
Master of Arts program in Mathematics Education (secondary focus) at a mid-sized private 
university were enrolled in the sixteen-week course, “Teaching Mathematics for Social Justice”. 
The group consisted of two Latinx, one Middle Eastern, one Indian, and eight White teachers. 
Their ages ranged from 27 to 57, and their teaching experience from 3 to 17 years. Data were 
derived from pre-post surveys (Enterline et al., 2008), written reflections, online forum 
discussions, and a final reflection. Analysis was done using a grounded theory approach.  
Findings  

In responding to whether an important part of learning to teach for social justice is examining 
one’s own identity and role, even though teachers were convinced of their roles as ‘facilitator’, 
they were challenged by what it meant to give up control.  One participant wrote: “I wonder 
about the dynamics in a co-constructed classroom, because in reality, the teacher is still in a role 
of power, so there will never be true co-construction.” Secondly, they questioned their own sense 
of agency, evidenced by responses like “I struggle to see how we can start to make a difference 
in the whole school system.” In reflecting on their beliefs about students, while teachers 
expressed the importance of knowing their students, this was complicated by the demands of 
curriculum and large class sizes. Lastly, they hesitated with discussing topics that may be 
divisive in the current political scene. A typical response was, “I am fearful that we would bring 
politics into the classrooms and sway students to a certain side depending on the teacher's own 
political beliefs and I do not think that is fair.” 

As we reflected on these findings, we chose to focus on the one related specifically to teacher 
agency. We sought to engage in-service teachers in opportunities to interrogate their own agency 
within the systems that govern them in order to initiate mathematics education reform. With this 
intention, we created the pairing of two courses described below. 
Course(s) Re-Design 

In a graduate program in Mathematics Education we, the instructors, were intentional in 
pairing the two courses: Teaching Mathematics for Social Justice and Mathematical Modeling in 
the Classroom during the same semester.  
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As before, in the TMfSJ course, we drew on ‘patterns of practice’ (Cochran-Smith, Grudnoff, 
Haigh, Hill, & Ludlow, 2016) for supporting teacher development in teaching for social justice: 
ongoing critical self-reflection, experiences in naming and challenging systems of inequity, a 
collaborative inquiry stance to learning, opportunities for dialogue and sense-making, connection 
to student cultures and communities, and integrating theory and practice.  

In the Mathematical Modeling course, we began with a close reading of the Common Core 
Standard of Mathematical Practice # 4 Mathematical Modeling (MM) (California. Department of 
Education. 2013) with a primary focus on expanding the definition of modeling into the broader 
perspective held within the professional mathematics community; wherein mathematics is an 
applied science, targeted at modeling data, relationships, phenomena etc. in order to solve 
authentic problems.  

The Study 
Twenty-one teachers (no participants were repeated from the earlier study) enrolled in the 

program and twenty of them consented to participate in the study. The 11 female and 9 male 
teachers represent diverse ethnicities, ages, and teaching experiences. The planned methodology 
for the study consisted of a phenomenological analysis of the teachers’ reflections on a signature 
assignment (described below) across both courses.  

Signature assignment: Working in pairs, teachers had to plan and create a modeling lesson in 
collaboration with their students. The lesson should be based on a social justice issue their 
students cared about. One teacher taught the lesson in their classroom, while the other teacher 
observed. The teachers then debriefed, made improvements to the lesson, following which, the 
second teacher taught the same lesson to their students. This iterative process speaks to the 
inherent nature of a mathematical modeling task. The teachers were then asked to reflect on the 
entire process that included planning strategies for future teaching. Their submissions included 
lesson plans, samples of student work, and individual reflections from both teachers.   
Data Analysis 

Final reflections of the participants were coded and analyzed for emergent themes. A first 
read to identify positive and negative feelings of agency revealed that the positive statements 
outweighed the negative. We drew on grounded theory for the next stage of analysis to make 
sense of the teachers’ willingness to take steps towards the reform they envisioned for their 
classrooms. The questions for the study guided the thematic analysis and coding was applied to 
identify and organize descriptive categories.  
Results 

The lesson reflections came from a variety of lessons based on topics like minimum wage, 
human trafficking, and fair trade. Three main themes emerged: a) student engagement and 
excitement; b) collaboration with colleagues and connections with students; and c) future 
planning. 

Student engagement and excitement: “They showed true maturity!” Eighteen (of twenty) 
of the participants reported their students being excited about the lesson and being fully engaged 
in the activity. Responses included: “The students surprised and encouraged me with their high 
level of engagement…[t]hey really became interested in increasing awareness about the issue 
and in how they could do something to help. They showed true maturity and a willingness to get 
involved and to try to bring change.” and “I have never seen the students so attentive, creative, 
respectful and involved!” 
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One teacher wrote about giving up control and said she was pleasantly surprised when she 
“stepped back, giving them the reins to take ownership of their learning.”  

Collaboration with colleagues and connections with students: “We all learned and grew 
together.” Teachers expressed excitement at the opportunity to collaborate with a fellow teacher, 
which, as one said, “is something I need to do more often. It also required me to think critically 
about what happened and how I could improve this lesson in the future.  

Teachers also reported connecting with their students in a deeper and more meaningful way. 
We saw statements like “this lesson allowed me to interact more with the students and have 
organic conversations about the work,” and “I was able to connect with my toughest class as 
most were able to participate in this lesson and we all learned and grew together”. 

Future planning: “Start somewhere!” All the participants expressed feeling motivated to 
continue making changes to their classroom practice to include social justice themes. They 
reported feeling more confident by “finding the places to “start somewhere” with mathematical 
modeling combined with 
teaching mathematics for social justice.” After having tried and seeing the positive results, they 
were willing to continue the practice. As one participant put it, “I keep coming back to this 
lesson series as one that could continue to grow and evolve over time.” While teachers felt 
challenged about balancing both the mathematical and social justice components, they felt 
confident “it will enhance an already exceptional lesson sequence for the benefit of all. 

Participants made action plans to spread the message in their schools. For example, one 
participant wrote: “It would be beneficial to discuss such lessons in our professional learning 
community (PLC) to have everyone onboard and be inclusive of everyone else who is following 
the same pacing calendar.” 

Conclusion 
Even though teachers are generally convinced that teaching mathematics for social justice is 

a lofty ideal, many feel overwhelmed by what it would entail to make it a reality (Bartell, 2013). 
The challenges may come from within, like giving up control of their carefully crafted lesson 
plans to empower students, or from outside influences like parents who are uncomfortable with 
social issues being discussed in the math classroom or from administration that is focused on a 
set curriculum that needs covering. The results of this study give teacher educators a possible 
direction to help teachers overcome their perceived lack of agency. By designing courses that not 
only focus on aspects of pedagogy and lessons focusing on social justice mathematics education 
but including mathematical modeling as an avenue for this work has the potential of providing 
teachers strategies for this work.  
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This paper examines two activities in a weeklong Professional Development (PD) focused on 
implementing mathematical play in kindergarten classrooms. Though the weekly activities all 
had different goals, the two focal activities (Pattern Blocks and Create-a-Monster) were 
designed specifically to be both playful and mathematically engaging for the kindergarten 
teachers taking part in the PD. This analysis looks at why Create-a-Monster fell short of those 
goals and compares it to the more successful Pattern Blocks to better understand how to design 
activities that are playful and mathematically interesting activity for early elementary educators. 
We finish with implications and future directions on playful PD design. 

Keywords: Professional Development; Early Childhood Education; Elementary School 
Education. 

Over the last few decades, a consensus has developed about the importance of play in early 
mathematics learning (Seo & Ginsburg, 2004; Wolfgang, Stannard & Jones, 2003). Research has 
documented that young children learn a variety of mathematics through play, such as developing 
spatial reasoning through block building (Casey et al, 2008) and making sense of magnitude 
through linear board games (Siegler & Ramani, 2009). More broadly, mathematicians have 
argued that mathematical play provides opportunities for children to engage in mathematical 
ways of knowing, such as exploration and argumentation, in ways similar to the work of 
mathematicians (e.g., Oughton et al, 2022).    

However, the routines and practices of everyday school mathematics can make playful 
experiences challenging for teachers to realize (Putnam & Borko, 2000). Pressures around 
mandated curricula, classroom management, pacing guides, and even knowledge of productive 
mathematical play contexts can make it difficult for elementary teachers to take up mathematics 
in playful ways in their classrooms. Research has also demonstrated that primary grade teachers 
find it challenging to recognize mathematics in children’s free play and to leverage those 
interactions in formal lessons (Ginsburg & Ertle, 2008). To make the context even more 
challenging, children in the primary grades are generally receiving fewer and fewer opportunities 
to play in school, even as researchers recognize the academic, social, and emotional benefits of 
play (Burson & Castelli, 2022).   

Given the benefits of mathematical play as well as the challenges of putting it into practice, 
professional development around math and play seems like a productive path to support primary 
grade teachers; however, few models for professional development aimed specifically at 
promoting playful learning exist. In an effort to figure out what transformational professional 
development around mathematics and play might look like, our research team has spent a year 
working with kindergarten educators at a public charter school in a southern city. This work 
included a weeklong workshop in the summer to introduce the idea of mathematical play, four 
daylong planning workshops throughout the year, the video recording of four weeks of play-
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based mathematics lessons taught throughout the year, and video clubs based on those play-
based lessons three times over the year.   

This paper focuses on the week of summer PD and our efforts to build teachers’ 
understandings of what playful mathematics might look like in their classrooms. We explore 
what playful mathematics learning looked like for teachers, and how our design of activities 
seemed to support—or thwart—their engagement in an effort to describe the characteristics of 
playful PD in mathematics. 

Literature Review 
In order to identify whether or not the activities in our PD promoted playful engagements in 

mathematics, we turned toward the broader literature on play. Scholars have studied play across 
the human lifespan, in a variety of social contexts, and even in non-human species. Burghardt 
(2011) provides general characteristics of play, intended to be applicable across mammal species. 
He argues that it is pleasurable, functional (doing something for those engaged in the play), 
different in some way from more serious activities, often repeated, and typically initiated in the 
absence of stress. Lifter and Bloom, who focused on humans, defined play as consisting of 
“spontaneous, naturally occurring activities with objects that engage attention and interest” 
(1998, p. 164). Brown (2009, p. 17) include many of the same characteristics of play but add that 
play inspires a “diminished consciousness of self” and an “improvisational potential.”   

Although adult play (in both humans and animals) has been studied less than child play, 
Elkind (2007) has argued that tinkering with materials offers adults opportunities to develop both 
creativity and perseverance and Brown and Vaughn (2009) suggest that including play in adults’ 
work lives makes people happier and more productive.  

In relation to mathematical play, Oughton and colleagues (2022) have noted similarities 
between their own play with mathematics as research mathematicians and the engagements of 
preschool children engaged in play-based mathematics, such as free exploration of materials and 
discussion with peers to explore mathematical ideas. To guide our analysis, we considered a task 
to be playful in our PD if it contained multiple features of play identified by scholars (e.g., 
pleasurable, functional, or engaging, non-serious, improvisational). We considered a task 
mathematically playful if it also invited teachers to think more deeply about some aspect of 
mathematics (e.g., magnitude, comparison, cardinality, similarity, rotations, geometric 
vocabulary, proportional reasoning, etc.). 

Context 
The data for this paper comes from a week-long professional development with kindergarten 

teachers at Strong! Elementary, a public charter school in a mid-sized Southern United States 
city and situated in a racially and economically diverse neighborhood. The larger research team, 
which all three authors are part of, is engaged in a multi-year partnership with Strong!, with the 
larger goal of implementing more mathematical play into teachers’ classrooms. This data is from 
the very beginning of the project, in the summer of 2022. 

Four kindergarten teachers participated in this professional development: Ms. Conway and 
Ms. Lane, two lead kindergarten teachers, and Ms. Nelson and Ms. Clarkson, their respective 
assistant teachers. The PD was led primarily by the second author and occasionally by other 
members of the team.  

Over the four days of PD, teachers engaged in a variety of activities, including analyzing 
videos of playful mathematics lessons in early childhood classrooms and videos of children’s 
mathematical thinking, reading, and discussing articles related to mathematical play, analyzing 
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standards, assessments and curricula, and engaging in mathematical tasks. Our analysis focuses 
on the mathematical tasks teachers engaged in. 

At multiple times throughout the week, teachers engaged in free play with materials designed 
to support mathematical thinking, such as magna-tiles, art supplies, wooden blocks, and 
Cuisenaire rods. During two different 30-minute blocks, teachers also engaged in guided play 
with these same materials, where the facilitator gave a specific goal for engagement with the 
toys, such as making connections between the toys and the kindergarten content standards or 
thinking about how children in their classrooms might play with particular toys. 

Methods and Data 
This study draws its data from a larger interpretive project (Erickson, 1986) that seeks to 

understand both how to support teachers in designing playful mathematics experiences as well as 
how children engage in mathematics through play. For the current study, we used case study 
methods (Flyvbjerg; 2006; Stake, 1995) to create contrasting critical cases of enacted 
mathematical tasks to examine both the characteristics of the tasks in relation to each other as 
well as differences in the quality of the teachers’ engagement in the tasks. 

During the weeklong PD, multiple cameras were used to film interactions. A swivel camera 
was used to record whole-group sessions. During small group activities, cameras were typically 
mounted at the small tables where partners worked. 

Data for this project included the videos taken during the week, field notes taken by graduate 
student observers, video recorded interviews with teachers at the end of the PD, and written 
documents used in the PD.  

We began analysis by drawing on the fieldnotes and daily PD agendas to identify 
mathematical tasks that were designed to support teachers in engaging in mathematics (in 
contrast to activities such as analyzing videos or standards). We found eight distinct 
mathematical tasks, each lasting 20 to 30 minutes, across the four days of PD. These ranged from 
episodes of free play with mathematical games and toys to tasks more closely directed by the 
facilitator. 

We then used the video to code each of these tasks for the features of play identified in the 
theoretical framework and for the mathematical content present. We had expected two activities 
in particular to be noticeably more productive for supporting the teachers in engaging playfully 
with mathematics; however, we found that only one of these two activities had significant 
features of both play and mathematical engagement in the teachers’ participation when it was 
enacted. 

As a result of this finding, we engaged in a closer analysis of these two contrasting critical 
cases that included repeated viewings of the videos, written memos, and conversations among 
researchers. The analysis below briefly describes the landscape of mathematical tasks from the 
PD and then focuses on the two activities we had expected to be most successful in promoting 
both play and mathematical engagements: Pattern Blocks (which we did find to have many 
features of play and to promote mathematical engagements) and Create-a-Monster (which we 
found to have many fewer characteristics of play and mathematical engagements, despite our 
expectations to the contrary).   

Findings 
Two of the eight mathematical tasks during PD involved free play with carefully selected 

toys and games. Analysis showed that free play tasks tended to be playful but not mathematical 
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(as represented in the table below). During free play, mathematical ideas were rarely discussed. 
Conversations often veered toward personal lives or to broader challenges of teaching. However, 
free play tasks did have characteristics of play. Teachers laughed, chose to work with the 
materials most interesting to them, and seemed to find genuine pleasure in the activities, such as 
painting a watercolor landscape, as evidenced by their desires to finish the tasks they had chosen 
and to go back to them during breaks. 

In some guided play activities, there were fewer conversations as teachers took notes or 
worked on their own, or conversations were muted, such as when two teachers discussed the 
opportunities for practicing one-to-one correspondence and cardinality as they played a game of 
Hi Ho Cherry-O. In this case, teachers discussed mathematical ideas relevant to kindergarteners, 
agreed the game would be playful for their students, but did not seem (unsurprisingly) to find the 
game playful themselves. The table below locates four sample activities from the PD on axes 
representing the depth of the mathematics and playfulness that we identified in each activity 
based on our analysis. These four activities were chosen as exemplars. The following section 
goes into more depth about the features and enactment of the Pattern Block and Create-a-
Monster activity, in order to make explicit characteristics of mathematically playful PD. 

 

 
Figure 1: Tasks During PD Organized by Playfulness and Mathematical Learning for 

Teachers 
 

While the free play activities did not reveal high levels of mathematical engagement and the 
game analysis did not reveal high levels of playfulness, these findings were expected. The free 
play activities were intended to provide some of the social and emotional benefits of play and the 
children’s game analysis was intended to support teachers in thinking about how to encourage 
their children’s playful engagement with mathematics. So, while they were not coded high on 
both scales, they did achieve the intended purpose of the facilitator. However, the other two 
activities, Pattern Blocks and Create-a-Monster, were intended to provide teachers with the 
opportunity to experience playful mathematics as learners.  
The “Critical Case” Activities 

In the “Create-a-Monster,” activity, teachers, working in pairs, were invited to use any 
measuring device they chose (links, ribbons, rulers, etc.) to measure their arms, legs, torso, and 
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head to create a monster twice as large as themselves. They could also choose whether to make 
the representation 2D or 3D. The mathematical goal was to explore measurement, including units 
and estimation, as well as proportional reasoning. We conjectured that the creativity involved in 
the design of the monster and in the variety of approaches to solving the measurement task 
would support mathematical play. In addition, we felt that the choice of making a monster twice 
as big would help the teachers see the task as potentially possible with their kindergarteners 
(perhaps with some modifications), which would also increase their engagement.   

The second activity, Pattern Blocks, involved working in pairs. One person used pattern 
blocks to create a design that was hidden behind a divider, and then explained to a partner how to 
recreate the design without showing the design itself. After the partner completed their replica, 
the divider was lifted, and the images compared. The mathematical goals of the activity were to 
explore geometric vocabulary and attributes, language about position, and spatial reasoning. No 
constraints were placed on the number or type of blocks that could be used except that each 
block had to be touching another. We conjectured that this lack of constraint would make the 
task both playful and cognitively demanding for the teachers, while also allowing them to 
imagine how imposing additional constraints (e.g., limiting the number of blocks) would make 
the same task manageable for kindergarteners. 

In our analysis of the two mathematical activities, we found that the Pattern Blocks activity 
became highly playful for the teachers and invited multiple mathematical conversations. By 
comparison, Create-A-Monster did not become as playful as we hoped, despite opportunities for 
creative expression, social engagement, and invitations to silliness and that mathematical 
conversations were relatively limited. 

Create-a-Monster. Teachers seemed to find the Create-a-Monster task both mathematically 
and creatively uninteresting. While Ms. Conway initially seemed to attempt making the monster 
activity playful by asking her partner teacher, Ms. Nelson, about creating the arms of the 
“monster,” Ms. Nelson did not take up the invitation. 

Ms. Conway:   Are they gonna be, like, person-like arms or are they gonna be, like,  
  monster-like arms? How should I cut them? 

Ms. Nelson:   I think however you want. 
This response from Ms. Nelson could be taken to signal a lack of engagement in the activity, 

either as a result of the relative simplicity of the math being used or a lack of interest in the 
ultimate goal of creating a monster. Ms. Conway seemed to take the feedback as meaning this 
activity was not a time for silliness, and decided to create human arms and would also go on to 
create “person-like” features for the legs, head, and torso.  

There was some novelty seen at the beginning of the activity, when Ms. Conway initially cut 
out the first arm and seemed amused at how long it was: 

Ms. Conway:   (Holding up the length of the paper arms) Look at these arms. (chuckles)  
  That’s how long the arm is. 

Ms. Nelson:   (Laughs, begins measuring her own head independently) 
However, the “twice as long” novelty seemingly wore off fairly quickly, and they went on to 

complete the task without even taping the “monster” together.  
The other set of teacher partners, Ms. Lane and Ms. Clarkson, worked mostly independently 

on separate body parts, partially in silence, and partially engaged in casual, non-mathematical 
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conversations. The independent nature of their experience with this activity and the lack of 
mathematical conversations suggests a lack of mathematical interest around this task. 
Additionally, the task of making a monster did not seem to inspire a playful interest. Just like the 
other pair, they created a large person, who did not have any “monster-like” characteristics. 

Pattern Blocks. In contrast, the Pattern Block activity, seemed to create many playful 
engagements as well as mathematical conversations. In her group, Ms. Lane was the first to build 
and describe what she made. Yet, when Ms. Conway was trying to interpret her directions, she 
ran into trouble almost immediately: Ms. Lane’s directions called for a parallelogram, but in the 
set of pattern blocks, there were three different parallelograms to choose from. In the clip, Ms. 
Conway paused for a moment, looking between the choices she had to recreate the image being 
described to her, before deciding to use one parallelogram over the others. 

Another piece of evidence that this was a mathematically demanding task for the teachers 
was that both sets of teachers were not able to successfully recreate their partners’ images on the 
first try. In both partner groups, teachers squealed and laughed when they raised their folders to 
see the differences in their designs, showing pleasure in the process even after a failed attempt. 
In addition, both groups were eager to play again, demonstrating a genuine engagement. 
Additionally, after their reveals, the teachers discussed new vocabulary or strategies that they 
needed to draw on when playing this game in order to succeed. 

During the pair’s initial reveal, Ms. Conway brought up the presence of multiple 
parallelograms. 

Ms. Conway:   That’s the right one though! Because there were also these (Picks up an  
  alternative parallelogram) and I was like oh, no which… which one? 

Ms. Lane:   (smiling) Ohhh yeahh… okay 
She then brought up the importance of how to orient a trapezoid within the picture to connect 

with a hexagon in the second round: 
Ms. Conway:   I should have specified, like this (pointing to one edge of the trapezoid she 

  used to connect to the hexagon) instead of this (pointing to the different  
  edge of the trapezoid that Ms. Lane used to connect to the hexagon. 

In the next round of play, teachers used, more mathematically precise language and were more 
successful in their recreations. 

A simple game of putting geometric shapes together while following directions from your 
partner became a site both for mathematical engagement and play. This was reiterated by Ms. 
Lane during a reflection, where she cited the reveal as being joyful, even when they got the 
shapes wrong. Adding another layer of their engagement, the activity also invited teachers to 
consider ways in which the game could be modified so that their students could play, such as 
starting with fewer shapes. 

Discussions and Conclusions 
In our analysis, we found that for adults, the appropriate level of mathematical challenge was 

an important feature in creating a playful math environment. Interestingly, there was no trade-off 
between “math” or “fun.” Instead, we found that the activity that was more mathematically 
challenging and interesting was also more playful, suggesting that future PD activities should be 
planned with a focus on creating mathematically interesting tasks for teachers, rather than on 
demonstrating that the tasks could also be used with kindergarteners. Also, we recognized that 
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challenging mathematical content included new mathematical practices. Naming shapes is not 
what makes the pattern tiles mathematically interesting for teachers, but learning how to 
communicate about shapes to a partner who cannot see becomes a complex venture with many 
parts. Finally, we recognize that tasks alone do not carry activity. For brevity, we do not explore 
the norms that allowed for exploration and a task with a high failure rate to be experienced as 
playful and enjoyable, but further work will explore these conditions.  

In conclusion, we found our task that promoted both more playfulness and more 
mathematical engagement was more challenging mathematically, invited laughter and surprise 
and was seen as interesting to adults. Both tasks used interesting materials, allowed for social 
engagement, made room for improvisation, and had explicit connections between the task done 
in PD and a potentially similar task that could be done in kindergarten. However, only the 
Pattern Block task seemed to promote actual meaningful mathematical engagement and playful 
interactions among the teachers. 

The Pattern Block activity required teachers to engage in discussions about shape orientation, 
relationships between shapes, and connections to the real world.  This task was not just about 
naming shapes but rather about relationships, composing, and then relaying that information 
without any visuals. The surprise teachers felt in seeing that their designs did not match provided 
them with pleasure and created a functional desire to repeat the activity to get it right. The 
Create-A-Monster activity, while in many ways had the potential to be playful, did not inspire 
visible pleasure or desire for deep engagement or improvisation in the teachers. This seemed to 
be in part because the teachers did not find creating a monster to be serving a meaningful 
function in their lives and because the mathematical task of doubling a person did not provide a 
mathematically interesting challenge. The teachers' engagement in the activity was evidently less 
playful, and the teachers did not show a desire to continue with the task.   

This work has implications for PD as it provides beginning guidance for designing playful 
mathematical tasks for PD. In addition, it suggests the need for further research on what it takes 
to create playful learning environments in PD and preservice classrooms, particularly focused on 
differences between child and adult learners. 
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Introduction 
Japanese instructional circles are a form of teacher community designed to address problems 

of practice proposed by active teachers (Author, 2022). Teacher communities are one form to 
help teachers provide a higher quality and more student-centered instructional practices (Horn & 
Little; 2010). Productive communities of practice share three main characteristics: 1) mutual 
engagement, 2) a joint vison of teaching, and 3) common language around instructional practices 
(Gallimore et al., 2009; Horn, 2007; Wenger, 1998). To enable these three features, the use of 
critique is often avoided to maintain a cordial relationship amongst Western teachers (Borko et 
al., 2008). They often are hesitant to focus on other teachers’ practices or comment on their own 
even when they are unsatisfied with the outcomes that occurred as a result of their instructional 
practices (Borko et al., 2008). Teachers from the United States often avoid giving or accepting 
critique though the privatization their own practices (Author, 2022).  

Japanese instructional circles utilize a focus on improving teaching rather than teachers to 
allow for teachers to begin to de-privatize their practice. This de-privatization of practice allows 
for teachers to engage in more productive discourse around the improvement of instructional 
practices and improve on their own problems of practices (Lefstein et al., 2020). Because of this 
method of helping teachers de-privatize their practice, we were curious as to how teachers in this 
Eastern professional learning environment both gave and received critiques about their 
instructional practices. We were guided by the following research question.  

1) In what ways do teachers participating in Japanese instructional circles navigate giving 
and receiving critique? 

2) How do the practices of critique in Japanese instructional circles compare to other 
professional development situations, i.e., Lesson study? 

Conclusion 
For this study, we engage in a discourse analysis of all the meetings of Japanese 

instructional circle located in Saitama prefecture in Japan for one year. We triangulated our 
findings with knowledgeable others in Japan who are familiar with Japanese instructional 
circles and the Japanese educational culture.  

We found that teachers in Japan use giving and receiving critique as support. Where 
normally in the United States teachers need to receive support along with critiques to 
maintain relationships and positive dispositions. The idea of using critique as support stems 
from the focus and belief of the teachers that the critique is designed to improve the 
instructional practices instead of improving the “teacher”. There is no need “to combine 
support with critique”; rather, in our data, support was the critique. When teachers are open 
to making their practices public, they encourage others to provide that critique by selecting 
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their own problem of practice to improve during the sessions. These findings are not unique 
to instructional circles, but similar instances can be found in the reflect phase of lesson study. 
Through these findings we hope to utilize these ideas with how to incorporate critique into 
teacher communities in teacher learning settings in Western schools as well.    
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This paper focuses on the trajectories of two mathematics teachers in developing Political 
Conocimiento through one year of Professional Development (PD) on culturally responsive 
mathematics teaching. The PD was organized around teacher and student noticing, positionality, 
community partnerships, and action research. The study found that the teachers’ discourse 
practices shifted from whiteness pedagogies towards politicized notions of schooling, caring, 
and mathematics learning. The paper discusses the dominant ideologies that teachers 
reproduced in their discourses around mathematics education and interactions with students. It 
also illustrated the teachers’ trajectories of Political Conocimiento through the deconstruction 
of the role that race plays in their positionalities, their classrooms, and school. 

Keywords: professional development, Political Conocimiento, dominant ideologies, teacher 
education   

Introduction and Framing 
Mathematics teachers are increasingly being asked to engage in critical analyses to question 

and subvert dominant practices in mathematics education that re-minoritize groups of youth and 
their communities. While some teachers have the opportunity to scrutinize mathematics 
education in preparation or professional development programs (Leonard et al., 2010), most 
teachers only have access to content and pedagogical knowledge (Kumashiro, 2013). 
Researchers like Gutiérrez et al. (2021) position this lack of opportunity for developing what 
they call Political Conocimiento in Teaching Mathematics (PCTM), a problem because schools 
and the system of mathematics education are necessarily political institutions. This paper reports 
on the trajectories of two mathematics teachers in developing Political Conocimiento through a 
one-year Professional Development (PD) on culturally responsive mathematics teaching and 
antiracist practices. The PD was organized around teacher and student noticing, positionality, 
community partnerships, and action research. Our findings suggest that teachers’ discourse 
practices shifted from whiteness pedagogies towards politicized notions of schooling, caring, and 
mathematics learning. 

Political Conocimiento is “knowledge that allows you to see how politics permeates 
everything we do” (Gutierrez, 2017, p. 20). This knowledge entails understanding that education 
is necessarily a political institution (Bishop, 1990), and that educational reform often serves 
neoliberal ends instead of dismantling systems of oppression (Philip et al., 2019). This is 
particularly true in mathematics education, which tends to reinforce whiteness (Martin, 2013) 
and deficit perspectives of minoritized youth (Berry et al., 2014). It also involves close scrutiny 
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of the self in relation to systems of power. Teachers’ positionalities tend to shape the degree to 
which teachers are aware of themselves as cultural and racial beings (Rubel, 2017; Gutiérrez et 
al., 2021) who organize the mathematics classroom based on their implicit perspectives and 
practices (Battey & Leyva, 2018). Without knowledge of self in relation to others, mathematics 
teachers may inadvertently reinforce systems of power they may be seeking to subvert. 
Mathematics teachers who are developing Political Conocimiento are more attentive to dominant 
ideologies and (discourse) practices, notions of goodness, fairness, and competence organized 
around white norms (Louie, 2018), and their role in cultural and racial processes in mathematics 
activity (Gutiérrez, 2017). 

Literature Review 
Programs aimed at supporting cultural and political awareness have met with mixed results. 

Mathematics teachers from dominant backgrounds tended to maintain colorblind ideologies and 
discourses of whiteness (de Freitas, 2008, Gutiérrez et al., 2021), held the Black, Indigenous, and 
people of color (BIPOC) students in their classrooms at a distance (Rubel, 2017), treated 
mathematics as a neutral subject (Sleeter, 2017), and engaged in benign notions of caring 
(Bartell, 2011; Daniels & Varghese, 2020; Matias & Zembylas, 2014). Critical forms of care and 
compassion in mathematics education must confront deficit perspectives, challenge whiteness, 
and white fragility, and focus on political solidarity with minoritized students, families, and 
communities (Bartell, 2011).  

Our research questions included: (1) How did dominant ideologies around mathematics 
education manifest in teachers’ discourses?, and  (2) In what ways did these discourse practices 
shift over the course of the PD towards Political Conocimiento? 

Methods 
This qualitative research study took place in the context of a Professional Development (PD) 

on culturally responsive and antiracist mathematics instruction for secondary mathematics 
teachers in one school district. The PD comprised bimonthly meetings over Zoom and took place 
during the 2021-2022 school year. Teachers engaged with various activities and artifacts to 
support their development of political knowledge. Data collected for the study included video 
recordings of the PDs on Zoom, video recordings of interviews with teachers, and artifacts from 
the PD and teacher work.  
Design of the Professional Development 

The PD was thoughtfully designed to embrace multiple dimensions of noticing, antiracist 
practices, and culturally responsive teaching. Its goal was to disrupt traditional notions of 
teaching and learning mathematics by engaging in critical explorations of teachers’ identities and 
interconnectedness, fostering a collective consciousness rooted in shared experiences. Through 
intentional acts of noticing, teachers were encouraged to challenge the dominant discourse and 
critically reflect on their pedagogical praxis. Immersive reading discussions on subjects like anti-
deficit noticing, antiracist education, and historical racism were employed to deepen their 
comprehension of equity and social justice in education. Student noticing surveys were 
employed as a means for teachers to gather insights from their students, notice students’ 
perspectives and identify areas of improvement. Moreover, teachers contributed diverse 
artifacts—ranging from videos and personal reflections—that allowed them to share their 
observations with facilitators and teachers. Ultimately, the PD culminated in teachers 
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constructing action research plans tailored to address specific problems of practice, empowering 
them to challenge their own biases and actively confront systemic racism. 

Subjects 
Carrie and Charlotte were two white, female, mathematics teachers who work at the same 

high school and have more than ten years of experience teaching mathematics. The 
demographics of the high school at the time was: 64% white, 14 % Hispanic, 11% Black, 8% 
two or more races, 2% Asian or Pacific Islander, and 1% Native American. Both taught three 
mathematics classes that followed a tracking system: low, average, and high. Teachers reported 
that in their ‘high track’ class, most students were white, in the ‘average track’ class, the students 
were white and BIPOC, and in the ‘low track’ class, the majority were BIPOC students. 

Positionality 
The PD was led by the authors of this paper. The first author, Brenda Aguirre-Ortega, 

identifies as an international Latina researcher. who has been working as a facilitator and 
researcher of learning spaces that promote Political Conocimiento for mathematics teachers. The 
second and third authors are white, female mathematics education researchers who have 
experience teaching culturally responsive mathematics teaching to students and teachers. The 
fourth author identifies as a first-generation Latino, who engages math and science teachers in 
equitable teaching practices and inclusive pedagogies.   

Data Collection 
Teachers’ discourse practices were captured through initial interviews, noticing interviews, 

transcripts of PD Zoom meetings, final interviews, and teacher PD artifacts such as reflection 
journals, action research plans, and collaborative jamboards.  

Analysis 
To analyze the data, the first author transcribed the PD sessions and interviews, read 

observational notes, and examined the teachers’ PD artifacts. In this process, she developed ideas 
and categories related to the learning opportunities teachers had around antiracist practices. The 
data was coded using Dedoose, with categories including power relations, whiteness, reform 
math pedagogy, tensions, teachers’ perceptions, critical discourses, emotions, and caring. The 
second author recoded a subset of the data and the coders sought interrater consensus around the 
codes. We went back to the coding process and ensured we followed the agreed-upon guidelines 
and criteria for coding. We discussed individual interpretations of the data, compared notes, 
shared thought processes, and identified any areas where our understanding diverged. We 
worked together to reach a consensus on the analysis.  

Later, the data was recoded based on Political Conocimiento and dominant ideologies. These 
concepts were used as analytical frameworks to analyze the data collected from various sources. 
The initial interviews provided a baseline understanding of teachers’ perspectives on political 
issues in mathematics education and allowed the authors to identify any initial awareness. The 
noticing interviews enabled the authors to gain insights into how teachers recognized and 
responded to power dynamics, dominant ideologies, and antiracist practices within videos of 
mathematics classrooms. The noticing interviews captured teachers’ awareness and engagement 
with political conocimiento. The transcripts of PD Zoom meetings provided a rich source of data 
for analyzing discussions around articles read, shared experiences, and students noticing surveys. 
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The authors could observe how teachers addressed power relations, critically examined dominant 
ideologies, and discussed antiracist pedagogies. The final interviews provided an opportunity for 
teachers to reflect on their learning and level of awareness of political issues in education. 
Finally, the authors analyzed various artifacts that provided concrete evidence of how teachers 
applied and integrated political conocimiento and confronted dominant ideologies in their 
teaching practice. For example, the action research plans demonstrated their intention to address 
power dynamics and challenge dominant ideologies, while collaborative jamboards served as 
visual representations of teachers’ collective engagement with political conocimiento. 

By using the concepts of political conocimiento and dominant ideologies as analytical 
frameworks across the different data sources, the authors were able to examine and showcase the 
ways in which teachers’ initial understandings changed, how they recognized and addressed 
power dynamics, and the impact of the PD on their pedagogical practices. This analysis 
highlighted the teachers’ engagement with political conocimiento and their efforts to challenge 
and transform dominant ideologies within their own teaching contexts. 

Findings 
The analysis revealed that after the second half of the school year, the two mathematics 

teachers experienced notable shifts along a trajectory of Political Conocimiento. Their learning 
trajectories are represented in three main themes: colorblind distancing, discourses of whiteness, 
and development of critical discourses. The first finding illustrates how the teachers described 
their “low-track” math classes in ways that ignored the hypersegregation of African American 
students and held them at arm’s length. The second finding focuses on the values and ideologies 
that the teachers manifest in their discourse that reinforce the superiority of white people. The 
third theme traces the shifts from discourses of whiteness to critical discourses, where teachers 
start to notice or question their biases.  
Colorblind distancing 

At the beginning of the PD, Carrie, and Charlotte identified their respective “low track” 
classes as “challenging”. Carrie described her “challenging” class as a “hard class with a tough 
culture”, and Charlotte described hers as “combative and yucky”.  The teachers acknowledged 
that coming back from the Covid year was difficult for students in general, but both positioned 
their “low track” classes (in this case hypersegregated African American students) as particularly 
challenging.  

Carrie, for example, shared at the PD how it felt like she and her students were on different 
sides, and that nothing she tried changed that dynamic: 

…that one class that’s pretty challenging this year …it feels very much like the kids against 
the teacher. It feels like it’s all of them against me, and that is a brand new feeling. I’ve been 
teaching for a very long time and I’ve never felt like that before. I’ve been trying all kinds of 
things to improve the culture of the classroom and the behaviors of the classroom. 
In this quote, Carrie is portraying an entire class of students as against her. We view this 

move as a way of distancing herself from them and treating them as a singular body with shared 
motivation to oppose her teaching. Yet, classrooms are necessarily heterogeneous spaces, where 
youth as individuals have varied orientations, goals, and values. Ignoring this heterogeneity and 
treating the class as of one mind is a way of  “othering”. Additionally, to Carrie, changing the 
“tough” classroom culture is about changing the behaviors of the students, who she views are the 
ones creating the opposition. Locating the blame for an unhealthy classroom culture with 
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students is a deficit move that ignores interactional dynamics. We note also that Carrie’s 
description of the dynamic in her classroom does not attend to issues of race and culture, but 
instead comes from a colorblind discourse.  

Like Carrie, Charlotte also described her classroom as oppositional. In this case, she 
mentioned race, but not in terms of a racialized learning environment, and employed deficit 
discourses: 

I do have several students of color that just put their heads down. I have a lot of kids that 
have opted out. I have twelve that would do absolutely nothing, or they pretty much do 
absolutely nothing. Like, I just can’t get them to pick up a pencil. And, we had a few really 
big personalities of kids too. At the beginning, I think [it was] just kind of a toxic start. 
Charlotte used the term “opting out” to describe the majority of students, in this case all of 

whom were African American, whom she viewed were not behaving appropriately (e.g., putting 
heads down, not picking up a pencil, having a big personality). She made a judgment call based 
on students’ behavior that they were choosing not to learn mathematics in her classroom. In this 
case, again, we argue that the way Charlotte is positioning the African American students is both 
distancing and deficit. She is distancing herself from them by not accounting for the way that her 
class and the broader system of education may be harming them, and by treating their behavior 
as self-explanatory.  

In both cases, we view the teachers’ discourse to lack criticality and self-reflection about the 
ways their classrooms operate as racialized learning environments for African American 
students. The distancing that both teachers engage in is bound up in their whiteness (Rubel, 
2017) and colorblind discourses of teaching. We examine other characteristics of their discourses 
of whiteness in the next section.  
Discourses of Whiteness in mathematics teaching  

A second finding is that Carrie and Charlotte’s discourses gravitated around white people 
being the norm. While Carrie centered her white students and their mathematics learning, 
Charlotte centered herself on the analysis of her classroom.   

The PD involved teachers in interrogating dominant ideologies around race, culture, and 
mathematics. Teachers read an article about how a mathematics teacher concerned with equity 
challenged dominant ideas around smartness in her classroom. When discussing dominant 
ideologies around mathematics education, we started populating a jamboard with examples. 
Some common themes from the teachers were: meritocratic ideology, good scores as a proxy for 
intelligence, math as pure and objective, and math as a space that privileges certain types of 
knowledge. After the jamboard activity, we asked if any teachers wanted to elaborate on one of 
the themes on our jamboard. Carrie started describing math as a space that privileges certain 
types of knowledge. In doing so, she used an example from her high track class:  

I teach an advanced level class. They’re eighth graders doing 10th grade math and so I’ve got 
a lot of really, really bright kids in there .. And, you know, there’s still kids who are very 
smart in that class but don’t get it as fast…I think it’s interesting. The entire class is full of 
high achieving kids and yet they still are subscribing the same sort of ideologies that smart 
looks one way. 
In this excerpt, Carrie elaborates on how the dominant ideology that smartness in 

mathematics looks one way affects “bright students” in her “advanced” level class. Importantly, 
the students in her “advanced” class were white. Carrie notes how some of the students in that 
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class do not get mathematics quickly because they accept dominant ideologies around smartness. 
We note here how Carrie’s focus is placed on her white “advanced” class, versus her “low track” 
class, which is predominantly African American.  The fact that students in the “advanced” class 
were white could have been an opportunity to reflect on the overrepresentation of white students 
in advanced level mathematics courses. Instead, Carrie’s discourse centered white students who 
are “bright” and targets of dominant ideologies of smartness. 

Similar to Carrie, Charlotte participated in discourses that centered whiteness. In Charlotte’s 
case, she centered her experiences as a white person and teacher. For example, Charlotte wanted 
African American students to like her and to see how she was like them in some ways: 

I think they [students] just assume that I’ve always had everything I ever needed which I 
mean I haven’t struggled like a ton, but my parents were on food stamps when I was a kid. 
We didn’t get to go on family vacations. Obviously it’s not the same, … and it’s like it’s hard 
to say, like, “I kind of can relate”, but it’s difficult sometimes to let your students know that 
you might be similar more similar than you think. 
In this excerpt, Charlotte is attempting to explain the commonality between her experiences 

growing up with socioeconomic challenges and the experiences of African American students in 
her classroom. In naming her experiences with class oppression growing up but not contrasting 
them with the privileges she has had as a white woman, Charlotte is potentially manifesting 
white fragility. Here, she is hoping that the students in her class will relate to her experiences of 
poverty and find her more appealing as a teacher.  

We see the discourses of white fragility manifest again in another PD session. In it, Charlotte 
commented on how the “low track” class challenged her authority and made it difficult for her to 
teach. She argued, “When I try to express vulnerability, they [students] come on to attack me. [I 
tell them], “It’s really difficult for me to do my job!” And then they tell me I am not a very good 
teacher. [I tell them] “I’m on your side!”” Charlotte’s discourse in these utterances again reflects 
her white fragility around her BIPOC students. Charlotte became defensive when the students 
did not respond to what she viewed as acts of vulnerability with them, and she centered her pain 
and frustration.  Similar to the excerpt above, Charlotte appears to have expected students to feel 
a connection with her and to support her as a teacher. In both sets of utterances, Charlotte’s 
discourse brings the attention to her, as a white woman, focusing away from the experiences of 
BIPOC students.  
Developing critical discourses in mathematics teaching 

Major themes that arose from the last sessions of the PD and the final interviews indicated 
that the teachers were starting to take up critical discourses around positionality and race. Both 
Carrie and Charlotte’s discourses showed awareness of themselves as white women, the impact 
their positionalities had on their students, and engagement in less colorblind analysis when 
referring to their “low track” classes.  
In her last interview, Carrie shared a deep reflection on her journey in the PD, she pointed out her 
growth, her desire to continue learning, and how she enjoyed her “challenging” class, in her 
words:  

I’ve grown a lot and I still have a lot to grow, but just understanding that my position in this 
world as a white woman and how I position myself in the classroom can impact my students. 
My hardest class, they’ve become my favorite class, they were the easiest to build 
relationships with, I enjoy them as people in a way that I didn’t expect. 
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Similarly, Charlotte also demonstrated awareness of her whiteness. She recounted an 

interaction she had with her “low track” class:  
I was like, “Tell me about your experience here.” [I said], “I know I’m white but I want to 
hear anything you have to say.” I think that’s the big part for our students. Most of their 
teachers are white. Most of their teachers don’t look like them. 
In these utterances, Charlotte and Carrie demonstrated an awareness of their racial identities 

as white women and the potential impact it may have on their students. While Carrie emphasized 
in how this awareness has brought her to establish closer relationships with her students, 
Charlotte has noticed the lack of racial diversity among teachers and the need for more 
representation for students of color in her school. Both teachers have started a process of 
deconstruction of narratives around their “challenging” classes and their students of color.  We 
argue that both discourse practices indicated movement along a trajectory of Political 
Conocimiento. According to Gutierrez (2017), teachers who have developed Political 
Conocimiento are able to deconstruct deficit narratives around students.  

As Charlotte and Carrie began to acknowledge their whiteness, they engaged in deeper 
reflections on the role that race plays in their classrooms. Carrie, for example, noted that her 
black students consistently showed up late or in some cases didn’t show up. In the following 
quote, she starts to wonder about the meaning of what she sees from a point of curiosity:  

I have all of my [white] students show up on time, and then 5, 10, 20 minutes later I get a sea 
of black students that show up late every single day, and I think that is one of the most 
obvious differences in my [challenging] class. I don’t know what I think about that, but it’s 
interesting to me. And then, I have a few perpetual students who just don’t come, and they 
are all students of color the ones that I never see.  
Carrie engages in a discourse that challenges colorblindness. For the first time, she was able 

to articulate the racialized experiences and behaviors of the students in her “challenging” 
classroom. By acknowledging that there is a difference in behavior between her white and black 
students, she is recognizing that race does play a role in her classroom. This utterance shows a 
departure from a colorblind approach that would ignore any racial disparities.  

Charlotte, also notices the racialized experiences of students, but from another point of view: 

I think at our school our white kids have opportunities such as tutoring. I don’t think a lot of 
my other kids ..it’s not something that they have. I think they [white students] just have more 
access to tools to feel more confident and to feel better at math. But they’re not actually 
better at math. 
We note several points in the utterance. First, Charlotte continues to name white students 

explicitly, while using “other” to refer to students of color. In this way, Charlotte was still 
engaging in colorblind discourses. At the same time, she showed awareness of the privileges of 
her white students that BIPOC students did not have. Importantly, for Charlotte, this privilege is 
reflected in opportunities and resources that enable white students to “feel more confident and to 
feel better at math.” The word “feel” here is critical, because she is not arguing that the resources 
do produce these differences. The final utterance, “But they’re not actually better at math”, 
reinforces this interpretation, and signals that Charlotte is disrupting the discourse around 
mathematical identity, mathematical performance, and ability.  
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We argue that the critical discourses of both teachers around positionality and race show 
Political Conocimiento. For Gutierrez (2017) signs of Political Conocimiento development 
include: “the ability to deconstruct competing messages about concepts like equity, mathematics, 
and learning that circulate in society; consideration of not just one-to-one interactions but 
historical, systemic, and institutional aspects of schooling that affect particular students..” (p. 29) 

Carrie’s discourse demonstrates an understanding of how her positionality as a white woman 
can impact her students, she acknowledges that there is a role her whiteness plays in her 
classroom. This awareness brings her to deconstruct her mathematics classroom from a neutral 
space to one mediated by race. She is also aware of the racial differences in her classroom, such 
as the different patterns of lateness among her students. This may indicate that she is aware of 
systemic and institutional factors that can impact student learning. Similarly, Charlotte’s 
discourse shows an awareness of the historical and systemic lack of representation of students of 
color in her school. She starts to question institutional aspects of her school such as the 
overrepresentation of white teachers as something that affects her students of color. She also 
recognizes the unequal opportunities and resources available to different groups of students, 
indicating an understanding of the institutional factors that can impact student learning. 

Both Charlotte and Carrie demonstrated signs of Political Conocimiento development, 
including the ability to deconstruct competing messages about equity, mathematics, and learning, 
and an awareness of systemic, and institutional aspects of schooling that affect students of color 
disproportionally.  

Discussion and Conclusion 
The aims of this paper were to illustrate dominant (discourse) practices around mathematics 

teaching represented in two white female teachers’ narratives, and the teachers’ trajectories 
towards politicized forms of mathematics knowing. The paper drew upon the concepts of 
Political Conocimiento for Teaching Mathematics (Gutierrez, 2013, 2017, 2021), dominant 
ideologies in mathematics education (Louie, 2018), and whiteness (Sleeter, 2017)  to examine 
the shifts in teachers’ discourse through participation in a culturally responsive math professional 
development.  

Our findings regarding the teachers’ discourses validate extant research that mathematics 
teachers tend to engage in dominant ideologies that center whiteness, sustain colorblindness, and 
equate whiteness with smartness (Gutierrez, 2017; Louie, 2018). Mathematics teachers from 
dominant backgrounds, such as Carrie and Charlotte, tend to reproduce dominant, deficit 
ideologies in their discourses and teaching practices centering white students as the norm and 
positioning BIPOC students as the “other”. The study also identifies particular deficit discourses 
that the teachers took up, such as colorblind distancing (Rubel, 2017) and white fragility, and the 
ways these discourses manifest in everyday talk about classroom life. Finally, the study also 
reinforces findings from Gutierrez et al. (2021) that teachers tend to be race-evasive about their 
own identities, and by confronting whiteness and questioning the role of race in the classrooms 
and school they can gain political knowledge. This research also informs policy and decision-
making around professional development opportunities for mathematics teachers that focus on 
culturally responsive teaching and antiracist practices by highlighting distinctions between 
dominant discourses and ones that are aligned with antiracist ideologies.   
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While instructional coaching can support teacher improvement and student learning, their 
effectiveness and longevity in the role may be influenced by teachers’ emotions, the quality of the 
teacher-coach relationship, as well as the cognitive and emotional climate of the school. In this 
study, we analyze the emotional experiences of a novice mathematics instructional coach at 
multiple time points over one school year, through 14 reflective interviews. We categorize the 
coach’s descriptions of her emotions as positive, negative, and neutral and describe themes that 
explain why she felt the way she did in her experiences. Our analysis points to three major 
reasons underlying her emotional trajectory which ultimately led to her decision to discontinue 
her role as a coach: (a) unmet expectations (b) student learning, and (c) teacher engagement.  

Keywords: Professional Development, Affect, Emotions, Beliefs, and Attitudes 

Introduction 
Instructional coaching is a promising way to support teachers in improving their instruction 

and content knowledge (Campbell & Griffin, 2017; Kraft & Hill, 2020), and has been shown to 
support student learning (Campbell & Malkus, 2011; Kraft et al., 2018). Thus, the needs of 
instructional coaches are important to consider. The work of instructional coaches has been 
framed in a range of ways because these roles are often designed to serve the needs of the school 
or district, in addition to teachers. Coaches often function in leadership roles but are distinct from 
other school leaders because they are also closely connected to teachers' work (Wenner & 
Campbell, 2017). In many cases, teacher-coach interactions significantly advance teachers’ 
thinking and practices as they provide support in a safe, non-evaluative way (Costa & Garmston, 
2016). However, how the coach is positioned within the school can influence the quality of the 
relationships they develop with teachers and the extent to which they can establish trust and 
rapport (Comstock & Margolis, 2021). Straddling the boundary between being affiliated with 
leadership and building trust with teachers is a potentially emotionally challenging aspect of 
coaching, which may ultimately contribute to decreased effectiveness or attrition. Given the 
dearth of research on coaches’ emotional experiences, in this study, we explored the experiences 
of an emerging coach during her first year to understand how they influenced her emotional 
well-being and decisions about continuing in her role as coach. We focused on answering the 
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following research questions: (i) What is the trajectory of emotions of an emerging math coach 
during her first year? (ii) What factors influence this emotional trajectory? (iii) In what ways do 
these emotions contribute to her career decision-making?  

Teachers’ and Coaches’ Emotions 
When considering the complexities of coaching in a school setting, it’s important to consider 

the multiple layers of emotional interactions that can ultimately influence teaching and learning. 
We frame this study by examining the impact of teacher emotions, teacher engagement, and the 
overall emotional climate of the school on a coach’s emotional well-being. Our definition of 
emotions is guided by prior work as “socially constructed, personally enacted ways of being that 
emerge from conscious and/or unconscious judgments regarding perceived successes at attaining 
goals or maintaining standards or beliefs during transactions as part of social-historical contexts” 
(Schutz et al., 2006, p. 344).  Emotions are relational, meaning they are elicited through person-
environment interactions based on how the person perceives progress towards achieving desired 
goals.  

Teachers’ emotions are elicited based on their perceptions of how they are progressing 
towards achieving their instructional or other teacher-related goals (Schutz & Zembylas, 2009). 
They are influenced by various factors, including interactions with students (Chaves, 2009; 
Hargreaves, 2000; Sutton, 2003), student learning (Reyna and Weiner, 2001; Russo et al., 2020, 
Trigwell, 2012), level of autonomy in their teaching (Lee, 2005; Russo et al., 2020), and 
contextual factors such as lack of support (Van Veen et al., 2005; Chaves, 2009) or time (Van 
Veen et al., 2005). Emotions have also been found to play a significant role in the interactions 
between teachers and instructional coaches (Cross Francis et al., 2021). Similar to teachers, goal 
setting is a key aspect of coaches’ work. They too, set goals that are teacher-, student- and/or 
school-focused and experience emotions as the judge how well events unfolding daily are 
helping them make progress towards those goals. To be effective, it is important that coaches 
support teachers in regulating their emotions in ways that bode well for student learning, while 
also regulating their own emotions as they manage the complexities of their own work. By 
acknowledging the emotional aspect of their work and engaging in discussions about emotions, 
coaches and teachers can understand and support each other's experiences, as well as develop a 
shared vision for teaching and learning (Hunt, 2016). When difficult emotions arise in the 
context of coaching interactions, coaches’ engagement with these emotions can support teachers’ 
change toward effective practices (McGugan et al., 2023). By acknowledging, addressing, and 
leveraging their emotions, both coaches and teachers can contribute to a more supportive and 
productive educational environment. 

The multi-faceted nature of coaches’ roles may also play a part in their emotional experience. 
Coaches often work with multiple teachers within a school or across schools. Although not an 
explicit requirement of their role, coaches are integral in maintaining both a positive academic 
and emotional climate within schools by supporting teachers’ efficacy and engagement 
(Lobaugh, 2022). Additionally, coaches must navigate their relationships with administrators and 
communicate expectations from school leadership, while also building trust and rapport with 
teachers. Efforts to meet these implicit expectations can be a physically and emotionally 
burdensome endeavor.  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 638 

Methods 
Participant 

Arabella was a first-year instructional math coach in an urban K-5 Title I elementary school. 
She was supported by a colleague who was an experienced coach and had been the instructional 
literacy coach for six years. She was concurrently working on her doctoral degree at a large 
public university in the United States. Prior to being the math coach, she worked as a math 
interventionist for Grades 4-5. As a coach, she was required to support core curriculum 
implementation, including 1:1 coaching cycles, facilitating professional learning teams, co-
planning, analyzing data, and providing professional development.  
Data Collection 

Semi-structured interviews were the main data source. There were two anchor interviews, a 
pre-interview with Arabella before she began coaching and a post-interview after 14 reflection 
sessions at the end of her coaching role. During the coaching experience, the research team 
conducted bi-weekly reflection sessions with her to hear about her experiences, reflections, and 
the events that occurred between sessions. For this paper, we focused on two questions from 
these reflections that targeted her emotions: What were your primary emotions during these past 
couple days while working as a math coach? What were the reasons for these emotions? 
Analysis 

We identified the statements that Arabella shared in relation to her emotions. We organized 
the data in a table with the stated emotions in one column and the accompanying emotion reason 
in an adjoining column. The research team read each stated emotion and coded it in terms of 
valence – positive, negative, and neutral – referring to the pleasant and unpleasant multi-
component responses to external stimuli respectively. This is displayed visually in Figure 1. We 
identified the responses provided in the pre- and post-interviews to capture the emotions at 
distinct time points – prior to the start of her coaching role and at the end of the year – and the 
reasons underlying the emotions. Then we focused on understanding the trends of emotions 
across the reflective interviews to document how events unfolding within the school, and with 
teachers and students impacted the coach’s emotional experiences. We read and coded each 
emotion reason using a code that captured the essence of what Arabella was trying to 
communicate. Then, we organize the codes grouping those with similar meanings into themes 
(Braun & Clarke, 2006). In what follows, we describe the emotions and reasons that she 
experienced these emotions at the two distinct time points. We also describe the themes that 
summarize the reasons underlying the emotions she experienced over the year.   

Findings 
We describe Arabella’s emotional experience at the beginning and end of her coaching role. 

Then we discuss how her emotional experiences changed across the 14 reflective interviews, and 
her emotions after deciding to leave her position as a coach.  
Emotions at the beginning and end of the coaching role  

Before starting her work with teachers, Arabella was eager, excited, and grateful to start her 
role as a coach because she had worked hard to get this position. She stated her feelings and 
described why she wanted to become a coach.   

I feel like I've worked hard for this position as well. Like this is something that I've wanted 
for a couple years now. And I knew I had to go to grad school for it and even after I went to 
grad school for it, I still like there wasn't an opportunity and I didn't necessarily like really 
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seek it out … so it's this is something that I've wanted to do, and now that I'm in it, I'm just 
like really loving it. And so, I think just like eagerness and fun and exciting like every day.  
I enjoy working with the teachers, I enjoy being in their classrooms. I enjoy when they come 
to me and ask me questions. I just enjoy seeing their classes...be successful.  
Arabella wanted to be a coach. She worked hard to achieve the qualifications for the position 

and had exercised patience. Feelings of enjoyment seemed to come from the fact that she loved 
working with teachers, providing them with effective support, and positively influencing 
students through that support. Arabella also mentioned that she was anticipating feeling some 
disappointment in cases where she might not be able to help teachers. She was looking forward 
to functioning as a “good support” for teachers to help ensure that they “feel successful”.   

At the end of the year, when asked about her emotions related to the coaching experience in 
its entirety, Arabella described being exhausted, frustrated, challenged, and confused. She 
explained the reasons for these emotions,  

I think that was just really frustrating not feeling impactful. The lack of accountability. All 
that was frustrating day to day. I'm exhausted in multiple ways, like physically just like 
getting up every morning at 6 am being here all day. And then going home and like just 
feeling totally burnt out. than being surrounded by people who were feeling burnt out. Just all 
very exhausting. [I am also] I'm hopeful because there were times where like, I did get to do 
coaching cycles with the teachers and there were teachers who, you know, were working 
with me and and you found the value in talking to me and working with me. 
Though there were multiple negative emotions that she shared, she still sounded hopeful and 

enjoyed it when she did have opportunities to engage in the work of coaching, particularly when 
she was able to directly work with teachers and build relationships.   

To understand how Arabella’s emotions changed over time we explored the nature of the 
transitionary emotions she experienced from the reflective interviews and organized the reasons 
for these emotions in themes.  
Trajectory of Emotions 

Figure 1 shows Arabella’s emotions, categorized as positive, negative, or neutral, over the 
first year in the role. It shows that over the course of the first year Arabella experienced a range 
of positive, negative, and neutral emotions; however, she consistently experienced negative 
emotions following reflective interview 6.  
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Figure 1: Trajectory of Emotions Across Reflective Interviews (RIs) 

Unmet Expectations 
During the initial days of her role as a coach, Arabella experienced neutral emotions. She 

noticed that teachers in the school appeared to have a depressed mood (as they were transitioning 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 640 

back to in-person learning after COVID) and were feeling overwhelmed by the increased 
expectations they were experiencing. Though these negative emotions (e.g., burn-out) were not 
Arabella’s emotions, they dampened her excitement about her new role. Though she had started 
her position on a positive note with a zeal to help teachers, during her second through fifth 
reflective interviews, Arabella expressed some negative emotions, which she described as a 
feeling of being lost. This reflected her struggle to understand the purpose of her role as a coach. 
She mentioned during the second week’s reflection,  

I was feeling like, I'm just kind of like lost, what is my purpose? When I started this, I was so 
excited. But now I feel it's been hard for teachers coming back from COVID. And they've 
been feeling so drained. I think drained and burnt out would be the words they would use...so 
I think I've been like, well, how do I help? Basically, it's like, what is my purpose here? Like, 
because I want to coach, I want to help but like, that's not where we're at. Right? What I can 
do to help at that moment is like, okay, we can, you know, work on this math problem, We 
can have conversations, like, it's not the typical coaching cycles. That's not, that's not how it 
works.  
Arabella’s emotions started to mirror those of the teachers within the first few months in her 

role. She described experiencing stress, exhaustion, and irritation due to stress on teachers and 
recognizing that her school’s administration considered improving students’ standardized test 
scores to be a major part of her role. Specifically, during her fifth reflection, she described 
feeling irritated because her role required her to wear multiple hats and perform at distinct levels, 
(i.e., ensuring that students’ scores improved) which took away time she wanted to spend on her 
actual job role - which she saw as coaching and working with teachers.  
Student Learning 

Arabella reported positive emotions throughout the sixth to eighth reflective interviews. She 
had introduced EOG Fridays with 3rd-5th grade teachers. Every other Friday, students would take 
a short standards-based assessment to help teachers gather data to analyze student learning to 
help them prepare for their upcoming standardized tests. EOG Fridays was received well by 
some teachers while other teachers pushed back. They intended to be encouraging and 
motivating and students earned rewards for growth and proficiency. Students enjoyed 
participating so they continued to the end of the year. During this time, she expressed emotions 
like – excitement, hopeful, feeling good, and contentment. Arabella proposed the idea for EOG 
Fridays based on her prior experiences with students. The leadership accepted the idea and 
following its implementation they observed an improvement in test scores. Although 
implementing this plan seemed tangential to what she perceived was her coach role, she felt 
acknowledged within the leadership team, and was pleased to see that her hard work seemed to 
improve students’ scores. Soon after, during her ninth reflection, Arabella experienced a mix of 
positive and negative emotions. On one hand, she was excited as she found that students had 
scored well after implementing the new practice of EOG Friday in the school. She shared,   

I'm excited I think that the math data the trajectory from this past benchmark was like pretty 
good. We saw a lot of growth. I think overall the math teachers felt pretty good about it. That 
was exciting. The students felt good about it so definitely excited.  
Contrarily, she reported feeling frustrated because of the behavior of some teachers in the 

school. She was feeling some tension with some of the teachers who remained distant and not 
open to engaging in coaching cycles.   
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Teacher Engagement 
The residue of these negative emotions carried forward in Arabella’s experience for the next 

four reflection interviews (tenth to thirteenth interviews). During this time, she reported emotions 
like tired, frustrated, drained, exhausted, and apathetic. The primary reason she associated with 
these emotions was the lack of teacher engagement she was encountering. She started feeling 
animosity with one teacher in particular, whose behavior she interpreted as resistant to engage in 
coaching aimed at improving her instruction. This created a toxic environment which she felt 
made it difficult for her to function effectively as a coach. She explained her feelings as follows:  

I think tired, exhausted, drained, I don't know if drained is an emotion, but I think the 
negativity and the toxicity of some of the attitudes are really hard to like deal with and so I 
think just like tired. I was just like...exhausting to deal with.  
Although Arabella focused on her interactions with one teacher in this statement, she noted 

that the experience with this teacher was reflective of her broader feelings of disconnection in 
her interactions with teachers at the school in general. The negative emotions that Arabella began 
to express in the second interview persisted for most of the school year, with only sporadic 
positive emotions, and this ultimately seemed to inform Arabella’s decision to actively seek 
other job opportunities at the end of the school year. After making this decision (by the 
fourteenth interview), she re-focused on the positive aspects of her role. She reported feeling 
hopeful and excited about two teachers who were willing to work with her, and about the 
continued improvements in students’ test scores, ending the school year on a positive note.  

Discussion and Significance of this Study 
This study’s findings highlight the transitory nature of the emotions of an emerging math 

coach during her first year and point to teachers’ emotions, coach-teacher interactions, and the 
emotional climate of the school as key factors that influenced a novice coach’s emotional 
trajectory and her ultimate decision to leave her role as coach. After beginning her new role with 
optimism and excitement, Arabella experienced increasingly negative emotions related to the 
challenges of coaching, followed by a brief improvement in her emotional well-being toward the 
end of the school year, which can be attributed to her sense of relief at having made the decision 
to leave her position. As the school year progressed and challenging learning conditions persisted 
because of the COVID 19 pandemic, Arabella described the way in which teachers’ feelings of 
overwhelm negatively influenced her own emotional state, noting the uncertainty and anxiety 
that resulted from not knowing how she could support teachers. The nature of her interactions 
with teachers also contributed to Arabella’s emotional decline, as she described feeling 
exhausted by teachers’ resistance to improving their instruction through coaching. The overall 
emotional climate of the school was a third factor to which Arabella attributed her negative 
emotional trajectory as the year wore on. The expectations placed on Arabella to increase test 
scores while trying to build relationships with overwhelmed teachers resulted in increased levels 
of stress. Arabella was bolstered throughout the year by continued improvements in students’ 
standardized test scores, which she felt was an indication that despite the challenges she faced in 
working with teachers, she was contributing positively to student learning. Ultimately, however, 
this was not enough to counteract the heightened negative emotional experience resulting from 
teachers’ emotions, challenging teacher-coach interactions and the overall school climate, finally 
leading to her decision to leave her coaching role.   
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The trajectory of negative emotions we observed in this study extends the literature which 
documents the relationship between teachers’ and students’ emotions (e.g., Chaves 2009; 
Hargreaves, 2000; Sutton, 2003), and between student learning and teachers’ emotions (e.g., 
Reyna and Weiner, 2001; Russo et al., 2020), by demonstrating existing commonalities in the 
relationship between teachers’ and coaches’ emotions. Arabella’s experience illustrates that 
coaches’ emotions are influenced by factors including teachers’ emotions, teacher (dis) 
engagement, student learning outcomes, and the overall cognitive and emotional climate of the 
school. Similarly, Arabella reported feelings of excitement and hope in connection with teachers’ 
engagement and growth, suggesting that like teachers, coaches experience positive emotions 
when they see the learners in their charge developing positively (i.e., teachers growing 
professionally in ways that support student learning). By illustrating the influence of teachers’ 
emotions and engagement on coaches’ emotions, these findings add to the existing literature 
(e.g., Hunt, 2016) on the role of emotions in instructional coaching. Additionally, this study 
provides insight into the emotional challenges that novice instructional coaches may face and 
extends what we know about the emotionality of coach-teacher relationships (McGugan et al., 
2023).  We also noted that many of the words used by the coach were not emotion words as 
described in the literature; instead, many described the physical state of their bodies. This aligns 
with existing work (Cross Francis et al., 2019, Cross Francis et al., 2020) but also emphasizes 
that coaching can take both an emotional and physical toll. 

Hiring and retaining effective coaches requires a significant investment of resources and time 
on the part of schools and districts, and our results highlight the importance of supporting 
coaches as they manage the emotions they may experience while engaging with teachers and 
supporting schools. Based on the work coaches do, engaging with human beings in contexts that 
are challenging and complex, it is inevitable they have to contend with the emotions of others 
and their own. Thus, it is essential that coaches acknowledge the emotional and affective terrain 
of teachers and learn to understand and support individuals in regulating their emotions (Cross 
Francis et al., 2019). To prevent burnout and support the emotional well-being of instructional 
coaches, it's important for schools to prioritize building a positive emotional culture, provide 
ongoing support and professional development, and ensure that coaches have clear expectations 
and boundaries. By creating a supportive environment, instructional coaches are more likely to 
thrive in their roles and make a positive impact on student learning.  
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Equitable and accessible classrooms should engage all learners with mathematics content in 
meaningful ways. However, practicing teachers need support from professional development 
(PD) to learn to teach with this ambitious vision. Informed by sociocultural theory, we employed 
an evaluative case study methodology to describe, explain, and assess the experiences of one 
middle school mathematics teacher’s longitudinal participation in a continuous PD model 
focused on the Teaching for Robust Understanding (TRU) framework. Based on classroom 
observations and interview data, our findings show evidence of TRU-aligned changes in 
teaching practice as a result of years of participation in the PD model. These findings strengthen 
the call for PD programs focused on equity and access and suggest design elements of such PD 
to support effectiveness. 

Keywords: Professional Development, Instructional Vision, Instructional Activities and Practices  

Recent reform movements have framed engaging all learners as an issue of equity and access 
to mathematics content (Larson, 2017). Teachers must create a classroom culture that empowers 
students to actively participate in mathematics lessons through productive struggle, 
collaboration, and explaining their reasoning, in contrast to lecture-based pedagogies (Baldinger 
& Louie, 2014; Porter et al., 2011). Thus, there is a strong need for professional development 
(PD) to support instructional shifts that help teachers develop practices aligned to this ambitious 
vision (Gallagher, 2016; Rosli & Aliwee, 2021; Sztajn et al., 2017). In this paper, we report on 
the changes in one middle school mathematics teacher’s classroom practice based on her 
participation in a professional learning community (PLC) within a PD model (AIM-TRU) 
focused on creating engaging and powerful mathematics classrooms. This case study addresses 
the research question guiding our work: How does participation in a community of practice 
centered on the collective investigation of video cases grounded in high-quality instructional 
materials impact teachers’ use of these materials and practice? 

Theoretical Perspective and Review of Literature 
Our work is framed by sociocultural theory in the ways we have studied the engagement of a 

PLC of mathematics teachers in PD and the impacts of those experiences on one middle school 
mathematics teacher’s classroom practice. The following sections will describe socioculturalism 
and communities of practice (CoPs), tenets and examples of effective professional development, 
the Teaching for Robust Understanding (TRU) framework, and Formative Assessment Lessons 
(FALs). Literature in these areas helps preview the AIM-TRU PD model and its impacts on a 
middle school mathematics teacher’s practice that we will report in this paper. 
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Sociocultural Theory and Communities of Practice 
Sociocultural theory claims that learning and the activities, contexts, and cultures in which it 

takes place are inseparable (Brown et al., 1989; Collins et al., 1988; Lave & Wenger, 1991). 
Within socioculturalism, CoPs are groups of people who mutually engage in an activity, are 
connected by a joint enterprise, and engage with a shared repertoire of resources (Wenger, 1998, 
1999). Within a CoP, evidence of learning can occur through changes in participation and 
reification. In teaching, the changes in the practice of one teacher in a PLC can demonstrate 
that  individual's learning while engaging with a CoP through participation in the PD program.  
Effective Professional Development 

To support teachers’ instructional shifts toward creating engaging and powerful mathematics 
classrooms, effective PD should be centered on coherent mathematics content, have sustained 
duration, and involve teachers in collective and active participation (Garet et al., 2001). Also, 
effective PD should be explicitly connected to classroom lessons to help facilitate changes in 
teaching practice (Desimone & Garet, 2015). When a PD program incorporates these features of 
effectiveness, research has shown that teachers can alter their instructional practice toward 
ambitious standards, develop their content and pedagogical knowledge, form productive beliefs 
about engaging all learners, and better support learning in their classrooms (Desimone, 2011). 

PD research has also shown that PLCs focused on video case study can help teachers 
productively shift classroom practices. Borko et al. (2008) found that when a PLC of teachers 
was actively engaged with familiar mathematics lessons and collaborated to understand students’ 
solution strategies in videos, they developed specialized content knowledge and pedagogical 
content knowledge (see Ball et al., 2008). This PD was also effective in helping teachers change 
their formative assessment practices in their classrooms. Santagata and Bray (2016) found that 
video-based error analysis helped teachers in a PLC develop new lesson-planning practices. 
Teachers started incorporating anticipations and responses to common student misconceptions 
about big mathematical ideas into lessons, providing more opportunities for student discourse 
during class. van Es and Sherin (2008) found that a PLC video club focused on professional 
noticing in teachers’ classrooms helped them interpret and examine classroom interactions in 
new ways, which informed the teachers’ implementation of a reform mathematics curriculum. In 
our own work, changes in participation and reification of TRU concepts were found to be 
associated with video case analysis in the AIM-TRU PD model (Leonard et al., 2022). 
Teaching for Robust Understanding via Formative Assessment Lessons 

Imperative to a CoP engaged in PD is the development of a shared repertoire built around 
best practices. In the context of the AIM-TRU PD model, this shared repertoire consists of the 
TRU framework and FALs. The TRU framework outlines an ambitious vision of mathematics 
classrooms that create engaging and equitable learning environments to support all students in 
becoming independent mathematical thinkers (Schoenfeld, 2015). The TRU framework details 
five interrelated dimensions: The Mathematics; Cognitive Demand (CD); Equitable Access 
(EA); Agency, Ownership, and Identity (AOI); and Formative Assessment (FA). 

The Mathematics dimension refers to the rich, coherent mathematical content that forms the 
foundation of powerful mathematics classrooms (National Council of Teachers of Mathematics, 
2000; National Governors Association, 2010; Schmidt et al., 2005). Engaging students with such 
content through mathematical tasks requiring high levels of CD with appropriate scaffolds 
creates the opportunity for the productive struggle necessary for developing conceptual 
understanding (Hiebert & Grouws, 2007). Such tasks are associated with improved opportunities 
to learn (Jackson et al., 2013; Stein et al., 1996), higher student achievement (Boaler & Staples, 
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2008; Stigler & Hiebert, 2004), and the development of sophisticated solution strategies 
(Downton & Sullivan, 2017). 

The EA dimension highlights instructional practices that can meaningfully engage all 
students with rich mathematical content. For example, selecting tasks with multiple entry points 
and solution strategies provides students with different ways of connecting their prior knowledge 
to new content, thus positioning all students as capable doers of mathematics (Boaler, 2016; 
Hodge & Cobb, 2019). AOI refers to the extent to which students are positioned with agency as 
creators of mathematical knowledge in the classroom, rather than passive recipients (Engle & 
Conant, 2002). When teachers establish classroom norms wherein students are responsible for 
making mathematical arguments and for evaluating the validity of those made by their peers, 
students are more likely to identify themselves as mathematically competent (Cobb et al., 2009). 
The use of FA in the classroom to elicit student thinking in order to inform instruction and 
provide feedback has been connected with improved student learning outcomes (Andersson & 
Palm, 2017; Black & Wiliam, 1998). In contrast to performance-based summative assessments 
(e.g., tests and quizzes), FA practices can foster intrinsic motivation for learning (Shepard, 
2000), and can encourage students’ development of a growth mindset and metacognitive habits 
(Darling-Hammond et al., 2020; Granberg et al., 2021). 

Related to the TRU framework are FALs, which are high-quality, research-based lessons 
developed by Schoenfeld and his team to support teachers in creating TRU-aligned classroom 
experiences. Designed to be incorporated into existing curricula, each FAL includes structures to 
support teachers in formatively assessing student thinking (e.g., pre-assessment tasks) and in 
providing access to the mathematics for all students (e.g., a whole-class introduction wherein 
teachers can preview the context of the lesson). FALs also include high-CD small-group tasks 
designed to support students’ AOI as they collaboratively construct mathematical knowledge. 

Methodology 
We used an evaluative case study methodology (Merriam, 1998) to describe, explain, and 

assess the experiences of one middle school mathematics teacher’s longitudinal participation in a 
continuous PD model focused on creating engaging and powerful mathematics classrooms. This 
case study is part of a larger, multi-year PD research project involving over 150 teachers 
spanning multiple regions in the United States. To gain insight into learning within this CoP, we 
chose Ms. Chaves (pseudonym), a middle school teacher, to be the focus of our case study 
because of her active involvement in the AIM-TRU PD model as both a participant and 
facilitator throughout the four years of this study. 
Ms. Chaves 

At the beginning of her participation in the AIM-TRU PD model, Ms. Chaves had nine years 
of middle school mathematics teaching experience in a suburban district in the northeast United 
States, teaching primarily Math 8 and Algebra 1 classes. For the first year of her participation in 
this PD model, Ms. Chaves engaged as a teacher-participant in a PLC. Since then, she has led a 
PLC as a facilitator-participant. Prior to her involvement in this PD model, she had engaged in 
various PDs about classroom practices. 
The AIM-TRU PD Model 

The AIM-TRU PD model engages middle and high school mathematics teachers in a 
collaborative investigation of FALs and their enactment to deepen instructional knowledge and 
support shifts in practice aligned to the TRU framework. Grounded in tenets of effective PD 
(e.g., Desimone & Garet, 2015; Garet et al., 2001), this PD model provides opportunities for 
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teachers and facilitators to collectively generate professional knowledge for teaching and 
learning mathematics using the dimensions of ambitious instruction that are necessary and 
sufficient to produce equitable environments supporting deep learning opportunities for all 
students (Schoenfeld & the TRU Project, 2016). This PD model focuses on the following 
components: (a) unpacking the big mathematical ideas in a TRU-aligned FAL, (b) making 
observations about video cases demonstrating students’ mathematical thinking while engaging in 
FALs, and (c) sets of video case reflective discussion questions based on the TRU framework 
(see Figure 1). During the reflective discussion of the video analysis, teachers often co-construct 
understandings about TRU-aligned teaching practices through dialogue (Leonard et al., 2022).  

 
Figure 1. The AIM-TRU PD Model 

Data Sources and Analysis 
Data collected and analyzed for this case study included one classroom observation video 

from each Year 1 and Year 4 and a follow-up interview. We watched the classroom video data, 
segmented it by class activity structure (whole class, set-up, small group, etc.), and used thematic 
analysis to describe Ms. Chaves’ teaching practices. We used an observation rubric (see 
Schoenfeld et al., 2014) to assess her classroom practices in Year 1 and Year 4 relative to the 
pedagogical TRU dimensions to assess the alignment of teaching practices with the TRU 
framework. On a 1-3 half-point scale, with 3 being the highest alignment, we assessed 
pedagogical alignment with the following guiding questions: 

• CD: How are students supported in productive struggle? 
• EA: How is access to the content supported for all students? 
• AOI: How are students the source of ideas and discussion? 
• FA: How is students’ thinking surfaced and built upon? 

We also conducted a semi-structured follow-up interview with Ms. Chaves to gather details 
about the practices captured in her classroom observation video data and to learn from her 
perspective on the impact that the AIM-TRU PD model had on changes to her practice. 

Findings 
One teacher’s journey with the AIM-TRU PD model provides a window into the ways that 

teacher learning manifests in a CoP through participation and how that learning can be reified 
with changes in a teacher’s practice. In Year 1, Ms. Chaves had little prior knowledge of the 
TRU framework, relied on lecture-based practices, was influenced by institutional expectations, 
and was hesitant to implement FALs with fidelity. After prolonged participation in this PD 
model, we found evidence of shifts in her classroom practices and implementation of FALs. Her 
exposure to and immersion in the TRU framework and our analysis of her teaching practices can 
help explain these shifts. 
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Year 1: Ms. Chaves’ Classroom at the Start of the AIM-TRU PD Model 
In this section, we describe Ms. Chaves’ teaching practices and her implementation strategies 

for FALs during Year 1 of her involvement in the AIM-TRU PD model. 
Classroom practices. In the video of Ms. Chaves’ classroom from Year 1, she was observed 

facilitating a whole-class homework review. Students were expected to self-check solutions by 
comparing their answers to a posted key. Following the self-check, Ms. Chaves asked, “Does 
anyone have any questions?” Seeing none, she moved on to the next part of the lesson. During 
her interview, Ms. Chaves reflected on her motivations for homework: 

But it’s because I was supposed to, and everyone in our district, starting in sixth grade does 
this sort of homework, and this is how much it is. And all of the teams give the same. And 
it’s due on this day. And this is how we grade it. 
This indicates that Ms. Chaves was conforming to the institutional expectations for assigning, 

reviewing, and grading homework. This excerpt was coded using the observation rubric as CD: 
1.5, EA: 1, AOI: 1, and FA: 1. Within the CD dimension, her homework assignments provided 
students an opportunity to productively struggle through problem solving, but this opportunity 
was not fostered or built upon through classroom practices. Her standardized homework 
practices created differential access for students because some students may not have had the 
background knowledge needed to enter the tasks (EA). In addition, students were limited to 
individually accessing solutions and could not engage in student-to-student discussion (AOI). 
This practice also limited assessment to purely corrective feedback on student solutions (FA). 

Another classroom practice we noted through our analysis was the use of accountability talk. 
Ms. Chaves prompted discussions in small groups by reminding the students that they had 
structures of accountability talk. She indicated during her interview that she supported student 
accountability talk by hanging a poster of prompts on the wall for students to reference. This 
practice supported student engagement and discourse, but the placement of the resource may 
have limited students’ access to these supports. 

Implementation of FALs. Observations from Year 1 also provided a baseline for how Ms. 
Chaves implemented FALs. In one observation, she made significant changes to the format of 
the FAL, the tasks involved, and the questions suggested. For instance, Ms. Chaves chose not to 
use the FAL’s pre-assessment task, eliminating a critical opportunity for her to formatively 
assess students’ prior knowledge. She also eliminated the whole-class introduction, which would 
have increased students’ access to the mathematics by providing them opportunities to engage 
with the content prior to small group work. When implementing the FAL’s card sort activity, Ms. 
Chaves removed a pair of matches from the card sort and provided students with information 
about the number of matches, lowering the CD of the activity. Using the observation rubric, this 
episode was coded as CD: 2, EA: 2, and AOI: 2. These scores show that Ms. Chaves attended to 
CD, EA, and AOI, yet productive struggle was scaffolded away, access was inhibited, and means 
of fostering student agency were not promoted to the fullest extent. 

Ms. Chaves shared in her interview that in Year 1, she was unfamiliar with FALs and used 
them to piece together her existing classroom practices and new practices related to FALs: “[I 
was] looking at those [FAL activities] like, oh, this would be good. And like I would just pull it 
and plop it in and like, trying to figure it out as I went.” Ms. Chaves also expressed that she felt 
compelled to implement only the main task from the FAL because she was under institutional 
pressure to cover content. She shared that she needed to “keep pace” with other teachers, even if 
her students needed more time with particular lessons. 
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Year 4: The Impact of the AIM-TRU PD Model on Ms. Chaves’ Teaching 
In this section, we describe Ms. Chaves’ practices and her implementation strategies for 

FALs demonstrated after four years of involvement with the AIM-TRU PD model. 
Classroom practices. In the Year 4 observation video, we observed changes to Ms. Chaves’ 

classroom practices around homework. In her interview, she shared that she thought her Year 1 
homework practices were inequitable because “whatever these kids are going home to may or 
may not be conducive to them doing [home]work” and to “then penalize a child [for not doing 
homework] … seems like a one-two punch.” She explained that she has adjusted her intentions 
regarding homework since Year 1, assigning less homework, but increasing the emphasis on 
making connections between mathematical ideas. She viewed this as a more equitable practice to 
promote students’ retention of mathematical understandings. Furthermore, if students report 
struggles with homework assignments, she finds time during class for students to collaborate to 
explore mathematical ideas rather than posting an answer key, as in Year 1. This practice fosters 
discussion among students around concepts and connections and encourages students to evaluate 
their own mathematical thinking. She described this in her interview by stating, “I’m letting them 
come to those conclusions by themselves now.” This practice shows her alignment with the TRU 
framework: she attended to EA by recognizing that conditions at home may not be favorable to 
completion, raised CD by having students productively struggle to form conclusions, and 
provided opportunity for students to develop their AOI by having the students work on the 
problems together to construct mathematical truths, and introduced more opportunities for FA by 
eliciting student thinking. 

Supporting students to come to their own mathematical conclusions was also observed in the 
classroom observation from Year 4. During her launch of the FAL, Ms. Chaves asked students to 
determine if 0.123 was a terminating, non-terminating repeating, or a non-terminating non-
repeating number. After a student shared their choice, Ms. Chaves asked the student, “Why did 
you choose that one?” The student gave their justification, and Ms. Chaves then asked another 
student, “Is that what you are thinking, would you like to add on?” She then asked if students had 
“any argument” for the other two choices. Ms. Chaves proceeded to ask if the number was 
rational or irrational. After giving time for students to think individually, she solicited student 
responses. Students responded with various ideas, including “both,” and when the students did 
not agree on a choice, she did not disclose the correct answer. She instead told the class, “we will 
be figuring this out in our task.” We coded this setup and exchange as FA: 3 and CD: 3 because 
she used students’ emerging understandings to build on student thinking and engaged and 
supported students in productive struggle by not scaffolding away challenges, respectively. 

In her interview, Ms. Chaves contended that her years of participating in this PD model 
helped her reify the dimensions of the TRU framework. When confronted with outside curricular 
materials or resources, she now critically analyzes them with a TRU framework lens: 

[How can I] make sure all kids have access to the lesson, but also make it cognitively 
demanding, and also give the kids agency? If someone comes up to me and says, I want you 
to teach like this now, I’m going to naturally throw that up against TRU in my mind. 
This shows that Ms. Chaves changed her evaluation of classroom experiences, considering 

whether they raise CD, provide EA for all students, promote student AOI, and allow her the 
opportunity to formatively assess students’ thinking effectively (FA). 
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Classroom observation of Ms. Chaves from Year 4 also revealed classroom practices that 
differed from those observed in Year 1. She reminded students to use the “accountability-talk 
stems” on their desks. When interviewed, she explained that these stems contained prompts for 
responding to peers, asking peers for clarifications, and sharing new ideas with peers. By using 
these prompts, students were supported in engaging in conversations by challenging others and 
justifying their own mathematical thinking. Unlike Year 1, these accountable-talk stems were 
placed on student desks instead of the wall, supporting student engagement with these practices. 
This teaching move attended to EA by helping more students to engage in mathematical 
conversations and to AOI because students were supported in sharing their ideas and building on 
others’ understandings. 

Implementation of FALs. In our classroom observation from Year 4, we observed Ms. 
Chaves implementing an FAL with fidelity and more closely aligned with TRU. In Year 4, she 
used the pre-assessment on definitions of decimals as recommended in the FAL rather than 
omitting it as in Year 1. Then, she used multiple approaches to formatively assess students’ 
understandings. She prompted students to work on whiteboards and display them so she could 
assess their thinking. Next, she facilitated a class discussion based on some perceived 
misunderstandings, prompting students to justify their thinking and reasoning (FA: 3). Each 
portion of the FAL was implemented with fidelity, which was a stark difference compared to her 
Year 1 observation. In her interview, Ms. Chaves attributed this change, in part, to the work done 
within this PD model: 

There were always discussions … my kids can’t do this, but if I edit it, maybe they can get it 
and then we would talk about, what does that do to the lesson if you edit it? If you make this 
easier, or if you scaffold this up, because you want to increase your access. But are you 
simultaneously lowering your cognitive demand? How do you do both? The more we would 
talk about editing the FALs, the more you question if you should be editing the FAL at all. 
In her interview, Ms. Chaves referenced discussions from previous PD sessions in which 

teachers debated the impact of altering the format and structure of an FAL. Through these 
learning experiences in the PLC, which were marked by changes in participation and reification 
in the discussion, she was able to make shifts in her implementation of FALs in her classroom. 
She also noted that student engagement with this FAL has shifted over multiple years: 

I’ve done one lesson … three or four years, I finally feel like I let it breathe enough. And all 
of a sudden, these kids figured out things throughout the lesson that they had never done in 
previous years. It was like, oh, my gosh, what just happened? The answer is I gave them 
more time. I didn’t try to rush. 
Ms. Chaves now gives students time, space, and structures to make connections and 

persevere and has seen students making better mathematical connections than in previous years. 
She stated in her interview that this PD “is the only one that I’ve done that’s been long term, 
sustained.” The sustained duration of her involvement in this PD afforded her the opportunity to 
enact lessons multiple times, reflect on them with others, and improve her practice. 

Discussion 
Ms. Chaves’ participation in the AIM-TRU PD model motivated changes in her teaching 

practices and the fidelity with which she now implements FALs in her classroom. Through her 
learning experiences shared across the CoP, she was able to demonstrate clear changes in 
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teaching practices aligned with the TRU framework. Also, the increased fidelity to FALs 
positioned Ms. Chaves to attain a closer alignment with the TRU framework. These changes in 
practice help answer recent calls to engage all learners with mathematical content in an equitable 
way (Larson, 2017). Our analysis of Ms. Chaves’ changing classroom practices and her own 
reflections suggest that it was her continued participation in this PD model and the design of the 
PD itself (Desimone & Garet, 2015; Garet et al., 2001) that provided her the opportunity to reify 
ideas about powerful mathematics teaching and the implementation of high-quality materials. 

We noted specific shifts in classroom practice regarding homework expectations and student 
discussion strategies. Ms. Chaves’ altered her homework practices due to recognizing inequities 
in her prior practices. Through sustained duration and collaborative interrogation of teaching 
moves related to equity, Ms. Chaves chose to alter her practice to create a more equitable space 
for students. Related to Borko et al. (2008), Ms. Chaves leveraged her PD experiences to allow 
for more FA opportunities in her classroom as students discussed homework and sought to make 
their own connections between mathematical ideas to overcome any challenges. Additionally, 
while Ms. Chaves’ change in structures for accountable-talk stems may seem small, shifting 
from a whole-class anchor chart to individual small-group reference sheets provided additional 
support for more students to engage in mathematical discourse. The teaching move of providing 
students with individual prompts was present throughout Ms. Chaves’ participation in the PD. 
Drawing from Cobb et al. (2009), this practice situated students to view themselves as more 
mathematically competent. There were tangible and available resources for small groups to 
access and enter mathematical discourse and build on each other’s thinking. The FAL 
instructions for student small-group work are also intentionally designed to promote student 
discourse. Akin to Santagata and Bray (2016), Ms. Chaves planned for more student discourse 
by drawing on discussions from PD sessions about the importance of setting and maintaining the 
FAL expectations for student talk structures; she fostered these interactions among students by 
making the structures clear and providing reminders. 

The ways in which Ms. Chaves implemented FALs changed dramatically, due in part to her 
involvement in this PD model. Desimone and Garet (2015) stressed the importance of sustained 
PD with active learning experiences that can connect to teacher practice. Ms. Chaves’ 
participation in the PD model provided her with sustained time reading, analyzing, and reflecting 
on the implementation of FALs within a CoP. Through discussions in the PLCs, she shifted her 
perception of how she can use FALs in her classroom and her opinions of the impact of altering 
the resource. Aligned with these tenets of effective PD, Ms. Chaves also shifted the way she 
adopts other materials for her classroom by analyzing the alignment of the materials with the 
TRU framework. This provided her the opportunity to push past institutional norms to adopt 
TRU aligned teaching practices. It was through her prolonged investigation of teaching practices 
using the TRU framework that she was able to take this resource and use it to select materials 
and moves for implementation that leads to ambitious teaching practices. 

Conclusion  
In this paper, we used sociocultural theory and an evaluative case study methodology to 

describe, explain, and assess Ms. Chaves’ longitudinal experiences in the AIM-TRU PD model. 
Our findings show that a well-designed PD program focused on the TRU framework can inform 
shifts in classroom practice toward engaging all learners in ambitious learning opportunities with 
mathematics. A next step in our research is to broaden the scope of our methodology to study the 
impact of the AIM-TRU PD model on the collective learning of the entire PLC. 
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This classroom study takes a dialogic research approach to investigate how early-career 
mathematics teachers engage students in conversations about mathematics. Investigating 
teaching is not only about what toolbox of actions or activities a teacher uses, but how these tools 
are used to create opportunities to engage with mathematics and with other students (Franke et 
al., 2007). The meaning, or learning, develops through the ways objects are talked about and 
used together with others. The teacher thus needs to link different ideas in meaning-making 
processes, guiding students’ learning (Scott et al., 2011). The guiding also has the function to 
ensure that the learning follows mathematics conventions and goals in the curriculum (Walshaw 
& Anthony, 2008). Through teachers’ approach to communication (communicative approach), 
the frames for meaning-making processes are created when teaching (Mortimer & Scott, 2003). 
Balancing purposes, students’ understanding, learning goals, and the mathematical content, the 
teacher may plan for activities with different levels of interaction or space to explore the 
meaning of students’ diverse perspectives. This creates a range of participation for students to 
engage in (Otten et al., 2015). Depending on students’ responses, activity interactions affect what 
happens in the next lesson or several lessons to come, hence creating dynamic aspects of 
teaching and learning. The guiding research questions are: What communicative approaches are 
used by the teacher? What shifts in those approaches can be found within and between lessons?  

Dialogical theories emphasize the importance of contributions from others to understand 
communication, cognition, and human actions (Linell, 2009). In interactions, people negotiate 
the meaning of what is said or done. From a dialogical perspective, an individual’s actions are 
both responses to previous interactions and initiatives for new actions influencing what will 
happen next. In this study, this is relevant when looking at how early-career teachers approach 
communication, not just within a lesson but also between lessons.  

The empirical material consists of classroom observations with two early-career teachers in 
Scandinavia. For each teacher, a sequence of consecutive lessons (eight for one teacher, ten for 
the other) has been video and audio recorded. The teachers were interviewed at the end of the 
observation period. The material is analysed using a meaning-making framework by Mortimer 
and Scott (2003). The teachers’ communicative approaches in whole class settings are identified 
using two dimensions: dialogic/authoritative and interactive/non-interactive approach. The 
analysis focuses on how the teacher shifts between communicative approaches, and in what ways 
the students’ ideas of the mathematical content are included in the teaching depending on the 
type of activities. Questions for future analysis (and for discussion with the PME-NA 
community) include how these shifts in communicative approaches might support the students’ 
meaning-making processes both within and between lessons.  
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Drawing on data collected from one coaching cycle during mathematics instruction for one 
coach-teacher dyad, this study explores one instructional coach’s discursive enactment of their 
coaching stance. Qualitative analyses indicate that there was dissonance between the coach’s 
stance for coaching and their discursive enactment of coaching, and that the coach’s 
disciplinary expertise seemed to influence the enactment of her coaching stance. Implications for 
research and practice are discussed. 
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Coaching is complex as coaches must navigate multiple, and often competing, tensions in 
their roles and responsibilities as they support teachers. In the context of a three-part coaching 
cycle (Bengo, 2016), a coach has simultaneous obligations, including: working with a teacher to 
design, prepare for, and implement a high-quality lesson; supporting the teacher to learn content 
and pedagogy; establishing a trusting and productive relationship with the teacher; and 
developing a teacher’s capacity to plan for and reflect upon lessons without the presence of a 
coach. This complexity is further amplified as a coach must balance the roles of an expert (in 
content, pedagogy, or both) and collegial thinking partner. Coaches typically operate from a 
position of authority, given their formal title and comparative experience to the teachers they 
support (Mosley Wetzel et al., 2017). From this position of power, coaches can choose to 
leverage their expertise as they work towards the aforementioned obligations. However, the 
conception of coaching (e.g., Showers & Joyce, 1996) and more current definitions of coaching 
(e.g., Baker et al., 2021) call for a coach to act as a non-evaluative colleague available for job-
embedded collaboration. Thus, coaches are tasked with making continual choices during 
coaching interactions regarding how to balance these competing roles and responsibilities, 
making a coach’s capacity to creatively manage these tensions a central feature of intentional 
coaching (West & Cameron, 2013). 

Within mathematics education, there is a dearth of literature on how coaches enact their 
stance, defined here as a coach’s behaviors when managing the competing roles of expert and 
colleague (e.g., Deussen et al., 2007; Ippolito, 2010), in ways that best support teacher learning. 
Furthermore, little is known about the specific discursive practices coaches use when enacting 
different stances during interactions with teachers. Our study seeks to fill this gap through 
understanding how one instructional coach discursively enacts their coaching stance throughout 
planning, teaching, and debriefing interactions in a coaching cycle with one elementary teacher 
during mathematics instruction. Specifically, three research questions are explored: (1) What is 
one coach’s stance about their coaching practice, (2) How does the coach discursively enact their 
coaching stance, and (2) How might the coach’s disciplinary expertise influence the enactment of 
their coaching stance? 

Related Literature 
We frame our study with the argument that coaching interactions are situated in a system of 
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negotiation in which the language choices and roles of interlocutors continuously shape and are 
shaped by the context of the interaction (Halliday & Matthiessen, 2004). This system of 
negotiation involves one speaker assuming a role of a primary “knower” relegating the other 
participant to a role of secondary “knower” during a linguistic exchange (González & 
DeJarnette, 2012). Researchers studying literacy coaching have provided language describing the 
two competing stances for how coaches leverage their role and potential position of power when 
talking with teachers: reflective or directive (Deussen et al., 2007; Ippolito, 2010; Sailors & 
Price, 2015). Coaches using a reflective stance use discourse moves to position the teacher as the 
primary “knower” when examining the effectiveness of their practice and student outcomes 
(Ippolito, 2010). Discourse moves associated with a reflective coaching stance include 
invitational moves (e.g., questions) and paraphrases as these forms of discourse invite teacher 
cognition and do not involve the coach sharing their own thinking or opinions (Costa & 
Garmston, 2016; Deussen et al., 2007). In contrast, a directive stance involves the coach using 
language to position themselves as the “primary knower”. Discourse moves associated with a 
directive stance include suggestions, explanations, and evaluative feedback which all involve the 
coach sharing ideas generated from their opinions and beliefs (Ippolito, 2010). We also reference 
facilitation literature within mathematics education (e.g., van Es et al., 2014) to argue the 
existence of a third coaching stance: facilitative. Coaches enacting a facilitative stance use 
language to guide the direction, focus, and clarity of the conversation without positioning either 
the coach or teacher as the “primary knower”. Discourse moves associated with a facilitative 
stance include sharing low-inference, non-evaluative observations, clarifying ideas being 
discussed to ensure a shared understanding, and framing conversations by reminding the teacher 
about goals or larger purposes established during prior discussion. 

Researchers, in both literacy and mathematics education, have examined the discursive 
tendencies of coaches. Heineke (2013) noted that in one particular context, literacy coaches 
“dominated the discourse” through the use of many suggestions (p. 424). In these cases, teacher 
participation and learning opportunities in the conversations were limited. In a study directly 
exploring how literacy coaches balance differing stances, Ippolito (2010) found that effective 
coaches shifted between reflective, and directive moves within a single coaching session. 
Similarly, when studying three mathematics coaches, Gillespie and colleagues (2019) found all 
three mathematics coaches frequently shifted between using reflective and directive moves 
during planning and debriefing conversations with teachers. However, despite working in a 
similar context, the coaches had contrasting tendencies with respect to the duration, intensity, 
and frequency in their use of directive moves. Furthermore, these tendencies remained stable 
across multiple interactions with the same teacher. Witherspoon et al. (2021) found that nearly 
all coaches held directive stances during planning conversations but, in more effective coaching 
sessions, coaches “remained engaged in longer discussions about each pedagogical decision 
before telling the teacher their own interpretation” (p. 892). In other words, effective coaches 
balanced different coaching stances by holding reflective and facilitative stances prior to shifting 
into a directive stance. In sum, these studies highlight that both reflective and directive moves 
are common forms of discourse within coaching interactions, yet coaches differ in how they 
employ such moves to support their teachers. 

To our knowledge, only one research study has examined how coaches enact a set of beliefs 
comprising a theory of action for effectively supporting teacher learning. Russell et al. (2020) 
examined how coaches deviated from the inquiry-based principles of a coaching model by 
providing teachers with explicit directions or suggestions. Russell et al. claimed some project 
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coaches frequently used directive coaching moves with teachers, despite the model's theory that 
reflective coaching moves that support teacher inquiry most effectively support improvements to 
teaching. However, Russell et al. deemed that directive coaching moves, even in contradiction of 
the beliefs underpinning the coaching model, were efficacious in supporting teacher development 
under appropriate conditions. These studies point to the importance of understanding coaches’ 
beliefs about balancing competing stances when supporting teachers and how coaches make 
decisions about shifting between stances. 

Methods 
Setting and Participants 

This study was situated in Midtown District, which enrolled about 10,000 students in 18 
schools. We partnered with one full-time, school-based elementary instructional coach (Jade) 
and one fourth grade teacher (Jennifer). Both individuals were white females. At the time of the 
study, Coach Jade has been an educator for 12 years across grades K-5. She had worked in her 
current school district as an instructional coach for four years. Teacher Jennifer was entering her 
third year as a fourth-grade elementary teacher in Midtown. Coach Jade and Teacher Jennifer 
appeared to have a positive professional relationship that was marked by co-respect and trust. 

The data for this study come from a larger study exploring teachers’ learning opportunities 
during one-on-one coaching (Saclarides, 2022; Saclarides & Lubienski, 2021; Saclarides & 
Munson, 2021). Coach Jade was specifically selected as the focal coach for the current analysis 
given that she explicitly discussed her desire to develop and sustain a reflective coaching stance 
when engaged with teachers as her own personal coaching goal. Hence, we perceived that Coach 
Jade’s coaching cycle with Teacher Jennifer could enable us to better understand our broad 
research focus, which is how coaches enact their coaching stance when engaged with teachers as 
well as the mediating factors that may influence that stance. 
Data Source and Analytic Technique 

Data sources encompassed observations and field notes of Coach Jade’s and Teacher 
Jennifer’s coaching cycle, which included two planning meetings (range of 21-46 minutes), one 
modeled lesson (75 minutes), and one reflection meeting (5 minutes). Furthermore, five semi-
structured interviews (Lareau, 2021) were conducted separately with Coach Jade and Teacher 
Jennifer to establish context for the analysis (range of 10-44 minutes). All observations and 
interviews were audio recorded and transcribed. 

We first read through all interview transcripts to better understand Coach Jade’s coaching 
stance (RQ1). We used the literature-driven codes for reflective and directive stances (e.g., 
Ippolito, 2010), and facilitative stance (e.g., van Es et al., 2014) when coding for coaching stance 
during this phase. Next, we explored Coach Jade’s discursive enactment of her coaching stance 
(RQ2). To do this, we organized the planning, modeling, and reflection transcripts for analysis. 
First, we created excel files where each alternating vertical cell contained either the coach’s or 
teacher’s talk turn. Next, we focused our attention on only the cells containing the coach’s talk 
turn given our interest in exploring the coach’s discursive enactment of her coaching stance. We 
further parsed each coaching talk turn at the sentence-level, which was our unit of analysis. Next, 
the second author used a comprehensive coding scheme developed through prior work (Gillespie 
et al., 2019), and informed by literature (Ippolito, 2010; van Es et al., 2014), to code at the 
sentence-level for the coach’s discursive stance. One of the following three broad codes was 
applied: Directive, Reflective, Facilitative. Last, to better understand how the coach’s 
disciplinary expertise influenced the enactment of her coaching stance (RQ3), we engaged in one 
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last coding round. The first author coded for the substance of each coach-spoken sentence using 
one of the following codes: pedagogy, content, logistics, other. All codes and code definitions 
can be found in Table 1 below. Last, matrices were created, and counts were completed to better 
understand the prevalence and intersection of the applied codes.  
 

Table 1: Codes, Definitions, and Examples 
Codes Definition Example 

Stance Directive Coach moves in which the coach 
shares their thinking and opinions 
with the teacher. 

Coach Jade: That's something we 
can work on, that's something they 
can work on independently, but I 
think we have to put that in place 
for kids we know don't have single 
digit multiplication in place.   

 Facilitative Moves in which the coach 
establishing the focus, direction, 
and/or clarity of the conversation 

Coach Jade: I heard you today 
having them repeat directions.     

 Reflective Coach moves in which the coach 
invites the teacher to share their 
thinking and opinions. 

Coach Jade: So what did you think 
of yesterday? What did you take 
away from that? 

Substance Content The coach’s interaction is focused on 
the mathematics content, including 
unpacking student mathematics 
learning goals and mathematics 
standards, as well as the district-
provided mathematics curriculum, 
including seeking to understand 
precisely what the curriculum 
requires of students. 

Coach Jade: Just so I know what 
we’re talking about. Like, 2 times 2, 
and 4 times 4. [Are those] like 
square arrays? 

 Logistics The coach’s interaction is focused on 
logistics, including discussing the 
timing for the lesson, lesson 
materials, and classroom 
management. 

Coach Jade: I looked at your 
schedule. Is this pretty accurate as 
far as, 12:45-2 [for mathematics 
instruction] across the day? 

 Pedagogy The coach’s interaction is focused on 
pedagogy, which encompassed 
conversations about student 
discourse, differentiating instruction, 
monitoring student learning, using 
data to inform next instructional 
steps, and planning and/or creating 
original activities that extend beyond 
the district-provided curriculum. 

Coach Jade: So, maybe for those 
lower ones, it’s talking about, it’s 
three plus three plus three. Or three, 
three times. ‘Cuz I’m guessing if 
we gave them three times…I’d be 
curious even three times three to 
see how they said they solved it. 

 

Findings 
Coach Jade’s Coaching Stance 

Overall, Coach Jade articulated a goal of enacting a reflective coaching stance when engaged 
with teachers. Instead of using a directive approach that would position her as an authority or 
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primary knower, Coach Jade sought to position her teachers as primary knowers as she centered 
their ideas, goals, and questions. Coach Jade shared, “I ask them what they want. I ask them what 
they want to grow in.” As previously mentioned, this was even Coach Jade’s personal goal for 
her coaching cycle with Teacher Jennifer: to grow in her ability to enact a reflective coaching 
stance. Coach Jade shared, “I think that every coaching opportunity provides me with the 
opportunity to listen and try to not tell as much. I should do more questioning instead of telling. 
That will be my coaching focus [with Teacher Jennifer]”.  
Coach Jade’s Discursive Enactment of her Coaching Stance 

When coding Coach Jade’s spoken sentences for her discursive coaching stance, the most 
common code applied was directive (137/288) as she engaged with Teacher Jennifer during their 
coaching cycle (see Table 2). Although it was Coach Jade’s personal coaching goal to focus on 
enacting a reflective stance with Teacher Jennifer, we applied the reflective code to Jade’s 
spoken sentences the least frequently (40/288) (See Table 2). 

 
Table 2: Discursive Enactment of Coaching Stance 

 Planning 
Meeting 1 

Planning 
Meeting 2 

Modeled Lesson Reflection 
Meeting 

Total 

Directive 28 88 10 11 137 
Facilitative 56 50 4 1 111 
Reflective 13 21 0 6 40 

 
The following excerpt illustrates what it sounded like as Coach Jade enacted the most 

prevalent coaching stance - that of being directive - with Teacher Jennifer. During planning 
meeting one, when discussing how students’ prior experiences with ten-frames might support 
students during the lesson, coach Jade shared the following (numbers added for explanatory 
purpose here and below): 

(1) I moved that dot over here to a ten and there's one left over, so I know that's ten, one, 
eleven. (2) So that really helps them. (3) Kindergarten has done phenomenally with that, so 
that might be a place we play with for some of that. 

In this talk-turn, coach Jade spoke three sentences, each coded as directive because each sentence 
involved her sharing her thoughts or opinions with Jennifer, temporarily positioning herself as 
the primary knower within this moment. Jade begins by explaining how she used the ten-frame 
to conceptualize the number 11 (sentence 1). Next, Jade shares her opinion that ten-frames help 
students (sentence 2). Last, Jade suggests they consider incorporating the ten-frames as they 
collaboratively plan their lesson (sentence 3).  

To illustrate discursive moves in which Coach Jade shifted between a facilitative and 
reflective stance, we provide the following example also from planning meeting one. In this 
moment, Jade and Jennifer are examining a single question within the lesson they are planning as 
it is printed in the curriculum resource. Coach Jade says: “(1) It just says prime and composite 
numbers. (2) What does that look like?” In this conversational moment, Jade tells Jennifer that 
the question, as printed in the curriculum resource, involves prime and composite numbers 
(sentence 1). Because Jade is highlighting the language contained in the printed question without 
sharing her own interpretation or thinking, we coded this sentence as facilitative. Coach Jade 
then asks Jennifer to share her thinking about what student thinking might look like as they 
attempt to answer the question (sentence 2). In doing so, Jade initiates an opportunity for 
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Jennifer to share her thinking about how students would approach this question. Thus, we coded 
this sentence as reflective. 
The Influence of Disciplinary Expertise on Coaching Stance 

As previously discussed, we were interested in better understanding the mediating influence 
of Coach Jade’s disciplinary expertise on the enactment of her coaching stance. Although Coach 
Jade was an instructional coach and was expected to coach across all content areas, she did not 
feel as confident coaching teachers in mathematics as opposed to English Language Arts. In her 
interview, Coach Jade stated, “I think that I’m definitely stronger for [coaching] literacy [as 
compared to mathematics]”. However, Coach Jade was eager to deepen her own mathematics 
content knowledge in the context of her coaching cycle with Teacher Jennifer. She shared, “I’m 
going to try my best for math! It will really push me”.  

We highlight several noteworthy trends in the relationship between the substance and stance 
of Coach Jade’s discourse to understand how disciplinary expertise may mediate the enactment 
of Jade’s coaching stance (see Table 3). First, when Coach Jade enacted a directive stance, 
positioning herself as a primary knower, most of the time (85/137) it was about pedagogy. In 
contrast, there were fewer instances in which she discussed content (31/137) when enacting a 
directive stance. Second, there was more of an even split between pedagogy (16/40) and content 
(14/40) when enacting a reflective stance, where she positioned the teacher as the primary 
knower. 
 

Table 3: Influence of Disciplinary Expertise on Coaching Stance 
 Pedagogy Content Logistics Other Overall 

Directive 85 31 18 3 137 
Facilitative 19 36 56 0 111 
Reflective 16 14 10 0 40 

 
The following excerpt illustrates what it sounded like as Coach Jade enacted a directive 

stance about pedagogy - the most commonly noted trend in Table 3 above. During the reflection 
conversation, Teacher Jennifer shared her observations of Coach Jade’s use of wait time, to 
which Coach Jade responded: 

(1) Yeah, I wasn’t consciously thinking about wait time. (2) Maybe I just, I don’t know. (3) I 
knew when I came in, I wanted them to do more talking than me. (4) And part of that’s from 
our district-sponsored literacy professional development. (5) Which is crazy because it’s a 
literacy based training. 

This conversational moment was coded as directive because Coach Jade momentarily positioned 
herself as a primary knower as she shared her thinking about the pedagogical move of giving 
students wait time to spur student discourse. Although Coach Jade acknowledges that she was 
not intentionally thinking about wait time while she modeled instruction (sentences 1-2), she 
implemented this particular structure as a way to create a rich discursive environment for 
students in which students talked more than the teacher (sentence 3). Coach Jade ends by 
referencing the literacy-based training sponsored by the district office (sentences 4-5), which 
presumably is where she learned about this connection between wait time and enhanced student 
discourse. 

As a second example, the following excerpt illustrates Coach Jade enacting a reflective 
stance about mathematics content during the second planning meeting. At the beginning of their 
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meeting, Coach Jade initiates the following interaction with Teacher Jennifer to clarify the 
mathematical content embedded in the district-provided curriculum, “(1) Just so I know what 
(content) we’re talking about. (2) Like, 2 times 2? (3) 4 times 4? (4) (Is that) like square arrays?” 
In this discursive moment, Coach Jade enacted a reflective coaching stance as she momentarily 
positioned Teacher Jennifer as the primary knower about 4th grade mathematics content. 
Specifically, Coach Jade wanted to ensure that she understood what the mathematics term 
“square array” means (sentence 1). She proceeded to provide two examples of what she 
perceived a square array was (sentences 2-3) and ended by asking Teacher Jennifer if this was 
correct (sentence 4). 

Discussion and Implications 
All coaches have a preference for the coaching stance they seek to enact when working with 

teachers. This coaching stance may be informed by beliefs about what it means to be an effective 
coach, as well as coaches’ perceptions about the needs of individual teachers. However, when 
managing simultaneous obligations and balancing roles of expert and colleague based on the 
needs of individual teachers, our findings suggest it may be difficult for coaches to enact their 
preferred stance for coaching. Like prior studies on literacy and mathematics coaches (e.g., 
Gillespie et al., 2019; Heinke, 2013; Ippolito, 2010; Witherspoon et al., 2021) we agree that 
coaching inherently involves coaches using, and productively balancing, differing stances and 
discourse moves. We highlight the challenge and complexity of enacting a set of coaching 
beliefs to extend this prior research and make visible potential assumptions about coaching.  

In our study, we found dissonance between Coach Jade’s stance for coaching and the 
discursive enactment of her stance. Although Coach Jade desired to enact a reflective coaching 
stance with Teacher Jennifer and explicitly set a coaching goal to enact this belief, in practice 
Coach Jade primarily used directive coaching moves (137/288). In other words, although Coach 
Jade had the goal of primarily positioning Teacher Jennifer as the primary knower, just the 
opposite happened in the context of their coaching cycle: most of the time Coach Jade positioned 
herself as the primary knower. We consider this case of dissonance connected to the findings 
from Russell et al. (2020). Recall that Russell et al. found that coaches operating in an inquiry-
based model coaching made responsive adaptations by using directive coach moves. In this 
context, the dissonance existed between the beliefs inscribed in an established coaching model 
and the discursive actions of coaches learning to use the model. Our findings highlight a similar 
case of dissonance but between a coaches’ own articulation of her stance for coaching and her 
discursive actions, further highlighting the challenge of efficaciously enacting a stance for 
coaching. 

The literature points to various factors that can influence a coach’s ability to enact their 
coaching stance, including relational and organizational contexts (Russell et al., 2020) as well as 
the alignment between the goals, instructional vision, and evaluation mechanisms of an 
administrator, coach and teacher (Ippolito, 2010). In this study, we highlight one such factor, 
disciplinary expertise, that appeared to mediate Coach Jade’s enactment of her discursive 
coaching stance. That is, when Coach Jade enacted a directive stance and positioned herself as 
the primary knower, most of the time it was about pedagogy (85/137) instead of content 
(31/127). This can be understood in light of the fact that Coach Jade reportedly felt less confident 
about mathematics content, so it is conceivable she would be more likely to leverage her 
expertise and use directive moves when discussing pedagogy. Surprisingly, when Coach Jade 
enacted a reflective stance and positioned Teacher Jennifer as the primary knower, there was a 
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near even split between content (14/40) and pedagogy (16/40). Given Coach Jade’s self-reported 
lack of confidence with 4th grade mathematics content, we hypothesized that there would be 
many more instances in which Coach Jade enacted a reflective stance about mathematics content 
than was noted in the data.  

This study has implications for both research and practice. We raise methodological 
questions for the research community regarding difficulties with adequately characterizing or 
“measuring” coaches’ discursive enactment of their coaching stance. For one, we acknowledge 
that we are seeking to understand a complex phenomenon – the enactment of a coach’s stance for 
coaching – by assigning codes at the sentence-level and then aggregating counts into broad 
categories. We posit studying a coach’s discursive enactment of their stance for coaching is more 
nuanced and complex, and we do not mean to oversimplify this complexity with our analysis. 
However, given that the research community has not yet developed tools to adequately capture 
and study our phenomenon of interest, we invite other researchers to continue to grapple with us 
about this important dilemma. Relatedly, we raise methodological questions associated with 
talking about prevalence of codes when there may be a natural imbalance with the codes 
themselves. That is, when coaches enact a directive stance with teachers and are positioning 
themselves as the primary knower in an effort to explain or suggest something, it may take more 
sentences to offer clear and direct assistance in that discursive moment. Conversely, when 
coaches enact a reflective stance with teachers and pose a question, it takes many fewer 
sentences to enact that stance in that discursive moment. For example, a single question from a 
coach may create lengthy verbal contributions from the teacher. Hence, we wonder how future 
research on coaching can better attend to and examine such discursive moves that may carry a 
natural imbalance of counts. Last, we call upon future research to invite coaches to reflect on 
their own discursive enactment of their coaching stance by, for example, member checking. This 
would help elevate coaches’ voices in the research process and importantly tap into their 
insider’s, or emic, perspective about the discursive enactment of their coaching stance.  

For school districts with coaching programs, district- and school-level administrators 
must clearly articulate their vision regarding the coaching stance that they expect their coaches to 
enact when engaged with teachers. What is important here is that there is a shared understanding 
among district- and school-level administrators and coaches about the particular coaching stance 
that is to be enacted in that particular school district. Once this is established, it should not be 
assumed that coaches instinctively understand how to enact a particular coaching stance or set of 
stances. Rather, coaches should be provided with ongoing, job-embedded professional 
development that helps them understand the coaching stance they should enact, as well as the 
accompanying discursive moves that will enable coaches to enact their coaching stance. 
Furthermore, and in the context of professional development, coaches must be supported to 
reflect about the variety of mediating factors that may influence the enactment of their coaching 
stance, and think about how they can still enact their preferred coaching stance amid such 
mediating factors.  
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Coaching has been shown to be an effective professional development approach to improving 
teachers’ mathematics instruction. However, research on existing coaching models foregrounds 
teachers’ knowledge and instructional practices and tends to overlook the psychological and 
affective aspects of teaching. In this study, we explored if and how two elementary teachers’ 
participation in Holistic Individualized Coaching (HIC), designed to attend to the psychological 
and affective aspects of teaching, supported instructional change and teachers’ well-being. 
Results show that while both teachers mathematics instruction improved, changes to the beliefs, 
teaching efficacy, and emotions were different. Findings suggest that teachers navigate different 
psychological and affective pathways towards change and the importance of attending to these 
attributes during coaching interactions. 

Keywords: Professional Development, Affect, Emotions, Beliefs, and Attitudes 

Supporting teachers to engage in high-quality mathematics instruction is considered essential 
for developing students’ problem-solving abilities (Cobb et al., 2018). This support often takes 
the form of professional development (PD) programs which align in whole, or in part, with what 
are regarded as the central characteristics of PD [see Garet et al., (2001) for a full description of 
these features]. However, their design and focus are not always responsive to the individual 
needs of teachers (Cross Francis et al., 2019). To address this drawback, coaching has emerged 
as an effective job-embedded approach to support teachers in improving their instruction (Cobb 
& Jackson, 2012; Kraft et al., 2018). Despite evidence of coaching’s effectiveness at promoting 
teacher development, there are two significant gaps in coaching research that this study aims to 
fill. First, researchers (e.g., Gibbons and Cobb, 2016) argue that the mathematics education 
community has yet to document what coaches actually do to support teachers’ learning. Without 
this information, it will be difficult to replicate effective coaching practices. Second, research on 
existing coaching models foregrounds teachers’ knowledge and instructional practices and tends 
to overlook the psychological and affective aspects of teaching, which have been shown to 
influence instructional quality and student learning (Cross Francis et al., 2021). In this study, we 
respond to a call by Gibbons and Cobb (2016) to document how accomplished coaches work 
with teachers to support their learning. We focus on coaching as embedded within a learner-
centered, holistic coaching model. Specifically, we investigated the following question: what 
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changes occur in two elementary teacher’s attributes and instructional practices through 
participation in an innovative coaching model, referred to as Holistic, Individualized Coaching 
(HIC)?  

Theoretical Framework 
Teaching is a psychologically and emotionally demanding endeavor (Schutz et al., 2020). 

Thus, attending to teachers’ psychological and affective attributes is essential both for supporting 
their learning and enhancing their well-being. We conceptualize teacher learning holistically to 
include enhancement of their instructional practices as well as their psycho-social-emotional 
development, which includes attending to their beliefs, emotions, efficacy, and identity.  We 
consider deep and flexible knowledge (Willingham & Riener, 2019), productive beliefs (Cross 
Francis, 2015), a robust identity (Hong, 2010), and positive emotions (Cross Francis et al., 2020) 
central aspects of teachers’ wellbeing and essential attributes for effective mathematics teaching. 
This robust conceptualization of teacher learning underlies a coaching approach referred to as 
Holistic Individualized Coaching (HIC).  

Holistic Individualized Coaching (HIC) 
The Holistic Individualized Coaching (HIC) model arose in response to the call (e.g., 

Brackett & Cipriano, 2020) for PD initiatives to attend to the multi-dimensional aspects of 
teaching. HIC attends to teachers’ psycho-socio-emotional needs. HIC takes into account the 
teacher as an individual and utilizes information about teachers’ emotions, beliefs, identity, 
knowledge and current instructional practices that the teachers bring with them to the coaching 
experience (Cross Francis et al., 2019). [Full descriptions and empirical support for the inclusion 
of these attributes can be found at: beliefs (Fives & Gill, 2015); identity (Hong, 2010); emotions 
(Schutz et al., 2020)]. HIC attempts to meaningfully enhance teachers’ work by attending to 
them comprehensively; thus, HIC is designed to be holistic. What a teacher believes, feels, or 
considers themselves to be in relation to math is personal; teachers’ emotions, beliefs and 
identity are unique to the teacher. Thus, to encourage productive shifts in these attributes, HIC is 
individualized and focused on attending to the specific needs of the teacher. HIC involves six 
steps articulated in Figure 1.  

  
Figure 1: Holistic, Individualize Coaching Model Steps 

Distinct Features of HIC 
 
1) Data on teachers’ beliefs, emo5ons, efficacy and 

iden5ty are used to determine development over 5me 
but more centrally to inform the coach about how to 
engage with the teacher.  

2) The coach collects and uses data on teachers’ 
generalized beliefs (trait), emo5ons, efficacy related to 
math, as well their beliefs, emo5ons, efficacy related 
to specific mathema5cs content (state). 

3) In Steps 1 and 6 (pre and post-coaching 
conversa5ons), the coach directly gathers content-
informed data related to beliefs, emo5ons, efficacy 
and iden5ty, then uses these data as relevant in 
subsequent HIC cycles.  
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Methods 
This study is embedded within a larger study including six teachers. We focus on two 

Ghanaian teachers, Rehema and Peace, who wanted to incorporate more student-centered 
approaches in their teaching following Ghana’s nationwide mathematics education reform. 
Participants. Rehema was a fourth-grade teacher who struggled in math throughout most of her 
schooling. Rehema initially refused to participate in coaching as she was not comfortable with 
someone else seeing her teach or with being videorecorded. However, she participated in four 
HIC cycles over the course of the study. Peace was a second-grade teacher who enjoyed math in 
her early years but struggled later on due to poor instruction. She desired to teach in ways that 
were impactful but consistently felt that her students were not grasping math concepts deeply and 
welcomed support.  

Data Sources and Analyses 
Five data sources were used in this study. First, the Mathematical Quality of Instruction 

(MQI) instrument (Hill et al, 2008) measures mathematical instruction quality along four 
dimensions (see Table 2). Two scorers watched 8-minute clips of the teachers’ instructional 
videos and scored indicators on each dimension as either NP-not present; L-low; M-mid; H-high. 
Then, scorers met to discuss and resolve any discrepancies. Second, adapted Teachers Emotions 
Scale (TS; Frenzel et al., 2016) is a 5-point Likert scale used to determine teachers’ levels of 
anxiety, anger and enjoyment related to teaching mathematics. Numeric values [1 – strongly 
disagree; 5- strongly agree] were assigned to the items on the adapted survey, then an average 
score for items aligned with each emotion was calculated for each teacher. Third, teachers 
completed comprehensive, semi-structured interviews included questions related to all 
constructs. We focus here on the math-related beliefs questions, in particular, their response to 
the question “What would you say to a new teacher to support her in engaging in student-
centered instruction?”. The interviews were transcribed and teachers’ responses to the beliefs 
questions were summarized. Teachers’ responses to abovementioned question captured their 
stated beliefs about math teaching and learning. Fourth, teachers completed the Single Item 
Measure (adapted from McDonald et al., 2019) which includes a series of overlapping circles 
with increasing degrees of overlap. The overlap represents the degree to which their identity as a 
teacher overlaps with their perception of a math teacher. Circle 7 has the greatest overlap 
representing a robust identity as a teacher. Fifth, the participants completed the adapted Self-
Efficacy Teaching and Knowledge Instrument for Science Teachers (SETAKIST) survey 
(Roberts & Henson, 2000) which measures teaching efficacy (confidence in math teaching) and 
knowledge efficacy (confidence about their math knowledge). Each scale includes a five-point 
Likert scale. Scores from each subscale were averaged indicating the level of knowledge and 
personal efficacy of each teacher.    

 

Findings 
Table 1 includes findings from the analyses of the data related to beliefs, efficacy, emotions 

and identity, which was administered in a pre-post format. Table 2 shows the participants’ scores 
on the four dimensions of the MQI. 

Table 1: Findings related to teachers’ beliefs, efficacy, identity and emotions 
 Rehema Peace 

Construct Pre Post Pre Post 
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Beliefs 
about 
teaching 
and 
learning 
 
 

So if the teacher's 
method was a method 
that the student didn't 
get it, I would teach 
mine for the teacher to 
understand.  
 
 
 

So first of all, you just 
have to prepare, get to 
know what you are 
about doing. Get a 
starter, let the kids think 
for themselves. Get 
some manipulatives 
attached to your 
storytelling, or any 
other game that you 
want the kids to do.  

Okay. So I would 
advise the teacher to 
have the children in 
watching a lot of 
video and then 
involving them in a 
lot of activities by 
themselves 

So I'll just tell the 
person to calm down 
and have extra time for 
those students. If in the 
first lesson, the teacher 
didn't use a lot of 
manipulatives, I think 
this time around, they 
can use it and see if 
there will be a change.  

 Shift from an approach to learning as telling to 
one where learner is engage in sense-making 

Shift from an approach to learning with 
focus on watching others accompanied by 
independent practice to one where students 
use tools to engage in sense-making 

Knowledge 
Efficacy  

2.88 4.38 4.25 3.43 

Personal 
Efficacy 

2.13 3.63 4.38 3.38 

Identity 
 

4 6  No response 6 

Emotions 
 

Anxiety: 2.5 
Enjoyment:3.0 
Anger: 2.25 

Anxiety: 1.75 
Enjoyment: 3.5 
Anger: 1.5 

Anxiety: 1.0 
Enjoyment:3.75 
Anger: 1.25 

Anxiety: 2.0 
Enjoyment: 3.0 
Anger: 2.25 

 
Table 2. Participants’ scores on Mathematical Quality of Instruction (MQI) Instrument 

Construct Participant Richness of the 
Mathematics 

Working with 
Students and 
Mathematics 

Errors and 
Precision 

Common Core 
Aligned 
Practices 

Math Instruction Peace (Pre) NP (not present) L (low) NP NP 
 Peace (Post) L M (Mid) NP L 

Rehema (Pre) NP L L L 
Rehema (Post) M M NP M 

Discussion 
Coach’s work with Rehema. As Table 1 indicates, Rehema made notable shifts in all 

attributes related to her teaching.  Rehema entered the program with low efficacy (see pre-
scores) based on her prior experiences with math which manifested in designing lessons with low 
cognitive demand, avoiding rigorous content and meaningful student engagement. Due her low 
efficacy she was not initially open to trying new teaching methods, so the coach focused on 
improving her efficacy while ensuring that it was calibrated with her knowledge and skill. The 
coach focused on enhancing her content knowledge, knowledge of students’ thinking, and 
strategies to address related misconceptions around the mathematical ideas. The goal was to 
intentionally craft mastery experiences. Drawing on the work around self-efficacy, mastery 
experiences have been shown to improve efficacy beliefs (Bandura, 1997), as we observed with 
Rehema. To centralize the mastery experience for Rehema, the coach to not model practices or 
co-teach; instead, they supported Rehema in practicing teaching ahead of time, so she was able 
to attribute the successful aspects to the lesson to her own teaching. In this regard, the HIC 
approach deviates from recommendations in the coaching literature that encourages modeling 
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and co-teaching. Instead, we caution that this approach may not be effective for all teachers 
based on their profiles. As described in the literature (Keltchermans, 2009), we subsequently saw 
how her changing efficacy enhanced her positive emotions and a stronger conception of herself 
as a math teacher. In alignment with her increased efficacy, we observed shifts in her instruction 
towards working more collaboratively with students and allowing for more student ideas to be 
shared. 

Coach’s Work with Peace. Peace entered the program with high efficacy in both her 
knowledge of math and ability to teach math well. However, her high efficacy was not aligned 
with her teaching quality, and she believed it was the teacher’s job to show students what to do. 
In this regard, the coach focused on creating better alignment between her efficacy beliefs and 
instruction. So instead of providing more problematic tasks for Peace, the coach allowed her to 
lead in task design just offering suggestions about how to tweak textbook tasks and incorporate 
manipulatives. The coach was intentional about helping her identify the ways in which the minor 
changes Peace made in her lesson supported students’ thinking. Although her instruction 
improved overall, Peace struggled in shifting her role from being the one to show students how 
to think about and do math to students having greater voice and agency in doing math. Although 
she developed stronger teaching skills and having a robust math teacher identity, we observed 
declines in her efficacy and overall enjoyment in teaching math, and slightly increased anxiety. 
Researchers (Favre & Knight, 2016) have noted that declines in teachers' efficacy beliefs may 
occur when reforms require changes to teaching performance. Teachers experience a period of 
“pedagogical discontentment" (Southerland et al., 2011) and are inclined to reevaluate their 
efficacy beliefs.  

Our experiences with Peace and Rehema show that framing interactions with teachers based 
on who they are as professionals and learners increases their receptiveness to changing their 
instructional practices. However, as teachers are individual adult learners in the context of 
professional development, it is essential that we acknowledge their psychological and affective 
needs and ensure that coaching attends to these individual differences in ways that bode well for 
teacher and student outcomes.  
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Research shows the benefits of mathematical modeling but provides little guidance on how to 
implement it successfully. This action research study documents and responds to the challenges 
perceived by five in-service high school mathematics teachers while implementing mathematical 
modeling at a STEM school in the U.S.. The team of researchers (led by a teacher at the school) 
aligned modeling tasks to the school’s curricula, created and delivered professional development 
(PD) sessions, conducted surveys and interviews, and made classroom observations. The 
constant comparative method was used to analyze data and to design PD sessions that provided 
meaningful supports informed by teachers’ challenges. The final stage of analysis revealed that 
some of the student engagement challenges teachers faced at the beginning of the school year 
were reported as benefits by the end of the school year. 

Keywords: Modeling, Professional Development, High School Education, Research Methods 

Review of the Literature 
International and national mathematics achievement tests show a drop in U.S. students’ 

mathematics performance over the last several years (e.g., Mullis et al. 2020). Additionally, “by 
the time many students enter high school, disengagement from course work and serious study is 
common” (National Research Council, 2004, p. ix). Due to this trend, it is imperative to capture 
student interest and increase their engagement in productive mathematics learning. This can be 
accomplished through mathematical modeling. Garfunkel and Montgomery (2019) define 
mathematical modeling (modeling) as “a process that uses mathematics to represent, analyze, 
make predictions or otherwise provide insight into real-world phenomena” (p. 8). Modeling 
engages students in relevant, accessible, and real-world problems while providing opportunities 
to connect to students’ lives (Akapame, 2022) and to integrate interdisciplinary content that 
garners students’ interest (Maiorca & Stohlmann, 2016).  

Ingram (2013) defines engagement as “students’ involvement in the mathematical activity of 
the classroom and their commitment to learning mathematical content” (p. 1). Modeling engages 
students in collaboration, critical thinking, and creativity (Suh et al., 2017) as well as the 
negotiation and justification of mathematical reasoning (Scott-Wilson et al., 2017). By using 
culturally relevant tasks, modeling also supports students pursuing STEM careers which are 
driven by students’ interests (Caspi et al., 2019) while preparing them for the critical thinking 
required in STEM professions (Green & Emerson, 2010). The Common Core State Standards 
(National Governors Association, 2010) include Mathematical Practice 4: Model with 
mathematics, that requires K-12 teachers to implement modeling activities within their 
classrooms. Ferri (2013) argues that teacher educators and researchers have a duty to prepare 
pre-service and in-service teachers for modeling. Garfunkel and Montgomery (2019) lay out 
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numerous best practices and guiding principles for teachers as they enact modeling tasks with 
their students. However, little guidance is provided on how teachers should implement these 
practices, especially when these principles conflict with teacher beliefs (Zbiek, 2016). Research 
has focused on the actions teachers should take when enacting modeling tasks (Gerhardt, 2017; 
Mason, 2001), rather than the challenges teachers face. In response to these issues, PD can 
provide teachers with support to successfully implement modeling. 

For in-service teachers to adequately implement modeling in the classroom, they need 
support through effective PD. Desimone (2009) lays out five components of effective 
professional development: content focus, active learning, coherence, sustained duration, and 
collective participation. Additionally, Desimone and Garet (2015) noted that “PD is more 
successful when it is explicitly linked to classroom lessons” (p. 254). These features of effective 
PD have strong implications for the way that effective modeling PD is designed, including the 
development of curricula aligned tasks and teacher collaboration to scaffold and adapt tasks to 
their classroom. Jung and Brady (2016) posit that teacher-researcher partnerships could be an 
avenue for effective modeling PD but note that more institutional support for such collaboration 
is needed due to numerous challenges that can arise as teachers implement modeling. 

Theoretical Framework 
Collaborative teacher participation in PD can be facilitated through the theoretical 

perspective of a community of practice (CoP). Via sociocultural theory, a CoP is a group of 
people mutually engaged in an activity for a joint enterprise developing a shared repertoire of 
resources (Lave & Wenger, 1991; Wenger, 1998a, 1998b). In this study, in-service high school 
mathematics teachers were engaged in PD to develop pedagogies for teaching modeling. Thus, 
our participants formed a CoP through the common goal of engaging their students in modeling.  

This study implements PD as a CoP through action research. Smit (2013) identifies action 
research as an avenue for meaningful change within the school structure and for teacher PD. 
Frequent feedback from the community of teachers was used to responsively design relevant, 
effective PD to address teacher challenges with implementing modeling, a shared goal within the 
CoP. While this work is part of a larger study, this paper addresses the research question: How 
do in-service high school mathematics teachers’ perceptions of student engagement evolve as 
teachers participate in PD and enact mathematical modeling tasks with their students? 

Methods 
This study took place over the 2021-2022 school year at a public STEM high school in the 

northeast U.S.. The school offers Algebra 1 and Algebra 2, each as a two-part course, one part 
focused on content standards and the other part focused on applications. Ellie, Savannah, and 
Aimee taught Algebra 1 Applications and Zach taught Algebra 2 Applications. Zach left the 
school in November and was replaced by another participant, Jack. Aimee, Zach, and Jack have 
eight to ten years of experience while Ellie and Savannah have fewer than two years’ experience.  

This action research study (Herr & Anderson, 2014) was led by an insider teacher-researcher 
(first author) who taught both Applications courses. The other research team members are four 
fellow doctoral students and a student volunteer from the school. The research team designed 
and implemented PD as a CoP to address the evolving challenges in-service mathematics 
teachers face while implementing mathematical modeling. Teachers participated in modeling 
tasks at PD before enacting them with their students. For example, the September PD engaged 
them in the Having Kittens task which posed the question, is it realistic for a female cat to have 
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2000 descendants in just 18 months? (see Mathematics Assessment Resource Service [MARS], 
2015). Teachers also had access to a library of modeling tasks organized by the research team 
and aligned to their curriculum like the Team Ranking task (Carmona & Greenstein, 2013). 
Given a unit-less axes graph with losses on the x-axis and wins on the y-axis, modelers had to 
decide a fair way to rank the top five soccer teams. 

Data was collected through surveys, interviews, check-ins, observations and the PD sessions 
to triangulate data from multiple sources. The five PD sessions were developed by the research 
team based on the analysis of the data from the teachers throughout the year by the insider and 
one or more research team members. Surveys were distributed at the end of each PD session (to 
gather feedback on PD and supports desired for future sessions) and a few weeks before each 
interview (to check in with teachers about their modeling challenges and supports needed). In 
addition, surveys with questions about teacher beliefs were also conducted. Three rounds of 
interviews were conducted and recorded. Member checking for clarification and confirmation of 
findings was conducted during interviews. Finally, the insider researcher observed participants 
engaging their students in modeling when invited by the participating teachers.  

This study used the constant comparative approach (Merriam & Tisdell, 2016) to identify 
changes in the teachers’ evolving challenges related to engagement while implementing 
modeling. First, open coding was done in teams of two or more researchers to ensure inter-rater 
reliability. Some examples of our initial coding categories included challenges, supports needed, 
teacher beliefs, positives, and perceptions. Within each category, we organized similar responses. 
For example, student engagement and perseverance were initial subcategories in challenges, and 
engagement was a sub-category in positives. Within those categories, we then looked for trends. 
All five researchers coded during the axial stage of coding that was used to inform each PD 
session. Final selective coding by all five researchers took place after the school year ended. 

Findings  
Early on, participants indicated challenges related to student engagement. As a research 

team, we addressed these challenges at the December 2021 PD. We asked our participants to 
brainstorm ways to increase engagement and to build perseverance (Figure 1). Then we shared 
some additional ways to build engagement specific to modeling and based on research (Cirillo et 
al., 2016; DiNapoli & Miller, 2022; Vorholter & Kaiser, 2016). 
 

 
Figure 1: Perseverance and Engagement - December 2021 PD 

Once the school year concluded, the final stage of analysis revealed some interesting findings 
related to teachers’ perceptions of student engagement. Participants indicated engagement as a 
challenge in the first half of the year, but noted more times that it was a positive of modeling 
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toward the end of the year. For example, Savannah indicated in her October 2021 survey that her 
students tend to “groan a lot more when I tell them we’re working on a project.” In her June 
2022 interview, Savannah shared that her students “loved that they could make a video out of it” 
for the TikToker Car Purchase task. This was a task developed by our student volunteer in which 
students created a video explaining which of the three deals would be the best choice and why.  

Another example of a shift in student engagement can be seen through Ellie’s experience. In 
Ellie’s October 2021 interview, she indicated that while students were presenting their final 
solutions to the class, “they got very bored which I was not expecting.” During a classroom 
observation in November, five out of six groups of students were fully engaged in the Team 
Ranking task. In Ellie’s June 2022 interview, she indicated, “they get pretty into it and interested 
in it…in the beginning of the year it was definitely more of a problem though than it is now.”  

Aimee identified in her January 2022 interview that student perseverance was an issue and 
that perseverance was important to keep students engaged. In her June 2022 interview, she cited 
the scaffolds and hints given to students as ways she kept students engaged by increasing student 
perseverance in the modeling tasks. Ellie also commented on students’ perseverance as it related 
to their engagement and said “…most of them, they get pretty into it and interested in it…In the 
beginning of the year, it was definitely more of a problem than it is now” (June 2022 Interview).  

Finally, students’ view of modeling in mathematics appeared as a greater challenge in the 
beginning of the year than the end. This played a role in their engagement. In her October 2021 
interview, Ellie mentioned that because some of her students were too focused on a “right versus 
wrong answer” on the Having Kittens task, they struggled, a challenge that was echoed by all 
other participants in the study during the October 2021 interview. In contrast, in Ellie’s January 
2022 interview, she mentioned that her students were feeling “more comfortable” with 
mathematical modeling. She also mentioned the tasks became “less overwhelming to them.” 

Despite challenges, participants indicated student engagement to be a positive feature of 
mathematical modeling a total of 19 times throughout the year, citing that modeling tasks made it 
“a much livelier classroom” (Aimee, June 2022 interview) and “instead of memorizing the 
patterns, they'll remember the activity they did, and how much meaning that provides them 
through the space” (Ellie, June 2022 interview). 

Discussion & Conclusion 
Through our constant comparative analysis, we noted engagement challenges teachers faced 

implementing modeling in their classrooms, necessitating ongoing reflexiveness in the design of 
modeling PD. Particularly, student engagement in modeling shifted over the year. At the 
beginning of the school year, teachers noted that students were intimidated or frustrated with 
modeling tasks because of their complexity and open-ended nature. By the end of the year, 
teachers said that students were more comfortable and exhibited more engagement with and 
perseverance through modeling problems.   

The literature recognizes that implementing modeling can be a challenge, yet there is little 
guidance on how to successfully support teachers to engage students (Zbiek, 2016). Our research 
highlights the benefit of PD as a CoP for supporting teachers of modeling. We provide an 
example of a “multiplier” teacher-researcher (Ferri, 2013) who shared knowledge on modeling 
and an example of PD as part of action research that addressed teachers’ challenges related to 
student engagement. Adopting these strategies will allow students the opportunity to engage in 
authentic modeling tasks which build problem solving skills and allow them to make the 
connection between learning in the classroom and how mathematics is applied in the real world.  
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En este artículo se presentan resultados de una investigación cuyo objetivo fue estudiar la 
evolución de interpretaciones de un docente al participar en un proceso de desarrollo 
profesional centrado en la modelación matemática. La investigación fue cualitativa, tipo estudio 
de caso. El marco teórico fue la Perspectiva de modelos y modelación. El análisis de los datos 
recolectados permitió identificar las interpretaciones del docente y su evolución. Como 
resultado, se identificó que el docente reconoció que la modelación puede ser un vehículo para 
la enseñanza y aprendizaje de las matemáticas más allá de la aplicación de conocimiento 
matemático aprendido. 

Palabras clave, Desarrollo profesional, Modelado, Formación de maestros en servicio. 

Es importante enfocar esfuerzos para respaldar el desarrollo profesional docente con el fin de 
lograr el aprendizaje exitoso de los estudiantes en todos los niveles educativos (OCDE, 2022; 
UNICEF, 2022). Sin embargo, se ha identificado que faltan investigaciones orientadas a analizar 
cómo influye lo que aprenden los profesores en lo que sus estudiantes requieren o deben 
aprender (Desimone, 2023). Una forma de apoyar a los profesores en servicio o en formación 
para que desarrollen conocimiento y habilidades en modelación y su uso en el salón de clases es 
mediante la incorporación de actividades de modelación en los procesos de desarrollo 
profesional docente en los que participen como estudiantes y futuros profesores (Brady, 2018; 
Garofalo y Corum, 2019). Estos ambientes son importantes porque ofrecen la oportunidad a los 
profesores de experimentar la modelación en el aula como modeladores, lo cual hace posible que 
se reflexione sobre los procesos que podrían seguir los propios alumnos al desarrollar 
experiencias similares. 

En este reporte se muestra la evolución de las interpretaciones de un profesor sobre la 
modelación mientras participaba en un proceso de desarrollo profesional, que implicaba 
desarrollar modelos al resolver MEAs y promover la modelación en el aula. La pregunta de 
investigación que se aborda es ¿cómo un profesor modifica y amplía sus interpretaciones acerca 
de la modelación durante este proceso de desarrollo profesional?  

Marco teórico 
Varios investigadores (English, 2021; Lesh, 2010; Lesh y Doerr, 2003; Makar et al., 2020) 

señalan que los estudiantes deberían aprender en el aula aspectos clave de la práctica de la 
modelación. “La gente usa modelos todos los días sin siquiera darse cuenta. Los modelos crean 
una estructura para predicciones (inferencias) que se pueden usar o adaptar a medida que 
cambian las situaciones” (Makar et al., 2020, p. 147). Lesh (2010), Ärlebäck y Doerr (2018) 
entre otros investigadores mencionan que los profesores deberían ofrecer a los estudiantes la 
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oportunidad de experimentar la modelación en el aula tanto para aprender a modelar, como para 
profundizar en sus conocimientos matemáticos. 

Investigadores como Brady (2018), Doerr y Lesh (2003), Lesh (2010) y Makar et al. (2020), 
promueven la incorporación de la modelación en el salón de clase bajo el enfoque de la 
Perspectiva de Modelos y Modelación [MMP, por sus siglas en inglés]. Esta perspectiva 
reconoce a la modelación como un objetivo de aprendizaje en sí mismo y un vehículo para la 
enseñanza y aprendizaje de las matemáticas (Ärlebäck y Doerr, 2018). Pone énfasis en fomentar 
procesos de desarrollo profesional docente [DPD] que involucren a administradores, 
investigadores, profesores y estudiantes para apoyar el desarrollo de procesos de modelación en 
el aula. Se fomenta que los investigadores construyan, revisen y refinen sus formas de pensar 
sobre los procesos de aprendizaje seguidos por los profesores y sus estudiantes. Se busca, 
también, la construcción, revisión y refinamiento de las formas de pensar de los docentes sobre 
los procesos de aprendizaje de sus estudiantes al realizar actividades en el aula (Schorr y Lesh, 
2003).  

La MMP sugiere utilizar actividades cercanas a la vida real (Lesh, 2010) denominadas MEAs 
(por sus siglas en inglés: Model Eliciting Activities), las cuales se diseñan con base en seis 
principios de diseño (Lesh et al., 2000). Brady (2018) señala que involucrar a los profesores en la 
resolución de estas los apoya para reconocer la importancia de la modelación, debido al potencial 
de estas actividades para promover el aprendizaje de las matemáticas. Esto coincide también con 
lo mencionado por Garofalo y Corum (2017)  

Al incorporar MEAs en los cursos de pedagogía, los formadores de profesores de 
matemáticas pueden apoyar el desarrollo de la propia comprensión conceptual de los PSMT 
[profesores de matemáticas de preservicio], acerca de la modelación matemática y el 
conocimiento necesario para incorporar tales tareas en su futura enseñanza. (p. 78) 
Este investigador realizó una investigación para identificar el compromiso que podían 

desarrollar futuros maestros con la modelación matemática como estudiantes al resolver una 
MEA, así como su compromiso como futuros docentes para promover la modelación en el aula. 
Entre otros hallazgos encontró que a los futuros docentes les pareció que la MEA resuelta sería 
una actividad emocionante y atractiva para los estudiantes “que podían ayudarlos a ver las 
matemáticas como auténticas y útiles” (p. 84). 

Lo anterior resalta una de las aportaciones de Doerr y Lesh (2003) en relación con la 
necesidad de dar la oportunidad al profesor de interpretar y reflexionar sobre su propia práctica 
docente, pues las interpretaciones de cualquier situación influyen en lo que decide o no hacer, 
cuándo hacerlo y por qué. Al igual que los estudiantes, el profesor aprende en función de la 
interpretación de sus propias experiencias. Por lo tanto, una característica distintiva de la 
excelencia en la enseñanza, de acuerdo con estos investigadores de la MMP, se refleja no solo en 
las acciones, sino en la riqueza y diversidad de las formas como el profesor interpreta, describe y 
reflexiona su propia práctica. Esto hace importante poner atención en el desarrollo de formas 
eficaces para analizar e interpretar las experiencias propias. 

Metodología 
La investigación fue cualitativa. La investigación cualitativa implica una descripción 

detallada del entorno o de las personas, seguida de un análisis de los datos por temas o problemas 
(Creswell y Creswell, 2017). Se utilizó Estudio de caso. 

El profesor cuyos resultados se describen en este artículo estaba cursando tercer semestre de 
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un posgrado en enseñanza de las matemáticas y, simultáneamente, impartía clases de estadística 
en el nivel universitario. El profesor estaba interesado en mejorar su práctica docente y tomó este 
curso por interés propio, siempre asistió a las sesiones y realizó todas las actividades solicitadas. 
Durante el curso interactuó con otros cinco profesores en servicio, quienes también participaban 
en el proceso de DPD.  

El proceso de DPD fue virtual, se llevó a cabo durante 10 sesiones programadas en Moodle 
equivalentes a 30 horas en total. Cada sesión contenía alguna lectura, tareas, y un foro de 
reflexión o discusión grupal donde los profesores respondían alguna pregunta y comentaban 
entre sí las aportaciones de sus compañeros. Tres de las 10 sesiones fueron síncronas y se 
utilizaron para compartir reflexiones, retroalimentar avances, dudas y resultados de las 
implementaciones. El resto de las sesiones fueron asíncronas. El proceso de DPD consistió en las 
siguientes fases:  

• Resolución individual y posteriormente en binas de una MEA1 “El Gigante Bondadoso” 
(Adaptación de la MEA Pie Grande de Lesh y Doerr, 2003) 

• Reflexión sobre los modelos construidos y artículos de la MMP en sesión síncrona 
• Resolución individual y posteriormente en binas de la MEA2 Reforestación (Vargas-Alejo y 

Cristóbal-Escalante, 2017) 
• Reflexión sobre los modelos construidos en foros y tareas 
• Implementación de una MEA con alumnos 
• Reflexión sobre resultados en sesión síncrona 
• Diseño de una MEA.  

Los conceptos matemáticos subyacentes comunes en ambas MEAs fueron: proporcionalidad 
y función lineal. La MEA1 solicita que los profesores construyan modelos para estimar la altura 
de una persona con relación a la longitud de su pie. La MEA2 solicita que se construya un 
modelo para proyectar la reforestación de cierta cantidad de hectáreas de bosque a partir de 
cierto monto inicial. Los instrumentos de recolección de datos fueron: reportes de tareas, foros, 
diario, audio de una de las sesiones síncronas y la bitácora del investigador.  

Se codificaron los datos en dos direcciones, relacionadas con las interpretaciones del docente 
sobre: la naturaleza de la modelación y la importancia de utilizarla en el aula. Estos códigos 
permitieron clasificar las interpretaciones en las categorías siguientes: la modelación como un 
objetivo de aprendizaje en sí mismo, y la modelación como un vehículo para la enseñanza y 
aprendizaje de las matemáticas. Los instrumentos de recolección de datos permitieron triangular 
la información y profundizar en ella para corroborar los hallazgos.   

Resultados y Discusión 
El análisis de los datos recopilados reveló el desarrollo, modificación y ampliación de las 

interpretaciones del profesor. Estas modificaciones y ampliaciones se manifestaron en sus 
reflexiones por escrito y verbalmente, así como en sus acciones al implementar una de las MEAs 
en el aula y en su informe sobre la implementación. En relación con la naturaleza de la 
modelación, el docente validó el uso de problemas que requerían la construcción de un modelo 
como respuesta, en lugar de simplemente obtener un resultado numérico. En cuanto a la 
importancia de utilizar la modelación en el aula, el docente destacó que las MEAs fomentan los 
procesos de matematización y otorgan significado a los conceptos matemáticos. 
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El docente consideró que era relevante proponer MEAs en el aula sin explicar previamente 
un tema matemático. A continuación, se describe en detalle el desarrollo y ampliación de las 
interpretaciones observadas durante el estudio. 
Primera interpretación 

Al preguntarle al docente sobre el tipo de actividades, situaciones o problemas que utiliza en 
el salón de clases para el aprendizaje de las matemáticas, se obtuvo la siguiente respuesta:  

Docente:   En mi caso planteo problemas enfocados en el área de ciencias de la salud, pues 
mis alumnos son de la carrera de medicina. Se utilizan datos que pueden ser obtenidos en 
pacientes con alguna enfermedad. 

Esta respuesta demuestra la importancia que el docente otorga al uso de problemas 
relacionados con la futura profesión de los estudiantes. A continuación, se presenta un ejemplo 
de uno de los problemas utilizados en clase: 

Docente:   Se hizo un estudio sobre los pesos en onzas de tumores malignos del abdomen de 
57 personas, los cuales se indican a continuación: 68, 63, 42, 27, 30, 36, 28, 32, 79, 27, 
22, 23, 24, 25, 44, 65, 43, 25, 74, 51, 36, 42, 28, 31, 28, 25, 45, 12, 57, 51, 12, 32, 49, 38, 
42, 27, 31, 50, 38, 21, 16, 24, 69, 47, 23, 22, 43, 27, 49, 28, 23, 19, 46, 30, 43, 49, 12. 
Realizar la tabla de distribución de frecuencias, la gráfica correspondiente y describir qué 
indican las medidas de tendencia central y dispersión. 

En este problema se pueden destacar aspectos interesantes, como el uso de un contexto 
relacionado con la carrera de los estudiantes y la promoción del uso de diferentes 
representaciones (tablas y gráficas) con el objetivo de fomentar la comprensión de las medidas 
de tendencia central y dispersión. 

En cuanto al proceso de resolución de problemas, el docente mencionó que sus estudiantes 
abordaban los problemas después de la explicación de ciertos temas matemáticos vistos en clase. 
La intención al incorporar problemas en el aula era: “ayudar al alumno a entender la utilidad de 
las matemáticas”.  

Docente:   Propongo problemas con datos de pacientes, que pueden ser ficticios, creados por 
mí, obtenidos de un libro o de un artículo, pero que brindan al estudiante un panorama 
más concreto de la utilidad de esta área en su trabajo. 

El docente también destacó que ponía énfasis en la argumentación, el análisis de los datos y 
la toma de decisiones cuando planteaba a los estudiantesproblemas y proyectos en el aula. 
Segunda interpretación 

La experiencia de resolver MEAs en el aula permitió al docente modificar y ampliar su 
concepción de los problemas. A continuación, se describen algunas de las acciones que tomó el 
docente al resolver la MEA1, así como las correspondientes interpretaciones que muestran cómo 
se diferenció un problema tradicional de una MEA.  

El docente se enfrentó inicialmente a la dificultad de no contar con datos directos en la MEA, 
a diferencia de un problema tradicional. Resolver las MEAs resultó controvertido para el 
profesor debido a que se le pedía construir modelos en lugar de obtener resultados precisos. 

En el siguiente extracto se observa cómo el profesor abordó la MEA 1 de forma individual. 
En primer lugar, señaló que surgieron dudas acerca de si la MEA1 se podía resolver. A 
continuación, reflexionó sobre el tipo de solución que podría encontrar: exacta o aproximada. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 681 

Docente:   Me puse a investigar [en internet], porque dije ¿si se podrá? Luego dije: bueno… 
pues no se va a poder encontrar un [resultado] exacto; pero, le vamos a llegar con una 
aproximación.  

El docente buscó datos en internet para ofrecer una respuesta a la situación-problema 
planteada, pero mencionó que no tuvo en cuenta el contexto de la situación y utilizó datos que no 
estaban relacionados. Esto es común según Lesh y Doerr (2003), ya que en un entorno de clase 
tradicional, el contexto de un problema generalmente no es considerado importante. Propuso un 
modelo que permitiera al cliente encontrar una solución y encontró una altura aproximada como 
respuesta. 

En la resolución de la MEA2, el docente aprovechó su experiencia previa al resolver la 
MEA1. Esto concuerda con los hallazgos de Lesh y Yoon (2004), quienes señalan que las 
experiencias al resolver una MEA influyen en las acciones y el pensamiento de los estudiantes 
cuando se enfrentan a una segunda MEA. El docente intentó que el modelo propuesto fuera 
reutilizable, es decir, siguiendo los principios de la MMP (Brady, 2018; Lesh et al., 2000), buscó 
generalizar su solución para que permitiera al cliente responder a una variedad de situaciones 
similares.  

Docente:   Asimismo, podrías evitarte todos los cálculos anteriores con el archivo que puedes 
descargar del siguiente enlace […] En el cual encontrarás las tablas programadas con 
fórmulas en Excel (considerando los cálculos descritos con anterioridad). Las celdas en 
gris puede modificarlas para calcular en caso de tener otro presupuesto, querer reforestar 
un área con porcentajes de cada tipo de árbol distinta o simplemente que los árboles 
tengan un costo diferente. 

La experiencia de resolver dos MEAs y discutirlas en sesiones grupales llevó al docente a 
reflexionar sobre la diferencia entre los problemas de los libros de texto y las MEAs. A 
continuación, se presenta su reflexión. 

Docente:   Me pareció importante identificar la diferencia entre los problemas tradicionales y 
las actividades provocadoras de modelos [MEAs]. En un problema tradicional el alumno 
debe sólo seguir pasos ya definidos de manera específica, pero en una actividad 
provocadora de modelos [MEA] el estudiante analiza, crea, modifica, para poder generar 
“el modelo” que le ayudará a resolver ciertas problemáticas, lo cual tuvimos que hacer en 
la actividad de Pie grande. 

En este extracto se destaca que el análisis del problema y la construcción de “el modelo” 
fueron aspectos importantes del proceso de resolución de una MEA, según lo identificado por el 
docente. Al señalar “el modelo que le ayudará a resolver ciertas problemáticas”, el docente se 
refiere a la construcción de un modelo reutilizable permita resolver situaciones similares, pero 
con datos diferentes.  

La interpretación de las MEAs como actividades donde no se siguen instrucciones precisas 
permite observar cómo el docente validó la existencia de problemas distintos al problema  
propuesto, el cual tenía instrucciones precisas, como: “realizar la tabla de distribución de 
frecuencias, la gráfica correspondiente y describir qué indican las medidas de tendencia central y 
dispersión”. Además, el docente reconoció el potencial de las MEAs al mencionar que “el 
estudiante analiza, crea, modifica”. Esto evidencia cómo se amplió la interpretación sobre la 
naturaleza de los problemas que se pueden incorporar en el aula y la importancia de utilizar 
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MEAs en el aula.  
Tercera interpretación 

La interpretación que el docente había construido hasta ese momento sobre la naturaleza de 
la modelación y la importancia de su uso en el aula influyó en la forma en que implementó una 
MEA con sus alumnos. Las acciones que el docente llevó a cabo durante la implementación de la 
MEA1 fueron las siguientes. El profesor decidió no explicar previamente algún tema matemático 
relacionado y no proporcionó instrucciones específicas para abordar la MEA1. En cambio, 
permitió a los estudiantes expresar sus ideas sobre la situación planteada en la MEA, utilizar sus 
propios recursos para resolver el problema, matematizarlo y encontrar una solución. Esto le 
permitió describir lo siguiente. 

Docente:   Aprender matemáticas bajo la perspectiva de modelos y modelación implica 
entonces matematizar problemas y situaciones cotidianas a las que se enfrentan los 
alumnos o personas en general.  

El docente reflexionó sobre la importancia de fomentar el uso de MEAs en el aula para que 
los estudiantes puedan comprender la utilidad de las matemáticas 

Docente:   Resolver un problema sin una receta de pasos a seguir es una tarea que 
deberíamos fomentar en nuestros estudiantes, pues al generar un modelo para resolver 
una problemática de la vida cotidiana puede ayudar a entender al alumno la utilidad de 
las matemáticas.  

El docente describió la evolución del conocimiento de los estudiantes al resolver la MEA1 
utilizando ciclos de entendimiento “cualitativos y cuantitativos”, usando los mencionados por 
Vargas-Alejo, Reyes-Rodríguez y Cristóbal-Escalante, 2016). Explicó que hubo una transición 
de formas de pensamiento cualitativas a formas de pensamiento cuantitativas a medida que los 
estudiantes avanzaban en la resolución del problema. Además, observó que, de acuerdo con la 
MMP, todos los estudiantes intentaron construir algún modelo, incluso aquellos con dificultades 
en matemáticas. Todos lograron dar sentido a varios conceptos de manera más accesible y 
comprensible. 

Docente:   Los modelos generados y procesos realizados ayudaron a mis estudiantes a 
apropiarse de sus conocimientos de una manera más sencilla. 

El docente amplió su comprensión sobre la importancia de proponer problemas en el aula en 
el sentido de Ärlebäck y Doerr (2018). Reconoció a la modelación como un vehículo 
fundamental para la enseñanza y el aprendizaje de las matemáticas. 

Docente:   En conclusión, en este curso conocí las APM [MEA] en las cuales los estudiantes 
crean modelos propios, lo cual permite que se apropien de la situación y genere en ellos 
un aprendizaje significativo. 

En uno de los últimos fragmentos escritos por el docente, después de diseñar una MEA, se 
puede confirmar una vez más su interés en motivar el aprendizaje de las matemáticas al mostrar 
su utilidad en futuras profesiones. 

Docente:   El objetivo de aprendizaje va más con la comprensión de la utilidad de las 
matemáticas en la medicina y la importancia de esta utilidad, tratar de eliminar o 
disminuir la idea en los alumnos de que no necesitan matemáticas en su área, otro 
objetivo va encaminado al uso de la tecnología en estos procedimientos y pienso concluir, 
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después de esta actividad, orientada al uso de fórmulas en Excel, pues será de gran ayuda 
como introducción en las materias que imparto. 

En conclusión, la evolución de las interpretaciones puede describirse de la siguiente manera 
(Tabla 1). 

Tabla 1: Evolución de las interpretaciones 

 1ª Interpretación 2ª Interpretación 3ª Interpretación 

Naturaleza 
de la 
modelación 

No se percibe, pero 
el docente utilizaba 
problemas con 
caracteristicas 
similares a los 
incluidos en los 
libros de texto 

El docente reconoció 
que en la modelación 
no hay pasos 
específicos a seguir; 
el estudiante debe 
crear un modelo para 
resolver problemas 

El docente reconoció que 
aprender matemáticas bajo 
la MMP es matematizar 
problemas y situaciones 
similares a las que se 
pueden enfrentar los 
individuos en su vida real 

Importancia 
de utilizar 
la 
modelación 

No se percibe la 
importancia. El 
docente usaba los 
problemas para 
denotar la utilidad 
de las matemáticas 
en la carrera 
profesional 

El docente reconoció 
que en la modelación 
el estudiante analiza, 
crea, modifica, para 
poder generar “el 
modelo” 

El docente reconoció a la 
modelación como un 
vehículo para la enseñanza 
y aprendizaje de las 
matemáticas. Reforzó que 
las matemáticas se pueden 
utilizar en la profesión 
futura 

Conclusiones 
En relación con la pregunta de investigación, el análisis nos permite concluir que el docente 

modificó sus interpretaciones iniciales respecto a la naturaleza de los problemas que puede usar 
en su clase. Esta modificación surgió de la reflexión sobre las MEAs, las acciones que llevó a 
cabo al resolverlas y los resultados obtenidos al implementar una MEA en el aula. El docente 
evaluó positivamente el potencial de la MEA para apoyar el aprendizaje de las matemáticas, ya 
que sus estudiantes pudieron utilizar sus propios recursos para resolverla y profundizaron en 
algunos conceptos matemáticos durante el proceso de construcción de modelos. Esto se reflejó 
en su papel durante la implementación de la MEA en el aula y en el ambiente de trabajo que 
creó. 

Coincidimos con Doerr y Lesh (2003) en que la interpretación de las acciones realizadas por 
el profesor al resolver la MEA influyó en las decisiones tomadas durante su implementación en 
el aula, incluyendo cuándo y por qué llevarlas a cabo. Por ejemplo, el docente permitió que los 
estudiantes tuvieran el tiempo necesario para resolver la MEA utilizando sus propios recursos, 
sin darles instrucciones precisas a lo largo del proceso. Observó, analizó y brindó apoyo en la 
construcción de modelos. 

Aunque se logró ampliar las interpretaciones sobre la naturaleza de la modelación y la 
importancia de utilizarla en el aula durante el proceso de DPD basado en la modelación, 
consideramos que estas interpretaciones aún pueden ser refinadas. Según los resultados de 
investigaciones previas (Montero-Moguel et al., 2020), sabemos que el profesor puede continuar 
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ampliando, modificando y refinando estas interpretaciones a medida que participe en procesos de 
reflexión sobre su propia práctica docente. De esta manera, se puede fomentar un mayor 
desarrollo en las dos direcciones mencionadas en el marco teórico: promover el aprendizaje de la 
modelación en el aula como un objetivo en sí mismo, y al mismo tiempo, utilizarla como un 
vehículo para la enseñanza y el aprendizaje de las matemáticas. 

Los resultados de esta investigación concuerdan con los hallazgos de estudios previos 
realizados por investigadores como Brady (2018), Clark y Lesh (2003) y Lesh (2010), quienes 
han mencionado que a través de enfoques multinivel (investigador, profesor y estudiante) y la 
resolución de MEAs, los docentes logran replantear su práctica docente. Estos enfoques les 
permiten reflexionar sobre cómo fomentar la modelación en el aula y por qué es importante 
hacerlo. 

Además, es importante destacar que, aunque no se profundizó en ello en este artículo, se ha 
identificado que estos hallazgos se amplían al reconocer que el apoyo a la evolución de las 
interpretaciones de los docentes, a través del uso de MEAs, no se limita únicamente a entornos 
presenciales. También es posible promover esta evolución en entornos virtuales. 

En resumen, esta investigación se suma a los hallazgos existentes y destaca la relevancia de 
utilizar MEAs como herramientas efectivas para promover cambios en la práctica docente y 
apoyar la evolución de las interpretaciones de los docentes tanto en entornos presenciales como 
virtuales. 

Reconocimiento 
Agradecimiento a CONACYT por el apoyo brindado a través de las becas a estudiantes, a la 

Universidad de Guadalajara y al proyecto Campus Viviente. 

Referencias 
Ärlebäck, J. B., y Doerr, H. (2018). Students’ interpretations and reasoning about phenomena with negative rates of 

change throughout a model development sequence. ZDM Mathematics Education, 50(1-2), 187–200. 
https://doi.org/10.1007/s11858-017-0881-5 

Brady, C. (2018). Modelling and the representational imagination. ZDM Mathematics Education, 50(1-2), 45–59. 
Clark, K. K., y Lesh, R. (2003). A modeling approach to describe teacher knowledge. En R. Lesh y H. M. Doerr 

(Eds.), Beyond Constructivism. Models and modeling perspectives on mathematics problem solving, learning, 
and teaching (pp. 159-174). Mahwah, NJ: Lawrence Erlbaum Associates. 

Creswell, J., y Creswell, D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. 
SAGE Publications. 

Desimone L. M. (2023) Rethinking teacher PD: a focus on how to improve student learning. Professional 
Development in Education, 49(1), 1–3, doi:10.1080/19415257.2023.2162746 

Doerr, H. M., y Lesh, R. (2003). A modeling perspective on teacher development. En R. Lesh y H. M. Doerr (Eds), 
Beyond Constructivism. Models and modeling perspectives on mathematics problem solving, learning, and 
teaching (pp. 125–140). Mahwah, NJ: Lawrence Erlbaum Associates. 

English L. D. (2021). Mathematical and Interdisciplinary Modeling in Optimizing Young Children’s Learning. En J. 
M. Suh, M. H. Wickstrom y L. D. English (Eds.), Exploring Mathematical Modeling with Young Learners. (pp. 
3-23). Springer. https://doi.org/10.1007/978-3-030-63900-6_1  

Garofalo, J., y Corum, K. (2019). Engaging Preservice Secondary Mathematics Teachers in Authentic Mathematical 
Modeling: Deriving Ampere’s Law. Mathematics Teacher Educator, 8(1), 76-91. 

Lesh, R. (2010). Tools, researchable issues and conjectures for investigating what it means to understand statistics 
(or other topics) meaningfully. Journal of Mathematical Modeling and Application, 1(2), 16–48. 

Lesh, R., Hoover, M., Hole, B., Kelly, A., y Post, T. (2000). Principles for developing thought revealing activities 
for students and teachers. En M. Hoover y R. Lesh (Eds.), Handbook of research design in mathematics and 
science education (pp. 591–645). Routledge. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 685 

Lesh, R., y Doerr, H. M. (2003). Foundations of a Models and modeling perspective on Mathematics teaching, 
learning, and problem solving. En R. Lesh y H. M. Doerr (Eds.), Beyond constructivism: A models and 
modelling perspective on mathematics problem solving, learning and teaching (pp. 3-34). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Makar, K., Doerr, H., y DelMas, R. (2020). Developing statistical modeling with paper helicopters. Mathematics 
Teacher: Learning and Teaching Pk–12, 113(2), 147–151. 

Montero-Moguel, L., Vargas-Alejo, V. y Rodríguez-González, I. (2020). Conceptual system when implementing 
model-eliciting activities. En A.I. Sacristán, J.C. Cortés-Zavala y P.M. Ruiz-Arias (Eds.). Mathematics 
Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, Mexico (pp. 1653-1661). Cinvestav / 
AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

OCDE. (2022). Education GPS The world of education at your fingertips. 
https://gpseducation.oecd.org/revieweducationpolicies/#!node=41732&filter=all 

Schorr, R. Y., y Lesh, R. (2003). A modeling approach for providing teacher development. En R. Lesh y H. M. 
Doerr (Eds.), Beyond constructivism: A models y modelling perspective on mathematics problem solving, 
learning y teaching (pp. 141–157). Mahwah, NJ: Lawrence Erlbaum Associates. 

UNICEF. (2021). Educación. Cada niño tiene derecho a aprender. https://www.unicef.org/es/educacion 
Vargas-Alejo, V. y Cristóbal-Escalante, C. (2017). MEA Propuesta de Reforestación. Recuperada el 10 de 

diciembre de 2017 de https://plus.google.com/u/0/communities/100320204402382732939  
Vargas-Alejo, V., Reyes-Rodríguez, A. V. y Cristóbal-Escalante, C.  (2016). Ciclos de entendimiento de los 

conceptos de función y variación. Educación Matemática, 28(2), 59-84. 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 686 

LEARNING TO FACILITATE REFLECTIVE CONVERSATIONS: EXPLORING 
CHANGES IN THE PRACTICES OF MATHEMATICS COACHES 

Ryan Gillespie 
University of Idaho 

rgillespie@uidaho.edu 

Jennifer Kruger 
University of Rochester 

jkruger@warner.rochester.edu 

Adam Hanan 
University of Idaho 

hana3274@vandals.uidaho.edu 

Julie M. Amador 
University of Idaho 

jamador@uidaho.edu 

We examined changes in how mathematics coaches facilitated debriefing conversations after 
learning about a debrief conversational structure we created based on the principles of our 
content-focused coaching model. We compared participant coaches’ first debriefing 
conversation, which occurred prior to learning about the debrief conversational structure to 
their second debriefing conversation, which occurred after learning about the debrief 
conversational structure. Findings indicate that in the second debriefing conversation, 
participant coaches participated more, prioritized different discursive moves, developed unique 
data collection systems to share observations from the co-taught lesson, and more frequently 
structured the conversation around content ideas related to the guiding principles of our 
content-focused coaching model. 

Keywords: Teacher Educators, Professional Development 

Debriefing conversations with a coach after teaching a lesson can support mathematics 
teacher growth through reflection in at least three ways: (a) identifying practical next steps to 
improve their practice (Gibbons & Cobb, 2016), (b) practicing using evidence of student 
thinking to consider responsive instructional decisions (West & Cameron, 2013), and (c) 
developing productive cognitive habits of reflecting and projective thinking (Costa & Garmston, 
2016). However, these benefits depend on a coach’s ability to facilitate debriefing conversations 
with clear goals and intentional decision-making—a process not clearly outlined in existing 
literature. To fill this gap, we developed a debrief conversational structure for content-focused 
coaches and designed a coherent set of learning experiences for our project participants to make 
sense of and implement the conversational structure with mathematics teachers. Participants, 
henceforth called participant coaches, were mathematics specialists from diverse contexts (Baker 
et al., 2022) who wanted to learn to facilitate content-focused coaching cycles (Callard et al., 
2022) with mathematics teachers. We examined changes in the facilitation practices of 
participant coaches across two debriefing conversations; conversation one occurred prior to 
participant coaches learning about the debrief conversational structure and conversation two 
occurred after. Specifically, we answered two research questions: (1) How did the coaches’ 
participation in debriefing conversations change after learning about a conversational structure? 
(2) How did the content of the coaches’ verbal contributions in the debriefing conversations 
change after learning about the conversational structure? We strove to understand changes in 
both how the coaches talked to teachers and participated in the conversations and what content 
ideas the coaches prioritized after learning about the conversational structure.  
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Theoretical Perspective and Related Literature 
We frame our study with the notion that content-focused coaching is complex work (e.g., 

Carlson et al. 2017; Saclarides & Kane, 2021). We conceptualize this complexity by viewing 
content-focused coaching as a form of disciplined improvisation, in which coaches’ actions must 
be responsive to the contingent needs of a mathematics teacher but are also bound by the guiding 
principles and structures of a content-focus coaching model (e.g., Callard et al., 2022). Sawyer 
(2004) explained that frameworks play a critical role in disciplined improvisation as they support 
the interplay of structure and agency. Frameworks and structures can serve as productive 
common artifacts which help organize fluid and responsive interactions. In other words, 
collaborative discussions involve structure to be productive, but the structure must not be 
deterministic, allowing space for interlocutors to co-construct knowledge in novel and 
unpredictable ways.  

Mathematics coaches are charged with fostering these types of fluid conversations to 
effectively support teachers; however, the field lacks knowledge on effective strategies for coach 
professional learning around how to facilitate productive coaching conversations as part of 
coaching cycles (Carlson et al., 2017; Kane & Saclarides, 2022; Mangin & Stoelinga, 2010; 
Stein et al., 2022). Two studies have examined how the inclusion of conversational structures 
and protocol can support coaches to grow and refine their practice. Baker and Knapp (2019) 
created the Decision-Making Protocol for Mathematics Coaching (DMPMC) and trained coaches 
to use the protocol. Baker and Knapp found that the DMPMC effectively supported coaches to 
grow in their ability to enact research-based coaching practices. Similarly, Russell et al. (2020) 
created and trained coaches in an inquiry-based coaching model. Russel et al. claimed coaches 
used the key practices outlined in the model in coaching cycles with teachers, resulting in 
conversations with greater depth and detail. Russell et al. also noted that coaches adapted their 
behaviors in unique ways that appeared contradictory to the principles of the model but were 
deemed productive in supporting teacher learning after more thorough analysis. Both studies 
highlight the potential of comprehensive models and protocols to support mathematics coaches 
to effectively act in ways that are both responsive and structured (i.e., disciplined improvisation). 
However, little is known about how coaches learn to use a comparatively smaller conversational 
structure within the specific context of facilitating debriefing conversations. 

The Debrief Conversational Structure 
We constructed our debrief conversational structure for mathematics coaches by considering 

existing debrief conversational structures from other coaching models (e.g., Costa & Garmston, 
2016; Knight, 2007) and our primary content-focused coaching goals: (a) increase the teacher’s 
content knowledge in a specific subject area and (b) build the teacher’s knowledge of effective 
instructional practices related to that subject area, referred to as pedagogical content knowledge 
(Ball et al., 2008). Additionally, we considered recommendations from existing practitioner 
resources for content-focused coaches (e.g., West & Cameron, 2013) about the importance of 
examining evidence of student learning in relation to established mathematical and instructional 
goals. Thus, our debrief conversational structure contained four phases to guide coaches: (1) 
Reviewing goals established in the planning session; (2) Examining evidence of student learning 
related to the mathematical and instructional goals; (3) Considering contributing factors that may 
have supported or limited success toward the mathematical and instructional goals of the lesson; 
and (4) Reflecting on implications for the teacher’s future practice (see Callard et al., 2022 for a 
fuller explanation of the debrief conversational structure).  
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Methods 
Participants 

Participant coaches for the study included four mathematics specialists who held various 
roles in their contexts (Baker et al., 2022). Table 1 shows years of experience (prior to beginning 
the project) and the positioning of each participant coach in their context outside of our project.  

 
Table 1. Participant Coach Demographics 

	
Participant 

Coach 
Teaching 

Experience 
Specialist 

Experience 
Mathematics Specialist (MS) Positioning 

(Baker et al., 2022) 
Briggs 4 0 MS as coach, Organization 

Delgado 27 0 MS as coach, Mathematics Coach: District Level 
Kennedy 6 0 MS as teacher, Teacher Leader 

Lee 11 1 MS as coach, Mathematics Coach: District Level 
	
Project Context 

This study was situated within a larger professional development project in which we 
designed, implemented, and researched a fully online learning model for practicing or aspiring 
mathematics coaches. We engaged participants in three professional development components 
that included (a) five course sessions on content-focused coaching, (b) four video coaching 
clubs, and (c) two supported coaching cycles (Amador et al., 2020).  

This study focused on the two supported coaching cycles within the project. For each 
coaching cycle, a participant coach facilitated a planning conversation, lesson implementation, 
and debriefing conversation with a teacher in their context. A mentor coach supported a 
participant coach to prepare for each coaching cycle. The first coaching cycle occurred 
immediately after participant coaches learned about facilitating planning conversations, through 
the course and video clubs, and their preparation with their mentor coach focused only on 
preparing for their upcoming planning conversation. Thus, participant coaches facilitated their 
first debriefing conversation without guidance or project support. The second cycle occurred 
after participant coaches learned about our debrief conversational structure and their preparation 
with their mentor coach focused on preparing for all three parts of the coaching cycle. 
Data Collected 

For this study, we analyzed the debriefing conversations for the first and second coaching 
cycles of the four participant coaches. This resulted in the analysis of four, cycle-one debriefing 
conversations (occurring prior to participants learning about the debrief conversational structure) 
and four, cycle-two debriefing conversations (occurring after participants learned about our 
debrief conversational structure). All eight coaching conversations were transcribed verbatim. 
Data Analysis 

To analyze conversation transcripts, individual talk turns for the coach and teacher were 
copied into separate rows in a spreadsheet. The teacher talk-turns were not analyzed but used for 
context when coding the coach talk-turns. Longer coach talk-turns (i.e., those containing 
substantially different ideas) were separated into different rows and considered distinct talk-
turns. A single coach-talk turn was the unit of analysis. 

Our research questions focused on understanding changes in how the coaches participated in 
the conversations and what content ideas the coaches prioritized. Given these two foci, we 
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developed two codebooks. The first codebook detected content ideas in the coaches’ talk-turns 
related to our debrief conversational structure. This codebook contained four dimensions, each 
connected to one part of our debrief conversational structure, with specific codes nested within 
each dimension. Figure 1 shows the details of this codebook. 
	

Dimension  Code Definition 
Coach shares or invites the teacher to share a/an: 

Goals 

Instructional 
Practice 

instructional practice goals established by the teacher in the planning 
conversation. 

Math Learning 
Goal mathematical concepts the teacher/coach wanted the students to learn. 

Evidence of 
Student 

Learning 

Student Thinking observation about students' mathematical thinking during the lesson. 

Student Action observation about students' actions or behaviors during the lesson. 

Contributing 
Factors 

Teacher Actions observation about the teachers' actions/behaviors during the lesson. 
Lesson Design observations about the design of the lesson/task. 

Implications 
for Future 
Practice 

Content new idea involving the teachers understanding of mathematics that 
can be drawn from the lesson or prior discussion. 

Content-specific 
pedagogy 

new idea about how students learn mathematics or how to teach 
mathematics that can be drawn from the lesson or prior discussion. 

Pedagogy new idea about instruction (not specific to teaching and learning 
mathematics) that can be drawn from the lesson or prior discussion. 

 
   Figure 1. Codebook Focused on Content of Coaches’ Talk 

	
The second codebook characterized the coaches’ discursive moves in each talk-turn and 

contained three dimensions: directive, reflective, and facilitative. Each of these dimensions 
contained three codes, created from existing literature on coach and facilitator discourse, to 
depict specific coach discourse moves (see Figure 2). Directive moves involved the coach 
sharing their thinking and opinions with the teacher which in turn positions the coach as the 
thinking authority within that instance of conversation (Ippolito, 2010; Sailors & Price, 2015).  
Reflective moves involved the coach inviting the teacher to share thinking and opinions which in 
turn positions the teacher as the thinking authority within that instance of conversation (Ippolito, 
2010; Sailors & Price, 2015).  Facilitative moves involved the coach establishing the (van Es et 
al., 2014). Facilitative moves did not contain the coach’s thinking, nor did they invite substantial 
thinking from the teacher.   

To analyze the data, three researchers independently coded the coach talk-turns in all eight 
transcripts and met to reconcile disagreements. Then, for each coach, the three researchers 
drafted analytic memos describing specific coach actions indicative of change between the 
coaches’ cycle one and cycle two facilitation. The three researchers again met to reconcile 
individual memos into a single memo for each coach. Descriptive statistics related to the 
coaches’ participation and facilitation were also recorded, including length of conversations, 
number of coded coach talk-turns, average words in a coded coach talk-turn, and the percentage 
of conversation words spoken by the coach. 
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First-Level 

Code Definition Second-Level 
Code Definition 

Directive 

moves in which the 
coach shares their 

thinking and 
opinions with the 

teacher 

Explaining provide an interpretation of an event, interaction, 
or mathematical idea 

Suggesting recommends an action 

Validating Confirm and support teacher's contributions or 
actions 

Reflective 

moves in which the 
coach invites the 
teacher to share 

their thinking and 
opinions 

Launching pose general prompts to elicit teacher ideas  

Pressing prompt teacher to explain their reasoning and/or 
elaborate on their ideas 

Paraphrasing restating the teacher ideas in a manner that 
prompts the teacher to elaborate on their ideas 

Facilitative 

Moves in which the 
coach establishing 

the focus, 
direction, and/or 

clarity of the 
conversation 

Describing 
Direct attention to noteworthy ideas or events by 
describing the idea or event without inference, 
evaluation, and interpretation 

Clarifying Prompts teacher to verify an idea to ensure 
common understanding 

Framing Directing attention to the larger purpose or goal 
that was previously discussed 

 
Figure 2. Codebook Focused on Coaches’ Discursive Moves 

	
Changes in Coach Participation 

We found three patterns with respect to changes in how coaches participated in the 
conversations. First, all four coaches showed increased participation in the second debriefing 
conversation based on conversation lengths and how much and how often coaches spoke (see 
Table 2). For example, Briggs had roughly double the number of talk-turns in the second 
conversation (55) when compared to the first conversation (27) and conversation two (33:37) 
was approximately 13 minutes longer than conversation one (20:01). We found more dramatic 
changes in Lee’s participation. In conversation one, Lee had 20 talk-turns that contained, on 
average, 6.5 words. In conversation two, Lee had 73 talk-turns containing an average of 36 
words. This suggests that Lee spoke nearly 3.5 times more often in conversation two and each of 
these talk-turns was approximately 6 times longer than talk-turns in conversation one. We 
highlight that this increase in participation did not mean coaches dominated the second 
conversation (e.g., Heineke, 2013) as coaches contributed approximately 50% or less of the 
conversation words in conversation two. Instead, this pattern suggests that coaches became more 
equal contributors in their second conversation. 

Second, we found changes in coaches’ discursive patterns with respect to four discourse 
moves. All four coaches increased their use of reflective: press moves. In their first debriefing 
conversation, the four coaches collectively used 3 press moves. In conversation two, the coaches 
collectively used 28 press moves with each coach increasing their use of this move from 
conversation one to conversation two. This suggests that in the second conversation, coaches 
more frequently asked teachers to explain their reasoning and/or elaborate on or make 
connections between ideas currently being discussed. All four coaches also increased their use of 
facilitative: describe moves collectively increasing from 13 to 37 from conversation one to 
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conversation two. To illustrate both these discourse moves, we share the following example from 
Lee in conversation two: 

When you think of the learning goal—so “understanding inverse operations and property 
equality and using them, applying that understanding to solve one-step equations”, what 
evidence do you have then for the students in terms of what you saw that day or what you’ve 
seen today, the day after, that it worked? 

In this example, Lee first described the learning goal established in the planning conversation 
and then asked the teacher to elaborate on their prior claim that the lesson had felt successful 
using specific evidence of student thinking. Thus, we coded the discursive moves in the talk-turn 
as facilitative: describe and reflective: press. We consider this noteworthy as Lee used zero press 
moves and only three describe moves in her first conversation, and this distinctive combination 
of describing and pressing connects directly to our debrief conversational structure. All four 
coaches also increased their use of directive: validate and directive: explain moves, further 
highlighting shifts in the ways coaches participated in the second debriefing conversation.  

  
Table 2. Data Related to Coach Participation in Debriefing Conversations 

	
Participant 

Coach Conversation 
Total 

Conversation 
Time 

Coded Talk 
Turns 

Words Per 
Talk Turn 

Percent of 
Conversation Words 

Spoken by Coach 

Briggs Cycle 1 20:01 27 28.8 30.7% 
Cycle 2 33:37 55 29.4 29.4% 

Delgado Cycle 1 16:43 36 20.5 40.6% 
Cycle 2 20:16 53 31.7 49.8% 

Kennedy Cycle 1 5:42 19 9.6 52.1% 
Cycle 2 39:19 55 45.3 49.5% 

Lee Cycle 1 7:14 20 6.5 25.2% 
Cycle 2 25:34 73 36.0 45.5% 

 
Third, from our thematic analysis of analytic memos, all four coaches created and used 

unique data collection systems to record teacher actions and student thinking in conversation two 
that were not found in conversation one. Furthermore, in conversation two, three of the four 
coaches structured the conversations in ways that allowed both the coach and teacher to 
collaboratively examine collected data. For example, coach Kennedy recorded student quotes 
throughout the lesson. During the debriefing conversation, Kennedy recommended taking 10 
minutes of private think time for the coach and teacher to individually examine the quotes, select 
quotes that felt important to discuss further, and determine rationale for why the quotes felt 
salient. We find this noteworthy as the learning experiences we provided for coaches about using 
the debrief conversational structure never recommended or shared ways of creating data 
collection systems nor ways to publicly share data with teachers.  
Changes in the Content of the Coaches’ Verbal Contributions 

We identified two patterns with respect to changes in the content of coaches’ verbal 
contributions from debriefing conversation one to two. First, all four coaches talked more about 
evidence of student learning, contributing factors, and implications in their second conversation 
(see Table 3).  
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Table 3. Content of Coach Contributions 
	

Participant 
Coach Conversation Goals Evidence of 

Student Learning 
Contributing 

Factors Implications 

Briggs Cycle 1 3 2 0 8 
Cycle 2 7 6 11 13 

Delgado Cycle 1 4 5 8 3 
Cycle 2 3 13 20 5 

Kennedy Cycle 1 3 0 2 4 
Cycle 2 0 10 5 12 

Lee Cycle 1 2 3 2 2 
Cycle 2 7 6 18 18 

	
This finding highlights that coaches more frequently incorporated three of the focal topics 

articulated in the debrief conversational structure into their second debriefing conversation. As a 
second finding, we found each coach shifted the content of their verbal contributions from 
conversation one to two in unique ways. For example, in debriefing conversation one, Briggs 
never shared or elicited thinking from the teacher about contributing factors such as teacher 
moves or the lesson design. In the second debriefing conversation, eleven of Brigg’s talk-turns 
focused on the contributing factors. As a second example, Delgado’s talk-turns in conversation 
two referenced evidence of student learning (13) and contributing factors (20) more frequently 
than talk-turns in conversation one (five and eight respectively). This change in the content of 
Delgado’s talk-turns connects to changes in her participation and discourse patterns. In 
conversation one, six of Delgado’s talk-turns were coded as facilitative: describe. In 
conversation two, the number of Delgado talk-turns coded as facilitative: describe increased to 
18. This suggests that Delgado more frequently directed attention to student thinking and actions 
as well as teacher moves and lesson design in conversation two when compared to conversation 
one. To illustrate this claim, we share the following Delgado talk-turn from her second 
debriefing conversation: 

One group that you were with, the question was, “What fraction card should you use to make 
eight sixths?” You said, “you have wholes, thirds, fifths—which should you use?” Then they 
answered. Then you said, a whole—you questioned a whole. And you said, “how are you 
going to split that into sixths?” So what's you're thought on that? Listening to what you said? 
In this example, Delgado references her data collection system to recall specific teacher 

questions and language. This low-inference observation then became the basis of a question to 
elicit thinking from the teacher. Thus, we coded the content of this talk-turn contributing factor: 
teacher actions and the discourse moves facilitative: describe and reflective: launch. 

Discussion and Implications 
 The findings from both research questions provide new insight into how a conversational 

structure may have supported coaches in the act of disciplined improvisation (Sawyer, 2004) 
when facilitating a debriefing conversation with a mathematics teacher. From research question 
one, we found three patterns in changes to coaches’ participation in the debriefing conversations 
after learning about our debrief conversational structure. First, coaches participated more fully in 
the debriefing conversations by speaking more often and at greater length, without dominating 
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the conversation. Second, in conversation two, coaches more frequently pressed teachers to 
explain or elaborate on their thinking, shared low-inference descriptions of classroom events for 
public consideration, and provided explanations involving their own interpretations. Third, 
coaches created and used unique data collection systems in the second conversation to record and 
publicly share observed classroom events. From research question two, we found that the content 
of coaches’ verbal contributions related to evidence of student thinking, contributing factors, and 
implications for future practice, increased after learning about our debrief conversational 
structure. 

Similar to Baker and Knapp (2019) and Russell et al. (2020), we consider the changes 
documented in our findings to be productive in relation to the guiding principles and goals of our 
content-focused coaching model. Furthermore, we argue that providing a debrief conversational 
structure played a role in supporting participant coaches to act with enhanced disciplined 
improvisation. For example, in the first debriefing conversation, Lee made or invited only five 
total references to evidence of student learning or contributing factors and only two references to 
implications. In the second debriefing conversation, Lee made or invited 24 total references to 
evidence of student learning or contributing factors and 18 references to implications. The 
change in the content of Lee’s verbal contributions suggests she increased the structure of her 
second conversation to focus more on topics central to the guiding principles of content-focused 
coaching (Callard et al., 2022; West & Cameron, 2013). Lee also used more press moves in the 
second conversation (13) than in the first conversation (0). This suggests Lee also acted more 
responsively, or with greater improvisation since press moves involved the coach asking a 
teacher to elaborate on or further explain shared thinking. We argue that Lee, and the other three 
participant coaches, were relatively inexperienced in coaching mathematics teachers and 
facilitating debriefing conversations. Thus, they lacked any disciplinary structure to support 
productive improvisational decisions that are a natural part of facilitating coaching 
conversations. Once equipped with a basic debrief conversational structure and a modest set of 
learning experiences, participant coaches made substantial changes to the structure and 
responsiveness of their coaching in ways that aligned with the guiding principles of our content-
focused coaching model.    

Coaches or mathematics specialists are often promoted into these new roles based on their 
expertise as classroom teachers, yet being an effective teacher is not a sufficient condition to 
becoming a successful coach (Carlson et al., 2017; Chval et al., 2010). Based on our findings and 
these claims from prior researchers, we offer implications for those supporting the development 
of coaches and conducting future research on coaching. Given the changes our four participant 
coaches demonstrated, we urge those working with coaches to consider adopting, adapting, or 
creating structures and protocols that operationalize guiding principles and goals of a coaching 
model in a particular context. Such structures should explicitly name desired coaching behaviors 
while also providing coaches space to operate responsively based on the needs of teachers. We 
also encourage future researchers to more carefully examine how changes in coach actions, 
driven by protocols and structures, influence teachers’ opportunities to learn. Similar to Baker 
and Knapp (2019) and Russell et al. (2020), we argue that the changes in our participants’ 
coaching behaviors were productive given the theories of teacher learning underpinning our 
coach model. However, future research should directly examine the relationship between 
changes in coaching behaviors and teacher learning opportunities to validate these inferences. 
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This poster reports on a project that produced a series of online teacher professional 
development workshops. The workshop series was designed to support teachers in thinking 
about their own mathematical work, to share that work with other teachers and listen to how 
other teachers think about the same mathematical work, and finally to transfer that process to 
students, listening to what students are saying to better understand how students are thinking 
about the math. As one of the main goals of the workshops was to support teachers as reflective 
practitioners, the noticing and wondering framework was used to help the teacher stay focused 
on the specific work or ideas that the student has written in the problem-solving activity.  

As mathematics researchers began to see math as a meaning making process (Boaler & 
Greeno, 2000; Bruner, 1996; Horn & Kane, 2015; Ma, 2016; Ray 2013; Schoenfeld, 1992), this 
led to the importance of understanding how one thinks about what they are doing and how others 
think about what they are doing. The workshops supported a process of “double reflection.” 
Similar to the work of other researchers (Gehlbach & Brinkworth, 2012; Teuscher, Moore, & 
Carlson, 2016), double reflection is about a relationship with an “other” and learning to think 
deeply about the other. The poster is based on preliminary research looking at three types of 
teachers, those who have a developed sense of reflection, those who have a developing sense of 
reflection and those who are just starting to reflect on their own and student work. 

We utilized three data sources for this study, semi-structured interviews, discussion board 
conversations, and journal reflections. We completed three cycles of coding and triangulated 
across data sources (Merriam & Tisdell, 2015; Stake, 2010; Yin, 2009). The final stage of coding 
looked at how the forms of reflection lined up with each teacher in the workshop.  

While the reflection comments are separate from the individuals who make them, it was clear 
from the data that most teachers tended toward one type of reflective comment which indicated 
their actual ability to engage in reflection. The teachers who fit mostly into the Developing 
Reflection category were the one exception where they occasionally made more Developed 
comments or also more Starting comments. The findings of this poster contribute to the 
understanding of how math teachers come to reflect on and engage with student’s mathematical 
thinking. As mathematics educators and researchers seek to create professional learning 
opportunities that not only develop mathematical knowledge, but also encourage deeper 
connections with student thinking, this study contributes to the growing knowledge regarding 
beneficial professional development for math teachers. 
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We examined the suggestions mathematics coaches provided to teachers as part of one-on-one 
coaching cycles. The purpose was to understand the object (content) of the suggestions, the 
lesson phase in which the suggestion would occur, and the clarity of the suggestion (how 
actionable the suggestion would be if the teacher followed the suggestion). Twenty-three 
coaching planning meetings were recorded, transcribed, and analyzed. Findings indicated that 
suggestions commonly focused on lesson design (how the lesson plan should be completed) or 
teacher questions (actual questions the teacher should ask). Almost half of the suggestions were 
about the explore phase (or middle) of the lesson and a majority of the suggestions were coded 
as medium or high clarity, meaning the coach clearly articulated what the suggestion would look 
like in the classroom. Implications for coaching and future coaching research are provided.  

Keywords: Professional Development, Coaching, Online Professional Development, Directive, 
Mathematics Teacher Educator 

Coaching is a professional development process used to support teachers to improve their 
instruction (West & Staub, 2003). Within mathematics education, content-focused coaching 
(e.g., West & Cameron, 2013) is a common model. Content-focused coaching involves iterative 
cycles in which a coach works one-on-one with a teacher with a focus on students’ mathematical 
learning goals. Each coaching cycle contains three sequential components: a pre-conference 
discussion to plan a lesson; a collaboratively taught lesson; and a post-conference discussion to 
debrief the lesson (Bengo, 2016; West & Staub, 2003). Coaching is a dialogic endeavor in which 
the coach responds to multiple simultaneous obligations, such as designing a high-quality lesson, 
supporting the teacher to learn mathematics content and pedagogy, and establishing a trusting 
and productive relationship with the teacher. Given the complexity of coaching, it is important to 
explore the levers by which coaches manage these obligations (Gibbons & Cobb, 2016). A 
primary mechanism coaches employ is to suggest a course of action to the teacher. Doing so 
serves several purposes in relation to the obligations listed above: first, suggestions influence the 
design of the lesson; second, suggestions offer new or alternative courses of action for the 
teacher, thus creating opportunities to encounter new content and pedagogy; and third, 
suggestions push the boundary of the relationship between coach and teacher. From a research 
perspective, suggestions provide insights into the coach’s perspectives on mathematics teaching 
and learning, and the coach’s priorities with respect to a given coaching cycle. In short, studying 
the suggestions of coaches is a way to delve into the complexities of coaching.  

There is a need for more research on how mathematics coaches using a content-focused 
coaching model interact with teachers (Gibbons & Cobb, 2016); especially around coaches’ 
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suggestions to teachers. Our study is situated within an innovative online mathematics video 
coaching experience that we adapted from an in-person modality to an online modality. We 
describe our three-part coaching model, with a specific focus on the video-assisted interactions 
between the coach and teacher. We studied the suggestions coaches provided to mathematics 
teachers by looking at the Object (content) of the suggestion, the Lesson Phase to which the 
suggestions applied, and the Clarity of the suggestion. Specifically, we answer the following 
research question: What is the nature of the suggestions coaches offered to teachers when using a 
content-focused coaching model?  

Theoretical Framing and Related Literature  
We theoretically frame this paper from a perspective of discourse, with a focus on how 

conversational turns occur, with attention to the particular stances of actors in a conversation 
(Ippolito, 2010). Research on coaching has highlighted two competing stances for how coaches 
talk with teachers: reflective or directive (Deussen et al., 2007; Ippolito, 2010; Sailors & Price, 
2015). Coaches using a reflective stance emphasize collaborative inquiry in which the coach 
elicits ideas from the teacher; these ideas become the basis of the coach-teacher discussion 
(Ippolito, 2010). Coaching moves associated with a reflective stance include probing questions 
and low-inference non-evaluative observations, as means to catalyze teacher thinking (Costa & 
Garmston, 2016). In contrast, a directive coaching stance involves the use of suggestions and 
evaluative feedback (Ippolito, 2010). The challenge in content-focused coaching is to know how 
and when to provide a teacher with direct assistance, such as a suggestion, and when to employ 
an inquiry stance (West & Staub, 2003). It is crucial to understand how coaching moves, 
particularly suggestions, impact teacher learning and the uptake of new practices.  

Despite the importance of mathematics coaches’ strategic decision making when choosing 
appropriate actions when working with teachers, little is known about how mathematics coaches 
using a content-focused coaching model interact with teachers in ways they envision supporting 
teachers (Gibbons & Cobb, 2016). Furthermore, researchers such as Witherspoon et al. (2021) 
specifically call for new research on how direct assistance from a coach during a coaching cycle 
supports a teacher to implement new instructional practices. We focused on the suggestions 
coaches gave teachers in a coaching cycle (which included a planning meeting, lesson 
implementation, and a debriefing meeting) to characterize the focal topics for suggestions. The 
way coaches use suggestions and what they actually suggest can impact opportunities for teacher 
growth (Costa & Garmston, 2016; Heineke, 2013, Witherspoon et al., 2021); yet discerning 
moments and techniques for sharing suggestions with teachers is a primary challenge for coaches 
(West & Cameron, 2013). Researchers have identified that suggestions occur in the process of 
coaching (Gillespie et al., 2020), as noted with directive coaching stances (Deussen,  et al., 2007; 
Ippolito, 2010; Sailors & Price, 2015), but researchers have yet to characterize coaches’ 
suggestions in ways that would support professional developers, coaches, and researchers to 
consider the efficacy of suggestions in influencing the professional growth of teachers. 

Methods 
      In our video-assisted online coaching model, coaches engaged teachers in typical content-
focused coaching cycles that included a planning meeting, lesson implementation, and a 
debriefing meeting (see Figure 1). The planning and debriefing meetings were conducted via 
Zoom and videorecorded. The lessons were recorded using Swivl robot technology to capture 
audio and video data from middle grades mathematics classrooms. These data were 
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automatically uploaded to the online Swivl platform. The coach and teacher then independently 
watched and annotated the video prior to the debriefing meeting.  Figure 1 details the online 
video coaching process, showing both the collaborative and independent aspects of the cycle.  
 

 
                           Figure 1. Online Video Coaching with content-focused Coaching 

 
Data Collected 
       In total, there were three cohorts of teachers in the project, staggered over a four-year span, 
with each cohort participating for two years. Data for this study are transcripts from the Cohort 
One coach-teacher planning meetings as part of the one-on-one coaching cycles. Cohort One had 
eight teachers and four coaches, for a total of 23 transcripts of their online planning meetings.   
Data Analysis 

To identify the suggestions the coaches made during the collaborative planning 
conversations, we used results from a broader analysis of the coaching conversations. In that 
broader analysis, we parsed the transcripts of the coach-teacher planning and debriefing 
conversations into stanzas, which included a coach’s statement and the teacher’s response, as 
well as text needed for context (Saldaña, 2013). This broader data set included the analysis of 
1719 stanzas from coaching conversation transcripts. We developed a codebook to analyze the 
discursive moves of the coaches and teachers as well as the content of the conversations within 
stanzas. We coded stanzas in pairwise teams after a lengthy calibration process that involved five 
researchers. We met via video conferencing software, Zoom, to reconcile disagreements. Kappas 
ranged from 0.39 to 0.65, which is considered moderate to strong reliability (Landis & Koch, 
1977). Analysis for this study focused on the discursive moves of the coach. The section in the 
codebook on coaching discursive moves was comprised of five categories, including suggestions 
(see Figure 2). We defined a suggestion as a statement from the coach recommending an action 
for the teacher. We identified 273 suggestions in the 23 transcripts. 
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 Figure 2: Excerpt from the larger codebook focusing on coaching discursive moves 

The following example is a coach’s comments that was coded as a suggestion:   
One of the really nice moves you can do if the group shares a thought about something,    
and it’s somewhat ambiguous, is you can turn to the class and say, “Can someone else  
use their own words to explain what Dave is saying?”  

In this comment, the coach recommended that the teacher prompt students to paraphrase a peer’s 
explanation as a means to increase student participation in classroom discussions. 
      Following the aforementioned coding to identify suggestions, two researchers wrote low 
inference paraphrases for each suggestion and later reconciled these to ensure the main action or 
idea of the suggestion was consistent across researchers. Table 1 shows two examples of 
excerpts from a planning meeting on a lesson on congruence, and the assigned low inference 
paraphrase.   
 

Table 1. Suggestion examples from a coach-teacher planning meeting 
 Transcript of Suggestion Low Inference Paraphrase 
Example 1: "Have a discussion, I hope—- about which 

ones they put where, here and the fact there’s 
nothing here. How are they going to justify 
that they’re congruent?" 

Have a discussion and 
encourage students to justify 
congruence 

Example 2:  You could say, "Well, why don’t you think 
you have anything over there? What have 
you seen?" 

Probe students to explain their 
thinking if they struggle 

	 
We then analyzed the suggestions based on the actual transcript and the low inference 

paraphrase for the object (content), lesson phase, and clarity. To arrive at the Object codes, four 
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researchers open coded (Corbin & Strauss, 2008) a subset of the larger data set and met to 
discuss and agree on the Object codes. Once we had a small set of Object codes, we went back to 
the data and coded another subset of the suggestions using the Object codes and met to reconcile 
and refine the definitions again. This resulted in the final list of Object codes, which referred to 
the topic of the suggestion. Codes for Object included Lesson Design (a suggestion about how 
the lesson plan or design should be completed and what should be included), Facilitating 
Discourse (a suggestion about promoting and facilitating classroom conversations), Teacher 
Questions (a suggestion of actual question(s) that should be asked during the lesson), and 
Teacher Action (a suggestion of what the teacher should do physically). Given the frequency and 
diverse nature of suggestions about Lesson Design, we divided the Lesson Design category into 
four subcategories to provide increased clarity about the aspect of Lesson Design being 
addressed. Subcodes for Lesson Design included: Represent (a suggestion about how 
representations of student work would materialize in the lesson), Resource (a suggestion about a 
particular resource or manipulative to use), Task (a suggestion about a particular task or 
modification of a task), and Participation Structure (a suggestion about how students should be 
grouped, whether whole-class, small groups, independent). To assign the Object codes, we used 
the low inference paraphrase from the initial analysis in addition to the original text for each 
suggestion. Lesson Phase codes included Launch, Explore/Investigate, and Summarize (e.g., Van 
de Walle et al., 2019), and identified the phase of the lesson in which the action proposed by the 
coach would occur. Clarity codes included Low, Medium, and High. Low clarity implied there 
were many ways for the teacher to enact the suggestion. Medium clarity implied there was more 
than one way to follow the suggestion, and High clarity implied there was only one way to 
follow a particular suggestion. Table 2 provides an example of the coding process for Object, 
Lesson Phase, and Clarity. 

 
Table 2. Suggestion examples from a coach-teacher planning meeting 

 Transcript of Suggestion Object Lesson Phase Clarity 
Example 
1: 

I think that would be great to try the 
warm-up of that. Then have a discussion 
about what they really found. You can 
call even the airplane distance between 
two points. 

Facilitating 
Discourse 

Launch Low 

Example 
2:  

That gives you the opportunity to ask, 
“How is this, when you get 4 S plus 4, 
how is that connected to S plus S plus 4?”  

Teacher 
Questions 

Summarize High 

 
						In example one, the Object code is “Facilitating Discourse” because the suggestion focused 
on the teacher hosting a discussion after students attempted the warm-up activity.	In example 
two, the Object code is “Teacher Questions” because the suggestion focused on a question the 
teacher should ask. The Lesson Phase of example one was coded as Launch because the 
suggestion pertained to the beginning phase of the lesson. Based on the context of the suggestion 
(in the transcript, not included here), the Lesson Phase of example two was coded as Summarize 
because the suggested question was to be used during the summary discussion. Example one was 
coded as Low clarity because there were many ways for the teacher to facilitate the discussion. 
In example two, the coach told the teacher exactly what to ask, which was considered a High 
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Clarity suggestion because the question was provided word for word. Following this additional 
round of coding, we then calculated frequencies for each of these codes for each coach across the 
coaching cycles.  

Findings	
We focus first on the Object of the suggestions, followed by Lesson Phase and Clarity. 

Table 3 shows the percent of the suggestions for each code within the three categories. 
 

Table 3. Content of suggestions 
 

 

 
Lesson Design was the most frequently occurring Object code as 30.0% of suggestions 

focused on the design of the lesson. The focus of Lesson Design is unique from the other three 
Object codes as it related to planning decisions made prior to the lesson versus what the teacher 
should do during the lesson. These suggestions specifically targeted how students should 
represent their work (Lesson Design- Represent, 3.9%), how teachers could use resources 
(Lesson Design- Resource, 4.2%), particulars of tasks (Lesson Design- Task, 14.5%), and 
participation structure (Lesson Design- Participation Structure, 7.4%). Almost half of the Lesson 
Design suggestions focused explicitly on the mathematical task that would be used during the 
lesson. These included modifications to the task, suggestions about a particular task to be used, 
or ways to implement the task.  

More than half of the suggestions focused on Teacher Questions or Teacher Actions, 
meaning the coach provided questions to ask or described movements or actions to make during 
the lesson. As evidenced in the table, more than a quarter of all suggestions focused on Teacher 
Questions. These were suggestions where the coach suggested that the teacher should ask a 
question. The following is an example that was coded a suggestion characterized as Teacher 
Questions: 

[ask] if we know what interior is and we know what alternate is. “Can you identify a pair of 
alternate interior angles?” Then, “What is the relationship between those angles based on the 
work we did before? Are they congruent or are they supplementary?”  

Code Percent of Suggestions 
Object 

Lesson Design 30.0% 
Teacher Questions 27.6% 
Teacher Actions 25.4% 
Facilitating Discourse 17.0% 

Lesson Phase 
Launch 19.3% 
Explore/Investigate 46.6% 
Summary 34.2% 

Clarity 
Low 8.5% 
Medium 51.8% 
High 39.7% 
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In this example, the coach provided the teacher with the exact questions the coach thought 
should be asked. About one-quarter of the suggestions were coded as Teacher Actions. In the 
following suggestion, the coach encouraged the teacher to share student work on a document 
camera, “If you see some kids with some interesting work, good work, you could have them put 
it on there. The other option is you take a picture.” The coach specifically provided direction to 
the teacher about what to do (an action) if a particular situation occurred (students with 
interesting work).  
							With respect to Lesson Phase, the majority of the suggestions focused on the exploration of 
the lesson (Explore/Investigate, 46.6%). The suggestions related to the Explore/Investigate phase 
often referenced the participation structure or other aspects of the lesson design that related 
specifically to what students would do after the lesson was launched, but prior to a summary or 
discussion. Summarize, as a lesson phase, was the focus on more than a third of the suggestions. 
A majority of the suggestions that focused on the Summarize phase of the lesson addressed how 
to structure a summarizing discussion or questions that should be asked during this discussion.  
      Regarding Clarity, most of the suggestions were coded as Medium (51.8%) or High (39.7%) 
Clarity, meaning there was more than one way (Medium) or only one way (High) that the 
suggestion could be accomplished. As an example of a High Clarity suggestion, meaning there 
was only one way to implement the suggestion, one coach said, “Have them in partners,” which 
offered only one course of action. In contrast, an example of a Low Clarity suggestion (8.5%) 
was “Give students the opportunity to arrive at their own solution.” This was coded as Low 
Clarity because there would be many different ways that a teacher could provide an opportunity 
for students to come to their own solution.  

Discussion and Conclusion 
The suggestions coaches provided to teachers occurred through directive comments that 

occurred as the coach and teacher interacted in the coaching conversation (Ippolito, 2010). In this 
negotiated space of learning, the coaches often used dialogue to tell the teacher specifically how 
the lesson should be designed, including what task should be used or how a task should be 
modified. Coaches commonly gave direct suggestions of exact questions teachers should ask 
students while teaching. They also provided input on what the teacher should do physically 
during the lesson, such as how to show student work. The directive comments of the coach 
focused mostly on the Explore/Investigate and Summarize parts of a lesson and were Medium to 
High clarity. We consider these suggestions to be the coaches’ way of conveying direct 
instruction in the context of content-focused coaching (West & Staub, 2003). 

We recognize the need for more extensive research on coaches’ suggestions and how those 
suggestions relate to the relational dynamics of a coaching context, but we believe the findings of 
this study provide a typology of suggestions made by coaches engaging in coaching cycles with 
teachers. We see this way of characterizing suggestions as the first step in gaining more insight 
of how coaches’ suggestions can be effective for supporting teachers. Knowing the content of the 
suggestions not only provided insight on what is being talked about, but it raises questions about 
why those topics are being discussed and how those topics could be intentionally selected to 
support teachers in particular aspects of practice. Research has shown that teachers respond to 
feedback (e.g., Cherasaro et al., 2016), which indicates that coaches’ suggestions can be 
purposeful in what they talk about with teachers.  

The findings about the Object, Lesson Phase, and Clarity of suggestions raise questions for 
future research. First, the present study focused on the coaching conversations and the 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 705 

suggestions that were provided. Knowing whether or not the teachers actually implemented these 
suggestions would provide insight on the extent to which teachers follow what the coaches 
recommend. Further research on whether or not teachers follow the suggestions, and perhaps 
why or why not, would add to the existing literature on coach-teacher dynamics. Second, it 
would be interesting to know if the coach and teacher discussed the suggestions when they met 
after the lesson was taught during the debriefing meeting. Analysis of these interactions would 
also provide details on the process of providing suggestions.  
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This research is part of the Norwegian Research Council’s FINNUT-granted project MIM: 
Mathematics Education in Indigenous and Migrational contexts: Storylines, Cultures and 
Strength- Based Pedagogies, (see https://www.usn.no/mim), a research collaboration with 
researchers in the US and Canada. We draw on participatory approaches to investigate 
educational possibilities and desires, in times of societal changes and movements. Although we 
focus on the Norwegian context, we recognize that societal movements impact many countries 
throughout the world. With these changes and movements of people, language diversity may be 
the most obvious challenge, but this reality also connects to cultural differences and conventional 
characteristics of the discipline (Andersson et al, 2022). Indigenous communities have 
experienced linguistic and other challenges for decades as a result of colonization. 

As Bascia and Jacka (2001) show, the way institutions respond to rapid changes in social 
societies, with an increasingly diverse student population, are both slow, piecemeal, and 
fragmented. It is of huge importance that teacher students are well prepared through their 
education when it comes to mathematical knowledge as well as being prepared for meeting all 
students regardless of their social, linguistically, and cultural backgrounds. In this research, we 
draw on interviews with master students who wrote their thesis within mathematics education. 
Teacher students’ voices about mathematics teacher education is unique and have potential to 
raise awareness on aspects less visible in dominant conversations about mathematics teacher 
education. In this poster session, we want to learn from the North American contexts and listen to 
how colleagues talk about the preparation of becoming mathematics teachers for classrooms with 
a high number of minoritised students. Hence, we wish to encourage critical conversations about 
mathematics teacher education. The research question guiding this poster presentation is: What 
storylines emerge in interviews with master students in mathematics teacher education? 

The data comes from in depth semi structured interviews with seven master students who 
completed their five-year mathematics teacher education with a master thesis connected to the 
MIM-project. Our analysis is informed by positioning theories (Wagner & Herbel-Eisenmann, 
2009). We independently read each interview multiple times and took notes on the range of what 
the master students talked about from their teacher education and what they (not) learnt or 
critically reflected on and discussed during their teacher education. This allowed us to reflect on 
the emerging storylines in the students’ narratives individually, before we met and discussed 
these as a group. Our analysis has made us aware of strong storylines connected to a) language b) 
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method rigidity in schools and in mathematics teacher education c) cultural invisibility among 
students in mathematics classrooms and mathematics as a culturally neutral subject. 

In a time where the world has gone through a rapid demographic change with increasing 
diversity which is mirrored in classrooms, we want to explore and discuss these storylines to raise 
a discussion connected to the social, ethical, and political dimensions of mathematics education. 
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This preliminary study explores how digital clinical simulations can reveal pre-service teachers’ 
understanding of equity and mathematical instructional decisions. Pre-service teachers engaged 
in a digital clinical simulation where their responses to scripted mathematical small group 
scenarios led them to different simulated outcomes. The analysis of the full class debrief 
conversation following the simulation experience surfaced how pre-service teachers interrogated 
the boundaries of mathematics education. This revealed how they felt tension about certain 
conceptualizations of mathematics teaching and equitable pedagogies. This study suggests that 
digital clinical simulations could support pre-service teachers’ sensemaking of the inherent 
relationship between mathematical pedagogy and equitable orientations through moments of 
tension within the simulation, and interrogation of that norm during the debrief.  

Keywords: Preservice Teacher Education, Teacher Beliefs, Technology  

Teacher choices, including those of pre-service teachers, operate within contexts where 
power shapes classroom interactions (Chen et al., 2021; Chen et al., 2022; Yeh et al., 2020). 
Power is connected to teachers’ instructional choices by seeing how those smaller interactions 
perpetuate, challenge, or reimagine hierarchical systems as they exist within mathematics 
classrooms (Philip et al., 2019). If a decision falls outside of the normative boundaries of 
mathematics education (i.e., how mathematics education is understood by hierarchical systems 
of power), teachers can perpetuate a “culture of exclusion” and whiteness within mathematics 
thinking, doing, and teaching (Battey, 2013; Battey and Leyva, 2016; Louie, 2017b; Martin, 
2009; 2012). In other words, there is a potential for pre-service teachers to position students at 
fault when an instructional decision “fails” when power is not seen as part of every interaction 
(Battey et al., 2018; Mendoza et al., 2021; Philip et al., 2019; Shah, 2017). To understand the 
interweaving of instructional decisions and the boundaries of mathematics education, pre-service 
teachers may need a place to reflect on their moment-to-moment choices and think of how they 
potentially expand or enclose opportunities towards more inclusive learning experiences. 

This study aims to explore digital clinical simulations as form of practice for pre-service 
teachers to reflect on how they understand equity within designed mathematics classroom 
interactions. Digital clinical simulations are a form of practice with prompts to respond in-the-
moment to scripted characters (Sullivan et al., 2020); improvisational decisions made within the 
simulation cause a scripted linear path to split at specific moments within the simulation. 
Because this form of practice is not on real students, digital clinical simulations can be used with 
pre-service teachers to engage in practice and reflect on how decisions they make within the 
simulation are shaped by a culture of exclusion surrounding mathematics teaching and learning. 
In this exploratory paper, we will be analyzing how pre-service teachers engaged with a digital 
clinical simulation and made sense of equity following this experience. In this paper, we begin to 
answer this question: How are the normative boundaries of mathematics education interrogated 
by pre-service teachers within a debrief following a digital clinical simulation experience?  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 710 

Conceptual Framework 
We believe digital clinical simulations can be used as a conduit to surface the ways pre-

service teachers interrogate the boundaries of mathematics education. A key part of pre-service 
teacher practice includes recognizing, questioning, and reflecting on the ways some mathematics 
content, thinking, and doing are positioned as more valid than others within what we are calling 
the normative boundaries of mathematics education (Louie, 2017a; Warren et al., 2020). 
Building from an Anzaldúan philosophy of mathematics education (Anzaldúa, 1987; Leyva, 
2022), we believe the process of interrogation can be used to examine how pre-service teachers 
question normative boundaries of mathematics education. To optimize the way interrogation of 
boundaries can take place, digital clinical simulations can be designed with a queering lens to 
create moments of tension towards complicating pre-service teachers’ understandings of 
normative ways of doing and learning mathematics (McWilliams and Penuel, 2016; Yeh & 
Rubel, 2020). Digital clinical simulations that pair moments of tension within practice positions 
the subsequent debrief to focus on these moments of tension. This, in turn, positions their 
reflections to show an expansion or reification of boundaries at these moments of tension in 
relation to more racial, queer, and/or intersectional form(s) of inclusion or exclusion (Kavanagh 
et al., 2020a; 2020b). 

Methodology 
This study took place in the fall of 2022 within a pre-service teachers’ mathematics 

methodology course at a large private research university in an urban city in the northeastern 
United States. The eight students in this methodology class were members of a fellowship 
program that trained teachers to work in urban schools within the same city. For this study, a pair 
of mathematics teacher educators facilitating the methods course designed a digital clinical 
simulation using a platform called Teacher Moments. Within this simulation, three small groups 
were designed to model experiences that positioned instructional decisions within group 
dynamics in relation to equitable mathematics teaching (Bartell et al., 2019; Hand, 2012). Within 
the simulation, pre-service teachers were asked to either select a response from a set of responses 
or record an auditory response. Although all prompts for the auditory responses led down the 
sane linear path in the simulation, prompts for a selection response meant that pre-service 
teachers went down different paths depending on their selection. The pre-service teachers 
gathered as a class to debrief their experience with the mathematics teacher educators after 
engaging with the simulation. In the first phase of the debrief, pre-service teachers were asked to 
discuss their experience working with the first simulated small group.  

The first small group was designed with three simulated students (Aliyah, Sandro, and 
Willow). This small group was designed to elicit moments of tension about student status. When 
considering student status, a culture of exclusion influences the decision making of teachers to 
not perceive students to be valuable thinkers unless engaging in particular ways of showing their 
mathematics or regurgitating knowledge (Battey & Leyva, 2016; Langer-Osuna, 2017; 2018; 
Louie, 2017b). In the design, Aliyah dominated the discussion and was the only student 
explicitly explaining their mathematical thinking. Along with this, other moments of tension 
were designed, such as Sandro prompting the pre-service teachers that their group fine (e.g., “We 
are good over here”), or Willow continually asking for specific support (e.g., “Are we heading 
down the right path?” and “I’m about to give, us, can you please just help us?). 

The audio recordings of the pre-service teachers debrief with the math teacher educators 
were transcribed and analyzed for moments of interrogation. Luis Leyva’s conceptualization of 
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Anzaldúan philosophy of mathematics education was adopted as a lens to identify moments of 
interrogation in relation to the boundaries of mathematics education (2022). The set of codes 
that emerged during this preliminary analysis identified the modes of interrogation that were 
used by the pre-service teachers. The emergent modes of interrogation were in relation to the 
way in which pre-service teachers questioned boundaries of mathematics education. Examples of 
these include a singular interrogation, where there is evidence within the discourse of a pre-
service teacher reifying the boundaries of mathematics education by providing reifying the 
boundaries of mathematics education by providing a singular explanation or reasoning with one 
or more pieces of evidence; a multifaceted interrogation, where there is evidence within the 
discourse of a pre-service teacher questioning the boundaries of mathematics education by 
providing multiple explanations or reasoning with one or more pieces of evidence. This 
framework was adopted to highlight the role of fluidity within recognizing, questioning, and 
reflecting on pre-service teacher learning about equity in mathematics classrooms; we are using 
the multiplicity implicit within Anzaldúan and broader queer perspectives to highlight 
interrogation as a way towards expansive learning and understanding (Anzaldúa, 1987; Leyva, 
2022; McWilliams and Penuel, 2016; Yeh & Rubel, 2020). Below, we will focus on the pre-
service teachers’ debriefing their experience with the first small group. 

Preliminary Findings 
Analyzing the debrief showed how the lens of interrogating boundaries highlighted pre-

service teachers’ values in terms of students’ mathematical thinking and doing. In this phase of 
the discussion, pre-service teachers used both singular and multifaced forms of interrogation. 
Whereas almost all the singular forms of interrogation reified normative boundaries of 
mathematics education, the multifaceted interrogation examples were a mix of enclosing or 
expanding boundaries. We will present two pre-service teachers’ reflections from the same part 
of debrief conversation that showcase multifaceted interrogation and illustrate how these 
moments of interrogation helped surface the types of beliefs and actions pre-service teachers 
valued. 
Example of Multifaceted Interrogation towards Expanding Boundaries 

Some pre-service teachers used multifaceted interrogation in a way that ideologically 
expanded their understanding of the boundaries of mathematics education. Alice, a white female 
pre-service teacher in her early twenties, for instance, said the following: 

[1] Sandro's was like, “We are good over here.” I almost kind of thought that, like, he was 
just one of the kids that, like, didn't want the teacher over at his group….[2]and he didn't 
want to admit that he needed help… [3] like he just kind of wanted to be with his groupmates 
and maybe like, get off, get sidetracked and talk about something else. [4] So, I kind of said, 
like, “I'm glad you're doing okay. [5] I'm glad you think you understand it, but do you mind 
walking me through what you did and explain it to me, so I have a better understanding?”.   
Here, Alice is questioning the boundaries of mathematics education by providing multiple 

explanations or reasoning. First, Alice names tensions between what type of status Sandro is 
showing within the simulation. She refers to [1] Sandro not wanting the teacher to come over 
because of either [2] his uncomfortableness of asking for help or [3] because he did not want to 
do work. To address this with instruction decisions, Alice shared that, within the simulation, she 
[4] responded the way she did to echo that she knows he is okay, [5] to affirm he knows the 
contents, and [6] to ask him to clarify so she as the teacher has more details on where he is 
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mathematically. With an interrogation lens, Alice can be seen valuing that Sandro may have had 
multiple reasons for wanting the teacher to leave the small group. Although [3] part of that 
interpretation could be understood as a deficit view about Sandro, Alice [4-5] tried to hold 
Sandro in a way where she valued him as a person and as a doer of mathematics who 
(potentially) had mixed feelings about sharing his thinking.  
Example of Multifaceted Interrogation towards Enclosing Boundaries 

Other instances of pre-service teachers using multifaceted interrogation did so in a way 
where their questioning reinforced existing boundaries of mathematics education. Dylan, a white 
male pre-teacher in his mid-twenties, said the following about the small group later within the 
debrief: 

[6] I kind of picked up on that… [7] Sandro hadn't necessarily really done the problem or 
really engaged with it… [8] I thought maybe Aliyah knew what was going on and it was 
relatively easy for her. [9] And then Willow and Sandro maybe weren't totally on the same 
page. [10] So, I engaged in a similar strategy…by calling Sandro out…like, “Are you done?” 
[11] Which I didn't say that way, but the idea was, “Sandro can you explain what Aliyah did 
here?” [12] And just, as like, getting everybody on the same page. 
Here, Dylan is reifying the boundaries of mathematics education because his multiple 

explanations why Sandro did not have status here related to how he views value within the 
mathematics. First, Dylan seems to identify valuable mathematics thinking and doing if [7] the 
problem is done and [8] there is evidence that the problem is easy to do. Dylan’s description of 
wanting to [12] make sure everyone understands what is going on mathematically is bookended 
by [10-11] Dylan jokingly saying he will “Call Sandro out.”  Although this could be understood 
as jest, there is a question in terms of Dylan valuing accountability and compliance by the 
students, along with an assumption solely from the simulation that Sandro had none no valuable 
work with the task.  

Discussion 
Within the debrief conversation, we found the lens of interrogation surfaced pre-service 

teachers’ beliefs and actions about the boundaries of mathematics education. Mathematical 
boundaries were enclosed or expanded in terms of how pre-service teachers questioned what was 
deemed as valuable mathematical thinking and doing within simulated moments of tensions. 
Although some tensions and interrogations could be seen as ideologically moving toward 
expansive boundaries, almost the same amount moved towards leaving those boundaries as is. 
Not connecting the boundaries of mathematics education as it functions as teacher decision 
making within approximations of practice, therefore, can perpetuate deficit perspectives about 
students. 

The analysis of the full class debrief conversation illustrates how pre-service teachers feel 
tension around certain conceptualizations of mathematics teaching and equitable pedagogies 
within digital clinical simulations. Revealing their process of interrogating, in turn, shows that 
there is a continued need to create practice spaces where pre-service teachers values and beliefs 
can be seen and addressed if needed. If practice spaces are not designed to surface tensions for 
pre-service teachers to question these beliefs, mathematics teacher educators may be further 
fueling settled perspectives of mathematics teaching and learning to new teachers. If this happens 
during practice spaces, there is a potential for pre-service teachers to continue making the same 
decisions in the classroom with actual students. This study suggests that digital clinical 
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simulations could support pre-service teachers’ understanding of the inherent relationship 
between mathematical pedagogy and equitable orientations if moments of tension are designed 
within the simulation, and opportunities to interrogate that norm are given during the debrief. 
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“Martinez Elementary” teachers participated in professional development activities during the 
2021-22 school year to learn about the Discursive Mathematics Protocol (DMP), a problem-
solving based instructional protocol designed specifically for use with multilingual learners 
(MLs). These activities included training sessions designed to help the teachers learn about the 
DMP’s dual focus on mathematical reasoning and the mathematics register. In this paper, a 
socio-political framework is used to examine interview data collected from Martinez Elementary 
teachers to learn how they characterized their experiences and their students’ experiences when 
they implemented the DMP during problem-solving lessons. This study contributes to the 
research literature by providing insights about how teachers and students at a diverse school 
characterized their experiences involving problem-solving based instruction.  

Keywords: Problem Solving, Equity, Inclusion, and Diversity.  

In the study presented here, we use narratives collected from teachers at “Martinez 
Elementary” to examine their experiences and their students’ experiences with problem-solving 
lessons that were implemented with the aid of an instructional protocol designed specifically for 
use with multilingual learners (MLs). The protocol, referred to as the “Discursive Mathematics 
Protocol” (DMP), builds on Pólya’s (1945/1986) iconic problem solving heuristic by 
incorporating research-based “language practices” (LPs) grounded in theories of academic 
language development and acquisition (Moschkovich, 2015) and “essential teaching practices” 
(ETPs) (National Council of Teachers of Mathematics [NCTM], 2014). The DMP is intended to 
be used as a guide by teachers during problem-solving lessons to support students to 
simultaneously learn the language of mathematics and develop their mathematical reasoning 
through the implementation of the LPs and ETPs, respectively. The Martinez Elementary 
teachers’ narratives are examined through a socio-political theoretical perspective. 

Martinez Elementary is a highly diverse elementary school located in rural, northern New 
Mexico, USA that serves economically underserved communities populated almost entirely by 
Hispanic and Native American families (primarily Diné, also known as Navajo). The term 
“Hispanic” is commonly used in New Mexico to denote individuals and communities of Spanish 
descent. During the 2021-22 school year, Martinez Elementary teachers participated in 
professional development (PD) activities to learn about the DMP. These activities included 
attending PD sessions designed to help the teachers learn about the DMP and how to implement 
it, participating in both planning and debriefing sessions on six occasions (three times in the fall 
and three times in the spring) prior to problem-solving lessons during which they used the DMP, 
and observing instruction in which the use of the DMP was modeled for them during a problem-
solving lesson with their students. The research questions addressed in this study are: (1) How 
did Martinez Elementary teachers characterize their experiences learning about and 
implementing the DMP during problem-solving lessons? (2) How did teachers characterize how 
their students experienced problem-solving lessons in which the DMP was used? Prior to 
presenting the research findings, instructional interventions for MLs and the DMP are 
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introduced. Brief reviews of the research literature are then provided on problem-solving based 
instruction and on the historical lack of access that minoritized and economically underserved 
students like those who attend Martinez Elementary have had to problem-solving based 
mathematics instruction in the United States.  

Mathematics Instructional Interventions for Multilingual Learners 
There are a preponderance of interventions designed for use with MLs with learning 

disabilities (e.g., See Kong & Swanson, 2019). Interventions also exist for “mathematically 
promising” MLs (Cho et al., 2015). Only a few interventions such as the SIOP (Sheltered 
Instruction Observation Protocol) Model (Echevarría et al., 2011; Short, 2017) are designed 
specifically for use with MLs. SIOP can be used in any content area, not just mathematics. 
Through Dynamic Strategic Math (DSM), teachers modify vocabulary used in mathematical 
problems to support individual MLs’ language proficiency and provide scaffolded instruction so 
that students can develop strategies to solve problems (Orosco et al., 2011). Culturally 
appropriate problem-solving instruction (CAPSI) includes explicit vocabulary instruction, 
schema-based instruction, and video modeling (Luevano & Collins, 2020). Baird et al. (2020) 
describe a mathematics intervention for MLs referred to as Project Mathematics and English 
Language Development (MELD). In MELD, significant scaffolds are provided to MLs such as 
student glossaries, illustrations, and content that is explicitly connected to students’ home 
cultures. The DMP is unique among instructional protocols designed for MLs because of its dual 
focus on developing students’ mathematical reasoning (not simply the learning of math skills) 
and supporting students’ learning of the mathematical language. 

Introducing the Discursive Mathematics Protocol 
Early iterations of the Discursive Mathematics Protocol (DMP) were created more than a 

decade ago to address the lack of instructional protocols designed specifically to support 
mathematics instruction of MLs. The DMP takes advantage of Pólya’s (1945/1986) heuristic for 
structuring problem-solving lessons by incorporating the four stages of the heuristic: (1) 
Understand the problem, (2) Devise a plan to solve the problem, (3) Carry out the plan to solve 
the problem, and (4) Reflect back on the plan and solutions derived. The language practices 
(LPs) and essential teaching practices (ETPs) are then integrated throughout the four stages of 
Pólya’s (1945/1986) heuristic. The LPs are three-fold and are intended to provide teachers with 
insights about how to intentionally model language to help students communicate and learn (Lee 
et al., 2013) the language of mathematics. They include: Using instructional strategies designed 
to develop everyday English language skills (LP#1), engaging students in mathematical 
discourse (LP#2), and developing language specific to the discipline of mathematics (LP#3). It 
should be noted that the focus of LP#1 is the development of everyday English skills because in 
the United States, English is the language of instruction. In settings where English is not the 
language of instruction, LP#1 could focus on everyday language skills of the language of 
instruction in that setting. 

The three ETPs included in the DMP are derived from the “Mathematics Teaching Practices” 
described in Principles to actions: Ensuring mathematical success for all (National Council of 
Teachers of Mathematics [NCTM], 2014), a policy document intended to provide guidance for 
U.S. teachers and policymakers in mathematics education. The ETPs are intended to support the 
development of students’ mathematical reasoning. Mathematical reasoning, broadly defined as 
“the capacity to think logically and to justify one’s thinking” (NCTM, 2014, p. 7), involves 
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searching for similarities and differences, validating, and exemplifying (Jeannotte & Kieran, 
2017). The three ETPs included are: Use and connect mathematical representations (ETP#1), 
pose purposeful questions (ETP#2), and elicit and use evidence of student thinking (ETP#3). 
There are many relationships among the LPs and ETPs. For example, posing purposeful 
questions (ETP#2) is a strategy that teachers can use to initiate discourse (LP#2) with and among 
students (Kooloos et al., 2020). For additional information about the DMP, see Kitchen et al. (in 
review). 

Problem-Solving Based Instruction 
In problem-solving based instruction, much emphasis is placed on students making sense of 

mathematics by making connections, communicating, and using representations to characterise 
their ideas (Gamoran et al., 2003). A prominent feature of problem-solving based instruction is 
the value placed upon mathematical conversations or discourse. During mathematical discourse, 
the teacher seeks to foster and engage in dialogue with her students (Herbel-Eisenmann & 
Cirillo, 2009). Through discourse, teachers support students to make sense of mathematical 
ideas, construct arguments, and justify mathematical claims (Moschkovich, 2015). Engaging 
students in mathematical problem-solving demands much of teachers. For instance, to help 
inform instruction during problem-solving lessons, teachers should look for opportunities to 
elicit and use evidence of students’ thinking (Davidson et al., 2019). 
Minoritized and Economically Underserved Students Access to Problem-Solving 

In the United States, problem-solving based instruction in mathematics has generally not 
been a priority at diverse schools attended largely by minoritized and economically underserved 
students such as MLs (Davis & Martin, 2008; Kitchen, 2020). Low academic expectations have 
historically been the norm at schools attended by minoritized and economically underserved 
students (Kitchen, 2020; Kitchen et al., 2021). It is also the case that teachers at these schools 
often do not have the content and pedagogical expertise needed to support the development of 
their students’ mathematical reasoning (Kitchen et al., 2007). Moreover, teachers who work at 
these schools may not believe that their students can learn via demanding instructional formats 
such as problem-solving based instruction (Boaler, 2002). There also tends to be an emphasis at 
these schools on the instruction of procedures over meaning making and understanding (Davis & 
Martin, 2008). Students who attend schools with such traditional instructional emphases are 
inclined to develop the belief that they cannot learn mathematics or that mathematics is just not 
for them (Kitchen, 2003). When professional development activities were initiated at Martinez 
Elementary to inform the school’s teachers about the DMP, it was apparent that teachers at the 
school were generally not implementing problem-solving based instruction with their minoritized 
and economically underserved students. The theoretical perspective and research methods used 
in the study are introduced next. 

Socio-political Theoretical Perspective 
Gutiérrez’ (2013) framed the “socio-political turn” that has taken place in the mathematics 

education research community as the need to “transform mathematics education in ways that 
privilege more socially just practices” (p. 40). From a socio-political theoretical perspective, 
educational policies and practices are studied from the viewpoint that differential access to 
educational opportunities is grounded in differences based on racialized and classed experiences 
(Battey, 2013). In the United States, White and Asian middle class and upper-middle class 
students have historically had more opportunities to learn challenging mathematical content than 
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minoritized and economically underserved students (Schmidt & McKnight, 2012). A socio-
political lens places the economic, social, cultural, and political contexts of teaching and learning 
in the foreground when considering phenomena such as whether minoritized students and 
economically underserved students such as MLs have access to rigorous mathematics instruction 
(Chirinda et al., 2022). A socio-political theoretical perspective was used in this study to 
examine the research participants’ narratives vis-à-vis their experiences implementing the DMP 
with their minoritized and economically underserved students. It was also used to examine 
teachers’ narratives regarding how their students responded to problem-solving based instruction 
in which the DMP was used. 

Methods and Data Sources 
Research strategies employed in narrative inquiry (Riessman, 1993) were used to solicit and 

examine Martinez Elementary teachers’ narratives collected from focus group interviews 
conducted with them. The use of narrative inquiry is an intentional strategy used by social 
scientists to acknowledge the need to understand people’s perspectives through their experiences 
(Pinnegar & Daynes, 2007). In this approach, I make use of stories told by the participants to 
make sense of underlying meanings that they communicated via their narratives (Riessman, 
1993). Teachers’ narratives were examined through a socio-political lens to understand teachers’ 
perspectives. Using this lens, particular attention was paid to the teachers’ narratives regarding 
educational opportunities afforded to them and to their students in mathematics. 
Participants 

All of the teachers at Martinez Elementary, not including instructional aides, were invited to 
participate in a focus group interview at the conclusion of the 2021-22 school year. Out of the 20 
teachers at the school, 11 elected to participate in the focus group interview. Seven of the eight 
teachers whose narratives are featured here had taught for at least eight years. Five of these eight 
teachers had taught exclusively at Martinez Elementary or at a school in the town where 
Martinez Elementary is located. Thus, the narratives featured here are from teachers who had 
significant teaching experience at Martinez Elementary or the community it served. In addition, 
“Janine,” “Angelo” and “Gabriel” (all teacher names used throughout are pseudonyms). had been 
recruited from their home country of the Philippines to teach at Martinez Elementary. At the time 
this study was undertaken, the school district in which Martinez Elementary is located recruited 
teachers from the Philippines to teach in the district because of teacher shortages they were 
experiencing. Similar to other teachers at Martinez Elementary, these three Filipino teachers had 
minimal experiences with problem-solving based instruction both as pre-tertiary students 
themselves and as teachers. 
Data Collection 

Semi-structured interviews were carried out via Zoom with participating teachers in April 
2022. Four focus groups of teachers were interviewed, with each group consisting of 2-3 teachers 
from across the varying grade-levels found at the school (grades 4-6). Teachers were randomly 
placed in a group, though priority was given to having teachers from differing grade-levels in 
each group. Each interview was recorded and lasted between 60 and 75 minutes. Ten interview 
questions were asked, four with a pre-determined probe question (also known as a follow-up 
question). The following is an example of a question asked: “How helpful did you find following 
the four stages of Pólya’s problem-solving heuristic during the problem-solving lessons?” A goal 
of the interviews was to engage participants in a conversation through the use of open-ended 
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questions that prompt the teachers “to construct answers,” (Riessman, 1993, p. 54) in 
collaboration with the interviewer, a goal of narrative inquiry research. 
Data Analysis 

Participating teachers’ narratives were examined through a socio-political lens. I analyzed the 
teachers’ narratives using a thematic analysis approach in which the focus is more on what is 
said rather than on how it is told (Riessman, 1993). I engaged in an iterative process of 
examining themes that emerged across the interviews, reflecting upon, and then clarifying 
participants’ views. With a thematic analysis, the goal is to first collect the stories, then to 
inductively group similar stories, and finally to select key narratives for illustration purposes 
(Riessman, 1993). 

Results 
Two major themes were identified related to teachers’ experiences implementing the DMP 

during problem-solving lessons and what they learned from using it: (1) Participants experienced 
a paradigmatic shift implementing the DMP, and (2) Participants’ instruction changed through 
their experiences implementing the DMP. One major theme was identified about how teachers 
characterized their students’ experiences vis-à-vis problem-solving lessons in which the DMP 
was used: Students were empowered. I now share narratives for the two themes that address the 
first research question, followed by the theme found to address the second research question. 
Paradigmatic Shift 

Teachers shared in their narratives that learning how to implement the DMP during problem-
solving lessons was a paradigm shift for them; many had not been trained about how to 
implement problem-solving based instruction. Jim shared how teaching problem-solving using 
the DMP as a guide meant moving away from instruction in which students are first shown how 
to compute or solve a problem: 

I struggled at first to implement the DMP. I definitely like struggled the first couple times 
even wrapping my head around what we were doing. It was a break from the I do, we do, you 
do together, you do alone, which was kind of the bedrock since I started teaching. And so, 
that was a hard shift at first for me to even grasp. And then, once I kind of saw how it 
worked, I started implementing it in any subject that I could. 
Both Suzie and Gloria shared what a big change it was for them to teach problem-solving. 

Suzie said, “I think it was kind of different because of the way we've taught for so long.” Gloria 
shared that, 

… even though it was math, it was almost like going in somewhere and someone speaking a 
foreign language, that's how we felt at first. It was completely changing a lot of the ways we 
had been told we have to teach, which ended up being a good thing, but at the front, it was 
kind of, you know, different. 
From a socio-political perspective, these narratives reflect how teachers at Martinez 

Elementary had limited opportunities themselves to experience and learn about problem-solving 
based instruction in a teacher education program or through PD. However, as they continued to 
learn about the DMP and implement more tasks, they became more comfortable using problem-
solved based instruction as their students adapted to their instruction. 
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Changed Instruction 
Gloria talked about how the DMP PD sessions and support provided had empowered her as 

an instructor: “It was really empowering for me to know that we could give them that power and 
let them [the students] work through a problem, and I think that's what I took out of it the most.” 
Alana described how she learned about the importance of giving students the space to struggle to 
solve problems, rather than focusing simply on covering content: 

It helped me slow down too as a teacher and think that sometimes it's okay for them [her 
students] to struggle, it's okay if my kids don't have standard algorithms. Let them solve it 
[the problem], and then we can always come back and talk about it, instead of what's the 
more efficient way achieving our goal, or whatever. 

Alana also provided some insights about how using the DMP impacted her instruction: 
[I started to] really explain and make sure that they understood the task [a feature of the 
DMP], because sometimes I feel like we just give the task and say, ‘Okay, you should know 
how to do this.’ Also, making sure that they all have the vocabulary, the math register they 
need, was super helpful. And giving them the opportunity to solve it in any way they choose, 
because when we teach in class, it seems like we're teaching a certain skill or objective, and 
so we want them to do it this way. But these tasks gave them the opportunity to just use what 
they had, use their knowledge. 
Through the DMP trainings, Jim learned about the value of constructing and using what he 

termed “bite-sized” questions: “Yeah, I’m now using bite-sized questions, that’s what I'm going 
to call it.” The second ETP in the DMP is posing purposeful questions, something that Jim 
admitted he rarely did in his mathematics lessons prior to learning about the DMP. Posing 
purposeful questions and prompts involves more than simply eliciting information from students; 
such questions invite students to explain and potentially justify their thinking (Davidson et al., 
2019). Analogous to the previous section, from a socio-political perspective the teachers at 
Martinez Elementary had had limited opportunities to learn about problem-solving based 
instruction (Kitchen, 2020). For them, learning about asking purposeful questions during 
mathematics lessons was a transformational experience that promoted their students regularly 
sharing their mathematical ideas with them and their students in class. Moreover, there was a 
sense of empowerment among the teachers to improve their mathematics instruction because 
their abilities, confidence, and motivation had increased (Kitchen, 2020) through the use of the 
DMP. 
Students Were Empowered 

When reflecting upon his experiences implementing the DMP, Angelo discussed how his 
students had learned strategies that they could use to solve problems: 

We can again say that our kids really improved their mathematical thinking in attacking a 
word problem. [When you] compare how students did in the past with task number one with 
how they did with the last tasks, they now have the skills to attack problems. For me, as their 
teacher, it's [engaging in problem-solving] been effective for our kids. 
Similarly for Suzie, she was pleased that her students were learning how to think through 

engaging more in mathematical problem-solving: 
I saw kids do things that I don't think I would have seen, like if we just gave the regular 
problems or whatever. You start seeing kids really thinking differently, you're seeing the kids 
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open up and show how they do it, and then I feel like the kids start feeling more confident 
and trying different things, too. 
Sara shared how the COVID-19 pandemic had negatively affected students’ learning and 

how engaging students in problem-solving via the DMP had made a difference in terms of 
helping students have more confidence in mathematics: “I think it's starting to build that 
confidence in these kids. That's a great thing to see [after the damage caused by the pandemic]. 
Gloria described how the changes in her instruction changed how her students responded to 
mathematics: 

Instead of me just getting up there and rushing through the lesson and this is how you do it, 
hopefully you'll remember it [based on what I show you to do]. I thought that [solving 
problems] was a little bit more helpful for my students and they seem to enjoy it a lot more. 
And then that way, as I was walking around the room during [problem-solving lessons], I 
could just prompt here and there, asking students to explain to me what you're doing just like 
we did with the big math tasks that you did, they liked it. By the end of the year, every single 
kid, even my low math kids, they are all asking can I do it on the board. Can I show them 
how to do this. They gained so much confidence this year, compared to any other year. 
Rather than showing students how to solve a problem, Gloria believed she was now able to 

empower her own students to solve challenging problems without providing lots of instructional 
scaffolds. Alana agreed with Gloria, and shared the following: 

[I found] giving them the opportunity to solve it in any way they choose [was also 
empowering for her and her students], because when we teach in class, it seems like you 
know we're teaching a certain skill or objective, and so we want them to do it this way. But 
these tasks gave them the opportunity to just use their knowledge. I loved how kids went up 
[in front of the class to the board] and there would be four or five different ways [that her 
students solved the task]. And the kids, I think, were really empowered by that, especially the 
lower kids, I mean the kid that maybe sat there and did repeated addition 25 times. Like they 
got it correct, and so the fact they got the chance to go up there, I think, was big. 
Alana’s narrative also highlights how some students at Martinez Elementary were not be 

mathematically challenged, but were being relegated to continually practicing math skills. 
Gabriel expressed satisfaction with the PD he had experienced during the year to learn about the 
DMP and how it had affected his students: 

It's been a thrilling experience for me as a teacher doing the DMP. For some kids, this [type 
of instruction] is new to them, and they will do almost all the tasks, they will almost do all 
the work. [They’re used to] teachers just presenting at the board, giving examples. But this 
time [with the DMP], they get to think, find answers by themselves, and explain to their 
classmates. So, just what Angelo said, at first they were somewhat confused about what to do 
[to solve a problem], but as the time goes by, every time that we implement those tasks they 
are getting better now and getting the procedure, the process of the DMP and it has helped 
them a lot. We saw the great progress of our students, not only in presenting their ideas, but 
with how they solved problems and how they do that on their own. So, the growth of the 
students is so amazing, the jump of their thinking skills, the progress. And it's also shown in 
our [test] scores that students can now construct their sentences really well, express their 
ideas to their classmates. Overall, it has been an amazing experience. 
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As reflected in Gabriel’s response, he believed that students’ learning had progressed through 
the course of the academic year and that this growth was also demonstrated through improved 
scores on a mathematics assessment that the school district administered. Janine shared how her 
students’ experiences during problem-solving lessons had progressed: 

The tasks we solved early in the year, they were like hesitant to answer. As time has gone by, 
they're used to it. Now, they want to solve [the tasks] and they like to share with their group. 
They really love it! 

Discussion 
Though the DMP is designed for use specifically with MLs, the teachers at Martinez 

Elementary used it during problem-solving lessons that they implemented with all their students, 
including their MLs, in all their mathematics classes on six occasions during the 2021-22 school 
year. Through learning about the DMP and how to use it during problem-solving lessons, the 
teachers became empowered to teach using new instructional strategies. The teachers expressed 
how much they learned from incorporating the DMP as a guide during problem-solving lessons 
and even how, in Alana’s case, it had influenced her mathematics instruction in general. To 
change their instruction, teachers experienced a paradigmatic philosophical shift to come to 
value problem-solving based instruction. This shift resulted in teachers generally focusing less 
on showing students how to do mathematics. Instead, teachers were learning how to engage 
students in mathematics inquiry, something that many of them had never experienced as students 
themselves. From a socio-political perspective, the teachers’ narratives help to illuminate the 
limited opportunities that they had prior to participating in the DMP trainings to experience and 
learn about problem-solving based instructional formats. Given that all but one of the teachers 
whose narratives were included here had significant teaching experience, it was the case that 
teachers at Martinez Elementary generally lacked experience with problem-solving based 
instruction. Teachers at Martinez Elementary were simply not well-acquainted with this type of 
instruction. According to the teachers, it was also the case that students at Martinez Elementary 
were empowered through their experiences in the problem-solving based lessons. Teachers 
talked about how students learned mathematics and new problem solving strategies from these 
lessons, enjoyed these lessons, wanted to share their new mathematical insights with their peers, 
and were mathematically empowered through their experiencing with this novel instructional 
approach. From a socio-political perspective, the diverse student population at Martinez 
Elementary had also rarely experienced problem-solving based instruction. According to the 
teachers, these experiences were transformational for some students, for others it was a welcome 
relief from the sort of skills-based mathematics instruction that they had encountered for years. 

Given that teachers at schools primarily attended by minoritized and economically 
underserved students such as MLs in the United States may not believe that their students can 
learn via problem-solving based instruction (Boaler, 2002), it is important to introduce 
instructional protocols such as the DMP to support teachers at these schools to improve their 
instruction. While examples exist in the research literature of teachers who induct their students 
into problem-solving based learning environments (See, for example, Lampert, 2001), research is 
needed that provides practical insights about how to implement and sustain problem-solving 
based instruction in schools such as Martinez Elementary attended largely by minoritized and 
economically underserved students (Kitchen, 2020; Kitchen et al., 2021). This study contributes 
to this research area (See Boaler, 2011; Kitchen et al., 2009) by providing insights about how 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 723 

teachers who had limited experiences with problem-based instruction who teach diverse students 
responded to using a problem-solving based instructional protocol. The teachers’ narratives also 
demonstrate that teachers who have had little experience implementing problem-solving based 
instruction can, in fact, learn how to do so when consistent supports are provided to them to do 
so. Lastly, this study contributes to the research literature by providing evidence that minoritized 
and economically underserved students benefit from their teachers having significant supports to 
implement problem-solving based instruction in their mathematics classes. 
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The Numeracy Kit for Kindergarten 5-Year-Olds (NyKK-5) is a tool to support kindergarten 
teachers’ numeracy practices. Based on a pedagogy of enactment, the NyKK-5 was designed to 
simulate the types of in-class supports that have been identified as critical elements of effective 
mathematics professional development (PD). Two groups of teachers received PD on children’s 
early numeracy: The NyKK-5 condition was provided the NyKK-5 and the theory condition was 
not provided any pedagogical tools. Students in the NyKK-5 and theory classrooms 
demonstrated greater numeracy growth relative to students in a comparison condition. Teacher 
logs and classroom observations suggested that the amount of time spent engaging students in 
mathematics was more predictive of student learning than the NyKK-5 by itself, but the amount 
of teaching experience may define one condition under which use of the tool is optimized. 

Keywords: Professional Development; Early Childhood Education; Number Concepts and 
Operations 

Young children’s number sense is predictive of their future mathematical development, and 
kindergarteners who fail to acquire early numeracy skills tend to fall behind their peers as they 
advance through school (Aunola et al., 2004; Jordan et al., 2010). As such, teachers who provide 
a strong numeracy foundation in the early years play an important role in their students’ future 
academic success (Presser et al., 2015; Starkey et al., 2004). Early childhood educators, however, 
need support to establish these numeracy foundations in their classrooms (Ginsburg et al., 2008). 
In the present study, we investigated the impact of a professional development (PD) initiative for 
kindergarten teachers centered on a “pedagogy of enactment” (Grossman & McDonald, 2008, p. 
189). Our goal was to examine the effect of the professional development on children’s 
numeracy over the course of the kindergarten year and to use descriptions of the teachers’ 
classroom practice to explain the findings. 

Situating Early Numeracy Professional Development in Practice 
Early numeracy education centers on rich teacher-student conversations around numeracy 

concepts, where teachers capitalize on teachable moments during play and continually adjust 
instruction to respond to students’ in-the-moment, educational needs (Ginsburg & Ertle, 2008; 
Jacobs & Empson, 2016). Creating this kind of learning environment requires a profound 
knowledge of students’ numeracy development (Ball et al., 2008; Even & Tirosh, 1995), which 
enables teachers to notice and interpret students’ understanding, appropriately respond in the 
moment, and make informed instructional decisions to advance their learning (Ghousseini & 
Sleep, 2011; Ginsburg & Ertle, 2008; Jacobs & Empson, 2016; Stahnke et al., 2016). 
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Although attending to children’s mathematics thinking is a key characteristic of effective PD 
(Carpenter et al., 1989; Hawes et al., 2021), it is not sufficient: PD must be sustained and situated 
in the practice of teaching (Ball & Cohen, 1999; Borko et al., 2010). Such a pedagogy of 
enactment approach to PD entails in situ supports during the act of teaching, which are effective 
because they enhance teachers’ ability to incorporate newly-acquired PD content into their daily 
instructional routines (Ball & Forzani, 2009; Hiebert & Morris, 2012; McDonald et al., 2013). 
Regrettably, such PD is often resource intensive and rarely sustainable in the long run. In the 
absence of prolonged in-class support from school leaders and mathematics coaches (see 
Gibbons et al., 2017, for an example), teachers need alternative resources to help them make 
instructional decisions in the moment, particularly within messy classroom environments that 
contain many demands on their attention. We posit that usable devices, such as a toolkit, may act 
as a suitable proxy for these in-class supports. 

We developed the Numeracy Kit for Kindergarten 5-year-olds (NyKK-5) to act as a 
surrogate for the in-context supports that have been identified in previous research as an essential 
component of effective professional development (e.g., Ghousseini & Sleep, 2011). The NyKK-5 
is a collection of activities and corresponding materials based on a set of core early numeracy 
skills that have been found to be predictive of children’s achievement in the first grade and 
beyond (Jordan et al., 2007; Jordan et al., 2009; Navarro et al., 2012). Teachers can use the kit to 
enact numeracy activities in the classroom and formatively assess their students’ mathematical 
thinking. It is portable and designed for teachers to use on the fly to plan their lessons, interpret 
their students’ thinking, and make decisions about instructional moves that are responsive to 
their students’ learning needs (Jacobs & Empson, 2016). 

Present Study 
Our primary research objective was to investigate whether the use of the NyKK-5 in 

kindergarten classrooms adds value to children’s numeracy growth beyond PD content on 
children’s numeracy development alone. We assigned teachers to one of three PD conditions: (a) 
NyKK-5: PD on children’s thinking about core numeracy skills and on the contents and use of 
the NyKK-5; (b) theory: PD on the development of children’s thinking about core numeracy 
skills, but without the NyKK-5; (c) comparison: a non-numeracy PD. We assessed children’s 
numeracy growth over the school year to determine whether differences emerged between 
conditions. Because the NyKK-5 was designed to support teachers’ in-the-moment decisions 
about their instructional practice, we predicted that the growth in students’ learning would be 
greater in the NyKK-5 condition relative to the other two conditions. We also predicted that the 
students in the theory classrooms, because of the focus on children’s thinking, would experience 
greater numeracy growth than the students in the comparison condition. 

The second objective was to explain any condition effects using data on teachers’ classroom 
practices. Teachers completed daily teacher logs and researchers conducted classroom 
observations on the teachers’ enactment of PD-related material. These data were collected to 
lend insight into how teachers responded to the NyKK-5 and the conditions under which its 
effects could be maximized. 

Method 
Participants 

Participating teachers and their students were recruited from six public schools in a large 
urban school board in Canada. The eight participating kindergarten teachers all identified as 
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women and had between 2 to 29 years of teaching experience. 
The student sample consisted of 104 kindergarteners. Because of absence (1 student), lack of 

assent (2 students), and missing data on the numeracy assessment (5 students), there were 96 
students in the final sample. The participants had a mean age of 66.8 months (SD = 4.00) at 
pretest and 72.9 months (SD = 3.93) at posttest (41.1% girls; 58.9% boys; 0% other gender). 
Parents of participating students reported their household income in Canadian dollars on a 
demographic survey. We used these data as a proxy measure for family socioeconomic status. 
Almost a quarter (24%) of the participants did not respond or provided unusable responses to the 
question. Of those who did respond, 2.7% had an income less than $20,000, 9.6% had an income 
between $20,000 and $40,000, 11.0% had an income between $40,000 and $60,000, 5.5% had an 
income between $60,000 and $80,000, 6.8% had an income between $80,000 and $100,000, and 
64.4% had an income over $100,000. 
Design and Procedure 

We used a quasi-experimental pretest-intervention-posttest research design where the 
teachers were assigned to one of three professional development conditions: (a) the NyKK-5 
condition (4 teachers; n = 40 students) received professional development on children’s 
numeracy and were given the NyKK-5 to use in their classrooms; (b) the theory condition (2 
teachers; n = 27 students) received the same professional development on children’s numeracy, 
but were not given the NyKK-5; and (c) the comparison condition (2 teachers; n = 29 students) 
received professional development on children’s general cognitive development and 
accompanying activities, but with no focus on numeracy. Because of logistical constraints, we 
were unable to fully randomize the assignment of teachers to conditions. 

We assessed the kindergarteners’ numeracy skills at the beginning (October–November 
2021) and end (April–May 2022) of the school year. The teachers began applying the resources 
they received in the PD in January 2022. Teachers completed daily teacher logs on their 
engagement in PD-related classroom activities for 17 weeks between January and April. Two 
research assistants also visited each teacher’s classroom three times between January and April 
for classroom observations. 
NyKK-5 

The NyKK-5 is a collection of activities and manipulatives in a plastic case (dimensions: 15” 
x 12”x 5”) that teachers can easily carry around in the classroom. In the case are colored plastic 
boxes, each corresponding to one of six specific numeracy skills: subitizing, counting, number 
knowledge, non-verbal calculation, story problems, and part-whole combinations (Jordan et al., 
2007). The boxes in the NyKK-5 contain a variety of activity cards for each target skill, 
including sample questions to assess it and suggestions for follow-up prompts. Matching boxes 
contain manipulatives corresponding to several of the activity cards. The activities can be used in 
a variety of settings, including in one-on-one conversations with children, in the context of small 
group work (e.g., math centers), or with the whole class. Furthermore, the kit was designed to 
support responsive teaching (Jacobs & Empson, 2016) – that is, teachers can use it for formative 
assessment and to select follow-up instructional activities in response to students’ mathematical 
thinking. Sample scenarios were provided during the professional development to illustrate the 
types of activities that could be selected as a function of student thinking.  
Professional Development 

The third and fourth authors facilitated all PD sessions in the study. 
NyKK-5. Teachers in the NyKK-5 condition participated in three full-day PD sessions for a 

total of 18 hours. The content focused on the development of children’s thinking in the six 
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numeracy domains reflected in the NyKK-5. The teachers examined the contents of each box in 
the kit, explored how the contents addressed the six target numeracy skills, and reflected on how 
to use each component of the kit in their classrooms. 

Theory. Teachers in the theory condition participated in two full-day PD sessions for a total 
of 12 hours. They received identical PD to the NyKK-5 condition but were not provided the 
NyKK-5 or any materials for classroom use. 

Comparison. Comparison teachers participated in one 6 hr session on children’s general 
cognitive development in the domains of creativity, collaboration, communication, and critical 
thinking. No information on children’s numeracy was provided. Teachers were given a box of 
assorted LEGO® bricks and selected activities from the LEGO® Education program to support 
the cognitive development of young children in their classrooms (Hugo, 2016). 
Measures 

Student Numeracy Skills. We assessed children’s early numeracy skills using a modified 
version of the Preschool Early Numeracy Screener-Brief Version (PENS-B; Purpura et al., 
2015). The PENS-B is a measure of students’ global numeracy that includes items related to the 
various skills shown in previous research to be critical for students’ early mathematical 
development (e.g., Jordan et al., 2007). The skills assessed verbal counting, one-to-one counting, 
cardinality, counting a subset, subitizing, numeral comparison, set comparison, number order, 
numeral identification, set-to-numeral, story problems, number combinations, relative size, and 
ordinality. The PENS-B comprises 25 items, with a maximum possible score of 29. The verbal 
counting item is scored from 0 to 5 based on the highest number to which the participant can 
count, and the remaining items are scored as 0 or 1 (incorrect or correct, respectively). 

Teacher Logs. On each day over 17 weeks, teachers reported whether they engaged in PD-
related activities and if so, they selected from a list which specific PD skills they targeted. 
Teachers in the NyKK-5 and theory conditions chose from the following numeracy skills: 
subitizing, counting, number knowledge, non-verbal calculation, story problems, and part-whole 
combinations. Teachers in the comparison condition chose all that applied from creativity, 
communication, critical thinking, and collaboration. 

Classroom Observations. Two trained research assistants observed each teacher in the 
classroom engage in PD-related activities three times between January and April. Each 
observation lasted 30 min comprising four blocks of 7 min each. Each block began with a 3-min 
time sampling observation of the teachers’ pedagogical moves. The time sampling consisted of 
5-s intervals (36 in total over the 3 min) with observations conducted in every odd-numbered 
interval. Using a prepared checklist, the observers selected from the following mathematics 
teaching moves: used declarative statements about mathematics, modeled mathematical activity 
to their students, asked their students questions about the topic, and listened and observed their 
students engage in a mathematical task. Non-mathematics behaviors were classified as “other.”  

The observers spent the next 3 minutes taking field notes to describe the activity observed 
during the preceding 3-min observation period. The observers then took a 1-min break before 
starting the next observation block. At the end of the four observation blocks, each observer took 
additional field notes to document any methodological challenges. The data used in the 
subsequent analyses comprise the observations of the teachers’ interactions with their students 
during 216 coding intervals (3 observation sessions x 4 blocks x 18 time-sampling intervals). 
The observers had an interrater reliability of 89.5% across all 12 time-sampling blocks. 
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Results 
In this section, we report on the effects of PD condition on students’ numeracy growth over 

the course of the kindergarten year. This is followed by an examination of the teachers’ 
classroom practices, as measured by the teacher logs and classroom observations, to augment our 
account of students’ numeracy development in relation to the PD delivered and teacher 
individual differences. 

We first conducted a preliminary analysis to determine whether children’s household income 
should be included in subsequent models testing the factors related to students’ numeracy 
growth. A chi-square test of homogeneity revealed that there were no differences in the 
proportion of students from higher-income households (> $100,000) and lower-income 
households (< $100,000) between conditions, χ2(2, N = 73) = 2.13, p = 0.34. 
Students’ Numeracy Growth 

Our first objective was to investigate whether the NyKK-5 added value to children’s 
numeracy gains beyond the theory on children’s numeracy development alone. Means and 
standard deviations on the PENS-B by time and condition are presented in Panel A of Figure 1. 
A one-way analysis of variance (ANOVA) on the PENS-B gain scores revealed a statistically-
significant effect of condition, F(2,93) = 6.41, p = .002, η2 = .24. Follow-up Least Significant 
Difference (LSD; Levin et al., 1994) pairwise comparisons indicated that both the NyKK-5, t(93) 
= 3.27, p = .002, and the theory conditions, t(93) = 2.96, p = .004, improved more over time than 
the comparison condition, but no difference was found in students’ numeracy gains between the 
NyKK-5 and theory conditions, t(93) = 0.02, p = .98. These results suggest that the NyKK-5 had 
no observable added value to children’s numeracy gains beyond the PD that covered children’s 
numeracy alone. 

 

 
Note. Panel A: by condition; Panel B: by mathematics engagement. 
 

Figure 1: Mean PENS-B Growth by Condition and Mathematics Engagement 

Teachers’ Classroom Practice 
Teacher Logs. From the teacher log data, we computed the proportion of days each teacher 

reported engaging in PD-related activities (i.e., total number of days out of 78 days total). On 
average, teachers in the NyKK-5 condition engaged in 48.5 days of PD-related activity (62.2%), 
teachers in the theory condition engaged in 50.5 days (64.7%), and teachers in the comparison 
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condition 46.5 days (59.6%). The teachers’ self-reported engagement in PD-related activities 
appeared largely similar across all three conditions.  

Next, we examined the specific numeracy skills teachers in the NyKK-5 and theory 
conditions targeted. For each teacher in both conditions, we computed the proportion of times 
each numeracy skill was targeted out of the total number of numeracy skills targeted and then 
computed average proportions by condition (see Figure 2). As can be observed, the proportion of 
times the teachers in the NyKK-5 and theory conditions engaged in each type of numeracy skill 
was comparable. Both groups spent most of their time targeting subitizing, counting, and number 
knowledge. Similarly, both conditions rarely targeted non-verbal calculation and focused on 
story problems and part-whole combinations even less so. 

 

 
 

Figure 2: Mean Proportion Teacher Engagement in Each Numeracy Skill by Condition 

Classroom Observations. For each teacher, we calculated the proportion of time that each 
teacher spent engaging in any type of mathematics teaching move out of the total number of 
behaviors observed across all 12 time-sampling blocks (i.e., 4 blocks x 3 observation sessions). 
We then regrouped the teachers into three mathematics engagement categories based on the 
ranges of proportions of mathematics teaching moves out of the total number of moves (math-
related and non-math related): high (>50%), moderate (50–25%), and low (<25%) mathematics 
engagement. Both participants in the comparison condition fell in the low mathematics 
engagement group (0% and 5%), which was to be expected because the teachers were not 
introduced to any mathematics-related PD. All participants in the NyKK-5 condition 
demonstrated high mathematics engagement (62%, 70%, 71%, and 79%). Meanwhile, one 
participant in the theory condition displayed high mathematics engagement (75%) and the other 
displayed moderate mathematics engagement (36%). 
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A one-way ANOVA to test students’ numeracy growth revealed a significant effect of 
mathematics engagement, F(2,93) = 6.41, p = .002, η2 = .24 (see Figure 1, Panel B). Follow-up 
LSD pairwise comparisons showed that students of teachers with high mathematics engagement 
and the teacher with moderate mathematics engagement had greater numeracy gains than 
students of low mathematics engagement teachers, t(93) = 3.42, p < .001 and t(93) = 2.52, p = 
.01, respectively. No differences were observed between the high and moderate engagement 
groups, t(93) = 0.10, p = .92. These results indicate that regardless of whether they used the 
NyKK-5 or not, teachers’ level of mathematics engagement in the classroom is related to 
students’ numeracy gains. 

Next, we attempted to explain the observed variability in teachers’ level of mathematics 
engagement. Figure 3 presents the observed levels of mathematics engagement for each teacher 
by number of years of teaching experience and condition. Two important patterns emerge from 
examining all three variables together. First, across the sample, the level of mathematics 
engagement was related to the number of years of teaching experience, except in the comparison 
condition. Second, an examination of the data within condition revealed that all the teachers in 
the NyKK-5 condition were observed spending over 60% of their classroom interactions with 
their students on mathematics, despite varying years of teaching experience (i.e., ranging from 3 
to 29 years). In contrast, however, a greater variability in mathematics engagement was observed 
in the theory condition. Specifically, Holly, with two years of experience, displayed a moderate 
level of engagement, whereas Amanda, with 16 years of experience, displayed a higher level of 
engagement. Although the sample is too small to draw any definitive conclusions, taken together, 
these findings may suggest that a tool such as the NyKK-5, designed to simulate in-class PD 
supports for teachers, could compensate for a lack of teaching experience. 
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Note. Teacher names are pseudonyms. Ella was in the comparison condition; the proportion 
of her teaching moves was 0%. 

 
Figure 3: Proportion of Mathematics Engagement by Years of Total Teaching Experience 

Discussion 
The primary objective of the present study was to assess the impact of a pedagogical tool for 

teachers, the NyKK-5, on kindergarteners’ numeracy development over the course of the school 
year. We provided professional development to kindergarten teachers on early numeracy with a 
focus on the development of children’s thinking. One group of teachers was provided the NyKK-
5 and another was not. The NyKK-5 was designed to simulate the types of in-class supports for 
teachers that have been identified as critical elements of effective mathematics PD. In particular, 
the design of the kit and its accompanying PD aimed to support teachers’ reflections on their 
students’ learning during the act of teaching (see Gibbons et al., 2017), thereby helping them to 
connect their newly-acquired knowledge of children’s numeracy to their pedagogical actions in 
real time. In contrast, the teachers without the kit were left to their own devices to make such 
connections. The teacher logs and observational data generated a description of what was 
happening in the teachers’ classrooms, which was then used to uncover potential explanations for 
any condition effects. 

Contrary to our expectations, we found that the students in the classrooms of the teachers 
who used the NyKK-5 improved to the same extent as those whose teachers who were not 
provided the kit. This finding suggests that teachers’ knowledge of children’s numeracy, 
regardless of whether they were provided additional instructional tools for use in the classroom, 
is related to students’ numeracy gains over the course of the kindergarten year. This finding is 
not new; teachers with knowledge about children’s thinking are able to interpret what they know, 
prepare for common student misconceptions, and make instructional decisions to further support 
mathematical knowledge, reasoning, and problem solving (Ball et al., 2008; Even & Tirosh, 
1995; Jacobs & Empson, 2016). 

Regarding the secondary research objective, the teacher data added considerable nuance to 
this finding. First, despite the same degree of attention to all six numeracy skills in the NyKK-5 
and theory classrooms, we found that the level of mathematics engagement varied and was more 
predictive of students’ growth than use of the NyKK-5 by itself. Further, an analysis of the 
within-condition patterns of mathematics engagement and previous teaching experience 
suggested that the NyKK-5 may be particularly helpful for certain teachers, such as those with 
less teaching experience. This finding contributes to research in mathematics teacher education 
by raising the possibility that pedagogical tools over and above knowledge about how children’s 
numeracy develops – and in particular, tools that are situated in practice and encourage teachers’ 
reflection on their pedagogical actions (Grossman & McDonald, 2008) – may be useful under 
certain conditions but perhaps not all. More specifically, although the small sample precludes 
definitive conclusions, even teachers with relatively little teaching experience were able to 
leverage the NyKK-5 to maximize their mathematics engagement in the classroom. Without the 
tool, the teacher with only two years of experience had little to help her connect her newly-
learned knowledge about children’s thinking to her classroom practice, something for which the 
more-experienced teacher was able to compensate (Schoen et al., 2019). 

Despite the correlational nature of the analyses and the small sample, the present study has 
implications for continued research in teacher education. An important implication is that a 
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pedagogical tool for use in the classroom that serves as a proxy for in situ supports for teachers, 
such as the NyKK-5, may be an effective way to support teachers who experience barriers in 
engaging students in mathematics, such as a lack of experience. A replication with a larger 
sample of teachers and a randomized design is thus an important consideration for further 
investigation. Other teacher individual differences that may account for the variance in students’ 
numeracy growth, such as their knowledge of mathematics itself (Oppermann et al., 2016) and 
level of confidence in their ability to teach numeracy in the early years (Hadley & Dorward, 
2011; Ramirez et al., 2018), should also be examined in future studies. 
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Despite working towards a common vision for teacher preparation, newer teachers experience 
successes and challenges in their teaching.  This study investigated the experiences of three third 
year teachers to identify what they found successful or challenging in their teaching.  Findings 
indicated that successes or challenges were contextually dependent upon the individual, though 
common themes across experiences existed.   
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National standards documents identify a vision of what teacher preparation should be, 
indicating that preservice teachers need preparation centered on knowledge of mathematics, how 
students learn mathematics, and mathematics pedagogy aligned with effective and equitable 
teaching practices (AMTE, 2019; CBMS, 2012).  However, teaching mathematics requires 
integrating and using this knowledge (Barker et al., 2019), which can be challenging and mostly 
learned once a newer teacher is positioned in their own classroom (Feiman-Nemser, 2001).  
Scholars have described teachers with less than three years of experience as novices (Arbaugh et 
al., 2015; Lampert, 2010) or advanced beginners (Berliner, 2004).  Research in mathematics 
education has investigated the classroom practices of veteran teachers (Ball & Forzani, 2011; 
Borko, 2004), providing limited insight into experiences of secondary mathematics teachers with 
less than three years of experience.  

Literature Review 
Berliner (2004) developed a theory describing a progression that teachers move through as 

they build their expertise.  We describe the first two stages here.  The first stage, the novice 
stage, is experienced by first year teachers.  Teachers in the novice stage are inflexible, desire 
conformity and compliance, and use rules absolutely.  Novices are gaining experience and 
learning common structures and expectations of the school they work in.  The second stage, the 
advanced beginner stage, is often experienced by second- and third-year teachers.  Teachers in 
this stage begin to leverage their experiences to inform their classroom sense-making and 
decisions.  Advanced beginners recognize contextual similarities across their experience and 
begin to develop a more flexible, nuanced collection of practical knowledge for teaching.    

Classroom management is a common challenge newer teachers encounter (e.g., Evertstein & 
Weinstein, 2006).  McCormack, Gore, and Thomas (2006) described classroom management as 
actions teachers take to establish and maintain an orderly classroom learning environment that 
supports meaningful academic learning.  They suggested that newer teachers abandoned 
research-based instructional practices in favor of textbook-driven instruction because they had 
not yet built the more flexible and practical knowledge needed to deal with extreme student 
behavior. Similarly, Hover and Yeager (2004) found that newer teachers’ instructional 
approaches frequently did not facilitate group work or student-engaged lessons because they did 
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not want to risk losing control during the lesson. Notice these perspectives of classroom 
management focused on the teacher exerting inflexible control and compliance (Berliner, 2004).  

Research has also indicated that teachers’ instructional practices evolve during the first few 
years of their teaching careers (Berliner, 2004).  When following ten mathematics teachers 
through their first two years of teaching, Grossman et al. (2000) found that teaching practices 
learned in methods coursework were not evident until the teacher’s second and third years of 
teaching. Similarly, Ensor (2001) found that despite first year mathematics teachers having 
knowledge of and being able to talk about research-based practices, they did not facilitate such 
practices in their own classrooms.  Decisions were often justified in terms of student behavior 
issues and their beliefs about students’ learning abilities.  Taken together, these findings suggest 
that much of the learning from teacher preparation might develop through experience (Ward et 
al., 2011) and the activity of teaching over time (Berliner, 2004; Rhoads & Weber, 2016).   

In this study, we explored experiences of third year teachers working in secondary school 
mathematics classrooms. Specifically, we address the following questions.   

4. What aspects of teaching do third year teachers talk about when prompted to share their 
successes and challenges?   

5. Were these aspects of teaching described as successful or challenging by third year 
teachers? 

Methods 
The three participants in this study graduated in the same cohort from a one-year Master of 

Arts in Teaching (MAT) program from a state university in the southeastern region of the United 
States.  Participants had already earned an undergraduate degree in an area related to 
mathematics and were seeking state certification and a master’s degree.  The MAT focused 
primarily on general and mathematics pedagogy.  After graduating, each participant requested 
one of the authors serve as their university mentor as required by their new teacher induction 
program.  The first author served as a mentor for one participant, and the second author for two 
participants.  All participants were female and in their third year of teaching when data was 
collected.  One participant, Rachel, taught 8th grade in a small rural school serving a nearly all 
White student population.  The other two participants, Kelly and Lola, taught Algebra and 
Geometry high school courses in large suburban schools.  The courses taught were composed of 
predominately Black and Latinx student populations. 
 Data was collected during the entire 2019 – 2020 school year, including midway through 
the spring semester in which the COVID-19 pandemic began.  Data came from regularly 
scheduled conversations, typically once every two weeks.  Conversations focused on successes 
and challenges participants had encountered during the past couple of weeks, what made these 
events successful or challenging, and how they saw their preparation helping or hindering in 
addressing them.  Kelly engaged in these conversations solely through email, Lola with a 
combination of email and audio recorded conversations in-person, and Rachel through a 
combination of text and video messaging though the phone application, WhatsApp. 
Analysis 

Once data collection was complete, all data sources were transcribed into a single 
chronological transcript for each participant.  Each transcript had the Data Reduction Method 
(Miles, Huberman, & Saldana, 2014) applied to it to identify sections of it where the participant 
was responding to a prompt or question regarding successes or challenges in their classroom 
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practice.  If the participant shared multiple topics in responding to this question, each topic was 
treated as its own section.  This resulted in a total of 66 sections across all three transcripts.  
Next, each section was read to identify episodes—a portion of the section that was describing a 
single idea, issue, or thought.  Some sections in the transcript contained a single episode, 
whereas other sections contained multiple episodes.  The total number of episodes across all 
three transcripts was 123.  These episodes served as the unit of analysis for this study and were 
coded using an inductive and deductive coding process. 

Topics newer teachers talk about. The deductive coding process began with a list of topics 
that were used in the mathematics methods for teaching courses all participants had taken during 
their university preparation program.  All participants had taken a sequence of two mathematics 
methods courses taught by the first author during their preparation program.  Each episode was 
read and if a topic from the methods topic list appeared to match, it was tagged with this topic.  If 
an episode did not seem to align with a topic on this list, it was left untagged.  All episodes that 
were tagged with the same topic were then read to develop a description that could be used to 
identify them.  The collection of these descriptions was then refined and applied back onto the 
collection of all episodes to identify those they matched with.  This cycle of applying these codes 
and refining their descriptions was iterated until the descriptions solidified and both authors 
agreed with all coding.  This process was quite similar to the Constant Comparative Method 
(Glasser & Strauss, 1967), but not exactly the same as we began by deductively applying a list of 
codes (i.e., methods topics) onto the episodes rather than having them emerged from the episodes 
(i.e., inductive development of codes). 

For all episodes that were not associated with one of the tags from the methods topic list, an 
inductive coding process was used—the Constant Comparative Method (Glasser & Strauss, 
1967).  Episodes were read and sorted into categories containing a single theme.  A description 
was developed for each category and these descriptions were then applied back onto the episodes 
to ensure the description captured only the desired category’s episodes.  The cycle of developing 
a description and applying it back onto the collection of all episodes was iterated until the 
descriptions stabilized and both authors were in agreement with all coding. 

Classifying topics talked about as successful or challenging. Each episode was also 
classified as being perceived as successful or challenging using the following process.  First, if a 
participant named the experience as successful or challenging, it was classified that way.  Next, 
if a participant did not name the experience directly, the following descriptions were used.   

• Successful – describing what a newer teacher a) can do or accomplish, b) feels confident 
about, or c) expresses a desirable behavior or result 

• Challenge – describing what a newer teacher a) cannot yet do or accomplish, b) does not 
feel confident about, or c) expresses an undesirable behavior or result 

Note that these descriptions sought to consider the episode from the perspective of the teacher as 
whether they observed the event as being successful or challenging.  Viewing these experiences 
from other’s perspectives (e.g., administrator) may have resulted in a different classification.  
Third, if the episode did not fit within these descriptions, the episode was examined to see if it 
contained an actionable plan.  If so, the episode was classified as a success.  If an actionable plan 
was not described, then the episode was classified as a challenge.  It is important to note that a 
small number (5) of episodes contained evidence of both success and challenge descriptions.  For 
these episodes, they were classified as both a success and a challenge. 
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Findings 
In this section we report our key finding from the analysis conducted.  These findings are 

separated into two sections, each corresponding to one of our two research questions. 
Research Question One 

Recall that our first research question investigated what aspects of teaching newer teachers 
talked about when asked to share their successes and challenges.  The way participants spoke 
about their successes and challenges rarely referenced aspects of student mathematical thinking 
and learning.  Rather, mathematics and the mathematics classroom appeared to serve as context 
to the space where participants operated within. 

Our analysis indicated that newer teachers talked about a variety of topics.  Although there 
were 123 episodes coded in total, the table below includes topics with counts of five or more.  
Including only these topics was done to a) focus on the most common topics talked about and b) 
work within space limitations.  These 77 episodes accounted for 63% of all of the episodes 
coded. 

 
Table 1: Descriptions and Frequencies of Common Topics Teachers Talked about for All 

Participants 
Topic Description Frequency 

Classroom 
Management* 

The teacher describes a situation focusing on non-mathematical 
undesirable individual student behaviors, sometimes including a 
management decision. 

22 

Engagement* The teacher identifies or describes an external student behavior 
regarding participating in an aspect of mathematics lesson or learning 
mathematics, often as an aspect in need of cultivation. 

19 

Interpreting and 
Making Sense of 
Student Thinking* 

The teacher hypothesizes about an underlying reasoning, rationale, or 
sensibleness for student behaviors, statements, or actions 
(mathematically related or not) that initially seemed nonsensical. 

8 

Pragmatic Teaching 
Strategies* 

The teacher describes a specific pedagogical course of action for 
supporting student’s learning that occurred outside of class time. 

7 

“Unit”/Long-Term 
Planning 

The teacher describes an aspect of preparing for teaching that is not 
focused on an individual lesson, but planning that focuses on 
sequences of lessons. 

6 

Teacher Student 
Rapport 

The teacher describes an experience focused on developing the 
relationship between the teacher and student(s), or a situation that 
highlighted the utility of an existing teacher-student relationship. 

5 

Motivation* The teacher identifies or describes an internal student disposition 
towards school or learning mathematics, often as an aspect in need of 
cultivation. 

5 

Differentiation* The teacher describes a situation where they are responsible for 
teaching at topic and making it accessible for varying ability levels. 

5 

Note. An asterisk (*) indicates a topic that was examined in the mathematics pedagogy 
courses completed by participants during their university MAT program. 

 
The most common topic newer teachers talked about was Classroom Management, which 

was consistent with other research findings (e.g., McCormack et al., 2006).  Episodes classified 
this way contained statements focusing on undesirable student behavior that was non-
mathematical in nature.  For example, consider the excerpt below from Kelly. 
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I have one student that sleeps every day.  I attempt to wake him up at least five times a class.  
I have emailed and called the parent but have never gotten a response.  He has met with the 
counselor and still no luck. 
Notice the focus is on responding to this student’s behavior to change it.  Kelly stated 

specific actions she had taken, though it has not resulted in the behavior she desired, which 
epitomizes the description of Classroom Management.  Although Classroom Management 
focused on student behavior, it was not the only topic that did so. 

The second most common topic newer teachers talked about was Engagement.  Notice both 
Classroom Management and Engagement focus on an external characteristic—student behavior.  
What distinguishes Engagement from Motivation is that Motivation is an internal disposition 
(i.e., student controlled) whereas Engagement is an external action (i.e., teacher influenced).  For 
example, consider the Engagement excerpt below from Rachel. 

I had half of my Algebra class not do their homework one day this week.  I was prepared and 
had the homework assignment on paper.  I had them do it at lunch, and I had about four of 
them refuse to do any of it.  I had several in another class tell me that they just guessed on a 
test question instead of actually trying.  We were doing test corrections, trying to learn from 
our mistakes.  And multiple admitted they didn’t try. 
Notice Rachel’s decision to be prepared and have the homework assignment on paper so 

students can make test corrections during lunch, continuing to press students to engage 
mathematically.  She described this in conjunction with student behaviors regarding choosing 
(not) to work with mathematics, illustrating the description of Engagement.   

In addition to their aggregates, we also separated these counts by participant (see Table 2). 
 

Table 2: (Relative) Frequencies of Common Topics Teachers Talked about Separated by 
Participant 

 Kelly Lola Rachel 
Classroom Management* 3 (23%) 12 (24%) 7 (12%) 
Engagement* 2 (15%) 9 (18%) 8 (13%) 
Interpreting and Making 
Sense of Student 
Thinking* 

--- 3 (6%) 5 (8%) 

Pragmatic Teaching 
Strategies* 

--- 7 (14%) --- 

“Unit”/Long-Term 
Planning 

--- 1 (2%) 5 (8%) 

Teacher Student Rapport --- 3 (6%) 2 (3%) 
Motivation* 2 (15%) 3 (6%) --- 
Differentiation* 2 (15%) 2 (4%) 1 (2%) 

Totals 9 (68%) 40 (80%) 28 (46%) 
Note. Totals are less than 100% because participants spoke about topics that had counts of 

less than five, which were not included in this manuscript as described above Table 1. 
The topics that every participant talked about were Classroom Management, Engagement, 

and Motivation.  Although these were talked about by each participant, notice how often they 
talked about each was not the same.  For example, Rachel talked about Classroom Management 
(12%) about half as often as either Lola (24%) or Kelly (23%).  Additionally, notice how much 
more common it was for Kelly to talk about Differentiation (15%) in contrast to Lola (4%) or 
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Rachel (2%).  Although participants were more consistent in how often they talked about 
Engagement, it still varied from 13 – 18%.   

This separation by participant also identifies variation in how commonly each participant 
talked about these most prevalent topics.  For example, notice how these topics constituted 80% 
of what Lola talked about, whereas they were 46% of what Rachel spoke on.  Moreover, we can 
see that some topics were unique to a single participant (i.e., Lola’s Pragmatic Teaching 
Strategies) or a pair (e.g., Rachel and Lola both speaking about Interpreting and Making Sense of 
Student Thinking).  Overall, data suggest the relevance of each topic to the individual varied. 
Research Question Two 

Recall that our second research question investigated if the topics newer teachers talked 
about were described as challenging or successful to them.  Our analysis indicated that newer 
teachers varied in what they talked about as challenging or successful.  Although there were 128 
codes of challenges or successes (recall that five episodes contained evidence of both success 
and challenge descriptions), the table below includes topics with counts of five or more.  
Including only these topics was done to a) focus on the most common topics talked about as 
successful, challenging, or both, and b) work within space limitations.   

 
Table 3: Frequencies of Challenges and Successes for Common Topics Teachers Talked 

about for All Participants 
Topic Challenge Success 

Classroom Management* 12 12 
Engagement* 14 7 
Interpreting and Making Sense of 
Student Thinking* 

5 3 

Pragmatic Teaching Strategies* 2 5 
“Unit”/Long-Term Planning 2 4 
Teacher Student Rapport --- 5 
Motivation* 4 1 
Differentiation* 3 2 

Totals 42 39 
The total ratios of challenges to success for the most common topics was balanced.  Although 

ratios varied depending upon the topic, some topics were more often talked about as successful.  
For example, consider the excerpt below from Rachel on the topic of Teacher Student Rapport, 
which was only spoken about in terms of successes. 

I’ve started writing thank you notes every Friday.  I’ve done it three straight weeks now.  I 
write one to a student in every class.  I’m trying to find value in every student, so they know I 
care.  I’ve gotten a couple hugs and several ‘thank yous’ so I think it’s going well so far. 
Notice Rachel’s focus on building connections with students, exemplifying the description of 

Teacher Student Rapport.  She identified the desired result (i.e., recognition from students, states 
“I think it’s going well”), aligning with the description of a success.   

Although multiple topic’s ratios were skewed towards successful, not every topic talked 
about was referred to this way.  For example, consider the excerpt below from Lola on the topic 
of Interpreting and Making Sense of Student Thinking.  

I want my students to benefit from the projects and reviews that I am giving to improve their 
grades, but the group that I want to take these opportunities is not.  I know that students have 
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many things going on besides academics though, and by this time of the year they are 
exhausted. 
In this excerpt, Lola stated a possible reason for why the group of students did not take 

advantage of the opportunity to improve their grade, typifying the description of Interpreting and 
Making Sense of Student Thinking.  This also aligns with the description for a challenge via the 
undesirable result (i.e., the group of students not capitalizing on this provided opportunity).   

In addition to their aggregates, we also separated these counts by participant (see Table 4). 
 

Table 4: Ratios of Challenges to Successes for Common Topics Teachers Talked about 
Separated by Participant 

 Kelly Lola Rachel 
Classroom Management* 3:1 6:6 3:5 
Engagement* 2:0 5:4 7:3 
Interpreting and Making 
Sense of Student 
Thinking* 

--- 3:0 2:3 

Pragmatic Teaching 
Strategies* 

--- 2:5 --- 

“Unit”/Long-Term 
Planning 

--- 0:1 2:3 

Teacher Student Rapport --- 0:3 0:2 
Motivation* 2:0 2:1 --- 
Differentiation* 1:1 1:1 1:0 

Totals 8:2 19:21 15:16 
Separating these counts by participant highlighted some differences.  Although the overall 

challenge to success ratio was balanced (42:39) and that Lola and Rachel’s ratios were nearly 
balanced, Kelly’s ratio was heavily skewed towards challenges.  Of Kelly’s successes, one 
episode was Classroom Management classified as both a challenge and a success, and the other 
was an episode about Differentiation.  Although investigating Kelly’s episodes did not provide 
insight as to why this skew towards challenges occurred, we wondered if Kelly was still in 
Berliner’s (2004) “novice” stage, or perhaps limited resources (Ward et al., 2011) influenced this 
skew. 

We also noticed some topics had variation in the ratio between challenges and successes 
between participants, whereas others were consistent.  For example, Classroom Management was 
nearly always challenging for Kelly (3:1), balanced for Lola (6:6), and more frequently 
successful for Rachel (3:5).  However, this variation was not always the case as Teacher Student 
Rapport was only talked about successfully by Lola and Rachel, and Motivation was nearly 
always challenging for Kelly and Lola.  Overall, the most common topics participants talked 
about varied as to if they were successful or challenging.  The only exceptions to this were 
Teacher Student Rapport and Motivation as noted. 

Discussion 
Newer teachers encountered both challenges and successes in their experiences and topics 

they spoke about.  A common theme with the two most frequently talked about topics (i.e., 
Classroom Management, Engagement) was the focus of exerting control and compliance on 
student behavior, which agrees with previous research findings (e.g., Hover & Yeager, 2004).  
Although teachers can influence someone’s behavior, they cannot directly control it.  One 
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question we wondered about was how newer teachers view the distinction between the authority 
they hold as a teacher versus their locus of control as a human.  To what extent do they recognize 
the boundary between direct control versus influence when working with students?  Also, how 
does a newer teacher learn to flexibly contextualize their classroom management decisions from 
a novice to an advanced beginner (Berliner, 2004)? 

Some of the topics the year three teachers spoke about were explicitly incorporated into their 
preparation program (e.g., interpreting and making sense of student thinking, differentiation) and 
identified in a common vision for teacher preparation (e.g., AMTE, 2019).The way and extent to 
which teacher preparation influences newer teacher’s practice and decision making is based on 
the classroom settings, school structures related to mentoring, and their goals and visions for 
teaching (Hammerness, 2003; Jansen et al., 2018) as well as their development as a newer 
teacher (Berliner, 2004). Similar to contextualized teacher knowledge identified by Feldman and 
Herman (2015), this would help to explain why participants did not always talk about the same 
topics, nor why they experienced the same kinds of successes or challenges with them.  The 
relevancy of a topic to each newer teacher depended upon their situational context, which also 
agrees with Leatham (2006) who concluded that practice is shaped by context. 

Given the influence of varying school contexts beginning teachers will work within, we 
wondered how and to what extent this might be accounted for in teacher preparation.  Moreover, 
given the evolution of newer teachers during the first few years of their careers, are teacher 
preparation programs designed to primarily serve teachers through their induction phase, or the 
phase after they become established classroom teachers?  Although the vision provided in 
standards documents (e.g., AMTE, 2019) identifies what a well-prepared newer teacher should 
know, we wondered to what extent these components are pragmatic given the variation in 
teacher preparation programs and development that newer teachers experience.   
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A teacher’s role in helping students understand mathematics and engage in sense-making is 
crucial. Therefore, we investigated how teachers viewed instructional gestures after they 
participated in a content and pedagogy based professional development project. The findings 
revealed that teachers thought about gestures as a means of communication and cognition. 
Implications for supporting teachers’ use of instructional gestures to help students to make 
mathematical connections through integrated content-based professional development are 
discussed. 

Keywords: Teacher Noticing, Teacher Beliefs, Mathematical Representations, Instructional 
Activities and Practices 

Teachers instinctively use gestures to communicate information, along with speech, during 
instruction (Alibali & Nathan, 2012). Similarly, students also utilize gestures as they engage in 
math lessons (Arzarello et al., 2009). Many teachers do not explicitly think about how gestures 
support communication, thinking, and learning as they emerge naturally during instruction 
(Schenck et al., 2022). However, making teachers aware of their own gestures may allow them to 
think about how to strategically leverage gestures in their instruction (Sung et al., 2022). Little 
research exists on how to support teachers to effectively use gestures in their instruction 
(Georgiou & Ioannou, 2019; Roth, 2001). However, we believe that research on gestures cannot 
stand alone, and needs to be connected to content based professional development for teachers to 
really leverage their own gestures to support student learning. 

Sherin, Jacobs and Phillips (2010) pointed out that there is a need for future research to 
understand how to support teachers to notice, understand, and endorse students’ gestural and 
verbal participation. Sherin recommends that future research should build on the current work on 
teachers’ noticing of children’s mathematical thinking (Jacobs, Lamb, & Philipp, 2010; Mason, 
2002; Sherin & Han, 2004; Sherin & van Es, 2009). This process involves understanding what 
teachers attend to and how teachers interpret gestures to support learning. Therefore, we 
designed a content based professional development in mathematics and science for K-8 teachers 
and explicitly embedded research on how gestures support cognition and student learning. We 
investigated teachers’ attitudes about the utility of gestures for both instruction and student 
learning as they engaged in the professional development. 
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Method 
The data sources include teacher journal responses at the end of a week-long professional 

development, video recordings of the professional-development sessions, and field notes. 
Twenty-six elementary and middle-school educators from a Western State participated in the 

study as part of a larger effort to improve primary and middle grade integrated STEM (science, 
technology, engineering, and mathematics) instruction. Twenty-one teachers completed the 
journal responses during their participation in a week-long professional development session 
focused on supporting teachers to learn the Common Core standards along with Next Generation 
science standards. Specifically, the math content focused on measurement and data analysis and 
was embedded in the Next Generation Science Standards: Science & Technology, Physical 
Science, and Personal and Social Perspectives (NGSS) with a particular focus on 
nanotechnology. 

The goal of the professional development was to increase teacher STEM content knowledge 
and pedagogical content knowledge using a design research approach (Cobb, Confrey, DiSessa 
& Lehrer, 2003). The design of this PD included an interdisciplinary team made up of 
mathematics educators, mathematicians, cognitive scientists, nanotechnology scientists, science 
educators, district leaders, and regional professional development teams that were part of the 
larger initiative. Encouraging teachers to become aware and use instructional gestures to support 
student learning was an explicit goal of the professional development. Therefore, researchers 
from mathematics education and the Learning Sciences developed video-based modules that 
provided examples and outlined the research principles embedded in the professional 
development design. PD activities explicitly discussed the role of instructional gestures in 
teaching after teachers viewed the videos. These activities were designed to meaningfully 
integrate research-based principles into teachers’ classroom practices and to raise teachers’ 
awareness and understanding of the utility of instructional gestures for students’ STEM learning. 
The specific design used for professional development is outlined in Figure 1. 

The PD design incorporated four phases: Teachers as Learners, Pedagogy, Examining 
Student Thinking, and Connect to Curriculum and Planning (Author, date). The research on 
gestures was specifically embedded in the context of Teachers as Learners and Examining 
Student Thinking. Teachers viewed 4 video recordings on the research on gestures, and the 
facilitator-researchers engaged the teachers in guided discussions. Teachers had the opportunity 
to explicitly discuss what they saw in the videos in small and whole-group sessions. Teachers 
also had chances throughout the week-long PD to think about what it meant to use gestures in 
their teaching practices and to attend to the gestures of others. At the end of the week, as part of 
the PD, teachers were prompted to journal about their views of instructional gestures. 

Reflect on how you use gestures and when you communicated your ideas or listened to 
someone’s explanation. How did this influence your ability to make sense of what others 
were saying or thinking? What are your thoughts about how you might use gestures in the 
classroom? 
To analyze and interpret these data, we used a case study approach (Yin, 2014). The data 

were analyzed using the constant comparative method (Strauss & Corbin, 2018). Video data 
from these PD sessions was transcribed and examined for emerging themes. Constant 
comparative methodology incorporates four stages: “(1) comparing incidents applicable to each 
category, (2) integrating categories and their properties, (3) delimiting the theory, and (4) writing 
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the theory” (Glaser & Strauss, 1967, p. 105). The data from the video analysis data was 
triangulated with the data from the journal entries and from observers’ daily field notes. 

 
 

Figure 1. How teachers thought about gestures in their journal responses (Author, date). 

Results 
Issues Related to Gestures that Emerged within the PD Session 

The videotape data of teachers discussing the gesture videos and their involvement in the 
participatory activities around their STEM teaching practices revealed issues that teachers 
thought about concerning instructional gestures. For example, in one instance, teachers engaged 
with a module on how instructional gestures can help students make mathematical connections 
across different visual representations. It explained that instructional gestures are small, situated 
actions intended to help comprehension and learning by complementing and reinforcing the 
information that is presented in the speech and images was explained. A classroom video clip 
example of a teacher using gestures to explain how to solve an algebraic equation was embedded 
in this module. This video showed how the properties of an equation relate to the properties of a 
balance scale. It also depicted how one can maintain balance (equivalence) when one “removes” 
identical terms from both sides of an equation much like one can remove identical objects from 
two sides of a balance scale. The teachers were asked to discuss what they observed in small 
groups and share their thoughts. Many issues emerged in the discussion as teachers explored how 
to incorporate instructional gestures into their own teaching practices. A few select issues that 
illustrate the deep pedagogical engagement that emerged are these: 
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• What role did actions with physical models play in helping students think about actions 
with formal representations? 

• Should a teacher teach students how to gesture an idea or concept, or should gestures 
naturally emerge to represent thinking? 

• Gestures can be used when a speaker’s thinking and speech is still catching up, since we 
• can often gesture about an idea before we can verbalize it clearly to others. 

Discussion 
Throughout the professional development sessions teachers became more aware of the use of 

instructional gestures even though nearly all of them shared that they naturally gestured during 
instruction. They grew in their awareness of the value of gestures to convey students’ thinking, 
even before students have the language to clearly express themselves verbally. They considered 
how gestures help make operations on formal representations more meaningful (such as symbol 
manipulation), and how they help to relate one visual representation to another. They explored 
distinctions between the importance of small gestures along with grand gestures that included 
facial expressions and nodding. They also thought about the role of technology and the context in 
which gestures were used to build common ground with their students (Nathan & Alibali, 2011) 

More broadly, teachers thought about gestures as an additional means of communication that 
can support student cognition (Alibali & Nathan, 2007) and as practical, accessible, yet powerful 
ways to focus students’ attention during instruction to relevant locations in the learning 
environment. Teachers reported that instructional gestures motivated students to stay focused 
and engaged. Additionally, instructional gestures were useful to clarify their own thinking. 

Gestures were viewed as helpful to learners by clarifying misconceptions (e.g., what “both 
sides of the equation” actually refers to), pointing to help visual learning, and focusing attention 
to find information. It establishes common ground by linking unfamiliar things (e.g., algebra 
equations) to familiar things (balance scales) and helps to externalize someone’s thinking. The 
listener can more easily follow and anticipate one’s reasoning, which can help to understand and 
diagnose one’s thinking. 

It should be noted that the PD introduced the research on gestures within the context of 
teacher learning of math and science content. Teachers made connections to their own learning as 
well as reflected on how this might impact their teaching and student learning. The journal 
entries revealed that the teachers became aware of the role of gestures in their learning and 
thought about how they would use gesturing in the classroom to support student learning. 

The findings suggest that teachers should be introduced to research on gestures in the context 
of their own teaching practices and learning experiences to support teacher noticing. This will 
aid teacher to make sense of the research, be able to apply it in a personal way. 
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How teachers can experience adaptive professional development (PD) experiences is still 
understudied in the literature on teacher learning, which for the most part reflects an emphasis 
on learning outcomes rather than the process of learning. In this study, we use a situated 
perspective on teacher learning to investigate the coevolution of a teacher’s sensemaking about 
facilitating classroom discussions between her classroom practice and the school-based PD 
experiences. The study contributes to an understanding of how the process of teacher learning 
can be supported through continuous, adaptive professional learning experiences and of the co-
evolution of teacher learning between settings of practice.   

Keywords: Adaptive Professional Development, Teacher Learning, Classroom Discourse 

Mathematics classroom discussions are characterized by social and intellectual demands, 
where teachers not only support students’ knowledge and skills but also their identities as 
problem solvers. During these discussions students engage collaboratively in a process where 
they make claims and justify them using reasoning that is based in disciplinary practices and in 
their existing knowledge and cultural and linguistic resources. Facilitating this work is complex 
and often non-routine: it requires from teachers a capacity to improvise in the midst of 
contingent interactions, relying on professional judgment to steer instruction productively to 
support mathematical goals and an inclusive mathematics learning community. Mathematics 
teachers, for example, must make judgments about how to respond to students individually and 
in groups, drawing on specialized knowledge of both mathematics and student thinking to further 
instructional objectives. All the while, they must attune their practice to students’ needs, treating 
students as sensemakers and providing all students access to cognitively demanding tasks. 
Learning to do this complex and responsive work of teaching requires models of professional 
learning that nurture teachers’ adaptive expertise and pedagogical reasoning in relation to 
teachers’ own contexts of practice. How teachers experience such adaptive professional learning 
experiences is still understudied in the literature on teacher learning, which for the most part 
reflects an emphasis on learning outcomes rather than the process of learning (Walkoe & Luna, 
2019). In this study, we aim to investigate how a teacher’s sensemaking about facilitating 
classroom discussions between her classroom practice and the school-based professional 
development (PD) co-evolve. 

The extant literature on teacher learning emphasizes the importance of designing professional 
learning opportunities that are adaptive and responsive to teachers’ local contexts and their 
sensemaking (Ghousseini & Kazemi, in press). Transformative teacher learning in mathematics 
can be supported through sustained, connected professional development experiences that are 
close to teachers’ own practice where they have opportunities to make sense of new knowledge 
and instructional practice through ongoing collaboration and inquiry around purposive activities 
(Silver et al., 2009; Lefstein et al., 2020). Among the PD models aligned with this vision of 
teacher learning is job-embedded professional development where teachers are supported to 
make sense of the complexities of teaching during their workday or through experiences that are 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 750 

integrated in the contexts of their own practice (Kazemi et al., 2021; Zepeda, 2014). Typical 
approaches to job-embedded professional development include coaching and modeling of 
research-based instructional strategies, and co-teaching practices (Semon et al., 2020). Althauser 
(2015), for instance, describes a job-embedded PD that engaged teachers in aligning their 
curriculum with state math standards and in peer teaching where they implemented teaching 
strategies and assessments that they had developed with the support of their district’s curriculum 
specialist. Most studies of job-embedded PD, however, focus on outcomes such as student 
learning or teacher practices and their views of such experiences (Althauser, 2015; Dennis & 
Hemmings, 2018). Missing from the literature are examinations of how teachers learn through 
job-embedded PD. Walkoe and Luna (2019) affirm the absence of such studies from the 
literature and argue, “Questions that address the process of teacher learning are largely absent in 
studies of teacher learning. These include important questions such as: What mechanisms 
contributed to observed outcomes? What resources did teachers bring to bear and how were they 
utilized in PD activities? What goals emerged for teachers as they engaged in PD?” (p. 285). 

Our investigation of teacher learning in this paper is motivated by these questions. Using the 
case study of a teacher who participated in an adaptive, job-embedded PD focused on learning to 
facilitate classroom math discussions, we address this question: How did the teacher’s 
sensemaking co-evolve between her classroom practice and the school-based PD experiences? 
By examining her process of recontextualization (van Oers, 1998) of goals and resources 
negotiated with other participants from the PD through her own practice, we aim to contribute to 
an understanding of teacher learning from PD opportunities closely tied to their practice. The 
study also contributes to the theme of this conference in the way our results bring insights related 
to the problems of practice teachers face in facilitating student-centered classroom mathematics 
discussions. 

Teacher Sensemaking About Argumentation-Based Discussions as a Process of 
Recontextualization 

The literature on argumentation repeatedly asserts that argumentation is more than an 
activity—it rests on establishing a classroom culture for argumentation over time through 
intentional norm setting, activity selection, and guidance (Knudsen et al. 2018). Like all 
ambitious teaching, developing a culture for mathematical argumentation is complex and creates 
many intellectual and pedagogical demands for teachers in the way they have to intentionally (1) 
choose and structure mathematical problems or routines; (2) develop norms for what counts as 
acceptable arguments; and (3) provide language supports and use discourse structures to engage 
students in the practices of argumentation (Makar et al., 2015).  

We use a situative perspective on teacher learning (Greeno, 2005) to frame sensemaking 
about facilitating argumentation as a teacher’s opportunities to wrestle with new ideas and figure 
out how and why they work within their own teaching and learning spaces. In the context of 
adaptive professional development that is embedded in teachers’ practice, teacher sensemaking 
involves opportunities to attend to problems of practice through experimenting with and 
revisiting ideas, drawing in the process on a wide array of resources and tools to support 
emergent ideas or goals (Kazemi et al., 2021). Researchers have called for attending to the 
dynamic boundaries and relationships between various settings that influence and explain teacher 
learning, looking at the coevolution of participation between classroom practice and PD (Kazemi 
& Hubbard, 2008). In this study, we focus on this form of coevolution of participation through 
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the lens of continuous sensemaking and recontextualizing of learning (van Oers, 1998) across 
settings of teacher learning through adaptive PD. 

The literature on teacher learning typically treats the idea of recontextualizing as teachers 
taking constructed discursive resources from one context and reconstructing them to enact in a 
secondary context that has unique conditions and rules (Ensor, 2001; Marchant et al., 2021). This 
view of context explains teachers’ actions in terms of using knowledge, tools, and experience 
gained in one context and applying them to a new scenario. In contrast, Van Oers (1998) 
characterizes recontextualization as a process of continuous sensemaking in the way a context is 
treated as not a static setting that teachers are placed into, but rather dynamically constructed by 
them in situ as a particular activity setting. This is accomplished by determining one’s goal, 
examining prior experiences, and “finding out which means are available, investigating which 
actions make sense to perform in order to achieve the goal chosen, and by relating motive, goal, 
object, means etc…” (van Oers, 1998, pp. 481-482). We posit that this continuous process of 
recontextualization provides teachers with opportunities to learn. Viewed from a social practice 
perspective, adaptive PD can enable a process of continual contextualizing when participants 
engage in mutual activities where they experiment with new possibilities for action and adjust 
their contributions to shared activities as they move between settings of learning over time.  

Methods 
Participants and Context 

The professional development model, we refer to as Learning Labs (LLs), was embedded in 
an elementary school located in the United States’ Midwest. The school is diverse with 40% 
Latinx students. The LLs were co-designed and co-facilitated by three instructional coaches from 
the school and three teacher educators from our research team. Our co-design work engaged and 
involved eight teacher participants in learning to facilitate argumentation-based mathematics 
discussions. Each LL consisted of four phases: new learning, planning, enactment, and debrief 
(Kazemi et al., 2021). In the new learning phase participants engaged in a reading, analysis of 
artifacts, or discussion of problems of practice related to the practices of giving explanations or 
justifications and supporting broad student participation. Building on their new learning, then the 
participants planned a lesson together to be enacted in one of the participant teachers’ classes. 
During this planning, all participants shared ownership of designing the math task, crafting tasks 
and working on questions that elicited and pressed for students’ thinking. The enactment phase 
involved inquiry into practice where teachers both did the work of teaching in response to 
students’ performance and had opportunities to pause the lesson to consider problems of practice. 
In the debrief phase, the participants reflected on the lesson and areas of improvement and 
identified future collective goals for the labs and for their own practice. Between consecutive 
LLs, the teachers and coaches met weekly to co-design, implement, and reflect on lessons 
deliberately enacted by the teachers to contextualize some goals related to the PD in their own 
practice. They reflected on these lessons using video-stimulated recall interviews (VSRIs).  

In this paper, we use an instrumental case study (Stake, 2005) of one teacher participant, 
Karla (pseudonym), to inform our understanding of a particular phenomenon, namely, how 
teachers’ sensemaking about ambitious teaching can co-evolve between participation in PD 
experiences and their own classroom practice. Karla is a white female 5th grade teacher who was 
an active participant in the LLs, often highlighting her own experiences and vocalizing her 
sensemaking. Her propensity to reflect publicly on the way her sensemaking was coevolving 
between LLs and her own practice influenced our choice of her for this case study. 
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Data Collection and Analysis 
For this paper, our data consisted of (1) transcripts of three interviews conducted with Karla 

(one prior to the start of the LLs and two at the end of each year); (2) Eight transcripts of LLs 
debriefing phases spanning over years 1 & 2; (3) Four audio records of video stimulated recall 
interviews (VSRIs) that Karla completed with her school-based coach. The VSRIs focused on 
classroom discussions that Karla recorded between LLs. Our data analysis at one level focused 
on identifying the problems of practice that Karla grappled with across contexts and the array of 
tools and resources she used over time to address them. We tracked these problems and resources 
longitudinally as suggested in Figure 1, across both her participation in LLs as well as in her 
interviews and VSRIs with the instructional coach. 

 

 
Figure 1: Karla’s data sources over two years 

 
We started with the first interview to determine Karla’s initial practice with respect to leading 

mathematics discussions, and to identify the nature of questions and challenges she faced while 
promoting them in her classroom. We recognized a problem of practice when Karla reported on 
classroom interactions that she experienced as troublesome, challenging, confusing, recurrent, 
unexpectedly interesting, or otherwise worthy of comment” (Horn & Little, 2010, p. 189). This 
first analysis surfaced a central problem of practice for Karla related to bringing more student 
participation and voices during whole class discussions. A prior analysis of the problems of 
practice that participants jointly identified over the course of the LLs (Cordero-Siy et al., 2021) 
allowed us to trace the continuity of Karla’s sensemaking about this problem of practice through 
her participation in the LLs. Starting with LL1, we identified instances where she contributed to 
the participants’ joint work on framing challenges related to participation. We focused on 
moments where she elaborated the nature of a challenge and provided insights from her 
experience about how to address the challenge and the reasoning behind it. Focusing on her 
participation in LLs’ debriefs was constructive to our understanding of her sensemaking as we 
saw alignment between Karla’s challenge of broadening participation in her classroom 
discussions and the Lab participants’ joint sensemaking. We also identified the materials and 
resources (such as practices or classroom tools) that participants proposed to address the problem 
of practice during their joint sensemaking. We continued using these analytic lenses across 
consecutive data sources spanning both LLs and Karla’s classroom practice: we tracked the 
evolution over time of the way Karla reframed various challenges pertaining to the problem of 
practice she is addressing, and revisited her understanding or use of a resource or a tool to 
address the problem of practice she is focusing on. Figure 2 represents this co-evolution between 
LLs and her practice.   

Results 
Karla’s initial practice with discussions. In her initial interview (Int.1), Karla described her 

classroom mathematics discussions as typically happening in small groups where students share 
different strategies and explain their thinking to each other. She reported avoiding whole class 
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discussions because she would “hear from the same five voices, so it's better when we're in small 
groups.” This concern for “varied student voices” (Int. 1) was a problem of practice that 
persisted in Karla’s thinking and sensemaking throughout her participation in the PD in Years 1-
2.  It was motivated by Karla’s overarching commitment to creating a learning environment in 
which “all students identify as someone who can learn math” (Int. 1).  Leveraging more student 
voices, however, was complicated by what Karla referred to as student vulnerability in the face 
of power relationships in the classroom. She stated, “some students see themselves as leaders 
and others as followers.” Leaders, in her view, are ones perceived to give better explanations or 
to be more fluent in English. This situation influenced students’ hesitation to participate in 
classroom discussions, especially in whole group.   

Karla’s continual commitment to attending to this problem of practice led her to 
recontextualize ideas, tools, and resources across these contexts. Reflecting on the consequences 
of these experiences with her coach and with other participants led her to a more nuanced 
understanding of the challenge of student participation that went beyond the binary of small 
group vs. whole group.  For space limitations, we present this evolution in her thinking based on 
her participation in the first year of PD.   

The co-evolution of Karla’s sensemaking between LLs and her practice. A recurring 
theme in the LLs was creating classroom communities for all students to engage with 
mathematical ideas (Cordero-Siy et al., 2021). This theme aligned with Karla’s challenge of 
leveraging more student voices, where we found evidence in Karla’s VSRIs of her continual 
pursuit of creating spaces for students to share their own ideas and engage with each other's 
mathematical thinking. Accordingly, she drew from various pedagogical tools leveraged during 
LLs to support the pursuit of this goal. As represented in Figure 2 below, over the course of the 
LLs participants leveraged various pedagogical resources and tools to facilitate equitable 
participation. For example, in LLs 1 and 2 participants reflected on factors that may be shaping 
student willingness to talk—the physical setting of the classroom, the nature of the task, and 
students’ familiarity with routines that support their sharing of ideas. Accordingly, they reasoned 
about possible resources and tools that could build on these factors constructively. Among the 
resources they considered were instructional tasks that focus on number relations rather than the 
right answer, using more turn-and-talk participation structure, and supporting student 
communication with visuals and tools like small whiteboards.   

In our analysis of Karla’s VSRIs with her coach, we noted the way she was drawing on these 
resources and problematizing their use at the same time. She revealed in her first VSRI the way 
the use of white boards and turn-and-talk to facilitate student sharing did not fully resolve the 
issue of inequitable participation as only a few students were willing to share their thinking. 
Karla pondered whether calling on students to paraphrase their partner’s ideas could enhance the 
efficacy of these classroom routines and tools. Student sharing with the help of these resources, 
she opined, still faced the tension of putting students in a vulnerable position when ‘cold-calling’ 
students—in case they could not articulate or did not understand their partner’s ideas. Moreover, 
while partner talk and work on a whiteboard may have supported student talk in small groups, 
Karla explained that inequitable participation persisted in the whole group setting. Students did 
not engage with others’ solution strategies when shared with the whole class. This concern found 
resonance in the subsequent LL2 when participants noticed similar patterns of participation. 
During the debrief, Karla noted then “But that's something I struggle with in my class, and I 
wonder if it’s pacing, the activity went too long. That [students] all had such rich partner to 
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partner conversations then when I ask someone to get up and explain it, it's like I already know 
this because I just talked about it with my partner.” (LL2) 

 

 
Figure 2: The Co-evolution of Challenges, Resources and Goals between Learning Labs 

and Karla’s Practice 
 

The participants’ joint sensemaking in LL2 led them to identify this resource to address this 
problem: crafting tasks that focus on reasoning rather than a perceived right answer. Taking a 
cue from the group’s suggestion, Karla experimented with the use of math tasks in her class 
where students needed to prove why a math statement was True/False. Reflecting on her work 
with her coach in the subsequent VSRI, she noted that unlike previous occasions when students 
tuned out after they had found an answer to a problem, students showed greater engagement, 
likely precipitated by the nature of the mathematical task whose central objective was not finding 
a final result, but the process. Yet, despite the changes she observed in overall engagement, the 
challenge of participation in her view continued to persist: some students still felt uncomfortable 
sharing in the whole-class setting, and Karla debated holding students accountable to sharing 
their partner's thinking as it may ruin the ‘feeling of ... like, having a safe space to talk about 
math’ (VSRI-2). 
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The subsequent two LLs (3 & 4) offered Karla opportunities to further think about student 
participation in whole class discussions. As participants grappled with students’ hesitation to 
share during whole class discussions, they considered how orienting students to each other’s 
thinking can support them in understanding each other’s ideas and in representing those ideas to 
the whole class (LL3). They agreed on the importance of monitoring students’ positioning as 
sensemakers and creating connections between students’ ideas while orienting them to each 
other’s work. In LL4, the participants further considered how being explicit about the norms and 
practices of participation in small and whole group discussions can bring in more students’ 
voices. They also agreed on the importance of modeling and highlighting forms of participation 
that can be productive for everyone’s learning. In her own teaching, Karla adapted these 
strategies to address her dilemma of surfacing mathematical ideas from students who are 
generally reluctant while ensuring these students don’t feel vulnerable: She created a 
participation structure protocol to support students’ sharing of each other’s ideas, which she 
described in Interview 2 as:  

I still struggle with the small group, but the large group, we have a protocol we follow. So, 
you all get think time and then you talk to a neighbor and then someone shares out and then 
we think about what they said. We've done those steps several times. We've done them with 
the lab and then I've repeated them, so we have set steps that we do in large group. So that 
feels really good. It sets it up for some good discussions to happen because there's a lot of 
voices being heard. You're talking in a small group. You feel safe when you're talking to a 
partner. When you're sharing out, you feel safe because you can share your partner's idea. 
don't know, It's like when you're one voice of many in many it's not as ... You would think it 
would be scarier to share with the large group, but the way we've set up all the protocols is, 
"Just share an idea that you heard at your table." So, it's not your idea. It doesn't have to be 
your idea. (Interview 2, lines 94-100) 
Through her lesson debriefs, Karla reported that the use of this protocol in her practice was 

productive for creating spaces where all students could engage in mathematics. She explained 
that such supports could disrupt students’ negative mathematical identities, where students’ ideas 
are positioned as valuable. Karla shared her classroom experiences with the participants in the 
subsequent LL4, elaborating her view of the consequences of students’ acknowledging each 
other’s contributions, “With Brian, who has this image of himself that he's not good at math, and 
he was the first one in the group to say four is half of eight. And like in a small group, I can hear 
that and point it out to him. And I often do it. You know you were the first one to say it, right? 
And you helped the whole group understand that” (LL4). 

By the end of the first year of PD, Karla’s reflections on the challenge of bringing more 
voices into the discussion moved away from binaries of whole group vs. small group. Her 
reflections on this challenge allowed her to consider an array of ways students can be supported 
to work with each other in both group structures. In the second year of the study, we continued 
seeing this shift in Karla’s perspective due her continual sensemaking about strategies and 
pedagogical tools to create a safe environment for students—like tasks that invite multiple ways 
of participation and focus on mathematical thinking processes and creating norms for partner and 
whole-class sharing. Having noticed increased partner sharing and variety of student voices in 
the whole class discussions with the help of her pedagogical toolbox, Karla’s problem of practice 
started shifting from student participation goals to supporting discussions in various group 
structures where she had minimal teacher intervention.   
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Discussion  
In this study of the co-evolution of a teacher’s participation between PD and her own 

practice, we aimed to attend to teacher learning as a process of continuous sensemaking rather 
than an outcome. We portrayed Karla’s learning beyond simply taking up tools from PD to her 
practice where we used evidence from her participation in both contexts to show how the 
recontextualization of ideas and tools can lead to richer deliberations about problems of practice 
and ambitious teaching. Karla’s iterative recontextualization of strategies from LLs to her 
practice and the additional questions she considered about practice suggest the way tools can 
mediate activity not only by translating abstract conceptual problems for beginners into a series 
of concrete steps, but also through the affordances (and sometimes constraints) it contributes to 
the development of their sensemaking and learning.  
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In response to calls to promote more equitable mathematics teaching practices (Gutiérrez, 
2009), mathematics coaching has been named as a promising professional development (PD) 
structure to support teachers to develop equity-centered pedagogies (Marshall & Buenrostro, 
2021). Yet, “coaching may fall short if coaches are insufficiently prepared for such complex, 
sensitive work” (Marshall & Buenrostro, 2021, p. 602) and few studies have explored how 
coaches’ own professional development might prepare them to support equitable teaching and 
learning practices at their school sites. Thus, the overarching purpose of this investigation is to 
better understand how mathematics coaches engage with equity while doing the math during 
their own district-sponsored professional development. 

Our study took place in a relatively well-resourced public school district, pseudonymously 
referred to as Hamilton, which is located in a southeastern, metropolitan area of the United 
States. We partnered with 12 elementary mathematics coaches and one district administrator. 
Data sources included video data, accompanying transcripts, and field notes for six doing the 
math sessions, as well as 15 transcribed interviews completed with a subset of participants.  

To better understand our participants’ opportunities to engage with equity while doing the 
math we used Gutiérrez’s (2009) equity framework as our analytic lens. Gutiérrez (2009) 
conceptualizes equity along four dimensions: (1) access; (2) achievement; (3) identity; and (4) 
power. Access and achievement comprise the dominant axis while identity and power comprise 
the critical axis. Both authors engaged in multiple rounds of qualitative coding (Creswell, 2013) 
to identify instances in which the coaches discussed each dimension of equity during their own 
professional development as it might apply to supporting teaching and learning at their 
respective schools. 

Across the doing the math sessions, our analysis showed that the mathematics coaches 
primarily had opportunities to engage with the dominant equity axis, while they less frequently 
engaged with the critical equity axis. Furthermore, discussions centering on the access dimension 
seemed to dominate the coaches’ equity-centered conversations. When engaged in conversations 
about access, the mathematics coaches primarily discussed potential modifications that could be 
made to mathematics tasks to: (1) provide an entry point for students, or (2) extend the task for 
students. 

Our study adds much needed research describing mathematics coaches’ own professional 
learning opportunities to engage with equity. Future research might consider exploring how 
coaches can be explicitly supported to discuss equity issues related to power and identity during 
their own professional development. 
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Teaching observation protocols serve purposes beyond research, such as providing formative 
feedback for teachers’ growth in their practice. Such observation tool usage requires different 
approaches for validation. For this reason, we developed the formative teaching evaluation 
framework adapted from the student-assessment literature. We used this framework as a guide 
toward collecting and organizing evidence of practitioners using the Math Habits Tool as a 
means for formative assessment of teaching. This report focuses on how we designed surveys and 
interviews to collect validity evidence related to the formative teaching evaluation intentions of 
the MHT. Overall, we established that the MHT was being used as intended by teachers and 
school leaders, and we provide details about the development and analysis procedures we took 
toward validating this observation tool for practitioner use. 

Keywords: Measurement; Professional Development 

Teaching observation tools are often positioned as both research tools and tools to provide 
formative feedback to support teacher reflection and growth (Boston et al., 2015). Yet, as noted 
by Yee et al. (2022), these protocols tend to focus on how “they are intended to be used to 
measure teaching behaviors” (p. 219) without attention to how they can be used for professional 
growth. Common observation protocols have focused validation efforts on measurement 
elements such as achieving inter rater reliability, establishing criterion-related validity, or 
validation through panels or experts (e.g., Gleason, et al., 2017; Hill et al., 2012; Schoenfeld, et 
al., 2018). While these traditional validation approaches are critical, we suggest there is also a 
need to explicitly collect validity evidence related to intended use beyond research contexts. That 
is, if these tools are developed to also provide formative feedback for teachers, then it is crucial 
that we attend to the viability of this usage type. 

In this report, we present the formative teaching evaluation framework adapted from Nicol 
and Macfarlane-Dick’s (2006) literature-based categories of formative assessment for students. 
We used this framework to provide a means to collect and organize evidence of an observation 
tool’s formative evaluation usage. We share data from the Math Habits Tool observation 
protocol project, focusing on how surveys and interviews were used to collect validity evidence 
from users related to the formative teaching evaluation intentions of the instrument.  
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Formative Evaluation and Teacher Feedback 
Schools have become increasingly data-driven (Marsh & Farrell, 2015) with teacher 

observation by school leaders or peers serving as the most common data source for evaluating 
teaching (Firestone & Donaldson, 2019; Steinberg & Donaldson, 2016). Such evaluation 
provides summative information as well as a mechanism to encourage instructional growth; that 
is, “while observations were initially conceived as tools for evaluation, such protocols are now 
seen as key levers for the improvement of teaching” (Hill & Grossman, 2013, p. 372). Hill and 
Grossman have suggested that observation needs certain qualities to productively support 
instructional growth, such as content, observers, and time.  

Instructional growth necessitates a reflection process that cannot be achieved through 
experience and training alone (Loughran, 2002). Productive reflection goes beyond summative 
lenses and requires nuanced, formative lenses for consideration of how instructional practice is 
working and for whom (Zeichener & Liston, 1996). Instructional practice needs to be 
decomposed from broad practice to specific practices (e.g., Grossman et al., 2009) and align with 
subject-specific goals. Evaluation focused on broad practice without specific ties to content has 
been found to have insufficient details needed to reflect on and change practice (e.g., Rigby et 
al., 2017). Hunter and Springer (2022) identified four critical observation feedback 
characteristics from the literature: “a) aligns with an improvement area, (b) discusses the 
feedback’s evidential basis, (c) sets specific improvement goals, and (d) includes actionable next 
steps” (p. 380). That is, the quality of observation is about the content and whether the feedback 
provides a roadmap to be actionable toward change in practice. This aligns with Hill and 
Grossman’s argument that a small grain-size is needed to support such actions and planning, a 
theme consistent with Firestone and Donaldson’s (2019) larger literature synthesis.   

One of the cross-cutting benefits of observation is creating a shared language for discussing 
ideas around instruction (Firestone & Donaldson, 2019); however, the relationship between the 
observer and teachers can have a strong impact on whether a particular observation is viewed as 
supportive for professional growth. In Paufler et al.’s (2020) study, they found that teachers 
diverged on whether they thought an evaluation system was primarily serving the purpose of 
judgment or formative feedback with attention to the way the system was communicated and 
how meetings with the observer played out. While the literature suggests that observation and 
feedback can provide teachers with support for instructional growth, the potential for formative 
evaluation is not always met by the incorporation of observation and feedback alone. 

The Formative Teaching Evaluation Framework 
Literature on formative assessment centers on assessing students (e.g., Black & Wiliam, 

2010). To assess formative teaching evaluation goals, we developed a framework composed of 
formative assessment attributes. In prior work, we started creating this framework by adapting 
Nicol and Macfarlane-Dick’s (2006) synthesis on formative assessment for students (Melhuish & 
Thanheiser, 2017). We suggest that formative assessment for teaching meets the following 
criteria: 

1. helps clarify what quality instruction is (goals, criteria, expected standards). 
2. facilitates the development of reflection on teaching. 
3. delivers high-quality information to teachers about their teaching and student learning. 
4. encourages dialogue around teaching and learning. 
5. encourages positive motivational beliefs and self-esteem. 
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6. provides opportunities to close the gap between current and desired instructional practice. 
7. provides information to observers (including school leaders) that can be used to help 

shape their support for teachers.  

To meet these goals, formative assessment tools must reflect teachers’ efforts at enacting 
critical components of teaching, provide details capturing the nature of these efforts, and offer 
direction for change and growth. That is, observation needs to be specific, actionable, and 
provide a language that can support robust conversation and reflection. 

Study Background and Methods 
The Math Habits Tool 

This study is situated in a larger project aimed at designing and validating the Math Habits 
Tool (MHT). The tool components overlay with the instructional triangle (Figure 1; Cohen et al., 
2003; Hawkins, 2002). The components were developed iteratively by appealing to literature on 
student-centered classrooms focused on justifying and generalizing and professional 
development with in-service teachers and school leaders. It meets the recommendations of 
explicitly situating observed components in mathematical activity and using a small grain-size. 

  
Figure 1. Instructional Triangle and Components of the MHT 

Interpretation and Use Statement. Aligned with Carney et al. (2022), we provide the 
following interpretation and use statement. The Math Habits Tool measures standards-based 
instructional elements including teacher moves and routines and student math habits of mind and 
interaction that have been identified as important in the literature. Each component is measured 
via observation with a timestamp. The tool was designed for the full K-12 content spectrum for 
planning, observation, and reflection with teachers, principals, coaches, and within professional 
learning communities. It can be used to document an entire lesson or a brief drop-in segment. 
Rather than scores, the instrument provides timelines and frequencies for different activities. 
Analyzing patterns between students and teachers found in the timelines can be used to plan for 
teacher moves that may support increased student engagement in justification and generalization. 
Intended use is formative for planning, observing, and reflecting, not summative; that is, the 
certain occurrences or frequencies of activities should not be used to evaluate teachers.  
Surveys, Interviews, Participants 

The survey was designed to better understand how K-12 stakeholders (e.g., teachers, 
coaches, administrators/principals) the MHT, and verify whether the MHT is being used as a 
formative assessment tool (rather than for teacher evaluation). To address the second goal, we 
created multiple-choice survey items using the criteria for formative assessment for teaching 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 763 

framework as a guide. Two related versions were created and administered for teachers and 
school leaders, respectively. The survey included one open-response question intended to collect 
qualitative data about how practitioners perceived the purpose of the MHT. The survey was 
completed by 243 K-12 stakeholders (213 teachers, 30 school leaders) from a total of 53 
different schools ranging from elementary to high school across the United States. All 
stakeholders had used the MHT and their experiences levels using the tool varied.  

Survey Analysis. A principal component analysis was used to determine the underlying 
survey structure which led to the identification of three factors (elaborated in the results). We 
also considered correlation of all items to further bolster validity of the framework’s construct 
coherence. The open-ended item responses regarding users’ perceived purpose of the tool were 
qualitatively coded by research team members using an iterative process of open-coding, 
meeting to discuss codes, arriving at condensed themes, and applying these themes to the data. 

Follow-Up Interviews. After survey analysis was completed, we interviewed 16 
practitioners. A cluster analysis was conducted on the Likert scale responses to identify teacher 
profiles using a k-means clustering algorithm with a Euclidean distance metric. We ran the 
algorithm with two through eight clusters and used a D-B index to determine the best number of 
clusters. This analysis revealed five clusters (see Table 1). Participants who indicated agreement 
to be contacted for a follow-up interview were selected from each cluster, totaling 11 teachers. 
Five school leaders (principals/coaches) who volunteered were also interviewed. In the follow-up 
interviews, we asked practitioners to elaborate on their survey responses, share further 
information about their perceived purpose of the tool, and explain in detail how they used the 
tool with reference to particular parts (e.g., which parts were most used, which were least used) 
and contexts (e.g., who they used the tool with). A set of analytic notes were created after each 
interview to identify whether responses seemed consistent with surveys and how participants 
explained their use of the tool in terms of planning, teaching, and reflection. 

 
Table 1: Description of the five clusters of survey respondents and dimensions of the survey 

 
 Affective Items Observation and 

Collaboration Items 
Planning and 

Reflection Items 
Cluster 1 Low Low Low 
Cluster 2 Mid High Mid 
Cluster 3 High High High 
Cluster 4 Low Low Mid 
Cluster 5 High Low Mid 

Results 
The survey results provided validity evidence that the MHT was meeting formative 

assessment goals for the majority of the respondents.  
Surveys: Closed-Form Items 

A scree plot indicated three distinct dimensions underlying the formative assessment survey 
(Figure 2). A set of sample items related to each dimension can be found in Table 2. Notice that 
individual activities were most prevalent with all teachers stating that they used the tool to plan 
for how to engage students in particular habits of mind and interactions. The observation and 
collaborative function occurred less frequently, yet indicated prevalent usage. This is not 
surprising or misaligned with intended usage because the time allotted for observation would be 
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smaller than the potential tool usage as an individual reflection tool. Finally, we note that the 
MHT also seems to be supporting (at least to some degree) affective and understanding goals 
with majority of teachers agreeing that the tool supported instruction for justifying/generalizing 
and promoting confidence to refine instruction. We suggest that the closed-form results helped to 
bolster our validity of usage claims and provides a blueprint for other instrument developers.  

Figure 2: Scree plot. Note the three dimensions above the simulated data. 

Table 2: Survey Items and Dimension 
 Dimension Percentages 

I use the Math Habits Tool to plan how 
to engage students in habits of 
mind/interaction. 

Individual Never (0%) 
Only with PD (13%) 
Rarely/Occasionally (32%) 
Weekly/Daily (55%) 

I use the Math Habits Tool to reflect 
on whether enacting teaching routines 
I planned to implement went as 
expected. 

Individual Never (4%) 
Only with PD (18%) 
Rarely/Occasionally (48%) 
Weekly/Daily (30%) 

I use the Math Habits Tool to talk with 
school leaders (e.g., coaches, 
principals) about classroom 
observations. 

Observation 
and 

Collaboration 

Never (14%) 
Only with PD (25%) 
Rarely/Occasionally (59%) 
Weekly/Daily (2%) 

I use the Math Habits Tool to observe 
teachers' classrooms with other 
teachers 

Observation 
and 

Collaboration 

Never (34%) 
Only with PD (34%) 
Rarely/Occasionally (31%) 
Weekly/Daily (1%) 
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By using the Math Habits Tool, I feel 
confident in refining my instruction. 

Affect and 
Understanding 

Strongly Disagree (3%) 
Disagree (9%) 
Agree (57%) 
Strongly Agree (31%) 

Using the Math Habits Tool has helped 
me better understand how instruction 
can support students in 
justifying/generalizing. 

Affect and 
Understanding 

Strongly Disagree  (3%) 
Disagree  (3%) 
Agree (35%) 
Strongly Agree (59%) 

 
Surveys: Open-Ended Item 

The survey also asked teachers and school leaders to respond to the question: In your own 
understanding, what is the purpose of the Math Habits Tool? This question was used to better 
situate the users’ responses on the closed-form items and gather additional evidence of how they 
conceptualized the tool’s purpose. From the coding process, five main themes were identified: 
common language and framework, planning and reflection on practice, observation and 
feedback, mechanism to promote students’ mathematical reasoning, and a mechanism to support 
students’ mathematical communication with each other. Regarding common language and 
framework, stakeholders articulated that the MHT provided a specific language for both students 
and teachers to use together as well as a structure that reflects important elements of instruction. 
One teacher noted that the tool is a “quick reference for best learning/teaching practices in 
math,” which can support student learning. A school leader further explained that the tool 
provides a “common language and conceptual grasp for a department of math teachers.” This came 
up in 60% of the school leader responses (18 total) and 36% of the teacher responses (76 total).   

The tool as a mechanism to promote students’ mathematical reasoning was a salient theme 
for teachers, with 140 teachers (66%) noting this purpose in their responses. For example, a 
teacher wrote, “the purpose of the [tool] is to engage all students in mathematical ideas and 
understanding by using representations and making connections to build justifications and 
generalizations.” While less of a focus for school leaders (10 total, 35%), many mentioned this 
alongside other purposes. For instance, one school leader stated the purpose of the tool was to 
“ground the work you do planning for lessons, discussions, tasks [and] connect things in a way 
that leads students to math conjectures and generalizations,” which speaks to the tool as a 
framework, planning tool, and a tool to support discussions. A less salient theme for teachers was 
observation and feedback use, with 12 teachers (5.63%) and 13 school leaders (43.33%) 
mentioning this purpose, which aligns with our findings in the prior section. 

Teachers disclosed either planning or reflecting on practice as the purpose of the tool; 
ideally, the goal would be for planning and reflection together to be viewed as a purpose. For 
instance, a teacher mentioned, “I use this to reflect on what was in my lesson, and I use this also 
to think about planning my upcoming lessons and activities.” Overall, about 20% of teachers (41 
total) and 27% of school leaders (8 total) mentioned planning and/or reflection on teaching. 
Finally, the tool as a mechanism to support students’ mathematical communication with each 
other was brought up in 68 teachers’ (32%) and 12 school leaders’ (40%) responses. This was 
often talked about as facilitating discourse about mathematics in the classroom, to “engage 
students in purposeful conversations about math.” Due to the nature of the question, practitioners 
may have thought to record only one purpose of the tool. For this reason, having practitioners 
expand on their responses or add other purposes in the interviews was critical for validation. 
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Interviews 
Semi-structured interviews provided a space for open conversations with practitioners to 

collect additional evidence of how the tool was being used. It was a crucial part of our process to 
determine whether the tool was being used for formative assessment, and to confirm whether it 
was not being used for other purposes, such as summative evaluation. All interviewees expressed 
formative assessment uses with school leaders, as exemplified in the following quote from a K-5 
mathematics coach: 

…sometimes the tool is more for me and then I just filter it [into] just general teacher 
language when I’m talking to the teacher, or sometimes I will say ‘Okay let’s look at the tool 
together,’ since this is a teacher who is very familiar with it, and we can use that to do some 
of the reflection, but it’s all really…how can I help this teacher to identify a goal for 
themselves to increase their practice.  

This coach explained multiple purposes including common language, collaborating, reflecting, 
and planning. They went on to explain, “I think from the teacher’s perspective… just the amount 
of formative assessment data you get from utilizing the tool with your students and just 
understanding how they’re thinking, how they’re making connections….” They voiced the 
collection and use of formative assessment that focused teachers’ attention to what students are 
thinking. Another coach directly explained that they are “careful that… when we go in with 
admin it doesn’t feel like another evaluation,” recognizing that the tool should support learning 
goals but not summative evaluation. 

In interviews, teachers also reflected that the MHT was not being used for summative 
evaluation. One 6th grade teacher elaborated that it is, “less of like a ‘are you good, are you not?’ 
Why is it good and just very vague. It makes it very concrete, easily talked about versus 
evaluative.” Overall, teachers elaborated on the role the tool played in their teaching, their 
planning and reflection, and their collaboration in the school, and emphasized the 
communication role of the tool. For example, a high school teacher stated, “I also think it’s a 
great onboarding tool for administrators who don’t have experience in math classrooms 
specifically or even if they do, it’s a great tool that launches conversation between teachers and 
administrators.” They continued to discuss planning, saying, “But, like everything else about the 
planning with… those things in the tool in mind gave me life and joy and gave my students 
success and confidence and so that’s why it’s ingrained in me.” 

We purposefully selected teachers from clusters that had survey responses reflecting less 
achievement of formative assessment goals. From these interviews, we identified several ways 
teachers voiced that the MHT was not meeting formative assessment needs. One concern from a 
middle school teacher was a misalignment between the mathematics emphasized in the 
observation tool (such as justifying and generalizing) and the mathematics emphasized in the 
school’s curriculum. She noted that the “philosophy of the curriculum is very rote math” and the 
tool was hard to use in the later parts of the year that were more focused on procedures. Another 
issue that arose was burn out, especially since the pandemic. This same teacher noted, “it was 
just like one more thing to make me feel like I was not a good teacher, and so I think that can be 
very, very discouraging.” This comment provides negative evidence in relation to the affect and 
understanding dimensions (encourages positive motivational beliefs and self-esteem from the 
framework). In this case, she viewed the MHT as just one more thing to balance and imposing an 
ambitious image of instruction that was hard to enact. 
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Finally, some teachers noted that while they used the content of the tool in their thinking 
when planning, they no longer relied on the physical tool. A teacher in a 6th grade math and 
science Spanish immersion classroom stated that, “In my mind, it’s a bridge to take us from 
traditional math classrooms where the teacher is delivering information, students are note taking, 
students regurgitate said information and we all move on and then students learn how to hate 
math.” They continued explaining that “when I’m planning, I’m thinking about these things, but 
not through the [physical] tool.” One explanation for this was that the school provided “lots of 
initiatives” and so they had other tools (besides the MHT) to provide the support they needed.  

Discussion 
As researcher tools become adapted to new contexts, it is important to validate for purposes 

beyond research. Our goal in this report was to share some of our efforts to validate an 
observation tool for a practitioner setting. To meet this aim, we developed the formative 
evaluation of teaching framework and a corresponding survey to administer to teachers and 
school leaders. Throughout this work, we take the general stance that tool validation should be 
done through the accumulation of different types of evidence to build a robust validity argument 
(Kane, 1992). While we have done substantial validation from a research perspective, in 
alignment with best practices suggested by other researchers, we found a need to consider the 
validity of the instrument for use by teachers and school leaders. That is, we wanted to lay out a 
systematic way to collect evidence of whether the MHT was successful in its formative 
evaluation intentions for practitioners. To do this, we collected evidence from many end users 
(teachers/school leaders) via a survey, and then additional evidence from detailed interviews 
with a targeted subset of practitioners who completed the surveys. 

By using the formative evaluation of teaching framework as a guide while collecting 
evidence of the MHT’s formative evaluation usage, we found that the MHT was being used as 
intended overall. The open-ended questions and interviews provided additional details and 
reflected some of the literature-based arguments for quality observation tools including 
providing a shared language (e.g., Firestone & Donaldson, 2019), tying into specific content 
(e.g., Rigby, et al., 2017), and providing actionable means to plan for and reflect on instruction 
(e.g., Hunter & Springer, 2022). We also explored how the same observation tool may not meet 
its formative assessment goals for all instructors. Our results indicated that there may be 
misalignment between curriculum and observation emphasis, competing school initiatives, and 
inferred quality evaluations that could interfere with the MHT’s formative evaluation potential.  

The ways in which school leaders use an observation tool as formative feedback may impact 
how teachers take up using the tool on their own and with other teachers. In the surveys and 
interviews, we noticed that teachers mentioned higher use of the MHT with professional 
development support. All the teachers and school leaders in our study had some professional 
development support around the use of the tool. Additional research is needed to see how the 
MHT formative evaluation use can be met with different degrees of support. Overall, we see this 
study as contributing an image of a positive step for validating tools, but additional work is 
needed for expansion to other contexts. 
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Professional development (PD) aims to support teachers in improving their teaching practices 
as well as strengthening their content knowledge. This poster shares how we are using design-
based research (DBR; Cobb et al., 2003; Collins et al., 2004; DBRC, 2003) to create a model of 
PD that intends to engage teachers playfully in content and practice.  

DBR is iterative research about an innovation as well as theory using input from stakeholders 
as well as systematic research questioning the theory and success of the innovation. In this case, 
we generated a working theory about teacher knowledge (Weiland et al., 2021) and through this 
we conjectured how to best engage teachers in learning. We first consulted with two advisory 
groups about what we call our Model of Coherent Learning for Teaching. One group was 
teachers and the other researchers. This stakeholder feedback led to a modification of the model 
to focus on content instruction (two-thirds) and applying learning to instruction (one-third). Next, 
we created a pilot PD experience to understand the innovation through capturing small group 
discussions during the PD. This led to our current understanding of our model.  

The Model of Coherent Learning for Teaching includes three stages: Exploration, 
Connection, and Application. Exploration playfully engages teachers with focused mathematical 
ideas including conjecture testing and mathematical argument. This stage has been consistent in 
our PD work over the past decade and past research suggests this type of engagement is 
successful for teacher learning (Brown, 2009; Burke, 2017; Orrill & Brown, 2023). Connection 
is focused on mathematical structure and representation. This stage surfaced as necessary 
through analysis of video of the pilot PD. Finally, the Application stage is where teachers 
directly connect with practice by considering how we can support students to have similar 
experiences playing with content and representations. The final stage was suggested through our 
stakeholder feedback as well as through previous work where there was evidence that teachers 
struggled to do this with PD ideas (e.g., Orrill & Kittleson, 2015). Throughout, teachers are 
working in small groups and the facilitator leads full group discussions using questioning and 
highlighting key mathematical ideas. 

This poster will highlight the evolution of the PD model as it is tied to iterations of DBR. 
This will include the current model, where it came from, and how we are using DBR to further 
develop it.  
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We examined what and how experienced (mentor coaches) and novice coaches (coach 
participants) noticed as they analyzed a vignette of a coaching interaction between a coach and 
a teacher. We modified the van Es (2011) Learning to Notice Framework for a coaching context 
to analyze What and How coaches notice. We collected data from ten mentor coaches, who were 
experienced coaches and ten coach participants who were more novice coaches. We compared 
pre and post noticing for coach participants based on a two-year professional development 
model and compared the noticing to the mentor coaches. Findings indicate coach participant 
noticing for What and How coaches notice collectively shifted toward a greater focus on the 
teacher, included more interpretation, and was more specific from the beginning of the 
professional development to the end. The mentor coach noticing, on average, was more teacher-
focused, interpretative, and specific than those of the coach participants.  

Keywords: Noticing, Professional Development, Coaching, Online Professional Development, 
Vignette  

Coaching is a professional development process used to support teachers to improve their 
instruction (West & Staub, 2003). Within mathematics education, content-focused coaching 
(e.g., West & Cameron, 2013) is one common coaching model that involves iterative cycles in 
which a coach works one-on-one with a teacher with a focus on mathematical learning goals for 
students. Coaching cycles are typically comprised of three sequential components: a pre-
conference discussion to plan a lesson; a collaboratively taught lesson; and a post-conference 
discussion to debrief the lesson (Bengo, 2016; West & Staub, 2003). When coaching, the coach 
is charged with responding to multiple simultaneous obligations, such as supporting the teacher 
to design a high-quality lesson, providing the teacher with assistance to learn mathematics 
content and pedagogy, and establishing a trusting and productive relationship with the teacher. 
Given the complexity of coaching, it is important to focus on how coaches learn to coach (Stein 
et al., 2022) and what they notice in the process of coaching. Research on noticing (e.g., Mason, 
2002) has shown that attending to stimuli and interpreting what is attended to is important when 
making productive instructional decisions. 

The purpose of this paper is to provoke consideration about what is important to notice in a 
mathematics coaching context and illuminate critical events coaches and mentor coaches (those 
with more experience) notice. Additionally, we were interested in analyzing how coaches notice 
aspects of coaching conversations. Researchers of teacher noticing have traditionally classified 
more advanced forms of noticing as those focused on students’ thinking, as compared to teacher 
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pedagogy (e.g., Jacobs et al., 2010; van Es, 2011). Building on teacher noticing, the intent is to 
better understand the critical events that coaches notice and consider coach noticing in 
coordination with existing teacher noticing frameworks. The following question is answered: 
When analyzing a coaching conversation between a coach and a teacher (a) What and How do 
coaches (coach participants and mentor coaches) notice? We situate the study within an 
innovative online mathematics video coaching experience, adapted from an in-person modality 
to an online modality to support coaches (Choppin et al., 2020).  

Theoretical Framing and Related Literature 
We theoretically frame this paper with noticing, adhering broadly to noticing as the concept 

of attending to and interpreting that which is important in each context. The work of Jacobs et al. 
(2010) foregrounds students' mathematical thinking as the focal aspect, signifying the 
importance for teachers to attend to and interpret students’ thinking and then make responsive 
decisions based on the interpretation. Cognizant of the work of Jacobs and colleagues, we draw 
heavily on the concepts of noticing and learning to notice of Sherin and van Es (2009). We 
consider noticing to be a learned skill (i.e., van Es, 2011) with levels of traceable progression to 
denote more advanced forms of noticing from more rudimentary forms of noticing. We also 
recognize various avenues through which one could notice, such as variation in noticing the 
actor, variety in topic, and differing approaches in the stance of noticing (e.g., Sherin and van Es, 
2009). Considerate of the purpose of our project—to support and train mathematics coaches—we 
consider the applicability of the Learning to Notice Student Mathematical Thinking Framework 
(van Es, 2011) in a context beyond that of a student and teacher in a classroom: that of coaching 
in contrast with that of teaching. We argue that the concept of learning to notice is as applicable 
in a coaching conversation as it is in a teaching conversation and emphasize transferability of 
noticing beyond the classroom context.   

The actions of coaching and what coaching entails varies based on context, coaching model, 
and the coaches and teachers taking part. In a study on conversational behaviors of early 
childhood coaches, Jayaraman et al. (2015) highlight the work of Trivetter (2009), noting that 
adults learn best when they are active participants, can apply their learning in an immediate 
context, and have multiple opportunities to practice their learning and reflect. However, the core 
of coaching and what the role encompasses varies depending on context and intended function. 
Russell et al. (2020) recognized that roles for coaches are not all the same, but the process 
typically includes creating intensive teacher learning opportunities that are job embedded, which 
occur through workshops, one-on-one work, and professional learning communities. Gibbons 
and Cobb (2017) described specific activities in which coaches take part. They noted that 
coaching can include analyzing classroom videos, facilitating book studies, visiting classrooms, 
co-designing instruction, conducting action research, examining student work, and more. These 
activities can vary in duration and intensity, with some lasting an entire school year and others 
being single opportunities. In many cases, the divergence in coaching activities (e.g., Johnson et 
al., 2018; Russell et al., 2020) can be attributed to different models of coaching. In the 
mathematics education context, common models include instructional coaching (Knight, 2007), 
cognitive coaching (Garmston, Linder, & Whitaker, 1993; Denton & Hasbrouck, 2009), and 
content-focused coaching (West & Staub, 2003).  

Content-focused coaches strive to deepen a teacher’s understanding of the content they teach 
and content-specific pedagogy needed to foster student learning (West & Staub, 2003). 
According to West and Staub (2003), the art of content-focused coaching lies in balancing 
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“direct assistance” coaching moves that provide teachers with specific instruction or guidance 
and coaching moves “that invite teacher contributions” such as self-reflection throughout these 
three phases (p. 15). Learning to coach in this way, and to coach in ways that ultimately support 
teacher learning is challenging. Baker and Knapp (2019) recognized the importance of 
supporting coaches and developed a tool, the Decision-Making Protocol for Mathematics 
Coaches, to help coaches be purposeful in their work. They argued that mathematics cannot be 
separated from the work of coaching. Results from their work indicated that support may be 
necessary to help coaches with their interactions with teachers. Analysis of coaching interactions 
has shown that coaching actions can support teacher learning (Gibbons & Cobb, 2016). Although 
Gibbons and Cobb (2016) focused on coaches’ actions and not how coaches talk with teachers, 
they identified particular aspects of coaches’ planning practices that supported teaching, such as 
identifying long-term goals, assessing instructional practice, and identifying paths for teacher 
development, among others. Their work and others (e.g., Sailors & Shanklin, 2010) have shown 
that coaching can have positive outcomes; however, more research is needed on how to support 
coaches and on how coaches learn and perceive coaching interactions. To know how to support 
coaches, data on coach thinking and how coaches approach their work is necessary. Parallel to 
teacher noticing, we consider coach noticing to be an essential aspect of a coach’s practice that 
may relate to a coach’s ability to effectively support their teachers. Therefore, knowing what and 
how coaches notice as they analyze coaching conversations can illuminate how coaches 
approach and make sense of coaching situations, a foundational step needed to better support 
coach development. Just as classroom teachers analyze students’ thinking and work, often based 
on video of teaching episodes, we argue a similar importance for coaches analyzing teachers’ 
thinking based on coaching interactions.  

Methods 
In our content-focused coaching model (Choppin et al., 2021), coaches engaged teachers in 

online coaching cycles that included a planning meeting, lesson implementation, and a debriefing 
meeting. We then used video from the planning discussions of the coaching cycles to provide 
professional development to those learning to coach. For the purposes of this study, we engaged 
coaches (termed coach participants) and those teaching coaches (termed mentor coaches) in 
analyzing segments from transcriptions of three different planning discussions—we refer to both 
groups collectively as participants. We refer to the transcribed segments from the planning 
discussions as vignettes to determine what and how coaches notice.  
Participants 

Participants included 10 mentor coaches and 10 coach participants. Mentor coaches were part 
of the project team and had experience as mathematics coaches. Their role was to provide 
professional learning opportunities to those learning to coach. Coach participants were those 
enrolled in our professional development experiences as participants (see Amador et al., 2021) to 
learn how to support teachers through content-focused coaching cycles.  
Data Collected 

Data came from interviews with each of the 20 participants. Participants were interviewed 
about their coaching background and practices. The interviews also included the focal section for 
this analysis, which we term vignette analysis. Prior to the interview, each participant was given 
three different vignettes, which were actual transcripts from coaching conversations we recorded 
as part of a prior professional development project to support teachers. We used transcripts from 
our prior project intentionally, as they reflected authentic coaching conversations. Each of the 
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three vignettes was from a different coach; we purposefully selected coaches for the vignettes 
who had varying discourse patterns (see Gillespie et al., 2019). The vignettes represented 
approximately 3-5 minutes of coaching conversation. For the purpose of this paper, we focus on 
only one of the three vignettes. During the interview, participants—both mentor coaches and 
coach participants—being interviewed were given time to review the vignettes. In addition to the 
transcript of the coaching conversation that included 14 talk turns back and forth between the 
coach and teacher, participants were given the following overview: 

In this vignette, the coach and teacher are planning a lesson about fractions in a 4th grade  
classroom. The lesson involves a task in which students are asked to use visual strategies to 
determine the amount of brownies a person would receive if seven brownies were shared 
between four friends. 

For the interview process, participants had copies of the entire transcript of the vignette and 
were given as much time as they needed to review the transcript and respond to prompts. Figure 
1 shows an excerpt from the transcript participants were provided. 

 

 
Figure 1. Vignette excerpt  

Participants were asked a series of questions about the vignette. For the purposes of this 
study, we focus on one question they were asked because it was specific to noticing and designed 
to broadly elicit what they notice: (a) What is your overall reaction and what did you notice as 
you read the vignette? The prompt was intentionally open-ended to gather participants’ initial 
noticing about the coach and teacher interactions in the vignette. 

In this paper, we focus on coach participant responses at the point they entered the two-year 
professional development project (pre data, n=10) and responses to the same vignettes at the 
point they exited the two-year professional development project (post data, n=10). We also 
analyzed responses from the mentor coaches at one point in the project (n=10), intentionally not 
interviewing them pre/post as they were leading the professional development. The purpose of 
including the mentor coaches in the analysis was to provide a baseline of the type of noticing that 
occurred for these vignettes by those with considerable experience teaching and coaching 
mathematics. There were 10 coach participants, resulting in 20 analyzed responses (including pre 
and post) and 10 mentor coaches, resulting in 30 total coded responses.   

Data Analysis 
To answer the research question, about what and how do coaches (coach participants and 

mentor coaches) notice, we worked from the Learning to Notice Student Mathematical Thinking 
Framework (van Es, 2011) and modified it for the purposes of analyzing a coaching 
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conversation, as compared to the implementation of a lesson. Figure 2 shows the modified 
framework, termed the Coach Noticing Framework. 

 
 Level 1 

Baseline 
Level 2 
Mixed 

Level 3 
Focused 

Level 4 
Extended 

What
  

Coac
hes  

Notic
e 

 

Attend to 
whole 
conversation, 
participant 
engagement or 
behavior, the math 
task or related 
lesson plan 
broadly 

Primarily 
attend to coach’s 
action 

 
Begin to 

attend to 
teacher’s 
mathematical 
thinking or 
pedagogical 
reasoning 

Attend to 
teacher’s           
mathematical 
thinking or 
pedagogical 
reasoning 

 
 

Attend to the relationship 
between teacher’s 
mathematical thinking or 
pedagogical reasoning and 
coach’s action  

 

 Level 1 
Baseline 

Level 2 
Mixed 

Level 3 
Focused 

Level 4 
Extended 

How 
Coaches 
Notice 

Form general 
impressions of 
what occurred 

Provide 
descriptive and 
evaluative 
comments 

Provide little 
or no evidence to 
support analysis 

Form 
general 
impressions and 
highlight 
noteworthy 
events. 

Provide 
primarily 
evaluative with 
some 
interpretive 
comments 

Begin to 
refer to specific 
events and 
interactions as 
evidence 

Highlight 
noteworthy 
events 

 

Provide 
interpretive 
comments 

 
Refer to 

specific events 
and interactions 
as evidence 

 
Elaborate on 

events and 
interactions 

Highlight noteworthy 
events 

Provide interpretive 
comments 

 
Refer to specific events 

and interactions as evidence 
 
Elaborate on events and 

interactions 

Make connections 
between events and principles 
of teaching and learning 

On the basis of 
interpretations, propose 
alternative coaching 
solutions. 

Figure 2. Coach Noticing Framework 

 
For clarification to Figure 2, to be coded as a Level 3 for What, the response had to focus on 

specific aspects of the teacher’s mathematical thinking (meaning the teacher in the vignette). To 
be coded as a Level 4 for What, we considered comments about the teacher’s content knowledge 
to be encompassed in the meaning of “teacher’s mathematical thinking.  

Data from the coach participants and mentor coaches were entered into a spreadsheet and 
blinded for participant type and for whether or not the response was pre or post for the coach 
participants. Four researchers each independently coded each of the vignette responses for the 30 
total participants, assigning only one level for What Coaches Notice and one level for How 
Coaches Notice, based on the Coach Noticing Framework. The entire utterance of the coach in 
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response to prompts about what was noticed was coded. The highest noticing level obtained at 
any point in the utterance was the code assigned, similar to the coding process of other 
researchers analyzing noticing (i.e., Jacobs et al., 2010). The four researchers then met and 
reconciled each of their codes until they agreed on all 30 responses. Data were then unblinded by 
participant type and whether the response was at the beginning of the project (pre) or end (post) 
for coach participants. Descriptive statistics were then calculated, with attention on the 10 
mentor coaches and 10 coach participants. Themes in the levels of responses and types of 
responses were then identified. For example, all responses receiving a Level 1 code for What 
were reviewed and memos were written about similarities. This was done for each of the eight 
options (i.e., How Coaches Notice Level 1-4; What Coaches Notice, Level 1-4).     

Findings 
From analyzing 20 pre and post participation responses from coach participants and 10 

responses from mentor coaches, we identified three noteworthy trends.   
Coach Participant and Mentor Coach Noticing 

First, based on averages, the mentor coaches noticed at higher levels than the coach 
participants for What Coaches Notice and How Coaches Notice. The baseline noticing for coach 
participants (pre) for What Coaches Notice was 1.6/4.0, compared to a baseline noticing for 
mentor coaches at 2.2/4.0. The baseline noticing for coach participants for How Coaches Notice 
was 1.9 for coach participants (pre) compared to 2.4 for the mentor coaches. For both What 
Coaches Notice and How Coaches Notice, the mentor coaches as a group demonstrated higher 
levels of noticing. Despite the difference in overall average, we found variability within each 
group. Four of the ten coach participants and three of the ten mentor coaches noticed at a Level 1 
for both How Coaches Notice and What Coaches Notice, indicating that despite the increased 
coaching experience, the mentor coaches were not all focused on teachers’ reasoning (What) or 
focused on noticing in a way that emphasized elaborated interpretation and connections.  

To illustrate the Level 1 findings there were evident in both participant groups, we provide an 
example. Coach Arnold, a coach participant, shared the following during the pre-interview in 
response to the question, “What is your overall reaction and what did you notice as you read the 
vignette?”: 

One thing that really stuck out to me about that one was that they were spending a lot of time 
kind of anticipating what kids would do and what felt hard and how they would tackle that, 
which I thought was important. It was really focused on the goal. 
We coded this statement as “Level 1 - Baseline” for What Coaches Notice because the 

statement from the participant coach broadly described the focus of the vignette conversation 
without any attention to the coach actions or teacher thinking. Similarly, we coded this statement 
as “Level 1 - Baseline” for How Coaches Notice. This score was based on the participant coach 
providing only descriptive and evaluative comments, without any attempt at interpreting events 
in the vignettes using evidence. 

Of notable difference between the coach participant group and mentor coach group was the 
demonstration of higher levels of noticing. For the baseline data, all coach participants noticed at 
a Level 1 or Level 2 for both What Coaches Notice and How Coaches Notice. No coach 
participant reached a Level 3 or Level 4. In contrast, five of the mentor coaches noticed at a 
Level 3 or Level 4 for either What Coaches Notice or How Coaches Notice, indicating half of the 
mentor coaches demonstrated more advanced noticing. In fact, two of the mentor coaches 
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noticed at a Level 4 for both What Coaches Notice and How Coaches Notice. When comparing 
the two different participant groups, the range in noticing from the mentor coach group 
compared to similarities in How coach participants noticed, within the group, is a notable point. 
And although mentor coaches on average noticed at higher levels, higher levels of noticing were 
not evident for all mentor coaches, which speaks to the challenge of learning of notice 
effectively, even for those with considerable experience.  
Changes in Participant Coach Noticing  

Second, when comparing the pre and post noticing levels for coach participants, increases 
were seen in the averages for What Coaches Notice and How Coaches Notice. For the coach 
participants, the average level of noticing for What Coaches Notice increased from 1.6 to 1.9 
from pre to post and the average level of noticing for How Coaches Notice increased from 1.9 to 
2.0. Most coach participants noticed at a Level 2 or higher for the post response. Table 1 shows 
the breakdown for pre and post for coach participants for both What Coaches Notice and How 
Coaches Notice. 

 
Table 1: Comparison of Coach Participant Noticing 

 Pre-participation Responses Post-participation Responses 
Participant Coach What How What How 
Dyson 1 1 2 1 
Stevens 2 2 2 4 
Bell 1 1 1 2 
Butler 1 2 2 1 
Clark 2 2 2 2 
Glover 1 1 1 1 
Logan 2 3 3 3 
Rice 1 2 3 1 
Howard 2 2 1 2 
Snyder 2 2 2 3 
Participant Coach Average 1.6 1.9 1.9 2 

 
The following is an example of a Level 2 response for What and How coaches notice:  
I really thought it went well. You know? I highlighted how the coach starts right away with, 
"Let's start with, what's our goal?" It's very goal-focused. I like that the coach used the word 
"our" instead of "your". It kind of takes ownership. You know? They're working together as a 
team. The coach also did a great job letting the teacher talk and having the wait time to really 
let the teacher get their thoughts out. The coach wasn't jumping in and trying to give the 
answers. The one question the coach asked was like, "What's the big idea?" Which I thought 
was great. "Let's talk about what we think the kids are going to do with this problem. What 
misconceptions might pop up." I just thought that the coach did a really good job in drawing 
stuff out of the teacher that the teacher might not have necessarily thought of. 
In this example, for What Coaches Notice, the coach participant primarily focuses on the 

coach and the actions of coach, with some indication about the teacher. The response is primarily 
evaluative, with comments such as, “the coach did a really good job”, with some initial 
interpretation such as indicating that that particular pronoun used demonstrated shared 
“ownership.” Responses that this level were common in the post data, with 7 of 10 coach 
participants noticing at a Level 2 or higher for What Coaches Notice and 6 of 10 noticing at a 
Level 2 or higher for How Coaches Notice.  
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Third, we found inconsistent changes from pre to post when analyzing coach participant data 
with respect to whether or not noticing improved from the beginning of the two-year professional 
development to the end. Results at the individual coach participant level, comparing changes 
from pre to post in noticing indicated that for What Coaches Notice, 4 of 10 coach participants 
increased their noticing level, 5 remained the same, and 1 decreased. For How Coaches Notice, 3 
of 10 coach participants increased their noticing level, 5 had the same level pre and post, and 2 
decreased. Only one coach participant increased their noticing level for both What Coaches 
Notice and How Coaches Notice from the pre to the post data collection. These findings indicate 
that even though the average level of noticing for What Coaches Notice and How Coaches 
Notice increased from the pre to the post interviews, the data were inconsistent at the participant 
level.  

Despite the variability, there were coach participants noticing at higher levels at the end of 
the project. The following is an example from a coach participant coded as a Level 3 for What 
Coaches Notice and Level 3 for How Coaches Notice, from the post data set: 

I noticed that, at the beginning, the coach asked, "What's the goal," and I think the teacher—I 
don't remember exactly—but sets a mathematical goal. The coach pushed her more to 
think—like a mathematical thinking goal or a bigger, overarching idea goal? I liked that there 
was that push to really think about a deeper goal for her instruction. I noticed, at some point, 
they were talking about misconceptions, and it seemed like—I think the coach—the teacher 
said, "A misconception?" and then the coach validated, like, "Right." Then the teacher kept 
talking. I thought that was valuable, and I think that the coach's input wasn't too, it wasn't 
trying to steer the teacher into a different direction. It was more carrying the conversation. 
In this example, the teacher’s thinking is mentioned, even quoted at one point, and the 

emphasis is on the interaction between the coach and teacher. The coach participant makes 
interpretations about the coach’s intent with the conversation, “to steer the teacher into a 
different direction” and discusses how the coach pushes the teacher toward increased 
mathematical thinning and emphasis on the big mathematical idea.  

Discussion and Conclusion 
We consider the shift of coach participant noticing toward higher levels as a group to be 

noteworthy; however, we also highlight the lack of change for some participants and the shift to 
lowers levels for others to be worth consideration. Of note, we recognize that no aspect of the 
three-part professional development process was focused specifically on noticing, although the 
emphasis was on supporting coach participants to learn how to support teachers, thus an 
emphasis on considering teachers and making responsive decisions—aspects akin to noticing 
(e.g., Jacobs et al., 2010; van Es & Sherin, 2002). Likewise, neither the coach participants nor 
the mentor coaches had the Coach Noticing Framework (Figure 2) during the professional 
learning activities. We conjecture that if we had specifically focused the professional 
development on the framework, then we would have seen more dramatic shifts in noticing. 
Given that the framework was not available for participants, we consider the shifts that occurred 
noteworthy and consider the changes favorable for many of the participants. Additionally, we 
conder the modification of the van Es (2011) Learning to Notice Student Mathematical Thinking 
Framework to be a contribution to the field of coaching and noticing, as the framework provide 
ways for the field to analyze and consider noticing in a coaching context, specifically, content-
focused coaching (e.g., West & Staub, 2003).  
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A central goal of lesson-centered professional development programs (PD) for mathematics 
teachers is to learn by constructing an artifact, for example, by designing and improving a 
lesson plan together. That leads to the questions, what does it mean, for mathematics teachers, to 
improve a lesson? And how can improvements be accounted for in the analysis of the resulting 
artifacts, especially when these are multimodal? This paper lays the groundwork for answering 
such questions by drawing on empirical data from a lesson-centered PD program for secondary 
geometry teachers. We show how semiotic choices were made to convey that the teacher would 
need to support students when geometry instruction moves from a construction task to a proof, 
by (1) addressing students’ confusion; and (2) creating a shared language to discuss diagrams. 
We relate these findings to teachers’ professional growth and the conference theme. 

Keywords: Geometry and Spatial Reasoning; Problem-Based Learning; Professional 
Development; Research Methods. 

Objectives of the Study  
As part of the emphasis on practice in professional development programs (PD) (Cohen & 

Ball, 1999) for mathematics teachers (MTs), lesson-centered PD – that focus on collaborative 
work around one lesson (e.g., Morris & Hiebert, 2011) – have risen in popularity. A key activity 
in these programs is the iterative process of revising artifacts such as mathematical tasks, 
storyboarded lessons, vignettes, or lesson plans (e.g., in Lesson Study programs; Lewis et al., 
2009). Such activities are aimed at the professional growth of the MTs through their involvement 
in the construction and revision of artifacts (building on the constructionism approach proposed 
by Papert & Harel, 1991). While numerous studies have sought to account for MTs’ professional 
growth when they design lessons together (see Huang & Shimizu, 2016), it is less common to 
find studies that analyze the revised artifacts themselves. Thus, some questions remain 
unexplored, in the context of a lesson-centered PD: What does it mean, for MTs, to improve a 
lesson? How can improvements be accounted for in the analysis of the resulting artifacts, 
especially when these are multimodal? And how can changes in artifacts be linked with MTs’ 
professional growth, if at all? These lines of inquiry align with recent calls for theorizing 
teachers’ multimodal professional learning (Lefstein et al., 2020). By multimodal we allude to 
communication that relies on two or more of the communication modalities including written, 
oral, visual, kinesthetic, and gestural. With the proliferation of lesson-centered PDs, and 
particularly such that include storyboarding or vignette-making, there is a need for a framework 
that: 1) captures and compares multimodal semiotic choices that MTs make while creating and 
revising instructional artifacts (analyzing written and visual modes), and 2) relates these choices 
to MTs’ oral arguments to provide a multimodal characterization of teachers’ professional 
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learning (analyzing, in addition, oral and perhaps gestural expressions). To lay the ground for 
developing such a framework, we focus on the first component by comparing two artifacts from 
a lesson-centered PD in which secondary MTs created versions of a geometry lesson, represented 
through storyboards of cartoon characters. We ask: 

How do changes made over time to the storyboard of a geometry lesson evince the kinds of 
improvements that MTs were attending to in the context of a lesson-centered PD? 

In this study, storyboarded lessons serve as visual lesson plans that MTs created and 
constantly revised over two years. In this sense, our use of the word improvement is based on the 
assumption that all revisions made by MTs were intentional. We do not view these revisions as 
objective improvements, but rather as expressions of what the MTs considered improvement. 

Theoretical Framing  
This section describes how we theorize revisions in storyboards, and how we relate such 

revisions to MTs’ opportunities for professional growth. Our focus on improvements in 
storyboarded lessons leads us to take a closer look at visual as well as written semiotic choices. 
By semiotic we mean the “intricate web of signs signifying signifiers” (Radford et al., 2008, p. 
vii). That is, we are looking for the meanings that are made through expressive choices in the 
two modalities (visual and written). To decode visual and linguistic meanings, we draw on 
aspects of systemic functional linguistics (SFL) (Halliday & Matthiessen, 2004; Matthiessen et 
al., 2010). While SFL originally offered a lens to explore meaning in language, various 
adaptations to other semiotic media (e.g., in children's picture books by Painter et al., 2013; or in 
film by O'Halloran, 2004) have allowed Herbst et al. (in press) to extend it to the interpretation 
of storyboarded lessons. 

In SFL, a system can be thought of as a set of options that are available to construe particular 
meanings. Herbst et al. (in press) discuss several systems that use multimodal resources to 
construe meanings in the design of storyboarded lessons: Orientation, Visibility, Temporality, 
and Individuality. The system of orientation relates to the choices designers of storyboards make 
to tell viewers where to focus their attention. Similar to how cameras are used in filmmaking, 
this system includes the choices of which points of view will be used, and when the storyboard 
will zoom-in and out (see Figures 2b and 2c for different point of views). Another resource to 
orient viewers is the use of captions (see Figure 1a) that provide textual information which is not 
represented in speech bubbles, such as “five minutes later”. A second system is visibility, which 
supports the construal of meanings by making classroom experience more or less visible to the 
viewer, to convey “what is important for the viewer to see” (ibid, p. 11). For example, the choice 
to inscribe a diagram on the board versus invoking it as present without actually providing it 
(e.g., by using the legend “diagram here”), or to transcribe a question that was posed by the 
teacher but only invoke how students responded (e.g., by having student captions “blah blah”). 
Temporality supports the development of a sense of timeliness and duration in the representation 
of a lesson (e.g., by ordering frames in a certain way, ordering speech bubbles within a frame, or 
using the gutter between frames to move time forward). A fourth system is individuality, which 
alludes to choosing how characters or artifacts will be made distinct from each other (e.g., by 
choosing how characters look like). To further interpret some of the linguistic choices we draw 
on Christie's differentiation (2002) between instructional and regulative registers in classroom 
discourse. The instructional register refers to the language, symbols, and visual representations 
involved in representing the mathematical content of the lesson (e.g., “Reflect point A over line 
1”, Figure 1b), while the regulative register refers to the language, symbols, and visuals the 
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teacher use to tell students what they are requested to do (e.g., “Read the instructions”, Figure 
1a). The systems noted above (orientation, visibility, temporality, individuality) characterize yet 
a third register, which projects the regulative and instructional registers when a lesson is 
represented for an audience (as opposed to enacted by its participants for instruction’s sake), and 
that Herbst et al. (in press) name the transactive register. 

As noted above, our second goal is to relate improvements in artifacts to MTs’ professional 
growth. To do that, we draw on Clarke and Hollingsworth’s (2002) interconnected model for 
professional growth, which consists of four domains of the teacher’s work that interact with each 
other: the external domain (e.g., adoption of a new textbook), the personal domain (e.g., 
knowledge, beliefs, dispositions), the domain of practice (e.g., the actual teaching of a lesson), 
and the domain of consequences (e.g., students’ interest in the subject). Our prior research 
showed how the work MTs do when improving storyboards is a form of “virtual professional 
experimentation” (Milewski et al., 2018, p. 111) that takes place in the domain of practice, but 
has consequences in other domains, especially in the internal domain (see Herbst et al., 2020). In 
other words, we showed how differences that can be traced during virtual professional 
experimentation are related to processes of professional growth. In this paper, we draw on the 
assumption that it is worthwhile to better understand the differences that can be accounted for in 
the domain of practice (e.g., improving the storyboarded lessons here), hypothesizing that 
observable changes in the domain of practice suggest that professional learning occurs.  

Methods 
Context and Data Collection  

Between 2015 and 2017, a two-year practice-based PD was implemented to engage 
secondary MTs in designing and improving storyboarded representations of lessons that use 
reform-oriented instructional tasks. The goal they pursued was to demonstrate for other teachers 
how these tasks could be used in classrooms and the finished storyboards were meant to become 
part of a library of practice. Sixteen MTs from six schools in a Midwestern state were divided 
into four groups (two for geometry and two for algebra). In Year 1, each group was assigned four 
novel tasks and developed four storyboarded lessons (one for each task). In Year 2, 
representatives from the groups taught the lessons in their classrooms and later shared their 
experiences in the PD. These experiences were used to inform further revisions and 
improvements of the storyboarded lessons. The blended PD included yearly face-to-face 
meetings, monthly video-conference meetings, and weekly online forums. For this study, we 
focus on one geometry lesson, developed by six geometry teachers who had between 12 and 26 
years of teaching experience. The main task of the lesson aims at students’ understanding of 
composite reflections over two intersecting lines. Assuming that students had previously engaged 
with construction tasks that required transformations of objects in the coordinate plane, and in 
addition practiced proving, the lesson goal was to connect plane transformations and geometric 
proofs. The first part of the task (hereafter, construction task) gives a line and a point outside the 
line. Students are asked to draw a point on the line, connect the two points, and reflect the 
resulting segment across the line. This construction leads them to find out that the angle 
measures (between the segment and the line) are preserved and congruent (see the diagram on 
the board in Figure 1a). The following task (hereafter, proof task) reads: “The composite of two 
reflections over two intersecting lines produces a rotation centered at the intersection of the lines 
that is double the rotation of the first line to the second line.” The attached diagram shows two 
intersecting lines and a point next to one of the lines (see the diagram on the board in Figure 
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1b). In a previous analysis of the interactions that occurred in this PD (Milewski et al., 2019) we 
found that MTs had trouble framing this task (because it is neither a proof nor a construction) 
when implementing the lesson in their classrooms (in the beginning of Year 2). Our goal for this 
analysis was to explore how coping with this challenge was apparent, if at all, in the 
improvement of the lesson over time. The data collected includes video records of group 
meetings and classroom implementations, forum logs and all artifacts, including versions of the 
lessons storyboard. The sources used for the current data analysis are two versions of the lesson 
storyboard from the end of Year 1 and Year 2 (comprising 12 and 20 frames, respectively).  
Data Analysis 

Our multimodal analysis looks at the use of written and visual modalities (Christie, 2002; 
Herbst et al., in press) drawing on SFL (Halliday & Matthiessen, 2004), and also informed by 
principles of visual data analysis (Kress & Van Leeuwen, 2020). Similar to the steps in the 
content analysis of written texts, visual data analysis comprises image description, segmentation, 
coding, memo writing, and iterative interpretation of these. In more detail, we have conducted 
the following steps: (1) storyboards are made of a sequence of frames. To find improvements, we 
compared the frames and sought for places where MTs made changes to frames or added frames. 
At this stage we found that no changes were made in the first nine frames of the storyboard, and 
so we focused on the 10th frame onward. We described what is happening in each frame. (2) 
Based on the descriptions we wrote; we identified which frames in one storyboard were 
comparable to the frames in the other. We deemed the frames comparable when the action taking 
place in each frame was similar (e.g., the teacher launches the task), and defined the pairs of 
comparable frames as our unit of analysis – how “same” periods in the lesson were represented 
in the different storyboards. For example, we found that a period that was represented with one 
frame in Year 1 was represented with three frames in Year 2. We also identified new periods in 
Year 2 that had no equivalences. This process of segmentation included creating tables that 
displayed the frames side by side and detailed the differences found between them. (3) We 
identified the semiotic changes in the comparable sets of frames, in relation to the semiotic 
registers. By analyzing the semiotic choices using the theoretical framing presented above, we 
found themes of improvements in the lesson (similar to the identification of themes in textual 
content analysis), on which we elaborate below. 

Findings 
The participants' semiotic choices elaborate the transition between a task in which students were 
asked to make a construction and a subsequent task in which they were asked to do a proof. As 
mentioned above, the lesson started with nine frames that narrate how the teacher launches the 
construction task and how the class makes sense of it. These frames were identical in Year 1 and 
Year 2 (Y1 and Y2, hereafter). The lesson refinement starts when the teacher launches the proof 
task, and is illustrated by the following improvements: (1) representing the teacher’s address of 
students’ confusion, and (2) representing the teacher’s displaying of a student-generated diagram  
Improvement #1: Representing the Teacher’s Address of Students’ Confusion 

The first improvement is illustrated by three periods in the lessons that were revised between 
Y1 and Y2 (Figures 1, 2 and 3). In the following, we analyze each period by comparing and 
contrasting frames. The first change is the launch of the proof task (Figure 1): in Y1 the teacher 
asks the students to read the task instructions (Figure 1a), while in Y2 the teacher reads them 
(Figure 1b). This change is apparent in several semiotic choices: In terms of orientation, the 
additions to the caption in Y2 orient the viewers to notice that the teacher is the one who reads 
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the instructions. Another difference is in the use of registers in the teacher’s speech bubble. In 
Y1 (Figure 1a) the teacher uses only the regulative register (asks students to to “read”, “tell”, and 
“show”), whereas in Y2 (Figure 1b) the teacher uses also the instructional register when reading 
the instructions (“Reflect point A over line 1 to A’”), that is, the viewers can see what 
mathematical actions the students are asked to do. While the storyboarded lesson in Y1 glosses 
over the details of the task, the Y2 lesson draws the viewer’s attention to the details of the task, 
to make sense of the students’ confusion that follows. Furthermore, there is a change in the 
system of visibility with the different display of a diagram in each frame. In Y1 (Figure 1a) the 
diagram on the board is a remnant of the previous phase of the lesson that appeared on the 
previous frames as well; in Y2, the teacher projects a new diagram which coheres with the proof 
task described in the teacher's speech bubble, illustrating a multimodal representation of the 
teacher's use of the instructional register. This diagram was handed to students as part of the task 
sheet.  

  

Figure 1a. Y1: Frame 10 Figure 1b. Y2: Frame 10 

Figure 1. Launch of the task. 

The second comparison (Figure 2) elaborates what happens in the lesson once the task is read 
(either by the teacher or the students). In Year 2, the teacher asks the students to solve, and the 
viewers are told that the students are confused. MTs used several semiotic resources to draw 
attention to this confusion, changing or adding frames (including a different point of view), facial 
expressions, caption, and text. While in both Figures 2a and 2b the orientation is the student’s 
point of view, focusing on the teacher – frame 11 in Y2 (Figure 2b) is zoomed in, the teacher is 
looking at the students in silence, which creates a dramatic pause in the lesson. This is followed 
by a frame (Figure 2c) where the orientation shifts to one similar to the teacher’s point of view 
facing the students, but that includes the teacher as one being observed. For the first time in this 
storyboard, several students have different facial expressions (a choice to represent students’ 
individuality). These facial expressions are explained by the caption, “some groups are 
confused.” The students’ confusion is presumably induced by the shifting from construction to 
proof without explicitly discussing it. The changed representation of time (temporality) – the 
elaboration of the period after the task was issued accomplished by adding an additional frame – 
lends even more emphasis to this challenging shift. In terms of visibility and temporality, some 
actions that could possibly happen in the lesson are not narrated: In Figure 2a, viewers do not see 
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if the students reacted to the teacher’s question in the previous frame (Figure 1a). In Figure 2b, 
viewers do not see who added points A’ and A’’ to the diagram, yet they may guess that it was 
the teacher as they are in control of the board. The lack of dialogue adds more focus to other 
components of the storyboard (e.g., facial expressions, caption). 

  

Figure 2a. Y1: Frame 11 Figure 2b and 2c. Y2: Frames 11 and 12 

Figure 2. The period in the lesson after the task was read. 

The third comparison (Figure 3) shows the teacher walking around the room as the students 
engage in the proof task. A salient improvement made in this moment is the addition of dialogue 
and the camera’s focus and zoom-in on the students and the teacher’s faces (Figures 3b, 3c), as 
opposed to focusing only on the teacher in Figure 3a. Individuality is construed not only by using 
different facial expressions and color of the shirts, but also by distinguishing the students' 
interactions with the teacher: Yellow answers the teacher’s question hesitantly, alluding to the 
angle as "something," while Pink seems more convinced and talks about angles. These individual 
characteristics display the heterogeneity of the class, since the students are not represented as a 
monolithic whole. In addition, some linguistic choices were made to convey the interpersonal 
teacher-students relationships: In Figure 3b, the teacher asks “what are we trying to show?”, 
suggesting that making sense of the task is a joint effort. In Figure 3c, the caption says that the 
teacher “addresses confusion”, while the teacher is asking a question – which means that asking 
questions is the teacher’s method of addressing confusion (instead of, for example, answering). 

 

   

Figure 3a. Y1: Frame 12 Figure 3b and 3c. Y2: Frames 13 and 14 

Figure 3. Teacher walks around the classroom. 
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Improvement #2: Representing the Teacher’s Displaying of a Student-Generated Diagram  
The second improvement is the added representation of a discussion around student-generated 
diagrams in the storyboarded lesson in Y2 (see Figure 4). While this part of the lesson was not 
represented in Y1, it was represented using six frames in Y2. In the following, we analyze the 
first three frames of this period. The teacher is inviting a group to share their work, which the 
teacher deliberately selected when walking around the room (Figure 4a). Then, the teacher labels 
the diagram, aiming at creating a shared language (Figures 4b, 4c). Comparing these frames to 
the Y1 storyboard, which lacked representation of how the task is handled, suggests that over Y2 
the MTs decided that the intricacies of the discussion around student work should be spelled out 
through storyboarding. Since each student drew their own diagram, the lesson improvement is 
manifested in detailing the processes in which the teacher turns this diversity of expressions into 
a coherent discussion. In what follows, we detail how semiotic choices led us to conclude this. 

   

Figure 4a. Y2: Frame 15 Figure 4b. Y2: Frame 16 Figure 4c. Y2: Frame 17 

Figure 4. Teacher labels and presents a student-generated diagram. 

 The change in orientation between Frame 14 (Figure 3c) and Frame 15 (Figure 4a) indicates 
the transition from work time to classroom discussion. In Frame 15, The speech bubble indicates 
the teacher's specific request for Team Red to share their work, rather than inviting any student 
to do so. The teacher words (“for us”) aims at building interpersonal connections. The teacher is 
also attending to the specific mathematics that the class should focus upon: “the angles drawn”. 
which is another evidence for the teacher’s language becoming more subject-specific. In Frame 
16 (Figure 4b) we see changes in orientation by zooming in on the teacher and the diagram and 
adding a caption. The caption provides a sense of timeliness, explaining that the diagram was 
already put on the board and that the teacher was the one who colored it. This draws viewers’ 
attention to the actions that the teacher is making to support the discussion. In terms of visibility, 
the choice to include the diagram on the board means that it is important for the viewers’ 
understanding of the course of the lesson. The teacher’s speech bubble shows that they ask Pink 
directly to use the colors in the diagram to answer a question they were previously asked, in 
Frame 13 (Figure 3b). The repetition of the same question, yet with more precise fashion, draws 
viewers’ attention to the importance of precision in the process of proof. In the next frame, the 
orientation changes, which lets viewers see that the students’ facial expressions are all the same, 
possibly suggesting they are no longer confused. The caption “Pink answers in terms of color,” 
together with Pink’s speech bubble, illustrate how coloring the diagram was a key decision for 
overcoming the confusion: By using the colored diagram, Pink is able to say what is to be 
proven. The teacher reassures this by saying “Yes, that’s correct, Pink.” Pink’s emerging ability 
to use precise language suggests that the teacher’s moves in Frames 10-17 were productive.  
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Discussion 
This study set out to examine what MTs perceive as improvements in a representation of a 

geometry lesson. By comparing two versions of a storyboarded lesson, we identified some of the 
semiotic changes that MTs made over time which allow us to articulate what was improved in 
the lesson. We found that the improved representation of this lesson, as was reflected in the 
changes in the artifact, included not only a detailed depiction of how the teacher launches a task, 
but also of the students’ reaction to the task and how the teacher addresses their confusion or 
other complexities that the task brings up. We identified two themes which overall suggest that 
the MTs were interested in representing the shift from a construction situation to a proof in a 
greater depth and resolution. In particular, the MTs improved the lesson in ways that drew 
viewers’ attention to the students’ confusion and the teacher’s moves in response to the 
confusion (first improvement), and to the teacher’s way of creating a shared language about the 
diagram during the whole-class discussion (second improvement). These foci were reflected in 
the following semiotic choices: addition of frames, inclusion of different points of view (camera 
positions), zooming in on the teacher or students, addition of captions that oriented viewers to 
notice particular details, addition of students’ facial expressions and speech bubbles, and more.  

Furthermore, a noticeable change is that the students’ perspective on the task is represented 
in the Y2 version. The lesson revision through storyboarding revealed an aspect of improvement 
that is often subtle in spoken/written discourse: The added frames showed that an enhanced 
noticing of students’ perspectives (including their puzzlement and quandaries) is an essential 
component of the teacher's expertise. This finding, related to the conference theme regarding 
MTs’ attention to student engagement, reminds us that a novel task coupled with the teacher's 
good will are not sufficient to ensure productive student engagement in a problem-based lesson. 
The Y2 lesson suggests that the anticipation of student confusion is crucial for deciding on the 
moves and scaffolds that the teacher uses. Another feature of the suggested improvements is the 
increased specification of the mathematical content in the teacher’s talk, illustrated by the 
increased use of the instructional register. We argue that using a more subject-specific language 
when storyboarding suggests an increased engagement with the mathematical details of the 
lesson. Thus, it points to how, during the PD, the domain of practice shapes and is shaped by the 
participants’ internal domain, since their tacit knowledge about launching tasks and address 
students’ confusion was shared with others and represented in the artifact. We argue that this 
kind of work with MTs enables them to attend more to “the detailed and intricate nature of 
practice” (Ball & Forzani, 2009, p. 507), thus, it contributes to their professional growth. This 
illustrates how professional learning environments can help MTs address student engagement. 

Theoretically, this paper contributes an analytic description of semiotic choices, drawing on 
methods from SFL and its extensions. The question we raised – how to account for changes in 
artifacts and relate them to professional growth? – is yet to be fully answered. We aim for this 
work to serve as a foundation for future analyses of storyboarded lessons and other artifacts like 
lesson plans. This would be a fruitful area for further work that uses multimodal data and 
multiple teacher groups and lessons to conceptualize MTs’ professional growth. The main 
limitation of this study is the focus on one lesson. Although the corpus includes additional data 
that could be analyzed similarly, we chose to focus on one lesson to ensure that we provide 
enough contextual details and are able to present the analyzed frames. Despite this limitation, 
this study offers insights into how MTs operationalize the goal set to them of improving a lesson.  
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We investigate the beliefs that influence middle and high school algebra teachers’ appraisals of 
contextual problems having diverse mathematical and pedagogical features. We asked six 
teachers to analyze six contextual algebra tasks and indicate how they would apportion 
instructional time among the six tasks based on their structure, pedagogical features, and 
connections to the real world. We recorded small-group discussions in which teachers shared 
their responses to this activity, and qualitatively analyzed their discussions for evidence of 
beliefs that influenced their appraisals of the tasks. The teachers’ beliefs about contextual 
problems attended to task authenticity, opportunities for mathematical activity, obligations of 
tasks, and pedagogy and access. Our preliminary findings can inform future efforts to equip 
teachers with contextual tasks that develop students’ algebraic reasoning and problem solving.  

Keywords: Teacher Beliefs, Algebra and Algebraic Thinking, Professional Development 

Multiple K–12 mathematics curriculum recommendations and standards documents call for 
students to learn to apply mathematics in settings beyond school. The National Council of 
Teachers of Mathematics’ Principles and Standards for School Mathematics indicate that 
instructional programs should equip students to “Recognize and apply mathematics in contexts 
outside of mathematics” (NCTM, 2000). The Common Core State Standards for Mathematical 
Practice state that “proficient students can apply the mathematics they know to solve problems 
arising in everyday life, society, and the workplace” (NGA & CCSSO, 2010, MP.4); the Texas 
Essential Knowledge and Skills include a process standard with similar verbiage about applying 
mathematics to “problems arising in everyday life, society, and the workplace” (TEA, 2012). 

While policy documents have underscored the importance of students learning to apply 
mathematical ideas beyond school, research has also highlighted the potential of contextual 
problems to help students develop and understand new mathematical ideas. The instructional 
theory of Realistic Mathematics Education suggests the use of “realistic” situations (which may 
or may not arise from “real-world” contexts) to stimulate the development of mathematical tools 
and concepts (Gravemeijer, 2005; Van den Heuvel-Panhuizen & Drijvers, 2020). We view both 
perspectives on contextual tasks – that mathematics can provide windows into the larger world, 
and that the world can inspire mathematical thinking and growth – as essential for developing 
mathematics courses that equip students for success in college, career, and civic life. 

Prior research has investigated preservice and inservice teachers’ dispositions regarding 
“real-world” connections in mathematics classes, including connections to issues of social 
injustice (e.g., Gainsburg, 2008; Girnat & Eichler, 2011; Simic-Muller et al., 2015). 
Additionally, Sevinc and Lesh (2018) have investigated preservice teachers’ views about realistic 
mathematics problems and suggested interventions that can help teachers think critically about 
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contextual problems in textbooks from a modeling perspective. However, research on how 
teachers select and allocate time to contextual problems more broadly – including problems with 
a tighter focus on curricular content – is relatively scarce. We hope to contribute to 
understanding of teachers’ dispositions toward the use of contextual problems by examining the 
beliefs about mathematics learning, instructional practice, and obligations of mathematics 
teaching that might influence teachers’ decisions to select a contextual task for classroom use. 

Theoretical Framework 
A fundamental assumption of our collaboration with secondary algebra teachers is that 

students benefit when they have opportunities to learn mathematics through problems that 
authentically reflect the relevance of algebra content beyond the classroom. We are guided by 
the practicality ethic, which indicates that teachers will only adopt a change proposal if they view 
it as practical: that is, if the proposal has instrumental content, is congruent with existing 
practice, and offers benefits commensurate with costs of implementation (Doyle & Ponder, 
1977). We therefore seek to understand the beliefs and practical constraints that guide teachers’ 
selection of classroom tasks, including beliefs about the benefits and costs associated with 
implementation of authentic contextual tasks. 

Palm (2006, 2008) describes several dimensions of authenticity for contextual mathematics 
tasks: whether a task describes an event that is reasonably likely to occur; whether the question 
posed is one that would likely occur naturally; whether the methods for solving the problem are 
congruent with a realistic purpose for finding the answer; and whether representations of 
information in the problem are realistic. For simplicity, in our study we condense these 
dimensions down to two: authenticity of the event presented, and information provided, and 
authenticity of the (mathematical) processes involved in solving the problem. In keeping with 
Vos (2018), we view authenticity as a social construct; rather than imposing our own meaning on 
task authenticity as researchers, we leave it to our teacher-participants to define what it means for 
a task to be authentic to real-world considerations. Brantlinger (2022) acknowledged that 
contextualized mathematics must be in tune with students’ experiences, interests, and potential 
futures in order to be received as authentic. McGraw and Patterson (2019) investigated how 
authenticity features of contextual tasks influenced secondary teachers’ negotiation of problem 
spaces as they worked on these tasks. A key finding of this work is that features of the task 
context can widen or constrain opportunities for mathematical thinking; therefore, considerations 
about task authenticity and about opportunities for mathematical thinking are intertwined. 

In a study of elementary teachers creating modeling tasks, Turner et al. (2022) found that 
teachers tended to start with a context personal to students and build the problems from the 
context, rather than thinking of a hypothetical situation to fit the mathematics intended (p. 17). 
This ensured the context was realistic to real-world experiences, and the anticipated mathematics 
of the problem was evoked in an authentic way. Teachers highlighted the obligation of a 
modeling task to “deepen their [students’] critical awareness”, as their tasks included creating 
models to highlight environmental and community issues (p. 11). Along with obligation to the 
students’ wider awareness of community issues in creating their modeling problems, teachers 
attended to grade-level content and standardized test demands, which sometimes generated 
conflict in how they framed the mathematics within the modeling task. Based on the literature 
and our own prior experiences in mathematics teacher education, we anticipate that secondary 
teachers experience similar tensions between relevance to students’ lives and adherence to 
curricular content when selecting contextual problems for classroom use. 
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Guided by this framework, we aim to address the following research questions: 
1. In what ways does task authenticity influence teachers’ evaluations of the instructional 

suitability of contextual tasks in algebra? 
2. What other considerations influence teachers’ judgments about instructional suitability 

and the amount of time that should be allocated to contextual tasks in algebra? 

Method of Study 
The data for this study were drawn from a 2022 workshop conducted as part of the [blinded] 

project, which studies the teaching of algebra in grades 7–9 and provides professional 
development (PD) for secondary teachers. Participants in this study included six mathematics 
teachers from different urban K–8 academies and high schools in the southern United States.  
Data Collection 

To investigate participating teachers’ beliefs about contextual problems, we designed a set of 
six Worthwhile Problems (Table 1) with different task authenticity features and varying 
alignments with algebra curricular content. 

 
Table 1: The Six Worthwhile Problems 

Muffins 
 
The Edison High School Marching 
Band is selling muffins to raise 
money for an upcoming trip. The 
cost in dollars of producing and 
selling x muffins is given by the 
function 𝐶(𝑥) 	= 	50	 + 	0.25𝑥, and 
the revenue in dollars earned from 
selling x muffins is given by the 
function 𝑅(𝑥) 	= 	2𝑥. How many 
muffins must the band sell in order 
to make a profit of 1400 dollars? 

Braking 
 
A comprehensive review of transportation policy 
by Jack D. Jernigan and Meltem F. Kodaman, 
written for the Virginia Transportation Research 
Council, indicates that for an average car traveling 
s miles per hour, the formula 𝑑	 = 	 𝑠!/20 gives the 
braking distance 𝑑 (in feet) needed to come to a 
stop. What would be the braking distance needed 
for a car traveling 80 miles per hour to come to a 
stop? If we saw a set of skid marks 125 feet long 
made by a mid-size sedan, and knew that no 
collision occurred at the scene, what could we infer 
about the car? 

Population 
 
The World Population Clock 
announced that the world human 
population reached 8 billion on 
November 15, 2022.  Based on 
the following data from the 
World Bank, when should we 
expect the world population to 
reach 9 billion? 
 
[Table shows world population 
each decade from 1970 to 2020] 

 
Unemployment 
 
The following graph, shown on Fox 
News in 2010, shows the number of 
jobs that were lost before, during, 
and after the Great Recession of 
2007 to 2009. What does the graph 
show clearly?  What does it not 
show so clearly?  In what way(s) is 
the graph misleading? 
 

 
Image source: 

https://www.businessinsider.com/fox-
news-charts-tricks-data-2012-11 

 

Ramp 
 
Use the information below to create a wheelchair 
ramp design for a door at your school or another 
building that could use one. 
 
Laws for new construction and modifications to 
existing structures are created so that public 
facilities are as barrier- free as possible. For 
example, portions of the American Disability 
Association (ADA) guidelines provide directions 
for building ramps or using existing space as 
ramps.  
 
Some of these guidelines are: 
• Slope and Rise: The least possible slope shall 

be used for every ramp. The maximum slope 
of a ramp in new construcLon shall be 1:12. 
The maximum rise for any run shall be 30 in 
(760 mm) 

[several other technical specifications are given] 

Wrapping 
 
Taylor is wrapping holiday gifts 
for their family. Each gift comes 
in a rectangular box of height ℎ 
inches, width 𝑤 inches, and 
length 𝐿 inches. Write a formula 
in terms of ℎ, 𝑤, and 𝐿 for the 
total area of wrapping paper 
needed to cover each box on all 
sides. 
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In a PD session led by the first author, six participants first worked on the six problems 
individually and thought about the mathematical work involved in each problem. Each teacher 
then used an online tool to create a pie chart showing how they would divide up the total amount 
of time (100%) reserved for contextual problems in their class among the six “types” of 
contextual problems exemplified by the tasks. Participants were encouraged to apportion time 
among “types” of contextual problems – focusing on features such as the relationship between 
the task and the real world, and the mathematical thinking required, rather than specific 
mathematics content objectives – and not to worry about standards or testing. They then met in 
groups of three for 45 minutes to discuss their time allocation to each problem before returning 
to a whole-group discussion. These conversations were recorded and transcribed for analysis. 
Data Analysis  

Thematic analysis (Braun & Clarke, 2006) was used to analyze the data. All six authors 
served as coders. In the first phase, each coder watched the two small-group videos to gain 
familiarity with the discussions. Each coder took notes on beliefs that appeared to influence 
teachers’ evaluation of contextual tasks to generate an initial set of codes. All coders then met 
and discussed these initial codes, including examples of each from the transcripts. After 
reviewing the codes to eliminate redundancy and overlap, we arrived at a set of 16 final codes. 
We looked for common themes and organized codes into four domains: Task Authenticity (A), 
Mathematical Activity (M), Obligations of Tasks (O), and Pedagogy and Access (P) (Table 2). 

 
Table 2: Coding Scheme for Teachers’ Beliefs About Contextual Problems   

Theme 1: Task Authenticity  
A1. A task should authentically reflect the information (and representation of information) a person 

would have when working in the context described.  
A2. A task should authentically reflect the (mathematical) processes a person might use in the context 

described to solve a real problem.  
Theme 2: Mathematical Activity  

M1. A task should address mathematics content.  
M2. A task should encourage students to engage in mathematical practices and processes.  
M3. Students should learn to build, critique, and analyze mathematical models, and analyze ways in 

which mathematical models approximate (or fail to approximate) reality.  
M4. Tasks that allow students to engage in creative thinking are beneficial.  

Theme 3: Obligations of Tasks  
O1. Students should be exposed to tasks that foreshadow how mathematics appears or is used in the 

world outside of school.  
O2. Mathematics class should help students to be prepared for classes in other academic disciplines.  
O3. Mathematics class should prepare students for future mathematics courses.  
O4. Tasks that reflect the expectations and format of standardized achievement tests might support 

student success on these tests.  
O5. Students should be exposed to contexts that intersect with social justice concerns.  

Theme 4: Pedagogy and Access  
P1. Tasks that relate to students’ lived experiences are beneficial for students.  
P2. Tasks that offer “hands-on” experience are beneficial for students.  
P3. Generally, less time should be allocated to tasks that have low cognitive demand.  
P4. Teachers should make an effort to manage the language load of tasks.  
P5. A task that allows multiple approaches or solutions is beneficial because it allows access to the task 

for more students. 
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In the third phase, individual coder re-read the two small-group transcripts and assigned 

code(s) to each talk turn in a separate spreadsheet. A talk turn may receive one code, more than 
one code, or no code depending on its content. For example, consider a part of a group 
conversation about the Braking problem:  

Denise:   It’s like, okay, it says 80, put the 80 in there and that was it. Yeah. And not that I 
didn’t think it was relevant. Why may I spend time on that was my thing on that. 

Frances: Well, you know, they deal with that in physics. 
Denise stated that she would not spend too much instructional time on this problem because it is 
too simple, while Frances argued that it was relevant to physics, a course many students take in 
high school. Their turns of talk were coded P3 and O2, respectively. Then each coder collapsed 
all the belief codes that they assigned each participant for the discussion of each task. For 
example, Denise’s beliefs on Braking included P3 and other codes for other talk turns. 

In the fourth phase, six coders met to compare the codes for each participant at the task level. 
If a code appeared in at least five coders’ results, we kept it as a consensus code for subsequent 
analysis. We discarded any codes that showed up in fewer than three coders’ results for the same 
task. For each code that had agreement from at least three coders, we returned to the relevant 
discussion excerpts and discussed our reasons for assigning (or not assigning) the code until we 
reached consensus of at least five researchers (or failed to do so and discarded the code). At the 
end of this process, each teacher had a set of belief codes associated with each task. We report on 
these consensus codes in the following section.  

Results and Analysis 
Table 3 shows the consensus codes associated with each teacher and each task, along with 

the percentage of time for contextual tasks each teacher allocated to each task. In this section we 
share some key insights gained from our analysis, along with some illustrative examples from 
the small-group discussion transcripts. 
 

Table 3: Consensus Belief Codes from Small-Group Discussions 
TASK YELLOW GROUP PINK GROUP 

(% of time 
allocated)* 

Benjamin Danielle Viola Denise Felipe Frances 

Muffins M2 (11.9) O4, P3 (14.3) A1, A2, O1, 
P1 (10) 

P5 (10) O1 (25) M1, O1 
(11.9) 

Braking M1, P3 
(23.8) 

A1, A2, M1, 
M2, O1, O4, 
P4, P5 (19) 

O1, P1 (15) M1, P3 (5) (15) O1, O2, P3 
(23.8) 

Population P5 (23.8) M3 (28.6) O1, O5  (20) M1, O4, O5 
(25) 

M3 (25) M1 (23.8) 

Unemp. M2, P3 (8.3) M1 (4.8) M2, O4 (25) M1, O1, P1 
(20) 

M2 (15) (8.3) 

Ramp (23.8) M1, O1, O5, 
P1, P2 (23.8) 

O1, P1 (10) M1, O1, P2 
(35) 

O1 (20) O1 (23.8) 

Wrapping M2, P3 (8.3) A2, M2, M3, 
P2 (9.5) 

(15) A2, M2, O4, 
P2 (5) 

A2 (0) A2, M1, M2, 
P2 (8.3) 

* Benjamin and Frances worked together and completed a single pie chart, so their time allocations are identical. 
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Authenticity 

Considerations of task authenticity influenced teachers’ evaluations of some of the six tasks, 
most notably Wrapping. Teachers in both groups (Danielle and Denise) pointed out that 
Wrapping appeared to be a standard surface area calculation task, but that in a real-world 
scenario, a person wrapping gifts would need to account for overlap and waste (A2). Felipe 
suggested that the authenticity of the task could be salvaged by changing the context: 

A much better surface area question, theoretically, well, because that'd be lateral surface area, 
would be painting a room. … Not even paint a room, you have a box. How much paint are 
you going to need to paint the whole box? … Yeah, that would be more realistic because it's 
not like, oh, you're going to need a little bit more. It's just cover it. It's just exact. 
In some cases, considerations of authenticity seemed to influence teachers to defend choices 

made in the tasks provided. Benjamin suggested that Braking could be improved by giving 
students a graph of braking distance as a function of speed and asking them to write a formula 
for the quadratic function in vertex and standard form; further questioning by the first author 
confirmed that Benjamin was evaluating the task primarily based on its affordances for helping 
students learn algebra content (M1). However, Danielle rebutted, 

You don't always want to be given a graph because as Viola said, in all the careers that you 
could use this in, just like this problem where it's giving you research back to, "This is where 
this equation came from." Everybody in career paths are not generating these equations and 
these functions, they're using them to determine other things. 
This suggests that Danielle considered authenticity of the information in the task (A1) and of 

the mathematical processes one would use (A2), as compared to what one might encounter in an 
analogous professional context, as a key factor in determining the ideal task structure. 
Opportunities for Matheatical Activity 

Participants endorsed some tasks, and rejected others, based on opportunities they appeared 
to provide for students to learn Algebra I content and engage in mathematical practices. 

In some cases, judgments based on the opportunity to engage with grade-level mathematics 
content (M1) stood in tension with judgments based on opportunities to engage in mathematical 
processes and practices (M2). Viola viewed Unemployment as an opportunity for students to 
critically analyze a graph; however, Danielle rejected the task for Algebra I because she did not 
perceive a clear alignment to algebra standards and content (though she did suggest that she 
would likely allocate more time to the task in a statistics course). While Benjamin recognized the 
value of the critical thinking in the task (M2), he suggested that the type of function in the graph 
would not lend itself to sophisticated mathematical work: “… it’s critical thinking, this would be 
good as a warmup right there … But then I look at the graph because I know it better. It’s linear. 
Come on.” As a general principle, Benjamin seemed to evaluate tasks primarily based on the 
opportunities they created for students’ mathematical thinking, and assigned lower priority to 
tasks whose cognitive demand he considered inappropriately low for algebra students (P3). 

One remarkable pattern was that despite concerns about authenticity, teachers in both groups 
envisioned opportunities for Wrapping to engage students in mathematical practices (M2). 
Danielle and Benjamin pointed out that the task could engage students in constructing and 
measuring a net for a solid to determine the surface area; we consider this an instance of using 
representations strategically to solve problems. Denise pointed out that one virtue of the task is 
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that students can approach it without knowing the formula for surface area, and indicated that she 
valued students’ gaining confidence in their ability to think about novel problems when they do 
not have relevant procedures readily available more than their fluency in formulas. 
Obligations of Mathematics Tasks 

At various times, participants appeared to attach positive judgments to tasks that contained 
important mathematics and also fulfilled other civic or professional obligations that they 
associated with mathematics teaching. For example, when discussing Ramp, Denise and Felipe 
pointed to the applicability of the task to other professional domains (O1): 

Denise:  And so when they're asking, when are we ever going to use this, that's exactly a time where, which 
makes it totally authentic. 

Felipe:  And it's also like because math leads into construction and engineering, so it's a real world 
[application]. 

Their comments suggest that they valued the task for its potential to inform students about where 
they might use algebra in the future (O1). This was a theme in discussion of multiple tasks. 

Additionally, teachers occasionally recognized and praised connections of the tasks to 
matters of social justice (O5). Denise conspicuously connected Population to the politics of 
replacement theory, which had been in the news around the time of this activity: 

Denise:  I would take that to social justice too. 
Felipe:  Yeah. So it's like what could we eventually start decreasing in population? 
Denise:  Oh no, I don't mean that kind of social justice. I mean that certain populations are afraid that 

they're being outnumbered now, so they're trying to... strengthen their power. We definitely go 
there. 

Frances: You can also compare our population to other countries. 
Denise: Oh, we can do that too. Yeah. Well, and then of the different groups. 

We found it notable that despite Felipe’s and Frances’ bids to connect the problem to less 
politically heated issues such as global population decrease and different countries’ population 
growth, Denise found the opportunity to connect the task explicitly to an issue related to the 
politics of racism and xenophobia compelling. This was a remarkable example of a more general 
belief on Denise’s part that tasks should broaden students’ awareness of the world around them 
and illustrate the role of mathematics in the world beyond school. 
Pedagogy and Access 

Some teachers identified features of tasks that they considered pedagogically advantageous 
or likely to broaden students’ access to mathematical thinking. We took particular note of 
instances in which teachers spontaneously suggested alternatives to tasks that might accentuate 
these pedagogical advantages or heighten accessibility and relevance for students. Frances 
imagined giving her students the materials from the Wrapping problem to work on hands on (P2) 
and reflected back on a past activity where her students grappled with related ideas, “so they had 
to come up with their measurements to make a little... and they made little boxes, big boxes. So it 
was kind of interesting.” Danielle suggested a similar modification, “You know what I think 
would be fun with this? Bring in a bunch of different boxes and ask them, ‘Which box do you 
think is going to take the most wrapping paper?’ And they all vote and then each group has a box 
and they have to figure out how much each would give”. 

Several teachers valued tasks for their potential to be related to students’ lived experiences, 
making the mathematics of the tasks more motivating and accessible for students (P1). Viola 
pointed out that her own students were conducting fundraisers for an organization they had just 
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started and therefore could relate to the content of Muffins. She also suggested that while 
students could picture an automobile accident and imagine the skid marks made by a braking 
vehicle in Braking. Of Unemployment, Denise suggested that some of her junior students might 
be trying to find jobs and might find the topic of job availability relatable (P1); she then revised 
her thinking and surmised that students might not think about their own situation in such a broad 
social context but could be guided to do so (O1). 

Discussion 
The goal of our study was to gain insight into how mathematics teacher educators might help 

teachers select and design contextual tasks that make meaningful connections between algebra 
and students’ lives while creating opportunities for rich mathematical thinking and problem 
solving. Using the Worthwhile Problems activity as a springboard for discussion, we were able to 
identify four distinct domains of belief that influence teachers’ judgments of which types of 
contextual problems are worthy of instructional time and students’ attention. Furthermore, we 
saw that teachers often take on an “authorship” role when faced with a task that has perceived 
deficiencies relative to their priorities and professional commitments, envisioning alternative 
versions of the task that better meet students’ needs and curricular goals. We saw this in Felipe’s 
and Danielle’s reimagined versions of Wrapping, Benjamin’s suggested modifications to 
Braking, and Denise’s refocusing of Population on current social justice issues. 

We recognize some limitations of our study associated with our selection of “Worthwhile 
Problems” for the activity. For example, teachers may have specific beliefs and dispositions 
associated with mathematical modeling (Sevinc & Lesh, 2018) that inform the complexity and 
ambiguity that they are willing to tolerate in classroom tasks; we did not have any tasks open-
ended enough to help us identify these boundaries on teacher practice. Additionally, while the 
Worthwhile Problems activity helped us map teacher beliefs that influence approval or rejection 
of contextual tasks, it provided limited insight into how teachers prioritize different beliefs that 
may be in conflict. Because a sound understanding of teacher beliefs and their implications for 
classroom practice requires attention to the network within which these beliefs operate (Leatham, 
2006), we plan to revise the activity to include more focused discussion prompts that ask 
teachers to prioritize among different values and beliefs and make design choices. 

Overall, our study results suggest that teachers respond positively to tasks that make 
connections to the world beyond the mathematics classroom, especially when these tasks 
authentically reflect the mathematical questions and processes that people would pursue in other 
coursework, careers, and civic life. Teachers sometimes moderate these positive judgments when 
they perceive that tasks do not contain sufficient opportunities to reinforce grade-level content or 
develop students’ mathematical practice, as seen with Unemployment. In future work, we hope to 
continue refining our map of teacher priorities for contextual tasks and better understand how 
teachers manage tensions between authenticity concerns about tasks and the need to connect 
tasks to curricular content, which is often abstract. With additional insight, we expect to be able 
to help researchers and educators design mathematical problems that are culturally relevant and 
address contemporary issues of social injustice while providing opportunities for mathematical 
thinking that teachers expect to see in classroom tasks. 
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Objectives 
To address the need of making mathematics meaningful to all learners, I explore the research 

question: How do teachers’ identities align with their movements in a small group mathematics 
station? I argue that teachers communicate parts of their identities through movement. Directly 
aligning with the theme, body-based movement such as gesturing facilitates learning, meaning-
making, rapport-building, and enhances students’ engagement. 

Theoretical Framework 
I use frameworks of embodied cognition and identity as performance. Embodied cognition is 

a process through which an organism navigates its surroundings using its body and connects new 
ideas and representations to prior experiences, facilitating meaning-making (Nathan, 2021; 
Núñez et al., 1999). Examples include gesturing such as pointing or tracing a triangle in the air 
(Alibali & Nathan, 2012). I focus on a sociocultural lens of embodied cognition to account for 
both individual and collaborative interactions (Danish et al., 2020). Next, identity as performance 
is “the performance and the recognition of the self…by telling stories, joining groups, [and] 
acting in a particular way at a particular time” (Butler, 1988; Darragh, 2016, p. 29). Both the 
teacher’s performance and input from students inform her identity.   

Methods 
I apply a qualitative case study methodology (Merriam & Tisdell, 2016) to provide intensive 

and holistic description and characterize movement and identity. After listening and participating 
in a read-aloud in a kindergarten classroom, kindergarteners separated into integrated stations 
around the classroom including a mathematics station. Using qualitative methods, I found 
through transcription, coding, and thematic analysis of video and interview data that I collected 
that participants made both conscious and subconscious choices with actions. Through an 
interpretivist perspective, I aligned parts of my participants’ semi-structured interviews about 
their identities with the movements that they performed during facilitation to extract meaning.  

Results and Implications 
My first participant identified as a teacher and mother. Through past experiences of teaching 

elementary students, some of her conscious actions aligned with her identity as a teacher like 
lightly touching a students’ forearm to redirect attention, forming shapes with her hands, and 
folding her hands in her lap to model respect. My second participant identified as both a teacher 
and teacher educator, and similarly she used conscious movements to connect the activity to real 
life contexts while also noting in an interview that some movements were subconscious. For 
future directions, I plan to study facilitation in informal science, technology, engineering, and 
mathematics (STEM) learning spaces. 
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This paper presents an instructional design that integrates mathematical modeling concepts to 
teach the application of functions. The design emphasizes exploratory teaching materials, real-
world scenarios, student-driven tasks, and technologies, which have shown potential in aiding 
students to attain a better understanding of function-related concepts, fostering their engagement 
in class, and enhancing their problem-solving and self-exploration skills. To validate the efficacy 
of the new design, we implemented a curriculum and interviewed students who experienced and 
did not experience the design. Using thematic analysis, we analyzed the transcripts and found 
that the design could improve students' performance across several measures, although some 
challenges were also identified. 

Keywords: Application of Functions; Mathematical Modeling.  

Introduction  
Functions are a foundational mathematical concept woven throughout secondary curricula. 

High school students are expected to apply functions through modeling to solve problems. 
However, traditional instruction in the Application of Functions chapter in the Mathematics 
textbook of the People’s Education Press Version (PEP, 2017) has some drawbacks that may 
hinder student development. Firstly, the textbook heavily focuses on teacher-centered instruction 
(Fu, 2020), with questions primarily centered around simple calculations and basic conceptual 
understanding. For example, studies found students memorize formulas without fully 
understanding equations (Zhao, 2022) or have difficulty visualizing function graphs (Chen, 
2022). To better prepare students for future careers, a shift towards a more student-centered 
education system is necessary (Roytblat, 2022). Secondly, the textbook lacks real-world 
scenarios that are relevant to functional models (Wuolle, 2016).  Thirdly, the textbook 
demonstrates a lack of utilization of technology (Weng & Li, 2020). Research supports the 
notion that teachers need to acquire proficiency in leveraging technology to effectively meet the 
evolving demands of teaching (Powers & Blubaugh, 2005). 

Mathematical modeling serves as a bridge between mathematics and the real world 
(Meerschaert, 2013). It involves refining real-world problems, expressing them mathematically, 
solving the models, and translating the solutions back to their original contexts (Williams, 2013). 
Mathematical modeling is well-suited to address the aforementioned issues, as it uses 
mathematics to represent, analyze, predict, and provide insights into real-world phenomena 
(Garfunkel et al., 2016). Moreover, mathematical modeling takes a student-centered approach 
where students choose and investigate their own problems (Borba & Villarreal, 2005). 
Technology also plays a key role in mathematical modeling by providing essential support to 
make mathematical modeling a more accessible mathematical activity for students (Ang, 2010). 

We have developed an instructional design that incorporates modeling ideas and utilizes a 
variety of exploratory teaching materials. This design addresses three key areas of instruction: 
student-centered learning, the integration of real-world scenarios for building models, and the 
utilization of a computer-aided learning environment. In this study, we aim to investigate how 
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this modeling-based design and inquiry-based approach can influence student performance and 
perception on function teacher practices through an inquiry-based approach. 

Theoretical Background 
Mathematical modeling has long been integrated into mathematics teaching (Frejd, 2012; 

Frejd & Bergsten, 2018; Hernandez-Martinez, 2018; Stillman, 2011; Zubi et.al., 2019). It 
introduces new practices (Cai et al., 2014), helps apply math to understand science (Wake, 
2014), develops skills for higher education and careers (Fletcher et al., 2018), and improves 
thinking and problem-solving (MOE, 2017). Modeling can be used in any course (Hernández, 
2016).  

 Using real-world contexts in teaching can increase student engagement (Gainsburg, 2008), 
but focus is needed on developing critical thinking, not just motivation and concept mastery. 
Resources, ideas and training help incorporate real-world connections, but critical thinking and 
literacy development are lacking. 

Student-centered approaches are increasingly popular, shifting from teacher-led instruction 
to student ownership of learning (Din & Wheatley, 2007).  Student-centered activities improve 
non-academic areas (Shah & Kumar, 2020); less student-centered approaches show academic 
improvements (Shah & Kumar, 2020). 

Technology serves multiple functions, including as a tool for doing mathematics, providing 
an environment for practicing skills, and developing understanding (Drijvers et al., 2010). 
Teachers use technologies like graphing calculators, interactive math environments, geometry 
applications, spreadsheets and the internet to develop lessons (Powers & Blubaugh, 2005). 
Teacher candidates use additional technologies like statistics software and CAS to enhance 
teaching (Powers & Blubaugh, 2005). 

Design 
For analyzing the effectiveness of the design, we selected 100 high school freshmen who 

had already learned the definitions, analytical expressions, and graphs of functions such as linear, 
quadratic, exponential and logarithmic functions from a local high school in South China, using 
convenience sampling. These students had no prior experience with curricular integrating 
mathematical modeling. To teach the application of functions, we split the students into two 
groups: an experimental group and a control group. The settings of the groups were almost 
identical, including having a same teacher. The two groups had essentially the same level of 
understanding of functions (as measured by a quiz). The only difference was that the 
experimental group used our design while the control group did not. 

After two classes teaching/learning the application of functions, we collected data through 
30-minute semi-structured interviews with students. Using stratified sampling, we selected 25 
students from both groups to invite to the interviews. In the study, we focused on the six tasks 
used in the interview: 1. Describing their feelings in the class; 2. Describing what functions are; 
3. Interpreting the meaning of some functions; 4. Plotting the graphs of some functions; 5. 
Computing the solutions of word problems about functions; 6. Building mathematical models in 
real-world scenarios and computing solutions. During the interviews, following up questions 
were used to elicit details about how they comprehend, apply, and transfer knowledge of 
functions.  

We transcribed the interviews verbatim and then analyzed the transcriptions using thematic 
analysis to answer the research question. We coded segments of the interviews by running a 
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keyword analysis of students’ responses to each task. The most common terms were used as 
codes. We then identified three overarching categories from the codes for all open-ended tasks: 
(a) positive; (b) neutral; (c) negative. Responses that did not contain those keywords were 
individually coded to the categories. The teachers' responses were analyzed independently. 

Findings 
Due to the word limitation, in this proposal, we only report key findings, which include: a) 

higher levels of engagement and positive attitudes towards the class among students in the 
experimental group; b) better performance in graphing functions and a greater inclination to 
explore different mathematical models among students in the experimental group; and c) higher 
scores in solving textbook function problems among the control group. 

In task 1, students in the experimental group tended to express a positive attitude towards the 
class. The most frequently used keywords extracted from their interviews were ‘interesting’ and 
‘high technologies’. Students in the control group, however, preferred using relatively negative 
words like ‘abstract’ and ‘boring’. The keyword that commonly appeared in both groups was 
‘difficult’. 

In task 2, students were asked to define function. We found that 17 out of 25 students in the 
experimental group could realize that a function is a relation between two sets of elements, while 
only 11 students in the control group could. 

In tasks 3 and 4, we arbitrarily selected functions, such as linear, quadratic, logarithmic, and 
exponential functions, and asked students to describe the properties of these functions and plot 
their graphs. Both groups performed similarly in task 3, with little difference (16 students from 
the control group and 15 from the experimental group). But students in the experimental group 
did better in task 4. The numbers of students who could correctly plot graphs in the experimental 
and control groups were 17 and 12, respectively. Remarkably, 4 students in the experimental 
group said they could use Python to plot graphs. 

In task 5, students were asked to solve function problems from textbooks. Students in the 
experimental group could obtain an average score of 6.1 out of 10, while the control group 
obtained a higher average score of 6.8. 

Further, in task 6 students were provided with some real-world scenarios. Although both 
groups thought open-ended problems were difficult to start, students in the experimental group 
were more exploratory. They tried different mathematical models for their given scenarios and 
could come up with potential solutions when not knowing how to solve the problems 
immediately. For example, a student in the experimental group tried to build a quartic function 
for a problem, as shown in Fig. 1, and students in experimental group claimed they could write a 
Python program to fit the function. In contrast, students in the control group were capable of 
plotting a graph by connecting all data points directly, imitating the example question in the 
textbook. They were less likely to explore new models. Fig. 2 below showed a classical model 
built by students in the control group for the same problem. 
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Fig. 1: An Experimental Group Sample         Fig. 2: A Control Group Sample 

Discussion and Conclusion 
In the study, we made an instructional design illuminated by the notion that integrating 

mathematical modeling into mathematics education can improve students’ performance. By 
analyzing the interviews of students and teachers who had applied the design, we found that the 
design has both strengths and weaknesses. 

On the positive side, with the new design, students showed a greater ability to learn the 
application of functions. Students in the experimental group could not only clearly describe their 
understanding of what functions are and plot function graphs but also apply functions to solve 
problems in their daily lives (Williams, 2013). The results showed that the design can increase 
students’ in-depth learning of functions and greatly improve their problem-solving and self-
exploratory skills. Moreover, students in the experimental group were more engaged in the class. 
They showed significant interest and were very active, which may have benefited from the use of 
new technologies, including hardware like screen sharing and software like GeoGebra and 
Python (Powers & Blubaugh, 2005). 

However, students in the traditional group performed better at solving word problems, which 
is crucial in the current exam-oriented education system. Students may not desire an in-depth 
understanding of functions; they may only need an efficient way to obtain high scores on exams. 

In summary, with the development of the times and the deepening of educational reform, 
students will not just be trained as "exam machines." Our new design would benefit students in 
their long-term career development, although we still need to consider the trade-off between in-
depth understanding and efficiency. 
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APPROACHING SIMILARITY BY USING GEOMETRIC REPRESENTATIONS: 
ENHANCING HIGH SCHOOL STUDENTS’ LEARNING EXPERIENCES  

Mayra L. Ortiz Galarza, Ph.D. 
University of Texas Rio Grande Valley 

mayra.ortizgalarza@utrgv.edu 

Luis M. Fernandez, Ph.D. 
University of Texas Rio Grande Valley 

luis.fernandez01@utrgv.edu 

Objectives and Purpose of the Study 
This study aims to contribute to the efforts that enhance the teaching and learning of 

trigonometric functions by proposing a novel approach to teach critical concepts in trigonometry 
that are non-intuitive (i.e. similarity, ratio, and proportion) (Gur, 2009). 

Theoretical Framework 
A conceptual corridor (Confrey, 2006) was established to explicate students’ learning 

trajectories while exploring similarity. A grounded theory framework (Charmaz, 2010; Cobb, et 
al., 2001) was used to analyze the conceptual corridor followed by students.   

Design 
A design study was engineered to create opportunities for students to develop mathematical 

understanding and competence. The design study focused on investigating students’ 
development of meta-representational competence (Boester & Lehrer, 2008). The study took 
place in a public high school located in a US-Mexico border city; involved twenty-three 
secondary students enrolled in a Geometry class. The “Colored Triangles” activity (Figure 1) 
was designed to investigate students’ understandings of mathematical concepts such as patterns 
and the geometric definition of similarity, co-variation, and ratio and proportion. 

Summary of Results and Implications 
Approaching trigonometric concepts such as similarity and ratios through multiple 

representations resulted on making the learning process more interesting and motivated students 
to sustain their interest in mathematics. The learning trajectory (shown by students when 
immersed in an inquiry-based activity to explore the concept of similarity) made evident the 
importance of visual representations of mathematical objects. The “Colored Triangles” activity 
provided students with opportunities to learn about ratios, proportions, and reinforce their 
knowledge about similar triangles. Implications of the study highlight the importance of using 
geometric representations of mathematical objects when teaching trigonometric concepts.  
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Figure 1: Colored Triangles Modeling Activity. 
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DIFFERENT PROCEDURES TO FIND NUMBERS IN AN INTERVAL WITH HIGH 
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In this report we show an investigation of how high-school students learn strategies to find 
intermediate numbers in an interval to understand the property of numerical density. Research 
has shown that some high-school students have difficulty in understanding this property. To 
mitigate this difficulty, we proposed a Hypothetical Learning Trajectory, using school 
mathematics topics, for high-school students to learn about numerical density. Our study showed 
that some students recognized that there is an infinite quantity of intermediate numbers in an 
interval; however, all the participants had difficulty understanding why there is no successor in 
a set other than the natural or integer numbers. 
 
Keywords: Learning Trajectories and Progressions, Mathematical Representations, Number 
Concepts and Operations, Design Experiments  

Introduction and Research Questions 
The number density property has been poorly understood by students of all school grades 

(Vamvakoussi & Vosniadou, 2010): some believe that there is no number in an interval and 
others believe that there is a finite quantity of numbers in an interval, in sets other than those of 
the natural numbers or integers. The density property means that a number can be found in an 
interval; this implies that: a) there is no number that has a successor, and b) there is an infinite 
quantity of numbers in an interval. For example, in the research carried out by González-Forte et 
al. (2021), students of 5th and 6th grade of elementary school (10-12 years old) and from 1st to 
4th grade of high school (12-16 years old) answered that there was a finite amount of numbers in 
the interval between 3.49 and 3.50; some students even mentioned that there was only one 
number in that interval. There are also situations where students believe that the extremes of an 
interval (not natural, not integer) are consecutive; therefore they believe that there is not any 
other number in that interval (Vamvakoussi & Vosniadou, 2010). For example, in the study 
carried out by Cabarcas and Soler (2017), 9th grade students (around 15 years of age) believed 
that a rational number had an immediate predecessor and successor. They believed that the 
successor of 14/4 was 15/4 because their numerators are consecutive with the same numerator; 
and that there is a finite quantity of numbers in an interval of the rational numbers.  

On the other hand, in the studies carried out by Neumann (1998) and Vamvakoussi and 
Vosniadou (2010), some students said that there are only decimal numbers between decimals, 
but not fractions; in the same way, they believed that there are fractions between fractions, but 
not decimal numbers. In Neumann's (1998) study, students had difficulty accepting that there are 
fractions between 0.3 and 0.6. Vamvakoussi and Vosniadou (2010) concluded, then, that 
students not only decided what type of symbolic representation the numbers belonging to an 
interval should have, but also how many there should be. For example, in their research, a 
student stated that there could be more numbers between 0.001 and 0.01 if the decimal numbers 
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(the intermediate ones) were expressed in fractions and that thus there could be an infinity. For 
this reason, Duval (1995/2004) emphasizes for students to engage with different representations 
of a mathematical object from an early age, since learning mathematics implies the use of 
different semiotic registers (arithmetic, algebraic, geometric, etc.) of representation (fractional, 
decimal, etc.). 

In order for a student to understand about number density –which implies understanding that 
there is no successor for a decimal, rational or real number–, we designed and put into practice a 
Hypothetical Learning Trajectory (HLT) (Simon, 1995), following the principles of Design-
Based Research (DBR) (Cobb and Gravemeijer, 2008). A HLT is a sequence of activities that 
hypothesizes on how to support a student in their learning process of a mathematical concept 
(Simon, 1995). For our HLT, we used different topics from school mathematics that would allow 
a student to understand number density, as suggested by McMullen and Van Hoof (2020). 

We present below the aims of a study that began in 2020 and of which we have already given 
some results in Suárez-Rodríguez and Sacristán (2022): 

a) Study the previous conceptions of the students participating in the study regarding the 
property of numerical density. For this, we used a diagnostic questionnaire (as a pre- and post-
test). 

b) Analyze the actions of the students during the development of the implementation of the 
activities proposed in the HLT, in relation to the property of numerical density and the property 
of the discrete of natural numbers.     

Theoretical framework 
Thinking about the discrete and the dense 

Discrete mathematics is the basis of everything that corresponds to natural numbers or 
countable sets, while continuous mathematics is the basis of everything related to continuity 
(Levin, 2021; “Discrete Mathematics”, 2021, pars. 2 -3). Hence, as Vamvakoussi and Vosniadou 
(2010) explain,  only the natural numbers have the property of the discrete, because every natural 
number has a successor in terms of order relationships. That is, these authors emphasize that the 
terms “discrete” and “dense” are used with respect to the usual order relationship, thus the 
natural numbers are discrete, the rational numbers are dense, and the real numbers are dense and 
continuous. The property of the discrete is related to the natural numbers in the sense that any 
natural number has a successor (Vosniadou & Vamvakoussi, 2010); as indicated by Peano 
(1889/1979) in his axioms for the natural numbers, these numbers have a successor. On the other 
hand, Vamvakoussi and Vosniadou (2004) developed some categories based on the results of 
their research to find out how much students know about numerical density and the discrete 
property (Table 1). 

 
Table 1: Categories of thinking about the discrete and the dense 

Naive discreteness 
[Naive thinking about the 
discrete] 

The thinking is that there is no number between two consecutive false rational 
numbers. Vamvakoussi and Vosniadou (2004) coined this expression to refer to 
the idea that a successor of a rational number exists. 

Advanced discreteness 
[Advanced thinking about 
the discrete]  

The thinking is that there is a finite quantity of numbers between two consecutive 
false rational numbers. 

Discreteness–density 
[Mixed thinking between 
discrete and dense]  

In some cases, the thinking is that between two rational numbers there is an 
infinity of numbers; and in other cases, that there is a finite number. 
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Naive density 
[Naive thinking about 
density]  

There is an understanding that there is an infinity of numbers in an interval, but 
this situation is not justified by using the density property. The symbolic 
representation of the extremes of an interval influences this way of thinking; it is 
believed there can only be an infinite number of decimal numbers between 
decimals and an infinity of fractions between fractions, but not an infinity of 
fractions between decimals or otherwise. 

Sophisticated density 
[Advanced thinking about 
density] 

There is a sophisticated understanding of the density property; that is, it is 
understood that there is an infinite number of numbers between two rational 
numbers, regardless of their symbolic representation and this is justified through 
the use of the density property. 

 
Semiotic registers of representation 

Learning mathematics constitutes a space for the analysis of cognitive activities 
(conceptualization, reasoning, problem solving and text comprehension) that require the use of 
expressive and representational systems that are different from those of natural language or 
images (Duval, 1995/2004). As Duval states, representational systems constitute semiotic 
registers or registers of semiotic representation. These registers allow an individual to 
communicate ideas that are transformed into others without changing their meaning (Moreno & 
Sacristán, 1996). However, Duval (2006) recommends also using non-semiotic registers as 
contexts in which one can work with materials such as matches, sticks, basins, etc. We consider, 
then, the importance of using various representational registers to support the learning and 
understanding of the property of number density. 

Methodological Framework and Methodology 
Hypothetical Learning Trajectory (HTL) 

The expression “hypothetical trajectory of learning” refers to a prediction that a researcher 
makes as to the path where learning might proceed (Simon, 1995). A trajectory is hypothetical 
because the “real” learning trajectory is not yet known in advance, and it becomes real when the 
students go through the proposed activities. Simon (1995) describes three components that a 
HLT must include: a) learning objectives, understood as a set of aims that are expected to be 
achieved for the student to build new knowledge, b) learning or instructional activities that 
follow a sequence, and c) hypothetical learning process, in which conjectures are proposed to 
support the student’s learning process. The researcher can make modifications to any or all of the 
three components of a trajectory in order for them and the students to build and improve their 
knowledge. 
Design and development of HLT activities 

As we mentioned, our research methodology follows the guidelines of Design-Based 
Research (DBR). The DBR is a methodological approach in which the researcher carries out a 
systematic study of the design, development and assessment of educational interventions in 
different cycles, and for this, hypotheses are suggested through a HLT (Cobb & Gravemeijer, 
2008). In this report we show some results of one of two cycles of research activities (the other is 
being carried out during the year 2023). In this first cycle, four students between the ages of 15 
and 17 from Colombia participated: Angie, Paola and Néstor who were in high-school and 
Violeta, who was in the last year of middle-school. Some activities were carried out in person 
and others virtually. The design corresponding to the first cycle of activities involved three 
phases: The students answered the same questionnaire in both the first and third phases, and in 
the second, they solved HLT activities. 
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First and third phase. (Pretest and post-test). The students answered a questionnaire of four 
questions related to the number of numbers that an interval can have. These questions were based 
on those proposed by Suárez-Rodríguez and Figueras (2020) and Vamvakoussi and Vosniadou 
(2004). We wanted to know how much students know about numerical density –before and after 
the implementation of the HLT– according to the categories elaborated by Vamvakousi and 
Vosniadou (2004) (Table 1). The pretest lasted approximately 30 minutes, while the post-test, 10 
minutes. In this report we present the answers to the question: How many numbers are there 
between 0 and 1? 
Second phase. (HLT activities). The HLT includes four activity sessions in which a hypothesis 
was proposed for each one (Table 2). We wanted to propose hypotheses related to various topics 
of school mathematics which we considered could support students to learn and understand 
about numerical density. Each session lasted about 1h30'. 
 

Table 2: HLT sessions with their corresponding hypotheses 
Sessions Hypotheses 

Session 1. Initial approaches to number 
density. 

From two situations: one related to everyday life and the other related 
to a hypothetical scenario, it is thought that the student can have 
initial approaches to the property of density. 

Session 2. Approach to number density 
through the similarity of triangles. 

It is considered that by using triangle similarity. students can learn 
about the density property of rational numbers. 

Session 3. Approach to number density 
through arithmetic progressions and 
geometric progressions. 

It is possible that by finding arithmetic and geometric halves in an 
interval, students can understand the density property of rational 
numbers in the set of real numbers. 

Session 4. Approach to numerical density 
through the property of continuity. 

Using the continuity property, students may understand the density 
property of irrational numbers in the set of real numbers. 

Results 
First phase: Pre-test results 

Table 3 shows the answers of the students to the question: “How many numbers are there 
between 0 and 1?” We classified those answers according to the categories proposed by 
Vamvakoussi and Vosniadou (2004) (Table 1). 
 

Table 3: Students responses to a pretest question 
Responses Types of thinking 

Paola 
 

Infinities 
They are infinite because decimal numbers have no end. 

Naive density 
[Naive thinking about 
density] 

Néstor
 

For me, the numbers that there are are infinite. Because it follows the same 
cycle; and because they don't have an end. Example:  0.111111@@@@@… 
0.111112… 0.111113…  

Sophisticated density 
[Advanced thinking 
about density] 
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Violeta
 

There is no number because 0 is before 1. 

Naive discreteness 
[Naive thinking about 
the discrete] 

Angie 

 
There are infinities, because there are 0.1, 0.2, 0.3 (...). 

Naive density 
[Naive thinking about 
density] 

 
We observe in Table 3 that Paola and Angie show a tendency to have a Naive thinking about 

density, since both stated that there are indeed an infinite quantity of numbers between 0 and 1. 
However, they did not give a process to find these intermediate numbers in the interval. Néstor 
also indicated that there is an infinite quantity of numbers between 0 and 1. He used decimal 
writing as a semiotic representation in an arithmetic register and wrote examples of numbers in 
periodic decimal writing. That is, Néstor justified his answer by means of a process of potential 
infinity of adding decimals to the decimal part of a periodic number as a way of finding 
intermediate numbers between 0 and 1. Violeta manifested a Naive thinking about the discrete: 
For her, the numbers 0 and 1 are consecutive. It is possible that she is only considering 0 and 1 as 
natural numbers, so she would be in a natural number domain knowledge system. 
Second phase: Results of HLT activities 

Next, we describe some student activities during sessions 1, 3 and 4 (Table 2) of the HLT. 
Session 1. In this session, students solved two activities. In one of them, the students did a brief 
reading about the beginnings of the long jump as a sport and answered five questions. In Figure 1 
we show Paola's response to the question: “According to the reading, which athlete records are 
between 5.40 and 7.70?” She responded appropriately, pointing out all the numerical records of 
the athletes, between 5.40 and 7.70 (5.41, 6.20, 6.375, 7.05, 7.40, 7.51, 7.54, 7.60 and 7.605). 
Subsequently, the students answered the question: “Do you think that 7.40 has a successor? 
Explain your answer.” Figure 2 shows their responses. 
 

According to the reading, which records, of the athletes, are between 5.40 and 7.70? 

 
All records are between 5.40 and 7.70 

Figure 1: Paola's response (Session 1) 
 
We observe  in Figure 2 that Paola, Violeta and Angie pointed to 7.41 as the “successor” of 

7.40. Néstor not only writes 7.41, but also writes other numbers like 7.42 and 7.43 (numbers with 
two decimal places) and numbers like 7.401, 7.402, and 7.403 (numbers with three decimal 
places) as “successors” to 7.40. In general, we consider that students believe that there is a 
successor to a decimal number that depends on the number of decimal places (i.e. “the 
successor” of a number with one decimal place is another that must have a decimal place. 
However, we do not we know what could happen with a number like 7.99 (number with two 
decimal places); possibly students would write 7.100 (a number with three decimal places). 
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Do you think 7.40 has a successor? Explain your answer. 

Paola 

 
Yes, because it is followed by 7.41 

Violeta 

 
Yes, because it is followed by more 
numbers [,] in this case it would be 7.41 

Angie 

 
Yes, it is a decimal number, the successor is 7.41, the decimal, natural or negative or 

positive numbers are infinite. 
Néstor 

 
Yes, it has a successor; as 7.41-7.42-7.43 or 7.401-7.402-7.403 

Figure 2: Responses of the four students (Session 1) 
 

Session 3. In this session, activities related to arithmetic progressions and to geometric 
progressions were carried out. The hypothesis is for students to encounter other ways to find 
numbers in an interval, in order to understand the density property of rational numbers. Students 
were asked to find five arithmetic means between 4 and 22 from the general expression of the 
nth term of the sequence: u = a + (n – 1)d, where a is the first term, n the number of terms and d 
the difference between one term and the next. Figure 3 shows the task carried out by Néstor 
where he found the five arithmetic means between 4 and 22 (7, 10, 13, 16 and 19) with d = 3. 
Later, the students found other arithmetic means when they were asked to reduce the difference 
in half (i.e. d = 1.5 = 3/2). Figure 4 shows the work done by Angie, where she found the 
arithmetic means in decimal writing: 5.5, 7.0, 8.5, 10, 11.5, 13, 14.5, 16, 17.5, 19 and 20.5. 
 

 
 
 

With the previous information [reading about the long 
jump], find five arithmetic means between 4 and 22.

 
Figure 3: Nestor's response (Session 3) 

If d were halved, that is, d=1.5, or d=3/2, what would 
be the new arithmetic means between 4 and 22? 

 
Figure 4: Angie's response (Session 3) 

 
Subsequently, the students answered the question: “Can you find more numbers between 4 

and 22 (different from the numbers found in the previous questions)? How many? Explain your 
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answer”. In Table 4 the answers of the students are shown; we tried to classify them according to 
the categories by Vamvakoussi and Vosniadou (2004) (Table 1). 

Paola mentions that with half the difference (1.5), more terms can be found (1.5/2 = 0.75); 
likewise, with half of 0.75 which is 0.375, and so on. So her answer is in the category Advanced 
thinking about density, since she justifies a process to find more numbers. It is worth mentioning 
that Paola not only indicates that with the process of finding half the difference, more numbers 
can be found, but also through “doubling”. However, it seems that she has an inappropriate 
concept of the term doubling, since she writes 3.2, 3.3, 3.4,..., that is, she refers to adding two 
tenths, three tenths, four tenths, etc. to the number 3 (the difference of the arithmetic 
progression). Néstor exhibits a Naive thinking about density when he affirms that an infinity of 
numbers can be found. Violeta answers that “10 can be found”, that is, a finite quantity of 
numbers between 4 and 22, which we consider is Advanced thinking about the discrete. Also 
Angie shows Advanced thinking about the discrete in this question, since she indicates a finite 
quantity: 3. It is not clear what Angie means by “for mathematics there are many paths”. It is 
possible that she refers to the fact that there are several solutions to solve a problem and that the 
method she chose (which we do not know) leads her to say 3. 
 

Table 4: Responses of the four students (Session 3) 
Can you find more numbers between 4 and 22 (different from the numbers found in the previous questions)? 

How many? Explain your answer 
Student’ responses Types of thinking 

 
-Yes, if we take the difference of 1.5/2 = 0.75 

-Also with the difference of 0.375 and so on, taking half or duplicating (3.2) (3.3) (3.4)... 

Paola 
Advanced thinking 
about density 

 
The answer is, they are infinite. 

Néstor 
Naive thinking 
about density 

 
10 can be found. 

Violeta 
Naive thinking 
about the discrete 

 
Yes, since for mathematics there are many paths I would say (3) more numbers 

Angie 
Naive thinking 
about the discrete 

 
Session 4. In this session, an activity was designed based on one proposed by Tovar (2011). The 
hypothesis is that a student can understand the density of irrationals in the real numbers, from the 
continuity property of the number line. Students constructed a square of side length 1 on the 
number line and rotated the diagonal of the square on the line clockwise (see the segment 𝐴𝑋}}}} in 
Figure 5; Violet’s example). 

The students zoomed in several times with GeoGebra and noticed that the “right end” of the 
diagonal segment did not coincide with any rational number on the line, thus showing that an 
irrational number (in this case √2) can be found in a given interval. Subsequently, they wrote 
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four intervals that enclosed the point that did not coincide with any rational. Figure 6 shows the 
task performed by Violeta after completing the construction of the square with side 1 (Figure 5). 
Violeta writes four intervals that contain point X. It is possible that she has forgotten to write the 
decimal point (used in Colombia). The intervals are: (1.414, 1.4144), (1.4136, 1.4146), (1.4132, 
1.4148), and (1.413, 1.415). 

 

 

 

Figure 5: Violet’s 
graph in GeoGebra (S4) 

Figure 6: Graph in GeoGebra and intervals written by 
Violeta that enclose point X (Session 4) 

 

Third phase: Post-test results 
The students showed an evolution in their responses in the post-test, as compared to the 

answers in the pre-test. For example, Violeta wrote: “Yes there are because there are many more 
numbers” in her answer to the question: “How many numbers are there between 0 and 1?” 
(Figure 7). Contrary to what Violeta wrote in her pre-test to this same question: “There is no 
number because 0 is before 1” (Table 3). We consider that Violeta has been able to understand 
that there are numbers between 0 and 1 Although she indicates that “there are many more 
numbers” we do not know if she refers to a finite or infinite quantity of numbers. In the cases of 
Paola and Néstor, they preserved the same idea that there are infinite numbers in a given interval, 
both in the pre-test and in the post-test. However, during the pre-test, Paola did not justify how to 
find intermediate numbers in an interval, while in the post-test she was already able to justify a 
method to find these numbers. Angie also mentioned the existence of an infinite number of 
intermediate numbers in an interval during the development of the pre-test; however, during the 
post-test she talked about an infinite number of "intervals" and did not justify the reason for her 
answer. 

How many numbers are there between 0 and 1? 

 
Yes, there is because there are many more numbers. 

Figure 7: Violeta’s response to the post-test 

Conclusions 
The study sought ways to promote in high-school students procedures to find intermediate 

numbers in an interval that implied learning and understanding of numerical density in various 
activities. These HLT activities included school mathematics topics such as arithmetic and 
geometric progressions, the construction of a square with side length 1, similarity of triangles, as 
first approaches to the density property of decimal numbers. 

We observed that the students did not seem to interpret “successor” correctly. Apparently, 
the idea of a successor for the students was a number greater than the one given, or the one that 
follows it in a subset of numbers with the same characteristics (same number of decimal places). 
For this reason, it is necessary to reconsider how the questions were posed, related to the 
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existence of a successor in a set other than those of the natural numbers or of the integers. That 
is, we must (re)design the activities so that students may realize the non-existence of a successor 
in the sets of rational numbers (expressed as fractions, and/or as decimal numbers), and of the 
real numbers. 
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En este informe mostraremos una investigación de cómo estudiantes de bachillerato aprenden 
estrategias para hallar números intermedios en un intervalo con el fin de comprender sobre la 
propiedad de densidad numérica. Investigaciones han mostrado cómo algunos estudiantes que 
terminan su bachillerato tienen dificultad para comprender sobre esta propiedad. Para mitigar 
esta dificultad propusimos una Trayectoria Hipotética de Aprendizaje en la que incluyera temas 
de la matemática escolar que nos permitiera plantear hipótesis de cómo un estudiante puede 
aprender sobre densidad numérica. La investigación reflejó que algunos estudiantes de 
bachillerato reconocen que existe una infinidad de números en un intervalo, sin embargo, todos 
los participantes tuvieron dificultad para comprender por qué no existe un sucesor en un 
conjunto que no sea el de los números naturales o enteros. 

Palabras clave: Trayectorias de aprendizaje y progresiones, representaciones matemáticas, 
conceptos y operaciones numéricas, experimentos de diseño  

Introducción y Preguntas de Investigación 
La propiedad de densidad numérica ha sido poco comprendida por estudiantes de todas las 

etapas escolares (Vamvakoussi y Vosniadou, 2010): algunos creen que no existe un número en 
un intervalo y otros creen que hay una cantidad finita de números en un intervalo, en conjuntos 
diferentes a los de los números naturales o enteros. Dado un intervalo, la propiedad de densidad 
numérica indica que se puede encontrar un número en él, lo que implica que: a) no existe un 
número que tenga sucesor (inmediato), y b) existe una infinidad de números en un intervalo. Por 
ejemplo, en la investigación realizada por González-Forte et al. (2021), estudiantes de 5to y 6to 
de primaria (10-12 años) y de 1° a 4° de secundaria (12-16 años de edad) respondieron que había 
una cantidad finita de números en el intervalo entre 3.49 y 3.50; incluso, algunos estudiantes 
mencionaron que solo existía un número en dicho intervalo. También se presentan situaciones 
donde estudiantes creen que los extremos de un intervalo (no natural, no entero) son 
consecutivos, por ello creen que no hay otro número en él (Vamvakoussi y Vosniadou, 2010). 
Por ejemplo, en el estudio realizado por Cabarcas y Soler (2017), estudiantes de noveno grado 
(alrededor de 15 años de edad) creían que un número racional tenía un antecesor y un sucesor, 
inmediatos. Ellos creían que el sucesor de 14/4 era 15/4 porque sus numeradores son 
consecutivos con un mismo numerador. 

Por otro lado, en los trabajos de Neumann (1998) y de Vamvakoussi y Vosniadou (2010) se 
ha encontrado que algunos estudiantes tienden a decir que solo hay números decimales entre 
decimales, pero no fracciones; de igual manera, que hay fracciones entre fracciones, pero no 
números decimales. En el estudio de Neumann (1998), los estudiantes tuvieron dificultad para 
aceptar que entre 0.3 y 0.6 hay fracciones. Vamvakoussi y Vosniadou (2010) concluyeron, 
entonces, que los estudiantes no solo decidían qué tipo de representación simbólica debían tener 
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los números que pertenecen a un intervalo sino cuántos debía haber. Por ejemplo, en el trabajo de 
estas autoras, un estudiante manifestaba que podía haber más números entre 0.001 y 0.01 si los 
números decimales (los intermedios) se expresaban en fracciones y que así podía haber una 
infinidad. Por ello, Duval (1995/2004) recalca que un estudiante pueda manejar diferentes 
representaciones de un objeto matemático desde edades tempranas, pues aprender matemáticas 
implica que haya un uso de diferentes registros semióticos (aritmético, algebraico, geométrico, 
etc.) de representación (fraccionaria, decimal, etc.). 

Con la finalidad de que un estudiante pueda comprender sobre densidad numérica –que 
implica comprender que no existe un sucesor para un número decimal, racional o real–, 
diseñamos y pusimos en práctica una Trayectoria Hipotética de Aprendizaje (THA) (Simon, 
1995); que sigue los lineamientos de una Investigación Basada en Diseño (IBD) (Cobb y 
Gravemeijer, 2008). Una THA es una secuencia de actividades que siguen hipótesis de cómo 
apoyar a un estudiante en su proceso de aprendizaje sobre un concepto matemático (Simon, 
1995). Para esta THA tomamos diferentes temas de la matemática escolar que permitieran 
comprender sobre densidad numérica, tal como lo sugieren McMullen y Van Hoof (2020). 
Presentamos a continuación objetivos que se propusieron para una investigación que se inició en 
2020 y que en Suárez-Rodríguez y Sacristán (2022) ya habíamos mostrado algunos resultados:  

a) Indagar sobre las concepciones previas de los estudiantes participantes en el estudio 
respecto a la propiedad de densidad numérica. Para ello se utiliza un cuestionario 
diagnóstico (pretest). 

b) Indagar y evidenciar las actuaciones de los estudiantes durante el desarrollo de la puesta 
en marcha de las actividades propuestas en la THA, con relación a la propiedad de 
densidad numérica y a la propiedad de lo discreto de los números naturales. 

Marco Teórico 
Pensamiento sobre lo discreto y lo denso 

La matemática discreta es la base de todo lo que corresponde con los números naturales o los 
conjuntos numerables, mientras que la matemática continua es la base de todo lo relacionado con 
la continuidad (Levin, 2021; “Matemática discreta”, 2021, parfs. 2-3). Como explican 
Vamvakoussi y Vosniadou (2010), la propiedad de lo discreto  solo la cumplen los números 
naturales, ya que cada natural tiene un sucesor, en términos de relaciones de orden. Es decir, 
estas autoras hacen énfasis en que los términos “discreto” y “denso” se usan con respeto a la 
relación de orden habitual, así los números naturales son discretos, los números racionales son 
densos y los números reales son densos y continuos. La propiedad de lo discreto encierra todo lo 
vinculado con los números naturales en el sentido de que cualquier número natural tiene un 
sucesor (Vosniadou y Vamvakoussi, 2010); como lo indicó Peano (1889/1979) en sus axiomas 
para los números naturales, que estos números tienen un sucesor. Por otro lado, Vamvakoussi y 
Vosniadou (2004) elaboraron unas categorías con base en los resultados de su investigación para 
conocer qué tanto saben los estudiantes sobre densidad numérica y la propiedad de lo discreto 
(Tabla 1).  
 

Tabla 1: Categorías de pensamiento sobre lo discreto y lo denso 
Pensamiento ingenuo 
sobre lo discreto 

Se considera que no hay otro número entre dos números racionales 
consecutivos falsos (expresión acuñada por Vamvakoussi y Vosniadou, 2004, 
para decir que existe un sucesor en los números racionales.) 
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Pensamiento avanzado 
sobre lo discreto 

Se cree que hay un número finito de números intermedios entre dos números 
racionales consecutivos falsos. 

Pensamiento entre lo 
discreto y lo denso 

En algunas situaciones se piensa que entre dos números racionales hay una 
cantidad infinita de números, y en otros, que hay una cantidad finita. 

Pensamiento ingenuo 
sobre lo denso 

Se contempla que hay una infinidad de números en un intervalo, pero no se 
justifica la situación usando la propiedad de densidad. La representación 
simbólica de los extremos de un intervalo influye en la forma de pensar; se 
cree que solo puede haber una infinidad de decimales entre decimales, pero 
no fracciones; de igual modo sucede con fracciones entre fracciones. 

Pensamiento sofisticado 
sobre lo denso 

Hay una comprensión bastante sofisticada de la propiedad de densidad, es 
decir, se pone de manifiesto que se entiende que entre dos números 
racionales hay una infinidad de números, independientemente de su 
representación simbólica, y se justifica con la propiedad de la densidad. 

 
Registros semióticos de representación 

Aprender matemáticas constituye un espacio para el análisis de las actividades cognitivas 
(conceptualización, razonamiento, resolución de problemas y comprensión de textos) que 
requieren del uso de sistemas de expresión y de representación distintos a los del lenguaje natural 
o de las imágenes (Duval, 1995/2004). Estos sistemas de representación conforman registros 
semióticos o registros de representaciones semióticas (op. cit.). Estos registros permiten que un 
individuo pueda tener una comunicación de ideas que se transforman en otras sin cambiar su 
significado (Moreno y Sacristán, 1996). No obstante, Duval (2006) recomienda no solo limitarse 
a registros semióticos, sino también utilizar registros no semióticos como contextos en los que se 
pueda trabajar con materiales como cerrillas, palitos, cuencas, etc. Consideramos, entonces, la 
importancia de usar varios registros de representación para apoyar el aprendizaje y comprensión 
de la propiedad de densidad numérica.  

Marco Metodológico y Metodología 
Trayectoria Hipotética de Aprendizaje (THA) 

La expresión “trayectoria hipotética de aprendizaje” se refiere a una predicción que hace un 
investigador en cuanto a la ruta por la cual el aprendizaje podría proceder (Simon, 1995). Una 
trayectoria es hipotética porque la trayectoria de aprendizaje “real” aún no se conoce de 
antemano, y se vuelve real cuando los estudiantes ponen en marcha las actividades propuestas 
(op. cit.). Simon (1995) elabora tres componentes que debe conformar una THA: a) objetivos de 
aprendizaje, entendidos como un conjunto de propósitos que se espera lograr para que el 
estudiante construya nuevos conocimientos, b) actividades de aprendizaje, que se conforma de 
actividades instruccionales siguiendo una secuencia, y c) proceso hipotético de aprendizaje, en el 
que se elaboran conjeturas para apoyar el proceso de aprendizaje del estudiante. El investigador 
puede realizar modificaciones en cualquiera o en todos los tres componentes de una trayectoria 
con el fin de que él como los estudiantes construyan y mejoren sus conocimientos (op. cit.). 
Diseño y elaboración de las actividades de la THA 

Como lo mencionamos, nuestra metodología de investigación sigue las pautas de una 
Investigación Basada en Diseño (IBD). La IBD es un enfoque metodológico en el que el 
investigador lleva a cabo un estudio sistemático de diseño, desarrollo y evaluación de 
intervenciones educativas en diferentes ciclos, y para ello se sugiere planteamientos de hipótesis 
a través de una THA (Cobb y Gravemeijer, 2008). En este informe mostraremos algunos 
resultados de uno de dos ciclos de actividades de la investigación (el otro se está llevando a cabo 
durante el año 2023). Para este primer ciclo participaron cuatro estudiantes con edades de entre 
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15 y 17 años, de Colombia: Angie, Paola y Néstor que cursaban el bachillerato y Violeta, el 
último año de la secundaria. Algunas actividades se llevaron a cabo de manera presencial y otras 
virtual. El diseño correspondiente al primer ciclo de actividades implicó tres fases: Los 
estudiantes respondieron un mismo cuestionario tanto en la primera como en la tercera fase, y en 
la segunda, resolvieron actividades de la THA.  

Primera y tercera fase (pretest y postest). Los estudiantes respondieron a un cuestionario 
de cuatro preguntas relacionadas con la cantidad de números que puede tener un intervalo. Estas 
preguntas surgieron de las elaboradas por Suárez-Rodríguez y Figueras (2020) y Vamvakoussi y 
Vosniadou (2004). Se quiso conocer qué tanto saben los estudiantes sobre densidad numérica –
antes y después de la implementación de la THA– de acuerdo con las categorías elaboradas por 
Vamvakousi y Vosniadou (2004) (Tabla 1). La duración del desarrollo del pretest fue de 30 
minutos aproximadamente, mientras que la del postest fue de 10 minutos. En este informe 
mostraremos las respuestas de la pregunta: ¿Cuántos números hay entre 0 y 1?  

Segunda fase (actividades de la THA). La THA está compuesta por cuatro sesiones de 
actividades en las que se planteó una hipótesis para cada una (Tabla 2). Se quiso plantear 
hipótesis vinculadas con varios temas de la matemática escolar en las que consideramos que 
pueden apoyar al estudiante para aprender y comprender sobre densidad numérica. Cada sesión 
tuvo una duración de alrededor de 1h30’. 

 
Tabla 2: Sesiones de la THA con sus hipótesis correspondientes 

Sesión Hipótesis 

Sesión 1. Primeros acercamientos a la 
propiedad de densidad. 

A partir de dos situaciones: una relacionada con la cotidianidad y 
otra vinculada con un escenario hipotético, se piensa que el 
estudiante puede tener sus primeros acercamientos a la propiedad de 
densidad. 

Sesión 2. Acercamiento a la propiedad 
de densidad a través de la semejanza 
de triángulos. 

Se contempla que usando semejanza de triángulos los estudiantes 
puedan aprender sobre la propiedad de densidad de los números 
racionales.  

Sesión 3. Aproximación a la propiedad 
de densidad a partir de progresiones 
aritméticas y progresiones 
geométricas. 

Es posible que hallando medios aritméticos y geométricos en un 
intervalo el estudiante comprenda la propiedad de densidad de los 
números racionales en el conjunto de los reales. 

Sesión 4. Aproximación a la propiedad 
de densidad por medio de la propiedad 
de continuidad. 

Se cree que usando la propiedad de continuidad los estudiantes 
comprenden la propiedad de densidad de los números irracionales 
en el conjunto de los reales. 

Resultados 
Primera fase: Resultados del pretest  

En la Tabla 3 se muestran las respuestas de los estudiantes a la pregunta: ¿Cuántos números 
hay entre 0 y 1? e intentamos clasificarlas según las categorías propuestas por Vamvakoussi y 
Vosniadou (2004) (Tabla 1). 
 

Tabla 3: Respuestas de los estudiantes a una pregunta del pretest 
Respuestas Tipos de pensamiento 

Paola 
 Pensamiento ingenuo 

sobre lo denso 
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Néstor
 Pensamiento sofisticado 

sobre lo denso 

Violeta
 Pensamiento ingenuo 

sobre lo discreto 

Angie

 

Pensamiento ingenuo 
sobre lo denso 

Se observa en la Tabla 3 que Paola y Angie muestran una tendencia a tener un pensamiento 
ingenuo sobre lo denso, ya que ambas manifestaron que sí hay una infinidad de números entre 0 
y 1. Sin embargo, ellas no explicaron un proceso para hallar estos números intermedios en el 
intervalo. Néstor también indicó que hay infinidad de números entre 0 y 1. Él usó la escritura 
decimal como representación semiótica en un registro aritmético y anotó ejemplos de números 
en escritura decimal periódica. Es decir, Néstor justificó su respuesta por medio de un proceso de 
infinito potencial de agregar cifras decimales en la parte decimal de un número de forma 
periódica como una manera de hallar números intermedios entre 0 y 1. Violeta manifestó un 
pensamiento ingenuo sobre lo discreto: al parecer, para ella, los números 0 y 1 son consecutivos. 
Es posible, que ella solo esté considerando 0 y 1 como números naturales, por lo que ella se 
encontraría en un sistema de conocimientos de dominio número natural.  
Segunda fase: Resultados de las actividades de la THA  

Se describen algunas actuaciones de los estudiantes de las sesiones 1, 3 y 4 (Tabla 2) durante 
el desarrollo de la THA. 

Sesión 1. En esta sesión los estudiantes resolvieron dos actividades. En una de ellas los 
estudiantes realizaron una breve lectura sobre los primeros inicios del salto largo como deporte y 
respondieron cinco preguntas. En la Figura 1 mostramos la respuesta de Paola a la pregunta: Según 
la lectura, ¿cuáles registros, de los atletas, se encuentran entre 5.40 y 7.70? Ella responde de 
manera adecuada, señaló todos los registros numéricos, de los atletas, que se encuentran entre 5.40 
y 7.70 (5.41, 6.20, 6.375, 7.05, 7.40, 7.51, 7.54, 7,60 y 7.605). Posteriormente, los estudiantes 
contestaron la pregunta: ¿Crees que 7.40 tenga sucesor? Explica tu respuesta. En la Figura 2 se 
muestran las respuestas de ellos. 
 

Según la lectura, ¿cuáles registros, de los atletas, se encuentran entre 5.40 y 7.70 

 
Figura 1: Respuesta de Paola (Sesión 1) 

 
¿Crees que 7.40 tenga sucesor? Explica tu respuesta. 

Paola 

 

Violeta 

 
Angie 
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Néstor 

 
Figura 2: Respuestas de los cuatro estudiantes (Sesión 1) 

Se observa en la Figura 2 que Paola, Violeta y Angie señalaron a 7.41 como el “sucesor” de 
7.40. A diferencia de Néstor, que no solo escribe 7.41, sino también otros números como 7.42 y 
7.43 (números con dos cifras decimales) y números como 7.401, 7.402 y 7.403 (números con tres 
cifras decimales) como “sucesores” de 7.40. En general, consideramos que los estudiantes creen 
que existe un sucesor para un número decimal que depende de la cantidad de cifras decimales 
(i.e. “el sucesor” de un número con una cifra decimal es otro que debe tener una cifra decimal. 
Sin embargo, no sabemos que podría ocurrir con un número como 7.99 (número con dos cifras 
decimales), creemos que los estudiantes podrían escribir 7.100 (número con tres cifras 
decimales).  

Sesión 3. En esta sesión se llevó a cabo una actividad relacionada con progresiones 
aritméticas y otra con progresiones geométricas. Se planteó la hipótesis de que el estudiante 
pueda ver otra forma de hallar números en un intervalo, con el fin de que comprendiera la 
propiedad de densidad de los números racionales. Se les pidió a los estudiantes hallar cinco 
medios aritméticos entre 4 y 22 a partir de la expresión general del término n-ésimo de la 
sucesión: u = a + (n – 1)d, donde a es el primer término, n el número de términos y d la 
diferencia entre un término y el siguiente. En la Figura 3 se observa la tarea realizada por Néstor 
donde halló los cinco medios aritméticos entre 4 y 22 (7, 10, 13, 16 y 19) con d = 3. Después los 
estudiantes hallaron otros medios aritméticos cuando se les solicitó reducir la diferencia a la 
mitad (i.e. d = 1.5 = 3/2). En la Figura 4 se observa el trabajo realizado por Angie, donde halló 
los medios aritméticos en escritura decimal: 5.5, 7.0, 8.5, 10, 11.5, 13, 14.5, 16, 17.5, 19 y 20.5.   

 
 
 
 
Con la información anterior [lectura sobre el salto largo] 
halla cinco medios aritméticos entre 4 y 22. 

 
Figura 3: Respuesta de Néstor (Sesión 3) 

 

Si d se redujera a la mitad, es decir, d=1.5, o 
d=3/2, ¿cuáles serían los nuevos medios 
aritméticos entre 4 y 22? 

 
Figura 4: Respuesta de Angie (Sesión 3) 

 
Posteriormente, los estudiantes respondieron a la pregunta: ¿Puedes hallar más números 

entre 4 y 22 (diferentes a los números hallados en las anteriores preguntas)? ¿Cuántos? Explica 
tu respuesta. En la Tabla 4 se muestran las respuestas de los estudiantes y también intentamos 
clasificarlas según las categorías por Vamvakoussi y Vosniadou (2004) (Tabla 1). 
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Paola menciona que con la mitad de la diferencia (1.5) se pueden hallar más términos (1.5/2 
= 0.75); de igual manera, con la mitad de 0.75 que es 0.375, y así de manera sucesiva. Por lo que 
su respuesta se encuentra en la categoría pensamiento sofisticado sobre lo denso, ya que justifica 
un proceso para hallar más números. Cabe mencionar que Paola no solo indica que con el 
proceso de encontrar la mitad de la diferencia se puede hallar más números sino también 
“duplicando”. Sin embargo, al parecer, ella tiene un concepto no adecuado del término 
duplicación, ya que escribe 3.2, 3.3, 3.4, …, es decir, ella se refiere a sumar dos décimas, tres 
décimas, cuatro décimas, etc. al número 3 (que es la diferencia de la progresión aritmética). 
Néstor exhibe un pensamiento ingenuo sobre lo denso cuando afirma que se puede hallar una 
infinidad de números. Violeta responde que “se pueden encontrar 10”, es decir, una cantidad 
finita de números entre 4 y 22, por lo que exhibe un pensamiento avanzado sobre lo discreto. En 
esta pregunta, creemos que Angie muestra un pensamiento avanzado sobre lo discreto, ya que 
indica una cantidad finita: 3. No está claro lo que Angie quiere decir con “para las matemáticas 
hay muchos caminos”. Es posible que ella se refiera a que hay varias soluciones de resolver un 
problema y que el método que ella escogió (que desconocemos) le lleva a decir 3. 
 

Tabla 4: Respuestas de los cuatro estudiantes (Sesión 3) 
¿Puedes hallar más números entre 4 y 22 (diferentes a los números hallados en las anteriores preguntas)? 

¿Cuántos? Explica tu respuesta 
Respuestas de los estudiantes Tipos de pensamiento 

 

Paola 
Pensamiento 
sofisticado sobre lo 
denso. 

 

Néstor 
Pensamiento ingenuo 
sobre lo denso. 

 

Violeta 
Pensamiento avanzado 
sobre lo discreto. 

 

Angie 
Pensamiento avanzado 
sobre lo discreto 

 
Sesión 4. Para esta sesión se diseñó una actividad con base en una planteada por Tovar 

(2011). Se plantea la hipótesis de que el estudiante pueda comprender sobre la densidad de los 
irracionales en los reales a partir de la propiedad de continuidad de la recta numérica. Los 
estudiantes construyeron un cuadrado de lado de longitud uno sobre la recta numérica desde el 
origen, y rotaron la diagonal del cuadrado sobre la recta en el sentido de las manecillas del reloj 
(ver el segmento 𝐴𝑋}}}} en la Figura 5; ejemplo de Violeta).  
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Figura 5: Gráfica de 
Violeta en GeoGebra (S4)  

Figura 6: Gráfica en GeoGebra e intervalos escritos por 
Violeta que encierran al punto X (Sesión 4) 

 
Al realizar varios zooms en GeoGebra, los estudiantes notaron que el “extremo derecho” del 

segmento de la diagonal no coincidía con algún número racional de la recta, mostrando así, que 
se puede encontrar un número irracional (en este caso √2) en un intervalo dado. Posteriormente, 
ellos escribieron cuatro intervalos que encerraran al punto que no coincidía con algún racional. 
En la Figura 6 se observa la tarea realizada por Violeta después de realizar la construcción del 
cuadrado de lado uno (Figura 5). Violeta escribe cuatro intervalos que contienen al punto X. Es 
posible que a ella se le haya olvidado escribir la coma decimal (que se usa en Colombia). Los 
intervalos son: (1.414, 1.4144), (1.4136, 1.4146), (1.4132, 1.4148) y (1.413, 1.415). 
Tercera fase: Resultados del postest 

Los estudiantes evidenciaron una evolución en sus respuestas al postest en comparación con 
las del pretest. Por ejemplo, Violeta escribió: “Sí hay porque hay muchos más números” en su 
respuesta a la pregunta: ¿Cuántos números hay entre 0 y 1? (Figura 7). Contrario a lo que 
Violeta escribió en su pretest en esta misma pregunta, que indicó: “No hay ningún número 
porque el 0 está antes del 1” (Tabla 3), consideramos que Violeta ha podido comprender que hay 
números entre 0 y 1. Aunque ella indica que “hay muchos más números” no sabemos si se refiere 
a una cantidad finita o infinita de números. En los casos de Paola y Néstor, ellos preservaron la 
misma idea de que hay infinidad de números en un intervalo dado, tanto en el desarrollo del 
pretest como del postest. Sin embargo, durante el pretest Paola no justificó como encontrar 
números intermedios en un intervalo, mientras que en el postest ya pudo justificar un método 
para encontrar estos números. Angie también mencionó la existencia de una infinidad de 
números intermedios en un intervalo durante el desarrollo del pretest; sin embargo, durante el 
postest habló sobre infinidad de “intervalos” y no justificó el por qué de su respuesta. 
 

¿Cuántos números hay entre 0 y 1?  

 
Figura 7: Respuesta de Violeta al postest 

Conclusiones 
Consideramos que el trabajo de investigación buscó maneras de promover, en estudiantes de 

bachillerato, procedimientos para hallar números intermedios en un intervalo que implicó en 
varias actividades un aprendizaje y una comprensión hacia la densidad numérica. Estas 
actividades de la THA incluyeron temas de la matemática escolar como progresiones aritméticas 
y geométricas, la construcción de un cuadrado de lado de longitud uno, semejanza de triángulos 
y primeros acercamientos a la propiedad de densidad de los números decimales.  
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Observamos que los estudiantes no parecían interpretar “sucesor” correctamente. Al parecer, 
la idea de un sucesor para los estudiantes era un número mayor al dado, o aquel que le sigue en 
un subconjunto de números con mismas características (misma cantidad de cifras decimales). Por 
ello, es necesario reconsiderar cómo plantear las preguntas relacionadas con la existencia de un 
sucesor en un conjunto que no sea el de los números naturales o el de los enteros. Es decir, 
debemos (re)diseñar las actividades que permita que los estudiantes se percaten de la inexistencia 
de un sucesor en los conjuntos de los números racionales (expresados como fracciones, y/o como 
números decimales), y reales. 
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CENTERING STUDENTS’ ASSETS IN EARLY ELEMENTARY MATHEMATICS: 
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BILINGUALS 
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This study explored early grades teachers’ professed beliefs about mathematics, language, and 
Emergent Bilinguals (EBs). The research question was: what are early grades teachers’ 
professed beliefs about mathematics, language, student thinking, students’ out-of-school 
experiences, and students’ home and everyday language practices, in particular for EBs? The 
teachers in this study displayed varying degrees of asset-based responses (74%-100%) to the 
survey and discussed beliefs related to 1) students’ backgrounds and experiences, 2) students’ 
everyday and home languages, 3) mathematics vocabulary, and 4) supporting EBs. During 
interviews, teachers described their beliefs about students’ assets (experiences and 
home/everyday language) in ways that aligned with 1) allowing students’ assets in the classroom 
or 2) drawing on students’ assets to support mathematics learning.  

 
Keywords: Teacher Beliefs, Equity, Inclusion and Diversity, Elementary School Education 
 

Many factors impact how teachers orchestrate their mathematics instruction. One factor that 
has been the focus of many studies in mathematics education is teachers’ beliefs (e.g., Lee & 
Ginsburg, 2007; Raymond, 1997; Roesken-Winter, 2013; Staub & Stern, 2002; Stipek et al.,  
2001). Beliefs can impact teaching practice (Schoenfeld, 2002; Raymond, 1997), shaping the 
ways teachers facilitate mathematics instruction in early grades.  

Teachers’ beliefs about language and language learning can impact EBs’ opportunities to 
participate in mathematics instruction. There are beliefs that may be unproductive for supporting 
the needs of EBs in the mathematics classroom. For example, a belief that mathematics should 
be taught by an English as a Second Language/ English Language Development (ESL/ELD) 
teacher may reflect a view that children need to learn English before they can participate in 
mathematics. This could also lead to placing a student in an ESL/ELD class with a teacher 
unprepared to teach mathematics. There is specific content and pedagogical content knowledge 
related to teaching mathematics. These may not be present from teachers with little training in 
mathematics and in a classroom where the main and often the only focus is teaching English. 

Fernandes (2020) highlights a need for more research to look at teachers’ beliefs about 
language and mathematics instruction with EBs. Given the need, I analyzed early grades 
teachers’ beliefs about mathematics, language, and students’ assets. I explored the research 
question: what are early grades teachers’ professed beliefs about mathematics, language, student 
thinking, students’ out-of-school experiences, and students’ home and everyday language 
practices, in particular for EBs?  

Literature Review 
Teachers’ beliefs are shaped by the setting and context where they teach. Lee and Ginsburg 

(2007) found that teachers in middle-socioeconomic status (SES) preschools were more likely to 
support activities relevant to the students’ interests and were more focused on the social aspect 
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rather than the academic aspect, of preschool. In these schools, teachers viewed their students as 
coming from homes with educational resources that prepared them for school. In comparison, 
teachers serving low-SES preschools were more likely to highlight the importance of academics 
and direct instruction in preschool. Aligned with deficit views, the teachers from low-SES 
preschools positioned their students as coming from disadvantaged homes and needing to catch 
up. This distinction is crucial for EBs in poor schools as they may not have opportunities to draw 
on their full set of resources to learn mathematics if their teachers hold deficit views of them. 
Teachers’ deficit views of students can limit students’ access to quality mathematics instruction 
and opportunities to learn mathematics with understanding (Lee & Ginsburg, 2007; Turner et al., 
2012). Instead, teachers need to hold asset-based views of their students, including EBs, to fully 
support their mathematics learning. Research has highlighted the importance of 1) drawing on 
EBs’ experiences and backgrounds to provide access to content (e.g. Aguirre et al., 2012; Turner 
et al., 2012 ), 2) leveraging students’ home and everyday language to support student learning 
(e.g., Brenner, 1998; de Araju et al., 2018; Turner & Celedón-Pattichis, 2011; Moschkovich, 
2013), and 3) teaching vocabulary as connected to concepts and not isolated (Moschkovich, 
2013, Moschkovich, 2015a). When teachers hold beliefs that align with these recommendations, 
they have asset-based views of their students and may become more likely to provide 
opportunities for mathematics and language learning in the classroom. 

Fernandes (2020) found that pre-service teachers' beliefs about the use of home languages in 
the classroom fell into one of four categories along a continuum that reflect beliefs about native 
language use in mathematics classrooms: no native language, limited use of native language, 
extensive use of native language, and bilingualism. In his study, two out of 31 participants were 
characterized as having beliefs related to no native language use in the classroom, whereas 
nearly half (n=15) were characterized as limited native language use (Fernandes, 2020). These 
two categories were highlighted to show an expansion of previous work (Ruiz, 1984) 
highlighting teachers’ beliefs that focus on a deficit view (i.e., language as a problem) of 
students’ native language. In contrast, participants who identified language as a resource shared 
beliefs related to extensive use of native language in the classroom (n=10) and bilingual use in 
the classroom (n=3) (Fernandes, 2020). The teachers’ beliefs that were documented in this study 
were complex and included mixed views of students’ native language use in the mathematics 
classroom. 
Framework 

In this study I looked at beliefs through the lens of Multiple Mathematical Knowledge 
Bases (MMKB) (Aguirre et al., 2012; Turner et al., 2012), and the language orientations 
construct (Fernandes, 2020). I drew on Philipp (2007) to define beliefs as “psychologically held 
understandings, premises, or propositions about the world that are thought to be true [...] as 
dispositions toward action” (p. 259).  

The primary purpose of this study was to look at teachers’ beliefs about language and 
mathematics for EBs. Therefore, I used the language orientations construct (Fernandes, 2020) 
with the associated MEELS instrument (Fernandes & McLeman, 2012) to design the data 
collection protocols and to look at the data. For the study's design, I adapted MEELS to develop 
a survey and inform the interview questions that I used for data collection. I used MEELS to 
include items related to native language use in the mathematics classroom, fairness of supporting 
EBS, and teaching strategies for EBs. The language orientations framework (Fernandes, 2020) 
was the primary lens I used to look at teachers’ responses. This framework includes four 
orientations that range from viewing language as a problem to viewing language as a resource. 
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On the farthest side of the continuum where language is viewed as a problem, Fernandes (2020) 
highlighted pre-service teachers’ orientations that reflected “no native language.” In this group, 
the teachers felt there was no room for native language in a mathematics classroom. Next, pre-
service teachers with a “limited use of native language” believed that it was acceptable for 
students to use their native language in some situations, but the goal was to replace their 
language with English in the mathematics classroom. Moving towards views of language as a 
resource, Fernandes (2020) found that some pre-service teachers held beliefs that reflected 
“extensive use of native language” where teachers supported any language use in the classroom 
and the goal was to learn mathematics regardless of language. The final group had beliefs that 
reflected and promoted “bilingualism,” where the pre-service teacher promoted native language 
use because they believed that native languages support mathematics learning. While Fernandes 
(2020) only included native language in these constructs, I expanded this work to include 
everyday communication. This is because many researchers (e.g., Au & Kawakami, 1985; 
Brenner, 1998; de Araujo et al., 2018; Gutiérrez, Baquedano-López & Tejeda, 1999; Turner & 
Celedón-Pattichis, 2011) have found that inviting all of students’ linguistic resources into the 
classroom, including native language and language practices (e.g., talk story, joking, storytelling, 
dialects), supports engagement and learning.  

In addition to teachers’ beliefs about language and mathematics, I also included 
opportunities for teachers to share their thoughts about students’ experiences and interests related 
to mathematics outside of the classroom. MMKB includes students’ “multiple understandings 
and experiences that have the potential to shape and support students’ mathematics learning” 
(Turner et al., 2016, p. 49). One key feature of MMKB is students’ interests and experiences 
outside of the classrooms, so I intentionally asked questions and included statements about this 
in my data collection protocols.  

Methodology 
 This is a qualitative study where I used the frameworks of MMKB (Aguirre et al., 2012; 

Turner, et al., 2012) and language orientations (Fernandes, 2020) to design the study and analyze 
the data. Data for this study came from survey and interview responses from a group of 
experienced early grades teachers. My analysis of these responses drew on descriptive statistics 
and interpretive analysis. I focused on the teachers' words and their responses to statements and 
questions. One guiding assumption I have about the teachers in this study is that these teachers 
are professionals who navigate many things that can impact their instruction that may or may not 
align with their beliefs about mathematics instruction with EBs. I intentionally did not count or 
run statistical analyses on the data because of the small sample size (n=20) and because I 
purposefully selected these teachers in a fashion that made them not representative of the larger 
teaching force (e.g., in terms of years of teaching, experiences with professional development).  
Participants 

 I recruited participants using convenience sampling from sources including mutual 
colleagues, individuals I knew, and a well-established social media platform. During 
recruitment, I identified specific criteria for eligibility. This included teaching for at least 5 years 
in an early grades classroom (Pre-K through 3rd grade) and current placement in an early grades 
classroom. I also told the teachers that the study was about mathematics and language. In 
mathematics education research, there are a plethora of studies done with pre-service teachers 
(e.g., Ambrose, 2004; Turner et al., 2016). Therefore, I intentionally selected experienced 
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teachers (five or more years of teaching) to explore their beliefs and practices. Recruitment 
occurred during the 2020-2021 school year.  

All twenty teachers responded to a survey online through google forms. Of these 20 
participants, four participants were preschool teachers, three were kindergarten teachers, five 
were first grade teachers, one was the distance/online teacher for third grade, one teacher had a 
kindergarten-first grade combination class, and the remaining six did not identify their current 
grade as this was a question I added after some of the teachers had already filled out the survey. 
Given the eligibility criteria, all teachers had been teaching for over five years, ranging between 
5 and 36 years. While most teachers reported being monolingual, six reported speaking and 
understanding Spanish and English, three reported speaking and understanding French and 
English, one reported familiarity with Mandarin, and one reported “other”. Half of the 
participants reported being monolingual and the other half reported being multilingual. 

Related to the students’ demographics, the teachers reported on their students' EL5 
designation and family background to the best of their knowledge. While four teachers reported 
having no designated ELs in their class, others taught classes of only ELs. Of the 20 teachers, 16 
of them had at least one EL in their class during the 2020-2021 school year.  
Data Collection 

 There were two sources of data for this study that came from survey and interview 
responses. For the survey, I recruited 20 teachers as participants. The items on the survey 
included demographic information (e.g., years of teaching experience, professional development, 
student information and statements about mathematics, student learning, teaching, the role of 
language in learning math, and emergent bilinguals. Teachers responded using a 5-point Likert 
scale ranging from strongly agree to strongly disagree. Some survey items were adapted from 
MEELS (Fernandes & McLeman, 2012). MEELS was used by Fernandes (2020) as a data 
collection tool as he developed the language orientations framework. Fernandes (2020) used 
MEELS to identify pre-service teachers’ beliefs about mathematics and language instruction 
with EBs (Fernandes, 2020).  

From the participant group of 20, five agreed to be interviewed after taking the survey. 
Therefore, I interviewed these five teachers using a semi-structured interview. The five 
participants self-selected to participate in the interview and were not selected to be representative 
of the larger sample. Questions on the interview asked teachers to reflect on their mathematics 
teaching, students learning, views of the role of language in learning mathematics, and 
supporting emergent bilinguals. 
Data Analysis 

I first coded the responses to analyze the survey as aligning with an asset-based view. I 
used previous research to identify if agreement or disagreement with each statement reflected an 
asset-based view. In particular, I drew on the recommendations from research related to 1) 
students’ experiences and backgrounds (e.g., Aguirre et al., 2012; Turner et al., 2012), 2) 
students’ home and everyday language (e.g., Brenner, 1998; de Araujo et al., 2018; Turner & 
Celedón-Pattichis, 2011; Moschkovich, 2013; Moschkovich, 2015a), and 3) teaching 

 
5 In the survey Emergent Bilinguals (EBs) were referred to as “ELs” to remain consistent with terms that the 

teachers were familiar with. I mirror this language when I share the responses to align more closely with the 
teachers’ responses. However, I use the term Emergent Bilinguals (EBs) throughout the rest of the paper to highlight 
an alternative term that frames young multilingual learners using an asset-based view and shifts away from the 
English-dominant way of labeling.  
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mathematics vocabulary (Moschkovich, 2013, Moschkovich, 2015a). After I determined if 
agreement or disagreement revealed an asset-based view for each statement, I coded each 
participants’ response as aligning or not aligning to an asset-based view. I then calculated the 
percentage of asset-based responses for each participant. For this calculation, I only looked at 
non-neutral responses (responses that fell on either side of neutral) and divided the number of 
asset-aligning responses by the total number of non-neutral.  

To further examine the results of the survey, I analyzed participants’ answers to the 
interview questions. I went through each interview from beginning to end and transcribed each 
section related to beliefs about students’ experiences, language, supporting EBs, and 
mathematics vocabulary. I then summarized teachers’ responses and quotes using descriptive 
codes. I looked across the participants to identify themes and the details of how these five 
teachers talked about their beliefs related to mathematics, students’ experiences, language, and 
supporting EBs. Since I only interviewed five of the 20 teachers, these descriptions are not 
reflective of my entire participant group and cannot be generalized to other groups. However, 
these descriptions offer detailed ways in which these five teachers described students’ assets 
related to mathematics and can provide insights into the beliefs that impact instruction for EBs 

Teachers’ Beliefs 
 The teachers responded with at least 74% of their non-neutral responses in ways that 

reflect an asset-based view. Beyond what I found in the survey responses, the interviews with 
five of the 20 teachers clarified and provided more detailed descriptions of their beliefs 
particularly related to supporting EBs’ mathematics learning. From the interviews, I found that 
teachers held beliefs about students’ assets and teaching mathematics with EBs related to 
students’ everyday and home language, students’ backgrounds and experiences, mathematics 
vocabulary, and supporting EBs. 

In this study of teachers’ beliefs, I found that teachers held varying degrees of asset-based 
views of their EBs and described beliefs specific to students’ backgrounds and experiences, 
students' everyday and home languages, mathematics vocabulary, and supporting EBs. In this 
section, I synthesize these findings and highlight how these teachers described their beliefs 
related to using students’ assets in mathematics instruction in two ways: 1) allowing students’ 
assets in the classroom and 2) drawing on students’ assets for mathematics learning.  

I developed these two categories in part from the MMKB framework. The MMKB 
framework (Aguiree et al., 2012; Turner et al., 2012; Turner et al., 2016) identified how pre-
service teachers talked about using students’ thinking and experiences in their lesson plans. My 
first category, allowing students assets in the classroom, is in part related to the “initial practices” 
category of the MMKB framework. The teachers in my study talked about using students’ 
experiences as context for mathematics problems and that students could use home and everyday 
language to demonstrate that they understood mathematics. These beliefs acknowledge that 
students’ experiences and language are valuable and important but not necessarily a central part 
of learning mathematics. My second category, drawing on students’ assets for mathematics 
learning, in many ways reflects the “meaningful connections” and “incorporating” categories 
from the MMKB framework. This category more closely aligns with beliefs that math and 
language practices should be used to support mathematics learning that reflects what students do 
in their homes and communities. 
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Allowing Students’ Assets in the Classroom 
 Consistently across the five teachers who were interviewed, descriptions about students’ 

assets revealed that they all allowed students’ assets in the classroom. For example, they all 
discussed ways that they would allow students to demonstrate their understanding or share an 
answer using any way they could. All the teachers also talked about using students’ backgrounds 
and experiences as context for mathematics problems. Two of the five teachers did not provide 
explicit details of using the mathematical practices from the students’ lives or drawing on 
students’ linguistic resources to support learning. One teacher talked about using students’ 
names, and another said that their students probably used technology in their homes. Previous 
work has characterized ways various types of everyday mathematical practices can be used in 
mathematics instruction including using context that is 1) based on assumptions, 2) reflects 
layering or mathematizing, or 3) uncovering mathematical activities (Aguirre et al., 2012; Turner 
et al., 2012). Some of the ways these teachers talked about contextualizing problems reflected 
surface-level uses of information, some of which were likely based on assumptions about 
students rather than informed by information that was gathered from them. While these teachers 
talked about students using their assets in the classroom, three of the five teachers had no clear 
connections to content or learning. These responses in some ways reflect asset-based views of 
their students and can potentially act as an entry point for teachers to incorporate students’ assets 
into mathematics instruction more fully. For example, acknowledging that eliciting and attending 
to students’ experiences outside of the classroom is a part of leveraging students’ experiences in 
meaningful ways. Eliciting and attending to may act as an entry point for teachers to start to 
make these meaningful connections (Turner et al., 2012; Turner et al., 2016).  
Drawing on Students’ Assets for Mathematics Learning 

 Three of the five teachers (Ms. G, Ms. L, and Ms. C) discussed drawing on students’ 
assets for learning mathematics and mathematics vocabulary beyond just allowing students’ 
assets in the classroom. Related to students’ backgrounds and experiences, Ms. G and Ms. L 
made clear connections to the student’s home life as they talked specifically about the 
mathematical practices from students’ homes (measurement in building and keeping track of 
score in bowling) and highlighted ways they used these practices in instruction (a unit on 
measurement and during discussions). When teachers identify the mathematics that students use 
at home, such as keeping track of allowance or keeping score in bowling, and use this 
information during instruction, they connect to ways students use mathematics outside of school 
(Turner et al., 2016). Ms. G and Ms. L made connections to mathematical practices that their 
students saw or used at home and talked about how they brought these practices into their 
instruction. This aligns with the third category of using MMKB, uncovering mathematical 
activities. For EBs, this approach to teaching mathematics can broaden access to mathematical 
content by making it familiar and positioning student’ activities from their homes as a valuable 
resource for learning.  

 Regarding students’ home and everyday language, Ms. G and Ms. C talked about how 
they encouraged students to learn mathematics content and vocabulary by drawing on students’ 
linguistic resources. Both teachers talked about the practice of revoicing to support students as 
they learned “math words” (Ms. C) and “academic language” (Ms. G). Revoicing is one effective 
approach to supporting students’ mathematics learning (de Araujo et al., 2018; Moschkovich, 
2015b) as it provides opportunities for students to hear and use more precise mathematical 
language and can support participation in mathematical discussions (Moschkovich, 2015b) . 
When EBs have access to all their linguistic resources in the classroom, they have more 
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opportunities to make meaning for mathematics content and language. In one study comparing 
two groups, the students from classrooms where home languages were accepted and encouraged 
outperformed students in classrooms where home languages were not accessible for classroom 
learning (Turner & Celedón-Pattichis, 2011). The importance of EBs having access to all their 
linguistic resources is frequently documented in the literature for student success (e.g., Brenner, 
1998; de Araujo et al., 2018; Turner & Celedón-Pattichis, 2011; Moschkovich, 2013; 
Moschkovich, 2015a).  

Conclusion 
This study explored early grades teachers’ professed beliefs about mathematics, student 

thinking, and students’ early, out of school experiences with mathematics, particularly for EBs. 
The teachers in this study displayed varying degrees of asset-based responses (74%-100%) to the 
survey and discussed beliefs related to 1) students’ backgrounds and experiences, 2) students 
everyday and home languages, 3) mathematics vocabulary, and 4) supporting EBs. During the 
interviews, teachers described their beliefs about students’ assets (experiences and 
home/everyday language) in ways that aligned with either allowing students’ assets in the 
classroom or drawing on students’ assets to support mathematics learning.  

This study corroborates and extends previous research (e.g., Fernandes, 2020; Turner et 
al., 2016). The research on teachers’ use of students’ MMKB (Aguirre et al., 2012; Turner et al., 
2012; Turner et al., 2016) has highlighted characteristics of drawing on MMKB (students’ 
thinking and mathematical experiences outside of school). The existing research on MMKB 
primarily focuses on how MMKB is integrated into instruction (Aguirre et al., 2012; Turner et 
al., 2012; Turner et al., 2016) and ways that curriculum creates “spaces” to draw on students 
MMKB (Land et al., 2018). This study adds to that research by providing examples of how 
teachers talk about using students’ linguistic resources in addition to their experiences outside of 
school.  

 The findings specific to teachers’ descriptions of allowing or drawing on students’ home 
and everyday languages in the classroom (to demonstrate understanding or as a resource to make 
meaning) corroborates other findings related to teachers’ beliefs. Like Fernandes’ (2020) 
findings, most of his participants fit within the two middle categories, which reflected a 
combination of seeing students’ language as a problem and seeing it as a resource. In my sample, 
85% of the participants fit within these “blended” categories which is similar to his finding of 
80% of his participants holding views with blended beliefs. In my sample and in the sample from 
Fernandes (2020) 15% of the teachers demonstrated views that align with a bilingual orientation. 
As discussed in the “drawing on students’ assets for mathematics learning” category in this 
analysis, the teachers in this group discussed using the experiences and language of students to 
support mathematics content and language. The teachers who talked about students using their 
home language to make meaning for mathematics and for “math talk” or “academic language” 
also expressed beliefs that all linguistic resources should be used to learn. My findings 
corroborate the work by Fernandes (2020) in that the teachers' beliefs discussed in this chapter 
also fall within a continuum in the ways they view students’ language in a mathematics 
classroom. 

Differing from his study, I did not have any teachers that responded in ways that reflected 
a “no native language” orientation. Fernandes (2020) conducted his study with pre-service 
teachers. My study extends this work as it was done with veteran teachers. This analysis also 
extends the previous work as it looks at teachers’ beliefs about assets more generally.  
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Cross-curricular integration is an effective way to enhance student understanding and create 
real-life connections. Research has shown that the math-music connection increases students’ 
conceptual knowledge, spatial-temporal reasoning and improves motivation. Through the lens of 
the cognitive-affective model of conceptual change, we will identify reasons non-musical 
teachers struggle to integrate math and music and offer an approach that addresses this 
disconnect. We argue that the expectation for non-musical mathematics teachers to integrate 
music into their lessons is discouraging and ineffective due to their lack of musical literacy.  

Keywords: Integrated STEM / STEAM, Affect, Emotion, Beliefs, and Attitudes, Teacher 
Knowledge 

The current educational landscape is such that teachers face daily challenges that affect their 
instructional methodologies in the classroom. Educators encounter such “widely varying 
intellectual, social, and affective differences” (Gregoire, 2003, p. 149) in modern classes that 
even the most effective educator can struggle. The results of the 2018 Organisation for Economic 
Co-operation and Development Programme of International Student Assessment found that just 
under 30% of American students and 15% of Canadian students scored under the minimum level 
of mathematical proficiency (PISA, 2018). These innumerate students will struggle in a range of 
personal and professional settings where mathematical literacy is essential. To rectify these 
shortcomings, mathematics educators find themselves under additional pressure to address these 
weaknesses to ensure their students meet or exceed international standards (Pelletier et al., 2002). 
Unfortunately, when teachers are required by school administrators to meet these expectations, 
they become more controlling and critical, offering students minimal choice and autonomy, as 
well as giving them nominal time to work alone; this can lead to higher anxiety and less growth 
in mathematical understanding (Deci et al., 1982; Pelletier et al., 2002). 

Since the inception of curricular mathematics, resourceful educators have continually 
searched for innovative and creative ways to enhance student learning (Beckmann et al., 2012). 
Cross-curricular integration is not a new topic and there are an incredible number of resources 
available for educators to access around the globe. However, based on the above teacher 
challenges, many math teachers do not feel they have time to integrate subjects they are 
unfamiliar with, such as music. Based on ample research (Catterall et al., 1999; Chrysostomou, 
2004; Civil, 2007; Harney, 2020; Jones & Pearson, 2013), it is now widely known that 
integrating music into mathematics instruction increases student motivation, creativity and 
engages “learners through self-reflection and active inquiry” (Parsons, 2004). Yet, many math 
teachers, pre- and in-service, do “not feel qualified to teach music […]. [C]lassroom observations 
revealed that their hesitancy and resultant lack of confidence were truly well founded” (Wiggins 
& Wiggins, 2004, p. 18). It is reasonable that teachers would struggle as proficiency in music 
literacy requires instruction and practice. Additionally, many teachers have pre-conceived 
notions of their (lack of) musical ability built on never having received instruction or recalling 
poor experiences with music when they were young (Henessy, 2000). This assumed lack of 
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ability and/or unfortunate previous experience, paired with lack of preparation time, often 
prevents math teachers from integrating music fully into their teaching (Battersby & Cave, 
2014). Our proposal demonstrates that expecting teachers to assimilate music into their 
mathematics lesson is demoralizing for those that do not have the skills necessary to do so.  

Theoretical Model 
Through the lens of the cognitive-affective model of conceptual change (Gregoire, 2003), we 

will argue that it is beyond the scope of many in-service math teachers to integrate music into 
their lessons, even though current research has proven this is an excellent way to improve student 
motivation, “intellectual performance, spatial-temporal reasoning and other skills advantageous 
for learning” (Holmes, 2016, p. 4; also see Hallam, 2015; Rauscher & Zupan, 2000; 
Schellenberg, 2004). This report will discuss the reasons why most mathematics teachers avoid 
cross-curricular integration, particularly with music, and offer a practical solution.  

The Challenge 
After several years of experience, most teachers find a groove they settle into. Researchers 

have found that mathematics teaching strategies in typical American classrooms demonstrate or 
review a concept or procedure, “provide students with step-by-step instructions, then assign 
students problems on which to practice the procedure” (Stipek et al., 2001, p. 214). These 
traditional beliefs regarding math education put the teacher in full control of what and how 
students learn, emphasize speed and performance, and highlight their “value of extrinsic, 
teacher-controlled motivational strategies, such as giving praise, rewards, or punishment” (Stipek 
et al., 2001, p. 215). Integrating music into this traditionalist teaching approach (or method?) 
would overwhelm teachers as their “pre-existing subject-matter beliefs constrain them from 
adopting practices that conflict with those beliefs” (Gregoire, 2003, p. 148). Those with “a low 
sense of efficacy are [even] less likely to try new methods for meeting their students’ needs” 
(Gregoire, 2003, p. 171). A math teacher’s belief about their subject and their practice is a 
complex relationship. If change in these subject beliefs cannot occur, “maintaining radically new 
ways of instruction is almost impossible” (Gregoire, 2003, p. 149).  

How could asking math teachers to start integrating music be considered demoralizing? 
Wiggins and Wiggins (2008) explain: 

We would not allow someone who had stopped studying mathematics at the fifth[-]grade 
level to teach mathematics. We would be appalled at the idea that someone could teach 
language arts if he or she had not read a book or written a word since the age of eleven. Yet 
we expect that […] teachers can teach music when their last formal musical instruction, if 
any, may have occurred at that age or earlier. (p. 4) 
From this perspective, it seems irrational to expect educators to assimilate technical music 

theory into their mathematics lessons. However, student learning experiences are enhanced when 
integration occurs. To assist educators in making these connections, proper training and 
sufficient resources are essential so “they are not left having to reinvent the curriculum on their 
own” (Gregoire, 2003, p. 172). 

Non-musical math educators that have embraced the “reform” approach or whose beliefs 
have them situated in the middle ground (Schoenfeld, 2004) will not experience as many 
difficulties in integrating music as traditionalist teachers but will still require appropriate 
training. The constructivist approach provides students a chance to become intrinsically 
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motivated with lessons and “activities that require reasoning and creativity, gathering and 
applying information, discovering, and communicating ideas” (Stipek et al., 2001, p. 214). 
Incorporating music (where failure is expected and turned into growth) as a natural part of 
learning mathematics “encourage[s] students to think critically and creatively, engag[ing] in 
inquiry-based problem solving, collaborat[ion] with peers, and make meaningful, real-life 
connections between music and math” (Harney, 2020, p. 205).  When students develop 
autonomy and focus on process instead of performance, the classroom becomes a safe place to 
take risks, accept being wrong and find the correct answers in alternative ways (Stipek et al., 
2001).  

A Different Approach and Conclusions 
We theorize that the only way non-musical mathematics teachers from traditional to 

constructivist methodologies would feel comfortable integrating music into their math classroom 
is if a qualified music teacher and math teacher work together for at least one full class of each 
grade level/class. Providing authentic experiences to increase teacher efficacy and self-
confidence will create a successful environment for music/math integration. Teachers working 
together creating integrated lesson plans, formulating instructional methodologies and 
experimenting with new projects and activities will build competence in both educators. Based 
on the research, administrators who support math/music integration “take advantage of the rich 
connections between music and mathematics” (An et al., 2014, p. 168) leading to improved 
motivation, deeper conceptual understanding and greater achievement of national standards 
(Wentworth, 2019). While further research is necessary, we aim to provide an explanation as to 
why the expectation for non-musical math teachers to integrate music in their instructional 
approach will be ineffective unless proper supports and resources are readily available.  
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Genevieve.Barabe@UMontreal.ca 

Cette recherche, ancrée dans la théorie de l’enaction, étudie l’évolution de tâches routinières à 
travers l’activité collective de résolution de ces tâches. Une telle étude permet de s’intéresser au 
potentiel de l’exploitation de ce type de tâche en classe de mathématiques. L’analyse de vidéos 
de séances de classe montre que la résolution collective de ce type de tâche peut faire émerger 
des incertitudes et générer une activité authentique de résolution de problèmes en classe. 

Mots-clés: Résolution de problèmes, Incertitude, Enaction, Collectivité. 

Problématique 
La formulation et la résolution de problèmes mathématiques sont, depuis longtemps, des 

champs de recherche centraux en didactique des mathématiques. Un tel intérêt peut s’expliquer 
par le fait que plusieurs voient en celles-ci l’essence même de ce qu’implique faire des 
mathématiques (Halmos, 1980; Arsac & Germain et Mantes,1988). Au fil des années, une 
emphase a été mise sur l’usage de tâches non routinières, soit des tâches qui nécessitent de la 
personne qui tente de les résoudre, de surmonter un défi ou de faire face à une incertitude (Polya, 
1945). À l’opposé, une tâche routinière ne représenterait pas de défi puisque la personne saurait 
quoi mettre en œuvre ou appliquer pour la résoudre aussitôt la tâche lue ou énoncée (Ibid.).  

Les travaux de recherche ont largement montré le potentiel des tâches non routinières à 
réussir de faire vivre aux élèves une activité mathématique riche et authentique. Ce constat est 
d’ailleurs mis en évidence dans la synthèse de Liljedahl et Cai (2021) qui soulève que les 
récentes études montrent que la nature des tâches proposées et le contexte de classe influencent 
grandement l’activité mathématique des élèves. Cette influence du contexte sur l’activité 
mathématique des élèves est également relevée par d’autres chercheurs qui soutiennent, 
toutefois, que tout ne reposerait peut-être pas nécessairement sur la tâche elle-même. Mason 
(2019) affirme en ce sens être de plus en plus convaincu que ce n’est pas la tâche en soi qui est 
riche, mais plutôt la manière dont elle est utilisée en classe. Small (2022) propose également aux 
milieux scolaires une présentation intitulée « It’s not the tasks! : It’s the follow-up! » affirmant 
que « many of us would argue that it’s less about the task itself and more about the questions 
teacher asks as and after students work on it ». Agre, en 1982, avançait d’ailleurs déjà en ce sens 
que le contexte pourrait contribuer à l’émergence de problèmes mathématiques chez les élèves :  

If a time-tested procedure exists for bringing about desired state of affairs, there may not 
exist a problem, because carrying out the procedure may be easy. But if extra effort is 
required because the income is in doubt, the situation may qualify as a problem. » (p. 131)  

Cette idée d’incertitude qui peut émerger de la situation est importante pour permettre à une 
tâche, quelle qu’elle soit, de devenir un problème. La notion de « problème mathématique » se 
définissant d’ailleurs par cette notion d’incertitude : « […] problem solving is the process of 
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moving toward a goal when the path to that goal is uncertain. We solve problem every time we 
achieve something without having known beforehand how to do so » (Martinez, 1998, p. 605). 

Dans cet ordre d’idée, Beghetto (2017) propose aux enseignants d’insérer de l’incertitude en 
classe en exploitant les tâches routinières dont ils disposent dans leurs cahiers scolaires. Pour ce 
faire, il suggère de créer des ouvertures en classe en remplaçant les caractéristiques qui semblent 
prédéterminées des tâches routinières par des aspects à être déterminés durant la résolution, 
permettant d’introduire de l’incertitude. Autrement dit, malgré l’apparence peu porteuse des 
tâches routinières, certains chercheurs soutiennent qu’elles pourraient être exploitées de sorte à 
générer une activité authentique de résolution de problèmes mathématiques. Cette perspective est 
au cœur de la recherche présentée ici, qui a pour objectif d’étudier, de manière empirique, ce qui 
peut se produire lorsque des tâches routinières sont exploitées en classe, notamment au regard de 
l’incertitude et de son rôle sur l’activité mathématique des élèves. 

Cadrage Théorique 
Cette recherche prend appui sur la théorie de l’enaction (e.g. Maturana & Varela, 1992), une 

théorie biologique de la connaissance qui offre une manière de comprendre les actions des 
individus à travers leurs inter-actions avec l’environnement. L’insistance sur les mots « inter » et 
« action » par le trait d’union a pour objectif d'accentuer le fait que, du point de vue de 
l’enaction, la connaissance s’observe dans les actions de chacun et pointe vers le rôle 
fondamental de l’environnement dans ces actions (Kieren, 1995). Cette théorie explique les 
mécanismes en jeu lors des inter-actions entre une personne et l’environnement, offrant une 
manière de comprendre les actions de chacun en contexte d’exploitation de tâches routinières. 
L’enaction amène à s’intéresser, d’une part, à la classe en tant qu’entité, que collectivité, qui 
ensemble met en avant une activité mathématique. D’autre part, elle invite à étudier l’évolution, 
qui, dans cette étude, porte sur l’évolution de tâche routinière, soit sur ses transformations, à 
travers les inter-actions avec la collectivité que forme la classe.  
Un regard centré sur la classe en tant que collectivité 

Pour Maturana et Varela (1992), les actions d’une personne sont orientées par sa structure 
qui lui permet d’inter-agir avec l’environnement et de l’aborder selon cette structure. Ce 
phénomène est appelé le déterminisme structurel, soit le fait que la structure d’une personne 
détermine les changements qui se produisent chez elle, et donc les actions qu’elle pose dans ses 
inter-actions avec l’environnement. L’environnement et l’individu sont toujours en inter-actions 
si bien qu’il y a une nécessaire compatibilité entre eux permettant leur fonctionnalité mutuelle. 
Tant que cette compatibilité demeure, chacun agit en tant que source de perturbations de la 
structure de l’autre, ce qu’ils nomment le couplage structurel. L’environnement agit comme un 
déclencheur de changements chez une personne et, réciproquement, celle-ci agit comme un 
déclencheur de changements pour l’environnement. Ces inter-actions et changements se 
mobilisent dans une boucle d’influence mutuelle où chacun influence l’autre dans son évolution.  

La constitution d’un système social comme la classe entraine la co-ontogénie entre les 
personnes qui expérimentent alors une histoire partagée de changements structurels réciproques. 
La vie sociale de la classe leur permet de coordonner leurs activités à travers cette co-ontogénie. 
Les inter-actions, qui découlent de cette coordination, donnent lieu à de nouvelles possibilités 
d’action pour tous en classe. Sous une telle perspective, l’enseignement est vu comme une 
activité réciproque où les actions des uns génèrent des possibilités d’actions pour les autres : 
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The children’s mathematical actions were occasioned by the teacher acts but those teacher 
actions were in turn occasioned by the children’s mathematical activity. This reciprocity was 
not simply a “back and forth” activity. This reciprocal teaching/learning occurred in a 
complex web with each person’s actions resulting in new possibilities for all of the others. 
(Kieren, 1995, p. 10) 

Pour l’enaction, l’individu n’est pas isolé de son environnement, si bien que ses actions sont 
partagées et créées à travers et par l’environnement. Le terme « partagé » ne signifie pas que des 
actions mathématiques se chevauchent, comme dans un diagramme de Venn, ni que des 
individus réalisent des actions qu’ils connaissent déjà, mais plutôt que ces actions émergent et 
sont constituées de manière inter-active (Towers & Martin, 2015). En classe, les actions 
mathématiques déployées sont vues comme étant un produit des inter-actions des personnes et de 
l’environnement. Ainsi, dans chaque action faite en classe, il y a une contribution de 
l’environnement dans cette même action. L’action est tout autant attribuable à l’inter-action qu’à 
l’individu (Ibid.). Comme Martin, Towers et Pirie (2006) le soulignent, l’idée n’est pas d’enlever 
de l’importance aux actions déployées par un individu, mais plutôt de se centrer sur le niveau 
auquel elles se constituent et prennent place, soit au niveau de la collectivité. Un tel intérêt pour 
la prise en compte de la collectivité au sein de la classe de mathématiques s’est d’ailleurs 
développé dans les travaux de recherche en didactique des mathématiques dans les vingt 
dernières années (voir e.g. Thom & al., 2020). C’est sous un tel angle collectif que les données 
de cette étude ont été étudiées.  
Une étude de l’évolution de la tâche à travers les inter-actions en classe 

Lorsqu’une tâche mathématique est proposée à résoudre en classe, elle agit en tant que 
déclencheur d’une réaction mathématique de la part de la collectivité. La tâche peut être vue 
comme une invitation lancée aux individus à faire émerger un problème mathématique pour eux 
(Simmt, 2000). Pour Varela (1996), la codétermination entre une personne et son environnement 
implique que les problèmes qu’elle rencontre proviennent du sens qu’elle donne au monde dans 
lequel elle vit. Les problèmes ne sont pas situés dans la nature à attendre qu’une personne les 
trouve et les résolve. Ils sont mis en avant par l’individu à travers ses inter-actions avec 
l’environnement. En classe, un élève aborde ainsi une tâche mathématique avec ses expériences 
et selon les stimuli qu’il perçoit de son environnement. En réaction à ces stimuli, il se pose un 
problème qui, pour lui, est significatif à adresser à ce moment précis. Proulx et Maheux (2017) 
invitent à voir ce moment de pose de problème comme l’entrée de chacun dans la résolution du 
problème. Lorsque ce premier pas de poser le problème est fait, la tâche se modifie en retour 
puisqu’elle prend une couleur particulière en fonction de ce premier pas. Ils argumentent ainsi 
que chaque étape de résolution de problèmes peut être vue comme constituant à la fois la pose 
d’un problème et un pas dans la résolution :  

This gives the sense that each act of solving is followed by a reposing, which calls for a new 
solving move, and so forth. But there is more. The conceptualisation of mathematical 
problem-posing that we derive from our reading of Varela leads us to consider the dialectical 
nature of posing and solving. That is, not only does the posing and the solving continually 
follow and precede each other like two feet moving in/for walking, the two dimensions 
emerge at the very same time, each being conditional on and for the other. (p. 163) 

Ils proposent en ce sens d’utiliser l’expression pose|résolution de problèmes à l’instar de 
résolution de problèmes pour mettre l’accent sur cette relation dialectique entre la pose et la 
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résolution d’un problème. Lorsqu’une tâche mathématique est proposée en classe, elle agit 
comme un déclencheur d’une réaction chez la collectivité qui alors fait émerger différents 
problèmes mathématiques à résoudre en entrant dans une telle activité de pose|résolution de 
problèmes. Les travaux sur l’enaction permettent ainsi de s’intéresser à l’évolution d’une tâche 
mathématique; une évolution qui se produit à même l’activité de pose|résolution de problèmes 
déployée pour la solutionner et à même les inter-actions entre la collectivité et la tâche proposée.  

Méthodologie 
Les données de cette étude proviennent d’un projet de recherche centré sur l’activité 
mathématique des élèves en contexte de résolution de problèmes (voir e.g. Proulx, 2018). Ce 
projet a été mené dans des classes de 5e année (10-11 ans), 6e année (11-12 ans) et de 2e 
secondaire (13-14 ans). Un total de 56 séances de classe qui ont été réalisées et captées sur vidéo.  

D’une manière générale, les séances de classe suivent une structure qui s’inspire de celle 
proposée par Douady (1994) : le chercheur-enseignant (CE) propose une tâche oralement ou par 
écrit; un certain temps est donné aux élèves pour sa résolution; ils sont invités à proposer leurs 
idées et stratégies en plénière; le CE les note au tableau, ou encore, les élèves viennent eux-
mêmes le faire; d’autres stratégies pouvant permettre de résoudre la tâche sont demandées; puis 
les différentes stratégies sont comparées entre elles. À tout moment, le CE et les élèves peuvent 
apporter, toujours en plénière, de nouvelles idées ou solutions, questionner ou commenter les 
différentes propositions. Ces séances donnent ainsi lieu à une exploitation collective des tâches 
routinières proposées à résoudre. 

Les tâches utilisées dans ce projet de recherche peuvent être qualifiées de routinières, car les 
notions, procédures ou stratégies mathématiques pour les résoudre avaient déjà été enseignées. 
Les tâches étaient également sélectionnées par les enseignants eux-mêmes, dans leurs cahiers 
scolaires, et suivaient leur planification annuelle. Voici quelques exemples de tâches routinières 
travaillées en classe dans ce projet : « Estime la somme de : 152 496 + 608 947. 5e année. », 
« Combien donne !

"
 + $

#
 ? 6e année », et « Résoudre 2x + 3 = 5. 2e secondaire ».  

À partir d’une adaptation du modèle d’analyse de vidéo de Powell, Francisco et Maher 
(2003) et d’une grille d’analyse reposant sur les ancrages théoriques développés, une analyse 
globale des 56 séances de classe a été réalisée. Puis, 7 séances ont été choisies afin de bien 
représenter l’ensemble des données pour en faire une analyse détaillée. L’analyse de l’évolution 
des tâches routinières de ces séances a été réalisée, l’unité d’analyse étant la collectivité, tel que 
discuté ci-haut. Cette analyse a permis de relever la présence d’incertitudes qui ont joué un rôle 
dans l’évolution des tâches routinières et donc dans l’activité mathématique en classe.  

Résultats 
Dans ce qui suit, un exemple synthétique d’analyse, celle d’une tâche routinière portant sur la 

divisibilité par 4, est proposé en guise d’illustration des analyses conduites. 
L’analyse synthétique de l’évolution de la tâche divisibilité par 4  

La tâche routinière « Est-ce que 498 est divisible par 4? » est proposée à résoudre à une 
classe de 6e année. Voici ce qui s’est produit dans cette séance qui a duré une cinquantaine de 
minutes. 

Une fois la tâche énoncée, les élèves ont eu une quinzaine de secondes de réflexion (mode 
calcul mental), puis le CE leur a demandé de partager leurs stratégies. Différentes stratégies sont 
proposées pour la résoudre. Notamment, pour débuter, une première affirmation portant sur la 
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parité du dividende et du diviseur est donnée: « Si je ne me trompe pas, tous les nombres pairs 
peuvent se diviser par un nombre pair. » Le CE demande des explications sur la stratégie, et une 
référence à l’enseignante de l’an dernier qui disait cela est donnée en guise de réponse. Par la 
suite, une autre stratégie s’appuyant sur la décomposition du nombre et la vérification de la 
divisibilité par 4 de chaque partie de la décomposition est expliquée. Ceci mène la collectivité à 
investiguer la vraisemblance de cette stratégie même de décomposition du nombre, faisant 
émerger une première sous-tâche mathématique, issue de la résolution de la tâche initiale, à 
savoir s’il est possible de décomposer un nombre en plusieurs parties et de vérifier si chaque 
partie est divisible pour savoir si le nombre complet l’est.  

La collectivité se penche, pendant un certain temps, sur cette première sous-tâche proposant 
deux stratégies pour y répondre. L’une valide la stratégie en affirmant qu’elle aide à mieux 
comprendre le nombre. L’autre la valide aussi, prenant appui sur le nombre 496, et sur une 
décomposition judicieusement bien choisit, pour exemplifier et réexpliquer la stratégie proposée. 
Les traces suivantes sont laissées au tableau : 

 

 
 

Figure 1 : Traces de la stratégie de décomposition du nombre à partir du nombre 496 
 

À ce moment, la collectivité met en avant d’autres stratégies pour résoudre la tâche routinière 
initiale. En particulier, elle propose de vérifier la divisibilité par 4 de chaque chiffre qui compose 
le nombre. Plusieurs des stratégies avancées jusqu’à présent ne sont pas expliquées ni justifiées 
de manière générale (par exemple, qu’arriverait-il avec la stratégie de décomposition de 496, 
représentée à la Figure 1, si la décomposition en 490 et 6 avait plutôt été proposée?). Ceci mène 
la collectivité à se questionner sur des manières d’y arriver, à partir d’un nouveau nombre, 589, 
amenant la collectivité à résoudre une seconde sous-tâche mathématique. 

Après environ cinq minutes de réflexions individuelles ou en petites équipes, le CE ramène le 
groupe en plénière. Il propose, pour débuter, de tenter d’expliquer la première stratégie : « Peut-
on savoir si 589 se divise par 4 à partir de la stratégie que tout nombre pair se divise par un 
nombre pair? Comment on y arriverait? ». Le travail de cette sous-tâche amène la collectivité à 
mettre en avant de nouvelles stratégies. L’une d’entre elles est investiguée de manière soutenue. 
Celle-ci repose sur la formulation d’une conjecture portant sur la parité du produit d’une 
multiplication par 4, qui est mise en route en classe comme suit : 

Maria : Quand je prends un nombre et que je le multiplie par 4, ça donne un nombre pair. 
CE : Ok. Tu nous dis que quand tu as un nombre et que tu le multiplies par 4, ça te donne un 
nombre pair. Comment tu sais ça? 
Maria : Bien, parce que 4 x 4 = 16, 4 x 2 = 8, 4 x 3 = 12. 

Cette conjecture devient, en elle-même, le nouvel objet de résolution de la collectivité qui se 
penche sur sa vraisemblance. Une troisième sous-tâche mathématique à savoir s’il existe des 
contre-exemples à celle-ci émerge alors. Après avoir donné quelques exemples qui semblent la 
valider, la collectivité tente de la justifier au plan mathématique amenant la troisième sous-tâche 
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à se préciser. Différentes stratégies visant à la résoudre sont présentées et discutées par la 
collectivité jusqu’à ce que la cloche sonne et mette fin à la séance. 

Les différentes stratégies mises en oeuvre dans l’activité qui a pris place en classe peuvent 
être vues comme une activité de pose|résolution de problèmes mathématiques, comme discuté 
précédemment. Dans l’action en classe, certaines stratégies ont mené la collectivité à investiguer 
les stratégies elles-mêmes, c’est-à-dire que certaines sont devenues l’objet d’attention, soit un 
nouvel objet de résolution, de la collectivité. Ceci a permis de faire émerger des sous-tâches 
mathématiques sur lesquelles la collectivité s’est penchée pendant un certain temps. Ces sous-
tâches proviennent de l’activité collective de pose|résolution de problèmes déployée pour 
résoudre la tâche routinière initiale, mais ont fait bifurquer sa résolution, pendant un moment, 
pour se pencher sur celles-ci. La Figure 2 ci-bas offre une synthèse permettant d’illustrer 
l’évolution de cette tâche routinière à travers les inter-actions dans cette classe de 6e année. 

 

 
Figure 2 : Évolution de la tâche de divisibilité par 4 dans une classe de 6e année 

 
Des apports à une conceptualisation de l’incertitude en classe de mathématiques 

Plusieurs incertitudes, relevées lors de l’analyse des données, apparaissent porteuses au 
regard de l’activité mathématique vécue par la collectivité. L’analyse montre que l’émergence 
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d’incertitudes a souvent permis l’investigation de nouvelles avenues et un engagement dans un 
travail mathématique profond sur des enjeux conceptuels importants. Beghetto (2020) parle en ce 
sens des actionnables uncertainties, soit des incertitudes productives qui sont reconnues pour 
être un moteur de nouvelles investigations et pour ouvrir sur de nouvelles possibilités de penser 
et d’agir. Il soutient que lorsqu’elles surviennent en classe, elles augmentent le niveau d’attention 
de la personne qui se trouve dans cet état, et l’entraine dans une impasse qui éveille chez elle le 
besoin d’explorer et de mettre en œuvre de nouvelles actions. Beghetto (2020) propose une 
conceptualisation de l’incertitude en trois niveaux, pouvant être représentée comme ceci : 

  

 
Figure 3: Continuum des niveaux d’incertitude 

 
Les mundane uncertainties font référence à des incertitudes qui sont d’un bas niveau 

d’intensité. Celles-ci passent souvent inaperçues ou n’entrainent que peu ou pas de réaction chez 
une personne. Ce type d’incertitude se vit de manière plus implicite, comme la personne n’en est 
que peu ou pas consciente. Dans les séances analysées, ce type d’incertitude pourrait être 
représenté lorsqu’une demande d’explication, de justification ou de validation est énoncée, mais 
qu’elle n’est pas adressée puisqu’elle n’engendre pas de réaction chez la collectivité. En effet, 
l’analyse des données montre que de telles demandes laissent parfois planer un doute au niveau 
mathématique, mais qui ne semble pas résonner chez la collectivité qui ne semble pas exprimer 
le besoin de le surmonter. Par exemple, lorsque l’affirmation que tout nombre pair se divise par 
un nombre pair est énoncée en classe, une demande d’expliquer celle-ci est lancée, mais n’est 
pas répondue par la collectivité dans le sens que celle-ci ne s’engage pas mathématiquement 
envers elle. La collectivité se contente de la réponse de ne pas savoir et de l’argument d’autorité 
qu’il s’agit des propos de l’enseignante de l’an dernier. À travers cette réponse, il est possible de 
déceler une incertitude quant à la manière de mettre en avant une justification mathématique 
satisfaisante en lien avec cette affirmation. Toutefois, à cet instant, la collectivité ne semble pas 
embêtée par le fait de ne pas savoir comment la justifier mathématiquement. Cette incertitude 
n’est donc pas vraiment perçue par la collectivité qui ne cherche pas à la surmonter ni à s’y 
engager. De leur côté, les profound uncertainties, qui se situent de l’autre côté du continuum 
dans la Figure 3, font référence à des incertitudes qui sont extrêmement intenses et qui 
apparaissent comme étant inaccessibles; ne pouvant être vraiment connues, comprises, ni 
résolues par la personne qui se trouve face à une telle incertitude. Ce type d’incertitude n’a 
toutefois pas semblé être présent dans les données. Entre ces deux pôles, se trouve, pour 
Beghetto, une grande variété d’expériences d’intensité modérée d’incertitude, soit les 
incertitudes productives. Dans cette séance sur la divisibilité par 4, lorsque la demande de 
s’intéresser à la stratégie que tout nombre pair se divise par un nombre pair est plus tard réitérée 
à partir du nombre 589, ce qui était de l’ordre d’une mundane uncertainty est devenue une 
actionable uncertainty. En effet, une invitation à s’engager avec l’incertitude de la justification 
mathématique de la stratégie est lancée puis répondue. La collectivité s’y engage, prenant le 
temps d’explorer de nouvelles possibilités et de mettre en avant de nouvelles actions visant à 
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surmonter cette incertitude. L’analyse des données révèle la présence fréquente de telles 
actionables uncertainties dans les séances de classe.  

Ainsi, bien que les tâches proposées dans le cadre de cette étude étaient de nature routinière, 
des incertitudes sur la validité de certains éléments mathématiques mis en avant en classe ou 
encore sur la manière de les expliquer ou de les justifier mathématiquement ont émergées en 
classe. Ces incertitudes naissent du travail collectif fait dans l’action de les résoudre. Elles sont le 
fruit des inter-actions entre la collectivité et la tâche initiale, émergeant de leur coévolution. Ces 
incertitudes ne sont, en ce sens, pas entièrement prévisibles. En effet, il n’est pas possible d’être 
certain, a priori, qu’une incertitude précise émergera des inter-actions, qu’elle sera abordée par 
la collectivité à un moment prédéterminé ou encore qu’elle occupera un temps précis de l’activité 
collective afin de la surpasser. Il est toutefois possible d’identifier certains éléments qui 
pourraient potentiellement devenir une source d’incertitude en classe, par exemple, en faisant 
une analyse a priori de la tâche routinière initiale. Toutefois, ce qui, dans l’activité collective, 
devient la source d’une incertitude, et en particulier d’une incertitude productive dans ce qu’elle 
permet de produire au plan mathématique en classe, ne peut être entièrement prédit ou contrôlé. 
C’est d’ailleurs sous les angles d’interdépendance entre la collectivité et l’environnement, et du 
manque de prédictibilité, de contrôle, de prédétermination ou encore de certitude que Beghetto 
(2020) propose de concevoir la notion même d’incertitude :  

Uncertainty refers to a state of doubt. It connotes a lack of determinateness, sureness, 
stability, control, and predictability. Although uncertainty typically refers to one’s own 
experience of doubt in the present moment, it also includes past- and future-oriented doubts 
about others, features of the environment, and the interrelationship among self, others, and 
context (Jordan & McDaniel, 2014). (p. 2, c’est moi qui met l’emphase) 

Cette définition met en lumière que l’incertitude peut être relative à une activité qui se veut 
collective qui ne peut être entièrement prédéterminée et où des doutes surgissent à travers les 
relations avec les autres et l’environnement. À cet égard, il semble raisonnable que l’incertitude 
soit présente dans les données. En tournant le regard vers la collectivité, il apparait que les tâches 
initialement vues comme étant routinières ne le sont plus tellement lors de l’activité collective 
qui se déploie pour les résoudre. Ceci mène à penser que la résolution collective d’une tâche 
routinière implique davantage que de simplement la résoudre pour soi-même. Elle implique une 
résolution collective qui s’intéresse aux stratégies, bonnes ou erronées, mises en avant par la 
collectivité. Cette résolution collective peut engendrer des incertitudes productives qui sont à 
investiguer, permettant à des problèmes mathématiques d’émerger au cœur même de l’activité 
collective de résolution de tâches d’apparence routinière.  

Conclusion 
Cette recherche met en lumière l’exploitation collective de tâches routinières et ce qu’elle 

peut engendrer comme activité authentique de résolution de problèmes. La recherche met ainsi 
en exergue l’importance du contexte offert en classe, de son rôle qui apparait prédominant; 
pouvant aller au-delà de la tâche proposée en classe puisqu’à travers ses inter-actions avec la 
collectivité, celle-ci est appelée à évoluer. D’autres études semblent toutefois nécessaires pour 
mieux comprendre et circonscrire les conditions, les possibilités et les contraintes qu’offre 
l’exploitation collective de tâches routinières auprès des élèves. Alors qu’un engagement 
mathématique soutenu a été observé lors de l’analyse des données, il convient aussi de se 
demander si la nature routinière des tâches, jouant un rôle dans le sentiment de contrôlabilité de 
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la tâche, pourrait agir sur l’engagement mathématique, et ce, auprès de différentes clientèles 
d’élèves. De même, des enjeux mathématiques importants ont été travaillés dans les séances, 
conduisant à se demander si l’exploitation collective de tâches routinières pourrait être un levier 
au développement d’une compréhension conceptuelle chez la collectivité. En somme, alors qu’il 
a souvent été question d’une dichotomie entre les tâches routinières et non routinières, cette 
recherche invite plutôt à penser en termes de rapprochement; mettant l’emphase sur l’activité 
mathématique vécue en classe davantage que sur la tâche en elle-même. 
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Teachers hold complex goals when making decisions about their curriculum. In particular, the 
proliferation of supplemental resources means teachers negotiate both how to use the adopted 
curriculum and how to supplement it with additional resources. Through a study of the language 
teachers use, the decision-making of three elementary classrooms is brought to life. This study 
highlights the unique curricular decisions each teacher makes within the context of their own 
classroom and reveals curricular decision-making themes that emerge across the teachers’ 
classrooms. 

Keywords: Teacher Beliefs, Curriculum, Elementary School Education  

Objectives or Purposes of the Study 
Language provides insight into how “we base our actions…on what we take to be true” 

(Lakoff & Johnson, 1980, p. 160) and teachers’ stories provide insight into the multiple 
professional, personal, and practical experiences they bring to their classroom decision-making 
(Clandinin & Connelly, 1996). In this study, and in celebrating the theme of Engaging All 
Learners, we examine teachers’ language and reasoning about the decisions they make when 
using multiple curricular resources to better understand their practice as mathematics teachers. 
These stories highlight the intention teachers have to deliver instruction that targets the learning 
needs and interests of their students and to bring a sense of joy into the mathematics classroom.   
Research Question  

What key words, lines of reasoning, and figurative language do elementary mathematics 
teachers use when explaining the decisions they make about using multiple curricular resources? 

Perspective(s) or Theoretical Framework 
Curricular Resources 

Recently, online curricular resources have proliferated and there is growing evidence that 
teachers are making use of these resources widely (Pepin, et al., 2013; Sawyer et al., 2020). 
While many teachers continue to rely on textbooks to implement content and instructional 
strategies, districts vary in the quality and quantity of textbooks that are selected and the degree 
to which they are supported or mandated (Polikoff et al., 2020). Consequently, teachers have 
varying needs and supports for supplementing their curriculum. Rather than think about 
curriculum implementation in terms of fidelity to a textbook or singular resource (Brown et al., 
2009; Superfine et al., 2015), it becomes important to investigate both the degree of teacher’s 
curricular control, here defined as the degree to which teachers feel empowered to make 
decisions to meet their students' needs (Dampson et al., 2019), and the context of their decision 
making with respect to exploring their curricular options.   

Silver (2022) systematically reviewed the literature surrounding the decisions teachers make 
as they supplement any officially adopted curriculum with additional curricular resources. One 
of the major findings of his review suggests that most teachers supplement their district- and 
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school-provided resources to meet goals specific to their instructional approach to the content, 
school context, and students’ needs. Thus, most teachers have become curriculum “curators” for 
their classrooms (Hu et al., 2020), and their choices influence the mathematics experience and 
learning opportunities for their students. Given the pervasiveness of this trend, it is increasingly 
important to understand how teachers reason about their use of curricular resources. 
Context of Ongoing Impacts from the COVID-19 Pandemic 

An additional rationale for the importance of exploring teachers’ decisions around curricular 
supplementation is that content, context, and student needs are likely to be impacted by teachers’ 
need to be responsive to the impacts of the COVID-19 pandemic. It has been well documented 
that learning opportunities during COVID-19 emergency remote teaching and the subsequent 
return to classrooms varied widely, raising and exacerbating equity concerns and discussions of 
learning loss (Aguilera & Nightingale, 2020; Authors, 2021; Gross & Opalka, 2020; Grossman et 
al., 2021; Huck & Zhang, 2021; Reilly & Ball, 2020; Valant, 2020). 

Methods or Modes of Inquiry 
Participants 

The data presented here focus on three teachers, whose self-chosen pseudonyms are Audrey, 
Kasie, and Jamie. Audrey is a second-grade teacher with six years of experience. Kasie is a third-
grade teacher with 13 years of experience. Jamie is a fourth-grade teacher, also with 13 years of 
experience. All three teachers are generalists and teach across subject areas, but they all feel 
most confident and interested in teaching mathematics.  
Context 

All three teachers work in the same Midwestern elementary school. The school enrolls over 
200 students. The population is racially diverse (37% White, 29% Black, 22% Hispanic, 11% 
multiracial) and economically disadvantaged (78%). Standardized test data suggest that the 
mathematics proficiency for elementary students (66%) is above the state average (48%). 

The district provides a mathematics pacing guide with three-week windows focused on 
standards. Students take benchmark assessments at the end of each three weeks using an online 
application. Teachers reported having between 45 and 75 minutes to spend on mathematics each 
day, depending on the schedule for “specials” (e.g., music, art) with most days close to 60 and 
some days allowing up to an extra 30 minutes for mathematics intervention based on the 
previous benchmark assessment scores. The teachers reported using between 12 and 14 
curricular resources for daily mathematics lesson planning. 

At this school, face-to-face instruction resumed in Fall 2020, but learning was still disrupted 
throughout the past two years by shifts in best practice for COVID-19 mitigation (e.g., for 
spacing and orienting desks). These interviews took place in Spring 2022 and the teachers 
referenced and were responsive to challenges due to the COVID-19 pandemic, including some 
“unfinished learning” where students are not proficient at content from previous grade levels.   
Data Collection 

Data presented here are drawn from the two individual interviews. The first interview 
focused on identifying the mathematics curricular resources teachers used and the degree of 
autonomy teachers had in selecting and adapting their curricular resources. The second interview 
focused on the lesson planning process and examined how teachers created cohesive learning 
from the variety of resources they used. Consistent with Clandinin (2013), the interview design 
was intentional in that it allowed for us to explore teachers’ lived experiences through telling, 
retelling, and reliving across interactions.  
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Analysis 
The data presented here are based on audio recordings and transcriptions of the interviews. 

The transcriptions were de-identified through use of pseudonyms prior to being subjected to the 
descriptive/interpretative analysis by the researchers. Rather than analyze response by interview 
question, the two transcriptions from individual interviews with each teacher were analyzed 
holistically as a rich source of language and reasoning. Using Quinn’s (2005) approach, three 
coders examined interview data to explore: (a) key words (e.g., repeated phrases, surprising word 
choices); (b) lines of reasoning (e.g., how teachers explain what they are doing); and (c) 
figurative language (e.g., metaphors) teachers used in explaining their decision making about use 
of curricular resources. No a priori codes were defined. Three researchers independently coded 
the interviews. All coding disagreements were resolved in discussions between the researchers.   

Findings 
Audrey 

Key Words.  For Audrey, the most repeated words/phrases had emotional valence (e.g., 
“love/don’t really love/hate” [n = 26]).  Other commonly repeated words and phrases focused on 
her student-centered approach (e.g., “meet their needs” and “where they are” [n = 23]) and her 
responsiveness to student ability and achievement levels (e.g., “high-ability”/ “high-achieving” 
and “lower groups”/ “lowest groups”/ “low-achieving” [n=16]).   

Lines of Reasoning. Audrey depends upon a variety of supplemental curricular resources to 
“meet the needs” of her students. Her explanations of how and why she incorporates 
supplemental resources revolve around three major themes: accommodating wide variation in 
student learning levels, timing of her math block, and love for teaching and her students. 

First, when discussing the desire to “meet the needs” of a range of achievement levels, 
Audrey describes her biggest challenge as having the “lowest” in the grade level and the “highest 
in the exact same room.” In her words: 

I have nine IEPs this year, and I have three high ability students. And so, the majority of my 
IEPs are for a learning disability that ... the content is … well above where they are. And 
then, for my high ability students, the content is well below where they are … I have 26 
students in my classroom, and that's a lot of students, all at a different level. 

Audrey uses “the bare minimum” of her district’s mandated curriculum, because it “is very hard 
to do independently” and not “grade-level appropriate.” She reflects that “it would be easier if, 
maybe, I had access to the grade before, and their content, because then I could really help my 
kiddos that are struggling.” She expresses the following frustration: 

It's supposed to meet them where they are, and it can meet some of my students who are 
above average pretty well, but any student that's on grade level or lower, it does not meet 
them. 
She purposefully chooses supplemental materials that allow her to “access pre-k through 12th 

grade” content. She values the opportunity to differentiate discreetly and describes the following 
scenario: 

I will have a student that is high ability, that's very gifted at multiplication, and I can find that 
resource for them to push them farther. And I can do the exact same thing with my lowest 
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intervention group. I can put them on skip counting by twos. And, the thing I like about that 
is that none of the students know who's on what.  
Second, Audrey also considers the timing of her math block. She describes the structure of 

her math block as “wonky” and “sporadic,” with “those weird six or seven minutes at the 
beginning or at the end” due to the special area class schedules and feels “envious” that her co-
teacher “has a wonderful, beautiful math block ... every day with no interruption for at least an 
hour.” Audrey values supplemental electronic apps for those inconvenient spots of time (e.g., 
when there are “six minutes until the bell rings” and she gives students “the option of doing this, 
this or this” on a device).  

Finally, Audrey makes the choice to manage multiple resources “honestly, for the comfort 
of” her students. Additionally, it is clear through a spontaneous self-reflection that experience 
has helped her navigate the complexities surrounding that management: “I have gained a lot of 
confidence in my teaching over the last few years. I'm very passionate about my kids. I'm there 
late. I'm there early. I love teaching.” 

Figurative Language.  Figuratively, Audrey is resolved to sweeten the “taste” of math for 
students because she believes they are “burnt out” from textbook-heavy mathematics instruction 
in previous grades. This metaphor comes to life as she describes teaching graphing skills during 
a “Peep-themed” day: 

… yesterday, my entire day was Peep-themed because it's getting ready to be Easter. And so, 
I wanted to find graphing that related to Peeps, without me having to go and make it all, and 
there was perfect content. So, we had a taste test that we could graph, with all of the students, 
whose favorite Peep they got to eat... They were hyped up for it. They loved it.  

Audrey reasons that “math could get very boring” if instruction is limited to “worksheets from 
the book” and reports that many of her students “hate math by the time they get to” her. She 
reasons that “if I want success, and I want my students to learn, I need to find a different way to 
do that.” The idea of changing how mathematics tastes and making it “kid friendly” is repeated 
throughout her descriptions of teacher-created resources she finds online or creates herself. In 
addition to her “Peeps” day, her students collect data in an “Oreo” themed unit and participate in 
regular “parties” where math is paired with food and fun. 
Kasie 

Key Words. Similarly to Audrey, the most repeated words/phrases for Kasie were affective, 
with a focus on how students respond positively to curricular activities (e.g., “interest,” “enjoy,” 
“fun” [n = 42]).  She also spoke often about curricular expectations and mandates (e.g., 
“standards” [n = 22]).  Like Audrey, she worried about meeting the needs of her students, 
especially those who are the extremes of achievement in her classroom (e.g., students who 
“struggle” or “are frustrated” [n = 12] and those “higher” students who are “early finishers” [n = 
6]).  

Lines of Reasoning.  Kasie explains her lesson planning process as first referring to the 
standards presented in the pacing guide, next accessing the curriculum provided by the district to 
teach them, and finally supplementing with other curricular resources only “as needed.” The 
lines of reasoning she uses to rationalize incorporating supplemental resources revolve around 
two major themes.  First, like Audrey, she discusses the need to engage “struggling” students 
while at the same time providing independent practice for “early finishers.” Second, she talks 
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about the importance of consistency, and discusses the need to establish consistent “patterns” and 
“routines” for all students in her mathematics lessons. 

In terms of meeting the needs of students at the extremes of achievement in her classroom, 
Kasie focuses mostly on engaging the students who “struggle” in mathematics.  She has “a lot of 
students that have ADHD, or just struggle, in general are lower in math.” Her strategy for 
supporting these students is to use an online educational marketplace to get materials for a “fun 
way to incorporate math” so students will “engage” and not feel “frustrated.” Kasie knows, from 
teaching experience, the concepts that low-achieving “kids kind of zone out on.”  For example, 
with elapsed time, Kasie has found a supplemental detective-themed unit, in which elapsed time 
problems were integrated as clues for solving crimes around the world: 

But the fact that they were solving a crime and I made them detective badges and gave them 
magnifying glasses, and just those little extra things that the book doesn't do, or the other 
stuff that we have access to doesn't give them, made it more interesting for them. And I know 
that elapsed time is something that our students struggle with, so that was one that I wanted 
to definitely find something more engaging. 
A second major reason Kasie sources supplemental curricular resources is to differentiate the 

independent practice her students do following whole class instruction. She works to maintain a 
balance between assigning things that are “too low” for students who would “breeze through it 
too quickly” and not “too high” or “too difficult,” causing students to disengage. Since Kasie has 
access to different grade levels within an online program purchased by her district, she can either 
“push” her higher students or “go back a grade level or two” for students who need it. Kasie 
explains that the application provides “extra practice filler” for her “early finishers” and for 
students who “don’t get to it,” it “never counts against their grade.”  

Finally, Kasie recognizes that beyond learning the mathematics, students can struggle with 
interacting with multiple materials that present content differently than the textbook (e.g., “... it's 
more them struggling with figuring out how the program is working, not struggling to figure out 
the math”). She explains that: 

… it usually is harder the more and more you bring in because the kids get used to one kind 
of material, and then you throw other stuff at them. Sometimes they're more thrown off by 
the process of the material, instead of the actual process of the standard. 

Because of this, she highlights the importance of establishing a “pattern” or “routine” when 
planning whole-class math lessons. Kasie describes how and why she chooses to “start with” the 
adopted curriculum for the “main teaching” of her lessons and then “branch out from there,” 
when needed: 

… we usually follow the same kind of pattern. In the book, it starts with, ... they do a 
problem solving, and then we watch a video, and then we do some group problems together, 
then they do independent problems, and we check them. So, kind of following that same 
pattern. The kids know what to expect, then. Because that's how the material follows in the 
book.     
Figurative Language. Figuratively, Kasie conceptualizes doing mathematics as slow and 

methodical problem-solving “detective” work. This metaphor comes to life when she describes 
what she enjoys most about teaching math: “... seeing the kids figure out those different ways of 
getting answers ... and their thought process through problem solving with it.” Kasie values 
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building in time to explore strategies, pause videos for discussion, and encourage her students to 
collaborate while solving problems. She appreciates the problem-solving opportunities the 
adopted curriculum provides her students, saying “the kids seem to grasp on and be able to 
verbalize and talk about how they're getting their answers...” Finally, Kasie nurtures students’ 
detective skills through engaging them in supplemental “puzzles,” “riddles,” and “brain teasers.”  
Jamie 

Key Words. Because Jamie is an experienced interventionist, it is not surprising that 
“standards” is the word she used most frequently (n = 32) when talking about her curricular 
decision making. Like Audrey and Kasie, Jamie’s transcripts are also full of affective and 
emotional word choices that describe both her own and her students’ responses to curricular 
resources.  Jamie's affective word choices (e.g., “enjoy”, “like”, “fun”, “interest”, “exciting” [n = 
29]) are wholly positive and are especially prevalent when she describes her decision-making for 
the 30 minutes she has allotted for addressing remediation needs each day. Jamie also makes 
several references to curricular content in ways different than her peers (e.g., “vocabulary”, "key 
concept” [n = 15]).  

Lines of Reasoning. Jamie pays close attention to the pacing guide windows and standards 
she is required to cover in organizing her lessons by the week. She introduces a new concept on 
Monday, engages students in “small-group learning … centers” Tuesday through Thursday, and 
assesses student progress on Friday. The lines of reasoning she uses to explain how she 
incorporates supplemental resources revolve around three major themes: boosting student 
engagement, adapting instruction for differing levels of learning, and deepening her own 
understanding and experience with the standards. 

First, Jamie is concerned with ensuring her students are engaged. For example, she uses a 
fall-themed project from an online educational marketplace to “review a bunch of different 
concepts” during intervention time and reports that “the kids enjoy it, because they're sitting 
there thinking about costumes and things like that, but you know, they're also doing math at the 
same time.” When introducing new concepts, Jamie creates a chart or poster with students to 
support her instruction (e.g., drawing “a factor ninja” and talking “about how the factor ninja 
breaks up the number.”) She does this because “it's something that helps the kids really learn or 
remember that concept; whereas, if you read it in the textbook, it's just, it's not as engaging … so 
that's why I tend to go more towards those things.” She also elicits engagement by getting kids 
“up and moving,” incorporating “current events type of things,” and integrating the use of 
technology (e.g., using QR codes to “check their answers” on task cards that are spread around 
the room). 

Second, Jamie’s impetus for selecting supplemental resources is to adapt instruction for 
diverse learners in her classroom. Like Audrey and Kasie, she perceives her students to range 
widely in terms of achievement. Jamie identifies the students working above grade level as 
“high-flyers,” those working on grade level as “gen-ed kids,” and those with IEPs as having 
“different needs.” Like Audrey and Kasie, Jamie values the online program purchased by her 
district, because she finds it very “adaptable.” She loves that it “breaks standards down into little 
parts, and it also allows you to go back grade levels or go ahead grade levels. So, it really helps 
with differentiation, and adapting for every kid that you have in your room.” 

Finally, Jamie, like Audrey, is more likely to source alternative resources than use the 
provided curriculum because “when I look at all of these different places that I’m getting 
materials from, it helps me to broaden my look at the standard understanding.” When using the 
district’s materials, she thinks about the cost (e.g., feeling “guilty” for not using them) and 
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efficiency (e.g., using materials because “they’re there”).  However, she also believes that her 
experience across resources makes her a better teacher and more able to support her students: 

I actually think that it's beneficial for the teacher, especially, to be able to see the different 
materials and make the connections across those, because it gives you a broader view of what 
deeper understanding for the student looks like, and I see that as being beneficial … I like 
using different materials for that reason, that I can make sure that they truly understand and 
it's not just a surface-level understanding. 
Figurative Language. Figuratively for Jamie, mathematics is envisioned as quick and 

efficient “ninja” work. She values “quick, concise videos … that just don’t take a whole lot of 
time,” anchor charts, and task cards sourced online. She implements speedy formative 
assessment routines (e.g., exit tickets and asking students to “jot down their answer really quick” 
on sticky notes). Finally, Jamie values the time-saving practice of following producers of high-
quality materials on a social media platform over taking time for her own searches.  

Discussion and/or Conclusions 
Consistent with Silver (2022) and Hu et al. (2020), all three teachers in this study are 

engaged in extensive levels of curriculum supplementation and are acting as curriculum curators 
for their classrooms. Although it is clear that the three teachers featured in this study bring 
different professional, personal, and practical experiences to their curricular decision-making, 
several similarities emerge when looking across their reasoning for why they source 
supplemental curricular resources. Silver (2022) argued teachers make these decisions to meet 
goals specific to their instructional approach to the content, school context, and students’ needs.  
This study provides support for all three sets of goals. 

Most prevalent in the interviews, these three teachers endorse goals related to meeting 
student needs. They all used affective and emotional language throughout their interviews, 
especially when speaking about student engagement as well as student struggles and experiences 
of frustration. These teachers strongly emphasized student engagement as an important strategy 
for meeting the needs of underperforming students (Kasie, Jamie) and students who do not enjoy 
the content (Audrey).  

Moreover, all three teachers speak about the unprecedentedly wide range of achievement 
they are currently experiencing in their school context and all three use supplemental resources 
to provide opportunities outside the range of what is expected by their adopted textbook. The 
teachers attributed this range in part as an effect of COVID-19 and “unfinished learning” at 
previous grade levels. Although not explicitly a focus of this study, it has emerged as a 
significant and interesting topic for future consideration.  

In this study, goals associated with the school context included approaches for using the 
adopted curriculum versus when to supplement. For example, Kasie feels it is important to rely 
heavily on the adopted curriculum to establish routines while Jamie feels “guilty” for not using 
the adopted curriculum more, but also feels that she has become a better teacher by seeing the 
standards taught in different ways across resources. In contrast, Audrey is unapologetic about 
using “the bare minimum” of the adopted curriculum, believing that it does not do a good job of 
meeting her students’ needs. 
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Finally, these teachers brought different supplementation goals related to the content, and 
specifically to how they envisioned mathematics and their role as mathematics teachers. These 
especially become clear in the figurative language used by each teacher with Audrey wanting to 
change the “taste” of math for her students, Kasie prioritizing problem solving “detective” skills, 
and Jamie looking for efficiencies and to build her student’s “quickness” with math. 

In conclusion, these findings bring teacher voice to researchers’ understandings of the 
reasoning teachers bring to making decisions across multiple curricular resources. Additionally, 
they demonstrate that teachers working in the same school context can bring both similar and 
different goals to their use of curricular resources and teaching mathematics more generally. 
These findings emphasize the importance of closely attending to teachers’ language and 
reasoning and the value of teacher voice in research. 

References 
Aguliera, E., & Nightingale-Lee, B. (2020). Emergency remote teaching across urban and rural contexts: 

Perspectives on educational equity. Information and Learning Sciences, 121(5-6), 471-478. 
https://doi.org/10.1108/ILS-04-2020-0100  

Clandinin, D. J.  (2013).  Engaging in narrative inquiry.  Routledge Taylor & Francis Group. 
Brown, S. A., Pitvorec, K., Ditto, C., & Kelso, C. R. (2009). Reconceiving fidelity of implementation: An 

investigation of elementary whole-number lessons. Journal for Research in Mathematics Education, 40(4), 363-
395.  

Clandinin, D. J., & Connelly, F. M. (1996). Teachers’ professional knowledge landscapes: Teacher stories. Stories 
of teachers. School stories. Stories of schools. Educational Researcher, 25(3), 24–30. 
https://doi.org/10.2307/1176665  

Dampson, D. G., Apau, S. K., & Amuah, U. (2019). Freedom to choose within limits: Teacher autonomy from the 
perspectives of basic school teachers in Ghana. European Journal of Educational Management, 2(1), 35-44. 
https://doi.org/10.12973/eujem.2.1.35 

Gross, B., & Opalka, A. (2020). Too many schools leave learning to chance during the pandemic. Center for 
Reinventing Public Education. https://www.crpe.org/sites/ default/files/final_national_sample_brief_2020.pdf   

Grossmann, M., Reckhow, S., Strunk, K. O., & Turner, M. (2021). All states close but red districts reopen: The 
politics of in-person schooling during the COVID-19 pandemic. Educational Researcher, 50(9), 
https://doi.org/637-648.10.3102/0013189X211048840 

Hu, S., Trophy, K. T., Evert, K., Lane, J. L. (2020). From cloud to classroom: Mathematics teachers' planning and 
enactment of resources accessed within virtual spaces. Teachers College Record, 112(6), 1-33. https://doi-
org.ezproxy.lib.purdue.edu/10.1177/016146812012200606 

Huck, C., & Zhang, J. (2021). Effects of the COVID-19 pandemic on K-12 education: A systematic literature 
review. New Waves-Educational Research and Development Journal, 24(1), 53-84. 

Ormond, B. M. (2017). Curriculum decisions - The challenges of teacher autonomy over knowledge selection for 
history. Journal of Curriculum Studies, 49(5), 599-619. https://doi.org/10.1080/00220272.2016.1149225  

Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago Press. 
Quinn, N. (2005). Finding culture in talk: A collection of methods. Palgrave Macmillan. 
Pepin, B., Gueudet, G., & Trouche, L. (2013). Re-sourcing teachers’ work and interactions: A collective perspective 

on resources, their use and transformation. ZDM Mathematics Education, 45, 929–943. doi:10.1007/s11858-
013-0534-2 

Polikoff, M. S., Campbell, S. R., Koedel, C., Le, Q. T., Hardaway, T., & Gasparian, H. (2020). The formalized 
processes districts use to evaluate mathematics textbooks, Journal of Curriculum Studies, 52(4), 451-477. 
https://doi.org/10.1080/00220272.2020.1747116 

Reilly, K., & Ball, M. (2020). As the school year approaches, education may become the pandemic’s latest casualty, 
Time. Available online at: https://time.com/5870132/schools-Coronavirus/  

Sawyer, A. G., Dick, L. K., & Sutherland, P. (2020). Online mathematics teacherpreneurs developers on Teachers 
Pay Teachers: Who are they and why are they popular? Education Sciences, 10(9), 248- 268. 
https://doi.org/10.3390/educsci10090248  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 859 

Silver, D. (2022). A theoretical framework for studying teachers’ curriculum supplementation. Review of 
Educational Research, 92(3), 455-489. https://doi.org/10.3102/00346543211063930 

Superfine, A., Marshall, A., & Kelso, C. (2015). Fidelity of implementation: Bringing written curriculum materials 
into the equation. Curriculum Journal, 26(1), 164–191. https://doi.org/10.1080/09585176.2014.990910  

Valant, J. (2020). School reopening plans linked to politics rather than public health. Brown Center Chalkboard. 
https://www.brookings.edu/blog/brown-center-chalkboard/2020/07/29/school-reopening-plans-linked-to-
politics-rather-than-public-health/ 

  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 860 

DEVELOPING A QUALITATIVE ANALYSIS PROCESS WITH A MULTI-
RESEARCHER TEAM 

Tara Heikila  
Washington State University 

tara.heikila@wsu.edu 

Nicole Stripling  
University of Arkansas 

ngstripl@uark.edu 

Kate Webster 
Brigham Young University 

kwebste4@byu.edu 

Dawn Teuscher  
Brigham Young University 

dawn.teuscher@byu.edu 

Amy Roth McDuffie 
Washington State University 

mcduffie@wsu.edu 

Shannon Dingman  
University of Arkansas 
sdingman@uark.edu 

Keywords: Curriculum, Instructional Vision, Research Methods.  

Teachers use curricular reasoning (CR) as they design and enact instruction with their 
students, curriculum materials, and standards in mind (Roth McDuffie & Mather, 2009). 
Teachers’ CR has not been measured to the extent of other critical practices: professional 
noticing (cf., Schack et al., 2017) and facilitating mathematical discussions (cf., Smith & Sherin, 
2019). As part of a larger project, we aim to develop and validate a questionnaire and an 
observation protocol to formatively measure middle school teachers’ mathematical CR 
(Dingman et al., 2021).  

Purpose and Relationship to PME-NA’s Goals 
This poster relates to PME-NA’s conference theme of “engaging all learners” in the specific 

areas of investigating curricula design features by considering student engagement, and interest 
in supporting learning. This poster presents our research team’s qualitative data analysis process. 
Three subgroups, each with an experienced researcher and a graduate student, applied iterative 
approaches to identify data patterns for ways middle school mathematics teachers use CR to 
engage learners. This work illuminates the creativity in data analysis: using established methods 
for coding data, writing analytic memos, and creating data matrices, we applied these methods in 
unique ways consistent with the data each subgroup analyzed (Saldaña, 2021). 

Methods, Results, and Implications 
Our team analyzed multiple pre- and post-interviews for eight teachers to identify the ways 

teachers used different CR aspects as they made decisions while planning and enacting lessons. 
This poster will present ways each subgroup analyzed the three CR aspects: analyzing curricular 
materials, viewing mathematics from the learner perspective, and considering mathematical 
meaning. Our approaches shared the common goal of leveraging existing data to capture 
characteristics of teachers’ CR, while maintaining the teachers' perspectives and voices. The 
subgroups facilitated graduate students’ learning about analysis methods through legitimate 
peripheral participation (Lave & Wenger, 1991) alongside faculty researchers. In turn, faculty 
learned from graduate students as they questioned why and how we might use different methods. 
We will illustrate how we created space for dialogue about data analysis, wove six researchers' 
perspectives together, and discussed different approaches to analyzing data. Our process has 
implications for other researchers as they consider various approaches to analyzing complex data 
sets. 
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Student engagement is an impactful component of student experience in mathematics classrooms 
and can shape academic and affective outcomes. The measurement of engagement in classroom 
settings has been limited to self-report measures or observational frameworks which privilege 
verbal participation. By conducting a microanalysis of two students’ engagement with a 
meaningful mathematics task in an inquiry-oriented discrete mathematics classroom, we provide 
evidence for embodiment as a lens through which to effectively observe behavioral, affective, 
and cognitive engagement. We emphasize embodiment’s potential to (a) illuminate engagement 
which may have gone unnoticed under observational scales which privilege verbalization, (b) 
account for the multimodal nature of utterances, and (c) consider the broader classroom context 
in which students engage with mathematical tasks.  

Keywords: Embodied Cognition, Research Methods, Undergraduate Education 

Student engagement is an impactful component of students’ experiences and outcomes in 
mathematics classrooms. Increased levels of student engagement support students’ academic 
achievement (Carini et al., 2006; Pilotti et al., 2017) and mediate against negative shifts in 
mathematics identity (Voigt et al., 2022). Alongside the study of the consequences of student 
engagement comes the predicament of how to measure it; Fredricks et al. (2016) write that 
“developing valid and reliable measures [for student engagement] is especially important in math 
and science because engagement in these subjects is so critical to academic achievement and 
career choices related to STEM” (p. 14). In this paper, we propose embodied cognition as a lens 
through which to observe students’ engagement with a meaningful mathematics task. We 
provide evidence for this proposal via a microanalysis of two students’ engagement with a 
meaningful mathematics task and discuss our findings.  

We draw upon Fredricks et al.’s (2004) definition of student engagement which comprises of 
three domains: behavioral engagement, affective engagement, and cognitive engagement. 
Behavioral engagement consists of on-task, participatory classroom actions that indicate a 
student is performing classroom tasks in the way that the cultural and institutional authority in 
that classroom expects. Affective engagement encompasses emotional responses to and emotional 
investment in the task at hand and its associated discoveries, and cognitive engagement involves 
students’ self-regulation of their learning and thoughts, and their perseverance in the face of 
cognitive challenge. While additional domains of engagement have been proposed and utilized 
(Joshi et al., 2022; Quintero et al., 2022; Veiga, 2016), we utilize Fredricks et al.’s (2004) 
domains due to their specific prevalence in mathematics engagement literature, and the ways in 
which they provide a bases for other methods of observing engagement in the classroom.  
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Comprehensive pictures of student engagement are best painted when they account for the 
interplay between the three domains. Fredricks et al. (2004) note that the three domains are 
necessarily “dynamically interrelated” (p. 61), and students’ experiences of engagement in one 
domain are correlated with experiencing engagement in others (Böheim et al., 2020; Joshi et al., 
2022). Measuring engagement as a multifaceted construct in the mathematics classroom most 
often utilizes self-reported data (Fredricks & McColskey, 2012), which is valuable to studies of 
engagement (Appleton et al., 2006; Garcia & Pintrich, 1991), and is also limited. Survey items 
are often broad enough to be interpreted in several ways and may not be answered with fidelity 
to the researchers’ interpretation. This limits what can be gleaned from self-reports regarding 
students’ engagement in the classroom (Fredricks & McColskey, 2012; Hodgson et al., 2017).  

Consequently, scholars have investigated how one might observe student engagement in the 
classroom. For example, hand-raising or designated on/off-task behaviors have been proposed as 
observable measures of behavioral engagement (Böheim et al., 2020; Hodgson et al., 2017). 
While these do provide methods through which to observe student engagement, verbal 
participation is often privileged in such scales. Women, students of color, and individuals of 
lower academic status may have less opportunities to engage in verbal participation (Black & 
Radovic, 2018; Civil, 2014; Fink, 2022). For example, Böheim et al.’s (2020) notion of hand-
raising as an observable indicator of student engagement is rooted in the assumption that all 
students in a classroom are equally comfortable contributing vocally to a whole-class discussion. 
If we are to study student engagement in the classroom, there exists a need to develop, refine, 
and advocate for the use of observational tools which meaningfully incorporate engagement 
beyond verbalization in the classroom. This need for mechanisms to document classroom 
engagement that do not privilege but incorporate verbalizations led us to explore embodiment as 
a lens through which student engagement could be effectively observed.  

Theoretical Framing: Embodied Cognition 
In this paper, we use the terms “embodiment” and “embodied cognition” interchangeably and 

draw from Radford’s (2009) definition of embodied cognition as the notion that “thinking does 
not occur solely in the head but also in and through a sophisticated semiotic coordination of 
speech, body, gestures, symbols, and tools” (p. 111). This notion insinuates that evidence of 
students’ internal learning processes—including their engagement—goes beyond inner cognitive 
dialogue and expresses itself in a myriad of observable ways in the classroom. Within an 
embodied cognition paradigm, we focus on the concept of “utterances” as a categorical lens 
through which to conceptualize embodiment, as presented by Nemirovsky and Ferrara (2009). 
Utterances are body activities and actions involved in a conversation. They include gesture, gaze, 
body poise, body motion, facial expressions, eye motion, and more. Further, when a speaker 
includes an object in the conversation, the object becomes part of an utterance. 

An embodied cognition lens has been used in the classroom for a variety of purposes, 
including to study how students collectively discover mathematics (Nemirovsky et al., 2012), 
and to understand the role that tools and materials have on students’ cognition (Radford, 2014). 
Embodied cognition is a lens that pays mind to verbal participation but it also, by its very nature, 
incorporates many other forms of classroom participation. While some scholars study how 
incorporating embodiment into task design can enhance engagement with those tasks (Georgiou 
& Iannou, 2020; Lindgren et al., 2016), we intentionally studied embodiment in the context of an 
activity not explicitly designed to be embodied to effectively assess whether embodiment can 
provide evidence for student engagement in the mathematics classroom. Our investigation 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 864 

centers around the research question: In what ways can embodiment provide evidence for 
students’ engagement with meaningful mathematical tasks?  

Methodology 
Setting and Data 

This study took place in Fall 2022 at a large research university in the Rocky Mountain 
region of the United States. The class selected for this observation is an undergraduate Discrete 
Mathematics course, within which an experienced instructor (Dr. A) follows an Inquiry-Based 
Mathematics Education (IBME) teaching paradigm. In IBME, instructors encourage students to 
participate in the classroom in ways which reflect actions of expert mathematicians such as 
exploring patterns, generating conjectures, proving theorems, (re)inventing definitions, and 
comparing solutions (Laursen & Rasmussen, 2019). Such classrooms are an optimal setting to 
investigate student engagement, as one of its four pillars is student engagement with meaningful 
mathematics tasks as one (Laursen & Rasmussen, 2019).  

Over the course of two class periods, we videotaped a total of 2.5 hours of data. Early in the 
research process, we narrowed our focus to a particular task Dr. A set forth for the students: the 
“Locker Problem.” We refined our unit of analysis by focusing on students who engaged with 
the task using two-color counters, provided by Dr. A. When asked to split into groups, four 
students from two groups– Rebecca, Lauren, Carly, and Jason– all chose to use the two-color 
counters to tackle the problem. While Carly and Jason immediately began working together, 
Rebecca and Lauren worked individually for several minutes before coming together to enhance 
their understanding of the problem. It is for this reason– the presence of both individual and 
social interactions with the task– that we narrowed our unit of analysis to be the videotaped data 
of Rebecca and Lauren.   
Analysis 

Video data of Lauren and Rebecca engaging in the Locker Problem task totaled 
approximately 13 minutes of our collected data. We transcribed Lauren and Rebecca’s verbal 
utterances and performed three phases of coding. The initial phase entailed descriptive writing 
through an ethnographic microanalysis of interaction (microanalysis) (Garcez, 1997). Garcez’s 
work details this style of analysis as one in which communication necessarily “involves 
conversationalists contained in physical bodies, occupying space in simultaneously constraining 
and enabling social situations, who must reflexively make sense of each other’s actions as they 
act” (p. 187). Microanalysis has a rich history in embodied cognition literature (Alibali et al., 
2019; Nemirovsky et al., 2020; Kelton & Ma, 2020; Walkington et al., 2019) and entails 
transcribing participants’ second-by-second utterances for the entirety of the 13 minutes of data. 

Once we comprehensively described the data in this way, we selected smaller snippets of 1-3 
minutes, and within those episodes, smaller excerpts of 10-25 seconds (as modeled by 
Nemirovsky et al., 2020). These clips exemplified instances in which Lauren and Rebecca 
needed to “reflexively make sense of each other’s actions as they act” (Garcez, 1997, p. 187). 
The interactions chosen were not exclusively between Lauren and Rebecca; Episode 1 centers 
around Rebecca making sense of Dr. A’s verbalizations, Episode 2 centers around Rebecca and 
Lauren reaching a shared understanding, and Episode 3 involves Rebecca and Lauren grappling 
with another group’s verbalized conclusion. In each of these chosen episodes, we position 
Rebecca and Lauren as agentic bodies in a wider classroom space, one rich with embodiment in 
interactional ways. 
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Upon selecting these episodes, we engaged in two rounds of thematic analysis (Braun & 
Clarke, 2006) using a priori codes from the embodiment and engagement literature. The first 
round entailed coding the specific types of utterances as aligned with those provided in 
Nemirovsky and Ferrara (2009): sound production, eye motion, facial expression, gaze, body 
motion, body poise, tone of voice, and hand gesture. As we knew Lauren and Rebecca worked 
with the counters as necessary materials in their learning process, we also included “materials” 
as an a priori code. Because Nemirovsky and Ferrara explicitly acknowledge that additional 
types of utterances other than those they specify exist, we remained open to acknowledging and 
describing other forms of embodiment. During our second round of coding, we coded the type of 
engagement evidenced by the embodiment of the participants: behavioral, affective, or cognitive. 
This was done with careful consultation of Fredricks et al.’s (2004) definitions and descriptions. 
Organized into episodes, below we provide context for each selected episode, include details of 
our microanalysis, and provide screenshots from the episode which illustrate the students’ 
engagement in embodied ways. 

Results 
Just prior to the beginning of our first selected episode, Lauren and Rebecca worked 

individually on the locker problem. They both used the two-colored counters and quietly worked 
through their worksheets. The two students did not talk with each other, but Rebecca leaned in 
towards Lauren, indicating that she seemingly wanted to engage with Lauren. Dr. A walked over 
to the two students and began conversing with Lauren. 
Episode 1: Responsive Resetting (04:58 – 05:25) 

When Dr. A walked over to Lauren and Rebecca, she prompted them to explain their 
thinking. Lauren verbally discussed what she had written on her worksheet, and she and Dr. A 
engaged in a verbal conversation about Lauren’s thought process. In this episode, Dr. A 
attempted to reorient Lauren toward the problem, but simultaneously elicited non-verbal 
engagement from Rebecca.  

Rebecca was leaning in towards Lauren and Dr. A, apparently listening to their conversation 
and thus behaviorally engaging. After several seconds, at time 05:04, Rebecca leaned back and 
reached for the counters in front of her. As Dr. A said, “If I rephrase that question as, we have 
the lockers of ten students” (Timestamp 05:10 – Figure 1), Rebecca began resetting her counters 
to their original “closed” position. This counter-resetting action appeared to be in direct response 
to Dr. A’s verbalized notion of “rephrase[ing] the question.” While Dr. A’s verbalization was 
directed toward Lauren, Rebecca clearly thought about Dr. A’s remarks in an on-task and 
participatory way and evaluated her own prior notions of the problem. Rebecca was behaviorally 
engaged in her attention and response to Dr. A’s verbalization as well as cognitively engaged as 
evidenced by her resetting of the counters.  

After she reset her counters, Rebecca laid her hand flat with fingers spread and started 
rearranging her counters (Timestamp 05:15 – Figure 1). Her use of gesture and her continued 
interaction with materials indicated her ongoing behavioral engagement. She then used her right 
pointer finger to point to the counters one-by-one, and in doing so extended her material 
environment to a line of 20 “closed” counters. After Rebecca had rearranged her counters and 
added more in front of her, she pulled away from her counters and looked over at Lauren’s 
worksheet, where Dr. A was pointing (Timestamp 05:24 – Figure 1). Her body position and eye 
gaze were demonstrative of further, continued behavioral engagement. 
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Figure 1: Selected Screenshots from Episode 1 
 
Between Episodes 1 and 2 

Fourteen seconds after the conclusion of Episode 1, Dr. A left the students. For twelve 
seconds, the two sat in silence, until Lauren turned to Rebecca and verbally speculated on pattern 
existence present in their counters. Lauren listed off the “open” counters in front of her– counters 
one, four, and nine– while Rebecca pointed to those “open” counters using the counters in front 
of her. This did not seem to lead them toward any conclusive thoughts, so Rebecca began 
counting something else: the number of “open” counters between the “closed” ones. 
Episode 2: Collaborative Conjecturing (01:33-01:48) 

This episode begins when Rebecca started counting the “closed” counters in between the 
“open” counters, both verbally and by using spread-out fingers of her left hand. She drew 
Lauren’s attention to the numeric value of these gaps, and in doing so, they came to a shared 
understanding of the pattern they saw without verbally expressing it. At 01:35, Lauren’s abrupt 
change in body posture, and deliberate reaching toward Rebecca (Figure 2) indicated that Lauren 
had made a relevant realization. Without verbalizing the realization, she gained confirmation 
from Rebecca that they were on the same page cognitively from Rebecca’s clapping and pointing 
toward Lauren (Timestamp 01:37 – Figure 2). The ways in which they both positioned 
themselves and reached toward each other with their gestures indicated to the other collaborator 
that they arrived at a similar conclusion on the pattern they saw (namely, that each “open” 
counter was separated by an increasing multiple of 2 “closed” counters). Rebecca’s reiteration of 
the counts confirmed their shared understanding of the pattern at timestamp 01:41. Lauren’s 
verbalization of “Dude, that’s so cool!” and her brief eye contact with Rebecca seemed to 
confirm that their understanding of this pattern was a shared understanding as developed by 
Rebecca’s verbal counting and gestures and a source of shared excitement.  

Rebecca’s gestures and associated verbalizations during her initial verbal and gestural 
counting was evidence of on-task participation and thus of behavioral engagement. The point at 
which Lauren abruptly shifted her body posture and extended her arm indicates a realization; we 
infer that this was the point when Lauren identified the pattern and mentally made a conjecture 
about how future “closed” lockers will be separated. Her extended arm gesture, body position, 
and facial expressions demonstrated behavioral and cognitive engagement associated with 
coming to a conjecture. Both students’ smiling and laughing indicated that they were affectively 
engaged with the activity. 
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Figure 2: Selected Screenshots from Episode 2 
  

Between Episodes 2 and 3 
After making the conjecture detailed in Episode 2, the students sat in silence for 

approximately six seconds (1:49 - 1:55). Then Lauren proposed that they try the problem using 
thirty counters, and she and Rebecca pushed their desks together, end-to-end, and started 
combining their counters into a continuous line spanning both of their desks. This resulted in one 
long material environment with 30 counters. However, they did not reset their counters, leading 
them to neglect to account for integers 11-20. This left them with the conclusion that 1, 4, 9, 16, 
22, 24, 25, 26, 27, and 30 are “open,” breaking their earlier conjecture. They grew quiet, 
seemingly recognizing that their conjecture did not work and stared silently at Lauren’s 
worksheet for 13 seconds. We continue with the embodied narrative in Episode 3. 
Episode 3: Second-guessing Squares (00:44-00:55) 

In this episode, Lauren and Rebecca attempted to reconcile the materials in front of them 
with what they heard from the classroom context around them. This episode centers on the 
embodiment they illustrated as they listened to a group that was positioned in front and to the 
right of where they were seated in the classroom. A student member of that group, Anthony, told 
Dr. A that he believed that any locker with a number that is a square should be closed. This 
contradicted the counters on display in front of Lauren and Rebecca. 

Lauren and Rebecca’s observable embodiment was influenced by their classroom 
surroundings. In front of them, counters 1, 4, 9, 16, 22, 24, 25, 26, 27, and 30 were “closed,” 
making Anthony’s claim that all squares should be closed contradictory to the cues they received 
from their counters. Their acknowledgement of this contradiction started at the beginning of the 
episode (Timestamp 00:49), where they both expressed confusion and focused on Dr. A and 
Anthony’s conversation. At 00:50, they shared this confusion with each other via expressive eye 
contact. Both embodied uncertainty of what to make of Anthony’s claim and Dr. A’s validation 
of it via their facial expressions. At 00:52, they turned back to their respective materials (the 
worksheet for Lauren and the counters for Rebecca), possibly attempting to reconcile the notion 
of squares being “open” with what they had observed in their materials or had written down. 
Figure 3 showcases this sequence of events. While Anthony in the front group began formalizing 
his group’s conjecture, Lauren and Rebecca continued to express confusion. Lauren looked at the 
counters and shook her head and Rebecca brought her left hand to her forehead in an apparent 
show of deep thought about the counters in front of them.  

In this episode, Lauren and Rebecca’s embodiment provided evidence for cognitive and 
affective engagement. The affective engagement was well-evidenced by the facial expressions 
they individually adopted as they listened to Anthony’s conjecture and the facial expressions 
they wore as they surveyed their own counters which contradicted Anthony’s assertion. They 
also illustrated their individualized affective engagement in their body movements and 
positionings. At 00:52 Lauren shook her head as she looked at her worksheet; this movement 
indicative of “no” seemed to apply to the mismatch between Anthony’s words and the pair’s 
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observations. At the end of the episode, Rebecca brought her left hand to her forehead, indicating 
that she was deep in thought and thus cognitively engaged with the material. The students’ 
cognitive engagement was also evidenced by their facial expressions as their confusion indicated 
that they grappled seriously with Anthony’s conjecture, which led to the cognitive dissonance 
associated with their materials illustrating something else.  
 

 
 

Figure 3: Selected Screenshots from Episode 3 
 

In each episode, a multitude of utterances were observed. Further, no domain of engagement 
existed purely on its own; embodiment evidenced cognitive and behavioral engagement in 
Episode 1, all three domains in Episode 2, and affective and cognitive engagement in Episode 3. 
Table 2 below provides documentation of which utterances were coded as evidencing which 
forms of engagement throughout the three episodes.  

 
Table 1: Types of Utterances which Evidenced Domains of Engagement 

 
Behavioral Affective Cognitive 

Gaze 
Gesture 
Body Poise 
Materials 
Verbalization 
Environment alteration  

Gaze 
Gesture 
Facial Expression 
Body Movement 
Sound Production 
Verbalization  

Gaze 
Gesture 
Body Poise 
Facial Expression 
Materials 

Discussion 
To begin the discussion, we restate our research question: In what ways can embodiment 

provide evidence for students’ engagement with meaningful mathematical tasks? We saw that 
various types of utterances provided evidence for Lauren’s and Rebecca’s collaborative (Episode 
2 and Episode 3) and individual (Episode 1) engagement with the Locker Problem task. Table 1 
is a summary of the types of utterances exhibited by the participants for each of Fredricks et al.’s 
(2004) domains of engagement. Through our microanalysis, we assert that embodiment provides 
evidence for students’ engagement in ways which (a) illuminate engagement which may have 
gone unnoticed under observation scales which privilege verbalization, (b) account for the 
multimodal nature of both utterances and engagement as a construct, and (c) account for the 
broader classroom context in which the students engage with the task.  

In each episode, studying embodiment as evidence for student engagement revealed domains 
of engagement which may have gone unnoticed had we purely looked at the students’ 
verbalizations. This is particularly clear in Episode 1 via Rebecca’s embodied responses to Dr. 
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A’s verbal prompting. In addition, the cognitive engagement associated with conjecturing in 
Episode 2 may have gone unnoticed without an embodied lens, as Lauren and Rebecca never 
directly verbalized or wrote down their shared conjecture, but rather communicated and verified 
its existence in an embodied way. Further, the only verbalization made in Episode 3 was 
Lauren’s rhetorical “What?” at timestamp 00:50, but additional realms of embodiment (e.g., gaze 
and facial expression) indicate that Lauren and Rebecca were continually engaged with the task 
and attempted to reconcile Anthony’s assertion with their own materials. 

Further, the utterances which provided evidence for the three domains of engagement 
enabled us to describe the students’ engagement in a way reflective of their interrelated nature. 
Much of the embodiment that we observed did not fall squarely into one category of engagement 
or utterance, but rather provided evidence for multiple domains and types respectively. For 
example, in Episode 2, Rebecca laughed and clapped her hands, and then pointed to Lauren as 
she cognitively constructed her conjecture. This was coded as Facial Expression, Sound 
Production, and Gesture (types of utterances), and Affective and Cognitive (domains of 
engagement). The multiple assignment of a priori codes is unsurprising, given what Nemirovsky 
and Ferrara (2009) refer to as the “multimodality” of any given utterance, as well as the 
interactional nature of Fredricks et al.’s (2004) three types of engagement. Much of the 
embodiment we observed was built from several simultaneous utterance types, and illustrated 
multiple different domains of engagement, as is reflective of the nature of these constructs.  

Embodiment, as an evidential lens for student engagement, enabled consideration of the 
classroom context. This claim has been supported by literature indicating that the social, 
physical, and technological classroom context influences student engagement (Hodgson et al., 
2017; Kahn, 2014; Keith, 2016). In Episode 3, the cognitive and affective engagement the 
students experienced as they tried to reconcile their counters with the conclusion of the group in 
front of them was evidenced by the embodied ways in which they responded to the other groups’ 
verbalizations. Their confused facial expressions, eye gaze between their materials and the other 
group, and eye contact between each other served as evidence of their attempts to make sense of 
this finding, and thus be cognitively and affectively engaged in the continuation of the task. Our 
microanalysis of embodiment allowed for this by mediating the students’ responsive utterances 
with the broader classroom context in which they were situated. 

Both triangulation of our data with other observational and self-report measures, as well as 
any comparative analysis with other mathematics courses, other majors, or other institutional 
settings, is an important topic for future work. We also note that embodiment, as is the case with 
other observational scales for student engagement, may be limited in regards of what we are 
seeing. For example, the embodiment Lauren and Rebecca exemplified in Episode 3 illustrated 
affective and cognitive engagement. If we consider the linkage between cognitive and behavioral 
engagement established by Böheim et al. (2020), it is likely that they were also behaviorally 
engaged, although that wasn’t evidenced by their utterances. We further recognize the need to 
triangulate these data with other measures of engagement, such as self-reports. This is 
particularly relevant for cognitive engagement, as it foundationally relies on the notion of 
students self-regulating their own learning (Fredricks et al., 2004), something which an observer 
can only speculate on without concrete knowledge of that students’ thought process.  

Conclusion 
This paper has set forth an evidence-based argument for the potential of embodiment, 

particularly Nemirovsky and Ferrara’s (2009) notion of utterances, as a novel way through which 
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to observe behavioral, affective, and cognitive engagement in a mathematics classroom. In 
proposing the lens of embodiment as an observation tool, we broaden who is seen as engaging in 
classroom mathematics tasks, as we assert that engagement happens in embodied ways which are 
not purely verbal. We know that students experience high levels of engagement within embodied 
tasks (Georgiou & Iannou, 2020; Lindgren et al., 2016); our work builds upon this notion by 
asserting that embodiment in and of itself is indicative of student engagement. This study 
demonstrates its potential to provide researchers and instructors a novel way to view their 
students’ engagement with meaningful mathematical tasks in the classroom. 
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Since the social turn in mathematics education pushed mathematics educators and 
researchers to “see meaning, thinking, and reasoning as products of social activity” (Lerman, 
200, pg. 8), there has been a growing field of research regarding the design and implementation 
of collaboration in mathematics instruction. From a secondary teacher perspective, the 
application of this pedagogical philosophy often falls short without critical self-reflection. 
Students cannot reap the benefits of mathematics from a social lens if educators do not provide 
the classroom structures to allow for agentic learning.  This poster will present the theoretical 
framework, methods, and implications of an expansion on Complex Instruction (Cohen & Lotan, 
2014) as a means to address the following research question: How does designing instruction 
around learner agency impact students’ mathematical identity? 

Cohen and Lotan (2014) offer Complex Instruction (CI) as a means to create classroom 
communities where all students have access and opportunity; all students feel capable of doing 
mathematics; and all students’ mathematical competencies are recognized, honored, valued, and 
leveraged. This curricular innovation offers a marriage of this philosophy with Black and 
William’s (2009) conceptualization of Formative Assessment (FA). Under this philosophy, 
lessons: clarify the learning target and success criteria; facilitate classroom discussion that elicits 
evidence of student understanding; provide opportunities for feedback that moves learning 
forward; allow students to see their peers as resources; and activate students’ ownership of their 
learning. This curricular innovation focuses on expanding the structures and guidelines for 
collaboration, peer feedback, and self-assessment from CI, to allow students to demonstrate 
learner agency.  

Over the course of one academic school year,12th-grade mathematics students were engaged 
in instructional structures to build their capacity for collaboration, peer feedback, self-
assessment, and ultimately, learner agency. Table 1 outlines the implemented structures, as well 
as their association with elements of CI and FA.  

 
Complex Instruction Structure Formative Assessment 

Establish and Maintain 
Norms 

Consistent (nearly daily) reflection on the lesson’s 
learning target and success criteria establishes the norm 
for personal and community accountability for learning 

Clarity around the learning 
target and success criteria 

Multiple Abilities 
Treatment 

Multiple opportunities to elicit varied forms of 
evidence from students are intentionally planned for 
both the teacher and student-to-student 

Eliciting evidence of 
student understanding and 
using peers as a resource 

Assigning Competence Specific and intellectually meaningful feedback is 
provided throughout a lesson to build a sense of 
confidence for students 

Feedback that moves 
learning forward 

Table 1. CI and FA Structures 
 

Ultimately, students were able to articulate what they discovered about themselves as 
learners. They found value in collaborating with their peers as they recognized the opportunity 
for unique perspectives to extend their own understanding. Rather than viewing the teacher as 
the keeper of knowledge who grants a summative grade, the teacher was viewed as a partner in 
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learning. Because instructional decisions were made clear to students, learning was demystified, 
and students developed a stronger sense of self in relation to the content. Without intentional 
classroom structures, social learning in a mathematics classroom fails to make a significant 
impact on students’ mathematical identity. The goal of this poster is to encourage educators to 
think about how CI and FA can cooperate to forge agentic learners who are empowered to take 
charge of their learning.   
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Opportunities for students to share their thinking with the class—which I refer to as “work-
sharing practices—require a profound shift in who is positioned with intellectual authority in 
mathematics classrooms. This study explores work-sharing practices in one sixth grade 
mathematics classroom through an interactional lens. Video analysis revealed three types of 
work-sharing interactions along a continuum of distributions of intellectual authority, ranging 
from the presenting student holding authority to the teacher holding authority. Notably, in the 
center of the continuum were instances in which the student was initially positioned with 
authority, but that authority shifted to the teacher in the next moment, largely based on 
correctness of the student’s work. Findings suggest the need to deepen our understanding of 
authority dynamics in work-sharing interactions, as the field works to center students’ thinking. 

Keywords: Instructional activities; equity; classroom discourse  

Purpose of study 
 For the past several decades, mathematics education researchers and policymakers have 
called for increased opportunities for students to generate their own mathematical strategies, to 
share that thinking with their peers, and to critique their peers’ reasoning (Common Core State 
Standards, 2013; National Council of Teachers of Mathematics, 2000; California Department of 
Education, 2021). Research has shown that teachers can implement specific pedagogies to elicit, 
attend to, and build on students’ mathematical ideas (Carpenter et al., 1996; Fennema et al., 
1993), leveraging students’ novel thinking as an instructional resource for their peers’ learning 
(Singer-Gabella et al, 2016) and supporting students to engage with each other’s thinking 
(Franke et al 2015). These instructional strategies have been shown to be both effective and 
equitable in terms of increasing students’ opportunities to learn (Bartell et al, 2017). 

Opportunities for students to share their thinking with the class—which I refer to as 
“work-sharing practices”—require a profound shift in who is positioned as holding intellectual 
authority in mathematics classrooms. Whereas teachers and students typically position the 
teacher, textbook, and/or mathematics itself as the authority in traditional math classrooms (Amit 
& Fried, 2005), inviting students to share their thinking with their peers reconfigures the 
classroom such that students come to be viewed as active constructors—rather than passive 
receivers—of knowledge who can author their own ideas (Boaler & Greeno, 2000). Work-
sharing practices have the potential to shift the social negotiation of authority in classrooms 
(Langer-Osuna, 2016), to redefine and expand who is seen as competent (Gresalfi et al, 2009), 
and to subvert narrow and racialized notions of mathematical ability (Louie, 2017; Shah, 2017). 

Like any pedagogy, work-sharing practices can be implemented in a range of ways, such 
that the extent to which students are positioned with intellectual authority and their thinking is 
physically and intellectually centered may vary across classrooms. Many studies have examined 
work-sharing in terms of teachers’ instructional moves (Smith et al, 2011; Franke et al, 2015), 
viewing the teacher as the main determinant of how students share their work and how they 
come to be viewed by their classmates. Given the co-constructed and dynamic nature of 
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classroom interaction (Philip et al, 2020), however, there is much to be learned about how 
teachers and students construct these practices in and through interaction. Within work-sharing 
interactions, some students may be positioned with authority while others may not be (Wood, 
2013; Langer-Osuna, 2016) and some students’ ideas may be privileged while others may be 
silenced (Leander, 2002). Unpacking the ways in which intellectual authority is distributed 
across and shifts within work-sharing interactions is essential to the implementation of 
pedagogies that robustly and equitably center students’ thinking. This case study of one sixth-
grade math classroom explores work-sharing through an interactional lens to investigate: 

6. How is intellectual authority distributed during work-sharing practices?  
7. When and under what conditions does intellectual authority shift in the moment, if at all? 

Theoretical framework 
I draw on literature on interactional positioning and intellectual authority within mathematics 

classrooms. Cobb and colleagues (1996, 2001) defined “classroom mathematical practices” as 
mathematical activities that become established over time and are locally and jointly constructed 
by students and teachers through interaction. In this study, I use the term “practices” to refer to 
co-constructed interactional routines in which students share their mathematical work publicly 
during whole-class discussions. Viewing work-sharing practices as constructed by teachers and 
students through interaction affords lenses on how teachers and students position themselves and 
each other, which may be consequential for how authority is distributed (Cobb et al, 2009). 

To consider how some participants in a practice come to be seen as holding intellectual 
authority in particular moments, I draw on the construct of positioning. Davies and Harré (1990) 
define moment-to-moment positioning as, “the discursive process whereby selves are located in 
conversations as observably and subjectively coherent participants in jointly produced story 
lines” (p. 48). The authors define two types of positioning: interactive, in which one person 
positions another, and reflexive, in which one positions oneself.  As an iterative process, 
interactional positioning enables us to consider the moment-to-moment locations that students 
may hold within an interaction, as positioned by themselves and by others through verbal and 
nonverbal communication. In-the-moment positions within learning environments are shaped by 
a range of factors, from local co-constructed notions of what it means to be mathematically 
competent (Gresalfi et al, 2009) to racial and gender categories (Gholson & Martin, 2014).  

The extent to which students are positioned as having intellectual authority within 
mathematics classrooms is of particular importance, in light of current recommendations for 
students to author their own strategies and to share that thinking with their peers (CCSS, 2013), 
which depart from dominant forms of instruction that position mathematics as a discipline as the 
authority (Amit & Fried, 2005). Building on Cobb et al (2009) and Engle et al (2014), I consider 
intellectual authority in work-sharing to be the extent to which students position themselves 
reflexively and/or are positioned interactively by their peers and their teacher as a credible source 
of information in relation to their mathematical contributions.  Further, I draw on Engle and 
colleagues’ (2014) influence framework to consider two linked components that relate to the 
negotiation of students’ authority: their access to the conversational floor (i.e. the degree to 
which they can initiate and complete turns of talk when desired) and to the interactional space 
(i.e. the degree to which they are visually and physically attended to by others when speaking).  

The extent to which students position themselves and get positioned by their peers and 
teacher with intellectual authority can have material consequences, decreasing opportunities to 
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contribute to groupwork (Esmonde, 2009) and to identify with mathematics (Langer-Osuna, 
2011, Cobb et al, 2009). Much of this work focuses on interactional positioning and authority in 
collaborative contexts (Wood, 2013; Langer-Osuna, 2016); however, Turner and colleagues 
(2013) note that whole-class discussions are distinctive in that they “afford opportunities for 
students to take on roles publicly” (p. 203). Sharing work in the whole-class space thus affords 
students opportunities to position themselves or to be positioned publicly with authority, which 
may be particularly consequential for their engagement in and identification with mathematics. 

Methods 
Study Setting & Participants 

I use ethnographic approaches (Emerson et al, 2011) to characterize these practices at the 
classroom level and interaction analysis (Jordan & Henderson, 1995) to uncover how students 
are positioned in moments of sharing. The sixth-grade mathematics teacher in this study, Ms. L, 6 
was selected because she engages students in sharing their thinking with the class. This was 
determined through initial conversations and then verified during observations in the fall of 
2021. Change Academy, where Ms. L teaches, is a public charter school in a small city in 
Northern California that serves a majority working-class student population. There were 30 
students in Ms. L’s class during the study, most of whom identified as Latinx, with the remaining 
students identifying as Filipinx, East Asian, and/or Black. Ms. L identifies as Vietnamese-
American. Four of the focal students identify as Latinx and the other two identify as Filipinx. 
Three are female-identifying and three are male-identifying. Catalina, the focal student whose 
work is featured in this paper, identifies as a Mexican American female. 
Data Sources & Analysis 

The primary data source consisted of 13 hours of classroom video, recorded daily during a 
geometry unit in spring 2022. Additional data sources were used to triangulate video analysis: 
fieldnotes from throughout the unit and semi-structured interviews (Glesne, 2005) with six focal 
students at the end of the unit. Focal students were selected to be representative of the class, in 
terms of race, gender, achievement, and participation. Five focal students had shared work 
during the video recorded unit and were shown a picture of them sharing in the interview. 

To begin data reduction, a time-indexed content log (Derry et al, 2007) of the video 
recording was created that outlined work-sharing activities across the 13 hours. Work-sharing 
activities (n = 15) were defined as instances in which: 1.) a representation of the student’s work 
was made publicly visible to the class, 2.) that student stood at the front of the classroom 
speaking about it. Following Angelillo and colleagues’ (2007) approach to examining video 
interactions, each instance was viewed multiple times across several rounds of analysis. In the 
first round, analytic memos were constructed about each instance, in relation to reflexive and 
interactive positioning of the presenting student and their ideas (Davies & Harré, 1990), the 
extent to which correctness was determined (as noted in Esmonde, 2009), and teacher framing 
and class engagement more broadly. These memos revealed patterns in how intellectual authority 
was distributed across instances and seemed to shift between the presenting student and the 
teacher in particular moments. This revelation led to additional memos in conversation with the 
literature on intellectual authority in classrooms (Cobb et al, 2009; Engle et al, 2014; Langer-
Osuna, 2016; Amit & Fried, 2005). In the second round of analysis, each work-sharing instance 
was broken into several “interactional states” (Langer-Osuna et al, 2020), between which 

 
6 All teacher, student, and school names are pseudonyms. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 877 

authority seemed to shift. Using Engle and colleagues’ (2014) influence framework as a guide, 
analytic memos were written about each interactional state, in relation to who had access to the 
interactional space and the conversational floor, who was positioned as having intellectual 
authority, when positioning around authority seemed to shift, and what interactive and reflexive 
positioning acts made these shifts possible. Following this round of analysis, additional memos 
were written about each activity, which noted under what conditions authority seemed to shift 
between states and from which the continuum of three distributions emerged. Finally, student 
interviews were transcribed and open coded for emergent themes, after which analytic memos 
were written to connect students’ reflections on the moments in which they shared their work (in 
the interview) to the interaction analysis of those same moments (in the video). 

Results 
Video analysis revealed that intellectual authority was distributed in distinct ways across the 

set of work-sharing interactions and that it shifted within some work-sharing interactions. Of the 
15 instances of work-sharing that occurred during the video recorded unit, three types of 
interactions emerged along a continuum of distributions of intellectual authority. On one side of 
the continuum were “expert student” interactions (n = 6) in which students were positioned as 
having intellectual authority for the majority of the interaction. On the other side of the 
continuum were “teacher mediated interactions (n = 3) in which the teacher positioned herself as 
the intellectual authority, despite the student occasionally having access to the conversational 
floor. In the center of the continuum were “student to teacher” interactions (n = 6) in which 
students were initially positioned as having intellectual authority on their work but at some point 
during the interaction the teacher undermined their authority and positioned herself as the 
authority on the mathematics. These types are defined in table 1 and explored further below. 

 
Table 1: Continuum of authority distributions across work-sharing interactions 
Expert student Student to teacher Teacher mediated 

Student positioned as 
authority for majority of clip 

Student initially gets positioned as authority, but during 
work-sharing the teacher withdraws that authority and 
positions herself instead as mathematical authority. 

Teacher positions self as 
authority, despite students 
having access to the floor 

Student                                                                                                                 Teacher 

RQ1: Distributions of Intellectual Authority  
In “expert student” instances (n = 6), the presenting student was positioned as an intellectual 

authority on their work by Ms. L, their peers, and in some cases themselves. These instances 
typically began with Ms. L telling the class to “follow along” and “have eyes and ears up here so 
we can pay attention to our classmate” and telling the presenting student to “show us how you 
got…” This language positioned the presenting student as someone to learn from and to pay 
attention to, as well as someone capable of actively “showing” the class their thinking. The 
presenting student then walked up to the whiteboard in the front and stood in the center, as Ms. L 
moved to the side of the whiteboard and told them to “go ahead.” This physical movement, 
combined with the verbal signal from Ms. L to “go ahead,” effectively granted the student access 
to the interactional space and the conversational floor. The presenting student stood at the front, 
pointing to their work and explaining their reasoning, sometimes annotating it with a whiteboard 
marker at the same time. In these ways, many of these students reflexively positioned themselves 
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with confidence in their thinking. After the student finished explaining, Ms. L asked the class if 
they agreed with their classmate and simultaneously motioned an agreement signal herself, 
which many students immediately mirrored back or gave a thumbs up. Ms. L then asked the class 
if they had questions for the presenting student “especially if you got a different value,” 
positioning that student as a credible source of information and positioning their work as an 
answer key that other students could use to check their work against. In two of these six 
instances, a student asked a question directly to the presenting student (e.g. “Why did you 
draw…?”), positioning them as capable of explaining their own thinking. These instances ended 
with Ms. L thanking the presenting student, the class clapping for them, and them sitting down. 
This co-constructed closure seemed to signal the end of the work-sharing interaction and of 
several minutes of that student being positioned as an intellectual authority.  

One example illustrates the variation of positioning in these interactions. When Ms. L called 
on Abigail to share, she was initially reluctant to come up. Ms. L encouraged her to share, saying 
“You can do this!” and her classmates cheered “Go Abigail!” as she eventually walked up to the 
board. Once at the front, Abigail drew out and explained her method for decomposing and 
rearranging a parallelogram into two rectangles to find its area. After she finished explaining, her 
classmates applauded unprompted, despite this applause usually happening right after Ms. L 
thanked the student for sharing. Ms. L then asked the class if they had questions for Abigail and 
one student asked her to explain why she had decomposed the shape that way. In this example, 
Abigail did not initially position herself as an intellectual authority, however, her classmates and 
teacher did through encouragement, unprompted applause, and a question about her work. 

In “teacher mediated” instances (n = 3) at the other end of the continuum, the presenting 
student was not positioned as an intellectual authority, despite standing in front of the class. In 
these instances, students were called up to annotate a shape projected to the whiteboard, rather 
than having a photograph of their work projected or writing out their work on the whiteboard in 
real-time. These students did not explain their reasoning, but instead stated their answer at the 
front, after which Ms. L began asking Initiate-Response-Evaluation (Mehan, 1979) questions to 
them or the class. In these instances, the work that was shared was initially incorrect or 
incomplete. Throughout Ms. L’s IRE questioning, Ms. L either modified the projected work or 
another student came up to add to it. In cases of the latter, despite the initial presenting student 
and the student who came up standing at the front together, they did not talk directly to each 
other, but instead the conversation was mediated through Ms. L. Unlike the expert student 
interactions, these instances did not have a consistent form of closure. In one case, a student sat 
down while Ms. L spoke (without being thanked or clapped for) and in the other two cases, Ms. 
L thanked the presenting student but there was no applause. These instances resembled less of a 
performance that centered one student’s thinking and more of a moment in which students were 
briefly physically, but not intellectually, centered.  

In the center of the continuum were “student to teacher” instances (n=6), which began much 
like the expert student clips but ended more similarly to the teacher mediated instances. Because 
these instances involved distinct shifts in terms of who was positioned with authority, I explore 
them in more detail in the following section.  
RQ2: Shifts in Authority 

In student to teacher interactions, the presenting students were initially positioned with 
authority as they stood at the front, explained their thinking, and pointed to their work. After 
their explanations, however, that student’s access to the interactional space and the 
conversational floor, as well as their positioning as an authority, were undermined. An example 
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is shown below during which Catalina came up to show how to find the area of a triangle. The 
problem was projected on the white board and Catalina drew on the projected triangle with a 
whiteboard marker (see figure 1). Catalina explained her thinking while drawing: 
 

Ms. L Go ahead, Catalina. [moves to the side] 
Catalina [picks up whiteboard marker and begins writing with it] Okay um, so what I did um…what I did is…I 

tried to draw a line right here [draws dotted line segment] to make it a lot more bigger [draws another 
dotted line segment], expanding it. And then what I did, I took the piece, I took the little index card [picks 
up index card] and lined it up right here [puts it in the corner of one vertex of the triangle], so it’s right, so 
I chose this to be my base [writes “b” above side of triangle]. Um, I moved it right, I moved it right here, 
and I put it right here [moves index card along the base], moved it over here, to reach this corner, which 
is the vertex, which is my opposite vertex. Then I tried to also expand this right here [draws another 
dotted line segment], so it’s easier for me to count. And this base turned into [points to base and moves 
finger along length of base], turned into 12 [moves hand to write above the base, then takes it off], this 
turned into [counts each unit square in the base and dotted line extension] 15, turned into 15 [writes 15 
above the base]. And this was [points to dotted line height] 8 [writes 8 next to dotted line]. And, uh, I did 
15 times 8 [writes out 15 x 8 next to triangle], which is 120 [writes = 120]. Uh, so, my total, is 120 square 
units [writes square units]. [caps marker and turns to face Ms. L] 

Ms. L What is the formula to find the area of a triangle? What did we say earlier? Compared to a parallelogram? 

Catalina Um… 
Ms. L Do you remember? 
Catalina Not really. 
Ms. L Can someone help out? [turns body away from Catalina toward the class] 

 

 
Figure 1: Catalina sharing her work finding the area of a triangle 

 
After this exchange, Ms. L called on another student to share the formula for the area of a 

triangle and asked several follow-up questions related to the formula. This shifting of the 
conversation away from the presenting student’s strategy to the formula for finding area 
happened in nearly all of the student to teacher instances. Moreover, in many of these instances 
Ms. L wrote out the formula next to the presenting student’s work and solved the problem that 
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way, though that did not happen in the Catalina example, perhaps because class ended shortly 
after the excerpt shown above. In shifting the conversation away from the students’ thinking to 
the formula and in authoring her own representation of the problem, Ms. L undermined Catalina 
and other presenting students’ authority. Interestingly, neither Ms. L nor other students in the 
class explicitly noted that Catalina’s answer was incorrect. Instead, it seemed to be implied that 
she was incorrect based on Ms. L offering another way to solve the problem and arriving at a 
different answer. Notably, Ms. L did not ask the class if they agreed with Catalina’s work, as was 
done in the expert instances.  

All students in these instances presented work that was incorrect, though some were partially 
correct and/or employed creative strategies that could have been revised to find the area 
accurately. Like the Catalina example, neither Ms. L nor the other students explicitly shared that 
the work was incorrect in these instances, yet it seemed to be implicitly communicated through 
the offering of another strategy with another answer. In many instances, the presenting student 
stood up at the front while Ms. L authored another strategy on the whiteboard. Typically, Ms. L 
gradually moved to the center as she wrote and the student gradually backed up to the side. In 
this way, the student lost access to the physical interactional space. In most of these instances, 
the presenting student never regained access to the conversational floor after this moment, 
though in one case the student had a brief opportunity to explain their work again. These 
interactions typically ended with Ms. L thanking the student and the class applauding, which 
might be read as an affirmation of the presenting student’s effort. 

Correctness emerged as the condition under which authority shifted within a work-sharing 
interaction, as all students in the “expert student” interactions presented work that was deemed to 
be correct by the teacher and the class through agreement signals, whereas all students in the 
other two instances had authored work that was partially or fully incorrect or incomplete. It 
should be noted that the identity of the presenter did not seem to be a condition under which 
authority shifted within an instance, as some students participated in interactions of all types. In 
other words, there was one student who shared work in both expert student instances and 
teacher-mediated instances and another who shared work in all three types of instances.  

Although correctness determined authority shifts, it was not a prerequisite for sharing. While 
in some cases students volunteered to share and in others Ms. L selected students to share, this 
variation did not correlate with the type of instance. That is, it was not the case, as might be 
expected, that all students who presented in expert instances volunteered to share or that all 
students who presented in teacher-mediated instances were selected by Ms. L to share. 
Additionally, in cases in which Ms. L did select a student to share, this selection was often based 
on completion rather than correctness, as she noted at the beginning of some instances that she 
had seen that the presenting student had solved the problem based on scanning the room. In this 
way, students who had written out their thinking were prioritized in work-sharing, rather than 
those who may have arrived at the correct answer without documenting their thinking.  

Analysis of student interviews confirmed that students were aware of this emphasis on 
answers and completion. Several students cited the same handful of peers as frequent work-
sharers in their classroom, referred to some classmates as smart and others as not, and shared 
anxiety about being incorrect and getting corrected while presenting. Catalina shared: 

 
What I felt [when sharing my work] was kind of nervous and anxious that some people didn’t 
really understand…I really felt kind of paranoid, thinking people will probably use what I 
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said there against me…like correcting me about like, almost everything that—being paranoid 
that I got almost everything wrong. 
 

In this quote, Catalina noted her fear of being wrong and of being corrected. She then named two 
students in her class who she worried might correct her, “because they’re both really smart.”  

At the same time, Catalina and others mentioned feeling pride in sharing their work with the 
class, as she explained: “I felt pretty excited to share my work. I felt really happy since I really—
I knew a lot more about it, I was able to solve the problem and get like, an actual answer.”  
Interestingly, students seemed to both relish the opportunity to be positioned with authority and 
to fear the withdrawal of that authority from Ms. L and their peers through correction. 

Discussion & Conclusion 
Findings revealed that Ms. L and her students constructed work-sharing practices in which 

intellectual authority was distributed to presenting students in some instances, but which shifted 
to Ms. L in other instances. The expert interactions in this study demonstrate that intellectual 
authority can be distributed to students during work-sharing, reconfiguring traditional authority 
dynamics in the classroom (Boaler & Greeno, 2000) and creating opportunities for students to 
share their thinking and engage with their peers’ ideas, as has been recommended (CCSS, 2013). 
In these instances, students wrote and explained their thinking, were physically attended to by 
their peers and their teacher, and were applauded for and asked questions about their work. We 
might even think of the expert instances as one way to assign competence to presenting students 
with lower status (Cohen & Lotan, 2014), as was the case with Abigail who did not reflexively 
position herself with authority but was positioned this way by her teacher and her peers. 

However, the ways in which presenting students’ authority was undermined in the student to 
teacher instances should caution us to look more closely at work-sharing practices. These 
interactions reveal that who is positioned with authority can abruptly shift in the moment and 
that these shifts are co-constructed. As Catalina and other students shared in their interviews, 
they feared being corrected while sharing work not only by their teacher but also by a subgroup 
of their peers. Students and teachers alike are immersed in rigid notions of mathematical activity 
as answer-finding (Louie, 2017), which may explain the central role that correctness played in 
shifting authority. The co-constructed and situated nature of classroom interaction (Philip et al, 
2020) demands that we look beyond teacher moves (Smith et al, 2011) to consider how students 
contribute to classroom practices, as well as the ways in which pacing pressures may incentivize 
teachers to withdraw authority from an incorrect student, rather than to explore the mistake.  

This emphasis on correctness has concerning implications for students. If those with correct 
answers are positioned with authority and those with incorrect answers have authority withdrawn 
from them, this pattern not only reinforces rigid notions of mathematical activity (Louie, 2017) 
but may also hinder students’ development of positive mathematics identities (Langer-Osuna, 
2011; Cobb et al, 2009), especially for those who often arrive at incorrect answers. Further, this 
pattern has the potential to be particularly damaging for marginalized students like Catalina, who 
already contend with racialized and gendered discourses about mathematical ability (Shah, 2017) 
that seep into classrooms and shape in-the-moment positions (Gholson & Martin, 2014). 

Future research might seek to understand not only when authority shifts in these moments, 
but how those shifts are made possible through discursive moves, such as types of positioning 
around authority (Wagner & Herbel-Eisenmann, 2014). Unpacking how these shifts happen is 
essential given the ways in which the distribution of intellectual authority can shape students’ 
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mathematics learning and identities (Langer-Osuna, 2017; Cobb et al, 2009). Researchers and 
practitioners alike might more closely examine work-sharing interactions to better understand 
how intellectual authority may be distributed to more students, how it might be undermined and 
shifted, and, most importantly, how positioning students with authority might be sustained. 
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In this exploratory study, we examine how between-group movement, as an autonomy-promoting 
practice, might incentivize or disincentivize sixth-grade students’ engagement in two 
mathematical practices: (1) making sense of problems and persevering in solving them; and (2) 
constructing viable arguments and critiquing the reasoning of others. Exploring both the 
affordances and limitations of between-group movement, we found that between-group 
movement supported groups to construct viable justifications, among other sense-making 
mathematical practices. However, we also found that some groups over-scaffolded during 
between-group conversations which disincentivized meaningful engagement in mathematical 
practices. 

Keywords: Instructional Activities and Practices, Classroom Discourse, Communication  

In standard collaborative classrooms, students generally remain seated in their small groups 
without opportunities to interact with other groups. In contrast to traditional collaborative 
classrooms, recent literature reveals a new classroom movement structure that allows groups to 
physically move to discuss their ideas between groups (Pruner & Liljedahl, 2021; Liljedahl, 
2020). We refer to this movement structure as “between-group movement.”  

This study took place in a rural K-12 school in the Midwestern United States. The aim was to 
explore how between-group movement, as an autonomy-promoting practice, might incentivize or 
disincentivize sixth-grade students’ engagement in two mathematical practices: (1) making sense 
of problems and persevering in solving them; and (2) constructing viable arguments and 
critiquing the reasoning of others. We examined three critical events of students engaging in 
between-group conversations to uncover the affordances and limitations of between-group 
movement. 

We found six primary affordances of between-group movement and four primary limitations 
of between-group movement. Some affordances included: (1) Between-group movement can 
support groups to construct mathematically valid justifications and solutions; (2) Between-group 
movement can support groups to rely on other groups as a resource when they get “stuck”. Some 
limitations included: (1) Some students might over-scaffold during a between-group 
conversation and decrease the challenge of the task, which removes opportunities for groups to 
productively struggle through problem-solving; (2) Between-group movement may limit groups’ 
capacities to consider multiple solution approaches. 

The findings suggest that between-group movement can be leveraged as a constructive 
autonomy-promoting practice under certain conditions. 
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This study examined the effects of an academic intervention, associated with music, on the 
conceptual understanding of musical notation and arithmetic of fractions of first-year students of 
high school from a mixed Spanish multicultural and socioeconomic public school. The students 
(N = 12) had previous concepts about musical instruction, as well as operations with fractions, 
particularly addition. This is an observational study in which a battery of four tasks was 
administered before and after an instruction based on a musical environment, music being a 
semiotic function. The instruction included 9 sessions of 50 minutes each. The results prior to the 
intervention show deficiencies in a concept that was not new to the students, however, after the 
intervention the students were competent in addition with fractions. 

Keywords: addition of fractions, semiotic function, music, multidisciplinary intervention. 

Introduction 
Although there is the idea that music and mathematics are very different subjects, the reality 

is very different. In ancient Greece, Pythagoras (ca. 580-500 BC) realized the relationship 
between different sounds and the proportion of the strings that emitted them. This led to a 
description of music using mathematical symbols (Henning, 2009; Weber, 1991, cited in Mall et 
al., 2016). But the relationship between mathematics and music does not occur because they are 
close subjects, but "because musical parameters can be transformed and organized using 
mathematical techniques, and vice versa" (Mall et al., 2016, p. 12). Thus, these are two 
disciplines in which two systems of compatible signs follow one another: musical notation and 
numbers (natural and rational). Currently, these systems interact creating a semiotic set 
(Arzarello, 2006). With all this, interdisciplinary projects acquire great relevance, in particular, 
projects in which music and mathematics converge. 

This context defines the need to continue research on the incorporation of music and its 
characteristics in the teaching and learning process of mathematics, and vice versa. In particular, 
with the present work the objective is to evaluate the influence of music, regarding the value of 
musical notes, in the learning process of the addition of fractions in first grade students of high 
school (ages between 12 and 14 years old). 

Background and frame of reference 
According to Avdulova (2018, cited in Veraksa et al., 2022), symbolic play represents the 

child's ability to link concrete experience with abstract thought by connecting the meaning with 
the signifier (Piaget, 1962). In this process, the child develops the semiotic function, that is, an 
ability to represent an absent object or an event that is not directly perceived through symbols or 
signs (Veraksa et al., 2022). 

In the modern teaching of mathematics, the interaction between perception and action also 
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becomes increasingly important. Different levels of communication work together in semiotic 
sets (Arzarello, 2006) and students use the cycles of action and perception to develop 
mathematical understanding. The identification of patterns and their interpretation as a system of 
signs constitutes a fundamental mathematical task. The repetitions, and therefore the regularities, 
can be found by observing written symbols. These regularities are the basis of mathematical 
understanding (Mall et al., 2016). 

In this context, the use of musical notation as a tool to acquire the concept of fraction and, in 
particular, the addition of these numbers, is within what is called addition using discrete models. 
The school tradition advocates a teaching-learning process of fractions based on continuous 
models (Rico, 1997), but separating them from a discrete context (Kieren, 1993) means that 
students are not able to function in contexts in which other meanings or subconstructs of the 
fraction underlie, for example, as measure, ratio, or operator. 

With respect to adding fractions, research has shown that many students learn operations 
with fractions through memory-based, procedural-oriented instruction, attaching little meaning to 
such operations and thus making serious errors over time (Behr et al., 1992; Cramer and Henry, 
2002; Cramer et al., 2002; Kennedy and Steve, 1997). The Rational Number Project Curriculum 
is committed to learning fractions through everyday life contexts that are reflected in word 
problems. Others like Braithwaite et al. (2017) bet on contexts such as the number line; or there 
are those who see musical arithmetic as a basis for the teaching-learning process of fractions 
(Oshanova et al., 2022). 

Continuing with the last idea, and given that the literature is extensive on the use of music as 
a multimodal approach for the instruction of fractions (Azaryahu et al., 2020; Courey et al., 
2012; Lovemore et al., 2022) in the present work seeks to answer, how does the value of musical 
notes improve competence in the addition of fractions of students in the first year of high school? 

Methodology 
This work is part of an experimental and observational study. Within observational studies, 

this is defined as a short-term longitudinal study. We have worked on the same sample, students 
belonging to the first grade of high school of the Spanish educational system, during a period of 
2 months, obtaining data at the beginning and at the end of an intervention. 

This section gives rise to three subsections in which the sample studied, the method used, 
and finally, the instrument and the research variables are presented. 
Sample 

Regarding the study participants, it is a small group of 12 students belonging to a public high 
school in Valencia, Spain. Among the students there is a high number of immigrants and 
students at risk of school absenteeism. In turn, there is great diversity with respect to the 
economic and cultural levels of the families of the students that make up the classroom. The ages 
of the students are between 12 and 14 years old. 
Method 

The study has three different sections. First, a battery of four questions was asked, prior to 
the intervention (pre-test). After this, an intervention is carried out with an approximate duration 
of two months (9 sessions of 50 minutes each). Finally, a second battery of four questions (post-
test) is carried out. Both batteries of questions contain questions related to the contents of 
fractions that the students have already seen in the previous course (6th of primary education) 
and that will be extended in their present course. 

This paper is part of a broader study that covers the concepts of fractions, representation, 
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ordering, equivalence, and fraction arithmetic. Due to the extension allowed, only results related 
to the arithmetic of fractions, in particular addition, are presented here. In the proposed 
intervention, it is the third, fifth and sixth sessions that focus their content on this specific 
concept; which are detailed below. 

Session 3. The main purpose of this session is to explain the addition and subtraction of 
fractions with the same denominator using musical elements. In his case, the manual (Adiel, 
2021), is limited to refreshing the algorithmic process of this operation. In addition, it introduces 
a graphic example using a continuous model based on the area model (Figure 1). 

 
Figure 1: Example of graphic sum (Adiel, 2021) 

To this aspect, in the intervention carried out, two graphic ways of carrying out or verifying 
these operations from a musical field are exposed: a linear one and a discrete one. To exemplify 
the linear model, the strings of a cello are used (Figure 2). 

 
Figure 2: Addition of fractions linear model, cello strings 

Instead, to exemplify the discrete model, musical notes are used (Figure 3). 

 
Figure 3: Addition and subtraction of fractions with discrete model 

Session 5. In this session the addition and subtraction of fractions is worked on again, but 
with the particularity that the denominator differs. As in the previous session, the graphic support 
provided by the musical representation continues to be the element that promotes the 
achievement of the main objective stated at the beginning of the document. 

As a practical example, the students are presented with the one shown in Figure 4. The 
aforementioned figure shows the process followed to add two fractions with different 
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denominators and, at the same time, the graphic representation from the musical perspective that 
is has been using in previous sessions, specifically with the use of the linear model. 

 
Figure 4: Addition of fractions with different denominators 

Session 6. The main objective of this session is to propose to the students a more realistic 
situation, in the musical field, in which to make direct use of the addition of fractions. 

For this purpose, an extract of four bars from Symphony No. 9, the Ode of Joy (van 
Beethoven, 1824), commonly called Hymn of Joy (Figure 5), is used to show how the discrete 
representation model exposed in the previous sessions is not an artificial construction. The 
students verify that this codification that has been presented to them previously is, in reality, 
used by composers and performers in their day to day. The students will observe that the 
compass is nothing more than the sum of the values of the notes located between the dividing 
lines. 

 
Figure 5: Hymn of Joy extract, addition of fractions 

Likewise, they will realize that they themselves make use of this encoding during their 
music classes at the center. It is hoped, then, that at this point they will see a manifest utility of 
fractions. Utility of which they themselves were users without knowing it, thus creating that 
contextualization that arouses their attention and interest. 
Instrument and Research Variables 

To obtain research data, two pencil and paper batteries with 4 questions each are used. 
Although some data changes in the questions between the pre-test and the post-test, the 
isomorphism between the two is preserved to make possible an evaluation of the knowledge 
evolution of the students. 

Q1. Represent, in as many ways as possible, the following fraction: ¼ 
Q2. Order, from smallest to largest: 
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Pre-test: 2/2,1/4, 7/8, 5/4. Post-test: 1/2, 3/4, 2/8, 2/2 
Q3. Write and represent two equivalent fractions. 
Q4. Calculate, you can rely on representations: 
Pre-test: a) 1/2+3/8; b) 2/2-1/4. Post-test: a) 2/4+1/2, b) 6/8-1/4. 
Following the objective and question of this report, the focus is on the addition of fractions, 

so only the analysis and research variables of Q4 will be determined. 
The question Q4 allows to check the abilities in the addition of fractions of the students. In 

particular, it allows analyzing whether they use alternative methods, such as representation, 
which are suggested to them, or only apply the algorithm of said operation. On the other hand, 
possible errors made in carrying out this process will also be highlighted, if any. 

In order to carry out a descriptive analysis of this issue, the research variables defined are 
three: 

• Success: relationship between students who have answered the question satisfactorily 
with respect to the total. 
• Process: this field introduces the method used to solve the question: operate with the 
decimal expression (ED), use the graphical representation (RP) or apply the algorithm (AL). 
• Mistakes: use of the multiplication algorithm (ALmult), use of the division algorithm 
(ALdiv), common denominator (CD). 

Results and discussion 
First, a descriptive analysis of the results obtained in the pre-test is carried out, followed by 

the analysis of the results obtained in the post-test. Subsequently, the evolution of the students 
globally is presented and ends with the individual evolution. 
Q4 Results 

As can be seen in the pre-test column, in Table 1, only one student out of 12 has managed to 
successfully add fractions. 

This is in line with what is obtained in previous studies (Braithwaite, 2017) in which it is 
determined that students between the ages of 13 and 14 continue to have difficulties when 
performing this operation. 

In the same column it can also be verified that the method used in the pre-test, by the student 
who has solved correctly (ED, 1/12) has not involved the manipulation of the fractions, since the 
student has obtained the expression decimal and has operated with these expressions (Carpenter 
et al., 1976) (see Figure 6). 

  
Figure 6: Decimal Expression Method 

Although this is a perfectly valid strategy, it also confirms that at the time of the pre-test the 
students did not remember the tools to answer the question by operating on the fractions, a fact 
that is evident in the errors made. 

Table 1: Q4 Results 
 Pretest Post Test 
Success 1/12 10/12 
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Method 
ED 1/12 - 
RP - 1/12 
AL - 9/12 

Null 3/12 - 

Mistake 
ALmult 7/12 - 
ALdiv 1/12 1/12 
CD 0 1/12 

It is determined in the pre-test a general tendency on the part of the students to commit the 
same type of error, confusion with the rule of the algorithm of multiplication of fractions (7/12). 
The students apply the Multiplication algorithm, but adapted to addition, thus adding numerator 
with numerator and denominator with denominator (Figure 7) (Howard, 1991; Keller et al., 
1940; NAEP, 2013). 

 
Figure 7: Errors when applying the addition algorithm, use of the Multiplication 

Algorithm 
Another error marked by previous studies (Mata and Porcel, 2006) is the adaptation of the 

use of the Division Algorithm. Thus, the student who uses it in the pre-test performs a cross 
addition (Figure 8). 

 
Figure 8: Errors when applying the addition algorithm, use of the Division Algorithm 
This confusion in the rules of the algorithms verifies the fact that the rule is rote learning, 

which implies that over time it is forgotten or confused with similar rules (Hart, 1981). 
Analyzing now the results obtained after the intervention -post-test-, a significant increase in 

success can be observed (10/12), which leads to determine that the use of music as a 
methodology has favored the teaching-learning process. (Azaryahu et al., 2020; Courey et al., 
2012; Lovemore et al., 2022). This statement is highlighted, since the students who have 
participated in this study, had previous knowledge in the sum of fractions, because it is a 
knowledge, which in the Spanish curriculum begins in 4th grade of primary pducation and is 
repeated in 5th and 6th grade. of this primary level, which would indicate that their knowledge 
should be consolidated in the first year of secondary education, which, as has been verified, the 
results in this study provide other information. 

If the methods used to solve the activity are analyzed, it can be observed that the application 
of the fraction addition algorithm is the process most used by the students (9/12), being a student 
the one who has chosen to solve the operations, exceptionally graphically (Figure 9) (Rau et al., 
2015). 

 
Figure 9: Use of the Graphical Representation in the addition of fractions 

Finally, regarding the errors in the post-test, it should be noted that a student presented 
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confusion in the use of the division algorithm. This student, as can be seen in Table 2 of the 
following section, had made an error by applying the multiplication algorithm. In addition, an 
error appears related to making the common denominator (Vinner et al., 1981) (Figure 10). 

 
Figure 10: Errors when applying the addition algorithm, Common Denominator 

Evolution Q4 
Regarding the evolution (Table 2), first of all, the significant increase in students who have 

performed both operations after the intervention stands out, going from one to ten students. 
Table 2: Individual evolution Q4 

Student 
Pretest Post Test 

Success Metho
d Mistake Success Method Mistake 

S1,S2,S3,
S4,S7,S12 0 AL ALmult 1 AL - 

S9 0 AL ALmult 1 RG - 
S10 0 AL ALmult 0 AL ALdiv 
S16 0 AL null 0 AL CD 
S15 0 AL null 1 AL - 
S6 0 AL ALdiv 1 AL - 
S13 1 ED - 1 AL - 

Regarding the methods used by the students in the resolution, in the pre-test, the only student 
who carried out the operations did so using the decimal expression of the proposed fractions, as 
explained in detail above. On the other hand, in the post-test it is observed that no student makes 
use of this strategy and, instead, all of them operate directly with the fractions and there is even a 
student who performs the operations graphically (Figure 9). 

Another positive aspect is that the blank answers in the post-test disappear, the two students 
(S15 and S16) go to an algorithmic resolution, one correct (S15) and the other with an error in 
obtaining the common denominator. 

Continuing with the errors, the use of the division algorithm persists, although it is not 
maintained by S6 who does so in the pre-test, but it is the student S10 who goes from using the 
multiplication algorithm to that of division. 

Conclusion 
The present observational study shows that students between 13 and 14 years of age have 

significant deficiencies in the addition of fractions, despite being a mathematical concept that has 
been present in the Spanish curriculum since the age of 10 (LOMLOE, 2022). However, an 
interdisciplinary intervention, in which a system of musical signs is used as a base as a semiotic 
function to try to improve skills with fractional numbers, particularly with the addition of 
fractions, allows reversing a dramatic initial situation. 

The results presented here are part of an investigation in which, in addition to the addition of 
fractions, the difficulties that students have in graphic representation, ordering and equivalence 
of fractions are analyzed, and how music allows solving part of the problems. initial deficiencies. 
Despite the fact that, in the addition of fractions, a direct consequence of the intervention carried 
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out is not observed, it is obtained in the rest of the concepts evaluated, in particular, in the 
equivalence of fractions, where the students make use of the system of musical signs, to solve the 
situations raised. This situation is highlighted, since as indicated by Vinner et al. (1981) for the 
sum of fractions there are two ideas that must be present, a common denominator and equivalent 
fractions, the second idea being assumed by the students who have participated in this research. 
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Past research has identified factors that help maintain the cognitive demand of tasks, including 
drawing conceptual connections. We investigated whether teachers who were engaging in the 
teaching practice of building—and thus focusing the class on collaboratively making sense of 
their peers’ high-leverage mathematical contributions—drew conceptual connections at a higher 
rate than has been found in previous work. The rate was notably higher (54% compared to 
14%). By comparing multiple enactments of the same task, we found that this higher rate of 
drawing conceptual connections seemed to be supported by (1) eliciting student utterances that 
delve more deeply into the underlying mathematics, (2) giving students more time to explore the 
underlying math, and (3) using previously learned abstractions to help move the class toward 
understanding the new abstract concepts underlying a task. 

Keywords: Classroom Discourse, Instructional Activities and Practices 

The important role that high-cognitive-demand tasks play in student learning is ubiquitous in 
mathematics education (e.g., NCTM, 2014). Unfortunately, the high cognitive demand of tasks is 
often not maintained as those tasks are enacted in classrooms (e.g., Henningsen & Stein, 1997). 
As a result, much work has been done to understand the complexity of maintaining high levels of 
cognitive demand during task enactments. For example, Stein et al. (1996) identified factors that 
maintain and lower cognitive demand. These factors have been utilized by other studies 
(e.g., Sullivan, 2019) to better understand the maintenance of cognitive demand. One of these 
factors that has not received much attention is drawing conceptual connections. This is despite 
the fact that developing conceptual connections is at the core of the type of student learning 
envisioned by NCTM (1989, 2000, 2014). 

The teaching practice of building (e.g., Leatham et al., 2022; hereafter referred to as 
building) is a teaching practice designed to take full advantage of MOSTs (Mathematical 
Opportunities in Student Thinking)—high-leverage student mathematical contributions that 
“provide an in-the-moment opportunity to engage the class in joint sense making about that 
contribution to better understand the important mathematics within it” (Van Zoest et al., in 
press). This important mathematics that students can come to better understand—the 
mathematical point (MP) of the contribution (e.g., Van Zoest et al., 2016) is central to building. 
The teacher identifies the MP when deciding if a student contribution is a MOST, keeps it in 
mind throughout the joint sense making discussion, and finally, ensures that the MP—the 
mathematics that the students had the opportunity to learn as a result of the discussion—is made 
explicit as the discussion concludes (e.g., Leatham et al., 2022). 

It seems that the emphasis that building places on MPs and student thinking may support 
teachers to draw out conceptual conceptions, and thus to better maintain the high cognitive 
demand of tasks as they are enacted in their classrooms. To better understand the phenomenon of 
conceptual connections and how building might support drawing them out, this study 
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investigated how teachers who were attempting to build on MOSTs in their classroom engaged 
in drawing out conceptual connections from their students. 

Literature Review 
Cognitively demanding tasks are challenging problems, or sets of problems, that require 

students to use their existing knowledge, sometimes in new and unique ways, along solution 
pathways that are not immediately clear (Stein et al., 1996). The use of such tasks can lead to 
student learning gains (Stein & Lane, 1996). As mentioned above, the high cognitive demand of 
these tasks is often not maintained as they are enacted in classrooms (Henningsen & Stein, 
1997), and as a result, much work has been done to understand the complexity of maintaining 
high levels of cognitive demand during task enactment. The foundation of that work is Stein 
et al.’s (1996) study of 520 task enactments by teachers utilizing reform-based teaching 
practices, which led to identifying seven factors that maintain, and six factors that lower, 
cognitive demand. Drawing conceptual connections is one of the factors that help maintain 
cognitive demand. 

Drawing conceptual connections occurs when a teacher or student explicitly makes 
connections between a task and its underlying mathematical concepts. Stein et al.’s (1996) study 
found drawing conceptual connections in only 13% of tasks where cognitive demand was 
maintained during enactment. Henningsen and Stein (1997) looked specifically at tasks that 
began at the highest level of cognitive demand—doing math—and similarly found that drawing 
conceptual connections occurred in only 14% of such tasks for which the cognitive demand was 
maintained. In another study, Sullivan (2019) provided a group of 16 teachers with over 300 
hours of professional development (PD) to help them maintain high levels of cognitive demand 
and share mathematical authority through high-quality classroom discourse. They analyzed the 
teacher-identified “best” enactments using the Instructional Quality Assessment (IQA; Boston, 
2012), a toolkit that assesses elements of ambitious instruction in mathematics. On the IQA 
Mathematical Residue Rubric, which considers the extent to which conceptual connections are 
drawn during whole-group discussion, the teachers in Sullivan’s study had an average score of 
2.08 (out of 4). A rating of 2 reflects “the teacher is telling students what connections should 
have been made” or “students make superficial contributions that are taken over by the teacher” 
(Boston, 2017, Mathematics Residue Rubric). Smith and Stein (2018) created 5 practices for 
orchestrating productive mathematics discussions as a way to help teachers maintain the 
cognitive demand of task enactments, and described the 5th practice “connecting different 
students’ responses and connecting the responses to key mathematical ideas” (Smith & Stein, 
2018, p. 10) as “the most challenging of the five practices because it calls on the teacher to craft 
questions that will make the mathematics visible and understandable” (p. 70). Perhaps because 
drawing conceptual connections is the least prominent factor that helps maintain cognitive 
demand, less research has been done to understand it than many of the other factors, and 
consequently less is known about it as well. 

We can infer some things about drawing conceptual connections from Hiebert and Wearne 
(1993), who looked at classroom discourse to understand the maintenance of cognitive demand. 
They found that some types of questions teachers ask, such as “Why does this procedure work?” 
or “What’s going on with this strategy?”, helped maintain cognitive demand. Similarly, 
increased length of student utterances during whole class work also positively correlated with 
increased cognitive demand. Essentially, a teacher asking probing questions that require students 
to give explanations, rather than one-word answers, is an indicator of maintaining cognitive 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 897 

demand. Although Hiebert and Wearne did not discuss drawing conceptual connections 
specifically, when teachers ask students to explain the nature of a problem using descriptive 
answers, for example, they are creating a path that can lead to students making conceptual 
connections. 

To better understand how teachers draw conceptual connections, we investigate these 
questions: (1) Do teachers who are attempting to build on MOSTs in the context of enacting a 
high cognitive demand task rate higher on drawing conceptual connections than those who are 
not? (2) What can we learn about drawing conceptual connections from analyzing their 
instruction? 

Theoretical Framework 
We approach this work from a Knowledge in Pieces epistemological perspective 

(e.g., diSessa & Sherin, 1998; diSesssa, Sherin, & Levin, 2016). Knowledge in Pieces (KiP) 
models knowledge as “a complex system of many local abstractions of experience” (Walkoe & 
Levin, 2020, p. 28). Harlow & Blanchini (2020) describe key ways in which the KiP perspective 
influences teaching, including teachers: (1) recognizing students’ initial ideas as “useful and 
productive for building understanding that is consistent with canonical knowledge” (p. 397) and 
(2) designing their instruction around their students’ ideas, often in the midst of their instruction. 
MOSTs are often incomplete or non-canonical thinking (Van Zoest et al., 2017) and building is a 
teaching practice that supports teachers to act in ways consistent with a KiP perspective because 
it centers student thinking and provides a pathway for facilitating collaborative sense-making 
about that thinking (Leatham et al., in press). Thus building on MOSTs is a teaching practice 
consistent with the KiP epistemology.  

Building on MOSTs is comprised of four elements (Leatham et al., 2021, p. 1393): 

1. establish the student mathematics of the MOST as the object to be discussed;  
2. grapple toss that object in a way that positions the class to make sense of it;  
3. conduct a whole-class discussion that supports the students in making sense of the student 

mathematics of the MOST; and  
4. make explicit the important mathematical idea from the discussion [the mathematical 

point (MP) of the MOST]. 

Although the centrality of the MP to building heightens opportunities to draw conceptual 
connections throughout the practice, the focus of the fourth element, make explicit, is drawing a 
conceptual connection between the whole-class discussion and the MP of the MOST. For this 
reason, the instruction of teachers who are attempting to build on MOSTs seems a fruitful 
context for investigating the way in which teachers draw conceptual connections. 

Mode of Inquiry 
Six middle school teacher-researchers (TRs) in the larger MOST project, which was focused 

on conceptualizing the teaching practice of building (for more details, see Leatham et al., 2022), 
provided 24 videotaped classroom task enactments (each teacher enacted two tasks twice; see 
Figure 1 below for the tasks). The enactments were analyzed using The Instructional Quality 
Assessment (IQA; Boston, 2012) by researchers trained in using the IQA who had no connection 
to the project. We also analyzed these enactments with the Reorganized Factors that Undermine 
or Keep Cognitive Demand (RUK; Ruk, 2020). The RUK is a succinct tool designed to measure 
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the factors that maintain and lower cognitive demand (as identified by Stein et al., 1996) so that 
such measurements can be compared across studies. The Conceptual Connections category of the 
RUK looks at the extent to which conceptual connections to underlying concepts were made and 
seemed to be understood by students. Our analysis of these results was compared to what is 
known about this factor and used to create hypotheses about how the teachers drew conceptual 
connections during the task enactments. Based on these hypotheses, questions for an online 
survey and teacher interviews were created. For example, teachers were asked “When enacting 
this task, what would you ideally like to hear students say to show you that they understood the 
underlying mathematics of this task?” These questions were given to the five teachers who were 
able to participate in this part of the data collection. Their responses allowed us to verify or 
disprove the hypotheses. For more details about the larger study on the maintenance of high 
cognitive demand, see Ruk (2021). 

Results & Discussion 
The teachers in our study (TRs), who were attempting to build on MOSTs in the context of 

enacting a high-cognitive demand task, rated higher on drawing conceptual connections than 
those in past research studies. Specifically, the TRs drew conceptual connections during 54% of 
the enactments, compared to 13% and 14% in Stein et al. (1996) and Henningson and Stein’s 
(1997) studies, respectively. Furthermore, on the IQA Mathematical Residue Rubric (similar to 
the RUK Conceptual Connections category), the TRs had an average score of 2.83, compared to 
2.07 in Sullivan’s (2019) study. It is important to note that both of these groups were middle 
school mathematics teachers who were committed to NCTM-Standards-based teaching, thus this 
difference is quite striking. The higher ratings for drawing conceptual connections when 
attempting to build on MOSTs are likely due to the structure of the building practice and the 
focus on drawing out student contributions related to the underlying mathematics of the MOST 
that is being built on. This specificity may have done more to draw out conceptual connections 
than a general focus on reform-based teaching practices (Henningsen & Stein, 1997), or high-
quality classroom discourse (Sullivan, 2019). 

We now turn to what we can learn about drawing conceptual connections from analyzing 
these teachers’ enactments. When teachers attempt to draw conceptual connections, they attempt 
to surface connections between in-class work and the mathematical concepts underlying this 
work. The RUK looks not only at this attempt but also at how well these connections appear to 
be understood by students. Figure 1 shows each teacher’s score on the RUK Conceptual 
Connections category for each of their enactments. The variability across enactments both within 
and between teachers may reflect the fact that these teachers were attempting a new practice. 
This variation, however, allowed us to analyze differences in teacher actions between the 
highest-rated (those rated 4) and lowest-rated (those rated 1) enactments. In the interest of space, 
we draw our examples from the Variables task (Figure 1a). 
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Task Enact-
ment 

RUK Conceptual Connections Rating by TR 

TR1 TR2 TR3 TR4 TR5 TR6 

a. Variables: Which is larger, x or x + x? Explain your 
reasoning. 

1st  1 4 4 3 3 2 

2nd 3 1 3 3 4 1 

b. Percent Discount: The price of a necklace was first 
increased 50% and later decreased 50%. Is the final 
price the same as the original price? Why or why not? 

1st 3 1 4 1 4 1 

2nd 1 2 4 3 2 1 

Figure 1: Conceptual Connections Rating by Teacher-Researcher for Each Enactment 
Comparing task enactments rated highest and lowest on the RUK Conceptual Connections 

category led to the identification of three main differences. First, during whole-class discussion 
for the highest-rated enactments students themselves made utterances that delved more deeply 
into the underlying mathematics, even without the teacher needing to push them. In contrast, 
during the lowest-rated enactments, teachers tried to push students to explore the underlying 
mathematics of the task more deeply but were less successful. Second, students in the lowest-
rated enactments were not given time to explore the underlying mathematics after it surfaced. In 
highest-rated enactments, students were given additional time to do this. Third, the exploration of 
previously learned abstractions seems to be a needed precursor for understanding a task’s 
underlying mathematics. For the highest-rated enactments, this exploration was used mainly to 
help move the class toward understanding the new abstract concepts underlying a task. For the 
lowest-rated enactments, this exploration was used partially for this purpose, but mostly for 
solidifying abstract concepts needed to engage with the task in the first place. In the following, 
we describe each of these three patterns. Before doing so, it is important to note that there was no 
indication that students in highest-rated enactments were different from students in the lowest-
rated enactments in ways that would affect the study. 
Utterances of the Underlying Mathematics 

All of the task enactments analyzed contained student utterances that helped move the class 
toward surfacing connections to the underlying mathematical concept, but only those in the 
highest-rated enactments actually surfaced the concept. Figure 2 shows the underlying 
mathematics concept for the Variables task and two examples of student utterances that surfaced 
the underlying concept. The highest-rated task enactments also contained teacher comments that 
elicited student utterances that delved more deeply into the underlying mathematics by 
specifically asking them to make connections between the discussion and the underlying 
mathematics. Here are two examples: 

• Okay, because some of you initially just said that x+x is bigger ‘cause it’s double the size 
but now you guys are saying it really depends on the value of the variable. So, if you go 
back to the original statement, what did we figure out? Can somebody summarize for us 
what we just learned? 

• It depends on the number that x is? Can somebody restate what we just learned in this one 
problem combining everyone’s thinking? What should we consider when we are 
comparing two expressions? 

Variables task Underlying math concept Examples of student utterances that surfaced the underlying concept 
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Which is larger, 
x or x + x? 
Explain your 
reasoning. 

The domain of the variable 
must be considered to 
determine relative values of 
variable expressions.  

“If the x is a positive then x+x is bigger. If x is a negative, then x is 
bigger and then if x is zero then they’re equal.” 
“It just depends on what x is, if the x is negative, then x is negative, 
if positive then x+x is positive.” 

Figure 2: Task, Underlying Concept, and the Utterances that Surfaced this Concept 
 

In contrast, the lowest-rated enactments were not as effective at eliciting student utterances 
that delved more deeply into the underlying mathematics. For example, in one lowest-rated 
enactment students had not mentioned the case of x=0 (which is not needed to answer the 
question), so the teacher asked, “Is there anything else we should look at, are there any other 
numbers out there besides positives and negatives?” After a student said zero, the teacher led 
them to expand their statement to say “[if x is zero] none of them are any bigger than the other,” 
and then the teacher extrapolated this to mean that x and x+x are equal. The teacher then tried to 
surface the underlying mathematics by asking students to recite all of the cases (x positive, 
negative, and zero). Rather than saying anything clearly related to domain, students made vague 
utterances such as “they’re both right and they’re both wrong” or “try with both negative and 
positive numbers if it’s a variable.” Students never uttered an encompassing statement of the 
underlying math, and the teacher made an attempt themself by saying, “be more general, just 
think [of] different numbers for x. You might have to try other values. Not just positives and 
negatives.” It seems that although the teacher could see the connection between zero and the 
problem, the students did not. Thus, when the teacher focused on zero without reorienting the 
students, they were no longer in a sense-making position and appeared to lose the sense that they 
had already made. This points to the importance of teachers being explicit about grounding their 
questions in the discussion—something we saw examples of teachers in the highest-rated 
enactments doing in the bulleted questions above. 
Time to Explore 

Directly after the teacher’s utterance of the underlying mathematics, the teacher ended the 
task by saying, “Ok, make sure your name is on your paper.” This abrupt ending gave the 
students no time to discuss the underlying mathematics. This was problematic because these 
particular cases (positive, negative, and zero) do not generalize to all variable comparisons. 
Similar patterns were present in other lowest-rated enactments as well. For example, in one 
enactment it seemed students could have uncovered the underlying mathematics themselves, as 
one student said, “[I]t depends on the value of x.” However, the teacher did not allow time to 
consider this idea further. Had the teacher allowed the class to consider the student’s idea, they 
likely would have connected it to the context of the problem, since they had discussed positive, 
negative, and zero earlier. However, across the lowest-rated enactments, students were not given 
time to discuss the underlying mathematics. Thus, students again had to make the connections 
between the contextual examples from this problem and the underlying mathematics on their 
own. To contrast this, we return to the highest-rated task enactments. During the whole-class 
discussion for these enactments students said things like, “[I]t will depend on x. If it is a positive, 
x+x will be greater, but if it is a negative x, x it will be greater. Or if it was a 0, they’d be equal,” 
and “[It] depends on the x-value, if it’s positive, negative, or zero.” These utterances discussed 
positive, negative, and zero—the three components needed to fully consider the domain in the 
context of this task. Additionally, these utterances occurred earlier during whole-class discussion 
than any utterances considering zero during the lowest-rated enactments. After these initial 
utterances considering negative values and zero, students in the highest-rated enactments were 
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allowed additional discussion time, and several other students made similar utterances, so 
ultimately multiple students uttered complete examples of the underlying mathematical concept. 
Again, this is in comparison to the lowest-rated enactments where only the teacher uttered such 
complete examples, and the whole-class discussion ended shortly thereafter. Overall, teachers in 
the highest-rated enactments supported students to provide robust utterances of the underlying 
math, as opposed to the lowest-rated enactments where teachers allowed for only superficial 
utterances. 
Previously Learned Abstractions 

For all 12 of the Variables task enactments, students gave a concrete example of x having a 
negative value. Students said things like: “-9 plus -9 is -18, and -18 would be less than -9.” For 
the highest-rated enactments, such examples emerged after more abstract utterances that if x is 
negative, then x plus x is less than x, and for the lowest-rated enactments at least one concrete 
example came before an abstract utterance. This shows a different pattern for whole-class 
discussion in the highest- and lowest-rated enactments. Overall, the lowest-rated enactments 
started with misconceptions, moved to concrete examples, then to an abstraction of those 
concrete examples, and concluded with a brief statement related to the underlying mathematics 
that was not discussed further by the class. For these enactments, concrete examples were, at 
least partially, used to understand the mathematical concepts needed to engage with the task. For 
example, if a student said, “Isn’t negative 3 plus negative 3 equal to negative 6,” they were not 
saying this strictly as an example of the more abstract concept that if x is negative, then x plus x 
is less than x, but rather as a way to verify their understanding of adding negative numbers. 
Conversely, the highest-rated task enactments started with an abstraction of the mathematics 
needed to find a solution, moved to concrete examples of this abstraction, and ended with 
discussion of, a new abstraction of the tasks’ underlying mathematics, which seemed to be 
understood by the majority of the class. For these enactments, concrete examples were in service 
of understanding the underlying mathematics of the task, as opposed to focusing on 
understanding prerequisite concepts. 

These observations suggest that exploration of previously learned abstractions may be a 
needed prerequisite to understanding a task’s underlying mathematics. However, for the highest-
rated enactments, this exploration was predominantly used to move toward understanding new 
abstract mathematical concepts underlying the task—the underlying mathematics of the task. But 
for the lowest-rated enactments, this exploration primarily focused on solidifying an abstract 
concept needed to engage with the task—such as adding negative numbers. 

Implications 
This study found higher rates of drawing conceptual connections than has been found in 

previous work. The difference is likely due to the building practice calling for explicit utterances 
of the underlying mathematics. Thus, even though building was not specifically developed to 
support the maintenance of high cognitive demand tasks, because aspects of the practice aligned 
with factors that support the maintenance of cognitive demand, teachers who attempted to build 
in the context of using a high-cognitive demand task by default increased their ability to maintain 
the high-cognitive demand of the task. This finding suggests that developing teaching practices 
that support factors that have been found to maintain high cognitive demand may be an 
important way to increase the maintenance of high cognitive demand tasks during enactments. 
Our results also showed that conceptual connections were drawn out at higher levels when 
multiple students made complete utterances of the underlying mathematics and the class was 
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given sufficient time to explore the ideas that surfaced. Furthermore, the exploration of 
previously learned abstractions seems a necessary prerequisite to understanding a task’s 
underlying mathematics, and this exploration is more productive if it is used to move towards 
understanding new abstract mathematical concepts underlying the task rather than to solidify 
abstract concepts needed to engage with the task. 

Overall, to draw conceptual connections, teachers need to explicitly ask for them and allow 
students enough time to discuss the underlying mathematics so that it is uttered by numerous 
students, and make sure students are taking what they learn from engaging with the task and 
using it to move towards new abstractions, rather than simply rehashing previously learned 
abstractions. Most importantly, the results of this study show that teachers’ actions are needed to 
help students draw conceptual connections. If students are allowed to explore underlying 
mathematics, as opposed to a teacher directly telling them what it is, it appears that all students 
have the ability to draw conceptual connections. 
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Abstract: Math remains a major barrier for students interested in pursuing STEM careers even 
as policy makers decry the need for more graduates with these majors. One important place 
students from diverse backgrounds begin their studies is in community colleges even as they 
remain understudied. This work is an in-depth case study of one ‘successful’ classroom that is 
positioning students for future success in STEM majors. Building on prior work around the 
importance of care in community college classrooms, the study reveals how an instructor uses 
‘non-math’ talk regularly in his class to connect students with the broader importance of what 
they are learning and express caring.  This ‘non-math’ talk appears to be supplemented with 
deliberate community building and positioning students as intellectual authorities. Future work 
will elicit student perspectives and build a framework around this care. 

Keywords: Instructional Activities and Practices; Undergraduate Education 

Introduction 
For years American policy makers have decreed the need for a more educated workforce 

especially in STEM fields as we advance into a 21st Century filled with increasingly complicated 
technology and hyper-connected by the internet. At the same time many advocates in education 
point to the continuing underrepresentation of certain groups, primarily women and Black and 
Latinx people, in science, technology, engineering and math (STEM) fields and the need to 
address this underrepresentation (Chen, 2013). For these and other students who come from 
families with few socioeconomic resources or who are the first in their family to attend college 
the barriers to entering STEM fields are magnified. While STEM is composed of science, 
technology, engineering and mathematics, math is the gate through which students enter or are 
kept out of STEM. In order to pursue majors and careers in these fields, students often have to 
excel in early math courses like calculus.   

Work in determining how to teach math better and engage all learners is a large ongoing 
problem that is central to addressing the larger societal issues of increasing the number of 
students pursuing STEM fields and improving representation in those fields. Community 
colleges are a particularly understudied area in math education research and an important setting 
for working to address issues of underrepresentation in STEM fields. Roughly 50% of students 
who go on to complete 4-year degrees pass through community colleges in the US and they 
disproportionally serve students with fewer resources and who are the first in their family to 
attend college (National Student Clearinghouse Research Center, 2017).  

In a 2012 paper Ann Sitomer and colleagues (2012) noted that while there is much work and 
overlap in K-12 and undergraduate math education research, one area that distinctly lacks 
research is community college math instruction. Furthermore, the majority of the research that 
does exist follows larger picture trends such as course completion rates and student trajectories.  
Research examining what is happening in classrooms themselves has been done but is very 
limited (Mesa et al. 2014). To close this gap instructors have done work studying their own 
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practice and researchers have looked to adapt work done in K-12 or university settings.  
A 2019 study sought to do just this in examining how the framework of mathematical 

knowledge for teaching (Ball et al., 2008) was enacted by experienced community college 
faculty (Nabb & Murawska, 2019). For their study they asked instructors what is unique about 
teaching ‘developmental math’ at community colleges. The interviews with teachers revealed a 
somewhat surprising finding. A major theme of their results was the importance of caring and 
trust. Their work does align with prior work by Weston & McAlpine (1998) which revealed 
caring as a primary theme in a deep analysis of the practice of six outstanding math professors at 
a university. They also found that professors mentioned content, strategies, evaluation, learning 
outcomes, passion, and research as important aspects of teaching.   

Theoretical Framework 
This work draws upon a definition of success from the work of Vilma Mesa and colleagues 

in their examination of research problems in community college math classroom (Mesa et al., 
2014). They take a two-pronged definition of success with two related factors: students learning 
the content of the class and making progress towards their personal, academic goals. This more 
expansive definition is important because it goes beyond the more common metrics of course 
and degree completion to consider that students’ personal values and goals. Ultimately if 
students were completing classes but not able to finish their degrees or meet the goals they have 
for obtaining their education then the educational environment they are in is not ‘successful’.  

With this more expansive view of success then the role of the teacher is about more than 
delivering content but helping to ensure students are making progress towards their personal 
goals. Considering the broader role of the teacher and Nabb & Murawska’s (2019) work which 
revealed that community college instructors themselves identified the important role of ‘care’ in 
their work, I look to define what is ‘caring’ in the context of a community college math 
classroom.  Nel Noddings (1992) places the care of teachers in the ‘caring relation’ and 
distinguishes between teachers work to meet students assumed needs versus their expressed 
needs.  She associates assumed needs primarily with teachers’ beliefs about what they think their 
students need such as to learn the content of a courses. Assumed needs are setup in contrast to 
expressed needs such as a student’s dislike of school or the subject of study. Teachers are 
expected to be attentive listeners and balance students expressed and assumed needs. This 
framework offers a good starting point, and it does mention that caring relations are not always 
equal, but it does not explicitly address issues around power and equity and how caring relations 
in a classroom are impacted by broader societal structures. These are important considerations 
for caring in the context of diverse classrooms. From this framework comes the research 
question for this study: How does a successful community college mathematics instructor enact 
‘caring’ in the classroom?   

Methods 
Study Setting and Participants 

This study is occurring in a community college mathematics classroom in the Bay Area of 
California. The instructor of this class identifies as a white male and also attended community 
college before moving on to a 4-year university and ultimately obtaining his master’s degree in 
mathematics. He has many years of experience with over 20 years of teaching experience and 
has been teaching this course sequence of compressed pre-calculus and calculus for 8 years.  

The 45 students in this classroom are typical of community college students. They are 
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racially, ethnically, and socio-economically diverse. Some students have prior exposure to 
calculus content in high school, while others have not. The students vary in age with many 
coming straight from high school but others having been in the work force for a number of years. 
The majority of students continue to work while attending classes. All students in the class aspire 
to major in either engineering or computer science. 

In the vein of wisdom of practice studies (Shulman & Wilson, 2004), this teacher and class 
context were deliberately chosen and are defined as successful. With this case study I am looking 
to understand what might be considered ‘best practice’ from an exemplar case and this example 
is not meant to be representative. The goal of this study is to understand from deep examination 
of a single case what might be some mechanisms driving the success of this classroom 
environment. 

Evidence of the success of this classroom comes from examination of course pass rates 
which are significantly higher than the typical rate for the college. This evidence, which while it 
could be viewed as evidence of students learning content, alone does not meet the broader 
criteria of success defined above, was supplemented with data from a pilot study of interviews 
with former students and classroom observations to ascertain how this environment was helping 
students meet their academic goals. The pilot study interviews with former students revealed the 
unique nature of this classroom and the support students felt in the environment.  
Data Collection and Sources 

The primary sources of data for this study are classroom observations and teacher interviews.  
Additionally, the in-person class observations are supplemented with access to the electronic 
platforms used for class facilitation and communication. In addition to the teacher focused data, 
an initial survey was given to students to gage their feelings about and engagement with math 
and the same survey will be given again at the end of the academic year. Students completed a 
math autobiography essay which will also provide some information about each students’ 
background before entering the class and interviews with students will be conducted during the 
spring semester to learn about individual students’ experiences of the classroom environment.   
Data Analysis 

This study is still in the initial phases of analysis with the focus primarily on the classroom 
observation fieldnotes. The fieldnotes were reviewed and open-coded. This coding revealed the 
common presence of ‘off-topic’ conversations. These instances were then reviewed in further 
detail to look for common themes.   

Preliminary Findings 
Initial Results showed the high degree to which the teacher engaged in discussion and 

content that did not fall within the formal curriculum of pre-calculus or calculus but could be 
seen as relevant to the students broader goals. Early review of field notes also reveals routines 
around community building and positioning of students as authorities on mathematics and 
sources of knowledge for one another.   
‘Non-math’ Talk 

During the Fall semester the instructor invited guest speakers into the class on four different 
occasions and took the students on one field trip.  During week three of the semester he invited 
two representatives from the school’s transfer office to come share with the students information 
about pathways for transfer and the role of their office.  The speakers shared for approximately 
15 minutes when the instructor shared that the class would be visiting the transfer day fair the 
following week and he had created an assignment for the students to talk with at least three 
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different schools.  The following week he gave up around 90 minutes of instructional time to 
take his students to the school transfer day.  In interviewing him about why he did this he shared 
about how he had seen these interactions change students’ motivations in the classroom. He 
shared how after talking with a school at the transfer day one student understood the importance 
of getting good grades since the school was competitive for transfer. Other students shared about 
opportunities they were not previously aware of. When framing this visit to the class he 
emphasized about how the ultimate goal should not be just passing this class but about their 
broader academic goals and where do they want to go in their lives.   

In addition to the transfer day, the instructor gave up around 60 minutes of instruction during 
week 10 to a workshop on writing resumes. Prior to the workshop the instructor shared how 
internships can be important pathways to jobs in STEM fields and learning how to write a good 
resume was an important part of that.  He had previously assigned students work on a draft of 
their resume prior to the workshop.  

In addition to these instances of outside speakers the instructor also regularly shared 
messages about mindset and learning to students. After an exam where some students had 
struggled he shared a TED talk about growth mindset and encouraged students to watch it before 
working on their exam corrections assignment. This example illustrates how the non-math talk 
around ideas like growth mindset was also reinforced by structures in the class such as exam 
corrections assignments that allowed students to get points back by reviewing their work and 
learning from their mistakes.   
‘Community Building 

Community building appears to be another important aspect of this class. Everyday before 
class starts the instructor moves through the class fist-bumping each student and thanking them 
for coming to class.  Early on he made an effort to know every student’s name and greet them by 
such. He also made an assignment out of having each student schedule a one-to-one meeting 
with him so he could be sure to have a conversation with each student. However, beyond his 
interactions with the students he encourages the students to work with one another and to see the 
class as a learning community.  Every day also started with students being asked to check-in with 
one another and he generally had students turn and talk to a neighbor 8-12 times per a class.  
These directions to talk with a neighbor were framed in a way that positioned the student as an 
authority with wording like, “I am confident you understand but I want you to check with your 
neighbor.” The instructor would also make comments to the class, “no one is left behind” as he 
directed them to work together on a problem.   

Discussion, Implications and Continued Work 
This study is a single case study and thus cannot speak to broad situations but serves as a 

basis for further study. It also builds on other studies that have illustrated the importance of 
issues that go beyond content delivery in community college mathematics classrooms. This class 
illustrates potential mechanisms for how caring is enacted by an instructor and could serve as an 
initial point for building a framework for what caring looks like in these contexts. Further work 
will also elicit student perspectives to understand how they experience the classroom 
environment. While learning the math is important, it appears from this example that engaging 
all learners is not about the math but about care and community that goes beyond it.   
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This brief research report examines the discursive shifts of a secondary mathematics teacher 
participating in a collaborative learning community centered on culturally responsive 
mathematics teaching. We draw on two frameworks to analyze the teacher’s discursive moves. 
The first framework comes from Lefstein et al. (2020) on generative discourse practices in 
learning communities. The second framework — FAIR (Louie et al., 2021) — offers noticing 
practices for deficit versus anti-oppressive mathematics teaching. Through these lenses, we 
found that the teacher’s initial discourse practices were marked by deficit framing and 
noticing.  The teacher’s discourse practices begin to shift towards a culturally responsive 
pedagogy in response to a particular artifact that captured student noticing and reframed the 
teacher’s problem of practice.  

Keywords: Professional Development; Culturally Relevant Pedagogy; Discourse; Teacher 
Noticing. 

Introduction 
Professional development initiatives for secondary mathematics teachers are increasingly 

focused on learning to teach mathematics in a culturally responsive way. Yet, learning to become 
a culturally responsive mathematics teacher has been complicated by teachers’ participation in 
dominant discourses practices around deficit ideologies of students of color, their communities, 
and families. These dominant discourse practices are stitched into the fabric of mathematics 
teaching and learning and are often invisible to mathematics teachers from dominant 
backgrounds.  

Recently, teacher professional development has taken place in learning communities, 
where teachers come together to share artifacts and dilemmas from their instructional practice. 
Teacher learning communities are more likely to be more deeply grounded in teachers’ everyday 
work and to support teacher collaborative conversation and reflection. Teacher learning 
communities focused on culturally responsive mathematics teaching may be more likely to 
support teachers in rejecting deficit ideologies in moments of everyday classroom life.  

This study examined the discursive practices of one secondary mathematics teacher as 
they participated in a collaborative learning community that brought teachers and researchers 
together to learn about and build culturally responsive teaching practices. The teacher’s 
discursive practices in this collaborative learning community were of particular interest since 
they appeared to shift over time in relation to the goals of the professional development to help 
mathematics teachers learn to see and respond to issues of equity and justice in their schools. We 
sought to explore the relation of these shifts to specific aspects of the collaborative learning 
community and in relation to anti-deficit ideologies.  
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Theoretical Framework 
Lefstein et al., (2020) define discourse as “an essential medium through which members 

of a community of practice coordinate their work, make meaning, and negotiate roles and 
identities,” while also being “constitutive of practitioners’ professional vision: how they gaze 
upon and make sense of phenomena in their domain of work” (p. 2). In their review of empirical 
research on teacher collaborative discourse in professional learning activities, Lefstein et al., 
(2021) identified five discourse practices that were essential to productive shifts in practice. The 
first discourse practice, revealing and probing problems of practice, what we will refer to as 
Revealing, relates to the ways that teachers take risks with others in sharing aspects of their 
teaching with which they are grappling. The second practice, providing reasoning and evidence, 
or what we call Reasoning, refers to the ways that teachers support their claims about their 
practices, classroom, or other aspects of their teaching. In this case, providing concrete evidence 
was shown to hone teacher discourse toward problem-solving. The third practice, making 
connections to general principles, or what we call Generalizing, relates to moving beyond 
particular events and situations to general patterns and principles. The fourth practice, building 
on others’ ideas, or what we call Building, refers to the ways that teachers’ discourse reflects 
dialogue and elaboration. The final practice, offering different perspectives, or what we call 
Contrasting, reflects the ways that perspectives in the discourse provide points of contrast and 
challenge. Taken together, these five aspects of teachers’ collaborative discourse practices, 
Revealing, Reasoning, Generalizing, Building, and Contrasting provide markers of generative 
opportunities to learn.  

Research on how these generative discourse practices support secondary mathematics 
teachers in learning to teach mathematics in culturally responsive ways is less prevalent. One 
framework that seems particularly promising for understanding these shifts is the FAIR 
framework (Louie et al., 2021). The FAIR framework is conceptualized as a sociopolitical 
perspective on mathematics teacher noticing, or the social and political lens through which 
teachers frame, attend to, interpret, and respond to everyday moments of classroom life. 
Research on mathematics teacher noticing has revealed that teachers often attend to moments of 
classroom life through interactional frames guided by deficit or colorblind perspectives (Author, 
2022; Louie, 2018). Louie et al. (2021) argue that anti-deficit noticing is marked by: (1) framing 
students as human beings instead of simply math learners, (2) framing mathematics learning as a 
vibrant and creative process instead of a fixed way of knowing, and (3) framing both 
informational and interpersonal aspects of interaction as central to mathematics learning, instead 
ignoring the latter. Studies of teachers’ development of critical consciousness reveal similarly 
that teachers’ discourse remains persistently deficit in nature. As a result, supporting shifts in 
teachers’ discourse practices towards ones that are anti-deficit, asset-based, and relational has 
been challenging.  

One of the ways that teachers can become aware of deficit ideologies through which they 
perceive of students is through the perspectives of the students themselves. Students’ 
perspectives are often ignored in classroom teaching (Dominguez, 2019), apart from what 
teachers perceive in ongoing social interaction. While soliciting students’ perspectives on 
teaching is not new, it is often through formative assessment around the subject matter or 
classroom practices. In contrast, students can also be invited to share their perceptions of what 
their teacher seems to be noticing about them. Teachers might believe they are noticing and 
responding to students in caring ways, for example, while students might perceive this noticing 
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as deficit or oppressive. This disconnect can spark deep reflection for teachers around their 
assumptions about students.  

This study examines how one secondary mathematics teacher responded to the noticing 
of students in her classroom in the context of a professional development on culturally 
responsive mathematics teaching. Our research questions include: 

1. In what ways did the teacher’s initial discourse practices in relation to students, 
mathematics teaching, and broader sociopolitical systems reflect deficit 
ideologies?  

2. What was the nature of the shifts in teachers’ collaborative discourse around the 
noticing prompt? 

a. How did the teacher begin to frame, attend to, interpret and respond to 
students’ noticings in ways that were aligned with culturally responsive 
mathematics teaching? 

Methods 
This qualitative case study was conducted on a one-year collaborative learning 

community focused on culturally responsive mathematics teaching and anti-racist noticing 
practice. The learning community was guided by the authors of this study, who met with 
secondary mathematics teachers on a bimonthly over Zoom. Data collection included a baseline 
and final interview, recordings of the Zoom meetings, teacher artifacts, and two noticing 
interviews. The participants of the PD each created their own action research plan in which they 
applied their learning from the PD in a meaningful way for their own school and teaching 
practice. 
Subjects 

The case study focuses on Carrie, a mathematics teacher at a middle school in a 
metropolitan area. Carrie identified as a white woman who had been teaching mathematics for 
approximately eight years. The demographics of the high school at the time were: 64% white, 
14% Hispanic, 11% Black, 8% two or more races, 2% Asian or Pacific Islander, and %1 Native 
American. Carrie was chosen as the focal teacher for this study due to significant shifts in 
discourse revealed during initial open coding. 
Positionality 

The authors of this paper designed and facilitated the teacher learning community. The first 
author identifies herself as a white, woman. She taught middle school mathematics for three 
years and is a fifth-year PhD candidate. She studies culturally sustaining pedagogies in math 
classrooms using an Indigenous epistemological framework. The second author also identifies as 
a white woman and is the advisor for the three other authors. She studies issues of equity in 
mathematics education and has found it challenging to untangle from dominant deficit 
discourses. The third author identifies as Latina, international graduate student. She is a third-
year PhD student who for the last two years has been working as a facilitator and researcher of 
learning spaces that promote Political Conocimiento for mathematics teachers. The fourth author 
identifies as a first-generation Latino graduate student. He is a second-year PhD student who has 
spent the last two years working with math and science teachers in professional learning 
communities around equitable teaching practices and inclusive pedagogies. 
Data Collection 

In a preliminary analysis, we identified one artifact in particular, the student noticing survey 
(SNS), to be particularly supportive of shifts in teachers’ deficit discourses. The SNS was 
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designed by the authors, who then presented it to the teachers for their review and editing. It was 
designed to prompt students in the teachers’ classes to describe what think their teacher pays 
attention to about them (the student), and to other students in the class.7 The SNS was then 
turned into an online format (found here). The teachers distributed the SNS to one or two 
mathematics classes of their choice. Following the collection of completed surveys, the teachers 
and authors engaged in a discussion about the survey results. Carrie continued to refer to the 
SNS in her discursive practices throughout and beyond the professional learning community.  

To analyze Carrie’s discourse practices before, around, and after the SNS, we examined 
transcripts of her initial interview, her utterances during the professional development meeting, 
transcripts and notes from her action research plan meeting, the action research plan, and her 
final interview.   

Analysis 
To analyze the data, we first transcribed recordings of all PD sessions and participant 

interviews. Following the transcription, we reviewed our field notes, teachers’ artifacts, and the 
transcriptions for themes in teachers’ discourse practices. We proceeded to develop hypotheses 
about these shifts. Data was thematically coded in Dedoose by the first author based on key 
elements of the PD. The initial coding process generated ten codes (e.g.,positioning, tools, 
collaboration, culturally responsive, and deficit). The second author re-coded the data to seek 
interrater consensus. Following the initial coding, we honed our analysis on one particular 
teacher, Carrie, due to her significant discursive changes throughout the PD, and her strong 
response to the SNSs responses from her students.  

The second round of coding focused on Carrie’s discursive moves over time and 
employed codes based on the two frameworks from Lefstein et al. (2020) and Louie et al. (2021) 
(e.g., generalizing, contrasting, deficit, anti-deficit, framing, building, reasoning, revealing, 
interpreting, and reflection).The analysis revealed particular patterns in Carrie’s discursive 
moves over time. For example, deficit discourse was coded 7%  across the data at the start of the 
PD, and 3% across the data towards the end. Similarly, anti-deficit discourse was coded 0 %at 
the start, and 21% at the end. Themes emerged based on these patterns in Carrie’s discourse and 
around aspects of the collaborative learning community  

Findings 
This study explored the extent to which Carrie engaged in productive discourse practices in 

the professional development, and how this engagement related to the SNS, and to shifts in her 
noticing of themselves, students, mathematics, and society. Our results show that as Carrie 
interacted with the results of the survey in a collaborative way, Carrie also worked through the 
practices of generative discourse, and in doing so experienced shifts away from her initial 
discourse practices and towards discourse practices aligned with culturally responsive teaching. 
Carrie also took up the discourse practices in circular ways, meaning that her noticings and 
discourse practices continually evolved as they generated questions and problems of practice 
through new orientations.  Here, we describe their discursive activities around the survey in 
detail. Students were not participants in the research; therefore we focus on Carrie’s comments 
and reflections about the survey rather than direct student responses. 

 
7 Students were not participants in the research study, so researchers did not analyze the survey results. 
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Carrie’s perspective of her students at the beginning of the professional development 
indicated a deficit perspective. At the beginning of the school year, she framed students as being 
non-compliant with her requests and described them as “lacking stamina and lacking grit” when 
it came to mathematical tasks. In this framing, Carrie employed deficit discourses that locate 
educational problems with students and their families. She complained that she was experiencing 
many disruptions in class, saying, “…[students were] constantly talking and over each other and 
over me and if one thing happens that's interesting everything gets lost”. In this utterance, we 
note that Carrie was providing evidence about what was occurring in her classroom to position 
the students as “non-compliant.”  It is interesting to note what Carrie is attending to, that students 
are talking over each other and that they get distracted, which again stems from a frame of deficit 
ideologies and behavior management, rather than one of relationality or engagement. 

 Carrie also remarked about her students’ perceived lack of care about their education, 
stating, “I feel frustrated when students don’t try. I tell them all the time that I care about their 
education but I don’t understand why some don’t.” In this utterance, Carrie is interpreting 
students’ behavior as ‘not trying’, and that lack of effort as ‘not caring’ about her class. From a 
fair perspective, reasonable responses to these interpretations often revolve around trying to 
motivate or punish students toward new behavior. 

PD sessions began with mindful moments or reflective journaling to encourage and invite 
all attendees to come into the learning space intentionally. In a session prior to distributing the 
SNS, Carrie journaled: “I make the assumption that they don’t care about their education when it 
could be something else entirely. … I should ask what their actions really mean.” This statement 
indicates early recognition of the disconnect between students and the teacher, preempting the 
SNS. This disconnect was troublesome for Carrie, and she showed in this statement awareness 
that she must attend to and respond to different issues than those she had prioritized. As Carrie 
reflected on her perception of students’ lack of care for education during and between PD 
sessions, she decided to give the SNS to this “challenging” class, mindful of the fact that she 
knew she needed to change something in order for the disconnect to become a connection, for 
her pedagogy to be more culturally responsive, and focused on improving the dynamic with this 
class. Before distributing the survey, she had tried other ways of connecting with and celebrating 
her students in her “challenging” class, including taking notes of what students were doing well 
and sending those to the students’ home adults. After several sessions of the PD, she decided to 
distribute the SNS to this class to glean further information about what she could do to improve. 

 When Carrie first viewed the results of the SNS, she noticed a disconnect between what 
she believed she was noticing about her students, and how the students perceived what she 
noticed about them. Her initial response was “I am sorry about the results.” Aligned with prior 
discourse about how challenging she felt this class was for her, she continued, “I felt like I’ve 
made improvements, but their survey results say otherwise.” In collaborative discussions, Carrie 
began to wonder about this disconnect, turning it into an informal problem of practice. She 
reasoned, “my students largely felt like I didn’t care about them as people. They felt that I cared 
only about their mathematical understanding and improvements. In reflection, this is probably 
true.” In this discursive move, Carrie has shifted her framing. She acknowledges that her framing 
(and noticing) has largely been guided by a focus on her students’ mathematical development, 
which Louie et al. (2021) describe as a deficit, dominant framing in which teachers attend to 
students’ mathematical progress, interpret students as either on track, gifted or behind, and 
respond by labeling them as accordingly. Here, Carrie is beginning to examine this framing, as 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 914 

her students tell her in the survey that she is not noticing them as human beings. The generative 
discursive contrast pushes Carrie to reconsider the way she is making sense of her instruction. 

This discursive turn is further reflected in another utterance Carrie made during the PD, in 
which she stated, “What is most important to them [the students] in the moment may not be the 
math that I am trying to teach them.” While this discursive move continues to be framed from a 
colorblind perspective, it indicates that Carrie is becoming curious about what is going on for her 
students, apart from her interpretations of them. Carrie also began working on a topic for a 
culminating action research project at this time, including who her community partner would be. 
The requirements of the PD included partnering with someone outside of the participant’s own 
classroom for initial conversations about her action research plan involved bringing in support 
from outside the school, from a local youth action and advocacy group. This proved to be 
complicated for various reasons, including a strict requirement around adherence to the school-
designed and provided curriculum. 

 Ultimately, Carrie arrived at a focus for her action research project, which we view as 
discursively revealing a new problem of practice: “What do I need to notice about myself as a 
white woman, my mathematics instruction, and my largely BIPOC students to be able to develop 
relationships of trust and a supportive learning environment?” In this question, Carrie’s discourse 
has shifted dramatically. Instead of asking why BIPOC students in her class do not care about 
learning mathematics, she is probing herself as a noticer. The new framing here is of 
mathematics learning as a relational and racialized activity. As a white woman working with 
largely BIPOC youth, Carrie interprets this kind of learning as only taking place in a space of 
trust. Thus, she needs to attend to her students as humans, not just math learners. 

 Carrie herself attributed this new framing as a result of the disconnect between her 
perception of her teaching and how students received it. She described how this new framing 
shifted how she noticed and responded to her students: 

I made a big change in how I see my students. Instead of just seeing the 
mathematicians inside of them, I learned to focus on who they are as individuals. I began 
to notice when students weren’t themselves for a day and let me know that I see them, 
that I understand that their minds may be elsewhere. This compassion turned a whole 
classroom culture from one that was very negative to one that was much nicer to be a part 
of. 

 The SNS provided a tool for Carrie to learn from her students, so she could attend to 
issues that her students saw and felt, not just ones that she observed, as she leaned into culturally 
responsive mathematics teaching. Through generative discourse during PD sessions and 
reflective practices on her own, Carrie shifted her teaching practice toward a culturally 
responsive pedagogy. 

Discussion 
Supporting shifts in the discourse practices of secondary mathematics teachers towards 

ones that are critical, asset-based, and relational has been challenging for the field of 
mathematics education. In this study, we focused heavily on a specific artifact, the student 
noticing survey, as a tool for generative discourse to promote a shift in one teacher’s discursive 
practices. This study combined the FAIR framework and discourse practices that research 
indicates are generative in teacher learning communities to provide insights into how one 
teacher’s interactions around a student noticing survey within a learning community shifted her 
discursive practices, from colorblind and deficit towards relational and asset-based.   
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At the beginning of the PD, Carrie was upholding deficit perspectives, consistent with 
framing as described in the FAIR framework (Louie et al., 2021). We found that reframing and 
shifting attention were supported by the generative discourse practice of revealing. Carrie 
revealed multiple problems of practice throughout the PD, which shifted as she began to see 
herself and her students differently. The shifts were also supported by building and contrasting, 
in which she brought evidence of her problem of practice to the learning community, which was 
interpreted differently by different members. This enabled Carrie to attend to different aspects of 
the survey and to generate new questions. The most prevalent generative discourse principles 
were generalizing and contrasting. Generalizing helped Carrie continuously attend to, interpret, 
and respond to her problem of practice as it evolved, while contrasting was supported by the 
discourse of the learning community, as previously mentioned. Generalizing and contrasting 
discourse practices supported the cycle of interpretation and responding as Carrie shifted her 
own discourse around her teaching and her students. 

Conclusion 
This study investigated how a specific tool can be used to facilitate generative discourse 

among teacher learning communities and support a shift in one teacher’s classroom practices 
toward culturally responsive pedagogy. This work confirms extant research on mathematics 
teaching around the persistence of dominant, deficit ideologies. This study contributes to the 
literature on culturally responsive teaching by providing deeper insight into how directly 
attending to students’ perspectives of teachers’ attention can result in a shift in the teacher’s 
classroom practices and ability to create and sustain a culturally responsive learning 
environment. In practice, this study informs professional development for mathematics teachers, 
focusing on the significance of generative discourse as a tool for supporting teachers in framing 
and re-framing problems of practice consistent with anti-deficit and anti-racist ideologies. 
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This paper examines the meaning-making practices of Latinx bilingual students with a 
challenging mathematics task. My aim is to draw a better understanding of how learning takes 
place among a group of students who participate in multiple social spaces in the classroom but 
who also form a unique unofficial space or “underlife” within the same classroom. There are 
many times when students’ knowledge and language are displaced or not valued in the official 
space of the classroom, so a counterscript emerges motivated by a resistance to the teacher’s 
dominate script in the official space of the classroom. I will be using Gutierrez, Rymes, and 
Larson’s (1995) notion of script as a way of talking about the normal or routine discourse 
practices of students and teachers in various social spaces in a mathematics classroom. We draw 
on translanguaging to reconceptualize bilingualism as a liberating and empowering 
communicative practice, and a resource capable of transforming learning that goes beyond the 
transition to a dominant school language. A translanguaging (See Garcia, 2017) lens allows us to 
better understand holistically how bilingual students use their linguistic, multimodal, and 
mathematical repertoire to make meaning as they persevere with challenging ideas. 

Methods 
I observed a group of 12th-grade Latinx bilingual students and their teacher, Ms. Davidson 

(Morales, 2004), a monolingual English-speaking teacher working on a multi-day task. The task 
referenced Alice in Wonderland, in which Alice's height is doubled or halved by consuming 
certain potions. All but one student were born in the U.S., yet all students still use home 
language (Spanish) as part of their linguistic repertoire. I focus on these episodes because it 
presents opportunities to study how students and the teacher interact within various social spaces 
of the classroom and how they engaged in translanguaging to make meaning of a complex 
mathematical situation involving exponential growth.  

Findings 
Two themes emerged from the data: 1) In the official space where the teacher facilitated 

discussions within the small group students operated within a limited mediational means where 
the teacher dominated discussions and asked a series of short answer questions primarily trying 
to help students remember the mathematical ideas of doubling and exponential functions.  The 
students tried to understand what they were reading in the textbook to what the teacher was 
telling them.  A counterscript developed and continued during the next few days while working 
without Ms. Davidson.  2) These students also participated in the unofficial space of the 
classroom where they used cultural resources, constructed mathematical meanings, and 
developed the mathematical ideas of doubling and exponential functions through their 
participation in activity.  This group of students’ activity and actions in the unofficial space were 
in fact complementary to the larger classroom activities but not perceived as such by the teacher 
at the end.   
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MAKING TIME FOR DISCOURSE: EFFECTS OF TIME SCAFFOLDS ON 
STUDENTS’ ON-TASK MATHEMATICS ENGAGEMENT 

Kristy Litster 
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This inquiry looks at differences in mathematics engagement for 34 groups of Grade 5 students 
with and without time scaffolds for individual and group reflections, discussions, and problem 
solving. Results showed no significant differences in the quantity of time engaged in individual 
work versus group discourse. Results showed that students without time scaffolds were more 
likely to run out of time to compete or discuss tasks at the end of a large task-set. In contrast, 
students with time scaffolds were more likely to complete tasks, but less likely to discuss them.   

Keywords: Instructional Activities and Practices; Classroom Discourse; Cognition  

Time is a precious commodity for teachers, and how they use that time to engage students 
with mathematical ideas and concepts in ways that can be transferable to their authentic and 
daily uses, as opposed to rote abstract procedures, is important (Vural & Vural, 2020).  
Discourse around real-world tasks can be a great strategy to encourage student engagement with 
mathematical ideas and concepts and increase the depth of student thinking (Bennet, 2014; 
Blackham, 2022; Litster et al., 2020). Discourse can also support skills students need such as 
solving problems in daily life, problem solving, critical thinking, and communication (Vural & 
Vural, 2020). However, research is divided on whether the best use of time to support thinking is 
for students to explore math tasks as a collaborative group or whether there should be time 
scaffolds in place that provide time for students to work both individually and collaboratively.  

Thus, the purpose of this inquiry was to explore the differences in mathematics engagement 
when students are provided with open versus segmented time scaffolds for individual and group 
reflections, discussions, and problem solving when engaging with tasks at four levels of 
cognitive demand. Specifically, engagement was measured in two ways a) quantity of time 
engaged in verbal discussions of the mathematics tasks and b) quantity of tasks students 
completed and discussed within the assigned task-sets. 

Theoretical Framework 
Teachers can use discourse in whole-group or small group settings. One disadvantage of 

whole-class discourse is that only a few students have the opportunity to share their thinking; in 
contrast, having students work in small groups or with partners allows multiple students to share 
their thinking at the same time, increasing engagement (Charalambous & Litke, 2018; Coakley, 
2018; Hunt et al., 2018; Litster et al., 2020). There are two ways teachers may choose to organize 
the timing for small-group discourse: collaboratively or with time scaffolds for individual and 
group work. 

When students work collaboratively, they are engaged in mathematical thinking to 
deconstruct problems, identify strategies, and overcome misconceptions to build a shared 
understanding of the mathematics (Blackham, 2022; Hwang & Hu, 2013; NCTM, 2014). This 
has the potential for students to use time effectively and dismiss inaccurate or less efficient 
strategies early. However, without a positive class culture and discussion norms to support 
equitable participation, it can also lead to imbalances in power where one student takes over and 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 919 

other students are “free-riders” or excluded from the discourse or problem solving (Bennet, 
2014; Cohen et al., 1999; Horn, 2012; Litster, 2020). 

To overcome problems with positions of power or equity, other researchers recommend 
using time scaffolds to allow time for individual reflection, internal discourse, and problem 
solving before coming together to discuss the problem together, reflect on strategies, and/or work 
together (Kalamar, 2018; Walter, 2018). Scaffolding time for individual preparation can increase 
equitable participation and support more in-depth responses and reflections when students 
ultimately come together to discuss the tasks (Kalamar, 2018; Rowe, 1986), 

 

Methods 
This inquiry utilized verbal and written data from a larger study with 96 Grade 5 students 

working in 34 small groups to solve two task-sets relating to operations with fractions and 
decimals. Using a crossover design, half the groups completed Task-Set 1 (H) with a Harry 
Potter theme without time scaffolds for individual or group reflections, discussion, and problem 
solving, while the other half completed the same task-set with time scaffolds. Then, a week later, 
the first half completed Task-Set 2 (D) with a Diary of Wimpy Kid theme with time scaffolds 
while the other half did not have any time scaffolds.  

Groups were given 70 minutes to complete each task-set. Groups without time scaffolds were 
allowed to set their own pace for discussion, reflection, and problem solving to complete 13 
tasks within the task-set. Groups with time scaffolds had alternating times for individual or group 
reflection, discussion, and/or problem solving by breaking up the task-set into three parts: Part 1 
and 2 (DOK1 & DOK 2 focused tasks) had 10 minutes for individual reflection and problem 
solving followed by 10 minutes of group reflective discussion and problem solving. Part 3 (DOK 
3 & 4 focused tasks) had 15 minutes for individual reflection and problems solving following by 
15 minutes of group reflective discussion and problem solving.  

The researcher quantized the data sources in three ways for the analyses (Saldana, 2016). 
First, video data was analyzed to identify the time (to the second) students were engaged on-task 
discussing the mathematics, on-task working silently to solve problems, or off-task (e.g., talking 
about other topics beyond the scope of the task-set, playing with items in desk). Second, the 
frequency of discourse contributions across all groups were counted based on intended DOK 
levels of the tasks and discourse timing. A change in topic, idea, or speaker indicated a new 
discourse contribution. Third, written and verbal data was analyzed to identify the number of 
tasks that were not discussed or answered, by DOK level, task-set, and discourse timing. 

Results 
Quantity of Time Engaged in Mathematics Discourse  

Results relating to the amount of time engaged in verbal discussions of the mathematics tasks 
show that there was an average difference of less than one minute in the time that groups spent 
discussing the mathematics tasks regardless of the presence of time scaffolds. Table 1 illustrates 
the time differences for groups that were on-task the entire time as well as groups that were off-
task at least once during the task-set. The Ns in the table indicate the number of groups who were 
on- or off-task for Time Scaffolds and No Time Scaffolds, respectively. 
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Table 1: Frequency of Time Spent Discussion Math in Minutes 
 

 Time Scaffolds No Time Scaffolds Difference 
(Ref – Col) Heading Mean Min-max Mean Min-max 

On-Task (N = 16, 17) 14.75  11.10-17.80 15.41  11.67-20.10 -0.66 
Task-Set 1 (H) 14.65  13.06-17.80 15.81  11.67-20.10 -1.16 
Task-Set 2 (D) 14.81  11.10-17.23 14.47  13.08-18.43  0.34 

Off-Task (N = 18, 17) 8.83  3.05-13.15 8.45  2.70-12.60  0.38 
Task-Set 1 (H) 7.75  3.05-11.48 9.65  8.80-11.12 -1.90 
Task-Set 2 (D) 9.78  4.32-13.15 7.90  2.70-12.60  1.88 

Overall (N = 34) 11.17  03.05-17.80 12.03  02.70-20.10 -0.86 
 
As seen in Table 1, groups of students who were on-task during the entire task-set spent an 

average of 15 minutes actively engaging in group mathematical discourse and the remaining 55 
minutes engaging in individual reflection, computation, or writing – regardless of discourse type. 
Groups of students who were off-task at least once during the task-set spent an average of 8 or 9 
minutes engaged in group mathematical discourse. Overall, students spent an average of 11-12 
minutes engaging in mathematical discourse. This indicated that, students engaged in discussions 
a similar amount of time regardless of the presence of time scaffolds for individuals and groups. 

 
Quantity of Tasks Engaged With 

Results for quantity of tasks engaged with showed that more tasks were completed for Task-
Set 1 when students did not have time scaffolds and more tasks were completed for Task-Set 2 
when there were time scaffolds. This is most likely due to class effects in the crossover design 
(same groups who has Task-Set 1 without scaffolds had Task-Set 2 with scaffolds). Results also 
show that there were differences in the percentage of tasks completed and discussed. Table 2 
shows the percentage of completed tasks in the written work, while Table 3 shows the percentage 
of tasks discussed (regardless of whether they were completed in the written work). 

 
Table 2: Percentage of Completed Tasks by Task-Set and DOK 

 
Scaffold and Task-Set Levels of Cognitive Demand for Tasks  

DOK1 DOK2 DOK3 DOK4 
No Time Scaffolds     
 Task-Set 1(H) (Group 1) 100%  100%  99% 100%  
 Task-Set 2(D) (Group 2) 100%  97% 88% 94% 
Time Scaffolds     
 Task-Set 1(H) (Group 2) 99% 99% 99% 94% 
 Task-Set 2(D) (Group 1) 100%  97% 95% 100%  
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Table 3: Percentage of Tasks Discussed by Task-Set and DOK  
 

Scaffold and Task-Set Levels of Cognitive Demand for Tasks 
DOK1 DOK2 DOK3 DOK4 

No Time Scaffolds     
 Task-Set 1(H) (Group 1) 100% 99% 94% 94% 
 Task-Set 2(D) (Group 2) 98% 88% 80% 81% 
Time Scaffolds     
 Task-Set 1(H) (Group 2) 88% 95% 63% 94% 
 Task-Set 2(D) (Group 1) 66% 61% 55% 100% 

 
Groups without time scaffolds had the discretion to move to the next task or spend extra time 

discussing a particular task. However, this may have limited the time for some groups to discuss 
or complete the higher DOK level tasks at the end of the task-set. For example, two groups spent 
a lot of time on Task-Set 2 calculations for Part 1 questions due to a misconception (e.g., 
calculated 44.2 x 44.2 x 44.2 instead of 4200 + 44.2). This meant that they only completed tasks 
D1-D8 before they were out of time, with one group jumping from D8 to D13 during the last 5 
minutes (e.g., “We’re almost out of time. This one is funner so let’s jump to this.”). This 
accounts for the high incompletion percentage for Task-Set 2 DOK3 and DOK4 tasks. For 
groups that completed all tasks, but did not discuss all tasks, one student in the group completed 
the task independently. 

In contrast, groups with time scaffolds prompted students to discuss tasks across DOK levels; 
However, it also created conflicts for some groups who either completed their group discussions, 
reflections, and problem solving early (and then proceeded to off-topic discussions) or other 
groups that wanted extra time to reflect on the tasks, but were forced to move on to the next set 
before they had completed their discussion. This made it less likely that students would run out 
of time before reaching the higher DOK tasks at the end of the task-set, and more likely that 
students would run out of time before the last task in each level. For example, during the 10 
minutes provided for group work in Part 1 (Tasks H1-3). One group that had no differences in 
their responses for Part 1 were able to discuss all three tasks in 5 minutes and then spent the 
remaining 5 minutes justifying and checking their responses. In contrast, a different group where 
each student had a different response for H1, spent the entire 10 minutes discussing their 
solutions and strategies for H1 and never discussed H2 or H3, even though they each had a 
response written for these tasks. 

Discussion and Implications 
These results show that regardless of how teachers organize the timing of classroom 

discussions, students spend about the same amount of time discussing tasks, and students still 
need time for personal reflection and problem solving. When working with multiple tasks, 
students without time scaffolds are more likely to discuss every task as they dictate their own 
timings for individual and group discourse of the tasks. Students with time scaffolds are less 
likely to talk about every task, spending more time focusing on one or more questions. However, 
the time scaffolds did ensure they were more likely to talk about a task in each part of the task-
set. Educators should be aware that neither method is more efficient for use of time – some 
groups were more efficient with time scaffolds while others were more efficient without; some 
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groups needed more time to talk about a problem whereas others needed less. Educators should 
monitor their students’ engagement to move the discussion and work time along at a pace that 
meets their students’ needs. 
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The Ghanaian mathematics classroom is typically heterogeneously diverse but the 
government's inclusive and Free Senior High School policies have worsened the situation. 
Teaching in heterogeneously diverse classrooms requires theoretical conceptions that recognize 
the distinct nature of learners, address individual differences, and ensure equity and inclusion 
(Nabie, 2016). The theory of Multiple Intelligences (MIs) provides space for diverse contexts 
and experiences to maximize student learning and achievement (Wang, 2018). The National 
Teaching Council (2017) and National Council for Curriculum and Assessment (2020) advocate 
mathematics teachers’ employment of creative pedagogical strategies to ensure inclusion and 
address diversity in Ghanaian classrooms. Despite these advocacies, little or nothing is seen in 
the Ghanaian mathematics classroom as providing for diversity. Literature on the theory of MIs 
that has the potential to address the challenge of diversity in the Ghanaian mathematics 
classroom setting is also limited. Mathematics teachers still stick to their traditional methods of 
teaching described as “one-size-fits all” (Ako et al., 2019, p. 49), which favor only a few learners 
whose unique intelligences and abilities are met and leave behind the majority.  

The study was designed to identify the Ghanaian mathematics teachers’ conceptions of the 
theory of MIs for implementation. This study seeks to deepen our understanding of how 
mathematics teachers conceive the theory of MIs for implementation in the classroom as well as 
inform the development of teacher training programs and professional development opportunities 
to support teachers in their implementation of MIs. 

Methods  
The study collected data from 12 Senior High School mathematics teachers using the 

Mathematics Teacher's Questionnaire (MTQ) and a semi-structured interview guide. The MTQ 
that was pilot-tested, and test-retesting conducted to obtain a correlation co-efficient of 0.79 as a 
measure of its reliability. The semi-structured interview data was subjected to member checking 
for credibility. Data was analyzed thematically in relation to the research question and codes 
were grouped into categories. 

Findings 
Four (4) mathematics teachers were identified from the MTQ to be familiar with the theory 

of MIs. Interview data from the four (4) mathematics teachers indicate that teachers’ conceptions 
of the theory of MIs could be put into three themes, namely theory of multiple intelligences: (a) 
as multiple learning styles, (b) as multiple strategies for teaching, and (c) for diverse student 
needs. The findings show that despite mathematics teachers’ prior knowledge of the theory of 
MIs, much is still expected of them with regards its understanding and implementation in the 
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mathematics classroom. 
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Although research has shown many ways teachers have successfully implemented culturally 
responsive math teaching (CRMT) practices, we need to know more about how teachers take up 
these practices or why they decide not to. Some teachers sometimes do not take up this work 
because they fear losing their job. However, some teachers want to see themselves and be seen 
by others as culturally responsive but still feel they have work to do. To understand how and why 
teachers engage in CRMT practice, we need to know more about how they identify with, make 
sense of, and own cultural responsiveness in math class. Specifically, the study will attempt to 
answer the following research questions: 

1. How do teachers identify as culturally responsive? 
a. How do teachers engage in cultural responsiveness? 
b. How do teachers imagine themselves and others as culturally responsive? 
c. How do teachers align their practices with other culturally responsive educators? 

2. How do teachers negotiate culturally responsive math teaching (CRMT) practices? 

Wenger (1998) argues that there are three modes of belonging: engagement, imagination, and 
alignment. Engagement entails how one participates (or not) in a community of practice, like 
attending professional development. On the other hand, imagination refers to one's ability to see 
oneself and others as a part of the community of practice. Lastly, alignment involves acting in a 
certain way to contribute to the community of practice's common interest. While forming an 
identity within a community of practice consists of developing and understanding one's 
membership, it also includes how members negotiate and take ownership of meanings. Wenger 
(1998) refers to negotiability as the member's ability to legitimately contribute to how a 
community of practice defines and develops its practice. Like Crisan and Rodd’s (2017) 
translation of Wenger’s framework into a math teacher identity framework, I have translated 
what it means to identify with cultural responsiveness and negotiate CRMT practices.  

I decided to use an exploratory case study (Yin, 2009) to help CRMT research further 
explore such a complex phenomenon. I recruited four teachers (two elementary, two secondary) 
from a southwestern city who have participated in different professional development settings 
about culturally responsive practices. I gathered demographic information on an initial survey 
before the first observation. I observed each teacher twice and followed up with an interview 
after each observation. While the first interview focused on how teachers view their CRMT 
practices, the second interview provided space for teachers to reflect on how their backgrounds 
influence their practices. After transcribing and de-identifying the data, I used two rounds of 
thematic coding in my analysis. The first round assigned each turn in the transcript one or 
multiple mode(s) of belonging (i.e., engagement, imagination, alignment). The second round of 
coding assigned one of Aguirre and Zavala’s (2021) nine areas of culturally responsive 
mathematics teaching to each code from the previous round. After I analyzed the interviews, I 
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sent a version of my analysis to the participants to gather feedback. Since data analysis is still 
incomplete, results and implications are still developing.   
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This brief research report describes the refinement and testing of an observational rubric 
designed to identify and assess elements of classroom mathematics instruction that research has 
found to support multilingual student learning. The aim of this process is to (a) combine existing 
rubrics that capture teaching strategies and positioning construct protocol, (b) test the combined 
rubric in multiple elementary classroom settings, (c) revise the rubric in light of testing to create 
a more consistent version, and (d) retest with a larger sample of classrooms. Initial results 
include revised instrument category rubrics and level descriptors, and the creation of a new 
conjectural code category. 

Keywords: Social Justice; Instructional Activities and Practices; Equity, Inclusion, and Diversity; 
Elementary School Education 

Introduction 
Education inequities persist across the United States, significantly affecting multilingual 

students. Multilingual students are children learning the language(s) spoken at home in addition 
to English (García & Kleifgen, 2010). Many multilingual students attend schools with limited 
resources that are less well-equipped to support their specific learning needs in general 
(NASEM, 2017) or to draw on their cultural and linguistic resources in the ways necessary for an 
equitable mathematics education in particular (Nasir & Hand, 2006). 

To support the improvement of learning opportunities for multilingual students, an 
interdisciplinary team of researchers across three universities in the Mid-Atlantic, Southwest, 
and Midwest United States received a collaborative National Science Foundation grant, 
“Together/Juntos,” to develop and research an innovative mathematical partnership that 
engages teachers, parents, and multilingual students in elementary grades in underserved 
communities. One of the main goals of this project focuses on improving the quality of 
mathematics instruction in linguistically diverse classrooms. To analyze progress towards this 
goal, we needed a classroom tool that would (a) measure “high-quality” mathematics instruction 
that is relevant for multilingual students, (b) validate student differences, and (c) be culturally 
responsive. 

Purpose 
The primary purpose of this study is to refine and test an observational tool that responds to 

the mathematics-instructional and positioning practices of teachers of multilingual students in 
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elementary grades. In this paper, we describe the adaptation process of the Quality of 
Linguistically Diverse Teaching (QLDT) protocol (Sorto et al., 2018) and the Equity and Access 
Rubrics for Mathematics Instruction (EAR-MI) (Wilson et al., 2019) to a more heterogeneous 
context with respect to languages present in the classroom and geographical region. Ultimately 
this adapted rubric will serve as a primary analytic tool answering broader research questions 
about the impact of professional development on teachers’ quality of mathematics instruction 
for, and the classroom positionality of, multilingual students.  

Theoretical framework 
Elevating multilingual students’ mathematics and linguistic knowledge requires teachers with 

asset-based dispositions and specific pedagogical skills. Chval and Chávez (2011) argue 
mathematics instruction for multilingual students requires teachers who support students’ 
mathematics learning, develop students’ language or languages, incorporate students’ life 
experiences into instruction, and facilitate productive interactions. Aligned with these 
recommendations, Moschkovich (2002) suggests classroom instruction must be grounded in a 
situated and sociocultural perspective of mathematics learning that rejects a deficit view of 
multilingual students and focuses on the discourse embedded within and constituent of 
mathematics practices. While some aspects of classroom mathematical discourse, such as the use 
of mathematical vocabulary or multiple meanings of words, are easier to identify and assess, 
there is a need for tools that assess classroom mathematical discourse practices more broadly in a 
way that is tailored to multilingual students and that integrate attention to student identities and 
classroom positioning (Davies & Harré, 1999; Holland et al., 2001). Our approach to assessing 
quality mathematics instruction, and the tool we are developing, incorporates the above ideas to 
help researchers understand what successful teacher support of multilingual mathematics 
students looks and sounds like, and to characterize the sorts of interactions that take place in such 
an environment.  

Methods 
Phase 1: Initial Development  

The development of the observational tool started with a review of existing observational 
rubrics from studies that investigate mathematics classroom interactions. These included (1) the 
Mathematical Quality of Instruction (MQI) tool (Hill, 2014), (2) the QLDT protocol, which 
augments the MQI with dimensions that focus on teaching moves or routines specifically tailored 
for linguistically diverse classrooms (Sorto & Bower, 2017; Sorto et al., 2018), and (3) the EAR-
MI (Wilson et al., 2019; Wilson, 2022), which was designed to complement the Instructional 
Quality Assessment (IQA) rubrics (Boston, 2012). Sorto and colleagues (2018) developed the 
QLDT to leverage the elements of Chval and Chávez's (2011) research-based instructional 
practices to support multilingual students in mathematics. It contains six instructional strategy 
categories: “Connections of mathematics with students’ life experiences,” “Connections of 
mathematics with language,” “Meaning and multiple meanings of words,” “Use of visual aids or 
support,” “Record of written essential ideas and concepts on board,” and “Discussion of 
students’ mathematical writing.” Each category can be coded as “Not Present”, “Low”, “Mid”, 
or “High.” The EAR-MI is a set of rubrics that attends to practices observed in classrooms where 
there was evidence of conceptually oriented instruction and of more equitable access for students 
who are typically pushed to the margins (Wilson & Smith, 2022). Among the diverse practices 
that the EAR-MI highlights, we focused on one in particular: positioning students as competent 
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by framing students’ actions and statements as intellectually valuable. The EAR-MI positioning 
rubric highlights moments when the teacher explicitly states that a student is capable of 
participating in rigorous mathematical activity and/or is making important contributions to the 
learning community. This positioning rubric was added to the QLDT at the onset of Phase 2. 
Phase 2: Testing and Revising 

During the Together/Juntos project's first year, 22 classroom lessons from nine teachers were 
videotaped at two school sites. The first site was a dual language P-8 school in a large city in the 
Southwest U.S. This school serves roughly 580 students, of whom 80% are eligible for free or 
reduced lunch and 92% are Latinx. Students at this school learn to read and write in both English 
and Spanish, although mathematics classes are primarily taught in English. All teachers observed 
are bilingual, as are the majority of the students. Five teachers were recorded teaching 
mathematics lessons in their classrooms: three fifth grade teachers, one third grade teacher, and 
one second grade teacher. The second site was a suburban K-5 elementary school in a diverse 
community outside of a large Mid-Atlantic city in the U.S. The school has roughly 550 students, 
of whom about half are eligible for free or reduced lunch. More than half of the students (56%) 
are Black, 19% are White, and 13% are Latinx. Students at this school receive classroom 
instruction in English. Four teachers were recorded teaching mathematics in their classrooms: 
two fourth grade teachers, one fifth grade teacher, and one third grade teacher. Half of these 
teachers speak and understand a little Spanish, the rest do not. 

Three trained doctoral students (“the coders'') coded 22 lessons following the QLDT 
protocol, which is modeled after the MQI. For every 7.5-minute video segment, each coder 
independently assigned a code (Not Present, 0; Low, 1; Mid, 2; or High, 3) to each QLDT 
instructional strategy element, as well as to the EAR-MI positioning element. After coding an 
entire lesson, coders would then compare and discuss their coding and arrive at consensus where 
necessary. After coding all 22 videos, coders compiled their notes and email exchanges to begin 
revising the instrument rubrics. The overarching goals during this revision process were to 
remove ambiguities remaining from Phase 1, improve clarity, and brighten the distinction 
between the different rubric categories and coding levels. For example, the original description 
of the “Use of visual aids or support” category did not foreground the idea of dynamism, 
although the QLDT creator highlighted this idea as central during initial instrument training 
sessions (see Table 1 below). Furthermore, the original description includes examples that could 
be considered static (e.g. “formula charts . . . times tables”), and the term “dynamic” itself is not 
defined nor does it appear in the category title. 

Initial Results 
We have revised all six QLDT rubric categories and further integrated the EAR-MI 

positioning rubric into a tool we currently call the QLDT+P. Table 1 presents an example of a 
revised code (level descriptors have been omitted for reasons of space). Overall, the revised 
codes offer more thorough and explicit guidance based on coders’ experiences wrestling with 
applying the original descriptors to various classroom circumstances, including specific language 
to help deal consistently with recurring ambiguous cases and examples drawn from actual 
lessons to further illustrate and clarify this guidance. The revisions provide more direction as 
well regarding when a situation should be classed as Not Present, Low, Mid, or High in at least 
three ways: (1) by including more decision rules for when something should be classed as one 
level or the other, (2) by providing extended examples within the descriptors of when something 
would count as one level or another, and (3) by overhauling ambiguous terminology. 
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Table 1: Use of dynamic visual aids or support 
 

Original description Revised description 

For example, concrete 
objects or manipulatives, 
videos, and illustrations in 
classroom conversations. 
Concrete objects may 
include times tables, 
formula charts, 
protractors, 2D models, or 
dynamic foldables. 

 
This code does not 
include the visual support 
of the blackboard. Any 
visual support needs to 
add to the static nature of 
the blackboard, anchor 
charts, or other visually 
displayed information. 

The lesson or activity uses dynamic aids that support mathematical 
sense/meaning making or reasoning to some extent. For example, using 
concrete objects or manipulatives, videos, or illustrations that are 
animated or dynamic in some other way during classroom conversations. 
“Concrete objects” may include protractors, rulers, 2D models, or 
dynamic foldables as well as objects from everyday life.  

 
The key word here is “dynamic” in the sense of movement, change, or 
energy. Static supports such as black- or whiteboards, written materials or 
notes, PowerPoint slides, etc., are not captured by this code. Dynamic 
visual support needs to add to the static nature of the blackboard, anchor 
charts, or other visually displayed information.  

 
It is possible for ordinarily static supports like black-/whiteboard writing, 
formula/anchor charts, number lines, or times tables to be made dynamic 
through teacher or student actions such as annotation with arrows or 
circles accompanied by movement, physically acting out scenarios or 
ideas related to the supports, etc. However, simply including arrows or 
other static indicators of motion on a handout or chart does not count.  

 
We are also developing and testing a new category aimed at capturing multilingual students’ 

use of what Schleppegrell (2007) and others (e.g., Herbel-Eisenmann & Otten, 2011; Pimm, 
1987) call the “classroom mathematics [linguistic] register.” Although elements of the classroom 
mathematics register are already captured in the QLDT+P code category “Meaning and multiple 
meanings of words,” this category is oriented towards students learning about differences in the 
mathematical and non-mathematical meanings of words, rather than employing such meanings. 
We feel that capturing moments when multilingual students capitalize on opportunities to use the 
classroom mathematics register is a potential gap in the current version of the QLDT+P. Hence, 
we have designed a new code to pilot during the next iteration of QLDT+P video analysis. 

Discussion 
The original combination of QLDT and EAR-MI rubrics captures many aspects of classroom 

mathematics instruction that are needed for multilingual students’ mathematics learning, 
including key sociocultural elements related to identity and positioning. We believe that our 
revised tool will allow for more nuanced and consistent assessment of quality mathematics 
instruction for linguistically diverse students. To test whether this is the case, we are training 
coders on the revised QLDT+P tool to analyze a new round of classroom videos generated by 
our larger, National Science Foundation-funded research project. These analyses, in turn, will 
generate insights not only about the reliability of the tool itself, but also about our broader 
research questions regarding the impact of a professional development on teachers’ quality of 
mathematics instruction for multilingual students. As such, our enterprise fits the 2023 PME-NA 
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theme of engaging all learners, addressing in particular the question of how to design learning 
environments that take students and learning into account. 
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Teaching math for social justice (TMfSJ) is a pedagogical practice that teachers can use to 
help students see that mathematics is relevant to their lives and understand injustices and 
inequities in the world around them (Gutstein, 2003). While much of the literature involving 
TMfSJ lessons (TMfSJLs) has emphasized implementation of these lessons (e.g. Esmonde, 2014; 
Kokka, 2020), there has been less emphasis on picking and adapting preexisting TMfSJLs (see 
Berry III et al., 2020; Conway IV et al., 2022; for examples of preexisting lessons and see 
Felton-Koestler, 2020; Harper et al. 2021; Thanheiser & Sugimoto, 2020 for exceptions to 
picking these lessons). Thus, the research question we focus on is: How can teachers pick and 
adapt a preexisting TMfSJL?  

Methods 
The data for this study stems from a lesson that we implemented in an online synchronous 

capstone course for undergraduate math majors that focused on uncovering racism with 
mathematics. The data included instructional notes from each author and student work from the 
12 undergraduate mathematics majors. To analyze the data, we compared the instructional notes 
and reached agreement on the elements that were central to picking and adapting the lesson–(1) 
student interests, (2) student math knowledge, and (3) knowledge of preexisting lessons. 

Preliminary Results  
We picked and adapted a preexisting TMfSJL letting students’ interests drive our selection. 

We first investigated the students’ interests by looking through the students’ introduction slides, 
the current topics the students were interested in exploring with math, and their significant 
circles (Esteban-Guitart & Moll, 2014). From these slides, we were able to create a joint list of 
topics: healthcare, education, income, and the environment. We then searched the lessons in 
Berry et al. (2020) to pick specific TMfSJLs that matched these topics while also ensuring the 
mathematics would challenge the undergraduate math majors. After narrowing our search down 
to five lessons, we looked at concepts the students struggled to understand throughout the class. 
We noticed that the students relied on Google Sheets in a previous lesson to construct a line of 
best fit. While Google Sheets was useful in helping students generate a quick response to the 
task, it was not as useful in helping students understand the underlying concept behind 
constructing a line of best fit. Thus, we picked Lesson 6.3: Culturally Relevant Income 
Inequality (Berry III et al, 2020, p. 127) as it connected to one of the students’ interests (income) 
and its math goal could be adapted to creating and analyzing lines of best fit by hand.  

The original goal of Lesson 6.3 involved analyzing and comparing the rate of change of the 
median annual income of whites, Blacks, Hispanics, and Asians in 1967, 1967, 1970, and 1987, 
respectively, to their median annual income in 2014. We adapted this math goal by having 
students create (and later analyze) a line of best fit by hand of the difference between two races' 
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median annual incomes–Asians and whites, whites and Blacks, or Blacks and Hispanics–with 
data points ranging from 1970 to 2020.  
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This study examines the design and implementation of a problem-solving task intended to 
motivate students to explore mathematics in unlikely places and investigate the students’ 
perception of the task. The task given to 19 middle school students centered on Voting. Four 
voting methods provided context for determining outcomes using mathematics involving 
proportional reasoning, fractions, ratios, and logic. The task design provided clues for how 60 
children voted for 4 choices of candy. Student work and surveys were analyzed qualitatively. 
Student work elicited multiple strategies using both ratios and algebraic thinking. Student 
perceptions were examined for mathematical, non-mathematical, and real-world perspectives. 
Findings indicate students see mathematics embedded in counting votes and that fairness in 
voting is not easily achievable. They then considered if satisfaction was optimizable. 

Keywords: Instructional Activities and Practices, Middle School Education 

Students often view mathematics as something that occurs only in school mathematics 
classrooms and removed from our daily lives or general interests (Boaler & Dweck, 2015). 
Mathematics is “often siloed to its own specific time and format” (Smith & Oslick, 2023, p. 14) 
and in many instances focused on procedures, calculations, and answers. However, teachers can 
use tasks that generate an exciting environment for exploring mathematical ideas creatively 
through connections and integration of other fields of study (Aljarrah & Tower, 2023; Darling- 
Hammond, 2000). Our research considers the design and implementation of a collection of tasks 
and activities that enable and motivate students to explore mathematics in unlikely places. We 
also investigate students’ perceptions of the tasks. 

Relevant Literature and Theoretical Perspectives 
Engaging students in their mathematical activity, particularly those activities that have an air 

of originality and novelty (Aljarrah & Tower, 2023) and set in a creative environment “enables 
learners to generate and expand ideas, suggest hypotheses, apply imagination, and look for 
alternative, not-yet imagined approaches” (Craft, 2001 p. 14). We are guided by instructional 
practices that are beneficial to engaging group work such as the use of complex instruction and 
designs of tasks with active learning through cooperative interaction (Cohen, 1994). As Esmonde 
(2009) notes, there are possible pitfalls of these types of activities. One must be aware of group 
dynamics when enacting group activities within the classroom, specifically when particular 
students take on an “expert” role. Esmonde (2009) discusses a negative effect on some student’s 
learning when one (or multiple) vocal students take control of the conversations. One way we 
believe to ensure multiple students interacting and partaking in the discussions is through 
enacting activities that are designed to pique student hobbies and non-mathematical interests. 
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We take a sociocultural perspective in designing the tasks (Vygotsky, 1962) that students 

construct new knowledge supported by the social nature of their interactions with their peers. We 
also encompass aspects of the culturally relevant pedagogy framework (Ladson-Billings, 2020) 
in using students' experiences and backgrounds to help create activities and engage students in 
the mathematical content contained within. 

Literature on using student interest in mathematics is limited. Poston & Vandenkieboom 
(2019) examined the use of chess to increase test scores while Ke (2019) examined how 
integrating mathematical problem solving with architectural design using a 3D epistemic 
stimulating game resulted in better performance in a math context problem solving test over a 
control group. An activity for middle school students discussed by Hunt and colleagues (2014) 
incorporated voting with the study of ratios and found that by developing the concepts from 
concrete, semiconcrete, to abstract representations helped build students’ conceptual 
understanding of the mathematics. Ainley (2012) discusses two metaphors that can describe the 
relationship between interest and engagement: hook and switch. A “switch connects students’ 
existing personal interests with opportunities to express those interests.” (pg. 286) 

Hence, our report focuses on two research questions: 

•  In what ways can topics that are not inherently associated with mathematics be leveraged 
in mathematical task design to engage middle-school students in a productive manner? 

• How do the students perceive their experiences in enacting the activity? 

Methods 
The results presented in this paper were collected at the end of a multiple summer research 

project aimed at exploring how mathematics could be related to other areas of study that are not 
necessarily seen as mathematical. During the summer of 2020, six graduate research assistants 
from a large research institution in the southern U. S. each designed six activities relating 
mathematics to other fields of study. In the summer of 2021, three of the graduate assistants in 
turn refined and implemented a subset of the activities with middle school students from a 
summer math camp that was held online due to the Covid pandemic. Out of 36 activities 
designed in 2020, 12 were implemented in 2021. Some of the topics included were origami, 
billiards, medicine, voting, juggling, and astronomy. 

To implement these activities in the camp setting, each graduate assistant prepared their 
lesson for the week and discussed their plans with the research team. Given feedback from the 
research team, adjustments were made, and the following day the graduate assistants spent one 
hour training two camp counselors on how to implement this activity with the students. This 
cycle was repeated over the course of two weeks of the camp session as each graduate student 
implemented a total of four activities. After each activity, feedback was collected from both the 
counselors and students via a survey. The activity discussed in this paper is from one of those 
implementations. 19 students’ written work was submitted via the classroom management 
system Canvas, additionally 17 student surveys were collected. 
Activity 

The activity that we analyzed centered on voting methods. Voting is a central part of 
American society, but more broadly, a central part of democracy. It is a topic that students tend 
to have first-hand knowledge of as they have typically experienced some type of voting be it for 
electing a class president or voting for their favorite foods. 
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Voting can be leveraged in mathematics through its relationship with fractions and ratios. 
The activity designed promotes understanding of both concepts as well as logic. It additionally 
promotes the development of soft skills used such as creative thinking and communication. 

The activity is a combination of a reading task, a PowerPoint presentation, and a logic 
puzzle. Prior to the presentation and puzzle, students were given a short article about four 
different types of voting methods that are used (Jones, 2002). Through the reading, students are 
exposed to basic definitions of each voting method as well as examples of how each method 
works (First Past the Post, Run-off, Elimination, and Ranking). Following the reading, students 
were given a short presentation on the article and a logic puzzle. The students were prompted: 
Suppose 60 people are voting on the best candy to use as prizes in their classroom. The four 
choices up for a vote are Reese’s Peanut Butter Cups (R), Jolly Ranchers (J), Smarties (S), and 
Kit Kats (K). Using the clues below, determine how many people voted for each candy. Students 
were also given clues and table as seen in Figure 1. 

 
Figure 1: Voting Clues and Table 

Analysis 
For this paper, we present our preliminary analysis of the Voting Activity. We used the 

written student work to qualitatively analyze the ways in which students attempted to solve the 
given logic problem and the mathematical strategies they employed by open coding (i.e., did they 
use ratios, proportions, system of equations, other) (Miles, Huberman & Saldana, 2019). For the 
student survey responses, again we open coded for what was the overall perception of the 
activity mathematically and non-mathematically, and how the students saw this as beneficial or 
connected to the real world. 

Results 
In this paper we discuss results related to the ways the topic of voting was used to leverage 

mathematical activity for middle grade students. Additionally, we present student survey 
responses on their thoughts of the activity and the non-mathematical idea that was present within 
the activity. 
Mathematical Activity 

Within the voting activity, students were presented with the four different voting methods. 
With these four different voting methods, students discussed how proportional reasoning, 
fractions, and ratios can be used to discuss the ways in which people are “happy” or “not happy” 
with the outcome. 

Each of these voting methods can elicit ratio and proportional reasoning in different ways. 
Students used ratios to help further their reasoning of how to deduce the answers to this puzzle. 
For example, when considering Clue 7, a student wrote the following on their worksheet “1:6, 
SJKR:SKJR= 1:6 = a:6a.” Yet, we did not just see students using proportional reasoning or ratios 
to make sense of their logic puzzles. Frequently, we saw students create multiple systems of 
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equations. The same student referenced above later created a system of equations to help deduce 
other portions of the puzzle. Another example can be seen by considering the student work in 
Figure 2 below. Here, we see the student set up a system of equations to deduce the values of x 
and y, where x and y represent the number of people who voted for Jolly Ranchers as their first 
choice in two different ways. 

 
Figure 2: Student work of system of equations 

 
Student Perceptions 

In regard to student perceptions, we focus on the responses to the following survey questions: 

1. Describe what you learned from the activity (mathematical and non-mathematical) and 
2. What would you like to learn more about related to the activity? 

In terms of the mathematical ideas learned, all responses from the students were within the 
context of voting. Of the responses, multiple students discussed the ways in which mathematics 
is used in areas such as voting with the comment, “I learned how you can use math to see how 
voting works and see how the people get their favored thing in a ratio.” In response to the non- 
mathematical ideas learned, we saw multiple students focus on the idea of fairness, “any voting 
method will never be 100% fair or correct,” “no voting methods are 100% fair.” These responses 
also transcend into the second question above on what they would like to learn more about 
regarding the activity. Out of the responses, many students focused on knowing more about 
voting, either as in “more methods of voting” or methods used in the real world such as “real-life 
politics” or “voting systems in different countries.” Additionally, we saw students interested in 
optimizing satisfaction, “most optimal voting method” or “which way is fairest under certain 
circumstances.” Notice that both comments can be seen as ways in which mathematicians begin 
to conjecture in their own research. 

Discussion 
Throughout this report, our goal was to showcase how nonmathematical ideas could be 

incorporated into mathematics classrooms to engage students’ interests. The activity showcased 
closely aligns with common core standards in grades six and seven, making it an activity suitable 
for classrooms settings. Moreover, this activity presents students with the opportunity to reason 
with multiple solutions. While we acknowledge that there are limitations in online 
implementations, we consider this implementation informative as online classes become a more 
normal part of society. As designed, our activities can be adapted for both in-person and online 
environments. Regarding students’ perceptions, we highlight how students’ interests in voting 
were piqued and mathematical understanding deepened (self-reported) through engagement with 
this activity. While limited to a report of one task design, it can inform designs of other 
mathematical tasks that capitalize on other nonmathematical ideas. A broader question that we 
see in relation to this activity and further research include exploring how this activity and other 
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nonmathematical ideas could be situated within the realm of culturally relevant pedagogy and 
deliberately designed towards collaborative and collective mathematical problem solving. 
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Black middle-school students with disabilities often face barriers to accessing rigorous 
mathematics as well as opportunities to develop a positive mathematical identity (Lambert, 2017; 
Padilla & Tan, 2019). This critical academic identity consists of beliefs about an individual’s 
"ability to do mathematics, the relevancy of mathematical knowledge, the opportunities and 
barriers to enter mathematics fields, and the motivation and persistence needed to obtain 
mathematics knowledge” (Martin, 2009, pp. 19). Mathematical identity is an important 
educational outcome that contributes to mathematics academic success (Gonzalez et al., 2020). 
Yet, Black students with disabilities may experience Discourses that separate them from notions 
of normality and being a knower and doer of mathematics. 

Constraining students' development of a mathematical identity is problematic because we 
know math serves as a gatekeeper (Cribbs et al., 2015). Students with strong mathematics 
experience and skills have access to more advanced courses, entrance to more selective colleges, 
and pathways to math-dependent careers that tend to provide material wealth (Rogers, 2020). 
These avenues are often not available to students tracked into remedial, special education, or 
carceral educational learning environments (Hines et al., 2021). Students in lower mathematics 
tracks are less likely to receive the content they need to access college preparatory math classes 
(Gholson & Robinson, 2019). To help students positively construct their mathematical identity 
there is a need for research that considers the multifaceted, contextual messages students receive 
about their race and ability (McGee & Martin, 2011). This research project supplies a 
preliminary perspective of these messages for one middle school classroom community and the 
possible implications of classroom discourse related to mathematical equity and inclusion for 
Black students with disabilities. 

This study examines the classroom community interactions among sixth-grade students from 
a predominantly Black and Latiné, low-income middle school. Inclusion criteria required that the 
selected classroom community comprised students with and without disabilities and at least one 
Black student. Using audio recordings, field observation notes, and reflexive memos, our 
research approach and procedures identified the semantic relationships among spoken words or 
phrases (little “d” discourse) to interpret the semiotic meanings of mathematical identity 
conveyed through classroom conversation (big “D” discourse). Our objective was to understand 
what Discourses about race and ability exist in a middle school mathematics classroom. We used 
intersectional qualitative research methodology (Esposito & Evans-Winters, 2022) and Positive 
Discourse Analysis (Rogers, 2018) tools to examine broad messages of mathematical power, 
agency, and solidarity. We conducted four coding phases and present preliminary results from 
this analysis. Our findings may invite researchers and teachers to recognize the Discourses 
related to mathematics identity construction for Black middle school students with disabilities 
and the contours of meaning assembled through classroom conversation. 
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Parental involvement in education has been traditionally defined in the literature by what 

schools can do to attract parents into the building to assist in educating their children (Abrams & 
Gibbs, 2000). This traditional school conception of parental involvement in mathematics 
education does not align with culturally different parenting traditions found in Black and Latinx 
households (Cunningham, 2021) and represents a deficit view centering student achievement 
around parents’ lack of school participation, parenting skills, or a disorganized homelife (Nieto, 
2001). Gonzalez, Moll, and Amanti (2005) noted that there is a reservoir of mathematics 
knowledge and usage in households that are not always evident to household family members 
and teachers.  

The purpose of this qualitative study was to reimagine parental involvement during their 
children’s middle school experience by exploring parental, family, and community Funds of 
Knowledge (FoK) and how such knowledge can be used by a middle school mathematics teacher 
to promote student mathematics learning (Gonzalez et al., 2005). The research questions guiding 
the study were:  (a) What are some FoK of Black and Latinx middle school parents and families? 
(b) How did a middle school mathematics teacher capture and use parents’ and families’ FoK to 
create lessons that connect students’ lived experiences to mathematics learning? 

As it relates to mathematics teaching and learning, FoK seeks to build a bridge between the 
mathematics parents or families understand and use informally at home and students engage with 
in their classroom environments.  The concept of FoK provided an analytic framework for the 
qualitative study that acknowledges the strengths and assets of Black and Latinx parents and 
families, recognizing that their voices and experiences might be used as an intellectual resource 
when developing mathematics education learning opportunities (Gonzalez et al., 1993). This 
theoretical lens supports an exploration of bridging the lived experiences and perspectives of 
Black and Latinx parents of middle school students to mathematics teaching and learning in the 
classroom environment (Glesne, 2016).   

The current study takes a critical perspective of the deficit portrayal of parent and family 
engagement by listening to the stories and experiences of parents and families via a 
questionnaire, semi-structured interview, focus group conversations, and exploring the 
community in which students live; then using what is learned about the use of mathematics in the 
home and community to design cognitive demanding mathematics learning opportunities in the 
classroom (Stein & Smith, 1998). 

Results show FoK can be captured by participating in church/church events located within 
the school’s community. Those FoK centered on food, gardening, music, and cultural traditions 
and celebration discourse. These led to the creation of Number & Operation, Measurement, 
Algebra, and Geometry middle school mathematics tasks. Building reciprocal and mutual 
relationships with parents/families through participation in community events enables teachers to 
create learning activities that enrich students’ lived experiences in the classroom environment. 
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To approach Cai et al.’s (2017) call to blur the lines between research and practice, we examine 
how early childhood, special, and mathematics educators form a research-practice partnership 
with the shared focus of supporting young children’s development of equitable problem-solving 
activity. To situate this work, we draw from Cobb and Yackel’s (1996) Emergent Perspective, 
considering both the child’s psychological construction of knowledge and the adaptations made 
by community members in a partnership framework. Thus, in this theoretical brief, we describe 
an Emergent Research-Practice Learning Community Framework and unpack its three main 
constructs: shared focus, shared work, and shared vision. 

Keywords: Early Childhood Education, Problem Solving, Professional Development, Teacher 
Educators 

A gap between research and practice is well known and has been lamented for years 
(Arbaugh et al., 2010; Heid et al., 2006; National Association for the Education of Young 
Children [NAEYC] & National Council of Teachers of Mathematics [NCTM], 2010). Recently, 
Cai et al. (2017) called for a “radically different” approach to linking research and practice (p. 
468). They envisioned “a world in which research and practice in mathematics education are 
tightly intertwined, a world in which the boundaries between research and practice become 

blurred” (Cai et al., 2017, p. 472). This initiative critically presses researchers in mathematics 
education to take up partnership research design models between teachers and researchers in 
hopes to blur the boundaries between practice and research worlds. In such a partnership, 
teaching and research partners share the research and teaching activities jointly. The authors of 
this brief reflect on what this research practice partnership looks like theoretically. 

Theoretical Foci 
In this theoretical brief, we unpack three main aspects of a research-partnership framework 

(shared focus, shared work, and shared vision), while focusing on how young children become 
sense makers in their own microcultures (e.g., small group activity) and how this can extend to 
classrooms and school cultures. Broadly, this collaboration is set within a University-School 
partnership in seven Prekindergarten, Kindergarten, and Grade 1 classrooms. In this brief report, 
we reflect on the theoretical aspects of this work and how children may engage in sensemaking 
in equitable ways from the organizational features of this partnership. 

By taking up a research-practice partnership design, we posit there is a critical need to 
develop theoretical frames to explain phenomena under examination and better contribute to the 
field in meaningful ways. We would be remiss to not root research-practice partnerships with 
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equitable practices at the center while explaining the theoretical stance for these varying 
educational cultures. In this brief, we consider how theories around children’s problem-solving 

activity, professional learning, and reflexive research-teaching practices can mediate 
equitable practices for the sake of research-practice partnership development. To examine such a 
complex system in this theoretical brief, we take up the Emergent Perspective theoretical lens 
(Cobb & Yackel, 1996) and develop an Emergent Research-Practice Learning Community 
framework. 

Theoretical Framework 
Early childhood mathematics education is fundamentally important, setting the stage for rich 

learning opportunities for young children well beyond their early childhood classroom 
experiences and predicting later learning, achievement, and social development (McWayne et al., 
2009; National Mathematics Advisory Panel, 2008; Schmitt et al., 2017). Moreover, problem 
solving in early childhood education receives the least amount of attention in the classroom 
(Karoly et al., 2008) and in the research field (Fox & Diezmann, 2007), leaving early childhood 
educators with a lack of curricula, resources, and professional development focused on problem- 
solving instruction. Coupling these issues with the fact that equitable teaching practices (NCTM, 
2018) prior to entering kindergarten also varies dramatically (Rudd et al., 2008; Stipek et al., 
2012), children often experience dramatic differences in their mathematics performance prior to 
entering Kindergarten (Puma et al., 2010). This framework essentially states that when research 
studies begin at the student level (utilizing Psychological Constructivist approaches), efforts 
remain unfinished until an interactionalist perspective is taken up to examine the emergent 
perspectives from research-practice partnership members in the classroom (see Figure 1). 

 

Figure 1. Emergent Research-Practice Learning Community Framework 

To serve these issues, we begin at the center of this framework, a shared focus, on the 
development of children’s problem-solving activity (see green text in Figure 1). Another aspect 
of this theoretical framework is how reflexive research-teacher collaborations are formed to 
better provide resources, time, and support when implementing high-quality and equitable 
mathematics instruction in teachers’ classrooms. Following the COVID-19 pandemic, the US has 
experienced high levels of educator attrition rates (Steiner & Woo, 2021). Wu-Pope (2022) 
posits the solution to retaining quality educators is to develop research-practice partnerships with 
more intentionality. Essentially, we echo this claim and aim to increase teacher (and researcher) 
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learning through ongoing collaboration in classrooms. Thus, the Emergent Research-Practice 
Learning Community framework includes a second level, activities in classroom microcultures 
(see orange text in Figure 1). The learning communities explicate shared work between 
educators and researchers in a reflexive manner and through the development of a shared vision 
of equity-oriented learning environments (see Figure 1). 

Cobb and Yackel (1996) stated that adaptation of activity from culture (e.g., microculture) to 
culture (classroom culture), allows meaningful examination of how features of an organizational 
system are adapted for children’s problem solving. In particular, at the student level, Cobb and 
Yackel explained that the “qualities of students’ thinking are generated by or derived from the 
organizational features of the social activities in which they participate” (p.220). In the remaining 
brief, we consider the constructs and activity at the microculture level; we examine how 
professional learning activities, reflexive teaching, and research activity can 
provide equitable organizational features for children’s problem-solving activity. 

Shared Focus: Children’s Problem-Solving Activity 
The first component in our framework is shared focus: children’s problem-solving activity. 
In this framework, we broadly define problem solving as children’s autonomous engagement 

with their unfinished mathematics learning through their sensemaking of contextualized tasks. 
By having a shared focus, Louis et al. (1996) posited the importance of having “an undeviating 
concentration on student learning” (p. 760). To better articulate the shared focus, we consider 
Cognitively Guided Instruction [CGI] problem types (Carpenter et al., 1999, 2015) with the 
intersection of how children construct units (Steffe & Cobb, 1988) and develop a solution path 
with particular tools (e.g., number line, rekenrek). 

We utilize Carpenter et al.’s (1999, 2015) CGI problem taxonomies. Within their taxonomy 
of additive word problems, Carpenter et al. identified four types based on the underlying 
structure of the problem: join, separate, part-part-whole, and compare. Each join or separate 
problem type can have a missing start, change, or result, providing opportunities for reversible 
thinking (Simon et al., 2016). When children engage with these problem types, Carpenter and 
colleagues (1999, 2015) found students early strategies included direct modeling of the solution, 
or varying degrees of counting activity. 

To explain nuanced development of children’s direct modeling and counting, we also 
examine children’s problem solving through their units construction and units coordination. A 
unit is a measured out set of items or length and to coordinate units requires a child to develop 
abstract relationships between units. For instance, a child may first solve a problem by counting 
on (i.e., groups five bears, and says, “five, six, seven), and then by double counting to keep track 
of a total counted and the number of skip counts (i.e., “two, four, six, that’s three twos”). We 
posit, that by engaging in reversible activity (through varying problem types) with pre-numerical 
units (perceptual units, figurative units, etc.), children are better positioned to develop abstract 
units (internalized and interiorized units) at earlier ages. When children are first relying on pre- 
numerical units that are not yet coordinated, their physical activity with varying tools (i.e., 
number line, bears) often evidences mental activity developed later (Steffe & Cobb, 1988). This 
work is critical in establishing sensemaking opportunities for young children in early childhood 
mathematics education, but it is not sustainable without understanding how educators and 
researchers can partner to enact this shared work and examine their shared vision. 
Shared Work: Reflexive Teaching and Research Activities 

To begin adapting problem-solving strategies in a microculture, we theorize the importance of 
the second component in our framework is shared work through reflexive teacher-researcher 
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engagement in classroom practices and research activities. By team teaching alongside varying 
members of the research-practice partnership, microcultures are created (Webb et al., 2009. In 
the Emergent Research-Practice Learning Community, these microcultures include collaborative 
teaching experiences and station teaching experiences (cf. team teaching as a specific form of co- 
teaching; Cook & Friend, 1995). These microcultures impact how children’s mathematics 
discourse is orchestrated (Smith et al., 2019) and how children are grouped (Webb et al.). All 
partnership members share in the work of anticipating children’s solution paths before lessons as 
well as monitoring children in small groups as they engage in reasoning, sensemaking, and 
productive struggle to solve problem types with the solution path or tool of their choice. After 
small group work, partnership members share in the work of selecting and sequencing children 
to share their solution paths with the whole class. During the whole class discussion, partnership 
members team teach by co-facilitating the discussion of children’s solution paths. Every child is 
encouraged to share, critique, and connect ideas and solution paths. These five practices allow 
for meaningful adaptations within classroom microcultures for all children to be positioned as 
knowers and doers of mathematics by enhancing their mathematical identity and agency. 

When engaging in station teaching, children’s small group problem-solving activities become 
contextualized and reflexive for partnership members (Webb et al., 2009). For instance, in this 
shared work, partnership members have opportunities to engage in equitable instructional 
practices through how they group their students for small-group problem solving. By creating 
heterogeneous groups, community members are able to “try out” varying ways to engage 
children with problem-solving tasks and talk about their activity and solution paths (Webb et al., 
2009). Thus, reflexive teaching and research partnerships, which members take up to learn more 
about equitable grouping structures, are formed through their shared work. 
Shared Vision: Professional Learning Activities 
The third component of this framework, shared vision, explains how equitable teaching practices 
(NCTM, 2014; 2018) are promoted through professional learning experience. Essentially, 
through professional learning opportunities (e.g.., professional book study, lesson study), 
partnership members begin noticing patterns in their students’ activity (Pak, 2022) and reflecting 
on their teaching practices (Muir & Beswick, 2007), which largely take up the Equitable 
Teaching practices (NCTM, 2018). For instance, when designing and implementing tasks that 
promote problem solving and reasoning, partnership members reflect on tasks, anticipate student 
strategies and develop questions about multiple pathways children may develop. Moreover, 
partnership members could also engage in contexts where problems are designed around the 
varying funds of knowledge of children and families (NCTM, 2018). 

Through discussions around professional materials and action research activity, partnership 
members may connect equitable teaching practices and equitable learning opportunities, while 
reflecting on their instruction and their students’ learning opportunities. 

Conclusion and Implications for Research in Practice Partnerships 
We described how a focus on children’s problem solving could be leveraged equitably 

through community members shared work around their orchestration of discourse, and their 
shared vision around their equitable task development. In short, by taking up such a theoretical 
framework, partnership members are better positioned to examine how varying pedagogical 
cultures afford development of a shared focus, shared work, and shared vision. Given the impact 
this framework could have with research studies, we have questions as to how constructs in this 
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model (e.g., shared focus, shared vision, shared work) may explain young children’s equitable 
access to their own sensemaking in mathematics classrooms over time. 
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To base teaching on student thinking requires analyzing and interpreting students’ thinking, key 
components of the construct of professional noticing (e.g., Jacobs et al., 2010). Although 
substantial research has been conducted using this construct, less attention has been paid to 
teachers’ evaluations of student work based on these analyses and interpretations. In this 
theoretical report, I argue that evaluation of student thinking is a key prerequisite for effective 
instructional decision making for responsive teaching. I then present a synthesized framework of 
evaluation criteria and an elaborated process for effective and responsive evaluation of student 
written work using these criteria. Finally, I analyze excerpts from two interviews with 
elementary prospective teachers to demonstrate the utility of these products. 

Keywords: Teacher Noticing, Preservice Teacher Education, Assessment 

Effective mathematics teaching requires basing instruction on students’ thinking (e.g., 
National Council of Teachers of Mathematics, 2014). To engage in such responsive teaching, 
teachers need the skills of eliciting (e.g., Shaughnessy & Boerst, 2018b), understanding (e.g., 
Association of Mathematics Teacher Educators, 2017), evaluating (e.g., Dyer & Sherin, 2016), 
and productively responding to (e.g., Jacobs et al., 2010) student thinking. Therefore, teacher 
preparation programs must provide multiple opportunities for prospective teachers (PTs) to learn 
how to enact these skills. This theoretical report contemplates PTs’ ability to evaluate student 
mathematical thinking as reflected in written mathematical work, a construct which is 
underdeveloped in the literature. I argue that thoughtfully evaluating student work and thinking 
is an essential aspect of responsive teaching because it shapes how teachers can productively 
respond to students’ mathematical understandings and ideas (Dyer & Sherin, 2016; Jacobs et al., 
2010; van Es & Sherin, 2021). In this report, I address the following research questions: What 
criteria for evaluation of student work and/or thinking have been documented in the literature? 
and Can these criteria be synthesized into a process that can be used to evaluate students’ 
written mathematical work in a systematic way supportive of responsive teaching? 

Evaluating Students’ Thinking in Responsive Teaching 
One essential meaning of the verb ‘evaluate’ is “to determine the significance, worth, or 

condition of… usually by careful appraisal and study” (Merriam-Webster, n.d.). Thus, evaluation 
is necessarily judgmental, but it should be thoughtful (i.e., based on evidence and/or reasoning). I 
define “evaluation of student thinking/work” as the process teachers use to make reasoned 
judgments about students’ mathematics using relevant criteria and against relevant standards to 
inform their next steps for teaching, including providing feedback and responding to students. 

Robertson et al. (2015) defined responsive teaching as teaching that embodies three 
characteristics: (1) foregrounding the substance of students’ ideas, (2) connecting students’ ideas 
to key ideas within the discipline, and (3) taking up and pursuing students’ ideas. Evaluation of 
student thinking plays a critical role in applying these tenets. For example, to connect a student’s 
idea to a key idea within the discipline, a teacher must evaluate how closely the student’s idea 
aligns with it. Ideally, this evaluation would help the teacher consider how to help move the 
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student’s thinking towards that key idea. Also, during typical classroom instruction, due to time 
constraints, teachers must choose which ideas will be pursued by the whole class (Stein et al., 
2008; Stockero et al., 2017). To make such decisions, teachers must evaluate students’ ideas in 
reference to their relevance to the learning goal (Stein et al., 2008). 

Potential Criteria for Evaluating Students’ Written Work 
From a synthesis of the literature, I define six criteria that teachers could use to evaluate 

students’ written mathematical work to support instruction aligned with the tenets of responsive 
teaching and a seventh criterion, personal preference, that could be detrimental to responsive 
teaching if used by a teacher to evaluate students’ written work (Table 1). 

 
Table 1: Definitions of Potential Criteria for Evaluating Students’ Written Work 

 
Criterion Definition 
Strategic competence The extent to which a student’s strategy was appropriate for solving the problem, 

including discussions of mathematical limitations of the strategy for solving this or 
similar problems. 

Logical validity The extent to which a student’s reasoning forms a logically valid mathematical 
argument. 

Conceptual 
understanding 

The extent to which a student’s work demonstrates understandings of mathematical 
concepts related to the topic of the problem. 

Efficiency/ 
sophistication 

The extent to which a student’s strategy and/or work for the problem is efficient or 
mathematically sophisticated, including judgments related to the placement of the 
strategy within a developmental progression. 

Clarity The extent to which a student’s thinking, reasoning, and work are communicated in 
ways others can easily understand. 

Accuracy/procedural 
understanding 

The extent to which a student obtains a correct answer, correctly completes 
computations, and/or knows/follows steps of a procedure. 

Personal preference The extent to which the evaluator prefers a student’s strategy for solving the problem 
due to their own relationship with the strategy. 

 
In the next sections, I will describe and synthesize literature that implicates the first six of the 

criteria in Table 1 and comment on how teachers’ evaluations of student work or thinking on 
each criterion could contribute to responsive teaching.  
Strategic Competence 

Building from one of the strands for mathematical proficiency from the Adding it up report 
(National Research Council [NRC], 2001), Copur-Gencturk and Doleck (2021) defined three 
aspects of strategic competence. First, the student must devise a valid solution strategy for 
solving the problem. Second, the student must translate the problem and/or strategy into a useful 
mathematical representation. Finally, the student must execute their chosen solution strategy 
accurately. However, when evaluating student work for a non-computational problem, I consider 
accuracy to be a separate criterion for evaluation. An appropriate strategy that contains a minor 
calculation error in its application in a written solution could be seen by a teacher as strategically 
competent despite its inaccuracy. 

Monitoring students as they work on a mathematical task is one of the five practices for 
orchestrating a productive mathematical discussion (e.g., Stein et al., 2008). Notably, the goal of 
monitoring is “to identify the mathematical learning potential of particular strategies or 
representations used by the students, thereby honing in on which student responses would be 
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important to share with the class as a whole” (Stein et al., 2008, p. 326). Thus, as teachers 
circulate, they should be evaluating the student work they see for its strategic competence, which 
will then inform their decision for which strategies may be best to share with the class. Such 
decisions align with tenet (3) of responsive teaching: taking up and pursuing students’ ideas. 
Logical Validity 

Although logical validity could also be viewed as an aspect of strategic competence, I 
consider strategic competence to be a criterion for evaluating the reasonableness of a student’s 
strategy selection. Logical validity is more fine-grained, as it considers the validity of each step 
of reasoning (implicit arguments) in the student’s work. As Özdemir and Pape (2012) noted, 
teachers can support students by asking them to explain their reasoning for selecting a strategy 
(strategic competence) and justifying why it works (logical validity). 

As part of the process for selecting student solutions to present to the class (Stein et al., 
2008), a teacher may decide to have a student share work that illustrates a common error in 
reasoning to help the class understand why it is not valid (Ayalon & Rubel, 2022). Doing so 
helps students connect their ideas to key disciplinary ideas, tenet (2), through contrast. However, 
Morris (2007) suggested that PTs may have difficulty applying this criterion, as they will often 
fill in logical gaps in students’ arguments with their own reasoning. 
Conceptual Understanding 

Teachers often have a particular learning goal in mind when they plan a lesson and the tasks 
or activities contained within it. Hiebert et al. (2018) and Morris et al. (2009) described the 
process of decomposing the learning goal into component mathematical subconcepts. These 
subconcepts are specific conceptual understandings that students may have an opportunity to 
demonstrate as they work on a task. Evaluating student work to determine which conceptual 
understandings the student has demonstrated is therefore important for considering next steps. 

Cohen and Benton (1988) recommended that teachers analyze students’ thinking for 
evidence of specific conceptual understandings as they circulate while monitoring student work. 
As Stein et al. (2008) noted, one key goal of monitoring student responses is to ensure that 
approaches to the task aligned with the learning goal (i.e., that demonstrate specific conceptual 
understandings) will be available for class discussion. Diagnosing these specific conceptual 
understandings foregrounds the substance of students’ ideas, tenet (1). 
Efficiency/Sophistication 

To orchestrate an effective mathematical discussion, teachers need to the sequence of 
solutions presented to the class. Stein et al. (2008) suggested one possible effective sequence is 
to present a strategy that is more accessible to students before presenting a more complex 
strategy. Thus, it would be important for teachers to evaluate students’ solutions on an axis of 
efficiency, sophistication, or placement on a developmental progression. A study by Ayalon and 
Rubel (2022) confirmed that PTs often sequence strategies in increasing order of complexity, and 
PTs justified this decision by discussing students’ ability to access more strategies. Additionally, 
several studies (e.g., Clements & Sarama, 2021; Moreno et al., 2021; Schack et al., 2013) have 
examined how instruction on learning trajectories succeeded in supporting PTs and teachers to 
learn to notice students’ mathematical thinking, a prerequisite to tenets (1) and (2). Therefore, 
evaluation on this criterion may support responsive teaching by improving teachers’ noticing. 
Clarity 

During a classroom discussion, students may make mathematical contributions, either 
verbally or through presenting their written work. Van Zoest et al. (2020) provided a framework 
that teachers can use to think about such contributions. According to the framework, a student’s 
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contribution can be non-mathematical, clarification-needed, inference-needed, or standalone 
(Van Zoest et al., 2020). A teacher’s evaluation of a mathematical contribution on this 
framework could help them determine their next teaching move. For example, if the teacher 
evaluates the contribution as “inference-needed,” they may ask a student to restate the 
contribution with additional context and precision before asking the class to engage with it. In 
this process, the student is given an opportunity to clarify their meaning if an incorrect inference 
was made. By making an evaluation of the clarity of a student’s contribution and responding 
appropriately, the teacher can support the class in understanding the connection of the idea 
shared to key conceptual understandings or disciplinary concepts, tenet (2). 
Accuracy/Procedural Understanding 

For some procedural tasks, the learning goal concerns students’ ability to demonstrate 
accurate computation and ability to follow the steps of a procedure. However, for other tasks, 
although teachers may wish to take note of computational or procedural errors, evaluations on 
this criterion may be of a lower priority in terms of responding productively to students’ ideas. 
Nevertheless, as I explain below, it has been an evaluation criterion observed in prior research. 

Prior Studies on Considering Students’ Written Work 
Several studies have found that PTs and teachers often attend to the accuracy of students’ 

written work. For example, in a study by As’ari et al. (2019), most algebra teachers’ ideal 
solutions for understanding student thinking employed accurate symbol manipulation after 
translating the given information into algebraic equations. As’ari et al. (2019) concluded the 
teachers in this study valued accuracy and procedural understanding highly. However, because 
the teachers also valued correctly mathematizing the given information into an algebraic 
representation, these teachers may also have valued solutions that demonstrated strategic 
competence (NRC, 2001). Additionally, PTs often assume a correct answer in student work 
indicates conceptual understanding (e.g., Bartell et al., 2013; Shaughnessy & Boerst, 2018a; 
Spitzer et al., 2011). Studies by Son (2013) and Lee (2021) concluded that, although PTs often 
successfully attended to errors in students’ work, few PTs developed clear interpretations of the 
student’s underlying mathematical difficulty. These studies strongly suggest that procedural 
understanding and accuracy are criteria that PTs and teachers use to evaluate students’ work.  

Prior qualitative research has provided some additional nuance to these findings. For 
example, Michael (2005) claimed that elementary PTs value solutions where all information and 
steps are shown, and their evaluations of solutions appeared to be positively influenced by 
features that made the work easy to follow. Corven (2021) also found that elementary PTs often 
preferred work that was clear to them, regardless of the solution’s accuracy or validity. 

Personal preferences may also affect PTs’ evaluations of student work. For example, Van 
Dooren et al. (2002) observed that PTs generally prefer student solutions that match the one they 
would have used to solve a problem when asked to choose from among several correct examples 
of student work. A replication and expansion of this study by Michael (2005) noted a statistically 
significant, positive correlation between PTs’ frequency of using a particular strategy to solve 
word problems and their evaluation scores for student work using a similar strategy. 

Processes for Evaluating Student Work 
Philipp’s (2018) study on diagnostic competence provided insights into how mathematics 

teachers think about students’ written solutions to mathematics problems. According to Philipp, 
after reconstructing a student’s solution from their perspective, a teacher evaluates the student’s 
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work in terms of its strengths and deficits. However, Philipp’s process is problematic for several 
reasons. First, although “deficits” may be an accurate characterization of how teachers in 
Philipp’s study viewed aspects of students’ work or thinking, a growing body of research (e.g., 
Louie et al., 2021) encourages the use of anti-deficit approaches to such analyses. Second, 
Philipp (2018) specifically defined deficits as “errors” (p. 121), but other aspects of the work 
could also raise concerns for a teacher (e.g., gaps in logical reasoning, unclear parts of the work, 
or not demonstrating an important subconcept of the learning goal). Finally, Philipp’s process 
ceases after strengths are identified, but interactions with a student after teachers attend to and 
interpret their mathematics can help develop the student’s thinking (e.g., van Es & Sherin, 2021), 
even when no errors or concerns are identified. To address these concerns, I created Figure 1, 
which is a refinement and elaboration of Philipp’s (2018) idealized diagnostic process. 
 

 
Figure 1: An Elaborated Process for Evaluating Students’ Written Mathematical Work 

The row labeled “Evaluate the solution” in Figure 1 poses questions aligned with the six 
productive criteria for evaluation in Table 1. However, some solutions may not contain sufficient 
evidence to answer all the questions in the “Evaluate the solution” row. For example, Spitzer et 
al. (2011) state that, for a procedural solution, an appropriate answer to the question “What does 
the student understand conceptually?” would be that there is not enough evidence to substantiate 
any such claim. The “Evaluate the solution” row in Figure 1 is also not meant to be followed 
strictly from left to right. Expert teachers will apply the evaluation criteria implicated by those 
questions flexibly, strategically, and purposefully depending on the details in a student’s work.  
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Application of the Elaborated Process 
I will now demonstrate an application of the framework in Figure 1. Below is an excerpt 

from an interview with Charlotte (pseudonym), an elementary PT who had just finished her first 
mathematics content course. Charlotte was asked to reconstruct the student’s thinking shown by 
the solution in Figure 2, which was a response to the story problem, “A licorice rope was 36 
inches long. Tammy cut the entire rope into pieces 4.5 inches long to share with her friends. How 
many pieces did she make?” (adapted from Moore et al., 2020). 
 

 
Figure 2: A Missing Factor Approach to Solving a Division Story Problem 

Charlotte: So, I think they understand, just by starting out, I think they understand the 
correlation between division and multiplication. So, they switched the 36 divided by 4.5 
to a multiplication problem. So, they understood that 36 inches [trails off]…. [T]hey don't 
know yet how many groups of 4.5, so they switched it to the problem L groups of 4.5 
inches equals 36. So, to make it easier for them, they did 4.5 plus 4.5 to get a whole 
number, to get 9, and they understand that 9 goes into 36 four times. So, 9 plus 9 plus 9 
plus 9 equals 36…. [B]y doing the 9 plus 9 plus 9 plus 9 is just saying like parentheses, 
4.5 plus 4.5, close parentheses four times, so they can see that L equals 8…. 

Interviewer: So, they had the idea that each of these 9’s represents two copies of 4.5? 
Charlotte: Yes, and it looks like they could have made their work clearer by doing, like under 

that maybe, parentheses 4.5 plus 4.5, and do that across the line…. But it seems like 
they're able to understand it [so] that they don't need the work. If they were struggling 
and not getting the right answer, as a teacher, I might have been like, well, show your 
idea behind the 9. But, since they have the work above it, it seems like they understand 
what they're trying to say…. Maybe when they were first learning this, they did put that 
line under it. But maybe they're further along in the process where they understand now 
that, with the work above it, that 4.5 and 4.5 will give the 8 instead of 4…. 

Interviewer: In your opinion, how would you evaluate the reasoning shown in this solution? 
Charlotte: I think that it's good that they understand the concept that division and 

multiplication relate to each other with switching the problem up like that. And then, with 
the 4.5 plus 4.5 equaling 9, it's good that they made it a whole number so they're not 
messing around with the decimals and everything. So, I think they showed the work they 
needed for this problem. I understood it, and it seems like they understood it as a student. 
So, overall, I think they understand the concept of division. 

Charlotte’s engagement with the student work was generally aligned with Figure 1. Charlotte 
interpreted the student’s work as showing that “they understand the correlation between division 
and multiplication,” and she cited mathematical details from the student’s work (“L groups of 4.5 
inches equals 36”) to support her inference. Thus, Charlotte both attended to and interpreted 
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mathematical details in the student’s work (Jacobs et al., 2010). Further, she recognized where 
she had filled in a step in the student’s reasoning (“they could have made their work clearer by 
doing, like under that maybe, parentheses 4.5 plus 4.5”) that was implicit in the work 
(metacognition; Morris, 2007). Charlotte did not indicate a need to elicit the student’s thinking 
for confirmation, suggesting she considered the contribution as standalone (Van Zoest et al., 
2020). Charlotte also compared the work to (hypothesized) past performance (Jessup, 2018) 
when she said, “Maybe when they were first learning this, they did put that line under it. But 
maybe they're further along in the process [now]” (contextual factor). Thus, Charlotte was 
generally able to reconstruct the solution from the student’s perspective to prepare for evaluation. 

Charlotte considered and evaluated the logical validity of the student’s reasoning, though she 
did not make an explicit strategic competence evaluation. Nevertheless, she did diagnose a 
specific conceptual understanding (the relationship between multiplication and division) 
demonstrated by the student’s work. Given the relationship between strategic competence and 
mathematical knowledge for teaching described by Copur-Gencturk and Doleck (2021), this 
statement could be interpreted as an implicit evaluation of the strategy as valid. However, 
Charlotte did not conduct a full breakdown of the learning goal into subconcepts and 
overgeneralized the student’s conceptual understanding. At the conclusion of the evaluation, 
Charlotte stated, “overall, I think they understand the concept of division,” but she did not 
elaborate on what other specific understandings of division the work demonstrated. Charlotte did 
consider the efficiency of the strategy in the solution in terms of ease for the student by stating, 
“with the 4.5 plus 4.5 equaling 9, it's good that they made it a whole number so they're not 
messing around with the decimals.” Additionally, Charlotte commented that the student’s final 
answer was correct, indicating an evaluation of accuracy (no errors). Finally, Charlotte discussed 
ways in which the work could have been made clearer, but claims, “I think they showed the work 
they needed for this problem. I understood it, and it seems like they understood it as a student.” 
Charlotte’s response exemplifies a generally productive application of the process in Figure 1. 

However, not all PTs I interviewed exhibited this level of alignment with the process. The 
transcript below shows Jane’s (pseudonym) response to the solution in Figure 2. 

Jane: We started out with an equation of L times 4.5 equals 36, with 36 being how much of 
the rope we have, and the 4.5 being how much we want to cut it into, and L being our 
pieces. So, we know that 4.5 plus 4.5 would be 9, so we would add up 9 until we get 
relatively [close] or to the exact answer of 36, which they did. And we also know that 9 
was the sum of 4.5 plus 4.5, so, because we had to use four 9’s in order to get the 36, our 
answer would then be 8 pieces. 

Interviewer: So because we had four 9’s and each of those 9’s was two 4.5’s, that’s where 
they got the 8 from? 

Jane: Yes. 
Interviewer: So, how would you evaluate the reasoning shown in this solution? 
Jane: I think this is a really good method to use. It’s quick and it seems pretty simple. 
Interviewer: Okay. Any other thoughts or comments about this solution? 
Jane: No. 
Jane’s reconstruction of the student’s work had some similarities to Charlotte’s in terms of 

attending to the mathematical details in the solution. However, unlike Charlotte, Jane did not 
apply metacognition to recognize that she filled in missing steps in the student’s work and 
inferred that the student thought the same way. Also, although Jane described the meaning of 
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each quantity in the original problem, she did not describe any conceptual understandings that 
the student demonstrated through their solution. Most of Jane’s reconstruction is recitation of the 
steps the student did rather than interpreting the student’s thinking, aligning with Level 1 in 
Fernández et al.’s (2013) framework: “interpretations of students’ answers mainly rely on the 
description of the operations carried out and not on the meanings” (p. 453). 

When I asked Jane to evaluate the student’s work, she made evaluations of strategic 
competence (“I think this is a really good method to use”) and efficiency/sophistication (“It’s 
quick”). However, she did not provide any rationales for these evaluations, even after prompting. 
Specifically, she did not draw on any details from the work to justify her evaluations. In line with 
Bartell et al. (2013) and Spitzer et al. (2011), PTs may need more support to use the process in 
Figure 1 effectively and consistently (e.g., basing their evaluations on mathematical details). 

Implications 
Teacher Education 

In the context of elementary teacher preparation, opportunities for PTs to evaluate written 
work (e.g., Fernández et al., 2013) and/or participate in simulated student interviews (e.g., 
Shaughnessy & Boerst, 2018a) can serve as initial exposures for PTs to consider how their future 
instruction can center student thinking. Such activities could be implemented in early content 
courses without a field experience component. The process in Figure 1 can also help MTEs 
understand how their PTs are engaging in productive (or unproductive) evaluations of student 
work and thinking. MTEs can then consider teaching PTs about evaluation criteria that are 
important but have not yet surfaced. For example, MTEs can purposefully select student work 
that is designed to elicit certain criteria for evaluation (e.g., a solution that does not clearly model 
the situation, yet reaches a correct numerical answer) as a basis for a classroom discussion.  

The primary contribution of the evaluation process in Figure 1 is the elaborated synthesis of 
the construct of professional noticing of children’s mathematical thinking (Jacobs et al., 2010) 
with Philipp’s (2018) framework of teachers’ diagnostic processes and the productive evaluation 
criteria from review of prior research in Table 1. Although professional noticing was one of the 
theoretical bases for Philipp’s (2018) process, the elaborated framework clarifies the 
relationships between these ideas in a way that is useful to MTEs and teachers. MTEs can share 
this process with their PTs to guide them towards examining student work in ways that 
productively center student thinking. Additionally, in-service teachers can compare their own 
evaluation processes to the one in Figure 1 to help them develop new ways of thinking about 
student work. The questions listed in the “Evaluate the solution” row of Figure 1 could also serve 
as prompts during a professional development centered on examining student work. 
Future Research 

Figure 1 can also be used to characterize how PTs and in-service teachers evaluate students’ 
mathematical work. Such investigations could lead to further refinements of this process. For 
example, tasks that ask students to execute a specified procedure may not provide any evidence 
of a student’s conceptual understanding (Spitzer et al., 2011), so skipping some of the questions 
in the “Evaluate the solution” row would be appropriate. Additional arrows that explicate more 
specific paths through the process based on the nature of the underlying task could then be added 
to Figure 1. Creating and analyzing flowchart diagrams of PTs’ reconstructions and evaluations 
could better emphasize the relationship between this process and evaluation criteria. 

Evaluating students’ work in ways that honor and center their thinking is complex. I 
hypothesize that opportunities to reconstruct and evaluate students’ written work alongside 
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instruction on processes for doing so could support PTs developing responsive teaching 
practices. However, more research is needed to ascertain how effective such instruction would 
be. Additionally, to tailor such instruction for PTs, it would be important to know the extent to 
which PTs’ individual attributes (e.g., mathematical knowledge or beliefs) influence their 
selection or application of evaluative processes. Although these questions are the domain of 
future empirical studies, this work establishes a sound theoretical base for such research. 
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This interview research was designed to understand the perceptions of instructors and volunteers 
who worked at a one-week residential math and technology program for middle school girls 
regarding their experiences working with the program. Instructors and volunteers described 
their potential professional and/or personal growth, their challenges with the program, and 
suggested program improvements. The data indicate that personal benefits accrued from 
involvement in the program, in particular, enhanced knowledge and skills. Instructors and 
volunteers also reported professional growth in skills and dispositions. Instructor challenges 
included working with an especially broad ability range and insufficient collaboration with other 
instructors, and volunteers described uncertainty about their expected role. Some staff also 
suggested updates to technology used in the program. This study contributes to research on out-
of-school-time STEM programs. 

 
Keywords: Informal Education; Middle School Education; Teacher Knowledge; Teacher Beliefs 
 

The purpose of this qualitative study was to gain insight into the perceptions of staff and 
volunteers regarding potential personally and professionally beneficial experiences and 
challenges faced while working at a one-week, residential summer math and technology program 
for middle school girls. 

Women continue to be underrepresented in mathematics-based fields (e.g., Makarova et al., 
2019). Various performance-related and social, psychological, and emotional factors can 
influence women’s pursuit of and perseverance in mathematics. Unfavorable gender stereotypes 
in STEM (science, technology, engineering, and mathematics) are a major culprit (Cheryan et al., 
2015; Makarova et al., 2019; Zhao et al., 2018). Girls and women thus tend to hold lower self-
concepts, expectations for themselves, and career intentions in relation to STEM compared with 
boys/men (Robnett, 2016; Robnett & Thoman, 2017; Song et al., 2017). 

Although societal change is necessary to address gender-STEM stereotypes, classroom 
teaching can also influence students’ relationship with STEM in general and along gendered 
lines. One promising approach for supporting girls/women in STEM is out-of-school-time (OST) 
learning. OST programs have been shown to increase participants’ STEM knowledge and 
performance, engagement, and career aspirations (Allen et al., 2019; Author2 et al., 2021; 
Demetry & Sontegrath, 2020). OST programs tend to use contemporary methods that support 
desirable outcomes. Whereas traditional mathematics teaching tends to be teacher-oriented with 
passive students who are expected to acquire prescribed knowledge and procedures, often 
through memorization, contemporary methods emphasize active student involvement that 
employs critical and creative problem-solving and sense-making approaches that make use of 
written and oral communication, interaction with others, hands-on approaches, productive 
struggle, and real-world applications (Li & Schoenfeld, 2019; Noreen & Rana, 2019; Yuanita et 
al., 2018). Importantly, OST programs have also been found to improve girls’ STEM identities 
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(Allen et al., 2019; Hughes et al., 2013) and their dispositions toward STEM (Author2 et al., 
2021). 

A girls math and technology program, which has mainly consisted of a one-week summer 
residential program from its inception in 1998 to its recent coed version, provides learning 
opportunities, resources, and participation in a community of support that better prepares 
participants to enhance the quality of their academic, vocational, and everyday lives and to 
contribute to advancement of the wider society. The program targets girls at the critical middle 
school juncture to increase interest and expand STEM options that can serve them well in their 
personal life and future occupation. While staff are critically important to the success of such a 
program (Dai et al., 2021), little research has been conducted on the experiences and role of staff 
in out-of-school-time programs (Beharry et al., 2021; Spears et al., 2021). 

Methods 
Research Question 

What perceptions do staff members and volunteers working at a one-week, residential 
summer math and technology program for middle school girls report regarding potential 
personally and professionally beneficial experiences and challenges faced in their role? 
Procedures 

A qualitative approach was deemed most appropriate to gather this information to identify 
individual points of view by having participants express their feelings and experiences. The 
purpose of qualitative research is to support participant voice, adding deeper understanding to a 
phenomenon of interest (Patton, 2002). Phenomenology can thus serve as an appropriate lens 
with which to view this research. Different groups can have differing behaviors and ideas that are 
important to understand to mitigate possible narrow thinking about a phenomenon (McLeod, 
2008). The staff we interviewed provided personal perceptions of the program in which they 
participated that they described in terms of their self-awareness of their own experiences in 
relation to the program.  

Individual interviews were considered to be most appropriate for conducting this research 
because of the intent to acquire individual responses from participants. Azzara (2010) notes, 
“When the research objective is to understand individual decision processes or individual 
responses, individual interviews are optimal” (p. 1). Phone interviews that averaged eight 
minutes each were conducted with 23 staff members (18 instructors, 5 volunteers), which reflects 
a response rate of 72% from 32 recruited staff members who worked with the program for two 
years or more from 1998-2018. 

Interview questions were developed by the lead researcher, who served as Director of the 
program for its entire 20-year existence. These questions related to the interviewees’ 
perspectives regarding their experiences with the program. Interview questions were semi-
structured and addressed personal reflections on perceptions of and experiences with the 
program. These phone interviews were audio recorded by the second author and transcribed for 
later analysis of themes related to the research questions. 

Four questions were posed during the interview conversations; (1) What do you believe you 
gained professionally and/or personally by working with the [program name]? (2) What were 
your greatest challenges in working with the [program name]? (3) Can you suggest any 
improvements to the [program name] that would enhance your role with the program? and (4) Is 
there anything else that you would like to add? 
Data Source and Analysis 
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The source of data was participant comments made during interviews and documented on 
interview transcripts. Data analysis began with reading through the transcripts multiple times to 
identify themes related to experiences with and perceptions of the program. They were 
continually adjusted until both researchers agreed on the final themes. Example themes were 
“personal reward,” “helping students,” “improving skills,” “collaborating,” “personal growth,” 
“professional growth,” and “improving knowledge/skills.” Open-ended coding was applied to all 
participants’ responses, where data was broken into parts, examined, and compared by 
similarities or differences (Strauss & Corbin, 1998). Upon conclusion of reviewing the 
transcripts, coding was crucial to understanding key themes of across individual responses. The 
next step was to use axial coding, connecting the responses and forming categories within the 
interview data to identify overall themes for interpretation. 

Results & Implications 
Initial review of the data indicate that personal benefits accrued from involvement in the 

program, in particular, enhanced knowledge and skills. Instructors and volunteers also reported 
professional growth in skills and dispositions. They noted that their deepened mathematics 
understanding, insight into working with girls, enhanced their confidence in their role as K-12 
teachers. They also reported the important of connecting with other women staff focusing on 
mathematics education. For example, one volunteer stated, “I’d like to give the girls any leg up 
that they can get. It was just really personally rewarding to give your time and make an impact 
on at least one person. And then professionally, it is always just good to be in a community and 
helping others.”  

Instructor challenges centered on an especially broad ability range, participant engagement 
during summer hours, and insufficient collaboration with other instructors, and volunteers 
described uncertainty about their expected role. For example, one instructor noted that the broad 
ability level, born of the program drawing from a large geographical region, led to some 
impatient students blurting out answers, thus compromising her ability to “give everybody that 
equal opportunity to really process what was going on.” In terms of collaboration across 
instructors, this was an issue because each instructor taught a specific content area, such as 
geometry or algebra, but instructors did not communicate or collaborate with each other because 
they were only present to teach their own session. A challenge to volunteers was that they were 
uncertain about the level of involvement and input they should provide. In terms of open-ended 
program improvements suggested, the main recommendations were to update some of the 
technologies used (e.g., Terrapin Logo and Geometer’s Sketchpad) and to better define and 
monitor the role of volunteers. 

The results of this study show that out-of-school-time programs can offer important personal 
and professional benefits to staff but that challenges they face must be solicited and addressed by 
program directors. This study can contribute useful insights to the rapidly growing out-of-school-
time STEM education movement because little research has been done in this area, especially in 
relation to underrepresented groups, staff turnover is high in youth programs, and the potential 
influence on mathematics might exceed that of some other subject areas (Koch et al., 2012; Saw 
et al., 2019). As noted earlier, staff are critically important to the success of out-of-school-time 
programs (Dai et al., 2021), but little research has been conducted on the experiences and role of 
staff in these programs (Beharry et al., 2021; Spears et al., 2021). Therefore, this study can be an 
important impetus to conduct further and deeper research on the experiences of staff in OST 
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programs because insights staff provide can be integral to creating a more effective OST 
program that benefits all participants, including staff, volunteers, and students. 
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Access is a critical component to consider in math learning because individual students' 
access to cognitively demanding mathematical tasks is often limited (Hiebert & Grouw, 2007; 
Lynch et al., 2018; Yeh et al., 2020). The success of all learners in mathematics requires that 
teachers work together to provide instruction, support, and interventions that enable every 
student to become an expert learner and doer of mathematics (Hiebert & Grouw, 2007; Lambert, 
2020, 2021). Co-teaching is an instructional approach that draws on the expertise of two teachers 
as they deliver joint instruction to meet the needs of every learner in the classroom. Five 
commonly used co-teaching models are Parallel Teaching, Station Teaching, Teaming, 
Alternative Teaching, and One Teach, One Assist (Friend, 2008; Solis et al., 2012). Each model 
has variations in teacher instructional delivery, the size of student groups, and the recommended 
frequency of use. This research focuses on the question: how do various co-teaching models 
afford students access to mathematical learning opportunities? I conceptualize student 
accessibility through the Universal Design for Learning Math (UDL Math) framework (Lambert, 
2021). The six design elements of the UDL Math framework delineate criteria for how math 
instruction should be designed to develop students into mathematical learners (Lambert, 2021).  

In this exploratory case study, I conducted ethnographic classroom observations of co-taught 
mathematics instruction in a second-grade classroom of twenty-two students. The teacher pair 
who co-taught the class were selected through purposeful sampling: the teachers exhibited asset-
based views of students on pilot survey data and revealed instructional strategies aligned with 
current educational research (Patton, 2002). My data sources are video-recorded lesson 
observations with accompanying field notes, instructional artifacts, teacher interviews, and 
reflective surveys. For my analysis, I first determined the co-teaching model used in each lesson 
through structural coding, a method for categorizing a data corpus (Saldaña, 2015). Then, I 
coded each co-taught lesson for accessibility using a coding scheme developed from the UDL 
Math framework (Lambert, 2021) with 36% of lessons coded for interrater reliability and 
achieving a moderate level of agreement (Cohen’s Kappa = .6) between coders.  

My analysis reveals how the five different co-teaching models revealed evidence of different 
elements of the UDL Math framework when implemented with a diverse group of elementary 
students. When the Teaming model was observed, lessons revealed strong evidence of student 
collaboration and contextual connections, and all Teaming lessons consistently included 
problem-solving opportunities accessible to a wide range of students. The Alternative model 
showed discrepancies between student groups in the same lessons, with enrichment groups 
receiving more accessible instruction than intervention groups. This discrepancy was most 
evidently through the number of student choices offered and opportunities for student 
collaboration. One strength evident in the One Teach, One Assist model was a supportive 
classroom environment. Findings related to helpful feedback and accessibility of problem-
solving opportunities in this model were impacted by which teacher was assisting and which was 
leading instruction. The Parallel model was the only model observed that had no instances of 
students choosing their solution paths, or agency to choose which representations they used. 
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Finally, Station model learning consistently included multiple representations but students lacked 
opportunities to make connections between the representations at each station. 
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This study addresses the need to better describe instructional strategies used by middle grades 
mathematics teachers. After coding 177 videos of grades 6-8 mathematics instruction for 
indications of effective instructional practices, we further analyzed 8 of the highly scored videos 
with specific attention to teachers’ implementation of strategies associated with Explicit 
Attention to Concepts (EAC) (Champion et al., 2020). We found that these effective teachers of 
mathematics tended to enact EAC by using a preferred strategy more predominantly than others, 
though all teachers used at least two EAC strategies during a lesson. Additionally, most 
participants in our study used an Initiate, Response, Evaluate (IRE) format (Mehan, 1979) when 
enacting EAC. We illustrate examples of their instruction with vignettes. 

Keywords: Mathematical Representations, Instructional Activities and Practices, Middle School 
Education, Classroom Discourse  

The implementation of instructional practices that help improve student achievement in 
mathematics has proven to be nuanced and difficult (Hill et al., 2005; Stein, et al., 2008). In a 
synthesis of studies, Hiebert and Grouws (2007) identified Explicit Attention to Concepts (EAC) 
and Students Opportunities to Struggle (SOS) as instructional approaches which were effective 
in increasing student mathematics achievement. Stein et al. (2017) found that students whose 
teachers’ classroom instruction exhibited greater use of EAC and SOS had higher student math 
achievement gains than their peers on assessments that measured conceptual understanding and 
on assessments that measured procedural skills efficiency. These findings have been confirmed 
since 2007 (Flores et al., 2015; Fyfe et al., 2014; Kazemi & Stipek, 2009; Ng & Lee, 2009; 
Paliwal & Baroody, 2020; Stein, et al., 2017; Wilson et al., 2019). EAC and SOS are very 
general clusters of instructional strategies, though, and we need nuanced analysis of how 
teachers in particular contexts implement more specific instructional strategies to better design 
learning environments focused on student learning.   

Theoretical Framework 
 Hiebert and Grouws (2007) focused on the importance of the presence of both EAC and 

SOS in mathematics classrooms for students to learn both procedural and conceptual 
mathematics. Considerable attention has been given as of late to SOS (Esmonde & Langer-
Osuna, 2013; Jackson et al., 2013; Warshauer, 2015) and less attention has been given to EAC. 
For this study, we will focus on EAC. Hiebert and Grouws (2007) described what they mean by 
EAC with this statement: “By attending to concepts we mean treating mathematical connections 
in an explicit and public way” (p. 383). Hiebert and Grouws (2007) cited multiple studies 
spanning 50 years that indicated procedural and conceptual understanding of procedures is 
learned and retained better by students who learned from teachers who focused on both 
mathematical concepts and made connections between the procedure and conceptual 
understanding behind the procedure. Examples of EAC include attending to mathematical 
concepts, making connections among multiple representations, making connections across 
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solution strategies, and reminding students of the main concept of the lesson and how it fits into 
a sequence of lessons.   

Given the challenge of implementing instructional practices that help improve student 
achievement in mathematics (Hill et al., 2005), it is important to capture the scope and subtleties 
of effective mathematics instruction in order to better design learning environments that take 
student learning into account. Champion et al. (2020) created an EAC and SOS practice guide 
(see Figure 1; Champion et al., 2020) to add clarity and make EAC more actionable for teachers 
(while the practice guide addresses both SOS and EAC, our analysis focuses on EAC). The 
framework describes three overarching features derived from Hiebert and Grouws (2007) 
definition. Specifically, EAC is present in instruction that features: (a) a focus on mathematical 
concepts, (b) concepts that are made explicit and public, and (c) connections being emphasized 
between concepts and representations of ideas.  

To make the EAC construct more actionable, the framework provides practical strategies that 
teachers could use to actualize the characteristics of EAC in their classrooms, each with two 
examples. Again, these strategies are identified from Hiebert and Grouws (2007) description of 
EAC. The Strategies for EAC are: (1) Specifically connecting to more than one representation of 
an idea, (2) Noting ways that different solution strategies are similar or different, (3) Discussing 
the mathematical reasoning that underlies a procedure, and (4) Pointing to a main idea in a lesson 
and how it fits into a bigger picture. Examples of each strategy are labeled A and B under each 
strategy (see Figure 1;  Champion et al., 2020). 

 

 
Figure 1: EAC/SOS Guide to Instructional Practices for Improving Math Achievement 
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The EAC Guide is a research-to-practice document, intended to provide actionable 
information for teachers. However, there is an ongoing need to better understand what teachers 
who do EAC well actually do, such as to what extent they use the strategies as described in the 
framework, and if there are things teachers do which are not included in the framework. 
Therefore, this study seeks to answer the following research questions: (1) What strategies do 
teachers use when effectively enacting EAC in whole class discussions following individual or 
group work time? (2) How do teachers enact those strategies? 

Methods 
We used essential qualitative analysis (Lahman, 2022) to describe how teachers successfully 

implement EAC in middle school classrooms. 
Participants and Data Sources 

This study is set within a larger three-year study of instructional sequences of EAC and SOS 
involving 100 middle grades mathematics teachers. The eight teacher participants in this study 
are grade 6-8 mathematics teachers from seven schools within four school districts in Idaho. Of 
the four school districts, two are at 27% low-income families, one is at 28% low-income 
families, and one is at 48% low-income families. Of the seven schools, one is rural and the other 
six are non-rural. One school is a K-12 charter school, one is a K-6 school, three are middle 
schools (6-8), and two are junior high schools (7-9).  

The 8 videos of classroom instruction selected for this study are a purposeful sample of 
exemplary implementation of EAC. Teachers participating in the research project were asked to 
submit three videos of their instruction. A total of 177 videos were of high enough visual and 
auditory quality to be analyzed for levels of implementation of EAC. The videos were scored by 
ROOT project researchers. Videos were parsed into five-minute long segments. Segments were 
evaluated with a rubric scale comprising three levels: implementing, partially implementing, and 
not implementing (Crawford et al., 2021). The scale was applied to each of the features of EAC, 
which resulted in an overall EAC score for that segment. Since we do not expect EAC to be 
prominent throughout a lesson, we then calculated a mean for each video's five highest scoring 
EAC segments (representing 25 minutes of instruction). We selected the first 8 distinct teachers 
when ordering the means from highest to lowest.  
Data Analysis 

At the first level of analysis, the first author watched all eight videos and selected all 
segments where the teacher brought the whole class back together following student work time 
on a math task because we anticipated seeing EAC most prevalent during these sections of the 
lesson (Stein et al., 2008; Stein et al., 2017). Then these selected segments were parsed into talk 
turns which were captured and timestamped. Then each talk turn was coded for who was talking: 
teacher, focus student (sharing their own work/reasoning), student in class (answering a question 
posed by the teacher), student table conversation, and whole class response).  

Three project researchers participated in the second round of coding. We used the four 
strategies in the EAC Framework as a priori codes (Saldaña, 2021) to coded talk turns where 
EAC was present. The first author developed a codebook with the four strategies, the code name, 
examples, and coding decision rules. The a priori codes were: Strategy Zero: Clarifying the 
mathematical meaning within one representation, Strategy 1: Specifically connecting to more 
than one representation of an idea, Strategy 2: Noting ways that different solution strategies are 
similar or different, Strategy 3: Discussing the mathematical reasoning that underlies a 
procedure, and Strategy 4: Pointing to a main idea in a lesson and how it fits into a bigger 
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picture. To calibrate coding, the three researchers watched and coded 1 video together using the 
codebook. During the coding of the first video, a new strategy emerged and we added it to the 
codebook. One important decision rule we added was: Student responses are only coded when 
they are sharing their own ideas, not just giving the answer the teachers is looking for. 

Then each of the three researchers watched and coded a second video separately. Inter-rater 
agreement was determined by identifying the proportion of talk turns assigned to each strategy. 
We agreed that Strategy 1 was the predominant strategy. Rater 1 applied this strategy in 87% of 
coded talk turns, rater 2 applied this strategy in 85% of coded talk turns, and rater 3 applied this 
strategy in 78% of coded talk turns. We discussed and reconciled disagreements until 100% 
agreement was reached. The code book was refined after this calibration by adding new decision 
rules. 

After this calibration meeting, the remaining six videos were randomly assigned to each of 
the researchers. When a researcher felt uncertain about coding any talk turns, the team watched 
the segments and discussed until consensus was reached. This occurred three times.  

The results were synthesized across the eight participant videos. We merged the observations 
together into a single data set. This allowed for cross-tabulation of strategy use across teachers, 
allowing us to answer the question of what strategies were used; as well as percentage 
distributions of each teachers' relative use of the five EAC strategies (four a priori and one 
emergent), to answer the question of how they were used. To further answer the question of how 
teachers implement the strategies, we looked for patterns of how teacher and student talk turns 
were coded.   

Findings 
This study analyzed videos with high levels of the features of EAC. To answer the question 

of what strategies exemplary teachers use when enacting EAC in whole class discussions 
following individual or group work time, we present strategies used by the eight participants. To 
answer the question of how teachers enact those strategies we present the predominance of one 
strategy used by teachers more than others strategies within a lesson and vignettes as examples 
of how EAC was effectively implemented. 
Strategies exemplary teachers use when enacting EAC 
Emergent Strategy. We found that teachers utilized five strategies when enacting EAC. Our 
initial coding scheme and the framework only included four strategies. However, when the team 
met to code the first video, we identified an emergent strategy. In analyzing strategy use, we 
found segments in which teachers were focusing on concepts and representations but were not 
fully aligned to the strategies as described in the framework and codebook. We recognized these 
segments as examples of an emergent strategy. We named and defined this strategy as Strategy 
Zero: Clarifying the mathematical meaning within one representation. The teacher was clarifying 
key mathematical concepts and making the concepts explicit and public, but doing so within one 
representation, instead of making connections between two representations, as expected based on 
the EAC framework. We chose to call this Strategy Zero instead of strategy five, because we 
inferred Strategy Zero had a foundational aspect of clarifying within one representation before 
making mathematical meaning across more than one representation or solution strategy.  

We added Strategy Zero to the codebook. As we coded the seven additional videos, we saw 
Strategy Zero present in other participant videos as well. In total, six of the eight participant 
videos included Strategy Zero. In two of these 6 videos, it was not only present, but it was the 
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prominent strategy used during the lesson. The following vignette comes from the video where 
we first discovered Strategy Zero.  
Vignette 1: Example of Strategy Zero. In this portion of the lesson, the teacher is using the 
example of stacking disposable Styrofoam cups with wide rims to help students learn about non-
proportional relationships. She has physical cups in the classroom and a picture of stacked cups 
projected on the board. 

Penelope: When we think about doubling the height of the cup, what do we lose when we 
drop those cups into the stack? We lose the base of the cup, right? That part that we 
would hold on to and we are only left with the lip. So, some people still tried to double 15 
[teacher gestures stacking cups with her hands] and they got 30, and then they did another 
stack of 15 and they got 45. They were getting closer to 50. But all they were doing was 
taking their stack of 15 and trying to put it like this [teacher picks up actual cups and 
demonstrates stacking the cups one on top of another without nesting them inside one 
another], right? Because there’s 15, and then 15 again, and then another 15. But when we 
stack the cups, I spent a lot of time at the back row, because we started to realize that we 
needed to remove something. So, first we looked at taking our whole 50 cm [teacher 
gestures, indicating the height of a large stack with her hands] and then dividing it. And 
we divided it into these pieces that were 1.41 cm [teacher points to something on the 
board then indicates 1.41 cm with her thumb and index finger]. Divide, divide, divide.  

Strategy Use Across Participants. We identifying the proportion of talk turns assigned by 
researcher to each strategy to answer what strategies teachers used. We found most whole class 
discussions focused on one predominant strategy during their video lesson. The most used 
strategy across all eight participants was Strategy 1: Specifically connecting to more than one 
representation of an idea. Four of the eight participants used Strategy 1 as their predominant 
strategy. Interestingly, the second most predominant strategy was our emergent strategy, Strategy 
Zero: Clarifying the mathematical meaning within one representation. Two participants used 
Strategy Zero as their predominant strategy. Strategy 2: Noting ways that different solution 
strategies are similar or different, was the predominant strategy for one participant and Strategy 
3: Discussing the mathematical reasoning that underlies a procedure, was the predominant 
strategy for one participant. It is noteworthy that Strategy 4: Pointing to a main idea in a lesson 
and how it fits into a bigger picture, was the only strategy that was not a predominant strategy in 
any of the eight participants’ video lessons.  
How exemplary teachers enact EAC strategies 
Strategy Use Within a Lesson. Since we found that most whole class discussions focused on 
one predominant strategy within the lesson video, we calculated the percent of talk turns that 
were coded for each strategy. Figure 2 shows strategy usage as a percentage of talk turns by 
teacher. Strategies are presented in numerical order from left to right and teachers are presented 
in alphabetical order of their pseudo names. Predominate strategies ranged from 46% to 97% of 
the total strategies present with seven of the eight participants using the predominant strategy 
between 70% to 97% of the time. Six out of the eight participants used their predominant 
strategy much more than any other strategy. Specifically, six of the participants had 63% or more 
difference between their predominant strategy and their secondary strategy.   
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Figure 2: Percentage of Each Strategy by Teacher 

We compared the number of strategies used by each participant. All participants used more 
than one strategy. One teacher used all five strategies, three teachers used four strategies, two 
teachers used three strategies, and two teachers used two strategies.  

It is noteworthy that the pattern of use for Strategy 4 was distinct from that of other 
strategies. None of the eight videos included Strategy 4 as predominant strategy. Though, 
strategy 4 was identified in the majority of videos (six of eight), in every case this code was 
applied in no more than 10% of the talk turns. On average, in all eight videos, Strategy 4 was 
used 3% of the time.  
Lesson Structure with EAC Present. When looking for patterns, we found a pattern in teacher 
– student interactions. We noticed that most videos had numerous uncoded student talk turns. We 
revisited the videos and identified these interactions as the Initiate-Response-Evaluation (IRE) 
structure where the teacher initiates a question with a right or wrong answer, a student responds, 
and the teacher evaluates their response (Mehan, 1979; Cazden, 1988).  
Vignette 2: IRE Example of EAC. This vignette is from the video where we noticed the IRE 
structure showcases one example of an IRE exchange between the teacher and students. In this 
vignette, the teacher is asking students for the area of regions within a shape projected on the 
board. The teacher seems to be focused on getting answers using the area model to show the 
justification for the algorithm of multiplying decimals. All student names are pseudo names. 

Cathy: Todd, what’s the width of region C? 
Student: Zero point four.  
Cathy: What’s the length? 
Student: One. 
Cathy: There you go. 
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We analyzed the coding data from the other 7 videos and found that seven of the eight 
participants used an IRE format while enacting EAC in their classroom video lessons. Spencer 
was the only participant who did not utilize an IRE structure in their video lesson. As we looked 
for patterns, we noted that though the teacher’s pattern of strategy use was similar, the talk turn 
structure was different. Specifically, the types of questions the teacher asked, the expectation of 
an explanation in student responses, and duration of student responses. Vignette 2 illustrates the 
pattern of student questioning we found in Spencer’s video. All student names are pseudo names.  
Vignette 3: Non-IRE Example of EAC. After launching a task with their students, Spencer has 
given them some time to work in groups on vertical whiteboards. While working only one 
student has a marker and only the other two students in the group can speak. In this vignette, 
students are back at their desks and Spencer is pulling them together for a whole class 
conversation about the work they have done so far. Spencer is trying to get students to use a 
double number line to show their proportional reasoning.  

Spencer: So, this is what I’m seeing. I saw a number line that looked like this [teacher is 
writing on the board]. Give me a thumbs up when you’ve thought about it...K, my first 
question is, how would I label this? How would I label this and why? Ready? Thank 
you.   

[Students begin talking with their groups].  
Spencer: Camille, go for it. What were you two talking about? 
Camille: Umm, well we were talking about it would be like zero to ten miles. 
Spencer: So, it would be important to put down miles here. How come? 
Camille: Because it is how many, like it’s ten miles that he ran. So, it’s important to write it. 
Spencer: Thank you. Bradly? 
Bradly: You could maybe do like, one, two, three, four, five, six, seven, eight, and nine.  
Spencer: So, there’s some miles that we can put in here, that you would agree with. Are you 

okay with labeling it miles? 
Bradly: Yeah. 
Spencer: Mary, how come? 
Mary: So, I’m…the miles is like one part, and then the…so, the miles is like the 10 miles and 

then…cause you labeled it 10. And then the next number line is probably gonna 
be…units is the four hours.  

This vignette is structured differently than an IRE format not only because student talk turns 
are longer in duration. More importantly, the teacher asks students to justify their answer and to 
justify another student’s answer, but only after giving all students a chance to discuss ideas and 
justifications with their peers.  

Discussion 
Current research gives insight on what supports student learning (e.g., focus on conceptual 

understanding), however, we know less about the intricate details of how effectively 
implemented mathematics instruction is done. In order to better design learning environments 
that take student learning into account, we describe both what strategies teachers use when 
implementing EAC and how they implement these strategies. 
Strategies exemplary teachers use when enacting EAC 

All four strategies described in the EAC framework were seen in these videos. In addition, a 
fifth strategy was present. We identified and defined Strategy Zero as: Clarifying the 
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mathematical meaning within one representation. We identified this as an EAC strategy because 
of the focus on concepts, making these concepts explicit and public, and the emphasis on 
connections. The teacher was connecting an abstract mathematical concept to a single visual 
representation of the concept. This is different from Strategy 1 because Strategy 1 is about 
connections between more than one representation of a mathematical concept.  It is important to 
note that teachers were taking the time to allow students to make sense of mathematical concepts 
within one representation. We believe teachers were doing this either because they recognized 
they needed to take the time to make sense of a mathematical idea in and of itself or to address 
student misconceptions as they came up. We find this noteworthy because this is implicit, not 
explicit, in Hiebert and Grouws (2007). The synthesis explicitly focuses on connecting multiple 
representation. Thus, it was not included in the Champion et al. (2020) framework.  

The idea of this kind of conceptual work for students is consistent with the theory of 
concreteness fading which suggests meaning needs to be developed within one representation 
before moving onto others (Fyfe & Nathan, 2019). We intentionally names Strategy Zero 
because we believe Strategy Zero may be a foundational strategy in that students would struggle 
to make connections between representations (Strategy 1) or between strategies (Strategy 2) 
without first understanding the mathematical meaning within one representation (Strategy Zero). 
This recognition made us wonder if there was a hierarchy among the strategies in the EAC 
framework corresponding to a feature theory of concreteness fading which hypothesizes that 
transitions to symbolic procedural mathematics happen gradually. We are wondering if there is a 
progression from concrete to the abstract. When teachers feel the need to utilize Strategy Zero, 
should it always precede Strategy 1? Likewise, should Strategy 1 always precede Strategy 2 and 
so on? In order to add additional detail and clarity about these strategies for teachers in their 
classrooms, this possible hierarchy is worth exploring further.  
How exemplary teachers enact EAC strategies 

We found that teachers choose one predominant strategy to implement within a lesson, 
always with other strategies present, but, often with the other strategies much less present. This 
suggests that teachers find it beneficial to spend time within one strategy, to do it well, and not 
plan multiple strategies within a short period of time.  

We found that teachers who used Strategy 4, only did so briefly. This strategy was used by 
six of the eight participants, but was never the predominant strategy. This suggests that teachers 
find Strategy 4 important enough to utilize, but that little time needs to be spent on Strategy 4 in 
order for Strategy 4 to be effective. Hiebert & Grouws (2007) point to the importance of 
reminding students of the main idea of the lesson and how it fits into the bigger picture and we 
found most of our teachers enacted this for at least a portion of their lesson.  

We were surprised to find that seven of the eight participants used an IRE format while 
implementing EAC. Because these videos were selected as exemplar of EAC, we expected to see 
discussions that aligned more with the 5 Practices (Smith & Stein, 2011) which involve more 
student led discussions. However, this confirms previous claims that IRE is the default structure 
for classroom discourse (Cazden, 1988). We wonder if this is due to teacher training in IRE for 
making ideas explicit and public for students, and if this is the strategy teachers are familiar with 
and therefore use. The non-IRE strategy is of great interest to us. In this example of EAC without 
an IRE format, students may have had more voice and authority in the classroom (Cazden, 
1988). It is also noteworthy that the teacher was able to implement EAC within the same 
timeframe as other teachers who were using an IRE format. Additional examples of EAC 
without an IRE format is worth exploring further.  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 975 

References 
Champion, J., Crawford, A. R., & Carney, M. (2020). Articulating effective middle grades instructional practices in 

a teacher-researcher alliance. In A. I. Sacristán, J. C. Cortés-Zavala, & P. M. Ruiz-Arias (Eds.), Mathematics 
Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. 
https:/doi.org/10.51272/pmena.42.2020-292 

Crawford, A. R., Champion, J., & Carney, M. (2021, April). Operationalizing Constructs within Validity Arguments 
for K-12 Teacher Observation Measures. Paper presentation in symposium, Validity Arguments for K-12 
Teacher Observational Measures: Issues and Future Directions, at the annual meeting of the American 
Education Research Association, virtual meeting. 

Cazden, C. (1988). Classroom discourse: The language of teaching and learning. Heinemann. 
Esmonde, I. & Langer-Osuna, J. M. (2013). Power in numbers: Student participation in mathematical discussions in 

heterogeneous spaces. Journal for Research in Mathematics Education (44), 1, 288-315. doi: 
10.5951/jresematheduc.44.1.0288 

Flores, R., Koontz, E., Inan, F. A., & Alagic, M. (2015). Multiple representation instruction first versus traditional 
algorithmic instruction first: Impact in middle school mathematics classrooms. Educational Studies in 
Mathematics, 89(2), 267-281. 

Fyfe, E. R., & Nathan, M. J. (2019). Making “concreteness fading” more concrete as a theory of instruction for 
promoting transfer. Educational Review, 71(4), 403-422. 

Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science 
instruction: A systematic review. Educational psychology review, 26, 9-25. 

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. Second 
handbook of research on mathematics teaching and learning, 1(1), 371-404. 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student 
achievement. American educational research journal, 42(2), 371-406. 

Jackson, K., Garrison, A., Wilson, J., Gibbons, L., & Shahan, A. (2013). Exploring relationships between setting up 
complex tasks and opportunities in concluding whole-class discussions in middle-grades mathematics 
instruction. Journal for Research in Mathematics Education, 44(4), 646-682. 

Kazemi, E., & Stipek, D. (2009). Promoting Conceptual Thinking in Four Upper-Elementary Mathematics 
Classrooms. Journal of Education, 189(1–2), 123–137. https://doi.org/10.1177/0022057409189001-209 

Lahman, M. (2022). Writing and Representing Qualitative Research. Sage. 
Mehan, H. (1979). “What time is it, Denise?”: Asking known information questions in classroom discourse. Theory 

into Practice, 18(4), 285-294. 
Ng, S. F., & Lee, K. (2009). The model method: Singapore children's tool for representing and solving algebraic 

word problems. Journal for Research in Mathematics Education, 40(3), 282-313. 
Paliwal, V., & Baroody, A., (2020). Fostering the learning of subtraction concepts and the subtraction-as-addition 

reasoning strategy. Early Childhood Research Quarterly, 51, 403-415. 
https://doi.org/10.1016/j.ecresq.2019.05.008 

Saldaña, J. (2021). The coding manual for qualitative researchers. SAGE.  
Smith, M. S., & Stein, M. K. (2011). 5 Practices for orchestrating productive mathematical discussions. The 

National Council of Teachers of Mathematics, Inc. 
Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical 

discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and 
Learning, 10(4), 313-340. 

Stein, M. K., Correnti, R., Moore, D., Russell, J. L., & Kelly, K. (2017). Using theory and measurement to sharpen 
conceptualizations of mathematics teaching in the common core era. AERA Open, 3(1), 2332858416680566. 

Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of Mathematics 
Teacher Education, 18(4), 375-400. 

Wilson, J., Nazemi, M., Jackson, K., & Wilhelm, A. G. (2019). Investigating Teaching in Conceptually Oriented 
Mathematics Classrooms Characterized by African American Student Success. Journal for Research in 
Mathematics Education, 50(4), 362-400. https://doi.org/10.5951/jresematheduc.50.4.0362 

  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 976 

TEACHER PRACTICES FOR CULTURALLY RESPONSIVE MATH MODELING IN 
GRADES K-2 

Erin Turner 
University of Arizona 
eturner@arizona.edu 

Mary Alice Carlson  
Montana State University 

mary.carlson5@montana.edu 

Julia Aguirre    
University of Washington 

jaguirre@u.washington.edu 

Jennifer Suh         
George Mason University 

jsuh4@gmu.edu 
 

Elzena McVicar  
University of Washington  

elzenam@u.washington.edu 

Jonathan Brown 
University of Arizona 
jebrown@arizona.edu 

Mary Greene 
University of Montana 

marygreene1@montana.edu 
 
 

 

There is growing recognition that mathematical modeling can be a lever for equity in elementary 
mathematics classrooms. This study focuses on the impact of a professional development 
program focused on culturally responsive mathematical modeling on 8 kindergarten through 2nd 
grade teachers’ practices in modeling lessons. We use a project developed observation tool to 
evaluate two video recorded modeling lessons from each teacher (16 total). Findings focus on 
patterns in the strengths and challenges in primary grade teachers’ practices for teaching 
modeling, including how teachers’ practices align with culturally responsive teaching. We 
discuss implications of our findings for the design and refinement of professional development. 

Keywords: Instructional Practice; Culturally Relevant Pedagogy; Modeling; Elementary School 

Introduction 
Mathematical modeling (MM) is an iterative process involving problem posing, testing, 

validation, and revision of mathematical models to inform decisions (Lesh & Zawojewski, 2007; 
Pollak, 2012). There is growing recognition that mathematical modeling can be a lever for equity 
in elementary mathematics classrooms. Modeling encourages diverse student contributions and 
gives teachers opportunities to “recognize and reward a broader range of mathematical abilities 
than those traditionally emphasized” (Lesh & Doerr, 2003, p. 23). When modeling tasks are 
grounded in culturally responsive contexts, teachers are empowered to build on the knowledge 
and cultural resources that students bring to the classroom and students are empowered to draw 
on their identities and experiences to inform mathematical work and take action (Aguirre et al., 
2019; Suh et al., 2018; Turner et al., 2017). By building multiple connections to self, family, 
community, other subjects, and the world, mathematical modeling tasks humanize mathematics 
teaching and learning (Anhalt et al., 2018; Gutierrez, 2018; Suh et al., 2018).  

While professional development initiatives have begun to support teachers’ learning of 
culturally responsive mathematics modeling (Turner et al., 2022a), research on how teachers 
learn to enact practices for teaching modeling is limited, particularly in primary grades 
(kindergarten to second). This is because modeling includes practices that are not typical in 
primary grade mathematics classrooms like making assumptions, and testing and revising models 
(Niss, Blum, & Galbraith, 2007). Therefore, the primary aim of this study is to understand the 
potential impact of a professional development program focused on culturally responsive 
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mathematical modeling on primary grade teachers’ practices in modeling lessons. The following 
research questions guide our study: To what extent does a professional development program 
support teachers to enact practices for culturally responsive mathematical modeling lessons? 

● What strengths and challenges do we notice in teachers’ practices? 
● How do teachers’ practices for modeling lessons support culturally responsive 

mathematics teaching? 
Culturally Responsive Mathematical Modeling Instruction   

Our framework for culturally responsive mathematical modeling draws on mathematics 
education research that centers equity, namely work on culturally responsive mathematics 
teaching (Bartell et al., 2017; Leonard et al., 2010). Zavala and Aguirre (in press) highlight three 
essential strands of culturally responsive mathematics teaching, including: a) Connections to 
Knowledge and Identities –building on students’ experiences, mathematical understandings, and 
cultural/community-based funds of knowledge to support their mathematics learning; b) Rigor 
and Support - maintaining high cognitive demand while simultaneously providing access points 
for learning including affirming multilingualism; and c) Power and Participation - teachers 
enhance equitable participation by disrupting status, distributing intellectual authority, and 
supporting student ownership of ideas. We see mathematical modeling instruction as a way to 
advance culturally responsive teaching because the relevant and cognitively demanding nature of 
modeling tasks cultivates space for diverse ideas and opportunities for connections and action 
(Anhalt et al., 2018; Cirillo et al., 2016; Turner et al., 2021, 2022a; Zavala & Aguirre, in press).   
Teaching Practices for Culturally Responsive Mathematical Modeling in Primary Grades  

There is growing consensus that teachers can support primary grades students to engage in 
mathematical modeling (English, 2012; Fulton, 2021; Wickstrom & Aytes, 2018). Researchers 
specifically highlight the importance of modeling tasks grounded in culturally relevant contexts 
to help students draw on their lived experiences (Albarracín, 2021; Albarracín & Gorgorió, 2020; 
Dindyal, 2010; Wickstom & Aytes, 2018), and the value of collaboration and dialogue with 
peers (Bonnotto, 2009; Mousoulides & English; 2008). Teacher practices which support primary 
grade students’ engagement in mathematical modeling, include posing a series of smaller 
questions to help students make sense of a broader task (Albarracín, 2021), and introducing 
constraints one at a time so that students could adjust and refine their models without starting 
over (Osana & Foster, 2021). Other productive teacher moves include pausing small group work 
to share student strategies, and offering physical tools, graphic organizers, and sentence starters 
to scaffold students’ modeling building work (Carlson, 2016 et al., 2016; Fulton, 2021; 
Wickstron & Aytes, 2018; Author). Teachers of young students also play an important role in 
helping students make assumptions about unknown quantities (Leavy & Hourigan, 2021; 
Stankiewicz-Van Der Zanden, Brown & Leavy, 2021). Yet most of these studies report on 
intensive efforts with one or two individual teachers and not on how teachers learn practices for 
modeling via participation in professional development. Our study aims to address this gap.  
Research on the Impact of Professional Development on Teacher Practice 

Project developed measures that relate to the specific focus of the professional development 
program are often used evaluate teacher practice, such as teachers’ use of student thinking in 
instruction (Jacobs et al., 2007), or practices for facilitating classroom discourse (Cavanna, 
2014). While studies sometimes find connections between ideas learned in professional 
development and teachers’ subsequent classroom practice (Chen et al., 2020; Jacobs et al., 2007), 
others note impacts on teacher beliefs and perspectives, but not practices (Shirrell, Hopkins & 
Spillane, 2019). Despite these differences, there is consensus that understanding which practices 
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teachers take up in their classrooms, and why, is essential, as it can inform revisions to 
professional learning programs (Caswell, Esmonde & Takeuchi, 2011; Franke et al, 2001).  
Observation Tools for Measuring Teacher Practice in Mathematical Modeling Lessons 

 Observational tools to measure mathematics teaching practice tend to focus broadly on 
standards-based, or problem-solving oriented instruction (Walkowiak et al, 2014). A tool with a 
specific focus on mathematical modeling is important because scores would be interpreted as 
capturing aspects relevant and specific to teaching mathematical modeling. Developing an 
observation tool that attends, in substantive ways, to mathematical modeling and culturally 
responsive teaching has been a goal of our current project. We previously described (Turner et 
al., 2022b) our multi-step process for the initial development of this tool, including synthesizing 
key outcomes from relevant literature, generating initial validity evidence from an expert panel 
review, and testing the tool in diverse K-5 classrooms (Bostic et al, 2019). In this study, we use 
the tool to understand the strengths and challenges in primary grade teachers’ practices for 
teaching modeling, and to explore how their practices align with culturally responsive teaching.  

Methods 
Professional Development Context 

This study is part of a broader research and professional development program focused on 
culturally responsive mathematical modeling in elementary grades. Teachers participated in a 
year-long, professional development program that included both monthly in person sessions and 
asynchronous activities to deepen learning. In person sessions introduced frameworks for 
culturally responsive mathematics teaching (Zavala & Aguirre, in press), and included time to 
explore modeling tasks and routines, collaboratively plan activities, and reflect on classroom 
enactments. Asynchronous materials included readings, videos of modeling activities in K-5 
classrooms, and collaborative reflection prompts. Teachers also had access to digital materials 
(modeling tasks, student work samples) to support classroom enactments.  
Participants 

This study focused on 8 primary grade teachers (kindergarten through grade 2) who 
participated in our broader professional development program at one of three research sites. Two 
of the teachers taught kindergarten, five taught first grade, and one taught 2nd grade. 6 of the 
teachers worked in schools that served racially and linguistically diverse students from 
underserved communities. Classrooms included migrant and refugee students from diverse 
countries of origin, and significant numbers of multilingual students. 2 teachers taught in 
predominantly white schools with a small but growing population of multilingual students.  
Data Sources  

Data sources included two video-taped modeling lessons from each teacher’s classroom (16 
lessons total). One lesson included a “snack sharing” modeling task that focused on making a 
plan to share snack items with classmates across one or more days. This lesson was recorded in 
the fall or winter of the school year. A second lesson focused on a “making” modeling task in 
which students generated a plan for making a set of items (e.g., picture frames, bird feeders,) for 
a school or community purpose. This lesson was recorded later in the school year. Lessons 
ranged in length from 54 to 187 minutes (average of 88), and often occurred over two days.  
Classroom Observation Tool for Modeling Lessons  

Each lesson was scored using the project developed classroom observation tool for culturally 
responsive mathematical modeling lessons (Turner et al., 2022b). The tool includes eight 
dimensions that focus on teaching practices for specific phases of the modeling process. Each 
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dimension describes four levels of teacher practice (not present (0), emerging (1), proficient (2) 
and advanced (3). These levels are distinguished by the extent to which teachers use culturally 
responsive practices in that phase of the modeling cycle, such as maintaining high cognitive 
demand while simultaneously providing supports (Rigor and Support), soliciting diverse student 
ideas and allowing student ideas to drive decisions (Knowledge and Identities; Power and 
Participation). A ninth dimension focuses on culturally responsive practices that apply across the 
modeling process (i.e., connections to students’ experiences and cultural/community contexts).  

 
Table 1: EQ-STEMM Classroom Observation Tool for Elementary Modeling Lessons 

 
Dimension Focus of Dimension  Variation in Levels of Practice  

1: Making Sense of 
the Context / Situation 

Teachers offer supports to help students make 
sense of the context, solicit students’ ideas or 
questions about the task context, and focus 
students on key considerations related to context.  

•Presence of supports 
•Intensity of teacher solicitation 
•Focus on key considerations 

2. Posing Problems Teachers build on student ideas to pose the 
modeling problem. Teachers support students to 
ask and analyze mathematical questions.  

•Student ownership of problem 
posing 
•Support for asking math questions 

3. Identifying 
Important Quantities 

Teachers support students to identify key 
quantities and to decide on a specific value for one 
or more quantities. Teacher asks students to 
explain the relevance of key quantities.   

•Student ownership of quantities  
•Allowing variation in quantities 
•Support for explaining relevance 

4. Making 
Assumptions 

The teacher supports students to make /state 
assumptions, and to justify the relevance and 
reasonableness of assumptions.  

•Student ownership of assumptions 
•Support for explaining relevance 

5. Constructing and 
Operating on Models 

The teacher facilitates student work as students 
create and operate on models, soliciting student 
ideas and supporting students to justify work.  

•Student ownership of models  
•Support for justification 

6. Analyzing or 
Interpreting Models 

Teacher provides structures to support analyzing 
models or solutions and supports student 
participation so student ideas influence discussion. 

•Presence of analysis supports 
•Student ownership of analysis  
•Support for justification 

7. Revising Models The teacher supports students in revising, ensuring 
that student contributions play a central role in 
model revisions, and supporting students to justify. 

•Student ownership of revision  
•Support for justification 

8. Reporting Out  The teacher supports students/groups to report and 
explain their work. The teacher provides students 
with options for reporting out their results. 

•Student ownership of report out 
•Support for student choice 

9: Connections to 
Students’ Out-of-Class 
Experiences and 
Cultural and 
Community Contexts 

Teachers support students to make connections to 
out-of-class experiences and/or cultural and 
community contexts. Connections inform 
modeling work - influencing decisions made or 
actions taken in any phase of modeling process. 

•Connections present through the 
modeling cycle 
•Student ownership of connections 
•Connections inform modeling  

 
Each lesson was scored by at least two members of the research team using a scoring method 

adapted from prior projects (Foote et al., 2020; Walkowiak et al., 2014). We watched lesson 
videos in eight-to-ten-minute segments, scripting teacher and student talk and actions to produce 
detailed lesson logs. After each segment, we noted evidence related to each dimension (including 
time stamps and examples) on a coding sheet. This process was repeated until the end of the 
lesson video. We reviewed all evidence against the dimension descriptors to assign a final score 
by dimension. Groups of two to four researchers reviewed scores for each lesson, and differences 
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were resolved via discussion. Analysis focused on patterns of strengths and challenges by 
dimension. Patterns were examined within lessons (i.e., strengths and challenges in the snack 
sharing modeling lessons) and across lessons. Finally, we reviewed the lesson notes and coding 
sheet evidence to explore the specific teacher practices connected to each pattern.  

Findings 
Overview of Teacher Practice Scores   

Table 2 includes average teacher practice scores for selected dimensions for each set of 
modeling lessons. For the purposes of this report, we focus on three dimensions that reflect key 
patterns related to our research questions, including consistent areas of strength (dimension 1), 
persistent areas of challenge (dimension 4) and dimensions where teacher practice seemed to 
shift between the first and second set of lessons (dimension 3).  

 
Table 2: Teacher Practice Scores on Selected Dimensions  

 
Dimension Average Score on Snack 

Sharing Modeling Lessons 
Average Score on Making 

Modeling Lessons 
1. Making Sense of the Context  2.75 2.63 
3. Identifying Important Quantities 1.63 2.38 
4. Making Assumptions 0.88 0.75 

 
Areas of Strength: Supporting Students to Make Sense of Real-World Contexts 

We found that teachers enacted multiple strategies to help students make sense of the real-
world context of the modeling tasks, including sharing images and realia related to the context, 
and inviting students to share observations, wonderings, and relevant experiences (e.g., “Have 
you ever had this snack? How do we usually share snacks at school?”). This strength was evident 
across all eight teachers, and across both sets of lessons observed. As an example, Ms. T, a first-
grade teacher, launched the snack sharing modeling lesson by holding up two containers of small 
Madeline cakes and inviting students to share what they noticed. Students began by describing 
the physical attributes of the cakes (e.g., “they look like sweet bread”), which the teacher 
revoiced and recorded on a class chart. Students then posed questions about how the cakes were 
made, how large they were, whether the class would be able to eat them, and whether there were 
the same number of cakes in both boxes. Students passed around the containers as they observed 
and wondered, until most children in the class had the opportunity to share. After about ten 
minutes, the teacher noticed one student looking around the room and counting her classmates. 
The teacher paused the discussion and asked the class to reflect on her thinking.  

Ms. T: I want to go back to Deena’s thinking. Because she was looking at my box and then 
she was like… counting (gestures to show how she was counting the children) … then 
she looked at the box. What was she thinking? 

Student 1: Maybe she was wondering if there was less or more cakes than the children.  
Ms. T: That’s a really good math question, is that what you were wondering?  
(Deena confirmed that she was thinking about whether they would have enough for 

everyone, and the teacher then drew on this idea to pose the modeling problem.)  
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Ms. T: We have two boxes. I was wondering this question. You wanted to know if there was 
enough for all of us. What if I said: how many days will snacks last for our class? If we 
have this for snack every day, could we find out how many days it’s going to last us?  

This excerpt reflects patterns in the culturally responsive practices that teachers used to 
support students as they made sense of the modeling context. Teachers provided multiple 
supports for sense making, and repeated opportunities for students to share their ideas, both with 
partners and in whole group discussion. Teachers used targeted prompts to focus students’ 
attention on key features of the context (i.e., in this case, Deena’s idea that comparing the 
number of children to the number of cakes might be useful). Teachers also ensured students had 
ownership over ideas, recording their names alongside their comments, and explicitly connecting 
the modeling problem to their ideas. As a result, by the time teachers posed the modeling 
problem, students had generated a broad range of ideas about the context.  
Areas of Shift: Identifying Important Quantities  

The dimension where teacher practices shifted most from the first to the second set of lessons 
was Dimension 3, Identifying Important Quantities. In the snack sharing modeling lessons, half 
of the teachers evidenced emergent levels of practice (4 teachers), with fewer teachers scoring 
proficient (3 teachers) or advanced (1 teacher). Common patterns in teacher practices included 
providing time for students to discuss what they already knew that could help them with the 
modeling problem, and what they might need to find out or decide. For example, another first-
grade teacher, Ms. B, posed a modeling problem related to how many boxes of hot chocolate 
they would need for all the first grade classes at a winter celebration. After posing the task, she 
asked students: “What might we need to know if we were going to do this project. Stand up and 
talk to your talking partner. We have some things we know and some things we need to decide.” 
Following the partner talk, Ms. B solicited and recorded students’ ideas. Students quickly 
identified one quantity that would be relevant– the number of students in each first-grade class. 
However, when students started to generate a range of ideas about this quantity (“I am estimating 
16 or 19 kids in our class”, and “We could count how many chairs there are or count the 
lockers”) Ms. B responded by narrowing the conversation and directing students towards a 
specific value. She stated, “Could we decide that there are 16 kids in our class and the all the 
other classes too? I think that’s fair. Let’s write it down - ‘16 kids in every first-grade class.’”   

This practice of encouraging students to list relevant quantities, but then funneling the class 
towards a single set of values so that all students worked with the same numbers as they built and 
operated on their models was common in this first set of lessons. These practices closed off 
space for variation and therein, limited students’ opportunities to explain and justify their 
decisions, which reduced the cognitive demand. In other words, teachers’ practices reflected 
tensions related to components of culturally responsive teaching – teachers provided supports, 
but these supports reduced the cognitive demand and minimized students’ ownership over ideas.   

In contrast, in the second set of modeling lessons – the making tasks – all teachers scored at 
the proficient (5 teachers) or advanced levels (3 teachers). A shift we noted is that teachers were 
more adept at efficiently focusing students’ observations on relevant quantities, and importantly, 
on how quantities might vary. Teachers used strategically selected images or prompts that drew 
students’ attention to variation. For example, Ms. J., a kindergarten teacher, taught a lesson about 
planning a set of materials for making a valentine craft (heart creatures) with their table groups. 
She launched the task by sharing images of heart creatures with different features. After students 
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shared initial observations, Ms. J asked followed up with a more specific prompt to focus 
students on variation in quantities relevant to the problem (What is the same? What is different?) 

Ms. J: (shows an image of different heart creatures) What is the same and what is different? 
Student 1: (pointing to specific creatures) Big, little, little 
Ms. J: So you mean the size is different, good.  
Student 2: all of them are different  
Ms. J: Ok, and how are they different? 
Student 2: Eyes, and faces, and arms, and legs 
Student 3: They all have heart heads.  
Student 4: This one has 4 hearts on the arms and legs. 
Student 3: They don’t have the same eyes. 
Ms. J: The same number of eyes? So they’re different.  
 Students continued to identify consistencies and variations in the heart creatures, which Ms. 

J recorded on a class chart. Before she sent students off to work, she revisited the quantities they 
identified and the decisions they would have to make as they planned for the materials. This 
increased emphasis on variation and more consistent invitations for students to make decisions 
about quantities were notable patterns in the second set of lessons. These practices reflected 
components of culturally responsive mathematics teaching as teachers maintained high cognitive 
demand by holding space for variation and supporting students to explain and justify ideas.  
Areas of Challenge: Making Assumptions  

We found that supporting students to make assumptions was one of several dimensions that 
reflected challenges in teachers’ emerging practices for mathematical modeling. In a few 
instances, teachers skipped conversations about assumptions, and instead directed students 
towards established quantities (e.g., there are this many students in our class) without 
consideration of how assumptions about the context could impact decisions. More often, teachers 
prompted students to consider potential assumptions, but students’ role was limited to answering 
questions while the teacher-maintained ownership over stating and justifying the assumption. For 
example, in the snack sharing lessons, a second-grade teacher, Ms. F, asked students whether 
everyone in the class eats snack each day (focusing students’ attention on potential assumptions). 

Ms. F: But wait, do all of you eat the snack each day? How are we going to figure out how 
much we need to give out? It’s [only] 18 if everybody eats the snack.  

Student 1:  maybe Ms. T [will want snack] too. 
Ms. F: Ms. T is not here during snack time.  
Student 2: How many people are missing [absent]? 
Ms. F: There are 5 people missing.  
Ms. F: So not everyone is going to eat snack.  Do some of you bring snack from home? Raise 

your hand if you bring snack from home. (several students raise hands.) 
Student 3: Only sometimes [do I bring snack from home] 
Student 4: Since I really like those things that she brought I would eat that snack and save 

mine for tomorrow.  
Student 5: I’d eat snack from home. 
Ms. F: So we had 18 minus 1 person who won’t eat snack, so we are going to say 17 people. 

And we know that is not true, some days people will be missing, but we are just going to 
say 17 people on most days. 
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While students responded to Ms. F’s question with multiple ideas that could have supported 
assumptions (e.g., whether other teachers should be included, whether absent students should be 
counted, whether students who brought snack from home would always prefer the home snack), 
Ms. F directed the assumption making process and stated an assumption for students. We found a 
similar pattern in other lessons; students considered how different features of the context could 
impact the problem - they did not avoid this complexity – but teachers responded by making 
assumptions for students that narrowed the complexity, sometimes significantly. In other words, 
teachers’ initial practices did not reflect key components of culturally responsive teaching. 
Students did not have ownership of ideas, as the teacher did not distribute intellectual authority. 
The cognitively demanding work of explaining assumptions was directed by the teacher. 

Discussion and Conclusion 
Enacting culturally responsive mathematical modeling in the elementary grades is ambitious 

teaching that has potential to humanize the teaching and learning of mathematics with young 
students. Practices for rehumanizing mathematics (Gutiérrez, 2018), such as helping students to 
make sense of and connect to the contexts of mathematical problem are common teaching 
practice in primary grade classrooms. We suspect that participating teachers already had many 
strategies for supporting this kind of sense making, which supported the strengths observed in 
dimension 1. Additionally, the professional development program provided multiple examples of 
visuals, tools and discussion prompts that teachers could use to introduce modeling contexts and 
foster sense making. While teachers’ practices in this dimension reflected multiple components 
of culturally responsive mathematics teaching, there were also areas for growth. In particular, 
teachers’ efforts to help students make sense of contexts did not include invitations for students 
to share related experiences from outside of school. We suspect this reflected the tasks 
themselves (which were grounded in school or classroom scenarios) but also points to an area of 
refinement for our professional development program. 

Teaching culturally responsive mathematical modeling requires a new set of pedagogical 
skills. We found that teachers allowed more variation in quantities as they became comfortable 
with the openness and student decision making that characterizes modeling tasks. We suspect 
that the shifts in teacher practice in the important quantities dimension may have been related to 
two factors. First, in typical primary grade curriculum tasks, quantities are explicitly stated for 
students. In modeling tasks, teachers have a key role in supporting students to identify relevant 
quantities, and to make sense of potential variation (Anhalt, 2014). Given that all our participants 
were new to teaching modeling, these were new practices that teachers needed time to develop 
(English et al., 2005). Second, across the year we introduced various routines for supporting 
students to identify key quantities during professional development sessions. We also began to 
prompt teachers to reflect on the different decisions that student had to make in each modeling 
lesson. We recognized that this would be a challenging space for teachers and designed targeted 
tools and prompts to support these practices, which may have supported the shifts observed. 

Finally, we suspect that teaching practices around assumptions were challenging for multiple 
reasons. The need to make assumptions to inform decisions is a unique feature of modeling 
(Galbriath, 2013; Suh et al., 2021), and as such, supporting students to make assumptions was a 
new teaching practice for all the teachers in our study. The fact that teachers entered this practice 
even in their first modeling lessons is promising. Teachers’ initial attempts - which involved 
drawing students’ attention to features of the context that might guide their decisions - suggest an 
emerging practice that could be further developed in professional development sessions. In other 
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words, teachers likely need to play an active role in supporting students to state and explain 
assumptions, given that grappling with ambiguous or undefined information can be challenging 
for young children (English et al., 2005). Strategic prompts to focus children on the need for 
assumptions seem appropriate (i.e., What about people who bring snack from home, should we 
consider that?). However, professional development sessions could support teachers to respond 
to the diverse ideas that children generate in ways that distribute intellectual authority and 
maintain student ownership over ideas. Supporting teachers’ culturally responsive practices for 
making assumptions is a key area of refinement for our professional development program. 
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This report details a case study focused on different manifestations of teachers’ orientations 
towards students’ writing in high school mathematics. I make use of teacher interviews to 
unpack teachers’ described orientations towards writing in mathematics, as well as their 
interpretations of interactions observed during recorded observations. These observations also 
illustrate the types of writing embedded in tasks enacted by these teachers and the nature of their 
interactions with students’ writing during such tasks. Findings indicate participants’ distinct 
understandings of “writing in math,” show their flexibility in employing both teacher- and 
student-oriented interactions with student writing and suggest their desire to pursue more 
student-oriented interactions. Avenues for future research related to such findings are discussed. 

Keywords: Communication, Instructional Activities and Practices, Teacher Beliefs, Teacher 
Noticing  

Fostering students’ effective communication of mathematical ideas is a key goal of 
educational reform movements and professional organizations in the United States (Common 
Core State Standards Initiative, 2010; National Council for Teachers of Mathematics, 2000). 
However, while supporting students’ spoken communication has been a frequent focus of 
research in mathematics education research (Moschkovich, 2007; Munter et al., 2015; Webb et 
al., 2014), written communication has not received the same attention (Morgan, 1998; Pugalee, 
2004). This relatively limited attention on writing is concerning because mathematical ideas are 
communicated not only through spoken language, but within and across the multiple sign 
systems of natural language (the written word), mathematical symbolism, and visual imagery – 
and these systems are often represented through written texts (O’Halloran, 2000, 2008). In other 
words, writing in mathematics is multisemiotic, or expressed within and across these multiple 
sign systems. Additionally, the language of mathematics itself evolved in part “as a response to 
the functions which were fulfilled symbolically and visually” (O’Halloran, 2008, p. 14). 
Therefore, mathematical meaning is not only being communicated multisemiotically through 
writing, but these sign systems also help inform the structure of spoken mathematical discourse. 
Student writing in the context of mathematics education thus warrants careful examination. 

The overlapping nature of these multiple sign systems in mathematics also warrants the 
viewing of student writing expansively in the context of mathematics education. In this vein, I 
build from Draper and Siebert’s (2010) framing of disciplinary literacy to broadly define writing 
in mathematics as the construction of any written text encompassing natural language, 
mathematical symbolism, or visual imagery that is used to understand or communicate 
mathematical ideas. This definition in turn conceives of a text as any representational object 
which is intended by its creator to communicate a meaning (Draper & Siebert, 2010; Schnotz et 
al., 2010). 

My aim in the present study is to better understand teachers’ orientations toward and 
interactions with students’ writing in high school mathematics. In particular, I investigate 
instructional moments that arise at the intersection of students’ written work and (spoken) 
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discourse between students and teachers around such work, and address the ways that teachers 
conceive of students’ writing in mathematics, attend to such writing, and interpret these 
interactions with such writing. I center this study on three questions: (1) Among a group of 
secondary mathematics teachers whose instruction is dialogically focused, what are their 
described orientations toward writing in school mathematics? (2) How do these teachers interact 
with their students’ writing instructionally in relation to the writing expectations of the task? (3) 
How do these teachers describe their interpretation of students’ writing and their interactions 
with students’ writing? 
 

Methods 
This study employed an embedded multiple case study approach (Yin, 2018). Each of the 

teachers represented a case, while a subunit of teachers’ observed interactions with students’ 
writing was embedded within each of these three cases.  Given that orientations arise at the 
intersection of beliefs, perceptions, and practices (Remillard & Bryans, 2004), this work made 
use of data from participant interviews, classroom observations, and collected samples of student 
written artifacts to form a nuanced reading of teachers’ perceptions about student writing in 
mathematics and their observed interactions with such writing. 
Participants and Setting 

Three high school mathematics teachers in a Mid-Atlantic state participated in this study, 
with pseudonyms Mrs. Taylor, Mrs. Hudson, and Mrs. Barnett. All three teachers’ instruction 
had previously been coded as dialogically focused during their participation in the SMiLES 
(Secondary Mathematics in-the-moment Longitudinal Engagement Study) project, which had 
used classroom observation data to identify potentially productive mathematics teaching 
practices (see Jansen et al., 2021). “Dialogically focused” instruction in this case entailed the use 
of (1) high-level, open-ended tasks, (2) opportunities for sharing multiple representations or 
strategies (e.g., graphs, tables, etc.), and (3) student discourse (Henningsen & Stein, 1997; 
Munter et al., 2015). Given the present study’s focus on the relationships between student 
writing and spoken discourse, dialogically focused instruction was conjectured to be an 
opportune setting under which to potentially capture teachers interacting with students’ writing.  
Measures and Analysis 

The data for this study came from two teacher interviews (pre- and post-observation) for each 
participant, recorded classroom observations (four for each participant during the Spring 2022 
school year), and collected samples of student writing (captured during classroom observations). 
The pre-observation teacher interview drew on items adapted from Cantrell and colleagues 
(2008) meant to capture participants’ described orientations towards writing in mathematics (the 
subject of the first research question). In particular, these questions addressed the extent to which 
participants descriptions about writing in mathematics are multisemiotic (i.e., consider different 
written sign systems) and whether participants oriented towards a writing-to-learn perspective 
(i.e., that writing is not merely a way to summarize what has already been learned, but that 
learning can occur through the practice of writing in mathematics; Connolly, 1989). 

The second interview built off of this pre-observation interview, first allowing participants to 
member-check (Candela, 2019; Creswell & Clark, 2017) profiles created to summarize their 
described orientations about writing from the previous interview. Teachers were also asked to 
provide their noticings about samples of student writing captured during observations (see 
Goldsmith & Seago, 2011; Jacobs et al., 2010) and to engage in video viewing sessions 
(Erickson, 2007) of multiple interactions that they had with student writing as captured from 
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their recorded classroom observations (described further below). Selection of these instructional 
video clips followed criteria similar to Sherin et al. (2009), namely that the chosen clips showed 
evidence of student thinking that was easily understandable and focuses on substantive 
mathematical ideas. In support of this, I particularly drew on clips that aligned with the captured 
samples of student writing and which addressed different types of interactions with student 
writing (described below). Participant responses to these interview components were used to 
address the third research question. 

For the second research question, four recorded observations for each teacher were coded 
along dimensions of (1) the type of writing embedded in the instructional tasks enacted during 
the lesson and (2) the type of teacher interaction with students’ writing. The categories of writing 
task was based on the work of Casa and colleagues (2016), and categorized the writing as either 
exploratory (to make personal sense of a situation or problem), procedural/symbolic (to calculate 
a numeric or algebraic solution by using procedures with mathematical symbolism), informative 
(to describe something), exclusive explanatory (to explain something, students executing 
“already-known” ideas), or inclusive explanatory (to explain something, students as active 
participants in forming ideas). The differentiation among types of explanatory writing tasks as 
either “exclusive” or “inclusive” was derived from the curriculum-focused work of Rotman 
(1988) and Herbel-Eisenmann (2007), where differences were noted in whether mathematical 
task prompts framed the reader (e.g., the student completing the task) as merely executing a 
defined set of statements to arrive at an already-known conclusion (exclusive, e.g., “Prove that x 
= 7 is a valid solution to the given equation.”) or as an active participant in the living activity of 
“doing” mathematics (inclusive, “How might we find a solution to the following equation?”). 
The distinction between these explanatory types of writing were pursued under the conjecture 
that the framing of the prompt could foster different types of teacher interactions with the writing 
that students might produce during their engagement with such tasks. 

The types of teacher interactions with students’ writing, shown in Table 1, were based on 
literature concerning teachers’ responses to student thinking in mathematics, as well as past 
research on instructional approaches to questioning. Firstly, an interaction could entail a teacher-
driven response to a students’ writing. This could involve a purely evaluative response (e.g., 
“Good job, that is correct” or “No, the solution is 12”), or a response that evaluates the student 
writing but also describes how the teacher sees (or do not see) their writing as communicating 
mathematical meaning (e.g., “I appreciate that you wrote out each step as you applied different 
operations to solve this equation, as that helps me understand how you arrived at your 
solution.”). This latter type of interaction could be seen as a type of judicious telling (Smith, 
1996) that uses students’ own written or spoken ideas in order to focus those students onto 
specific mathematical ideas relevant to the learning goals (see Smith et al., 2023).   

However, teachers could also more actively involve students in these interactions through a 
process that van Es and Sherin (2021) call shaping, which “involves teachers constructing 
interactions, in the midst of noticing, to gain access to additional information that further 
supports their noticing” (p. 23). This is aligned with what Boston et al. (2017) describe as 
assessing and advancing questions, with the former entailing the teacher assessing students’ 
understanding of the mathematics behind their written work (e.g., “Where did this ‘*4’ come 
from in your equation here?”) and the latter entailing a noticing or wonderment meant to extend 
students’ thinking (and writing) towards the learning goal (e.g., “Why did you draw the slope of 
this function as steeper than this other function? What about the function equation informs you 
how steep the slope might be when you graph it?”). With advancing questions – which I expand 
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in this study to include suggestive statements that serve a similar point as questions (e.g., “See 
what happens to the function rule when you change the slope.”) – the teacher is meant to then 
leave the student(s) to continue their thinking independently. 

 
Table 1: Types of Teacher Interactions with Students’ Writing in Mathematics 

 
Type of interaction Description 

Evaluative Response The teacher addresses a student’s written text without then explaining 
how they see the writing as communicating mathematical meaning. 

Descriptive Response The teacher addresses a student’s written text and/or states how they 
see the writing as communicating mathematical meaning. 

Assessing Question(s) 
+ Response 

The teacher inquires the student about the mathematical meaning of 
their written text and then states how they see the writing as 
communicating mathematical meaning. 

Response 
+ Advancing 
Question(s) 

The teacher states how they see the students’ written text as 
communicating mathematical meaning and then ends the interaction 
with a question or suggested next step to advance or revise the 
students’ writing. 

Assessing Question(s) 
+ Response 

+ Advancing 
Question(s) 

The teacher inquires the student about the mathematical meaning of 
their written text, states how they see the writing as communicating 
mathematical meaning, and then ends the interaction with a question 
or suggested next step to advance or revise the students’ writing. 

 
Such question-oriented interactions represent a more dialogic and student-focused approach 

to interacting with students’ writing, as they allow students to retain at least some of their own 
voice in relation to the written work that they have produced, and to more accurately expand 
upon the mathematical meaning behind the written text that they had produced. I also anticipated 
and encountered mixed combinations of these sorts of questions with more teacher-focused 
evaluative and descriptive responses. For instance, a teacher may give descriptive feedback and 
follow this with an advancing question, or might ask an assessing question before steering the 
interaction towards an evaluative response. As such, Table 1 represents combinations of how 
assessing and advancing questions arose in the data. 

Results 
Teacher interviews indicated that the participants had distinct and nuanced described 

orientations towards writing in mathematics, with a clear emphasis on natural language writing 
(e.g., written explanations or justifications) but openness to multisemiotic perspectives towards 
writing and writing-to-learn. Classroom observation data indicated a variety of interactions with 
writing across a range of writing tasks, albeit with the most common interactions being teacher-
drive (i.e., evaluative or descriptive responses) with procedural/symbolic tasks. Teachers’ 
descriptions of selected interactions, however, did indicate that the participants had a desire for 
more student-centered interactions and exploratory or explanatory writing tasks. 
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Described Orientations Towards Writing in Mathematics 
The participants’ described orientations towards writing in mathematics are summarized in 

Table 2. This table shows the type of sign system(s) emphasized by participants in their 
interviews (i.e., “Semiotic Orientation”) and the ways in which teachers affirmed a writing-to-
learn (Connolly, 1989; Morgan, 1998) perspective, with writing framed as an instructional tool 
for supporting the learning of conceptual ideas (i.e., “Learning Orientation). All three of the 
participants described – or were receptive to – writing as arising through multiple sign systems in 
the doing and learning of mathematics (a multisemiotic perspective), and all participants were 
receptive to a writing-to-learn perspective. However, participants at times noted exceptions or 
reservations towards such receptive attitudes. 

 
Table 2: Teachers’ Described Orientations Towards Writing in Mathematics 

Name Semiotic Orientation Learning Orientation 
Mrs. Taylor Natural language (written explanations) 

Receptive to a multisemiotic perspective* 
Receptive to writing-to-learn* 

Mrs. Hudson Natural language (academic vocabulary) 
Receptive to a multisemiotic perspective* 

Receptive to writing-to-learn 

Mrs. Barnett Writing as multisemiotic 
(words, visuals, symbols) 

Receptive to writing-to-learn* 

* (with exceptions or reservations) 
 

Mrs. Taylor largely centered her descriptions about writing in mathematics in terms of 
writing to justify or explain mathematical processes and solutions through natural language (i.e., 
the written word). She saw such writing as complementary to (but distinct from) more 
symbolically focused, procedural tasks. While her descriptions did not emphasize connections 
across different sign systems of writing, Mrs. Taylor did state that more symbolic, procedural 
writing done by students and more explanatory, natural language writing were “both valuable” in 
mathematics. She also noted that, although students can learn mathematical ideas through the 
construction of written explanations, this is “the part that goes when you’re on a time crunch.” 
Thus, while she was sympathetic to a writing-to-learn perspective, she did not describe writing 
(via written explanations or justifications) as crucial to the learning process. 

Mrs. Hudson’s descriptions of writing centered largely on the idea of academic vocabulary 
(e.g., “monomial”). She noted how, because the language that we use to describe mathematical 
concepts or representations is rooted in the nature of such ideas, that by “breaking down English 
words and translating” them (e.g., discussing the “mono” in “monomial”), students can recognize 
“how they [the words] affect the math world.” Thus, while her descriptions focused on natural 
language writing, Mrs. Hudson did see such writing as helping to develop students’ 
understanding of other sign systems. She specifically described how, by frequently and publicly 
making use of students’ written descriptions or explanations of relevant mathematical ideas, she 
saw writing as a way for students to gain comfort in both writing and speaking about 
mathematics with their peers, focus away from “if I’m correct or not,” and value what they can 
learn from their peers’ language. As such, she felt that writing “should go throughout” the 
learning cycle, including "warm up" activities, "rough draft" math, checks for understanding, and 
"exit ticket” routines, indicating a receptive stance towards writing-to-learn. 
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Mrs. Barnett held the most explicitly multisemiotic description of writing in mathematics, 
stating that “math is a form of communication in and of itself,” where “I have this idea that I 
want to communicate to people, this pattern that I’ve noticed…and I just need to be able to 
demonstrate it for someone else in however way I see fit with words, visuals, [or] symbols.” As 
mathematics and writing were both seen as forms of communication, Mrs. Barnett held that they 
were closely “intertwined” with one another. Because of this, she noted that “you could justify it 
[writing] anywhere in the learning process,” although she also stated that her immediate thought 
was that writing best occurs at the end of a learning sequence “to summarize” what was learned. 
Such responses indicated that Mrs. Barnett was receptive towards writing-to-learn but held some 
reservations with that perspective. 
Observed Teacher Interactions with Students’ Writing in Mathematics 

For each participant, four 90-minute lessons were recorded across the Spring 2022 semester 
and analyzed to identify types of writing tasks used by the teachers and types of interactions that 
they had with students’ writing. These results are shown below in Table 3. 

  
Table 3: Types of Writing Tasks and Teacher Interactions with Student Writing    

Procedural/ 
Symbolic Exploratory Informative Explanatory 

(exclusive) 
Explanatory 
(inclusive) TOTAL 

Evaluative 
Response 

39 
(6/23/10) 

0 
(0/0/0) 

12 
(3/4/5) 

6 
(5/0/1) 

19 
(7/12/0) 

76 
(21/39/16) 

Descriptive 
Response 

42 
(3/12/27) 

2 
(0/0/2) 

3 
(1/2/0) 

10 
(8/1/1) 

13 
(8/5/0) 

71 
(20/21/30) 

Assessing 
Question(s) 
+ Response 

11 
(2/5/4) 

3 
(0/0/3) 

1 
(1/0/0) 

2 
(2/0/0) 

6 
(4/2/0) 

22 
(9/6/7) 

Response + 
Advancing 
Question(s) 

3 
(0/2/1) 

3 
(1/0/2) 

0 
(0/0/0) 

3 
(2/1/0) 

4 
(3/1/0) 

13 
(6/4/3) 

Assessing + 
Response  + 
Advancing 
Questions 

2 
(0/1/1) 

0 
(0/0/0) 1 (1/0/0) 2 (2/0/0) 2 

(2/0/0) 
7 

(5/1/1) 

TOTAL 97 
(11/43/43) 8 (1/0/7) 17 (6/6/5) 23 (19/2/2) 44 

(24/20/0) 
189 

(61/71/57) 
Note. Results show totals followed by individual teacher counts (Taylor/Hudson/Barnett) below. 
 

These results show a variety of interactions that occurred across a range of writing tasks. For 
Mrs. Hudson and Mrs. Barnett, most of these interactions occurred during procedural/symbolic 
tasks (43 interactions each), while for Mrs. Taylor, a plurality of interactions occurred during 
explanatory (inclusive) tasks (24 interactions), followed by explanatory (exclusive) tasks (19 
interactions). The results also show that evaluative and descriptive interactions (i.e., teacher-
oriented interactions) composed the majority of interactions observed in every participant’s 
lessons (41 out of 61 interactions for Mrs. Taylor, 60 out of 71 interactions for Mrs. Hudson, and 
46 out of 57 interactions for Mrs. Barnett). Given the briefness of many such interactions (e.g., 
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“That solution is correct” could be coded as an evaluative interaction), it is unsurprising that 
these interactions would be more frequent than those that required more extensive open-ended 
discourse (i.e., assessing and/or advancing questions) between the teacher and student. 

Interestingly, the results also show that each participant did engage in student-oriented 
interactions (i.e., those that used assessing and/or advancing questions), and that such 
interactions occurred across the range of writing expectations embedded within tasks. Every 
teacher, for instance, was observed using such questions multiple times with procedural/ 
symbolic tasks. The results also show how, even as students were working on tasks that required 
explanatory writing, teachers continued to give quick evaluative or descriptive feedback to 
students in addition engaging them at times with assessing and/or advancing questions.  
Teachers’ Described Interpretations of Students’ Writing in Mathematics 

In their post-observation interviews, teachers were asked to interpret samples of students’ 
writing collected during the observations and captured examples of their interactions with 
students’ writing from those same lessons. These interpretations inform the third research 
question, and demonstrate important connections between participants’ described orientations 
and observed interactions with student writing. 

Mrs. Taylor’s reactions to samples of student writing are in line with her focus on writing as 
a form of explanation and justification. She was asked to interpret samples of posters that student 
groups created to “prove” the classification of a quadrilateral (e.g., parallelogram) based on four 
given coordinates that represented the location of the quadrilateral’s vertices. She mentioned 
how, although the different student groups “got full credit because they did a fabulous job 
showing me their work and everything like that,” she wished that she had seen more students 
“showing me how you came up with those answers.” This again showed the way that she 
differentiated between more symbolic writing and written explanations.  

Mrs. Hudson’s interpretations of students’ writing emphasized her previously described 
focus on building student comfort with sharing their mathematical thinking through both writing 
and speaking. For instance, she was asked to reflect on students’ writing from an activity where 
they were solving for unknown exponents (e.g., 3b * 37 = 311) and prompted to write out their 
solutions and reasoning through an app that Mrs. Hudson then used to display and comment on 
student responses whole class. She described how, even for students’ explanations that were 
imprecise or used incorrect grammar, she was “ok with that” because students were still “able to 
verbalize their thoughts or write out their thoughts and reasoning in a way that makes sense to 
them, and then we transition into some vocab that applies to what they’re saying.” This quote 
also alludes to Mrs. Hudson’s previously stated emphasis on academic vocabulary. 

Mrs. Barnett’s interpretation of student writing samples appeared to reflect her described 
orientation towards writing as a form of communication. She reflected on a warm-up activity she 
had enacted where students were asked to describe what they noticed about a graph of the 
logarithmic function f(x) = logb(x), the exponential function g(x) = bx, and the line y = x. This 
was done to demonstrate the inverse relationship between logarithmic and exponential functions, 
and these responses were then displayed and discussed whole group. She recounted how she 
used to “get very just fixated on converting from logarithmic to exponential form,” and saw this 
activity as a way for students to grapple with seeing patterns across different sign systems. This 
emphasis on translating within and across sign systems appeared in line with Mrs. Barnett’s 
previous multisemiotic descriptions. 

Mrs. Barnett was then asked to reflect on a recording of an interaction she had with students 
around this task. Her response was revealing in how she thought about her work with students 
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around their writing and aligned with similar comments made by the other participants. The 
interaction in question was a descriptive response, but Mrs. Barnett stated how “I wish I had 
asked the students to make sense of each other's responses instead of reading through them 
myself.” This indicated that she was aware of the teacher-oriented nature of the interaction, and 
expressed a desire for more student ownership and voice during such interactions. 

Discussion and Conclusions 
This study indicates the multiple dimensions through which teachers orient themselves 

towards writing in mathematics. Because teacher orientations arise at an intersection of beliefs, 
perceptions, and practices (Remillard & Bryans, 2004), this investigation is particularly helpful 
in shedding light on how teachers’ descriptions of their orientation towards writing in 
mathematics compare to their observed interactions with students’ writing and their 
interpretations of such interactions. Because this study employed a case study approach (Yin, 
2018), the results are not generalizable. However, the categories devised for analyzing the 
observation data and the overarching study results offer a framework for future investigations. 
Importantly, cross-case analysis indicates some salient themes regarding how these teachers 
orient themselves towards writing in mathematics. 

In terms of described orientations, each participants had a distinct semiotic orientation 
towards writing, from a focus on written explanations and justifications (Mrs. Taylor), to a focus 
on academic vocabulary (Mrs. Hudson), to a focus on communicating across sign systems (Mrs. 
Barnett). Although only Mrs. Barnett initially described writing in mathematics across multiple 
sign systems, all participants were receptive to a multisemiotic (O’Halloran, 2000, 2008) 
perspective on writing. Each participant was also receptive to a writing-to-learn (Connolly, 1989; 
Morgan, 1998) perspective, although Mrs. Taylor indicated that this was not essential for 
teaching mathematics and Mrs. Barnett noted that she generally thinks of writing as a way to 
summarize what has already been learned.  

Although the teachers were receptive to these multisemiotic, writing-to-learn perspectives of 
writing in mathematics, their observed instruction focused primarily on procedural/symbolic 
tasks, and most of their interactions were evaluative or descriptive in nature. However, across all 
types of writing tasks teachers were still observed using assessing and/or advancing questions. 
This suggests that such teachers play a critical role as a facilitator in determining how students’ 
writing is interpreted and interacted with during instruction. In other words, these teachers are 
able to enact even closed-ended, procedural tasks in ways that, at times, allow for student-
oriented discourse around their written work to arise. 

Participants’ recognition of teacher-oriented interactions as being “missed opportunities” for 
student discourse also showed how these teachers could identify different types of interactions 
with students writing and signaled their preference for more student-oriented interactions. Given 
that participants’ instruction had previously been found to be dialogically oriented (Munter et al., 
2015), this could indicate the value that such teachers place upon student discourse. As such, 
supporting such teachers in building bridges between their orientations towards discourse and 
orientations towards writing in mathematics may be a compelling way to foster more consistent 
student-oriented interactions with students’ written work. 

Ultimately, participants in this study held distinct orientations towards “writing in math.” 
However, their instruction and reflections suggested a strong desire to foster student ownership 
in the doing of and discourse around mathematics through such writing. By highlighting the 
connections between written and spoken communication in mathematics, as well as the multiple 
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sign systems through which we communicate such ideas, such teachers might be better able to 
foster students’ effective communication in the learning and doing of mathematics.  
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THE CONTEXT OF TIKTOK AND STUDENT LEARNING OF MATHEMATICS 
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This poster session presents the results of a sixth-grade students’ use of story contexts to 
make sense of properties of operations. Results indicate that students found success solving 
problems based in real-world settings and that also connected to their personal experiences. One 
of the contexts included a story about the use of social media platforms. Recently, specific 
platforms, such as TikTok, have been banned by various organizations. This session addresses 
the use of potentially controversial contexts linked to banned social platforms in mathematics 
classrooms. Implications for mathematics teachers and teacher educators in terms of curricular 
choices and authentic practices are recommended for future study as issues of censorship 
permeate the current cultural and political environment. 

The conceptual basis for this study included aspects of Realistic Mathematics Education (or 
RME) and dimensions of mathematically powerful classrooms. Van den Heuvel-Panhuizen, & 
Drijvers (2020) discussed several principles related to RME, including the reality principle 
which involves introducing mathematics problem situations that are meaningful to students. 

Schoenfeld (2014) described the importance of cognitive demand, access to content, agency, 
authority & identity that are evident in powerful mathematics classroom settings. Giving 
students choices of how to approach and solve problems situated within contexts that are real-life 
and personally relevant to them provided opportunities to actively engage in these dimensions. 

The questions addressed in this study were as follows: 
• What strategies did students use to solve the TikTok problem? 
• How did the social media context influence follow-up discussions between Mrs. G 

and her students? 
This participants in this study included a sixth-grade mathematics teacher with 20 years of 

experience and her 38 students across three sections and three days of consecutive instruction. 
Prior to the enactment of the lesson, the teacher, Mrs. G, surveyed her students to determine what 
they were interested in and thinking about. The responses were, “talking to friends, TikTok, 
gaming, sports, shoes, fashion (which they call drip)”. A percent problem was created using a 
TikTok context. The purpose of the problem was to assess whether students would use the 
associative property to facilitate solution to the problem (Barnett & Ding, 2019; Ding, et al., 
2021). 

The problem posed was, “Bree spends 75 minutes per day watching TikTok videos. William 
spends 4% of the amount of time as Bree. How many minutes per day does William spend 
watching TikTok videos?” The problem was posed in an open choice format to allow strategy 
choices and diverse approaches. The results showed that 63% of the students used a valid 
strategy which included 26% of the students applying the associative property of multiplication 
in their solution. The TikTok story context was central to students’ access to and sense-making 
of the number relationships in the problem and reflections on the reasonableness of their answer. 

There has been concern that the banning of TikTok could lead to further censoring of 
freedoms in teaching and learning (Koleson, 2020; Azman, et al., 2021). Given that TikTok is 
such a popular platform for so many it is worth considering whether banning this platform will 
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also influence curricular choices of teachers. Additional research is needed to study the impact of 
potential censorship on classroom instruction and mathematics learning environments. 
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THE DEVELOPMENT OF THE INSTRUCTIONAL VISION OF EARLY CAREER 
SECONDARY MATHEMATICS TEACHERS 

Amanda Huffman Hayes 
Purdue University 

huffma33@purdue.edu 

Using narrative inquiry, I share the beginning stories of the instructional visions of secondary 
mathematics teachers throughout their undergraduate studies of pedagogy and content-specific 
methods and evidenced in undergraduate coursework and student teaching experience. Guided 
by Munter’s (2014) Visions of High-Quality Mathematics Instruction Role of the Teacher rubric, 
I answered the following research question: How do the instructional visions of secondary 
mathematics teachers develop throughout their undergraduate coursework and student 
teaching? Understanding the instructional visions of mathematics teachers as evidenced in 
undergraduate coursework and student teaching reveals the impact of discussions, activities, and 
readings in their education studies and field experiences.  

Keywords: Instructional vision; Instructional activities and practices; Preservice teacher 
education 

The work of teachers is like that of orchestra conductors using educational imagination and 
rules of thumb to continue conversation throughout the class, unlike that of technicians with a set 
of scientific prescriptions (Eisner, 1983). While conducting their orchestra, teachers make 
decisions about their teaching and student learning while continually working toward making 
music. To improve their practice, teachers make several conscious decisions (Leatham, 2006) 
while working toward good or quality teaching (Arbaugh et al., 2021; Beswick, 2007; Ernest, 
1991; Hammerness, 2001). But what does this encompass? Ernest (1991) initially presented three 
variations to the definition of quality mathematics teaching: (a) students achieve success (e.g., 
achieving success on standardized assessments), (b) the teacher uses a wide array of teaching 
strategies, and (c) the teacher is influenced personal epistemology and mathematics-related 
beliefs system and its realization and transfer into practice. However, only in the third 
conceptualization does the teacher have much control. In the first two conceptions, there are 
several conditions outside the control of the teacher (e.g., changing standardized assessments, 
strategic compliance on practices used in the classroom). Thus, many mathematical researchers 
(e.g., Ball, 1990; Pajares, 1992; van Putten et al., 2014) focused on identifying teachers’ beliefs 
and the impact of teachers’ beliefs on mathematics instruction and students’ learning.  

Over time, as more researchers continued to study personal (i.e., teacher) impacts on 
teaching, some researchers (e.g., Arbaugh et al., 2021; Hammerness, 2001; Munter & Wilhelm, 
2021) shifted to discussing teachers’ vision, or more specifically instructional vision. This shift is 
a result of the lack of a clear definition of beliefs (Philipp, 2007), since some researchers (e.g., 
Pajares, 2014; van Putten et al., 2014) have used the term belief without defining it. For example, 
Parjares (1992) called defining beliefs “at best a game of player’s choice” (p. 309). Munter 
(2014) addressed his use of the term “vision” instead of beliefs as “beliefs suggest a relatively 
static set of decontextualized ontological commitments” (p. 587), where vision is intended to 
communicate “a more dynamic view of the future” (p. 587). So while instructional vision and 
beliefs could be interpreted similarly, the focus of my research will be on the instructional 
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visions of secondary mathematics teachers, including its dynamic view of the future, particularly 
when observing early career teachers striving to put their instructional vision into practice.  

Vision has been consistently defined in the literature on mathematics education. Hammerness 
(2001) defined teacher vision as “a set of images of ideal classroom practice for which teachers’ 
strive” (p. 143). Building on Hammerness’s (2001) definition, Jansen et al. (2020) defined a 
teacher’s vision as “an idealized image of classroom practice” (p. 184) encompassing “their 
aspirations or hopes of what could occur in their classrooms, schools, communities, and even 
society” (p. 184). In time, researchers started using more specific phrases, particularly 
instructional vision. Arbaugh et al. (2021) defined instructional vision as “a set of internal 
images that portray the work of teaching mathematics” (p. 449). Similarly, Munter and Wilhelm 
(2021) defined instructional vision “as the discourse that teachers or others currently employ to 
characterize the kind of ‘ideal classroom practice’ to which they aspire but have not yet 
necessarily mastered” (p. 343). These discourses include “both descriptions of what high-quality 
instruction looks and sounds like as well as rationales in terms of what it accomplishes” (p. 343). 
The instructional vision of teachers, particularly early career teachers, is significant as it depicts 
what teachers want to see and hear in their classroom.  

Teachers’ instructional visions matter (Feiman-Nemser, 2001; Viholainen et al., 2014; 
Woods & Wilhelm, 2020). Looking at the first stage of Feiman-Nemser’s (2001) Central Tasks 
of Learning to Teach, learning to teach starts as preservice teachers critically contemplate their 
beliefs and how they are situated or related to their own vision of good teaching. Sfard (2007), in 
relation to students' mathematical understanding, found that a change in our discussion around 
how students develop mathematical understanding needs to happen before students can 
experience a change in something. The same can be thought of for good teaching; first, teachers 
discuss the changes they want to see, then they make them happen. Thus, adopting a reflective 
practice in teaching can lead to changes, often for the better.  

Jansen et al. (2020) investigated the impact of teacher education programs on the 
instructional visions of mathematics teachers. Through online questionnaires, their data consisted 
of participants self-reported instructional vision for teaching elementary mathematics, the vision 
promoted by their teacher education program, the influence or lack of influence from their 
education program on their instructional vision, and if they thought their visions changed over 
time. Their findings raised awareness around how teacher education programs can impact the 
instructional visions of their graduates as they found an alignment related to developing students’ 
conceptual understanding and engaging students in a productive struggle in their teachers’ 
instructional visions and pre-service program experiences. However, they found these novice 
instructional visions can change with more classroom experience and professional development.  

Arbaugh et al. (2021) and Munter and Wilhelm (2021) extended the body of research on the 
instructional vision of teachers. Arbaugh et al. (2021) examined, in a semester-long course, 
changes in the instructional visions of secondary mathematics preservice teachers of teaching 
mathematics. Although they found a positive change (e.g., moving from understanding teaching 
as telling to teaching as facilitating), they wondered about the permanence of such changes. This 
identified the need for longitudinal studies “to examine whether such changes in vision persist 
into teachers’ early careers, including whether... [they] continue to change, stagnate, or revert” 
(p. 459). Munter and Wilhelm (2021), through the lens of “how teachers develop more 
sophisticated instructional visions” (p. 344), investigated instructional vision of middle school 
mathematics teachers. They found several factors contributing to the development of a more 
sophisticated instructional vision, including: (a) mathematical knowledge for teaching, (b) 
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instructional practice, (c) instructional views of colleagues, and (d) frequency of interaction with 
colleagues. Jansen et al. (2020), Arbaugh et al. (2021), and Munter and Wilhelm (2021) 
encouraged looking to teachers’ environments (e.g., school and community) when making sense 
of their instructional vision and any changes that might or might not be occurring.  

My Positionality  
As a former high school mathematics teacher, Sfard’s (2007) notion of first changing how we 

discuss mathematical learning of students before changes take place resonated with me as I 
reflected on my own ideas before acting on them. I recall thinking about my future classroom as 
an undergraduate. Many professors challenged me in various courses to think about what we 
wanted our classroom to be like, what students would be doing, and what we, the teacher, would 
be doing. Woods and Wilhelm (2020) similarly noted the importance of early career teachers’ 
instructional visions and how their initial instructional vision can impact the pedagogical 
resources they use. They also claimed that while teachers’ instructional visions are often 
evolving, their early career instructional visions are often the most critical as early career 
teachers begin to implement various instructional practices. This resonated with me in reflecting 
on my own experience in the classroom. Just as I have had my own unique experiences related to 
the evolution of my instructional vision throughout nine years in a secondary mathematics 
classroom, so have other teachers. Thus, in my longitudinal research study, I examine the 
instructional visions of secondary mathematics teachers throughout their early career. Here, I 
share the initial phases of study (i.e., undergraduate coursework and student teaching) guided by 
my research question, How do the instructional visions of secondary mathematics teachers 
develop throughout their undergraduate coursework and student teaching? 

Theoretical Framework 
In analyzing secondary mathematics teachers’ instructional visions, I used Munter’s (2014) 

Vision of High-quality Mathematics Instruction (VHQMI) Role of the Teacher rubric. Munter’s 
VHQMI rubrics focus on the development of teachers’ visions of high-quality mathematics 
instruction. The development of teachers’ visions is one key that differentiates Munter's 
definition and rubrics from others. Munter’s VHQMI rubrics were developed from other 
theoretical perspectives, including Carpenter and Lehrer’s (1999) notion of learning with 
understanding, Cobb and Bauersfeld’s (1995) emergent perspective on learning, and Rogoff et 
al.’s (1996) community of learners. Through conducting research in their own classrooms, 
Carpenter and Lehrer (1999) found five forms of classroom activity through which mathematical 
understanding can emerge: “(a) constructing relationships between current and more 
sophisticated ways of thinking; (b) building rich, integrated knowledge structures; (c) reflecting; 
(d) articulating what one knows; and (e) making mathematical knowledge one’s own by coming 
to perceive it as evolving and authoring one’s own learning” (Munter, 2014, p. 589). Carpenter 
and Lehrer’s (1999) five forms of activity align with Cobb and Bauersfeld’s (1995) emergent 
perspective, as the five forms of activity are social practices through which individual knowledge 
construction, as well as mathematical learning, occur. Engaging in these social practices, we 
have the teacher and the students, or the community of learners as defined by Rogoff et al. 
(1996), existing somewhere on a continuum between teacher-led and student-led.   

These combined perspectives contributed to Munter’s (2014) VHQMI, which he divided into 
three dimensions: role of the teacher, classroom discourse, and mathematical tasks. In this study, 
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I focus on Munter’s (2014) role of the teacher: (a) motivator, (b) deliverer of knowledge, (c) 
monitor, (d) facilitator of knowledge, and (e) more knowledgeable other (see Table 1). 

 
 
Table 1: Abbreviated VHQMI Role of the Teacher (Woods & Wilhelm, 2020, p. 117)  

Role of the 
Teacher Description  

Motivator Describes the teacher as being able to captivate and hold students’ attention. 

Deliverer of 
knowledge 

Describes the teacher as the primary source of knowledge. Here, the teacher focuses on 
mathematical correctness and his/her thoroughness of explanations. 

Monitor 
Describes the teacher as the primary source of knowledge. However, the teacher emphasizes the 
importance of providing time for students to work together to make sense of what he/she has 
demonstrated. 

Facilitator of 
knowledge 

The teacher is focused on “reform instruction” but may not have a strong understanding of the 
pedagogical strategies that underlie those forms. 

More 
knowledgeable 

other 

The teacher describes his/her role as proactively supporting students’ learning through 
participation. Further, the teacher emphasizes the importance of designing a learning 
environment that supports problematizing mathematical ideas, giving students voice and 
mathematical authority, and holding students accountable for their learning. 

 
Munter (2014) used other existing research on effective mathematics instruction (i.e., Hiebert 

et al., 1997; Jackson et al., 2013; Lampert, 1990; Lobato, Clarke, & Ellis, 2005; Madsen-Nason 
& Lappan, 1987; Staples, 2007; Stigler & Hiebert, 1999) and data collected as part of the Middle 
School Mathematics and the Institutional Setting of Teaching (MIST; Cobb & Smith 2008) to 
identify three ways in which to characterize the role of the teacher: “(a) conception of typical 
activity structure (i.e., the teacher’s general mode of instruction and role in classroom activities), 
(b) attribution of mathematical authority (i.e., students’ roles with respect to the mathematics 
being learned), and (c) influence on classroom discourse” (p. 600). These three characterizations 
were then factored into the descriptions of the roles of the teacher.  

First, Munter (2014) described a teacher as a motivator, or one who captivates and maintains 
the students' attention. For teachers who are deliverers of knowledge, instruction primarily 
encompasses teacher-to-student discourse with the teacher providing direct instruction with little 
discussion. The validity of mathematical tasks comes from the textbook or the teacher (Simon, 
1994) when teachers are the deliverers of knowledge. Teachers who play the role of monitors 
supervise student-to-student discussion. If students stray toward inaccurate reasoning, the teacher 
resets them (Munter, 2014). According to Stigler and Hiebert (1999), the activity structure when 
teachers are monitors encompasses a two-phase acquisition and application lesson. The teacher 
leads a discussion or demonstration, and then the students work in groups with what was just 
demonstrated, while the teacher circulates around the classroom.  

When looking at teachers who are the facilitator of knowledge and more knowledgeable 
other, the role of the teacher shifts as instruction becomes more student-led (Munter, 2014). 
Lobato, Clarke, and Ellis (2005) describe the classroom discourse with a facilitator of knowledge 
as including student-to-student talk with the teacher facilitating and hesitant to guide students so 
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as not to interfere with the discovery process. Students are discovering and teaching themselves. 
Unlike when the teacher is a monitor, if students begin to stray toward inaccurate knowledge, the 
teacher attempts to guide students back on track through questioning (Munter, 2014). When 
teachers facilitate knowledge, Madsen-Nason and Lappan’s (1987) launch-explore-summarize 
(LES) structure of a lesson unfolds with the teacher posing a task(s), the students working, 
typically in groups, to complete the task(s), and the students revealing and explaining their 
solutions at the end of the lesson. The teacher may also clarify the concept if necessary.  

Teachers as more knowledgeable others go beyond facilitating (Munter, 2014), while 
continuing to model Madsen-Nason and Lappan’s (1987) launch-explore-summarize lesson 
structure. Students’ ideas are elicited to create a shared context through discussions (Staples, 
2007). The teacher supports the learning of the students. Students work toward a shared goal 
through problematizing content (Hiebert et al., 1997), and instead of validity being provided by 
the textbook or teacher, it comes from the classroom community (Simon, 1994) as the students 
and teacher share the authority in learning (Lampert, 1990).  

Methods 
This project is currently in Phase III of a longitudinal case study (Merriam & Tisdell, 2016) 

in which I am investigating the instructional visions of six secondary mathematics teachers from 
their undergraduate studies into their early careers. The findings shared here will include data 
from both Phase I, undergraduate coursework, and Phase II, student teaching as data in Phase III, 
interviews during their first year of teach, is still ongoing in regard to data collection and 
analysis. To gain an understanding of each early career secondary mathematics teacher, I will 
compile an in-depth description and analysis in their respective contexts will be conducted as 
part of the case study (Merriam & Tisdell, 2016; Yin, 2014).  
Participants, Context, and Data Sources 

The six participants, identified using pseudonyms, completed their undergraduate studies in 
secondary mathematics education at a large midwestern university. The participants included 
three self-identifying males and three self-identifying females. One of the female participants is 
African American, while the other five participants are Caucasian. Two participants, one male 
and one female, completed their student teaching in a midwestern rural school, while the others 
completed their student teaching in midwestern urban schools. In addition to student teaching, 
each participant spent at least 30 hours in other middle school and high school mathematics 
classrooms and also individually taught a section of an entry-level college algebra course at their 
large midwestern university during the semester prior to student teaching.  

The secondary mathematics education program in which the participants were enrolled was 
focused on collaborative, student-centered learning designed to develop students' conceptual 
understanding, mathematical reasoning, and problem solving in addition to their procedural 
fluency. Students wrote several lesson plans following the LES model of Madsen-Nason and 
Lappan (1987) and were asked to consider knowledge about their students that influences their 
planning, a universal design for learning with multiple learning supports through representation, 
action, expression, and engagement (Hunt, 2011), as well as an assessment plan (both summative 
and formative), differentiation, and accommodations. All of these elements of lesson planning, 
including how to successfully lead and launch, and what makes a good mathematical task, were 
discussed extensively in their two secondary mathematics methods courses. Students practiced 
peer teaching before teaching in their field experiences in conjunction with the methods courses.   
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Three sources of written data were collected during Phase I: (1) philosophy of education 
originally drafted in an introductory education course (Artifact I), (2) mathematics classroom 
vision written a year before student teaching in the first of two secondary mathematics methods 
courses (Artifact II), and (3) revised philosophy of education written the semester prior to 
student teaching in the second of two secondary mathematics methods courses (Artifact III).  

The data collected in Phase II included two semi-structured interviews (Merriam & Tisdell, 
2016) during student teaching, one about half-way through their experience (Interview IA) and 
another one at the conclusion of their student teaching (Interview IB). Additional data sources 
for the longitudinal study will include two semi-structured conversational interviews during each 
of their first two years of teaching mathematics (Phase III and Phase IV). Additionally, another 
source of data takes the form of research memos I continue to write throughout the data 
collection and analysis my study (Bogdan & Biklen, 2011).  
Data Analysis: Interpreting Instructional Visions 

As I began data analysis, I read, re-read, and took notes on key elements in the artifacts to 
make meaning of what was represented both implicitly and explicitly in the data (Bogdan & 
Biklen, 2011; Flick, 2014). In reading and re-reading the artifacts, I looked for themes around 
Munter’s (2014) descriptors of the role of teacher, including student talk, launch, explore, 
summary, groups, and conversations related to the description of the discourse in the classroom, 
the structure of the activity, and who had the mathematical authority in the classroom. 
Triangulation amongst each of the artifacts and research memos was used to check the validity 
and reliability (Merriam & Tisdell, 2016). These key words and descriptors combined with my 
initial notes allowed me to determine how each of the instructional visions of the participants 
aligned with Munter’s (2014) VHQMI Role of the Teacher rubric.  

After collecting all the interviews during student teaching and transcribing them, I began the 
same process in looking for the same key descriptors. I completed this process for each 
participant before moving on to the interview transcripts of the next participant. Throughout all 
of the analysis I looked for reoccurring regularities or shifts in the key descriptors (Merriam & 
Tisdell, 2016) to uncover the alignment with Munter’s (2014) VHQMI Role of the Teacher 
rubric.  

Findings 
Here, I share the development of the instructional vision of Allison and Corey as they 

represent the extremes in my sample. Allison’s instructional vision was challenged in her 
students teaching, while Corey’s instructional vision was refined. The obstacles Allison faced 
while further developing her instructional vision were unlike others, as was the freedom Corey 
experienced in trying new ideas while cultivating his own instructional vision. I focus on the key 
descriptors found in their undergraduate coursework (Artifact I, II and III) and the transcripts of 
the semi-structured interviews during their student teaching experience (Interview IA and IB) 
and how they correspond to Munter’s (2014) role of the teacher rubric.  
Allison 

Allison, a Caucasian female, described her classroom as having students in clusters so that 
students could “communicate with each other” (Artifact I). In her philosophy (Artifact II), she 
described how “teachers can best help students learn by making them feel supported, rather than 
being dominated by an authority figure. Teachers should guide students toward success rather 
than forcing end results upon them.” Similarly, she noted: “if the students have some input on 
how the class should run, they will be more likely to follow the rules and engage in the class 
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because they will feel autonomous.” These key descriptors focused on the active role students 
play in the mathematics classroom and Allison’s role as the more knowledgeable other. Another 
key descriptor found in her philosophy of education was how she planned to “teach math using 
LES (launch-explore-summarize) and not focusing on lecturing for students to just understand 
the concepts surface-level and procedurally.” This indicates her role as a facilitator of knowledge 
or a more knowledgeable other depending on the specific LES lesson.  

Allison, who attended a large urban midwestern high school, completed her 16 weeks of 
student teaching at a small rural midwestern high school. She described in her first interview her 
cooperating teacher as almost completely opposite in regard to instructional vision, as she was a 
motivator or deliverer of knowledge. She found challenges with adjusting to this environment 
where many students do not graduate from high school and her cooperating teacher’s style.  

About a third of the way into her student teaching, Allison received new groups of students 
when the third trimester started in early March. Allison started teaching full-time and was 
hopeful that the student-centered strategies she had previously attempted would be more 
successful with new groups of students. Allison wanted to try the LES structure and wanted her 
students to work collaboratively. But while Allison’s instructional vision still appeared to align 
with the characteristics of facilitator of knowledge and more knowledgeable other, her classroom 
became more of a place in which she was the monitor or deliverer of knowledge, the place at 
which her students were most comfortable.   

Allison encountered additional challenges in all three of her classes (Algebra I Repeat, 
Algebra II, and Finite) where students did not have the requisite prior knowledge to learn the 
new content. For example, in Interview IB, Allison talked about her three-day plan for teaching 
piecewise functions in Algebra II. On the first day, the plan “exploded” as the students did not 
have a conceptual understanding of how to find the domain and range of functions on a graph. 
As a result, Allison shifted to direct instruction to help her students understand domain and 
range. Allison noted she wanted to “improve what I am doing,..., and to not have to teach to the 
test. I hate that. I like want the students to understand things more than just the problem that is on 
the test” (Interview IA). So, while Allison’s student teaching turned into primarily direct 
instruction based on her circumstances and the role she exhibited was a motivator and a deliverer 
of knowledge, she was not happy and was eager to try something different in her own classroom. 
Following Allison into her first year of teaching will allow me to see how her instructional vision 
continues to develop.   
Corey 

“Accessibility and group dynamics will be very important to the physical layout,” Corey, a 
Caucasian male, noted in his classroom vision (Artifact I). Corey’s “goal is to lower as many 
physical barriers as possible in the way of students’ conversations and ideations.” These 
descriptors demonstrate Corey’s eagerness for student participation and student-centered 
learning as the facilitator of knowledge or the more knowledgeable other. Corey continued to 
discuss student engagement by noting the importance of questions and how “students in my class 
should know that their ideas and questions are valuable.” Corey envisioned his students 
discovering math by questioning and seeking their own answers. Corey went on to state, “rarely 
do I want to just tell students what the correct answer or correct method is; I’d like to encourage 
them to look inward to see if they can’t follow their own intuition to a solution.”  

Corey’s revised philosophy of education (Artifact II) echoed much of his previous classroom 
vision. In his philosophy of education, he added elements related to student learning, including 
productive struggle and “that (productive) struggle is necessary to conceptual understanding.” He 
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compared solving real world problems to that of productive struggle in a mathematics classroom: 
“very few problems in the real world come with pre-defined solutions, and most of them require 
some critical thinking, trial and error, and logical reasoning skills to solve.” He concluded, “I 
still believe that my classroom can be a valuable asset to students’ development as critical 
thinkers and persistent learners.” These descriptions in his philosophy (i.e., questioning, student 
thinking and discovery, productive struggle, trial and error) situate Corey’s instructional vision 
as that of a facilitator of knowledge or a more knowledgeable other. 

Corey went on to student teach at a small primarily Caucasian rural midwestern junior/senior 
high school and worked with three cooperating teachers while teaching two sections of seventh 
grade math, a section of co-taught Algebra I with freshman, a section of Algebra I with eighth 
graders, and two sections of trigonometry with eleventh and twelfth graders. In working with 
three cooperating teachers and teaching three different courses, Corey reported learning a lot as 
he continued to refine his own instructional vision while trying to put some of his ideas into 
practice. In Interview IA, Corey mentioned was how he was finally starting to build student-
teacher relationships with his students, and more so 7th graders. He found that his lessons were 
improving because he was able to relate to his students more. When talking about his lessons, 
Corey often talked about the launch, explore, and summary, providing evidence for his use of the 
LES model and situating himself as the facilitator of knowledge or the more knowledgeable 
other. In Interview IB, Corey described how his students would offer ideas and suggestions, but 
noted that he was leading them or acting as the facilitator of knowledge. Corey’s variety of 
classes and cooperating teachers facilitated his exploration of activities and teaching styles, 
allowing him to take the role of facilitator of knowledge or even a more knowledgeable other.  

Discussion and Implications 
Perhaps not surprisingly, as Jansen et al. (2020) and Arbaugh et al. (2021) found similar 

results, the instructional visions of the secondary mathematics teachers were similar to and 
aligned with the ideals emphasized in their secondary mathematics education program, 
particularly relative to their undergraduate coursework (i.e., classroom vision and philosophy of 
education). The key words and phrases in their writing and in the interview transcripts aligned 
closely with the ideals of Munter’s (2014) VHQIM role of teacher as facilitator of knowledge 
and the more knowledgeable other. Their undergraduate coursework emphasized the LES model, 
which was often mentioned in the interviews and in their descriptions of ideal lessons. In 
addition, collaborative learning through group work and class discussions with student talk was 
emphasized in their writing and interviews. Knowing the presence of these similarities between 
the instructional visions of secondary mathematics teachers and the approach of the secondary 
mathematics education program the teachers attended shows the impact of one's program on 
individual teachers. This stresses the importance for us as mathematics teacher educators to share 
with our future mathematics teachers how mathematics can be taught even though it may be 
different from how one learned mathematics or even observes mathematics being taught in the 
field. Readings, reflections, activities, and discussions in the undergraduate coursework impact 
the instructional visions of secondary mathematics teachers. The instructional vision of the 
cooperating teachers and classroom structures while student teaching also shaped their 
instructional visions. For Allison, she was challenged by this and experienced teaching in ways 
she herself was not happy with, but worked in the environment in which she was in. Corey, on 
the other hand, with multiple cooperating teachers, was able to try more while continuing to 
build on his instructional vision that he developed in his undergraduate coursework. As Arbaugh 
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and colleagues (2021) questioned the permanence of the instructional visions of early-career 
mathematics teachers, there is still much to be explored as my study continues to follow these 
teachers into their early career in their own classrooms. One area of future exploration could be 
to include the instructional vision of the novice teachers’ mentor teachers in order to see the 
possible impact of their cooperating teacher more clearly. Through continuing my study, I hope 
to see how these early career teachers begin to conduct their own orchestras (Eisner, 1983).   
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In a research study designed to investigate the emergence of collective creativity in elementary 
classroom settings, and in which teachers’ decision-making practices were analyzed alongside 
both the teachers’ observed teaching practices in their classrooms and their students’ problem 
solving actions, the first author developed four metaphors for collective mathematical creativity 
and linked the entailments of these metaphors to teachers’ actions. In this paper, we discuss in 
detail these entailments and teacher actions, present a framework for collective creativity, and 
reflect on the implications for practice and further research. 

Keywords: Elementary school education, Instructional activities and practices, Teacher beliefs 

This paper is based on data collected by the first author in a research study designed to 
investigate the emergence of collective creativity in elementary classroom settings. In the study,  
teachers’ decision-making practices were analyzed alongside both the teachers’ observed 
teaching practices in their classrooms and their students’ problem solving actions. Drawing on 
metaphors for collective mathematical creativity developed by the first author (Aljarrah, 2020; 
Aljarrah & Towers, 2019), and connecting teachers’ responses to questions about their practice 
with both their observed teaching practices in their classrooms and their students’ problem 
solving actions, in this paper we explore the entailments of the metaphors and their relationship 
to teachers’ actions and present a framework for analyzing and understanding collective 
creativity in teaching and learning environments. We rely on data from interviews with the 
participating teachers, as well as examples of their students’ mathematical activity. Elsewhere, 
we have presented detailed descriptions of the student actions and interactions that we claim 
showed evidence of the students’ collective mathematical creativity (e.g., Aljarrah, 2020; 
Aljarrah & Towers, 2019, 2021, 2022). Here, we focus on the features of learning environments 
that foster such creativity. 

Literature Review 
Creativity—Individual and Collective 

Researchers in the field of creativity have struggled to develop and sustain applicable 
pedagogical innovations that respond to the problem of fostering creativity within different 
contexts. In his discussion of the question, “How does a person learn to be creative?”, Huebner 
(1967) saw that “the very question itself demands a definition of the word creative” (p. 134). 
While some see creativity as confined to special people, to particular arts-based activities, or to 
undisciplined play, Craft (2000) described it as “a state of mind in which all our intelligences are 
working together” (p. 38). The National Advisory Committee on Creative and Cultural 
Education (NACCCE, 1999) defined creativity as “imaginative activity fashioned so as to 
produce outcomes that are both original and of value” (p. 29). Another approach to creativity, 
which can be a good starting point for teachers who aim to teach for creativity, is Baer’s (1997) 
conception of creativity as a continuum; that is, it is “not something that a person either has in 
abundance or lacks entirely” (p. 2). Very close to Baer’s conception of creativity is Kaufman and 
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Beghetto’s four-c model of creativity (Beghetto & Kaufman, 2007; Kaufman & Beghetto, 2009). 
In their model, Kaufman and Beghetto described four types/levels of creativity: interpretative or 
mini-c creativity, every-day or little-c creativity, expert or pro-c creativity, and legendary or big-
c creativity. They refer to everyday creativity as the creative actions of the non-expert. 
According to Beghetto and Kaufman (2011), little-c and mini-c creativity are more appropriate in 
the classroom context. For example, elementary students’ ideas for a science experiment can be 
considered creative in the context of the elementary school. Beghetto and Kaufman (2011) 
argued that “a students’ [sic] novel and personally meaningful insight or interpretations (which 
occur with great frequency while learning) are important sources of larger-c creative potential” 
(p. 98). 

Regarding collective creativity, Sawyer (2003) asserted the improvised and collective nature 
of group creativity. For Sawyer, group creativity is: (1) unpredictable, in that each moment 
emerges from the preceding flow of the performance, (2) collective, in that members of the 
group influence each other from moment to moment, and (3) emergent, in that the group 
demonstrates properties greater than the sum of its individuals. Based on the above ideas, 
Aljarrah (2018) defined collective creative acts as particular kinds of “(co)actions and 
interactions of a group of curious learners while they are working collaboratively on an engaging 
problematic situation. Such acts, which may include (1) summing forces, (2) expanding 
possibilities, (3) divergent thinking, and (4) assembling things in new ways, trigger the new and 
the crucial to emerge and evolve” (p. 136).  
The Teacher’s Role in the Development of Students’ Creativity 

According to Silver (1997), the contemporary view of creativity “is closely related to deep, 
flexible knowledge in content domains; is often associated with long periods of work and 
reflection rather than rapid, exceptional insight; and is susceptible to instructional and 
experiential influences” (p. 75). This view led Silver to advocate for creativity-enriched 
instruction for all students. To achieve this goal, Silver (1997) suggested the use of problem 
posing and problem-solving activities to stimulate inquiry-based mathematics instruction, in 
which “the responsibility for problem formulation and solution is shared between teacher and 
students” (p. 77). 

Levenson (2013) explored teachers’ perceptions of the cognitive demands associated with 
tasks that have the potential to promote mathematical creativity. Teachers identified several 
cognitive demands: the ability of the task to connect separate mathematical topics, the possibility 
to promote “non-algorithmic and nonstandard thinking skills” (p. 285), and the employment of 
“mathematical thinking freely and flexibly with the help of the mathematical skills acquired 
during [one’s] life” (p. 286). According to Levenson (2013), equally important to the choosing of 
the task is how the task will be implemented. 

Lev-Zamir and Leikin (2013) investigated the relationship between teachers’ declarative 
conceptions of creativity and their conceptions-in-action. Lev-Zamir and Leikin noted that 
although teachers’ theoretical background in creativity is important, it is not enough; equally 
important is how they implement their understandings of creativity in the classroom. 

Davies et al. (2014) conducted a systematic literature review to explore the teacher’s role in 
promoting creativity, and ways in which teachers can be best supported to develop the skills and 
confidence to facilitate creative learning environments. Their findings revealed that teachers play 
an important role in creating learning environments that promote their students’ creativity 
through “building positive relationships, modelling creative behaviour, longer-term curriculum 
planning, striking a balance between freedom and structure, allowing flexible use of space, 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1011 

understanding learners’ needs and learning styles, creating opportunities for peer collaboration 
and assessment, and effective use of resources” (Davies et al., 2014, p. 39). It was also noted that 
to fulfill such requirements, teachers need to have positive attitudes towards creativity and the 
self-confidence to teach in particular ways. This is a daunting list of expected actions and 
competencies for teachers. In what follows we present, explore, and examine entailments of 
various metaphors for collective mathematical creativity that suggests ways forward for teachers 
wishing to develop these skills and foster collective mathematical creativity in the classroom. 

Methods 
The data described below were collected during a design-based research study exploring 

collective creativity in elementary mathematics learning environments (Aljarrah, 2018). Two 
mathematics teachers and 25 of their sixth-grade students in a Canadian school setting 
participated in the study. The core research questions for the study were:1) What can be learned 
from the process of developing and refining an emergent definition of collective creativity for the 
elementary mathematics classroom? 2) Does collective creativity emerge in elementary 
mathematics classroom settings? 3) How can we foster collective creativity in elementary 
mathematics classroom settings, and what is the teacher’s role in this endeavor? and 4) What 
use might the construct of collective creativity be to teachers of mathematics? 

As the study aimed to explore collective creativity, the design included having the researcher 
(the first author) gather and design mathematics problems that it was hoped would allow for 
student collaboration, engagement, and group work and bring these problems forward for 
enactment by the teachers in their classrooms and in researcher-led, small-group, task-based 
interviews with students outside scheduled class times. Additional materials such as the teachers’ 
and researcher’s planning documents, copies of students’ work, documented observations of 
classroom activity, and video-recordings of interviews with the participating teachers and task-
based interviews with students were also collected. The processes of analysis followed Pirie’s 
(1996) advice to “sit, look, think, look again” (p. 556) supported by Powell et al.’s (2003) 
analytical model for studying the development of mathematical thinking, which consists of seven 
interacting, non-linear phases: (1) viewing the video data, (2) describing the video data, (3) 
identifying critical events, (4) transcribing, (5) coding, (6) constructing a storyline, and (7) 
composing a narrative (p. 413). Following Flanagan (1954), an event was considered to be 
critical if it was helpful in triggering and/or explaining the emergence of collective creativity in 
elementary mathematics learning environments. An initial literature review in the field of 
creativity led the first author to characterize the existing literature within the four metaphorical 
domains named earlier (see also Table 1). Analysis of critical events within the data collected 
during the study, together with conversations between the authors of this paper and reference to 
Towers and Proulx’s (2013) framework for teaching actions and Davis’ (2018) work on 
entailments of grounding metaphors led to the remaining elements of the entailments chart (see 
Table 1). 

Findings 
As we noted in the literature review section, Aljarrah’s (2018) description of collective 

creativity is based on four metaphors (summing forces, expanding possibilities, divergent 
thinking, and assembling things in new ways), which were used to describe students’ creative 
acts during problem-solving sessions inside and outside their classrooms. The summing forces 
metaphor was used to encompass the ways in which learners coordinate their efforts to enable 
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productive steering (Aljarrah, 2020) towards a mathematical understanding “that is not simply 
located in the actions of any one individual but in the collective engagement with the task posed” 
(Martin et al., 2006, p. 157). Expanding possibilities might be understood as broadening the 
learners’ horizon by gaining new insights based on previous insights. It is a kind of stretching of 
the space of the possible as a result of the evolving and the growth of the learners’ basic insights. 
Divergent thinking requires students to consider many potential pathways, look in many 
directions, journey outside a known content universe, go beyond the problem’s clearly given 
conditions and information, and think outside-the-box (Aljarrah & Towers, 2019). And, finally, 
the assembling (things in new ways) metaphor implies looking for associations and making 
connections. It is a vision of creativity based on an assumption that many educative things are 
within the reach of learners in their learning environment. 

Since our focus as educators is students’ learning, a noteworthy question arose during the 
study: What do learning and teaching look like with(in) each metaphor of creativity? More 
precisely: If creative acts are summing forces, then what is learning and what is teaching? If 
creative acts are expanding possibilities, then what is learning and what is teaching? If creative 
acts are divergent thinking, then what is learning and what is teaching? If creative acts are 
assembling things in new ways, then what is learning and what is teaching? 

In the following chart (Table 1), we present some entailments of the four metaphors of 
creativity generated during the research study. For each metaphor for collective mathematical 
creativity, the entailments include a visualization of the metaphor, the grounding metaphor on 
which the metaphor for creativity is built, and descriptors or metaphors that suggest the kind of 
learning and teaching anticipated for each way of thinking about mathematical creativity. 
Together, these entailments constitute the Collective Creativity Framework (CCF). 

 
Table 1: The Collective Creativity Framework 

Metaphors of 
Creativity 

 
Visualizing 

Grounding 
Metaphor 

 
Learning 

 
Teaching 

Summing 
Forces 

 

Sum of Forces Productive 
Steering 

Nudging 

Expanding 
Possibilities 

 

 

Inflating Growth Extending 

Divergent 
Thinking 

 

Multidirectionality Widening 
Perception 

Re-orienting 
Attention 
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Assembling 
Things in New 
Ways 

 

(De)construction Assembling Triggering 
Disintegration 

 
Our exploration of the complexities of these entailments is still ongoing, so they are offered 

here mostly as a provocation and speculation about the kinds of learning and teaching actions 
that observers might see when one of the four metaphors for mathematical creativity is shaping 
the classroom activity. Nevertheless, we did see examples of these entailments in action in the 
data and we present some of those below. These examples are drawn from data featuring a group 
of three sixth-grade students (assigned the pseudonyms Mark, Kyle, and Zaid) working togther 
on the following problem (which was designed based on examples from Empson and Levi, 
2011):  

Three children, Alex, Zac, and John, shared a chocolate bar. Explain in as many ways as you 
can how those children may divide the chocolate bar into three pieces such that Alex will get 
twice what John got, and John’s part is no more than one-fourth of the original bar and no less 
than one-tenth of it. 

Due to space limitations in this paper, we focus on addressing the entailments of only the 
first three metaphors of creativity, namely; summing forces, expanding possibilities, and 
divergent thinking. 
Entailments of the Summing Forces Metaphor 

The students began by familiarizing themselves with the problem. Mark was curious about 
John’s part and commented, “But it is, [pause, 2 seconds] John barely gets any.” Following this 
comment, Zaid asked, “Wait, but how much does Zac get?” Zaid’s question initiated collective 
exploration and Mark suggested, “Just give him [i.e., Zac] a third,” while Kyle responded to 
Zaid’s wondering and Mark’s suggestion by stating, “It is just whatever is left.” Mark and Zaid 
agreed with him and stated, “Yeah, I guess so,” and, “Okay, so, um” respectively. 

Next, Mark suggested drawing the chocolate bar and on a shared piece of paper. He drew a 
rectangle and split it into quarters. Kyle then started to initiate a possible path to work on the 
task. “It does not say what Zac gets [pause 2 seconds] because we can do, like, John and Zac get 
twenty-five percent [each], and then, um, or sorry, no.” Mark supported Kyle’s suggestion by 
restating the given conditions of the problem: “Okay, Alex has to get twice what John got, and 
John’s part cannot be more than one-fourth.” Based on Mark’s statement, Kyle refined his 
suggestion and stated with confidence, “Yes, like if John and Zac will get one-fourth [each], and 
then Alex gets, um, two-fourth—”. Mark interrupted Kyle and stated, “Oh, yeah, it would work, 
yeah, because if John—”. His statement seemed to not only represent a collective agreement, but 
also to express a collective aha moment when all the group felt as though the problem made 
sense. This, for example, can be seen through Mark’s words, “Oh, yeah, it would work, yeah 
because if John” while he was reflecting on and reasoning an emerging pathway. Here, it is 
possible to hear their conversation as if just one person is speaking. This was evident in Kyle’s 
words, when he interrupted Mark’s statement and completed it by stating that “[because if John] 
gets twenty-five percent, Alex gets fifty percent, then there is twenty-five percent left from the 
bar, we just give that to Zac.” It was evident that Zaid was also experiencing this collective aha 
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moment, and he summarized the group’s initial plan to proceed by stating, “I guess we just have 
to work with, um, Alex and John because Zac does not matter.”  

Turning now to examine the teaching that occasioned this learning, we note that an important 
aspect is the setting up of a learning environment within which it is possible to prompt, promote, 
and sustain effective interactions between all the agencies in the learning environment including 
the program of study, the people in the classroom, and the materials and tools. The choice of 
problem was a significant teaching act that nudged these students into a place where they were 
challenged, but at an appropriate mathematical level. According to one of the participant 
teachers, “the problem is inviting to all students at their own levels. Each brings their particular 
backgrounds and experiences to share their perspectives on the problem.” 

Group size was also considered by the teachers in this study to be an important teaching 
decision. Both participant teachers indicated that they prefer to divide the class into small groups 
(2-3 students in each group). One of the teachers noted, “I prefer the small groups. The bigger 
the group the less that gets done. Much more time is wasted with larger groupings.” According to 
her, small groups allow students to share their ideas freely, and to ask questions comfortably: 
“Students have to be able to explain their understanding to their classmates so that they get the 
strategy being suggested. Kids are better at asking questions in small group settings and saying, 
‘I do not get it.’” The teacher also added that, “Often the students work with who they are 
comfortable with, which is often someone at their own level of comprehension. Elsewhere, 
Martin et al. (2006) have also recognized that “although [students] bring identifiable personal 
contributions to the collective action, it is through the coacting of these that collective 
understanding emerges and grows” (p. 157). In our example, students’ productive steering 
toward “better” mathematical ideas and thoughts—that appear to be helpful for the group in 
developing a solution to the problem—“is not determined by all the individuals having the same 
understanding” (Martin et al., 2006, p. 157). Instead, and as seen in the above extract, it was a 
result of the summing of their diverse and different understandings and thoughts. 

Another critical strategy to nudge the students towards effective collaboration and productive 
steering from the very beginning of their problem-solving activity was restricting the group to 
one shared document upon which to pool their ideas. Also noted as a strategy to promote 
collective mathematical understanding (Martin et al., 2006), here we acknowledge this strategy 
as a useful way to promote the kind of learning we identify as productive steering through its 
capacity to nudge students to collaborate. With one shared document, students can 
simultaneously see the developing problem-solving strategy and, if each has a writing tool, can 
equally contribute to the gathering of data for the problem or the steering of the solution. 
Entailments of the Expanding Possibilities Metaphor 

The entailment for learning for the Expanding Possibilities metaphor is Growth. In the 
following part of the excerpt, there are many occasions where students engage actively and 
collectively in processes that help them in growing their initial knowledge, thoughts, and 
strategies. As the problem solving progressed, Kyle summarized their different basic options for 
splitting the chocolate bar: “Okay, so, so we have our ninths, and we have our eighths, now 
sevenths, sixths, and fifths, yeah, these are our options.” Zaid stressed the idea that “it goes on 
forever.” Mark agreed with him and at that point, the task of the students expanded from finding 
as many ways as they could to divide the chocolate bar into three pieces to proving that the 
process of dividing the chocolate bar would go on forever. 

The group collectively then developed the idea of “realistic” parts of the chocolate bar (the 
fractional parts they were considering—tenths, ninths, eighths, sevenths, sixths, and fifths) and 
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“technical” parts (that could be divided forever). They then used quarters as a generator for an 
infinite series of options. On their working sheet they wrote, “last section always divided by four 
once you reach the last realistic idea.” For example, one of their options was to give John two-
ninths, Alex four ninths, and Zac three-ninths. They then expanded this “realistic” option. Kyle 
suggested, “As long as John always gets half of what Alex gets, Zac does not really matter.” For 
them, since Zac does not really matter you can take one of his parts and divide it into four equal-
sized sections, give one to John, two to Alex, and then divide the last section into four again; 
give one to John, two to Alex, and then keep zooming in to the last section and do the same thing 
an infinite number of times. According to them, this idea can be applied to all realistic options 
(i.e., the tenths, ninths, eighths, sevenths, sixths, and fifths). 

Here we want to focus on the teacher’s role as a participant in the learning endeavour who is 
responsible to make “judgments about when and how to intervene” (Martin & Towers, 2011, p. 
275). Teachers’ actions within the collective have the potential to either prompt or hinder the 
emergence of creative acts in mathematics learning environments. For example, while Mark, 
Kyle, and Zaid were discussing the possibility that the process of dividing the chocolate bar 
between the three children could go on forever, the first author suggested that they try to arrange 
the different possibilities in a table. After the first author’s suggestion, Mark changed his mind 
and stated that, “I do not think it can go forever. We cannot go more than one-fourth and we 
cannot go less than one-tenth.” On reflection, it is obvious that the intervention from the first 
author, while intended to extend the learning, actually shut down the growth of the students’ 
thinking, blocked the emerging, collective structure, and directed the group to a misleading path. 
Realizing this, the first author decided to step back and watch for another opportunity to 
intervene for the purpose of furthering the evolving structure of mathematical thinking and 
understanding. As Martin and Towers (2011) note, “the teacher must continually listen to, and 
re-connect with, the improvisational actions of students, possessing a sophisticated capacity to 
step back until the collective action calls him or her forth” (p. 275). 
Entailments of the Divergent Thinking Metaphor 

In this section we show how the group’s divergent thinking evolved while they were trying to 
find a mathematical way to show that the process of dividing the chocolate bar can go on 
forever. Kyle reflected on and expanded his initial suggestion: “Okay, so, so we have our ninths, 
and we have our eighths, now sevenths, sixths, and fifths, yeah, these are our options,” and 
noted, “there is a way in between them.” His statement that “there is a way in between [any two 
realistic possibilities]” indicates a moment where the group went beyond the stated conditions of 
the problem and started to think outside of its content universe. At this point, the first author 
intervened subtly by reorienting the group’s attention to a tool that might help them think 
mathematically about their idea—the number line. Mark then initiated a new conversation about 
using the number line and decimals to explain why, “mathematically,” the process of dividing 
the chocolate bar could “go on forever”: 

Mark: You could, you could also put it in decimals. 
Zaid: But, I mean if you did decimal fractions then you can do anywhere from here [while 

pointing to a point on the number line that represents 0.1] to all the way to [while 
pointing to a point on the number line that represents 0.25]— 

Mark: Look, if you did zero point two five to zero point one— [while he was drawing a line 
segment to represent a part of the number line with 0.1 and 0.25 as its endpoints]. 

Zaid: And, twenty-five hundredths, and umm. 
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Mark: Yeah. 
Zaid: If you used the decimal fractions there will be a loooooot. 
Mark: If you did this that is endless. You could do— 
Zaid: Oh, yeah endless, because you could just keep adding like … point one, point one, 

point one, point one, one, one, one, one, one, one, one, one, one… [writing 
0.1000000000000001 on their shared piece of paper]… 

Mark: Exactly, for decimals it is endless. 
Zaid: Yeah, okay. 
Kyle: Yeah. 
Mark: If you take two numbers, there is an endless list of numbers between them, even if it is 

one and two. 
Kyle: Okay, um, we got it. 
The intervention by the first author (offering a new tool with which to think) exemplifies the 

kind of re-orienting of attention that leads to a widening of the learner’s perception about the 
problem and consequently to divergent thinking, the third of the metaphors for collective 
mathematical creativity. The students were familiar with the number line, of course, but it wasn’t 
in play until proposed by the first author at a moment when the students had an idea about the 
space “between” the numbers they were considering but seemed not to have a concrete way to 
widen their perception of what this space between might contain. Reorienting their attention to 
something they knew about already but weren’t capitalizing on was the teaching action that 
propelled them forward to think in divergent ways about the problem. 

Discussion and Implications 
The entailments of the metaphors for collective mathematical creativity that we have 

presented in the Collective Creativity Framework are significant ways to understand the 
underpinnings of effective creative learning in mathematics classroom settings, within which the 
teacher’s role is understood as facilitating and scaffolding to provide “the student with room for 
the creative action required for learning” (Martin & Towers, 2011, p. 253). Davies et al. (2014), 
though, note a dearth of research that details how teachers can be supported in enhancing their 
practice to support such student creativity. Our work offers a framework for teachers to reflect on 
the opportunities they are offering to students to express their creativity through one of 
Aljarrah’s (2018) four metaphors, and from there to glimpse, through the entailments chart that 
underpins the CCF, the teaching strategies that might enhance that creative activity in the 
classroom. 

Davies et al. (2014) did note the importance of professional development that provides 
opportunities for reflection on practice and peer dialogue, and in addition reported that “external 
partnerships, especially with creative professionals, were seen to be beneficial as [they] led to co-
creation of knowledge and exploration of conceptualisations of creativity” (p. 39). Our work 
shows how teachers can be supported in deepening opportunities for students to engage in 
collective mathematical creativity through the establishment of a partnership between classroom 
teachers and researchers with a shared goal of enhancing student experience and fostering 
mathematical creativity. 

The design-based research model adopted for this project also provides opportunities for 
teachers to be introduced to new theoretical concepts (such as collective mathematical 
creativity), new forms of math problems (such as ones specifically designed to afford collective 
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action), and alternative pedagogical structures, while at the same time providing researchers with 
authentic opportunities to interact with learners and teachers and to develop practice-informed 
theory. 
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In this paper, I refer to math block structure (or, in short, structure) as the patterns of action 
and interaction for teachers and students during instruction minutes dedicated to math. The 
theoretical framework for conceptualizing math block structure comes from Stodolsky’s (1988) 
work on instructional formats, defined as “a global and familiar set of categories for well-known 
instructional arrangements” (Stodolsky, 1988, p. 13). Examples of instructional formats include 
recitation, group work, discussion, lecture, and seatwork (Stodolsky, 1981, 1988). This paper 
explores two research questions: What structures do elementary teachers describe within their 
math block? How, if at all, do teachers implement similar structures in different ways?  

The data is from interviews with five elementary teachers who completed a master’s program 
together, taught in the same district, and had five years of experience. This paper focuses on one 
interview question: Describe the math block in your classroom on a typical day or week. How 
long is it, and what happens across those minutes? Analysis consisted of qualitative coding of 
the interview transcripts. Table 1 summarizes instructional formats across classrooms, with an x 
indicating regularly use of that format and parentheses indicating occasional use. 

 
Table 1: Instructional Formats Used in Teachers’ Math Blocks 

 
Name Whole Group Small Group  Independent work  Work with Classmates 
Kylie x x x games 
Alex x x x games 
Jessie x  (x) main task 
Jack x  (x) main task 

Chrissy  x x games 
 
Even when teachers utilized the same instructional format, they implemented the format 

differently. For whole-group time, Alex, Jessie, and Jack all began with a warm up, but followed 
that differently: Alex with a quick introduction to content; Jessie with a longer lesson; and Jack 
with a launch of a task (which paired with a later discussion after students solved it). Kylie either 
had the class complete an activity together or students worked on a task that was then discussed. 
At the teacher rotation during small-group time, Kylie supported individual students while others 
worked independently while Alex and Chrissy worked with the entire group on core instruction. 

The variety in instructional format selection and implementation seen in this study indicates 
wide-ranging implications. For students, structure impacts the type of learning opportunities they 
will experience (e.g., no whole class discussion in Chrissy’s class). For teachers, structure 
impacts the resources needed for planning as well as the opportunity to provide differentiation 
(e.g., Jack needs rich tasks, Jessie has limited opportunity for differentiation). For coaches and 
professional developers, shifting a teacher’s practice would likely require the teacher to either 
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assimilate new teaching practices into their current structure or to change their structure.  
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Perspective(s) or Theoretical Framework 
The number of online curricular resources has proliferated and there is evidence that teachers 

are making use of these resources to plan their lessons (Pepin, et al., 2013; Sawyer, et al., 2020). 
Silver (2020) characterizes teacher curriculum supplementation (TCS) as a widespread 
phenomenon spawned initially by the adoption of Common Core standards and accelerated by 
the COVID-19 pandemic. In his systematic literature review on the topic, he acknowledges TCS 
as underrepresented in scholarly literature due to the complexities surrounding ambiguous 
definitions of supplementation, the vast number and types of supplemental materials available, 
and the countless reasons teachers decide to source these alternative materials. Although 
complex, he argues that the widespread occurrence of TCS is an important one for researchers to 
study because the practice has consequential effects on both teachers and students. 

Method and Analysis 
Participants in this study included three Midwestern elementary teachers who participated in 

two individual interviews focused on their mathematics curricular decision making. Open coding 
(Saldaña, 2021) was used to code teachers’ responses to the questions “Why do you use this 
resource?” and “How do you use this resource?”, allowing the researchers to synthesize TCS 
themes for individual teachers and across teachers for individual curricular resources. 

Findings 
The three teachers used between eight and thirteen curricular resources, including those they 

created. The following themes emerged from the data, providing a starting point for discussion 
and further systematized inquiry: 

• Tension exists between mandates (expectations) and reality (classrooms). 
• Use of the adopted curriculum varies (and the term “mandated’ is fuzzy). 
• Teachers make curricular decisions to support student engagement. 
• Teachers make curricular decisions to support a wide range of learning levels. 
• Teachers value other teachers’ opinions and teacher-created materials. 
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In recent years, the use of Fermi problems in mathematics education has gained popularity 
due to their perceived capacity for engaging students in reasoning and logical thinking 
(Barahmeh, Hamad & Barahmeh, 2017). The supporters of the inclusion of this type of task in 
K-12 curriculum capitalize on their value in building learners’ socio-emotional learning 
competencies (Brave & Miller, 2022), problem solving (Taggart et al., 2007), and the 
development of social and cultural consciousness (Sriraman & Knott, 2009). Arlebäck (2009) 
positioned Fermi problems as a viable venue for bridging students’ work on fermi tasks and 
mathematical modeling process, acknowledging that research is needed to better understand how 
students’ work around Fermi tasks might be organized so modeling competencies are fostered in 
the course of their implementation. In this work, relying on a teaching experiment methodology 
(Steffe & Thompson, 2000) and using interactional analytical techniques (Schütte, Friesen & 
Jung, 2019), we examined over two instructional sessions, teacher-student interactions in a pre-
calculus course as students worked on a Fermi problem. We sought to identify the type of 
interventions that the teacher used during both small and large group discussions in an effort to 
gauge the students’ work towards production of a general model. The task asked:  How many 
steps would it take to burn off an entire bag of potato chips? 

Results 
Dirks and Edge (1983, cited in Ärlebäck 2009) argued that successful work on Fermi tasks 

requires the individuals to possess “sufficient understanding of the problem to decide what data 
might be useful in solving it, insight to conceive of useful simplifying assumptions, an ability to 
estimate relevant physical quantities, and some specific scientific knowledge” (p. 602). In 
reporting the results of using Fermi problems in secondary mathematics classrooms in Sweden, 
Ärlebäck highlighted the critical role that students’ personal knowledge played in not only the 
assumptions they made once encountering Fermi problems, but also in how they validated their 
answers. Ärlebäck (2009) cautioned that group composition and participants’ preferences can 
strongly influence the variables they consider and assumptions they make, thus influencing the 
accuracy of models produced. In the sessions we examined, teacher interventions became central 
in focusing learners’ work along some of the cognitive and social dimensions identified by 
Ärlebäck (2009). While in some cases the interventions were motivated by the teacher’s 
perceived need to equalize the social capital of the participants in small groups, a majority of his 
comments aimed to provoke reflection, encouraging students to make connections among 
various answers obtained, addressing their implicit assumptions by introducing new constructs 
(e.g., age, gender, metabolism, height and weight of individuals), and confronting some false 
scientific assumptions they made (e.g., sweating means more calories are burnt). As such the 
implicit assumptions that the learners constructed became a source for group deliberation. These 
categories along with descriptions of students and teachers will be explained and illustrated with 
examples during the presentation. 
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This paper presents Big Ideas of Measurement as a framework of students’ thinking about 
measurement. Drawing from research-based evidence, the framework is a collection of key 
concepts that students must develop for a robust understanding of measurement and, as such, are 
key aspects of students’ thinking teachers should learn to notice. In a case study with four 
mathematics teacher educators, this framework was utilized to design an instrument to measure 
their professional noticing and to analyze the results. Findings provided snapshots of 
professional noticing of participants with varied expertise in content knowledge and student 
thinking. Additionally, the choice of artifacts appears to have influenced participants’ noticing. 

Keywords: Teacher Noticing, Measurement, Teacher Educators 

Noticing students’ mathematical thinking is fundamental to reform-based instruction which 
emphasizes adaptive and responsive teaching (Jacobs et al., 2022). While current literature has 
explored preservice and practicing teachers’ professional noticing of student thinking in various 
content areas, such as arithmetic (Fisher et al., 2018; Jacobs et al., 2010; Schack et al., 2013), 
fractions (Jacobs et al., 2022), algebraic thinking (Walkoe, 2015), and multiple representations 
(Dreher & Kuntze, 2015), research on this topic is scarce in the domain of measurement (Caylan 
Ergene & Isiksal Bostan 2022), a crucial topic in the mathematics curriculum, particularly at the 
elementary school level. The purpose of this study is to investigate ways to assess the construct 
of professional noticing of students’ thinking about measurement and to capture snapshots of 
varying levels of expertise in noticing. 

According to NCTM (2000), measurement has widespread practical applications in everyday 
life, in other domains of mathematics, and in areas outside of mathematics. Therefore, it is 
essential for students to develop a robust understanding of this content domain. Nevertheless, 
research indicates that many students hold fragile and shallow understanding of measuring 
various attributes, such as length, angle, and area (Smith & Barrett, 2017). For example, students 
may know how to use a ruler to measure the length of an object, but they may struggle when the 
ruler is not aligned at the conventional zero-point (Kamii & Clark, 1997). To help students 
overcome the challenges of learning about measurement, teachers must be able to notice and use 
students’ thinking to make instructional decisions. However, given the complexity of classroom 
instruction, teachers cannot pay attention to everything. Hence, they must be selective in their 
noticing. This raises the first question: 

Q1: What are key aspects of students’ thinking about measurement should teachers notice? 
This question was answered by conducting a literature review on students’ thinking about 
measurement. Results are presented as a research-based framework entitled “Big Ideas of 
Measurement”. This framework was then used to develop an instrument to explore teachers’ 
professional noticing of students’ thinking about measurement to answer the second question: 
Q2: How do teacher educators with various expertise in measurement content and students’ 
thinking notice key aspects of students’ thinking about measurement when engaging with 
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different instructional scenarios?A case study with four mathematics educators was 
conducted to investigate this research question. 

Theoretical Framework 
The foundational construct in this study is professional noticing of students’ thinking about 

measurement. This section unpacks its essence by elucidating the two key terms “professional 
noticing” and “students’ thinking about measurement”. 
Professional Noticing of Students’ Mathematical Thinking 

In this paper, I adapted Jacobs et al.’s (2010) concept of professional noticing of students’ 
mathematical thinking, which comprises three interrelated skills: attending to students’ strategies 
details, interpreting students’ understanding, and deciding how to respond on the basis of 
students’ understanding. This construct focuses on teachers’ in-the-moment noticing when 
students explain their mathematical thinking verbally or in writing during classroom instruction 
rather than before or after instruction. For the purpose of this study, I focused on the first two 
component skills, attending and interpreting, because they serve as the foundation for the third. 

Attending to students’ strategies details pertains to the extent to which teachers identify 
mathematically significant details in students’ strategies while interpreting students’ 
understanding involves using these details to reason about their understanding in a way that is 
consistent with research on students’ mathematical thinking. 
Students’ Thinking about Measurement 

The term “student thinking about measurement” can encompass a wide range of students’ 
conceptions related to various measurement quantities, and the development of their thinking 
regarding these quantities. This can include, for example, students’ conceptions of angles, their 
struggles with distinguishing between area and perimeter, and the learning trajectory they follow 
in order to understand length. However, this study focuses on key concepts across attributes that 
researchers identified as foundational for students to develop a deep and robust understanding of 
measurement. This approach aligns with Smith and Barrett’s (2017) call for prioritizing research 
on common concepts across measurement quantities. 

Researchers have identified multiple lists of key measurement concepts that students should 
understand and named their lists using titles such as theories of measures (Lehrer, 2003), 
conceptual principles (Smith & Barrett, 2017), and essential understandings (Goldenberg & 
Clements, 2014). However, these lists are neither exhaustive nor unique; they contain 
overlapping and distinct ideas. To create a structured framework on students’ thinking about 
measurement, I synthesized 16 key concepts from the literature and grouped them into five 
clusters. This research-based framework, called the Big Ideas of Measurement, is summarized in 
Table 1.1 It is important to note that these big ideas are neither isolated nor “acquired in an all-or- 
none manner”; they are interrelated, forming a “web of connections” (Lehrer, 2003, p.182) that 
assist students in building a robust understanding of measurement across different attributes. 

Methods 
Based on the framework of Big Ideas of Measurement, a noticing instrument with three 

items, each featuring a different instructional scenario, was developed. A case study utilizing this 
instrument to measure professional noticing of four mathematics teacher educators was 
conducted in January 2023. The goal was to explore their professional noticing of students’ 
thinking about measurement to answer Q2. 
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1 I borrow the phrase Big Ideas of Measurement from Empson et al. (2006) who used it in course materials and 
interviews. 

Table 1: Big Ideas of Measurement2 
 

 
Participants 

Purposeful sampling was used to select participants for this study. The intention was to 
capture a variety of noticing expertise. Four participants, Brielle, Luis, Hazel, and Mason 
(pseudonyms) are mathematics teacher educators who possess varied experiences in both the 
subject matter of measurement and students’ thinking. They are enrolled in a doctoral program in 
mathematics education. Brielle has experience teaching developmental mathematics courses to 
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2 My organization of the framework in this table was originated from Bishop (2022)’s MATH2312 course 

materials. 
undergraduate students but has limited experience with regards to measurement content and 
students’ mathematical thinking. Luis has taught a content course focusing on geometry and 
measurement for preservice teachers. He has expertise in measurement content but has little 
experience with students’ thinking about measurement. Hazel has taught a content course on 
number systems and operations for preservice teachers and focused on students’ mathematical 
thinking in her course. However, similar to Brielle, she also has limited exposure to 
measurement content. Lastly, Mason has experience with both measurement content and 
students’ thinking about measurement, though he has not taught any courses for preservice 
teachers. He has, however, conducted clinical interviews with elementary students and analyzed 
their understanding of the big ideas of measurement for a course he was taking. 

Noticing Instrument 
This instrument was designed to measure professional noticing of students’ thinking about 

measurement. It includes three items that prompt participants to engage with three instructional 
artifacts and respond to writing prompts to elicit their noticing. The artifacts were thoughtfully 
selected to represent a range of common scenarios in teaching practice and to cover multiple big 
ideas of measurement across quantities. Table 2 provides a summary of the key features of these 
three items. 

Table 2: Descriptions of Three Items of the Noticing Instrument 

 
 

The writing prompts used in Item 2 (as an example) are: 

Question 1: Please describe in detail what you think Helena did in response to each problem. 
Question 2: Explain what you learned about Helena’s understandings. 
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These prompts align with the two components, attending and interpreting, in the 
conceptualization of professional noticing in this study. The prompts for Item 1 and Item 3 are 
similar with a minor modification for Question 1 in Item 1. Specifically, this question was 
broader, “Please describe in detail what you noticed when watching the video. Try to ask 
yourself “What else do you notice?” until you have nothing else to share.” This modification 
was made to investigate the potential impact of prompts on participants’ noticing. 
Data Analysis 

To analyze participants’ written responses for each item, I adapted the coding scheme 
developed by Jacobs et al. (2010, 2022). First, I created a rubric based on the framework of Big 
Ideas of Measurement. Particularly, I examined the artifact, identified big ideas of measurement 
which were present in students’ strategies. I then identified significant details in students’ 
strategies for each big idea and interpreted their understanding of the big idea (see examples in 
Row 2 of Table 3). Next, I looked at participants’ responses for each item and assigned big idea 
codes whenever they appeared. If participants attended to and provided evidence for other 
significant mathematical details in students’ strategies that were not included in the rubric, I 
assigned the code “Other.” Finally, I gathered all details related to each big idea from 
participants’ responses (see examples in Row 3 of Table 3) and compared them to the rubric, 
assigning a score of 0, 1, or 2 for their attending and interpreting skills based on the level of 
evidence in the participants’ responses (see examples in Row 4 of Table 3). 

 
Table 3: Example of Coding Process for Mason’s Responses to Item 2 

For the attending component, a score of 0 indicated that participants did not attend to any 
details, or just very few details relevant to the big ideas in students’ strategies. A score of 1 
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indicated that participants attended to some details in students’ strategies but missed some 
important details. A score of 2 indicated that participants attended to almost all details related to 
the big ideas in students’ strategies. Similarly, participants’ interpreting component for each big 
idea was scored 0, 1, or 2 depending on how their interpretation aligned with research-based 
knowledge of students’ measurement thinking. A score of 0 indicated that participants did not 
interpret students’ understanding of the big idea, or their interpretation was misaligned with 
research findings. A score of 1 indicated that participants made inferences about students’ 
understanding of the big idea, and their interpretation reflected students’ thinking to some extent, 
but there were some minor misalignments with research, or the interpretation did not go in-depth. 
A score of 2 indicated participants’ interpretation of students’ understanding is thorough and 
consistent with research. After scoring participants’ attending and interpreting components for 
each of the identified big ideas, I calculated their overall attending and interpreting scores for 
each item by taking the average. 

For Item 1, participants’ noticing was broader because the first question did not focus 
specifically on students’ thinking. To further analyze their noticing, I used van Es and Sherin’s 
(2008) coding framework. Specifically, I segmented participants’ responses to Question 1 in 
Item 1 into smaller chunks based on shifts in the main ideas and assigned codes for four 
dimensions: Actor (codes: Teacher, Students, Other), Topic (codes: Mathematical thinking, 
Pedagogy, Climate, Management, Other), Stance (codes: Describe, Interpret, Evaluate), and 
Specificity (codes: General, Specific). The frequency of each code was then counted, and their 
percentages were calculated. 

Findings 
Table 4 summarizes participants’ scores for attending (A) and interpreting (I) for three items 

in the instrument, along with their overall attending and interpreting scores. The last row shows 
the average scores for each item across all participants. It is important to note that these scores 
are not intended to classify participants as good or bad teachers, nor do they indicate what 
participants noticed to be good or bad. Rather, they measure the alignment of participants’ 
noticing with the conceptualization of professional noticing in this study and help investigate 
varied expertise in noticing. In the following sections, I discuss what was learned about 
participants’ professional noticing of students’ thinking about measurement and how the choice 
of instructional artifacts influenced their noticing performance. 
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Table 4: Summary of Participants’ Noticing Scores 

Snapshots of Varied Professional Noticing Expertise 
Although the results of this case study with four participants cannot be generalized, there is a 

consistent pattern in Table 4: Mason has the highest performance in both attending and 
interpreting skills across three items, followed by Hazel, Brielle, and Luis. To gain more insight 

into their noticing, we can consider their responses to Question 2 in Item 3, where they 
interpreted Cassie’s understanding from her work sample (See Figure 1). 

 
 

Figure 1: Cassie’s Work Sample (Source: Empson et al., 2020) 
 

Mason: Both Cassie and Eric demonstrate an exhaustive understanding of measurement, 
leaving no space inside the shape empty. Cassie demonstrates a partial understanding of 
identical units, as some drawn squares are the same, while others are not. […] Cassie 
demonstrates some understanding [of row and column structure] as her columns are lined 
up correctly. 

Hazel: Cassie understands that the entire rectangle needs to be filled with squares. However, 
she does not understand completely that all the squares need to be the same size [..] 

Brielle: Cassie uses | [the vertical lines of squares in the first row] as a reference point from 
the 1st row. Last row is much smaller than the rest but still counts each as a whole – 
Consistency. 
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Luis: Eric has a good understanding of partitioning…Cassie does as well, but something 
happened to where extra rows were made. 

Mason’s response showed that he paid attention to and interpreted Cassie’ understanding of 
three big ideas of measurement: exhaustive measure, identical unit, and composite unit. While 
Hazel did not use the exact terminology from the framework like Mason, she did notice that 
Cassie filled the “entire rectangles” and did not use “same size” units, which showed evidence 
of Hazel’s attention to and interpretation of Cassie’s understanding of exhaustive measure and 
identical unit. However, she did not notice the big idea of composite unit like Mason did. Brielle 
attended to identical unit when she mentioned “last row is much smaller than the rest” while 
Luis paid attention to composite unit when he noticed the extra row in Cassie’s work. Brielle and 
Luis received credit for attending to these big ideas, but their interpretations did not align with 
research on key concepts in students’ thinking about measurement. Mason and Hazel’s 
experience with students’ thinking seemed to support their professional noticing. Especially for 
Mason, his knowledge of the framework on Big Ideas of Measurement seemed to give him a 
structure of what key aspects of students’ thinking he should attend to and how to interpret their 
understanding. Moreover, Table 4 shows a pattern that all participants’ attending scores are 
higher than their interpreting scores, which is consistent with existing literature in the field: 
participants cannot interpret something that they fail to notice. 

Influences of Instructional Artifacts on Participants’ Noticing 
Notably, all participants had higher noticing scores for Item 2 compared to Items 1 and 3. It’s 

worth considering that Item 2 utilized a video of a one-on-one conversation with a student, while 
Item 1 used a video of a whole-class interaction, and Item 3 used work samples from three 
different students. The video format and the focus on one student’s thinking about measurement 
likely contributed to the participants’ improved noticing performance in Item 2. 

Comparing the performance of each participant in Items 1 and 3 in Table 4 reveals an 
interesting pattern: while Brielle and Luis had higher noticing scores for Item 1, Hazel and 
Mason performed better in Item 3. By looking at Table 5, which summarizes participants’ more 
general noticing of Item 1 across four dimensions in addition to student thinking, we can get 
some interesting insight into this phenomenon. We can observe from this table that participants’ 
focus for the two dimensions Actor and Topic differs. Brielle and Luis predominantly centered 
their attention on the students and mathematical thinking, while Hazel and Mason focused on the 
teacher and pedagogy. For instance, Mason initiated his response to Question 1 in Item 1 by 
noting, “I noticed that the teacher was very good at using students’ voice to center the 
discussion. Frequently, she would revoice what students said and asked.” The broadness of the 
prompt and the complexity of whole-class interactions led Hazel and Mason to attend to other 
actors and topics. This explains why their noticing scores for Item 1 were lower than their scores 
for Item 3. 

Furthermore, the specificity of the prompts had an impact on the participants’ inquiry stance 
towards their noticing. When the prompts were specific, such as in Items 2 and 3, participants 
took the corresponding inquiry stance of Describe for Question 1 and Interpret for Question 2. In 
contrast, when the prompt was broader, as in Question 1 in Item 1, participants’ inquiry stance 
was more varied. For instance, in the previous example, Mason’s noticing of the teacher’s 
pedagogy took an evaluative stance, as he complimented the teacher’s instruction. 
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Table 5: Participants’ Noticing of Item 1 Across Four Dimensions 

 
 
This analysis provided evidence that the instructional artifacts and the corresponding 

questions had an impact on participants’ noticing. Specifically, the form of the artifacts, such as 
dynamic videos versus static student work samples; their nature, such as whole class interactions 
versus one-on-one conversations; and the level of specificity of the prompts used, all seemed to 
influence how participants noticed different aspects of the instruction. This finding highlights the 
importance of carefully selecting instructional artifacts and prompts in research on teacher 
noticing. 

Brief Conclusions and Considerations 
This paper makes three main contributions. First, it presents a synthesis of the Big Ideas of 

Measurement framework as a tool for understanding students’ thinking about measurement 
across different quantities. Second, it introduces a noticing instrument and demonstrates how the 
framework can be used to analyze professional noticing of students’ thinking about 
measurement. Third, a case study with four mathematics educators is presented to showcase the 
diverse expertise of professional noticing and to illustrate how the choice of instructional 
artifacts used in the instrument can influence noticing performance. 

This case study suggests a potential relationship between participants’ professional noticing 
and their prior experience with measurement content and students’ thinking (both specific to 
measurement and a broader exposure and appreciation for student thinking in other content 
areas). Specifically, Mason’s exposure to the framework appeared to support his attention and 
interpretation of students’ thinking about measurement. However, further research with a larger 
sample size is needed to investigate this relationship more thoroughly. Additionally, future 
research could explore in a more systematic fashion how instructional artifacts influence noticing 
performance, and how the third component of professional noticing, deciding how to respond on 
the basis of student thinking, relates to attending and interpreting components in the context of 
measurement. These findings will be valuable for teacher educators and professional 
development facilitators to design effective courses and programs that support pre-service and 
in-service teachers in improving their professional noticing of students’ thinking about 
measurement. 
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This poster reports on the design, creation, and installation of a unique manipulative that 
engages learners using the natural environment. The SunRule is an interactive sculpture that 
harnesses the rays of the sun to perform multiplication. The sculpture tilts and rotates. Beams of 
sunlight shine through linear apertures and are scaled in proportions that enact multiplication. 
We also invented a hand-held version that is suitable for classroom use. 

How can a physical, manipulable tool realize a continuous, scaling representation of 
multiplication?  Most physical models are discrete, and most continuous models are not physical.  
Many represent multiplication as a version of repeated addition, as area or array, or occasionally 
as a combination. While all these representations are legitimate, and useful, they are incomplete.  
The SunRule demonstrates that multiplication can also be interpreted as a "stretching" operation, 
which lays the groundwork for ideas of ratio and proportion. We posit that the exploratory nature 
of the device, and its connection to an authentic real-world context, is engaging, and perhaps 
even inspiring, for all learners. 

The project is a collaboration between two mathematics educators and two sculptors.  
Creating a sculpture of artistic, aesthetic beauty while preserving mathematical integrity was 
challenging. For the "installation" version (in a municipal park, accessible to all) we sacrificed 
continuity of the multiplicand for elegance, simplicity, and the minimum of moving parts.  

We build on the work of McLoughlin and Droukjkova (2013) who developed a diagrammatic 
definition that models multiplication as continuous, directed scaling. We also extend the Genoa 
Group (Boero, Garuti, & Mariotti, 1996; Douck, 1999) who examined heights of objects and 
lengths of shadows to investigate a variety of research questions.  

We have collected preliminary data from three pairs of preservice teachers in a scripted 
interview while using the SunRule.  Our questions include: "How do students make sense of 
multiplication as a continuous operation with the assistance of a physical manipulative?", "Does 
working with a continuous model help students develop fraction number sense," and "Does 
embedding mathematics in a real-world environment, in which a physical phenomenon is used to 
do mathematics, affect students' engagement with mathematical ideas?" 
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Figure 1: Two versions of the SunRule multiplying numbers 
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Understanding powers of ten requires numerical understanding of magnitudes. This process 
involves developing number sense (Laski and Siegler, 2007; Siegler & Opfer, 2003; Ellet, 2005). 
Students need to engage in multiplicative reasoning to make sense of powers of 10.   

Number lines have been typically used for students to represent the magnitude of 10. Even 
adult pre-service teachers struggle to represent the magnitude of 10 using additive reasoning and 
tend to use additive reasoning as opposed to multiplicative reasoning (Brass & Harkness, 2016).  
The challenge is that it is hard to visualize very large or small numbers. Virtual reality is an 
immersive technology that can immerse students in a three-dimensional sensory experience, and 
they can manipulate the environment. Researchers have found that this technology enhances 
student motivation to learn (Osypova et al, 2020).  

This study investigated 11 middle students’ experiences on how virtual reality impacted their 
understanding of the powers of 10 magnitude. Students participated in a weeklong summer camp 
on nanotechnology and math. Powers of 10 was one of the key concepts to understand how 
materials performed in the nano scale. Activities related to the powers of 10 first included videos 
of what happens to materials in the nano scale, students ordered number cards based on the 
magnitude of powers of 10 and watched a video on the powers of 10. After these activities, 
students spent one and a half hours in a virtual lab looking at inside of the hand where they 
experienced an immersive experience of going inside the hand to being able to investigate 
protons and electrons. They were able to navigate the virtual environment at their own pace and 
click on things based on their curiosity. They got to view DNA strands, how the blood vessels 
worked inside the  hand and keep going deeper while displays of magnitude appeared on the 
screen. Students individually explored while some of the students watched on the screen what 
the student was doing, and the teacher scaffolded the conversations to discuss what they were 
seeing scientifically and mathematically.  

After the session, the students were asked to reflect on their experiences of how the Virtual 
Reality emersion experience enhance or did not enhance their understanding of the magnitude of 
10. The data collected included audio recordings and fieldnotes. Strauss and Corbin, (1998) 
Constant Comparative method was used to identify themes that emerged from the student 
reflections. Students found the experience engaging and felt that they were able to visualize the 
powers of 10 in a way that solidified their understanding of magnitude and connected it to the 
context of the hand and zooming in. For example, a student said: “I see the blood streams, I have 
zoomed in 100,000 times and see the blood stream.”  The students not only thought about 
magnitude but connected it into the context of how the body works. A student explained she had 
a better understanding of the nano scale and learned how different cells and how the body works. 

In conclusion, the virtual reality context enhanced students’ ability to visualize the powers of 
10 multiplicatively. Connecting to a real-world context, enhanced students’ ability to to 
understand the magnitude of numbers and develop a better number sense. 
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We observed lessons and collected student pre- and post-test data from 47 algebra classes in a 
variety of school districts. To our surprise, we found that time spent in whole-class discourse 
was negatively correlated with students’ learning gains, both on a procedural knowledge 
measure and a conceptual measure. In looking more closely at some of the quality indicators of 
the whole-class discourse, such as the presence of mathematical justifications and the 
integration of multiple representations, analysis still revealed no positive relationship with 
student learning gains. We discuss whether these results may be related to the lack of ambitious 
instruction in the data set, the tendency of students to disengage when whole-class discourse is 
occurring, or the possibility that the whole-class discourse is happening too early in the lesson. 

Keywords: classroom discourse; algebra and algebraic thinking; instructional activities  

As part of a multi-year project focused on algebra instruction, we led a team that observed 47 
secondary algebra classes in a wide variety of school districts and gathered pre- and post-test 
data of students’ procedural performance and conceptual understanding (de Araujo et al., 2018). 
Based on three lesson observations in each class, we compiled class profiles that included a 
variety of structural features and quality indicators for the algebra instruction. These features 
included the activity structures used, the behavioral engagement level of students, the conceptual 
development of the mathematical ideas, the integration of mathematical representations, the type 
of student public contributions, and more (see Otten et al., 2023, for additional details). 

One particular feature of interest was the scope and nature of whole-class discourse (WCD). 
What is the relationship between WCD in Algebra 1 classes and students’ performance on 
procedural and conceptual measures of algebra learning? Based on past research (e.g., Herbel-
Eisenmann et al., 2013; Staples, 2007), we hypothesized that WCD would play an important role 
in the growth of students’ conceptual understanding, if not also the procedural performance, as 
the class community drew connections and explicated meanings of the algebraic content. We 
further hypothesized that those classes with WCD rich in conceptual development, integrated 
mathematical representations, minimal mathematical errors, and connections to other lessons 
(Smith & Stein, 2011; Xu & Mesiti, 2021) would fare especially well on the conceptual measure. 

In this brief report, we share results that reveal neither of our hypotheses were confirmed by 
the data from these 47 algebra classes. Correlational analysis shows that more time spent in 
WCD predicted lower gains on both the procedural and conceptual measures. Even when 
accounting for the quality indicators of hypothesized productive WCD, there was still no positive 
relationship to the learning gains. After a brief presentation of this analysis, we discuss possible 
explanations for the lack of expected results. 

Theoretical Perspective 
Although we administered individual assessments of students’ procedural performance and 

conceptual understanding, our theoretical perspective on learning is not strictly cognitive. We 
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view students’ mathematical learning as a sociocultural process whereby they come to participate 
actively in a mathematical community (Vygotsky, 1978). Thus, the lesson observation protocol 
(Otten et al., 2023) attends to the nature of the classroom discourse (univocal versus dialogic), 
the interactions of the students with one another and with the teacher, the authority dynamics at 
play with regard to the mathematical content, and some of the social patterns exhibited by the 
teacher (initiating feedback to students versus responding reactively to student questions). 
Although we view learning as occurring through and being defined by students’ participation in 
forms of mathematical discourse (Lemke, 1990), we nevertheless expect that this learning will be 
reflected on certain individualized types of mathematical activity such as paper-and-pencil 
content assessments. In other words, though we view learning through a sociocultural 
perspective and designed our overall study from that standpoint, we still recognize that students 
can demonstrate certain forms of knowledge and skill through individual written responses that 
also happen to be valued by teachers, school leaders, and community members. This brief report 
focuses on those pre- and post-test data, described below, although we note that the broader 
study also included a qualitative survey for students and some of our analysis has focused on the 
classroom interactions on their own merit (e.g., de Araujo et al., 2017; Otten et al., 2021). 

Method 
The study involved lesson observations, teacher survey data, and student survey data from 47 

Algebra 1 (or Algebra 1 equivalent) classes in Midwestern U.S. school districts that ranged from 
rural to urban contexts and from small to large enrollments. The larger project focused on 
Algebra 1 classes using a flipped instructional model (n = 22) as compared to those using non-
flipped instruction (n = 25). For this brief report, we do not focus on the flipped/non-flipped 
variable but instead pool the classes together to examine general associations between features of 
the lesson observations (in particular, the resulting class profiles that were produced based on the 
lesson observations) and the students’ pre- and post-test scores. 

The 47 algebra classes included 541 students for whom we had complete data on the pre- and 
post-tests. These students were predominantly in grade 9 but there was a notable subgroup in 
grade 8 and a few in grades 10 and 11. The pre-test was administered within the first few weeks 
of the school year and the post-test (identical to the pre-test) was administered within the last few 
weeks of the school year. They included two instruments embedded within the same 
assessment—a procedural knowledge instrument (PK) and a concept-of-variable inventory 
(CoV), both of which were adapted from Genareo and colleagues’ (2021) work on algebra 
progress monitoring, though we expanded the timeframe for the assessment from 14 minutes to 
30 minutes to allow for more variation in responses while still maintaining a time limit so as to 
avoid a ceiling effect (the CoV items are designed so that students with conceptual understanding 
can answer them rapidly whereas those relying on procedural knowledge are likely to take longer 
as they work through an inefficient solution strategy). The PK instrument entails multiple-choice 
items (e.g., “Simplify 3(m + 2) + 2(m – 1)” with answer options 5m + 1, 5m + 4, 5m + 8, 6m + 4) 
and yields a score out of 16, whereas the CoV instrument entails a mixture of multiple-choice 
and open-response items (e.g., If n + 878 = 915, what does n + 880 equal?) and yields a score out 
of 39. Some CoV items allowed for partial credit. 

The observation data consisted of live field notes generated across three lesson observations 
throughout the school year, typically with two project members observing each lesson. (In a few 
situations, a solo observer conducted the third observation after a consistent instructional profile 
had already emerged from the first two observations.) The observers then completed an 
observation protocol (Otten et al., 2023; Zhao et al., 2018) and reconciled any coding 
disagreements. The completed observations protocols for the three lessons for each class were 
then discussed with the full project team and compiled into an instructional profile involving the 
use of class time by activity structure, features of the mathematical development, student 
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involvement, tasks, etc. 
Due to space restrictions, we focus here only on certain aspects of the whole-class discourse 

(WCD) coding. In particular, we demarcated the segments of class time that were spent in a 
WCD activity structure, meaning everyone in the class was expected to attend to the same public 
discourse, often verbal discourse led by the teacher but also written text on the front board or 
students presenting to the class. We coded for students’ behavioral engagement during WCD 
based on students’ gaze and apparent attentiveness (mostly on task, mixed, or mostly off task). 
We also drew from past classroom observation research (e.g., Boston, 2012; Hill et al., 2012) to 
code on a 4-point scale several aspects of the quality of WCD, namely, the conceptual develop-
ment and justification of the mathematical ideas, integration of mathematical representations, 
connections to past or future mathematics lessons, and the absence of unmitigated mathematical 
errors (Otten et al., 2023), which for this brief report were merged into a single variable. 

To answer the research question about the relationship between WCD in Algebra 1 classes 
and students’ PK and CoV performance we used the class profiles and the student pre- and post-
test data to run two-level (i.e., within-level and between-level) growth models (Table 1). 

 
Table 1: Models for the relationship between WCD and student learning 

 
Within-Level Between-Level 

ytij = i ij + sij*(time)tij + etij 

i ij = β 00j + r0ij  

s ij = β 10j + r1ij 

β00j = γ000 + γ001*(WCD)j + u00j 

β10j = γ100 + γ101*(WCD)j + u10j 

ytij is the outcome variable for student i in class j at time t (t = 0 is pre-test; t = 1 is post-test). iij and sij are the 
intercept and slope parameters for student i in class j. Since there are only two time points, to identify the model, 
we fixed the residual variances of the pre and post scores to be zero at both levels. Fixed parameter estimates are 
for the pre-test score (i.e., intercept growth parameter), the gain from pre- to post-test (i.e., slope growth 
parameter), as well as the effect of WCD on the pre-test score and on the gain. 

Findings 
Overall, there were improvements over time on both the PK and CoV measures. With regard 

to the time spent on WCD, however, there was a negative relationship with both the PK and CoV 
gains. For PK, the students’ pre-test score estimate was about 6.67 (out of 16) and the gain was 
about 2.65 points. Classes with a higher percentage of time spent on WCD tended to have a 
lower pre-test score (p = 0.041) and tended to have a lower gain over time (p = 0.045) than 
classes with a lower percentage of time spent on WCD. More specifically, as the percentage of 
time spent on WCD increased by 1, the gain tended to decrease by about 1.99 points. The 
situation was similar for the CoV measure. Students’ pre-test score estimate was about 16.52 (out 
of 39) and the gain was about 1.97 points, but classes with a higher percentage of time spent on 
WCD tended to have a lower pre-test score (p = 0.024) and tended to have a lower gain over time 
(p = 0.013). More specifically, as the percentage of time spent on WCD increased by 1, the gain 
tended to decrease by about 5.06 points. Note that this is a correlational finding, not causal—a 
fact underscored by the lower pre-test scores for classes that tended to use more WCD. 

Moving from quantity to quality of WCD, we found there to be no statistically-significant 
relationship between quality of WCD and the average pre-test scores (p = 0.182 on PK; p = 
0.383 on CoV) nor the improvement over time on either measure (p = 0.246 on PK; p = 0.356 on 
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CoV). In other words, even for the classes wherein WCD was characterized by aspects of 
discourse that are hypothetically productive (e.g., justifications, integrating representations, 
making connections, avoiding errors), we did not detect a positive relationship with the 
procedural or conceptual learning gains. 

Discussion 
We found, in examining 47 algebra classes in a wide variety of school settings, that the time 

spent on whole-class discourse (WCD) was negatively correlated with both procedural and 
conceptual learning gains and that the quality of WCD did not have a statistically-significant 
relationship with the gains. It is possible that the failure to detect positive relationships is due to 
flaws in study design, limitations of the particular measures used, or contextual factors beyond 
our control (e.g., the COVID-19 pandemic began during post-test data collection for some of the 
classes). But it is also possible these results are indicative of something meaningful that is worth 
considering. We close with a few speculations about why spending time in WCD, even when 
achieving some of the aspects of research-recommended discourse, might be negatively (or not 
positively) associated with learning gains. (We should note that we saw very few cognitively-
demanding tasks in any of the 47 algebra classes, and we saw almost no instances of shared 
mathematical authority or dialogic discourse, so the WCD present here is not necessarily 
emblematic of the discourse-rich instruction proscribed by mathematics education researchers.) 

One possibility is that it might be more about the benefits of other activity structures rather 
than drawbacks of WCD. Providing ample time for students to work independently and engage 
directly in the mathematical problems, for instance, might be especially worthwhile. Indeed, that 
is what we found in our data, so it could be that WCD’s negative correlation comes from the fact 
that class time is a zero sum situation and time in WCD means less time in independent work. 
Nevertheless, when classes exhibit the “good” features of WCD, we hypothesized that it would 
be adding value beyond what the students accomplish in their independent work, at least with 
regard to conceptual learning, and yet we still did not detect a positive correlation in that case. 

Another possible explanation is that student engagement is an important underlying factor. 
Perhaps students are less engaged during WCD and so time spent in other activity structures is 
more valuable. We acknowledge that it is impossible to know for sure if students are attentive 
during WCD, but according to our engagement coding, there was a positive relationship between 
WCD engagement and PK gains (p = 0.010), though it was not statistically significant for CoV 
gains (p = 0.160). It is plausible that, as WCD spans a longer duration, engagement might wane. 
One might also wonder if WCD’s relation to learning depends on the number of students 
involved or the extent of students’ contributions, but we did not find any statistically-significant 
associations between those student-involvement variables and the PK or CoV learning gains. 

It might also be that it is not about the duration or the quality of the WCD but rather its 
placement in the lesson. Sinha and Kapur (2021) conducted a meta-analysis and found that it is 
important to place the WCD, teacher-led instruction after students have had an opportunity to 
problem solve and make initial attempts. Perhaps this placement variable will be more predictive 
than the quality indicators in this brief report, and perhaps long segments of WCD tend to occur 
at the start of lessons, which would explain the negative correlation. Further analysis is required. 

In conclusion, we think discourse-oriented scholars should take seriously these findings 
because there are many reasons to promote WCD (e.g., inclusion of ideas, student empowerment, 
collective sensemaking and dialogue), but when working with school partners, it is important to 
be clear-eyed about the potential drawbacks with regard student outcomes they may care about.  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1044 

Acknowledgments 
This study was funded by the National Science Foundation (#1721025). Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the authors 
and do not necessarily reflect the views of NSF. We thank Courtney Vahle, Jaepil Han, Wenmin 
Zhao, and Jessica Kamuru for their help with data collection. 

References 
Boston, M. (2012). Assessing instructional quality in mathematics. The Elementary School Journal, 113(1), 76–104. 

https://doi.org/10.1086/666387  
de Araujo, Z., Otten, S., & Birisci, S. (2017). Mathematics teachers' motivations for, conceptions of, and 

experiences with flipped instruction. Teaching and Teacher Education, 62, 60–70. 
http://dx.doi.org/10.1016/j.tate.2016.11.006  

de Araujo, Z., Tarr, J., Wang, Z., & Otten, S. (2018, August 15). Examining relationships between flipped 
instruction and students’ learning of mathematics. National Science Foundation. 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1721025&HistoricalAwards=false  

Genareo, V. R., Foegen, A., Dougherty, B. J., DeLeeuw, W. W., Olson, J., & Karaman Dundar, R. (2021). Technical 
adequacy of procedural and conceptual algebra screening measures in high school algebra. Assessment for 
Effective Intervention, 46(2), 121–131. 

Herbel-Eisenmann, B., Steele, M., & Cirillo, M. (2013). (Developing) teacher discourse moves: A framework for 
professional development. Mathematics Teacher Educator, 1, 181–196. 

Hill, H. C., Charalambous, C. Y., Blazar, D., McGinn, D., Kraft, M. A., Beisiegel, M., Humez, A., Litke, E., & 
Lynch, K. (2012). Validating arguments for observational instruments: Attending to multiple sources of 
variation. Educational Assessment, 17(2–3), 88–106. https://doi.org/10.1080/10627197.2012.715019  

Lemke, J. L. (1990). Talking science: Language, learning, and values. Greenwood Publishing. 
Otten, S., Ellis, R. L., Wang, Z., & de Araujo, Z. (2021). Comparing motivations for flipped instruction to data on 

flipped implementations in algebra. In D. Olanoff, S. Spitzer, & K. Johnson (Eds.), Proceedings of the 43rd 
meeting of the North American Chapter of the International Group for the Psychology of Mathematics 
Education (pp. 1554–1558). Philadelphia, PA: PME-NA. 

Otten, S., de Araujo, Z., Sherman, M., & Birisci, S. (2023). A framework for capturing structural variation in flipped 
mathematics instruction. International Journal of Mathematical Education in Science and Technology, 54(5), 
639–670. https://doi.org/10.1080/0020739X.2021.1958945  

Sinha, T., & Kapur, M. (2021). When problem solving followed by instruction works: Evidence for productive 
failure. Review of Educational Research, 91(5), 761–798. 

Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive mathematics discussions. National 
Council of Teachers of Mathematics. 

Staples, M. (2007). Supporting whole-class collaborative inquiry in a secondary mathematics classroom. Cognition 
and Instruction, 25, 161–217. http://dx.doi.org/10.1080/07370000701301125  

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Harvard University 
Press. 

Xu, L., & Mesiti, C. (2022). Teacher orchestration of student responses to rich mathematics tasks in the US and 
Japanese classrooms. ZDM Mathematics Education, 54, 273–286. https://doi.org/10.1007/s11858-021-01322-6  

Zhao, W., Han, J., de Araujo, Z., & Otten, S. (2018, November). Flipped observation protocol. Poster presented at 
the 40th annual meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Greenville, SC. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1045 

POLICY,	INSTRUCTIONAL	
LEADERSHIP,	TEACHER	

EDUCATORS	

	 	



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1046 

A MATHEMATICS MENTORING PROGRAM: POST-PANDEMIC 

Jenna Tague 
Clovis Community College 

jenna.tague@cloviscollege.edu 

The purpose of this report is to share the supports created as part of a mathematics mentoring 
program in a mid-sized western university. The research is longitudinal, and the current paper 
will share results from the fourth (of six) years of a project. I use a mixed method approach to 
examining the efficacy of the mentoring program, and the results indicate that the program may 
have helped students through the pandemic and to shift back afterwards. 

Keywords: Instructional Leadership; Undergraduate Education, Equity and Justice  

Increasing retention in mathematics majors for people of color and women remains essential. 
One way to advocate for this issue is to develop more supportive undergraduate mathematics 
departments through mentorship programs (Mondisa & McComb, 2018). Research shows many 
STEM majors leave because they have a bad experience, and more troubling that people of color 
and women are more likely to leave than their white counterparts (e.g., Anderson & Kim 2006; 
Hill, Corbett, & Rose, 2010; Griffith, 2010). These results and experiences indicate that research 
is needed on how mathematics departments might be more inclusive, and that mentoring 
programs might be a good way to approach this issue (Mondisa & McComb, 2015). 

The mentoring program in this proposal was set at a mid-sized western comprehensive 
university. The supports created for the program were designed to address challenges faced by 
low-income students, students of color, and women in our mathematics department. The purpose 
of this report is to share ongoing research results of what’s working and what’s not, and to 
describe alterations to the mentoring program that have been made over time, particularly in 
response to the pandemic, and the resulting effects. 

Literature Review 
There are two important facets of literature to examine around mathematics mentoring 

programs: (1) which supports are most helpful to students, and (2) what qualitative and 
quantitative measures are valid in examining the efficacy of support programs? 

In studying facets of support programs for STEM majors, Lisberg and Woods (2018) found 
four areas that were essential: (1) peer and faculty mentorship, (2) familiarity with programs and 
faculty, (3) student mindsets, and (4) student learning techniques. In the first, peer and faculty 
mentorship, it is essential that students are paired with a peer or faculty that they see as a mentor. 
Other research indicates that having mentor(s) increases retention rates in STEM programs 
(Campbell & Campbell, 1997). The second category is about becoming familiar with the college 
structure and connecting students with the necessary resources on campus. For example, many 
first-generation college students could struggle with applying to financial aid. The third category, 
student mindset, is about educating students on growth mindsets (Dweck, 2008) as well as 
providing students with examples of how individuals could overcome academic difficulties 
(Walton & Cohen, 2011). The last category, student learning techniques, focuses on the idea that 
many students do not know how to study for STEM classes, and that given specific instruction in 
that area, students can improve their learning. These results mirror previous results in 
mathematics indicating the importance of study groups (Triesman, 1992). Lisberg and Woods 
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(2018) found that students in their support program were more likely to pass mathematics 
courses in their first year, and, if they did not pass them, were two times as likely to retake them.  

In a metanalysis of non-academic supports that were most helpful to retaining STEM 
community college students, Karp (2011) found they could be sorted into four main categories: 
social relationships, career options, college structure, and life issues (italics added for emphasis 
and to denote each category). The social relationship category included those supports that 
helped students connect with one another and faculty members on campus, which echoes the 
mentorship category from Lisberg and Woods’ (2018) study. The second category included 
educating students about career options both in terms of helping them choose appropriate 
majors, but also providing information on what careers were possible with which majors. The 
college structure category aligned with the familiarity with programs category from Lisberg and 
Woods (2018). Lastly, the life issues category was identified as the most difficult one to support 
students through. However, when students had resources to connect to on campus, they were 
more likely to persist and remain enrolled. 

Having examined research on the supports that were helpful, I will move on to discuss the 
how these programs have been studied and compared. Karp (2011) remarked that the majority of 
the research from the metanalysis made use of Likert-style questions that asked how helpful the 
students thought particular supports were. The students were not asked why the supports were 
helpful. Similarly, Mondisa and McComb (2018) commented on how many support programs 
relied solely on quantitative comparisons like comparisons of students’ GPA or attrition rates. 
Both papers noted that there is a lack of research on support programs as a whole because they 
often are created, but not studied, and so more research is needed on support programs. Lastly 
there was evidence that there is a need for more qualitative data to examine what is most helpful 
and why for supporting underrepresented students in STEM majors (Estrada et al., 2017). 

In designing our program, we centered our supports around Karp’s (2011) four categories: 
social relationships, career options, college structure, and life issues, while also including 
mindset and study skills from Lisberg and Woods (2018) categories. The research design 
includes quantitative methods, such as comparison of graduation rates, and qualitative methods 
to examine the social aspects of the program. 

Context 
The support program was created at a mid-sized western comprehensive university where the 

overall student population consisted of 67% first generation students, 61% Pell-eligible, and has 
overall student population demographics 3% African American, 14% Asian (mainly Southeast 
Asian: Hmong and Cambodian), 49% Hispanic, 6% non-resident students, 3% two or more 
races, 5% unknown, and 20% white. 

During the preparation year, focus groups were held with current students to identify areas of 
support for our student populations (Tague, 2021). The focus groups were analyzed for overall 
themes and those themes informed how the supports were built around Karp’s (2011) categories. 
The team consisted of three mathematicians, who I will refer to as mentors, and myself. The 
mentoring program began in Fall 2018 and has shifted to meet the students’ needs over time. 

In the social relationships category, we designed scholarships, weekly meetings, and 
required office hours or tutoring. It may strike the reader as odd to include scholarships in this 
category, however, we have found that without financial support, students work two or more 
jobs, which prevents them from spending time on campus and making connections. We work on 
educating students on career options through advising sessions, workshops, and guest speakers. 
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These became more prevalent in the last few years as the students reached their junior and senior 
years. The workshops in the later years have been focused on graduating, and research 
experiences to emphasize the college structure. Lastly, it is difficult to plan ahead for what life 
issues students might face, however, we hoped that through the community building, students 
would have the social network to persevere through these. 

Theoretical Framework and Methods 
I used a mixed methods approach to this research. For the quantitative methods, I have been 

tracking longitudinal data including graduation rates. For the qualitative methods, I used the 
framework of Social Community (Mondisa & McComb, 2018) to measure the impact of the 
program at an individual level in terms of connectedness, resiliency, and communities of 
practice. I measured how connected each student was to the program by asking, for example, do 
you have a mentor? I measured resiliency by asking the students, for example, if they faced any 
obstacles and if so, how they worked to overcome them. The framework defines communities of 
practice as “collections of like-minded individuals sharing similar experiences and social 
resources as they interact with and support each other (Eckert, 2006; Wenger, 2000)” (Mondisa 
& McComb, 2018, p. 98). For this question, I asked students if they felt like they belonged as 
part of the mathematics department, and why or why not. All interview questions were adapted 
from Mondisa and McComb’s (2018) framework. 

The current report is from the fourth (out of six) years of the program. In this year, there were 
14 scholars (5 seniors and 9 juniors). There were 12 students recruited in the control group (6 
juniors and 6 seniors). All participants in the study were mathematics majors and both groups 
consisted of a majority of people of color. All participants, scholar or control, participated in 
semi-structured interviews, which, on average, lasted 27 minutes during October 2021-January 
2022. The interviews were recorded, transcribed verbatim using software, and then altered for 
correctness. The resulting transcriptions were organized into a spreadsheet and then separated by 
theme: connectedness, resiliency, and communities of practice (Mondisa & McComb, 2018). 

Results 
I will present the quantitative results first, followed by the qualitative results by theme. 

Because of the longitudinal nature of the study, this was the first year that I could report 
graduation rates. They are shown in Table 1 below, where the starred year represents the first 
year the program was running. It shows that the support program might be helping a larger 
percentage of mathematics students graduate in four years. 

 
Table 1. Rate of Mathematics Majors Graduating in Four Years 

Year of Entry Percent of Majors Graduating 
in Four Years 

2013 11.1% 
2014 18.2% 
2015 27.6% 
2016 27% 
2017 
2018* 

21.6% 
37.8% 
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Connectedness 
In previous years, the scholars were significantly more likely to show connectedness by 

stating that they had a mentor that was a faculty member (Tague, 2021; 2022). However, in the 
current year 11 of 14 scholars versus 8 of 12 control students reported having a faculty member 
as a mentor (χ2=0.1153; p=0.7341), which was not significant. It makes sense that in the later 
years of the majors, the students who have persisted would have a connection to a faculty 
member. There was a difference between how the control group talked about their faculty 
mentors versus how the scholars did. The control group mainly stated that they could go to the 
mentor if they had questions about their academic paths or about a course. For the scholars, 
many mentioned that they felt they could talk to their mentor “about anything”. One even stated, 
“I feel like he’s my academic dad.” In summary, there was no difference in the connectedness as 
measured by if they had a mentor, but qualitatively the scholars described closer relationships 
with their mentors. 
Resiliency 

Both groups struggled with time management and switching back to in person from being 
online. Many of them described how they struggled the previous year with a lack of socializing 
and how they valued being back in person for their math courses. Much of the new time 
management issues had to do with readjusting to commuting to campus again. One theme that 
appeared in the control group was that of mental health linked to motivation. The majority of the 
control group mentioned that mental health centered around motivation was an obstacle for them 
in the current semester, whereas only two of the scholars mentioned these specific obstacles. 
These results indicate that both groups displayed resiliency, however the scholars seemed to have 
used their social networks to overcome motivation struggles. 
Communities of Practice 

In previous years, there was no difference in the rate of belonging between the control group 
and scholars. This year, out of 14 scholars, 12 stated they felt like they belonged versus 6 out of 
12 of the control group. This indicated a statistically significant difference in communities of 
practice between the groups (χ2=3.869; p=0.0491). There was also a difference in how the groups 
talked about belonging. The control group referenced that some of their belonging was based on 
academic achievement, whereas for the scholars, their belonging was based on their involvement 
and contribution to the department community. As a representative sample of the control group, 
one student articulated, “Do I have the credentials to be in the math department? I’m just a 
student here.” This contrasts with the representative sample from the scholars saying, “I didn’t in 
the beginning, but I feel like I do now…I feel like I contribute a part of the department.” 

Conclusions 
All of the students, scholar and control group, displayed connectedness and resiliency. The 

scholars’ connectedness was deeper in their descriptions of what issues they could ask their 
mentors about. The scholars’ resiliency in coming back after the pandemic was less plagued with 
motivation issues than the control group. Lastly, the scholars displayed significantly higher 
levels of communities of practice than the control group. These results are consistent with results 
from the prior three years in the project (Tague, 2021; 2022) where the scholars were more 
comfortable in the first year going to office hours, and in the second year were more likely to 
have a faculty member as a mentor. Results from each year of the study are promising, and 
provide evidence that with support, students might feel more belonging and persistence in 
mathematics departments. 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1050 

Acknowledgments 
The funding for this research was provided by grant 1742236. 

References 
Anderson, E., and Kim, D. (2006). Increasing the Success of Minority Students in Science and Technology. 

Washington, DC: American Council on Education. 
Campbell, T. A., & Campbell, D. E. (1997). Faculty/student mentor program: effects on academic performance 

and retention. Research in Higher Education, 38(6), 727–742. 
Dweck, C. S. (2008). Mindsets and math/science achievement. Carnegie Corp. of New York–Institute for 

Advanced Study Commission on Mathematics and Science Education, New York. 
Eckert, P. (2006). Communities of practice. Encyclopedia of language and linguistics, 2(2006), 683–685. 
Ehrich, L. C., Hansford, B., & Tennent, L. (2004). Formal mentoring programs in education and other professions: 

A review of the literature. Educational Administration Quarterly, 40(4), 518–540. 
Estrada, M., Burnett, M., Campbell, A. G., Campbell, P. B., Denetclaw, W. F., Gutierrez, C. G., Hurtado, S., 

Gilbert, J. H. Matsui, J., McGee, R., Moses Okpodu, C., Robinson, T. J., Summers, M.F., Werner-Washburne, 
M., & Zavala, M. (2017). Improving underrepresented minority student persistence in STEM. CBE-Life 
Sciences Education, 15(3). 

Gershenfeld, S. (2014). A Review of Undergraduate Mentoring Programs. Review of Educational Research, 84(3), 
365–391. 

Griffith, A. (2010). Persistence of women and minorities in STEM field majors: Is it the school that matters? 
Economics of Education Review, 29(6): 911–922. 

Higher Education Research Institute. (2010). Degrees of Success: Bachelor’s Degree Completion Rates Among 
Initial STEM Majors. Los Angeles: Author. 

Hill, C., Corbett, C., and Rose, A.S. (2010). Why So Few? Women in Science, Technology, Engineering, and 
Mathematics. Washington, DC: American Association of University Women. 

Hrabowski, F. A., & Pearson, W., Jr (1993). Recruiting and retaining talented African–American males in college 
science and engineering. Journal of College Science Teaching, 22(4), 234–238. 

Karp, M. M. (2011). Toward a New Understanding of Non-Academic Student Support: Four Mechanisms 
Encouraging Positive Student Outcomes in the Community College. CCRC Working Paper No. 28. Community 
College Research Center, New York, New York. 

Lisberg, A., & Woods, B. (2018). Mentorship, mindset and learning strategies: An integrative approach to 
increasing underrepresented minority student retention in a STEM undergraduate program. Journal of STEM 
Education, 19(3), 14-20. 

Maton, K. I., Hrabowski, F. A., & Schmitt, C. L. (2000). African American college students excelling in the 
sciences: College and postcollege outcomes in the Meyerhoff Scholars Program. Journal of Research in Science 
Teaching, 37(7), 629–654. 

Mondisa, J. L., & McComb, S. A. (2015). Social Community: A Mechanism to Explain the Success of STEM 
Minority Mentoring Programs. Mentoring & Tutoring: Partnership in Learning, 23(2), 149–163. 

Mondisa, J. L. & McComb, S.A. (2018). The role of social community and individual differences in minority 
mentoring programs. Mentoring & Tutoring: Partnership in Learning, 26:1, 91-113. 

Seymour, E., and Hewitt, N.M. (1997). Talking About Leaving: Why Undergraduates Leave the Sciences. Boulder, 
CO: Westview Press. 

Snyder, T.D., and Dillow, S.A. (2011). Digest of Education Statistics, 2010 (NCES 2011-015). National Center for 
Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC. 

Tague, J. (2021). The Social Community of a Mathematics Support Program. Proceedings of the 2021 Psychology 
of Mathematics Education- North America Conference, Philadelphia, Pennsylvania, USA. 

Tague, J. (2022). A Mathematics Support Program: Modifications and Responses to the Pandemic. Proceedings of 
the 2022 Psychology of Mathematics Education – North America Conference, Nashville, TN, USA. 

Treisman, Uri (1992). Studying students studying calculus: A look at the lives of minority mathematics students in 
college. The College Mathematics Journal, 23(5), 362–372. 

Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic and health 
outcomes of minority students. Science, 331(6023), 1447-1451. doi:10.1126/science.1198364. 

Wenger, E. (2000). Communities of practice and social learning systems. Organization, 7(2), 225–246. 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1051 

DILEMMAS AS A SITE FOR MATHEMATICS TEACHER EDUCATOR LEARNING 

Michael Jarry-Shore 
North Carolina State University 

mjarryshore@ncsu.edu 

Keywords: Teacher Educators, Preservice Teacher Education, Professional Development 

For this self-study (Vanassche & Kelchtermans, 2015), I examine the following question: 
how might unpacking the dilemmas that mathematics teacher educators (MTEs) encounter 
support MTE learning? I root the study in a dilemma that arose as I was modeling a Number 
Talk (Humphreys & Parker, 2015). For this talk, I had asked a class of pre-service elementary 
teachers (PSTs) to solve 75 – 29 using mental math. The first student to share used a strategy I 
had expected: 75 – 25 = 50; 50 – 4 = 46. The second student shared a strategy I had also 
expected: 75 – 30 = 45; 45 + 1 = 46. Then a third student shared the following: 75 – 29 ® 80 – 
30 = 50; 50 – 5 – 1 = 44. And I was stuck. I had not anticipated this strategy and could not figure 
out, on-the-spot, why the strategy did not yield the correct answer of 46. I found myself faced 
with a dilemma, having to choose between two equally undesirable options (Lampert, 1985). 
While we could try to figure out the strategy as a class, that risked causing confusion given my 
lack of understanding and could potentially leave PSTs thinking that centering student strategies 
is a daunting task. Alternatively, we could bypass the strategy, but that risked conveying that 
only student thinking that is anticipated and easily comprehended is to be centered. Ultimately, I 
pursued the latter option. We later considered the lesson from the teacher’s perspective. I shared 
that I was unsure if I had handled this moment well. I also saw a look of concern on PSTs’ faces, 
as they seemed to recognize that similar episodes might arise in their own mathematics teaching. 

After the lesson, I shared this dilemma with another MTE in my department. We discussed 
how a number line could have demonstrated the source of the error in this strategy. We then 
drew a number line showing the difference between 75 and 29. Next, we placed the numbers 80 
and 30 on this number line, which showed that the difference in this new problem had increased 
by five at the upper end, yet by only one at the lower end. As this number line demonstrated, 
changing 75 – 29 to 80 – 30 had resulted in the PST finding a difference that was four units too 
large. In unpacking this dilemma with a colleague, I developed my knowledge of “the ways of 
representing and formulating the subject that make it comprehensible to others” (Shulman, 1986, 
p. 9). I also found myself feeling better able to respond to this particular dilemma – to pursue or 
bypass an unanticipated solution strategy – in the future. Finally, I recognized that unpacking 
such dilemmas with supportive colleagues could develop my practice as a MTE. 

Scholars have described the dilemmas that classroom teachers face (Lampert, 1985) and my 
experience suggests that MTEs not only face their own dilemmas but may also learn a great deal 
by unpacking these with others. There are thousands of MTEs across the globe teaching courses 
like mine or facilitating professional development with practicing teachers, yet little research has 
explicitly examined their preparation and learning (Lloyd, 2020; Tzur, 2001). I propose that 
collectively reflecting on the dilemma’s MTEs encounter, with the support of other MTEs, could 
support MTE learning. In this poster presentation, I will make this case by homing in on the 
example described above. I will also describe plans for future research, in which I propose 
developing criteria for identifying the dilemmas MTEs encounter. Specifically, I will describe 
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plans to ask MTEs to bring their dilemmas to gatherings with other MTEs, then study the nature 
of these dilemmas and the MTE learning that results from unpacking these collectively. 
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In this study, we examine the knowledge, purposes, and rationales of four mathematics teacher 
educators (MTEs) as they implemented a common mathematical task in content and methods 
courses for prospective secondary teachers. When implementing the common task, the MTEs 
made decisions to foreground the learning of mathematics or the learning of pedagogy that were 
situated in their knowledge of their respective university programs, their knowledge of 
prospective teachers and their needs, as well as the MTEs’ beliefs and backgrounds. 

Keywords: Teacher Educators; Instructional Activities and Practices 

Preparing prospective teachers (PTs) to enact task-based, student-centered instruction in 
secondary classrooms is challenging work. It involves providing PTs with opportunities to 
develop both robust mathematical understandings and effective pedagogical strategies in their 
university programs (AMTE, 2017). One-way MTEs can provide mathematical and pedagogical 
learning opportunities is to integrate rich mathematics tasks into their courses (Thanheiser, 2015; 
Watson & Mason, 2007). Doing so can provide PTs with opportunities to experience effective 
teaching strategies first-hand as students and to engage with important mathematical ideas (e.g., 
Kochmanski et al., 2022). Yet, the coursework required for PTs can look vastly different 
depending on the structure and design of teacher licensure programs. Some programs, for 
example, require mostly traditional mathematics courses along with methods courses, while 
others require mathematics content courses specific to the teaching of secondary mathematics. 
MTEs are often asked to make principled decisions about whether (and how much) to foreground 
mathematical understandings or effective teaching practices in the courses they are designing for 
PTs. Though these decisions are likely influenced by the constraints of PT program structures and 
designs, there may be other factors that also contribute to MTEs’ decisions. Currently, we are 
unaware of any studies that have looked closely at how individual MTEs foreground 
mathematics over pedagogy (or vice-versa) in their mathematics education courses.  

Further, several scholars in mathematics education have called for increased attention to 
MTEs’ knowledge, purposes, and rationales as they prepare PTs (Appova & Taylor, 2019; 
Jaworski & Huang, 2014). The primary goal of this study is to contribute to research on MTEs’ 
knowledge, purposes, and practices by closely examining the rationales of four MTEs working in 
different institutional contexts. We focused on the foregrounding of the learning of mathematics 
or the learning of pedagogy as the MTEs planned and implemented a common mathematics task 
in their courses for PTs. The following questions guided our analysis: 
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1. To what extent did MTEs foreground the learning of mathematics compared to the 
learning of pedagogy in their enactment of a common functions task with prospective 
secondary teachers? 

2. Why did the MTEs foreground the learning of mathematics and the learning of pedagogy 
in the ways that they did? 

Theoretical Framework 
Our analysis was informed by prior research examining MTEs’ thinking and reasoning. In 

particular, we follow Appova and Taylor (2019) in focusing on several factors that can influence 
MTE decision-making, including: (a) MTEs’ goals for teachers’ learning; (b) their purposes for 
engaging teachings in particular tasks; and (c) their knowledge of content, pedagogy, and 
students’ learning. Additionally, teacher education, as with classroom teaching, occurs in 
context, and as such we also attend to the features of the institutional context that may influence 
MTEs’ decision-making, such as, for example, the nature of teacher education program designs, 
whether the teacher education program is situated in a school of education or in a mathematics 
department, and the educational history of the institution in which the courses take place. 

Methods 
This study examines the rationales of four MTEs across four different U.S. postsecondary 

institutions as they implemented a common mathematics task adapted from Beckman (2022). 
The Coffee Task (see Figure 1) focuses on the topic of function, which is an “essential 
understanding” topic in secondary mathematics (Zhang et al., 2020). The task is intended to elicit 
ideas of discrete or continuous functional relationships, differences between codomain and 
range, and approaches to graphing functions rooted in real-world situations or contexts. 

 

Figure 1. The Coffee Task 
One MTE with an appointment in a mathematics department implemented the task in a K-12 

math content course for teachers. Another MTE with an appointment in a mathematics 
department implemented the task in two separate courses: a K-12 math content course for 
teachers and a secondary methods course. The two MTEs with appointments in colleges of 
education implemented the task in methods courses for secondary mathematics teachers. In all, 
the four MTEs implemented the same task in five different courses. 

We collected the following data as part of the study: video recordings of each MTE’s 
implementation of the focal task, classroom artifacts from those sessions (e.g., students’ work 

and written reflections), and MTE interviews regarding instruction. Together, these data enabled 
us to look for and understand the differences in the extent to which the MTEs foregrounded the 
learning of mathematics and the learning of pedagogy. The interviews were particularly helpful 
in building our understanding of why the MTEs chose to foreground mathematics or pedagogy. 
We conducted thematic analysis across the memos to surface similarities and differences in the 
MTEs’ rationales for the ways in which they implemented the task. 

An online coffee company charges $12 for each bag of coffee plus $5 for shipping (no matter 
how many bags are ordered). Model this (situation/function) in as many ways as you can. 
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Findings 
To What Extent Did MTEs Foreground the Learning of Mathematics Compared to the 
Learning of Pedagogy in Their Enactment of a Common Functions Task? 

There was variation in how much the MTEs chose to foreground the learning of teaching 
compared to the learning of mathematics in the implementation of the focal mathematics task. In 
the sections that follow, we discuss the balance of content and pedagogy in all five classes, 
organized by the types of courses in which the MTEs implemented the focal task. 

Methods courses. Two of the three MTEs who implemented the Coffee Task in methods 
courses foregrounded the learning of pedagogy over the learning of mathematics. One used the 
task to elicit student thinking about elements of the task they would need to attend to effectively 
launch mathematics tasks. The second MTE modeled the enactment of the task in a reform- 
oriented launch-explore-summarize lesson and had PTs examine his implementation. In 
contrast, the third MTE foregrounded the learning of content in her methods course. She 
prompted students to identify the five “big ideas” of functions from NCTM’s Developing 
Essential Understandings series within their task solutions. That said, she did engage with 
pedagogy by framing the task as a context for discussing how to facilitate meaningful 
mathematical discourse—one of the eight Principles to Actions effective teaching practices 
(NCTM, 2014). 

Content for teaching courses. Both MTEs who taught content for teaching courses 
foregrounded the learning of mathematics. In one class, the MTE used the Coffee Task 
primarily as a formative assessment. to assess understanding of multiple function 
representations. The other MTE foregrounded the learning of content by asking PTs to not 
only model the situation but to also describe the relationship between the quantities; explain 
whether the relationship was a function; and describe the domain, codomain, and range of the 
relation. In both cases, the MTEs also discussed pedagogy, but it was ancillary the 
mathematics. 

Why Did the MTEs Foreground the Learning of Mathematics and the Learning of 
Pedagogy in the Ways that They Did? 

In interviews before and after the implementation of the Coffee Task, all four MTEs 
emphasized their intent to provide PTs with opportunities to learn about both mathematics and 
pedagogy. However, as noted above, the extent to which the MTEs foregrounded these different 
but overlapping domains of our discipline differed. We identified several factors that appeared to 
influence the extent to which the MTEs foregrounded the learning of content versus the learning 
of pedagogy. These factors included the MTEs’ knowledge of their program structure and course 
sequencing; knowledge of PTs and course composition; and the MTEs’ personal experiences, 
interests, and educational/professional background. 

Knowledge of program structure and course sequencing. The MTEs’ understandings of 
PTs’ prior and expected future experiences in mathematics content and methods courses 
influenced the extent to which they focused on content and pedagogy in their courses. For 
example, one of the MTEs placed a heavy emphasis on mathematics in his content course 
because he knew that his PTs would be exploring pedagogy in three math methods courses 
throughout their program. A different MTE foregrounded mathematics in her methods course 
because her university program of study has one three-credit mathematics methods course and no 
content courses for mathematics teaching. 
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Additionally, the MTEs considered when the task was being implemented in the course 
sequence, so that it could be coherently integrated within the existing sequence. For example, one 
of the MTEs who implemented the task in his methods course did so at a time in the course when 
students were learning about launching tasks. This contributed significantly to his decision to use 
the task as a context for exploring how to launch a task effectively. A different MTE, on the 
other hand, implemented the task during the final weeks of a third (and final) methods 

course, so he used the task as an opportunity to “put the pieces of the puzzle together” by 
modeling and discussing the entire launch-explore-summarize process. 

Knowledge of prospective teachers and course composition. All of the MTEs drew upon 
their knowledge of PT development, as well as the general composition of their courses, when 
deciding on how much to foreground mathematics or pedagogy. For example, one of the MTEs 
taught a methods class that contained PTs from several different programs, including middle 
grades, secondary, and alternative licensure pathways. In order to ensure the class was relevant 
to all PTs, the MTE made a concerted effort to foreground issues of pedagogy, as opposed to 
content. Another MTE taught a synchronous, online course. The MTE did not model instruction 
of the Coffee Task for her PTs, as she knew they would be primarily teaching in face-to-face 
settings and the ways in which she would enact the task in an online setting would differ from 
how it might look in person. As such, the MTE foregrounded the learning of content over 
pedagogy by focusing on highlighting the mathematical ideas teachers can surface with this 
task, as this was the element she saw as most relevant to the PTs’ future teaching. 

MTEs’ personal experiences, interests, and backgrounds. Decisions to foreground 
mathematics or pedagogy were also influenced by MTEs’ personal experiences, interests, and 
educational/professional background. While each of the instructors articulated a vision of 
effective teaching focused on supporting students’ development of conceptual understanding, 
their differing backgrounds and experiences were reflected in their instructional choices. For 
example, one of the MTEs drew on her experiences as a professional engineer and a high school 
mathematics teacher; she emphasized mathematical modeling aspects of function in her teaching 
and our ability to understand quantifiable phenomena. Another MTE, who was an undergraduate 
English major, focused on the practices of launching a task and the more apparent mathematical 
ideas in the task rather than using the task to discuss deeper mathematical ideas inherent in the 
task. 

Discussion 
Secondary MTEs’ instructional decisions are highly influenced by the perceived purposes 

and roles the courses hold within the larger university programs. While MTEs can learn about 
content and pedagogy during their training as MTEs, it is also vital to consider how we are 
preparing MTEs to uncover and navigate the perceived purposes of their courses. As MTEs 
reflect on their own mathematics experiences and their beliefs about effective practices in 
preparing PTs, they are better positioned to create and support high-quality mathematics teacher 
preparation programs. 
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Keywords:  Instructional Vision, Measurement 
Established and emerging research suggests the importance of a shared instructional vision 

for collective efforts to improve instruction (e.g., Cobb et al. 2013). Instructional vision refers to 
images of ideal practice that teachers aspire to (Hammerness, 2001). Munter (2014) used this 
idea to articulate a framework for vision of high-quality mathematics instruction (VHQMI) and 
developed an interview protocol and set of rubrics to track educators’ descriptions of instruction 
and their alignment toward research-based descriptions of high quality math instruction along 
dimensions of the role of the teacher, classroom discourse, and mathematics tasks. The VHQMI 
rubrics have since proven useful in investigations related to teacher learning and improvements 
in instructional practice (Munter & Correnti, 2017; Munter & Wilhelm, 2021). 

In the context of a statewide partnership to support improvements in mathematics instruction, 
our research aims to test the conjecture that developing a shared VHQMI is foundational to 
successful implementations of STEM education innovations at scale. To investigate this 
conjecture, our team extended Okeyo’s (2019) VHQMI item development study to design a 
survey instrument based on Munter’s (2014) rubrics that approximates educators’ VHQMI. Our 
goal was to develop an instrument to characterize educators’ VHQMI quickly and efficiently at 
scale to inform the team’s design efforts. The online survey consists of twelve pairwise 
comparison questions for each dimension (total of 36 questions) where respondents indicate 
which of two choices more accurately describes their VHQMI. 

This study investigates the validity of the VHQMI survey instrument as an approximation to 
Munter’s (2014) VHQMI rubric scores and identify factors that may be significant predictors of 
VHQMI survey scores through examining two questions: (1) Is there a significant positive 
correlation between VHQMI survey and interview rubric scores? and (2) What factors are 
significant predictors of educators’ vision score? To investigate these questions, we conducted 
VHQMI interviews and administered the survey to seventy K-12 mathematics teachers, coaches, 
and curriculum leaders from the partnership. Analyses of interview and survey scores indicated a 
moderate correlation (Spearman’s rho=.3367, p=.004) and significant predictor variables of role 
group in a multiple regression model to predict VHQMI. ANCOVA test also showed significant 
differences between VHQMI scores among role groups but not among grade bands. Although 
these results provide modest evidence that survey scores may serve as rough approximations for 
respondents’ VHQMI score. Additional investigations of paired interview and survey scores with 
larger variability are needed to strengthen a validity argument for the VHQMI survey.  
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Research has shown that instructional vision is related to teacher learning, instructional quality 
and change, and an important consideration for large scale improvement efforts. To date, these 
studies have primarily relied on resource-intensive methods to measure instructional vision. In 
this paper, we detail the development of a survey instrument to measure vision of high quality 
mathematics instruction and explore its relation to established rubrics for assessing vision in 
interview settings.  

Keywords: Instructional Vision, Measurement.  

Over the last two decades, researchers investigating mathematics teacher learning and 
professional development have offered a number of cognitive, social, historical, organizational, 
and contextual explanations for variations in what and how teachers learn in different settings. 
One of these explanations that has proven useful is the idea of instructional vision. Defined as “a 
set of images of ideal classroom practice for which teachers strive” (Hammerness, 2006, p.143), 
a teacher’s vision represents a form of practice to which they aspire, and researchers have 
documented its association with instructional quality (Munter & Correnti, 2017; Wilhelm, 2014), 
changes in classroom over time (Munter & Correnti, 2017), students’ academic outcomes 
(Chance & Segura, 2009), and successful implementation of new policies (Gamoran et al., 2003). 
Some have used vision to understand teachers’ participation in their professional communities, 
showing that vision influences the ways one filters competing messages about practice in 
different social contexts (Tichnor & Schwartz, 2017), shapes interactions within professional 
networks (Munter & Wilhelm, 2021), and facilitates collaborations among teachers and other 
instructional support professionals when it is shared (Peterson et al., 1996). Others working with 
districts to create structures, resources, and systems to support teacher learning have noted the 
importance of a shared vision in organizational improvement efforts (Cobb & Jackson, 2011).  

The field’s understanding of instructional vision and the role it plays in teacher learning and 
professional growth was established through exploratory studies using qualitative methods such 
as interviews (e.g., Hammerness, 2001; Munter, 2014) and document analysis (e.g., Tichnor & 
Schwartz, 2017). As the knowledge base matures, researchers interested in using this knowledge 
to design innovations for improvements at scale will need additional methods and 
instrumentation to characterize the visions of those in educational systems. Efficient methods 
that yield relevant and timely analyses of instructional vision would be useful for assessing 
needs, designing implementation supports, and monitoring progress over time. In this paper, we 
describe a survey instrument designed to measure instructional vision in mathematics developed 
in the context of a statewide partnership of researchers and state leaders to support the 
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implementation of new state mathematics standards. We then report findings from an analysis of 
survey responses to assess the degree to which the instrument’s measure of vision is consistent 
with the established VHQMI interview rubrics (Munter, 2014) on which it is based.  

Theoretical Perspectives 
Significant advances have been made in characterizing instruction that supports all students 

in learning mathematics. Described by some as high-quality mathematics instruction, instruction 
that meets these goals aims for teachers to be intentional in supporting students by 
problematizing ideas, supporting students in developing mathematical authority, and scaffolding 
classroom discussions in ways that formalize learning goals for students. Though this 
characterization summarizes the research base and may represent Hammerness’s (2006) notion 
of “images of ideal classroom practice” for some, what mathematics teachers and leaders see 
when imagining ideal instruction varies considerably (Munter, 2014).  

Building from Hammerness’ (2006) conception of vision, Munter (2014) and colleagues 
(Munter & Wilhelm, 2021) describe instructional vision as a discourse used to characterize ideal 
teaching practice. As a discourse, what one believes to be high quality mathematics teaching is 
reproduced in, and shaped by, professional and other discourses in which teachers participate. 
From his characterization of a vision of high quality mathematics instruction based on a 
synthesis of mathematics education research, he developed and tested an interview protocol and 
accompanying rubrics to track educators’ descriptions of instruction and their alignment with 
research-based descriptions of high-quality mathematics instruction. These rubrics articulate 
qualitatively distinct levels of sophistication of vision of high-quality mathematics instruction for 
three dimensions of classroom practice – the role of the teacher, classroom discourse, and 
mathematics tasks – and have been used in studies focused on prospective teachers (Walkowiak, 
et al., 2015), practicing teachers (Munter, 2015; Wilhelm, 2014); mathematics leaders (Jackson 
et al., 2015); and principals (Katterfeld, 2015; Munter & Wilhelm, 2021). 

Since 2016, our partnership has used Munter’s definition of instructional vision as a 
discourse and the VHQMI rubrics to guide our efforts to design resources for implementing new 
mathematics standards. This paper focuses on a survey we developed to provide the partnership 
with descriptions of the instructional visions held by educators across levels of the state 
education system to inform its designs and assess the degree to which they promoted a more 
sophisticated and shared vision. 

VHQMI Survey Instrument Development 
The VHQMI survey was developed in the context of a partnership of mathematics education 

researchers and leaders from the state education agency and school districts to support the 
implementation of new state mathematics standards. Formed in 2016, the partnership identified 
disparate instructional visions as a key impediment to standards implementation and set a goal of 
developing a shared vision of high-quality mathematics instruction across levels of the state 
educational system. To meet this goal, partners collaboratively designed an array of 
implementation resources and professional learning experiences for teachers, coaches, and 
school and district leaders that embodied high quality instruction and distributed them to all 
districts through the state agency. To inform these efforts and to monitor progress, the research 
team recognized that qualitative methods for measuring instructional vision at the scale of a state 
system would be impractical and fail to provide formative information in a timely manner. 
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The VHQMI survey is designed to measure educators’ visions of high-quality mathematics 
instruction along the same dimensions of practice as the VHQMI rubrics for the role of the 
teacher, mathematics tasks, and classroom discourse (Munter, 2014). Similar to Munter’s 
interview protocol, the survey is framed with a question about what respondents might observe 
when visiting a mathematics class that would suggest the instruction was of high quality. The 
survey items present pairs of observations one might make in a classroom, and respondents 
indicate which choice better describes higher quality mathematics instruction. The observations 
are short statements created by the research team and are based on levels of the VHQMI rubrics. 
Through a series of cognitive interviews, expert reviews, large scale pilot administrations, and 
item analyses from 2017 – 2019 (Okeyo, 2019), the partnership tested and refined approximately 
60 of these observations aligned with the different levels for the rubrics.  

From this pool, we selected a set of four observations, one corresponding to each level of a 
VHQMI rubric, to create six items that paired each observation with the others and asked 
respondents to indicate which observation they felt better suggested high quality instruction. To 
construct the instrument, we repeated this process twice for each rubric to create a total of 36 
pairwise comparison items. We then used an online survey management service to organize the 
items into six sets of comparisons, two for each corresponding VHQMI rubric, and specified that 
the order in which these sets, items, and observations are presented is random. In addition to 
these items, the VHQMI survey also includes a set of demographic questions that collect 
respondents’ roles in an educational system (e.g., classroom teacher, instructional coach, school 
administrator, district specialist), the grade band focus of their role (e.g., elementary grades, high 
school), and the school district in which they work. 

Methods 
The purpose of this study is to assess the extent to which the VHQMI survey measures are 

consistent with the VHQMI rubrics upon which it is based. To do so, we examined responses 
from a pilot administration to determine if patterns of responses reflected the ordered levels of 
the VHQMI rubrics. We recruited participants to assist us in piloting the survey over a three-
week period using the partnership’s social media accounts. Participants received a message with 
an anonymous link to the survey to complete during the three-week period. A total of 65 
participants completed the survey including 59 prospective elementary grades and high school 
teachers, 2 math coaches, 3 district specialists, and 1 university-based teacher educator. 

Survey responses were organized into three sets corresponding to the three VHQMI rubrics 
and imported into R Studio. To analyze each set of responses, we used dual scaling, a technique 
for quantifying relationships among categorical data (Nishisato, 1994). For paired comparison 
data, dual scaling produces optimal weights for both items and individual respondent choices. 
Item weights represent the order respondents used to express preferences across sets of items. 
Analyses that yield sufficiently distinct and ordered weights that reflect the theory used to create 
items indicate that respondents perceived and used that ordering to express their preferences. 

Findings 
Summarized in Table 1, item weights and squared correlation ratios from our analyses 

indicate that the VHQMI survey items measured instructional vision in ways that were either 
consistent or somewhat consistent with the VHQMI rubrics. For the mathematics tasks items, 
item weights were distinct from one another, suggesting that respondents perceived meaningful 
distinctions among the observations. Moreover, the weights strictly decrease as the rubric level 
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increases and explain 43% of the total variability between these items. Together, these results 
suggest that the task portion of the survey measured instructional vision in a way that is 
consistent with the VHQMI tasks rubric.  

Responses to the role of the teacher items were somewhat consistent with the corresponding 
VHQMI rubric. The weights for these items explained 50% of the variability in responses and 
reflected a similar pattern as the task items. Item weights strictly decrease as the rubric level 
increases with the exception of levels 3 and 4. That these weights were much closer in value than 
others suggest the respondents did not perceive a difference between the level 3 and 4 choices.   

For classroom discourse items, weights accounted for 41% of the variability in responses and 
indicated that respondents perceived qualitative differences among items. However, the change 
in direction of weight values from decreasing to increasing between levels 3 and 4 suggests that 
respondents viewed level 3 choices as more extreme than those aligned with level 4. Thus for 
these items, responses were less consistent with the VHQMI rubric than the other sets of items. 
 

Table 1: VHQMI Survey Item Weights and Squared Correlation Ratios 
 

 Item Weights 
Rubric Levels 1 2 3 4 h2 
Mathematical Tasks 0.75 0.14 -0.37 -0.53 0.43 
Role of the Teacher 0.86 -0.16 -0.35 -0.34 0.50 
Classroom Discourse 0.72 0.18 -0.59 -0.32 0.41 

 

Discussion 
Our goal is to refine the survey into a valid measure that can complement the VHQMI 

interview protocol and rubrics and enable new directions for research on instructional vision. To 
that end, we shared mixed results from a study exploring how the survey measured instructional 
vision relative to the rubrics. To varying degrees, the results indicated that responses to the 
survey items were consistent with the VHQMI rubrics. For items related to mathematics tasks, 
responses reflected the corresponding rubric. Responses to items related to the role of the teacher 
were similar with the exception of levels 3 and 4, which were indistinguishable to respondents in 
this study. However, responses to the classroom discourse items suggested that respondents 
perceived level 4 choices to be less extreme than those aligned with level 3.  

In interpreting these results, it is important to note the uniqueness of the sample. The 
overwhelming number of responses from prospective teachers and lack of responses from 
classroom teachers might explain the issues with the teacher and discourse items. For example, 
recognizing the qualitative distinctions related to providing instructional guidance or the nuances 
of classroom discussions described by levels 3 and 4 of the corresponding VHQMI rubrics likely 
requires significant experience leading a classroom of students or facilitating a class discussion. 
Though we suspect the inconsistencies revealed by our analysis are a product of our sample, we 
nonetheless are undertaking an additional round of cognitive interviews with a focus on the 
teacher and discourse items to better understand our results. 

Acknowledgments 
This work was supported by the National Science Foundation under grant DRL - 2100895 

awarded to East Carolina University, DRL-2100903 awarded UNC Greensboro, DRL - 2100947 



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1064 

awarded UNC Charlotte, and DRL - 2100833 awarded to Appalachian State University. Any 
opinions, findings, and conclusions or recommendations expressed herein are those of the 
principal investigators and do not necessarily reflect the views of the National Science 
Foundation.   

References  
Chance, P. L., & Segura, S. N. (2009). A rural high school's collaborative approach to school improvement. Journal 

of Research in Rural Education (Online), 24(5), 1-12. 
Cobb, P., & Jackson, K. (2011). Towards an empirically grounded theory of action for improving the Quality of 

mathematics teaching at scale. Mathematics Teacher Education and Development, 13(1), 6-33. 
Gamoran, A., Anderson, C., Quiroz, P.,  Secada, W., Williams, T., & Ashmann, S. (2003). Transforming teaching in 

math and science: How schools and districts can support change. Teachers College Press. 
Hammerness, K. (2006). Seeing through teachers’ eyes: Professional ideals and classroom practices. Teachers 

College Press. 
Honig, M. I., & Hatch, T. C. (2004). Crafting coherence: How schools strategically manage multiple, external 

demands. Educational Researcher, 33(8), 16-30. 
Jackson, K., Cobb, P., Wilson, J., Webster, M., Dunlap, C., & Appelgate, M. (2015). Investigating the development 

of mathematics leaders’ capacity to support teachers’ learning on a large scale. ZDM, 47(1), 93-104. 
Katterfeld, K. (2011). Principal leadership for instruction: associations between principal vision, principal 

involvement in instruction, and teachers’ perceptions of expectations for standards-based instructional practice 
(Unpublished doctoral dissertation). Vanderbilt University, Nashville, TN. 

Munter, C., & Correnti, R. (2017). Examining relations between mathematics teachers’ instructional vision and 
knowledge and change in practice. American Journal of Education, 123(2), 171-202. 

Munter, C. (2014). Developing visions of high-quality mathematics instruction. Journal for Research in 
Mathematics Education, 45(5), 584-635. 

Munter, C. (2015). Envisioning the role of the mathematics teacher. NCSM Journal of Mathematics Education 
Leadership, 16(1), 29–40. 

Munter, C. & Wilhelm, A.G. (2020). Mathematics teachers' knowledge, networks, practice, and change in 
instructional vision. Journal of Teacher Education, 1-13.  

Nishisato, S. (2014). Elements of dual scaling: An introduction to practical data analysis. Psychology Press. 
Peterson, P. L., McCartney, S. J., & Elmore, R. F. (1996). Learning from school restructuring. American 

Educational Research Journal, 33(1), 119-153. 
Ticknor, A. S., & Schwartz, C. S. (2017). “It just got real:” Navigating the affordances and constraints of school-

based learning in a mathematics-specific induction program. Action in Teacher Education, 39(2), 138-152. 
Wilhelm, A. G. (2014). Mathematics teachers' enactment of cognitively demanding tasks: Investigating links to 

teachers' knowledge and conceptions. Journal for Research in Mathematics Education, 45(5), 636-674. 
  



 
Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno. 

	 1065 

RESEARCH EXPECTATIONS FOR MATHEMATICS EDUCATION FACULTY IN US 
INSTITUTIONS OF HIGHER EDUCATION 

 
Blake E. Peterson 

Brigham Young University 
peterson@mathed.byu.edu 

Steven R. Williams 
Brigham Young University 
williams@mathed.byu.edu 

Keith R. Leatham 
Brigham Young University 
kleatham@mathed.byu.edu 

 
This paper reports the results of a survey of 404 US mathematics education faculty regarding the 
research expectations for obtaining tenure. Survey questions asked about expected numbers of 
publications per year, how much different types of publications (e.g., journal articles, book 
chapters) and scholarly activities (e.g., giving presentations, obtaining funding) were valued. 
Statistical analyses were used to examine differences in these results across three demographic 
characteristics (institution type, research commitment, department). We found statistically 
significant differences related to each of these variables. Research expectations varied 
substantially across institution type. For example, the average expected number of yearly 
publications was 2.23, 1.63, and .99 papers at R1, R2, and Other institutions respectively. By 
contrast, research expectations seldom varied by department. 

Keywords: research expectations; tenure; scholarly activity  

In 1987 the Carnegie Foundation published a report of a multi-site study of the American 
academic profession (Clarke, 1987). It documented the three-fold division of academic work into 
research, teaching, and service that remains to this day as a framework for decisions about 
promotion, and compensation based on performance in these three areas (Barat & Harvey, 2015; 
Hardré et al., 2011; Needham, 1982; O’Meara, 2011; Schmidgall & Woods, 1994).  

 Of these three areas, research is often considered of most importance, being both highly 
valued and rewarded. Youn & Price (2009) pointed out that in the 1980s, research “became the 
dominant basis for academic rewards” (p. 205) and remains an important consideration in tenure 
and promotion decisions (Barat & Harvey, 2015; Kruger & Washburn, 1987; Fairweather, 1993; 
2005; Hardré et al., 2011; Park & Gordon, 1996; Price & Cotton, 2006). Moreover, there is a 
documented positive effect of scholarship on salary (Barat & Harvey, 2015; Fairweather, 1993).  

Despite the importance of scholarship in the lives and livelihoods of academics, it must 
compete with teaching and service obligations in the expectations for faculty positions. Those in 
academic positions need to know how to balance these obligations (Trower, 2010; Barat & 
Harvey, 2015). Unfortunately, studies have documented that many faculty feel expectations are 
not clearly communicated and that assessment is often subjective and/or politicized (Acker & 
Webber, 2016; Barat & Harvey, 2015; Hardré & Kollman, 2012: Lawrence et al., 2014; Park & 
Gordon, 1996; Price & Cotton, 2006; Schmidgall & Woods, 1994; Walker et al., 2010). Often, 
no official documents are available that specify expectations, or they may exist at administrative 
levels that can provide only very general guidance (Hardré & Cox, 2009).  

These difficulties are complicated further because expectations for research vary 
substantially among disciplines and institutions (Acker & Webber, 2016; Brewer & Rickels, 
2011; Clarke, 1987; Gardner & Veliz, 2014; Pellegrino et al., 2018; Price & Cotton, 2006; 
Schmidgall & Woods, 1994). Although some literature has explored expectations in specific 
disciplines (e.g., education, accounting, public administration, sociology), little is known about 
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research expectations in comparatively small and relatively new fields like mathematics 
education. Information related to research expectations for mathematics education researchers 
from across the US would be of immense value to faculty in the ongoing processes of hiring, 
setting tenure expectations, mentoring new faculty, and refining department-level expectations 
documents, as well as its obvious value to faculty who are undergoing job searches, or tenure and 
promotion decisions. The purpose of this paper is to report the results of our investigation into 
the typical research expectations for mathematics education faculty in the United States.  

Literature Review 
Although research on expectations in mathematics education is sparse, a robust literature 

from other disciplines provides guidance on how research expectations vary across disciplines 
and what institution, or position-specific characteristics are likely to influence such expectations. 
Demographic Characteristics Affecting Expectations for Scholarship 

Perhaps the clearest results of research into expectations in higher education is that they vary 
across institutions. Indeed, the most used classification of institutions of higher education is the 
Carnegie classification, in which research productivity plays a prominent role. There is evidence 
to suggest that expectations can increase in institutions who are “striving” (Gardner & Velize , 
2014) to emulate more prestigious institutions. Greene and colleagues (2008) found that some 
faculty reported spending 120% of their time on fulfilling their academic expectations. 
Significantly, these overloads occurred in R2 institutions, in which research might become more 
highly valued, but expectations for teaching and service may not be concomitantly adjusted. 

A second major characteristic that may affect expectations is the type of department in which 
the faculty member is housed. In our field, faculty are typically housed either in a department 
within an education college, or in a department of mathematics, although of course other options 
are possible. A study by Shih et al. (2018) found that about half of the recent mathematics 
education PhDs in their sample were housed in mathematics departments, the other half being 
housed in schools or colleges of education with half of the education positions in R1 institutions, 
and three-quarters of the mathematics positions in neither R1 nor R2 institutions. Given results 
such as these and the hybrid nature of the discipline of mathematics education, we concluded it 
was important to explore potential differences in research expectations at the department level. 

Finally, the fraction of time spent doing research is the third major characteristic we assumed 
would affect participant responses. Greene and colleagues (2008) noted that an R1 university’s 
typical division is 40% research, 40% teaching, and 20% service. In an examination of 
expectation documents in academia, Hardré and Cox (2009) found significant variability in 
whether these percentages were specified, as well as variability in what the percentages were in 
cases where they were quantified. As another example, Davis et al. (2006) found that counseling 
program faculty reported spending 49% - 55% of their time teaching, 26% - 27% of their time on 
research and 18% - 21% of their time on service. Hardré et al. (2011) found that effort expended 
on research was positively correlated with productivity, whereas teaching load—likely time 
spent on teaching—had a significant negative correlation. We take from these results that, as 
with institution type and department type, the fraction of their time committed to research is an 
important consideration when seeking to understand research expectations. 
Examples of Research Expectations from the Literature 

A clear message from the literature is that scholarship is often measured by the quantity and 
sometimes quality of research publications. A number of studies have reported on expected 
numbers of published papers. Hardré and Cox (2009) reported that across disciplines, 
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departments that were categorized as having high research expectations generally expected 
“averages from one to two articles published every year” (p. 409) for tenure and promotion. 
Davis et al. (2006) reported that in counseling programs, “the perceived scholarly productivity 
for tenure and promotion is the equivalent of about one scholarly publication per year” (p. 152). 
Greene and colleagues (2008) found that the typical expectations for an education faculty 
member at an R1 university equates to “two publications per year” (p. 432). It is difficult to tell, 
however, whether the variation was a product of the discipline or the level of institution because 
of the lack of clarity on the level of institutions involved in the studies. 

Studies have also explored the roles that different types of scholarly activities play in 
evaluating faculty work. In general, the extent to which scholarly activities are valued differs 
across disciplines and institutions (Hardré & Cox 2009; Price & Cotton, 2006). For example, 
Barat and Harvey (2015) report that in business schools, a wider variety of scholarly work 
(books, book chapters, book reviews) has recently come to be seen as valuable. Acker and 
Webber (2016) found that the perceived relative values of publications in research journals, 
books, and eternal funding differed by discipline. In nursing Kruger and Washburn (1987) found 
a hierarchy in the perceived values of activities, ranging from the most valued (publications in 
refereed journals, funded grants, and sole-authored publications) to the least valued (published 
teaching materials, publications in non-refereed venues). Goodnight and colleagues (2003) found 
that expectations for marketing faculty varied according to the highest degree offered in the 
program (Bachelor, MBA, or PhD).  
Summary 

We conclude that institution type, department type, and percent of time assigned to research 
are likely to affect faculty members’ perceptions of research expectations. In order to measure 
research expectations, we chose to look at expected number of papers, types of publications, and 
other scholarly activities that may be counted as research in our field.  

Defining and Measuring Expectations 
We asked two research questions: (a) What are the typical research expectations for 

mathematics education faculty in the United States? (b) How do research expectations differ 
across institutions, types of departments, and proportion of time devoted to research? By the term 
research expectations we mean what is expected by those making tenure and promotion 
decisions. In some cases, these expectations may be codified in written documents. However, the 
literature suggests that such documents do not always exist, and when they do exist, they may 
not provide much detail to guide faculty members. In this paper, we report instead on the 
perceptions of mathematics education faculty members regarding expectations at their 
institutions. A second paper is under preparation that discusses what can be learned from an 
examination of official documents. 

Because expectations are often not spelled out for faculty, building an argument for tenure or 
promotion is a matter of showing that the candidate has successfully engaged in 1) a sufficient 
number of activities that are 2) sufficiently valued by the institution. The relationship between 
the number of activities and the value of the activities is illustrated by a single research journal 
article possibly outweighing two or three practitioner journal articles. Thus measuring 
expectations must take into account both what is seen as necessary, and what is seen as valuable. 
We hope our data will provide guidance to faculty members about how to spend their time, and 
to departments as they seek to clearly communicate research expectations.  
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 Measuring what our participants saw as necessary was straightforward. In cases where some 
activities (such as publishing research papers) were seen as necessary, we were also able to 
obtain clear-cut numerical measures (such as the number research papers that should be 
published in a given time period). Measuring the activities our participants saw as valuable 
typically took the form of asking them to judge whether an activity would count a lot, some, or 
little or none. These Likert-type scales allowed us to gather information on the relative value of 
various activities in the minds of our participants. 

Methods 
Participants 

The target population for our study was US mathematics education faculty with research 
expectations. We chose to focus on US contexts because we were familiar with the US higher 
education system in general, and there is evidence that substantial variation exists between 
countries when it comes to academic positions and tenure at institutions of higher education 
(European University Institute, 2022; Pietilä, 2019). To create our sample, we first identified 
authors who had published in a collection of 55 mathematics education journals (see Williams & 
Leatham, 2017 for a list of these journals) from 2015 to 2017 and who were associated with a 4-
year institution of higher education in the United States at the time of publication. To augment 
this list with researchers whose focus may have led them to publish in other venues during that 
same timeframe, we identified authors of chapters in the Research in Mathematics Education 
edited book series by Springer, the National Council of Teachers of Mathematics (NCTM) edited 
book series titled Annual Perspectives in Mathematics Education, and NCTM’s practitioner 
journals Teaching Children Mathematics, Mathematics Teaching in the Middle School, and 
Mathematics Teacher. Once authors were identified, we verified email addresses and, in some 
cases, determined that individuals were no longer in a university position and removed them 
from our list. In total, we identified 15938 US university faculty members who had published in 
mathematics education from 2015 to 2017 and for whom we could find a current email address.  

Although we knew that some of these individuals were likely not in our target population 
because they were coauthors but not mathematics education researchers, we decided to err on the 
side of inclusion and allow individuals to decide whether they were indeed in our target 
population. Of the 1593 to whom the survey was sent, 821 responded9. Of these 821, 411 
identified themselves as not being part of the target population. When these were eliminated, 
along with six incomplete survey responses, there were 404 respondents from our target 
population. Based on the fact that half of those who responded were not in the target population, 
we infer that at least half of those to whom we sent the survey were not in the target population. 
Thus, it seems reasonable to assume a response rate of roughly 50% of the target population. 
Survey 

Based on our review of the literature on research expectations, we devised a set of questions 
in three categories: 1) demographics; 2) the number of publications expected each year; and 3) 
the types of scholarly publications and activities that would meet research expectations. Category 
1 questions were designed to classify participants’ institution and department as well as the 
relative time commitment for teaching, research, and service. For category 2 we asked both 

 
8 Due to clerical errors, 119 participants who should have been on the list of those who received surveys were not on 
the list. Unfortunately, the error was identified long after the survey had closed. 
9 Respondents are those who responded to the survey either directly or indirectly through email. 
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about the number of expected publications and whether that number was explicitly stated (e.g., in 
an official document) or implicitly understood. The types of publications we included for 
consideration in category 3 were research journal articles, books or book chapters, textbooks, 
conference proceedings papers, and practitioner journal articles. We also asked about pursuing 
and obtaining external funding, giving presentations, and providing professional development. 
To measure the extent to which these scholarly publications and activities were valued, we asked 
respondents to indicate whether they counted toward tenure and how much they counted. A draft 
survey was piloted with a group of 24 colleagues and as a result, items were extensively edited 
for clarity (e.g. clarifying that citizenship was the same as service). 
Analysis 

Our three key dependent variables are represented in our data by the demographic variables 
institution type (i.e. R1, R2, and other—meaning neither R1 nor R2), department (i.e. education 
and math), and research commitment (i.e. percent time devoted to research). We began by 
counting frequencies of responses to the various survey questions, and then disaggregated the 
results across the demographic variables. 

To assess the influence of the variables institution type, department, and research 
commitment, we conducted multinomial logistic regressions using these three variables as 
predictors. For example, we looked at the effects of these variables on how publications in 
practitioner journals were valued. The response variable was categorical with three levels—a lot, 
some, or little or none—so in the model we compared both a lot and little or none to some in the 
odds ratios. Because institution type had three levels, we compared both R1 and other to R2. In 
the cases for which the response variables were numeric, such as the number of published papers 
expected per year or research commitment, the model was appropriately modified. 

In our analysis significant effects were determined for each of our three dependent variables 
as the others were held constant. Since the literature review made it clear that our three 
demographic variables are likely related, it might be expected that respondents in R1 institutions 
would have higher research commitments. In looking for significant effects of institution type, 
therefore, we looked particularly at effects holding research commitment and department 
constant, thus minimizing the effects of possible correlations among our dependent variables. 

In order to better understand the size and direction of the significant effects, we also 
conducted a series of post-hoc analyses further probing relationships shown to be significant by 
the regression analyses. Again, using the example of effects on reports on expectations regarding 
practitioner journal articles, we looked at pairwise comparisons among reported levels of 
importance (e.g., a lot, some, and little or none) and noted changes in the odds ratios. 

Results 
The primary purpose of this study was to learn what the typical research expectations are for 

mathematics education faculty in the United States. As conjectured, expectations often vary by 
institution type, department, and research commitment. We describe the data set as a whole and 
then synthesize the results according to these demographic variables, focusing initially on 
institution type as this variable most often resulted in statistically significant differences. 

Respondents are located in a wide range of institutions, evenly split between departments of 
education and departments of mathematics. The proportion of time they are expected to devote to 
research is typically 20-40%, but the range varies from 0-70%. On average faculty are expected 
to publish about 1.64 papers per year where research journal articles are the most valued 
publication type and count a lot toward meeting expectations. Most view book and book 
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chapters, practitioner journal articles, and conference proceedings papers as counting some, and 
there is not clear consensus on the value of publishing textbooks. With respect to other scholarly 
activities beyond publication, typically there is an expectation to give presentations, although 
such presentations likely only count some (not a lot). For a majority, faculty are expected to 
pursue external funding, and this pursuit counts some or a lot even if the funding is not obtained. 
Over two-thirds of faculty report that obtaining external funding is not necessary but obtaining it 
counts a lot. Providing professional development is neither necessary nor much valued. With 
respect to authorship, first authorship is seen as a crucial element of the publication portfolio. 

With respect to Carnegie classifications, mathematics education faculty at R1 institutions are 
more likely to be in departments of education than of mathematics. Typically, they are expected 
to devote 40% of their time to research endeavors. R1 faculty are expected, on average, to 
publish about 2.25 papers per year. That said, holding all else equal, R1 faculty are less likely 
than their R2 counterparts to have this expected number of papers articulated explicitly in a 
written expectations document. With respect to the types of publications that count, as with all 
respondents, research journal articles count a lot. For R1 faculty, however, all other types of 
publications that we asked about are less valued than at R2 and Other institutions. R1 faculty are 
more likely to be required to give presentations than R2 faculty. R1 faculty are more likely than 
their R2 and Other counterparts to be required to pursue and obtain external funding. Finally, R1 
faculty were more likely than R2 faculty to report sole authorship as important. 

Mathematics education faculty at R2 institutions are fairly evenly split between departments 
of education and of mathematics. About 65% of faculty at R2 institutions are expected to devote 
at least 40% of their time to research endeavors. R2 faculty are expected, on average, to publish 
about 1.5 papers per year. Furthermore, holding all else constant, R2 faculty are more likely than 
their R1 and Other counterparts to have this expected number of papers articulated explicitly in a 
written expectations document. Among types of publications, research journal articles count a 
lot, while all other types of publications that we asked about likely would count some. R2 faculty 
were less likely than R1 faculty but more likely than Other faculty to be required to pursue and 
obtain external funding. Finally, R2 faculty were less likely than R1 faculty but more likely than 
Other faculty to report sole authorship as important. 

Mathematics education faculty at Other institutions are more likely to be in departments of 
mathematics than of education. Typically, they are expected to devote about 20% of their time to 
research; over 80% of respondents report 10-30% expected research time. Other faculty are 
expected, on average, to publish about 1 paper per year. That said, holding all else constant, 
Other faculty are less likely than their R2 counterparts to have this expected number of papers 
articulated explicitly in a written expectations document. Research journal articles count a lot. 
All other types of publications that we asked about likely would count some. Other faculty were 
more likely than R2 faculty to value giving presentations and providing professional 
development. Other faculty were more likely than their R1 and R2 counterparts to report that 
there was no expectation to pursue or obtain external funding. Finally, Other faculty were less 
likely than R2 faculty to report sole authorship as important. 

With respect research commitment, for a 10% increase in the reported time spent on research 
there is a 0.184 increase in the reported number of expected papers. Moreover, respondents 
reporting higher research commitments (holding all else constant) were less likely to have this 
expected number of papers articulated explicitly in a written expectations document. Research 
journal articles count a lot independent of research commitment. Respondents with higher 
research commitments did report that books or book chapters and practitioner journal articles 
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were less valued than those with lower research commitments. Faculty with higher research 
commitments are more likely to report being required to pursue and obtain external funding and 
are less likely to report that providing professional development is valued. Finally, faculty with 
higher research commitments are more likely to report both sole authorship and lead authorship 
as being valued. 

With respect to department type 50% of respondents belonged to education departments, 
43% belonged to mathematics departments, and the remaining 7% were in departments with a 
mixture of disciplines like education, arts, and sciences. Over 50% of our respondents who were 
in education departments were in R1 institutions while half of our respondents in mathematics 
departments were from Other institutions. Regarding research commitment, 64% of respondents 
from education departments spend 40% of their time or more doing research while 55% of 
respondents from mathematics departments spend less than 40% of their time doing research. In 
general our results showed few differences in the expectations of mathematics and education 
departments. That said, holding all else constant, respondents in mathematics departments 
reported that 0.309 fewer papers were expected than was reported by those in education 
departments. The only difference in department expectations regarding types of publication is 
conference proceedings papers—respondents from mathematics departments were more likely 
than respondents in education departments to report that conference proceedings papers were 
valued. Regarding the other types of scholarly activities (giving presentations, providing 
professional development, pursuing or obtaining funding), mathematics departments valued 
pursuing funding and obtaining funding more than those in education departments. On the other 
hand, mathematics departments are less likely to require providing professional development and 
require giving presentations. Finally, respondents in mathematics departments were less likely 
than those in education departments to report that first authorship was important. 

The results confirmed a number of suspicions we had going into this study about research 
expectations in mathematics education. There were, however, some results that were surprising. 
With respect to workload distribution, we suspected that the most common workload distribution 
would be a 40-40-20 split and that there would be variability in that distribution at R2 
institutions. We were surprised by the variability at R1 and Other institutions. With respect to the 
expected number of yearly publications, we anticipated that the expectation would be highest for 
R1 faculty and lowest for faculty at Other institutions but we were surprised that 11% of R1 
faculty reported the expectation of 3 or more papers per year. 

With respect to publication types, we anticipated that research journal articles would be the 
most valued regardless of institution type, department or research commitment. Although we 
suspected that textbooks and practitioner journal articles would be less valued at R1 institutions 
than at R2 institutions, we were surprised that books or book chapters or conference proceedings 
papers are also less valued. We were surprised that mathematics department faculty were more 
likely than education department faculty to report that conference proceedings papers counted.  

With respect to other scholarly activities, we suspected that pursuing funding would be most 
likely to be expected at R1 institutions and least likely to be expected at Other institutions. What 
surprised us is that over 75% of respondents indicated that presentations are necessary and that 
R1 faculty are more likely to be expected to give presentations than R2 or Other faculty.  

Finally, with respect to whether the expected number of publications was in a written 
document, we did not expect to see any differences depending on demographic characteristics. 
We were thus surprised that the number was more likely to be in a written document at R2 
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institutions than at R1 or Other institutions. In addition, those with higher research commitments 
were less likely to have the expected number of publications in a written document. 

Conclusion 
The results of this study show some of the ways that research expectations for mathematics 

education faculty in the US vary based on institution type, department type, and research 
commitment. Knowing both that and how research expectations vary provides valuable 
information for individual faculty, mathematics education programs, and to the broader field of 
mathematics education. Individual faculty could profit from seeking clarification from their own 
department regarding the categories of expectations discussed herein, asking questions like:  

• Does our department have an expected number of publications?  
• To what extent are book chapters or conference proceedings papers valued?  
• Is pursing funding, even if it is not funded, valued?  
• To what extent is sole authorship expected?  

Mathematics education programs could locate themselves within these results and consider 
questions like the following: 

• To what extent do we align with what is typical of our particular combination of 
institution type, department type, and portion of time devoted to research? 

• If we vary substantially from what is typical, do we want to make adjustments or provide 
further justification for the variation? 

• To what extent are our expectations, whether they align or not with what is typical, made 
explicit in written documents? 

• Might there be areas where we should articulate expectations that have thus far been left 
unaddressed? For example, do we make clear whether practitioner journal articles count 
and how much they count relative to other types of publications? 

As a field of mathematics education, these results tell us something of the types of scholarly 
activities that are being expected of mathematics education faculty in the US. These results could 
prompt us to consider questions like the following: 

• Are there other scholarly activities that, as a field, we feel should be valued more or less 
than they are? What might we do as a community to influence an increase or decrease in 
emphasis on such activities? 

• Are there sufficient quality publication venues and outlets for other scholarly activities to 
support the needs of the field? 

• Might mathematics education faculty benefit from supporting documentation from the 
field that articulates the value-added for certain scholarly activities (such as professional 
development activities) that would benefit the field but are not typically valued much? 

We hope the results of this study will motivate all mathematics education faculty and the 
departments where they work to have an open, transparent dialogue about details related to 
research expectations and to create or refine their expectations documents. Given the variation 
that exists across institutions, departments, and research commitments, it would seem beneficial 
for expectations documents to make explicit mention of expected number of publications, how 
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much various types of publications count, how much other types of scholarly activities count and 
whether those activities are necessary. Such work would benefit individual faculty, mathematics 
education programs, and the entire field of mathematics education. We also hope that the results 
of this study begin a broader conversation in the field to consider not just what is expected, but 
what could or should be expected in order to continue to move the field of mathematics 
education forward. 
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Like K-12 mathematics teachers, for whom effective instruction requires a full suite of 
pedagogical and mathematical knowledge and skills, Mathematics Teacher Educators (MTEs) 
also need a professional knowledge base to facilitate the development of future educators 
capable of supporting K-12 students’ mathematical learning. In this paper, we theorize about 
contributors to the development of a Community of Practice (CoP) who were engaged with 
developing and implementing a common set of instructional materials. We discuss how using the 
materials in various contexts and interacting with the user community provided a much-needed 
network of MTEs focused on enhancing their students' mathematical learning experiences as 
well as their own professional development in terms of teaching, research, and curriculum 
development.   

Keywords: Teacher Educators, Professional Development, Preservice Teacher Education, 
Mathematical Knowledge for Teaching Teachers. 

Introduction 
University-based mathematics teacher educators (MTEs) play a critical role in enhancing the 

quality of mathematics teachers. Like K-12 mathematics teachers, for whom effective instruction 
requires a full suite of pedagogical and mathematical knowledge and skills, MTEs also need a 
complementary set of knowledge, practices, and skills to facilitate the development of future 
educators capable of supporting K-12 students’ mathematical learning. MTEs’ specialized 
knowledge, termed as mathematical knowledge for teaching teachers (MKTT), for example, 
includes an understanding of how teacher candidates (TCs) best learn mathematics and how they 
think about students’ mathematical thinking. MTEs need to have an awareness of and be able to 
notice the beliefs about mathematics teaching and learning that teacher candidates hold (Beswick 
& Goos, 2018; Superfine & Li, 2014a). They also need to understand how pedagogical modeling 
in university mathematics and mathematics education classrooms can support the preparation of 
TCs for teaching K-12 mathematics. 

Research indicates that MTEs learn through reflecting on their practice as well as from their 
own research with teachers (e.g., Jaworski, 2001; Masingila et al., 2018). By reviewing their 
teaching practices and reflecting on their beliefs, assumptions, and outcomes of student learning, 
MTEs have the potential to understand and improve their practice (Appova & Taylor, 2019; 
Chapman, 2008; Zaslavsky & Leikin, 2004). While past research has documented the nature of 
MTEs’ knowledge and the benefits of MTE’s professional development, how MTEs come to 
engage in activities that help them grow in their practice has received less research attention.  
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In this paper, we discuss the development of a Community of Practice (CoP) within a group 
of MTEs engaged with VCAST learning materials and how the community organically emerged 
within the group. We describe and explore factors that appear to have contributed to the 
development of a CoP (referred to here as the VCAST-SIG) through the collaborations of a 
group of nine MTEs from seven different institutions across the United States. The factors we 
describe emerged from broad themes identified across members' reflections on their individual 
practice and how those practices were impacted through participation in the VCAST-SIG. 
Findings highlight how the VCAST-SIG stimulated an agentive process for MTEs’ thinking 
about their practice and continuous improvement focused on students’ learning and engagement 
with mathematics. 

Context of the Study 
VCAST is an NSF-supported design-based curriculum project which drove the emergence of 

our CoP, and has, to date, been implemented in 16 universities across the United States. VCAST 
project was designed to support MTEs in their efforts to prepare secondary mathematics teachers 
by providing materials through which MTEs can engage secondary TCs with meaningful 
opportunities for learning from student thinking. A key focus of the project is to support TCs’ 
development of both the knowledge and the dispositions needed to attend to and productively 
respond to the depth of students’ mathematical thinking. This often entails mathematical 
flexibility and a willingness to learn from one’s own students, especially when those students’ 
ideas differ from the more conventional mathematical ideas that dominate traditional 
mathematics coursework and instruction.  

VCAST curriculum materials are organized into modules, each of which focuses on the 
mathematical concepts embedded within a non-standard task and has three distinct parts, an 
asynchronous Online Component, a synchronous In-Class Component, and an asynchronous Exit 
Ticket (Cavey et al., 2020). Each module engages TCs in the following activities: a) solving a 
challenging mathematics task, b) watching video clips of secondary students solving the same 
task, c) engaging in repeated cycles of analysis, inference, prediction, and reflection about 
student thinking, and d) solving an adjusted version of the task. While TCs are expected to work 
individually during both the Online Component and Exit Ticket, they engage in collaborative 
analysis, inference, prediction, and reflection about student thinking during the In-Class 
Component. The curriculum project, with its emphasis on TCs’ mathematical development, 
engaged MTEs in a variety of professional development opportunities, including summer 
training prior to module implementation and ongoing asynchronous training support during 
implementation.  

Theoretical Background 
Mathematical Knowledge for Teaching Teachers 

MTEs require a specialized and multi-dimensional knowledge base, mathematics knowledge 
for teaching teachers, for effective work and preparation of K-12 mathematics teachers (e.g., 
Beswick & Goos, 2018; Superfine & Li, 2014a; Jackson et al., 2020). Many TCs enter their 
college mathematics coursework with a procedural focus and views on mathematics teaching 
which stem from their past experiences with procedure-oriented mathematics learning (Mason, 
2010). To better prepare TCs to meaningfully support K-12 students’ mathematical learning, 
MTEs need to know which mathematical ideas should be made explicit for TCs and how to raise 
awareness of how these ideas are represented, communicated, and co-constructed during 
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instruction. MTEs’ knowledge base should encompass the challenges or misconceptions TCs 
might have, the range of ways in which TCs think about students’ mathematical work, what TCs 
value in the work of mathematics teaching, and the views on mathematics and mathematics 
teaching TCs might hold (Superfine & Li, 2014a). 

Before MTEs can support TCs and help them make a shift toward more student-centered 
instructional practices, they need to understand their TCs’ thinking about mathematics and 
mathematics teaching. MTEs also need to know how to engage TCs in mathematical 
explorations in ways that supports TCs’ learning of mathematics and connects their experiences 
as mathematics students to their future work as mathematics teachers. To support TCs’ 
mathematical reasoning at high cognitive levels, MTEs need to know the mathematics content 
TCs learn and to understand how TCs engage with this content (e.g., Beswick & Goos, 2018; 
Superfine & Li, 2014b).  

In this paper, we describe how participation in the broader curriculum project and the 
subsequent VCAST-SIG provided a platform for MTEs developing the varied aspects of MKTT. 
The professional development opportunities not only allowed the members of the VCAST-SIG 
to expand their mathematical knowledge for teaching (Ball et al., 2001) but also further develop 
their mathematical knowledge for teaching teachers (MKTT). In this context, MKT is the content 
that MTEs aimed to help TCs learn, while MKTT refers to developing TCs' understanding of and 
connection among ideas and developing awareness of student thinking (Superfine & Li, 2014b).  
 
Framework of Inquiry 
VCAST-SIG was initiated organically by MTEs through informal relationships that were built as 
we participated in the larger curriculum project. To document and theorize how participants of 
the curriculum project became inducted and immersed in the VCAST-SIG, we adopt a 
sociocultural approach, particularly drawing from Lave and Wenger’s (1991) situated learning 
theory. Within this domain, we use the concept of a CoP as a framework to describe how the 
VCAST-SIG fostered a robust community of scholars focused on advancing prospective 
teachers’ mathematical learning. Learning within a CoP is stimulated by members’ engagement 
in a social and co-constructed activity situated in a particular context (Lave & Wenger, 1991). To 
document and theorize how members of the CoP grew in their MKTT knowledge, we use the 
following components of the knowledge strategy framework (Wenger, 2000): a) Build a 
community, b) develop an inclusive social learning system to strengthen the community, and c) 
sustain momentum by applying knowledge, reassessing, reflecting, and renewing engagement.  

Methodology 
A group of nine MTEs that participated in the VCAST curriculum project came together to 

form the VCAST-SIG. After a year of involvement with the initial curriculum project, we were 
struck by what appeared to be a CoP that developed among both the creators and implementers 
of the VCAST curriculum modules. This led us to wonder, “What are the characteristics of our 
CoP? What factors contributed to the development and success of our CoP? How does 
participation in a CoP impact us professionally?” To address such questions, we selected a 
methodology which would involve members of VCAST-SIG acting as both investigators and 
participants. We chose a phenomenographic approach as it “describes the meaning for several 
individuals of their lived experiences or a concept or a phenomenon” (Creswell, 2007, p. 57). In 
this study, the phenomenon was the emergence of a CoP through our work with VCAST. In 
developing an understanding of our “common experiences” in the emergence of VCAST-SIG, 
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we strive to determine the factors that led to our CoP and to share those practices with others. 
Members of the VCAST-SIG come from a variety of demographic and professional backgrounds 
that included teaching-intensive, research-intensive, and teaching-research-balanced positions. 
Four out of nine participants were a single MTE in their respective departments. 
Data Collection and Analysis 

Our data comes from semi-structured (Orgill, 2002) interviews conducted with each 
participant. The interviews were conducted and recorded using Zoom. The goal of the interviews 
was to better understand, through the experiences and narratives of the members, how the CoP 
developed, understand the impact of our interactions within the CoP, as well as how the CoP 
impacted our individual professional growth. The interview protocol was formulated drawing 
upon the concept of building professional learning communities (Kruse et al., 2009). The 
protocol consisted of nine questions that elicited information about members’ demographics and 
academic background, collaboration within the CoP, and reflection on members experiences with 
the CoP. 

Consistent with the phenomenographic research methods, we engaged in multiple stages of 
data analysis including familiarization, compilation, and classification (Han & Ellis, 2019). We 
first watched all nine interviews and read the interview transcripts. Next, each member compiled 
participants’ responses to interview questions on a separate tab on a shared spreadsheet. We each 
consolidated the raw data by documenting our preliminary observations on the spreadsheet, 
highlighting quotes from the interview that we found relevant to the study questions. This 
process enabled us to delineate codes specific to themes deduced from the interview protocol 
(Kruse et al., 2009). As we engaged in this process, we noticed that the deduced themes did not 
accurately reflect the depth and complexity of participant responses and that the categories also 
fell short of addressing the key study questions. Hence, we adopted a more open and rigorous 
approach to further classify data and induced additional themes to the spreadsheet based on 
participants’ initial categorization of the interview responses. These additional themes were 
developed using codes derived from the data. Below, we present examples of coding related to 
the induced and deduced themes. 

Deduced Theme (DT): Knowledge for teaching teachers. 
Code: MTE noticed, described and reflected on TCs engagement with modules 
MTE Quote: TCs were very engaged with some materials, and they took it very seriously and 

they themselves were very reflective, and so they thought a lot about their own practice. 
One of my students from the first year did her senior capstone project by taking the 
hexagon task and interviewing students in a local high school. 

  
MTE Quote: [I’m] using what we've done in VCAST with student analysis. I 

have put that into my practice a lot more than I ever did in the past. I do that now 
with my little seventh graders. 

Code: Transfer of VCAST Pedagogy to another teaching context 
Induced Theme (IT): Pedagogical shift. 
Shifting our approach to classify data allowed for a more focused and richer analysis, 

resulting in the development and refinement of codes and themes. Data analysis revealed more 
than twenty-five codes related to induced themes and deduced themes. 
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Findings 
Informal opportunities to share what we had learned with other MTEs in the VCAST 

curriculum project led to a series of joint professional endeavors to engage in a deep reflection of 
our learnings. Partnering with other instructors across the U.S. who shared the same vision, work 
ethic, and positive commitment to helping improve the secondary mathematics teacher 
preparation was powerful, especially since the range of universities and teacher candidates was 
so much broader than what is typically found in one campus setting. It was our commonalities 
that brought us together at first, and then the variation between us enriched that experience. This 
variability proved to be beneficial and offered a variety of opportunities for members’ 
professional growth, which we highlight in the following paragraphs.  
Pedagogical Shifts 

The first theme, which highlighted how membership in the VCAST-SIG afforded 
participants with learning opportunities, stemmed from MTE observations of shifts in their own 
instructional practices, especially regarding course assessments. MTEs reported designing and 
implementing tasks that encouraged TCs to avoid a “tunnel vision” that can occur when TCs try 
to solve a problem the “right way.” MTEs prompted TCs to analyze student work samples and 
make connections between TCs’ own and the student’s understanding. Furthermore, MTEs 
reported making conscious decisions to engage TCs in exploring theoretical underpinnings of 
mathematical concepts and discussing mathematics education research. These instructional shifts 
were intended to leverage the ideas TCs recognized in students’ solutions to support TCs’ 
understanding of students’ mathematical development. The extension of VCAST pedagogy and 
assessment to other mathematics courses involving non-teacher education majors was another 
unforeseen but welcome outcome of VCAST curriculum implementation. 
Knowledge for Teaching Teachers  

The second theme outlines how MTEs enhanced their own knowledge of teaching teachers 
by becoming more aware of what and how their TCs engaged with mathematics and student 
thinking. Regarding TC learning as students, MTEs reported an increased awareness of multiple 
problem-solving approaches to tasks and their own ability to make connections among them. 
When TCs engaged with the VCAST asynchronous online tasks, they experienced productive 
struggle which deepened their mathematical content knowledge. MTEs also reported changes in 
the depth of TC conversations about different approaches, reflecting a better conceptual 
understanding of the key ideas of a task. Regarding TC development as potential teachers, MTEs 
saw a change from concentrating on student errors to speculating and pondering their thought 
processes. Though TC development was a key outcome of VCAST material implementation, 
noticing this growth, being able to use in-class conversations to amplify TC learning, and the 
VCAST material's emphasis on evidence-based analysis and humility have impacted MTEs and 
their own capacity to support TC development. Involvement with VCAST materials, allowing 
TCs to engage with student thinking, and engagement in discussions and reflection sessions, 
have helped MTEs bolster questioning strategies, become better listeners, better understand how 
TCs engage in productive mathematical struggle and develop additional directions for future 
teaching. 
Mathematical Learning 

This theme involves MTE observations about their own mathematical learning. Although 
MTEs reported a range of new understandings specific to each of the four modules, three broad 
categories related to that learning emerged. First, when MTEs felt they already possessed a high 
level of expertise with the mathematics of a task, implementation of the modules revealed 
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unanticipated conceptual complexities for students. This served to either expose or reorient 
MTEs’ attention toward the foundational concepts embedded within each task. Second, 
analyzing the modules’ range of student evidence with candidates deepened MTEs’ capacity to 
describe, draw connections between, and compare different types of student reasoning. Lastly, 
for module tasks that were less familiar and more difficult, MTEs reported learning additional 
mathematics along with their candidates and being humbled by the challenges they themselves 
encountered. 
Engagement in Scholarship 

The final theme pertains to MTE's acknowledgment of heightened interest in research. While 
some MTEs' workloads or work contexts did not necessitate their participation in research, their 
involvement in VCAST-SIG allowed them to occasionally venture outside of their comfort zones 
and attempt scholarly activities. Their engagement in the research was sparked by the desire to 
improve their classroom instruction and the act of seeing how well the VCAST research 
complemented and improved their pedagogical goals. Members’ differing research backgrounds 
brought forward ideas for improving the implementation of the VCAST modules. By infusing 
aspects of culturally responsive pedagogy, student identity, and affective domain, MTEs sought 
to strengthen TCs’ reasoning and explanation skills. Furthermore, the diverse research interests 
increased VCAST-SIG's awareness of opportunities to disseminate their work to broader 
audiences. Having access to the different perspectives of MTE instructors, the ability to “peek 
inside” the classrooms of community peers, and to read literature related to other MTEs’ 
research agendas has broadened participants’ own perception about what it means to prepare 
teacher educators well. 

Implications 
Stepping back and reviewing how the VCAST-SIG became a CoP reveals factors that mirror 

the “knowledge strategy” framework for building a CoP (Wenger, 2000).  
Build a Community 

The VCAST-SIG members continued to build on the foundation provided by the curriculum 
project through a) reflective discussions sharing their module implementation experiences, b) 
refining and finding additional application for the VCAST modules (Cavey et al, 2021) and c) by 
gathering, analyzing, and documenting evidence (Chapman, 2008) that demonstrated a growth in 
their TCs' mathematical knowledge MKT, and teaching dispositions (Cavey et al., 2020). This 
sense of accomplishment strengthened MTEs’ connection to the VCAST-SIG. Consistent with 
research findings (Olanoff et al., 2021; Goos & Bennison, 2019), in our study, we noticed that 
effective CoPs are grounded in participants' common goals. For those pursuing their own CoPs, 
we suggest finding a common need or goal that will bring together professionals who subscribe 
to the goal and then provide opportunities for contributions that advance these goals. 
Develop an Inclusive Social Learning System to Strengthen the Community 

VCAST-SIG members hold different roles within their mathematics departments, so the 
group provided an opportunity for members, including lone MTEs in their respective 
departments to engage in cross-institutional peer interaction and collaboration. In addition to the 
variation in MTE roles, there were also significant differences in the student populations that the 
members taught. Due to the diversity of the student groups, the VCAST-SIG was able to assess 
the effectiveness of the VCAST modules for students with diverse learning goals and the 
potential for expanding the applications of the skills to non-TCs and math courses that are not 
specifically geared toward education. Members of the group who are primarily involved in 
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teaching have expanded their areas of interest in research, either by broadening the scope of their 
existing research or by concentrating on scholarly work that addresses the intersection of the 
VCAST curriculum and its implementation and reflection on their pedagogical practices. Thus, 
we emphasize the significance of collaborating beyond members’ departmental responsibilities 
and experiences to provide perspective to discussions and uncover connections and applications 
that other group members might not have considered. 
Sustain Momentum 

Beyond the curriculum project, the reflective structures and discussions continued to be an 
integral part of the VCAST-SIG. Community development came from the inclusion of multiple 
points of contact to connect through both synchronous modalities, such as Zoom meetings, and 
asynchronous modalities, such as Google docs and spreadsheets and resources posted on the 
VCAST-SIG’s shared folder. The monthly Zoom meetings encouraged MTEs to reflect on their 
practice, established a sense of accountability for the group, and served as a springboard for 
developing new goals. Each member chose their own path to address these goals with support 
from other group members. Members added personal reflections, pedagogical activities, and 
manuscripts on MTE professional development to the shared online folder and it gradually 
transformed into a rich repository of knowledge. Once a community has been established, it is 
vital to put in place structures for reflection, repository for ideas, and establish accountability to 
prime members for upcoming community discussions. 

Conclusion 
The VCAST-SIG continues to expand on their work that first brought them together by 

focusing on both teaching and scholarship.  This momentum was built on various achievements, 
interactions, and reflections that occurred throughout the knowledge strategy cycle. Participation 
in the project is different from other venues of professional collaboration due to its unique blend 
of opportunities to engage in the design-based cycle of curriculum development, scholarship, and 
a community of practice which shares the same goals while also highlighting a diverse range of 
paths toward those goals. It has broadened participants’ perspectives on mathematics, teaching, 
and the preparation of teachers by layering in new focuses on culturally responsive pedagogy, 
the benefits of self-study and reflection, different instructional strategies, and tools suitable for 
remote use.  There is also a renewed focus on the value of attending to an individual’s 
mathematical understanding - whether it’s the MTEs’ own understanding, the VCAST material’s 
featured secondary students’ understanding, or the understanding of teacher candidates. 

Engaging in this work has strengthened our community by clarifying for ourselves, (1) what 
factors drew us together (institutional isolation, opportunity to work on a common problem of 
interest, and the added isolation of the COVID-19 pandemic), (2) what factors contributed to our 
continued growth and development (relationship-building, contributions respected and valued, 
diversity of perspectives), and (3) what outcomes are associated with our participation (shifts in 
teaching and scholarship, observed shifts in TC learning, and shifts in our perspectives on the 
teaching and learning of mathematics). By sharing our work, we aim to advance our collective 
knowledge of ways to support MTEs’ professional development, thereby enriching the 
mathematical and pedagogical learning experiences of our TC’s. 
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What conceptions do mathematics teacher educators (MTEs) hold about mathematics and its 
purposes? The study reported here explored metaphors for mathematics used by MTEs and the 
purposes of mathematics these metaphors described. Without explicit prompting, MTEs used 
metaphors to describe mathematics in survey responses for a larger study. The data revealed 
four distinct metaphors used by three or more MTEs: mathematics is a tool, mathematics is a 
gatekeeper, mathematics is power, and mathematics is a vehicle. These metaphors and the 
different purposes of mathematics they describe reflect complex conceptions of mathematics held 
by MTEs and provide opportunities to consider how conceptions and purposes of mathematics 
may influence instructional practice. 

Keywords: Teacher Educators; Affect, Emotion, Beliefs, and Attitudes  

Mathematics teacher educators (MTEs) are called to enhance and deepen preservice teachers’ 
(PSTs) mathematical and pedagogical knowledge [e.g., Association of Mathematics Teacher 
Educators (AMTE), 2017]. Yet, relatively little is known about MTEs’ knowledge, practices, and 
beliefs (e.g., Appova & Taylor, 2019; Cross Francis et al., 2022), including how MTEs view 
mathematics. Given that mathematics teachers’ conceptions of mathematics influence their 
instructional practices (Thompson, 1984), it could be reasoned that MTEs’ conceptions of 
mathematics similarly influence their instructional practices with PSTs. The work I report here 
provides insights about MTEs’ conceptions of mathematics and its purposes by focusing on 
metaphors used by MTEs to describe mathematics. In doing so, I sought to address this research 
question: What do MTEs’ metaphors for mathematics reveal about their conceptions of 
mathematics and its purposes? 

Theoretical and Conceptual Framings 
A metaphor is a conceptual tool which allows us to compare something that is abstract (e.g., 

mathematics) to something more concrete (e.g., jigsaw puzzle). Lakoff and Núñez (2000) 
describe a conceptual metaphor as an “inferential structure of a concrete source domain [that] 
gives structure to an abstract target domain” (p. 42). This inferential structure can be represented 
through a unidirectional mapping (Lakoff & Núñez). In an example metaphor, mathematics is a 
jigsaw puzzle, the source domain is a jigsaw puzzle, and the target domain is mathematics (see 
Figure 1). 
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Figure 1: Unidirectional Mapping of a Metaphor 

By interpreting one thing in terms of another, a metaphor draws attention to the features and 
qualities of the more abstract target domain (i.e., mathematics) (Lakoff & Johnson, 1980). For 
example, by interpreting mathematics in terms of a jigsaw puzzle, the text surrounding the 
metaphor might emphasize the features and qualities one sees in mathematics that are similar to 
completing a jigsaw puzzle, such as different approaches, frustration with the challenge, 
interconnectedness of pieces, etc. In this way, the metaphors we use help to reveal different 
conceptions, ways of thinking, and actions (Sfard, 1998).  

Sfard (1998) called metaphors “the most primitive, most elusive, and yet amazingly 
informative objects of analysis” (p. 4). As such, metaphors used by MTEs in which mathematics 
was the target domain (Lakoff & Núñez, 2000) and the text surrounding these metaphors were 
the unit of analysis in this study.  

Methods 
This study is part of a larger, qualitative study focused on MTEs’ conceptions of the 

relationships across mathematics, mathematics education, and citizenship. For this report, I focus 
specifically on the metaphors for mathematics that were used by MTEs during the larger study. 
Participants and Data Collection 

In 2022, AMTE members were emailed a link to an anonymous Qualtrics survey, which 
consisted of 15 questions. There were four multiple-answer, semi-closed-ended questions for 
demographic information and 11 open-ended response questions. The open-ended response 
questions asked participants about their views on citizenship in multiple contexts (e.g., 
classroom, local, national), views of mathematics and mathematics education for citizenship 
(e.g., using math as a citizen), and views of their professional practice (e.g., engaging PSTs in 
connecting mathematics and citizenship). None of the questions explicitly prompted participants 
to use metaphors in their responses. Out of the 90 MTEs who participated in the Qualtrics 
survey, 24 participants used a metaphor for mathematics in their survey responses.  
Data Analysis 

Qualitative data analysis of survey responses involved open coding and analytic memos 
(Saldaña, 2021). Through the open coding process, metaphors for mathematics were identified in 
participants’ responses. The target domain for each metaphor was mathematics, and four source 
domains were used by three or more MTEs (Lakoff & Núñez, 2000). This led to four distinct 
metaphors: mathematics is a tool, mathematics is a gatekeeper, mathematics is power, and 
mathematics is a vehicle.  

I created a document that grouped quotes containing metaphors from MTEs’ survey 
responses by the source domain (e.g., tool, gatekeeper) (Lakoff & Núñez, 2000). This allowed 
me to assess the prevalence of different metaphors used by participants. I also analyzed the text 

Source Domain 
More concrete 

 
Jigsaw Puzzle 

Target Domain 
More abstract 

 
Mathematics 
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surrounding each metaphor for how mathematics was described in each quote, revealing the 
purposes of mathematics illustrated through the metaphors. Six purposes of mathematics 
emerged through participants’ metaphors: success and opportunity, social justice, information 
and data, making sense of the world, and general purpose. Each quote was cut-out, color-coded 
by metaphor, and physically arranged into categories by metaphor and purpose. This helped me 
determine how the metaphors were being used by participants and how various purposes of 
mathematics were represented by the same metaphor across MTEs’ responses. 

If a metaphor was used more than once by a participant with the same mathematical purpose, 
it was counted only once. There were two MTEs who used the same metaphor throughout their 
survey responses but for different mathematical purposes, and these metaphors were counted 
according to each purpose they reflected. There was also one MTE who used three different 
metaphors in their responses for different purposes of mathematics. This led to 28 metaphors that 
were analyzed. Table 1 displays the counts for the different metaphors and purposes. 

 
Table 1: Metaphors and Purposes of Mathematics 

 

Purposes of Mathematics Metaphors of Mathematics 

 
Mathematics 

is a Tool 
(n = 13) 

Mathematics is 
a Gatekeeper 

 (n = 7) 

Mathematics 
is Power 
(n = 5) 

Mathematics 
is a Vehicle 

(n = 3) 
Success and Opportunity  

(n = 10) 
1 5 3 1 

Social justice  
(n = 5) 

3 1 0 1 

Information and Data  
(n = 5) 

5 0 0 0 

Making Sense of the World 
(n = 4)  

2 0 2 0 

Reflecting Democracy  
(n = 2) 

1 0 0 1 

General Purpose 
(n = 2) 

1 1 0 0 

Results 
Survey responses revealed four distinct metaphors describing six different purposes of 

mathematics. The metaphors – mathematics is a tool, mathematics is a gatekeeper, mathematics 
is power, and mathematics is a vehicle – and the purposes they describe are discussed below. 
Mathematics is a Tool 

The most prevalent metaphor used by MTEs in their survey responses was mathematics is a 
tool (n = 13), and all of the different purposes for mathematics were described with this 
metaphor. The most frequently mentioned purpose of mathematics with this metaphor was to use 
information and/or data. Interestingly, no other metaphor described this purpose. For example, 
MTE 59 responded, “Mathematics is a form of information as well as a tool for processing 
information.” Some MTEs, such as MTE 11, described mathematics as “a tool for making sense 
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of the world around us.” MTE 11 elaborated, “Math helps to understand/identify, interpret, and 
respond to many aspects of a society.” Other MTEs emphasized social justice as a purpose for 
mathematics through this metaphor, such as MTE 31 who noted, “Mathematics is the tool that 
can be used to challenge the status quo and support social justice.” There was also one 
participant who saw “mathematics as a tool for democratic citizenship” (MTE 3) and one 
participant who described mathematics as generally being a useful tool by noting that they 
needed to “convince students it [mathematics] is a useful tool” (MTE 55). 
Mathematics is a Gatekeeper 

MTEs’ metaphors of mathematics as gatekeeper (n = 7) most frequently mentioned the role 
of mathematics and/or mathematics achievement in granting or limiting opportunities, including 
those related to higher education and careers. For example, MTE 43 noted how mathematics is 
“used by society as a marker of educational attainment and educational readiness [and] the ways 
it has served as a gatekeeper to higher education.” Similarly, MTE 25 mentioned helping PSTs to 
see how mathematics “has been used as a gatekeeper to college and careers.” Strikingly, only 
one MTE used the gatekeeper metaphor to talk about social justice by responding: 

Mathematics is often used as a weapon and/or a gatekeeper - keeping some people from 
achieving and maintaining the status quo. If mathematics is taught with a lens of social 
justice proving math is for all, then our society would benefit. (MTE 44) 

There was also one MTE described the general purpose of learning mathematics through the 
mathematics is a gatekeeper metaphor by saying, “math is a gatekeeper for so many who want to 
be an integral part of society. Therefore, believing that all people can learn and do mathematics 
is essential” (MTE 38). 
Mathematics is Power 

When MTEs used the mathematics is power metaphor (n = 6), it was usually to describe the 
role of mathematics in being successful or gaining opportunities, although not all MTEs saw this 
as a positive trait. MTE 19 lamented, “mathematics is unfortunately power in addition to other 
things, like beauty. So, you have to open up access to mathematics learning and equip everyone 
with the power to be successful.” Other MTEs viewed mathematics as power to make sense of 
the world. For example, MTE 61 stated, “Mathematics is power to make sense of issues and 
situations. It is important knowledge for citizens to be able to engage with their community 
fully."  
Mathematics is a Vehicle 

There were three MTEs who used the metaphor of mathematics is a vehicle, each reflecting a 
different purpose of mathematics. In discussing their classroom environment, MTE 71 noted, 
“Math is a vehicle to demonstrate what equitable and democratic organizations can look like.” 
MTE 68 also described how they used mathematics as vehicle with PSTs by saying, “I like to use 
mathematics as a vehicle to discuss social problems/issues in our society.” The third MTE 
described mathematics as a vehicle to success and stated, “Mathematics is a vehicle that provides 
citizens the opportunities in this world and the future world to do what you want in a career!” 
(MTE 27). 

Discussion 
The metaphors MTEs used for mathematics provide a nuanced view of MTEs’ conceptions 

of mathematics and its purposes. Indeed, the metaphors and purposes of mathematics they 
described emphasize the complex, and sometimes conflicting, relationships MTEs have with 
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mathematics. For example, some of the metaphors describe a positive connotation of 
mathematics that emphasize its use (e.g., mathematics is a tool). Yet, other metaphors used by 
MTEs reflect a negative connotation (e.g., mathematics is a gatekeeper) or ambiguity in 
interpretation (e.g., mathematics is power).  

The prevalence of the metaphors reflecting the mathematical purpose of success and 
opportunity provides our field with an opportunity to reflect upon the complexities of this 
purpose. Results suggest that MTEs support success and opportunity as well as social justice as 
purposes of mathematics. Although power and success can conflict with social justice, our field 
wants to commit to both purposes. Yet, primarily describing mathematics as a tool, gatekeeper, 
power, and/or vehicle for success and opportunity suggests a mainstream view of equity that 
looks only at access and achievement (Gutiérrez, 2018). These results suggest the need for 
further inquiry into how these complex, and sometimes conflicting, conceptions and purposes of 
mathematics might impact MTEs’ instructional practices and engagement with PSTs. 
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This study explores how dual-language teachers’ decision-making was shaped by language 
policies, accountability policies, and standardized assessments. The study draws on interviews 
with third and fourth grade elementary teachers in California and Texas (N=17) to understand 
how they balanced accountability policies and assessments that worked in opposition to being 
able to provide mathematical learning opportunities within a dual language context. In 
particular, this study highlights how teachers contended with tensions when the language of 
instruction was different from the language of assessment. These findings raise the need for 
coherence across federal, state, and local policymaking for dual language programs to remain 
student-centered in the implementation of mathematics curriculum to meet the needs of all 
learners. 

Keywords: Policy, Assessment, Elementary School Education 

Introduction and Framework 
Language education programs have been in place for decades to support linguistically diverse 

students (Lindholm-Leary, 2012; Valdés & Figueroa, 1994), yet “schools in the United States 
have not been truly interested in developing bilingualism; in fact, public schools often operate to 
promote immigrant students’ shift to English” (Sánchez, García, & Solorza, 2018, p. 39). While 
No Child Left Behind policies upheld “monolingual, monoglossic, standardized middle-class 
norms onto multilingual communities” (Palmer et al., 2019, p. 125), a different program 
structure– dual language education (DLE), began to gain popularity for educating linguistically 
diverse students (Lindholm-Leary, 2005; Palmer, et al., 2019; Sánchez, García, & Solorza, 2018; 
Valdés, 1997). Additionally, research on mathematics classroom learning opportunities shows 
that student’s experiences with mathematics affects not only what they learn, but also how they 
view themselves as learners and doers of mathematics. Opportunities to learn (OTL) arise from 
the norms and activities that shape how students engage with mathematics (Boaler, 2016; 
Jackson, 2009; Langer-Osuna, 2016). Certain classroom structures may provide (or constrain) 
OTL, leading students to develop vastly different mathematical identities (Gresalfi & Cobb, 
2006; Greeno & Gresalfi, 2008). Students will thus experience different learning opportunities 
dependent in part on the ways that teachers make instructional decisions. These interactions have 
consequences for student mathematical learning. 

This study examined how third and fourth grade dual-language and bilingual elementary 
teachers in California and Texas made sense of layered language policies, accountability 
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policies, and standardized assessments to shape mathematics instruction. This study looked at this 
relationship by answering the following: How did third and fourth grade teachers in California 
and Texas make sense of educational policies to inform their mathematics instructional 
decisions? 

Accountability and testing policies have been a landmark of U.S education for over two 
decades and have made high-stakes tests routine in schools. Teachers make-sense of these 
policies in various ways to make instructional decisions and provide OTL in classrooms, and 
ultimately students perceive the OTL made available in ways that shape the mathematical 
dispositions that they develop to see themselves as mathematics learners. For teachers in dual 
language programs, the language of instruction creates an additional complex layer for decision 
making. 

There are many other factors that influence how teachers make sense of policy as a resource 
for planning, particularly for dual-language and bilingual teachers. Most notably, teachers’ 
knowledge, beliefs and dispositions about subject content and their students has been shown to 
influence how they make sense of policies (Coburn, 2005; Horn, 2018; Spillane, 2002) and 
language ideologies further shape decision-making for teachers (Rosa & Flores, 2017). 
Ultimately, these instructional decisions impact the learning opportunities teachers provide 
linguistically diverse students in their classrooms. 

Thus, it is difficult to separate what students are learning and the ways in which they are 
learning it (Boaler, 2016; Cobb & Bowers, 1999; Lave, 1988) without considering how teachers 
make decisions (Shavelson & Stern, 1981; Borko & Shavelson, 1990). Indeed, the research on 
mathematics classroom learning opportunities shows that students’ experiences with 
mathematics affect not only what they learn (Boaler & Greeno, 2000), but also how they view 
themselves as learners and doers of mathematics (Boaler, 2016; Jackson, 2009; Langer-Osuna, 
2016). This body of work frames classrooms as sites of social practice with patterns of 
interaction, assumptions, and norms (Cobb & Bauersfeld, 1995; Cobb, Gresalfi, & Hodge, 2009; 
Cobb & Yackel, 1996; Engestrom, 1999). Within DLE, certain classroom structures may provide 
more equitable OTL. 

Methods 
Data sources 

Given that federally mandated assessments were not required during the 2019-2020 school 
year, this study focused on 3rd and 4th grade since this would be the first year that students in 
these grades took a federally mandated state assessment for accountability purposes. Teacher 
participants for this study (N=17) were predominantly recruited from large, urban school districts 
in California and Texas. Due to the onset of the COVID-19 pandemic, additional teachers were 
recruited through social media platforms using the hashtags of #texasteachers, #iteachthird, 
#duallanguage, and #bilingualeducator. Attention to other teacher characteristics like years of 
teaching experience, school type, and other self-reported demographics were also considered to 
ensure a more representative sample. Once several teachers agreed to participate, snowball 
sampling (Emerson, 2015) gave me the opportunity to recruit teachers from the same campuses 
or districts to be able to note patterns or differences in teacher decisions making for teachers 
working under similar educational policies. All interviews were conducted over zoom by the first 
author and lasted anywhere from 45 minutes to two hours, based on teacher responses and 
availability. 
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Data Analysis 
Semi-structured interviews allowed for understanding how teachers’ sense-making shaped 

their instruction (Glesne, 2005). During interviews, the first author took note of what teachers 
referenced as important for their mathematics instruction (ex. structure or classroom, planning 
resources mentioned) and hand-wrote quick memos reflecting on my notes and questions that 
were coming up (Emerson, Fretz, & Shaw, 1995). This process further informed the initial codes 
that were developed alongside a-priori codes from the literature (e.g., beliefs, planning- long- 
range vs. daily, change to practice). Four interviews were transcribed and uploaded to Nvivo for 
initial coding by both authors. Interviews were open-coded focused on six categories: 1) policies 
and mandated assessments, 2) assessment for learning, 3) distance learning, 4) teacher agency, 5) 
math instruction, and 6) other - anything else that came up in the interview that stood out but did 
not fall under the previous categories. We began with these six categories to “summarize 
interviews into manageable vignettes for review” (Saldaña, 2021, p. 60) while ensuring that the 
main tenets that addressed the phenomenon of interest were captured. Brief one-page narratives 
were then constructed related to these categories and the research question. Memos were then 
categorized by region (state, and geographical location), and by district to look at patterns across. 
This process allowed for emergent codes to surface (Corbin & Strauss, 1990), helping to refine 
and finalize a codebook. All interviews were then uploaded to Nvivo for a second round of 
coding. 

Findings 
Across the entire set of interviews, there were notable differences in how teachers talked 

about how they were making sense of policies and assessments to shape their instructional 
practices. In particular, there were clear differences in the knowledge that the teachers in this 
study had about federal, state, and district policies. This knowledge informed what teachers 
reported needing to focus on for their decisions for teachers in Texas, and a lack of knowledge 
provided opportunities for teachers in California to exercise more agency in their instruction. 
Even though almost all teachers reported feeling that policies focused on assessments had 
negative consequences such as narrowing their instructional focus and the effect on student 
morale, they still felt that assessments provided necessary data for holding teachers and students 
accountable. 

The varying language policies that teachers navigated highlighted the complex practice of 
sense-making that DLE teachers further engaged in. Teachers felt constrained when the language 
of assessments differed from the language of instruction. One teacher, Brenda, spoke to having 
to shift away from teaching mathematics in Spanish due to the assessment. 

“The problem is it’s given in English. And my students have been having Spanish this whole 
time...that’s why we started transitioning from Spanish to English because of the state exam. 
I was like, I think we need to start transitioning them, but I really wanted to stick to Spanish. 
But because of the pressure from the district to make sure they do well.” 
Here, Brenda was responding to how the state assessments shaped her planning, and if she 

thought the knowledge students need to be successful long term is the same as the knowledge 
they need for the assessment. Throughout her interview, she referenced knowledge of studies 
that reported dual immersion kids are able to transfer information from one language to the other, 
she still felt pressure from administration at her campus (and from the district) to ensure that 
students did well on the assessments that were in English, pushing her to transition teaching in 
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English as the state assessment became more imminent. While Brenda felt strongly about 
wanting to stick to teaching in Spanish given the dual-language policies and practices, the 
disconnect between the language of the assessment and the language of instruction led to 
prioritizing the English language in her instruction, affecting the learning opportunities that were 
provided for students in the dual language context. This was one example of how teachers were 
having to contend with the tension of various policies, and how state assessments that are used 
for accountability ultimately overpowered other possibilities in her instructional decisions. 

While Brenda didn’t have a choice on the language of the assessment, there were other 
teachers who were able to provide the assessment to students in either language. Yet, even for 
those teachers that had the option, accountability and language policies still led to tensions due to 
pushes from administration to transition students to testing in English due to the accountability 
systems in place. Sammie stated: 

“The whole thing about bilingual education comes from a different game. The official 
discourse of the bilingual department is that we should tend to both languages…The 
department will say, you should not force a kid to take the exams [in English] if they’re not 
ready. But then the administration comes and tells you, ‘Well, why has this kid [not taken] 
the test in English yet?’ And you have to justify and fight it [because] once you transition 
language, you can’t go back.” 
Here, Sammie was sharing how conflicting policies created tensions for teachers at her 

campus. While the bilingual education department at the district level was emphasizing both 
languages due to their use of a 50/50 model, her campus administrators were pushing for testing 
students in English due to the accountability structures in place for Texas. She further shared that 
once students transitioned to testing in English, they were no longer able to test in Spanish. Thus, 
even for students in a dual-language program that provided the option to select the language of 
assessment, that option was no longer available once students transitioned to testing in English. 

These two examples highlight how state assessments, and the language in which they were 
administered, shaped not only the instructional decisions that teachers felt they could make in the 
case of Brenda, but also the contradicting policies that DLE teachers have to contend with. This 
highlights the need for there to be more coherence in how policies are not only enforced but also 
in how they are developed. If we want to truly emphasize dual language as an asset when 
learning mathematics, policies should make space for students to not only engage in Spanish but 
to also test in Spanish. And ideally, students should have the option to use both languages. 

Conclusion 
The complexities of the multi-layered policies that teachers for culturally and linguistically 

diverse students contend with daily are overlooked when we fail to communicate across 
departments within districts. As several teachers in this study noted, there were conflicting 
messages that teachers received that shaped how they were thinking about mathematics 
curriculum, language practices, and assessments for accountability. For some teachers, there was 
a lack of coherence between the bilingual department and accountability department. For others 
there was a lack of coherence between the mathematics curriculum department and the 
accountability department. Thus, it raises the need for coherence across departments that 
maintains the integrity of language programs and implementations of mathematics curriculum 
that are student-centered while meeting the accountability policies. Additionally, accountability 
policies for English language proficiency as they are currently structured are inherently at odds 
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with supporting students to become biliterate (Sánchez, García, & Solorza, 2018) and develop 
productive mathematical disposition. This study pushes the field to consider adapting policies for 
learning that center and support linguistically diverse students. 
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