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PME-NA HISTORY AND GOALS

PME-NA History and Goals

PME came into existence at the Third International Congress on Mathematical Education
(ICME-3) in Karlsrithe, Germany, in 1976. It is affiliated with the International Commission for
Mathematical Instruction. PME-NA is the North American Chapter of PME. The first PME-NA
conference was held in Evanston, Illinois in 1979. Since their origins, PME and PME-NA have
expanded and continue to expand beyond their psychologically oriented foundations. The major
goals of the International Group and the North American Chapter are:

1. To promote international contacts and the exchange of scientific information in the
psychology of mathematics education.

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the cooperation
of psychologists, mathematicians, and mathematics teachers; and

3. To further a deeper and better understanding of the psychological aspects of teaching and
learning mathematics and the implications thereof.

PME-NA Membership

Membership is open to people who are involved in active research consistent with PME-NA’s
aims or who are professionally interested in the results of such research. Membership is open on
an annual basis and depends on payment of dues for the current year. Membership fees for PME-
NA (but not PME International) are included in the conference fee each year. If you are unable to
attend the conference but want to join or renew your membership, go to the PME-NA website at
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and
visit the “Membership” page.
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Preface

The Forty Fifth Annual meeting of the North American chapter of the International Group for
the Psychology of Mathematics Education was held PME-NA 45 in Reno, Nevada, Oct. 1-4,
2023. The conference theme is listed below:

Engaging All Learners

Math learning should be a joyful experience for all students. When students are engaged and
inspired, they are motivated to learn. Instruction that targets the learning needs and interests of
our students makes it possible for students to excel in learning math. Participants in the
conference explored how to create conditions to support learning that build on student
engagement and interest in addition to other research engaged by the PME-NA community. The
specific conference theme questions explored as part of the conference was:

How can we engage all students to learn math content by building on their interest and
motivation to learn?

How do we design learning environments that take students and learning into account?
What are the design features of tools and curricula design features considering student
engagement and interest in supporting learning?

How do we build partnerships with schools and the community to support student
engagement and math learning?

What research agendas should we pursue to ensure that all students reach their potential
by paying attention to engagement and learning needs?

The acceptance rate for Research Report was 45%, the acceptance rate for brief research
reports was 70 %. The acceptance rate for posters was 90%. Note: some papers were accepted in
alternate format than originally proposed. The total number of participants who submitted
proposals as co-authors was 1083.
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Plenary Speakers

Motivation and Embodied Cognition

e Mitchell J. Nathan, Ph.D., University of Wisconsin at Madison
e James Middleton, Ph.D., Arizona State University

Connecting Math to Real-world Experiences, Culture and Technology

e Lisa Lunney Borden, Ph.D., St. Francis Xavier University, Canada
e Jose Luis Cortina, Ph.D., National Pedagogical University, Mexico City
e Theodore Chao, Ph.D., Ohio State University

Play Experiences and Math Learning Panel Presentation, ""What Do You See in
Mathematical Play?"

Nathaniel Bryan, Ph.D., Ed.D., The University of Texas at Austin
Melissa Gresalfi, Ph.D., Vanderbilt University

Naomi Jessup, Ph.D., Georgia State University

Amy Parks, Ph.D. Michigan State University

Tran Templeton, Ed.D., Teachers College Columbia University
Anita Wager, Ph.D. Vanderbilt University

Preparing Teachers to Engage Students (closing the plenary sessions)

e Robert Berry III, Ph.D., University of Arizona

The local organizing committee would like to thank the steering committee for all their
support and everyone who helped make this conference a success.
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AN ARGUMENT FOR ENGAGEMENT AS A FUNDAMENTAL CONSTRUCT FOR
UNDERSTANDING MATHEMATICS LEARNING

UN ARGUMENTO A FAVOR DEL COMPROMISO COMO CONSTRUCTO FUNDAMENTAL PARA
COMPRENDER EL APRENDIZAJE DE LAS MATEMATICAS

James A. Middleton
Arizona State University
jimbo@asu.edu

An extended (and probably unnecessary) parallel is drawn between engagement in mathematics
and engagement in musical performance. Key facets of engagement are described and a model
of how mathematics engagement plays out in task-level activities is discussed in light of new
findings related to its social and emotional facets. Implications for instructional practices that
flow from this research are presented. The article concludes with suggestions for future research
that incorporates understandings of identity and emotional object as promising directions.

Keywords: Engagement, motivation, emotion, affect, identity

My old mentor, Tom Romberg, he of Curriculum and Evaluation Standards for School
Mathematics fame, once reflected to me that mathematics is like music. “You don’t become a
musician by playing scales. You become a musician by playing music.” In my other life, [ am a
musician, and I love creating music, writing, and composing songs that try to say something
about life and its meaning, and playing these songs to entertain and uplift people. When Teruni
asked me to perform a couple of my songs prior to this address, I thought about the parallels
between my relationship with music and my relationship to mathematics, and crafted this essay
using some of these parallels as examples that might resonate to those of us interested in
mathematical engagement—the sense of connection people have with mathematics, and their
interaction with it and others as they experience it.

I recently finished a marathon 37-hour studio session with my band. During those 37 hours,
our team of 6 band members, one sound engineer, backup singers and “support team” (family)
worked collaboratively to develop the structure of sixteen songs, overlaying different
instrumental and vocal parts, and troubleshooting problem areas of tempo, pitch, orchestration,
and voicing—all areas that together, make a song potentially compelling to the listener. At the
end of those 37 hours, we had rough cuts of each of our songs that served as sort of “existence
proofs” that our creative ideas were correct. But even at the end of the session, the songs are not
polished, the final beauty yet unrevealed.

The process of developing this body of work echoes the general research on engagement in
mathematics. Members of our community of practice displayed various facets of engagement:
Cognitive, Behavioral, Affective/Emotional, and Social, at different intensities at different times
in the process of solving the many problems we encountered when creating something that for us
was new and pleasing. One of my musical mentors, Igor Glenn, who played with Glen Campbell,
Bobby Weir, The New Christy Minstrels, and John Denver told me, “Jim, being a musician is
spending your life collecting licks and then putting them together in new ways.” Much like
music, when learners are “engaged” in mathematics, they employ deep processing, instantiating,
or developing procedures for combining smaller units of thinking into routines that, when
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compiled, constitute a problem solution (Cognitive Engagement). In music we can liken this to
composing a song such that the finished product has intellectual and aesthetic rigor.

In mathematics, learners must also perform tasks, using appropriate tools for thinking and
communication (Behavioral Engagement). In music, one must be able to play the notes, the licks
and riffs that make up the pieces of the composition. Notice that the procedures enacted—the
notes, licks and riffs are not the music. They are elements of understanding that are combined to
create the music. The tools musicians use—instruments, click-tracks, microphones, and effects—
determine how a group of musicians can enact the composition, affording and constraining the
possible ways in which a composition can be played.

In mathematics, learners use emotional feedback to gauge task efficacy and to monitor
engagement while learning (Affective/Emotional Engagement). Musically, the “feel”—the sense
of emotion, whether it is happiness, sadness, frustration, or anger—one experiences while
playing is transferred to the finished piece. Sometimes these emotions get in the way of quality
performance—inhibiting the singer, for example, from adequately forming the right tone, as their
throat closes with sadness. Sometimes emotions related to poor performance engender a negative
feedback cycle that prevents the musician from enacting skills that they had previously been able
to perform. But sometimes, emotion empowers a player to try something new that elevates the
playing of herself and her bandmates to a new level of understanding of not just the song, but of
musicianship itself.

Lastly, in mathematics, learners play off their peers, reacting to and modifying behavior to
support each other and to get value added from the collaboration (Social Engagement).
Sometimes this type of engagement is productive, leading to improved learning, and sometimes
it is inhibitive, leading to a breakdown of learning and its associated cognitive and social
relationships. In recent work, my colleague Mandy Jansen and our team listened to students
reflect on their relationship with their peers as they learned mathematics together. Their
responses were laden with references to practices that impacted their own engagement. Such
practices included social loafing, disruptive behaviors, disrespecting others, including the
teacher, and domineering conversation, as examples of social interactions that inhibited
individual engagement. But they also referred to practices such as helping one another, providing
encouragement, and explanation as reasons why they remained engaged (Riske, et al., 2021).
Likewise in music, members of a team must listen to each other, playing with their eyes and ears,
such that each person’s contribution is unique, but coordinated with those of their bandmates.
Respect, attention, support, and encouragement are all critical for one’s musical development.

Much of the dynamics of engagement witnessed by teachers is due to the complexity of
social acts in service to mathematical discourse. I have used the metaphor of improvisational jazz
in previous articles, making the case that members of a community of practice play much the
same roles as musicians in a band, each contributing some element to the larger discourse that
corresponds to their expertise, confidence in their expertise, and their personal interpretation of
the mathematics as well as the roles others take on. Curriculum serves as a basic composition by
which the discourse has structure, and where, given the sociomathematical norms established in
the classroom, individuals can “riff” off each other, providing creative input to the discourse,
such that what ultimately results is a performance unlike any other. Yet, it still maintains the
structure of the composition—the curriculum—to ensure coherence and aesthetic wholeness.
Also like many bands, the “conductor”—the teacher—listens to the composition as it is being
played, correcting mistakes, interpreting, and orchestrating the performance to display rigor and
aesthetic quality.
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When each of these facets of engagement are entered into in productive ways, students create
new mathematical knowledge, feel interested and efficacious, value mathematical thinking as
useful and important, and ultimately tend to pursue mathematically intensive work more readily
in the future (Middleton, Jansen, & Goldin, 2017). Just like music, a performance becomes an
episode that may be called up from memory later and replayed in the head or used as the basis
for future performances. With the use of recording devices such as whiteboards, flip charts,
graphing utilities and collaborative software, these memories don’t have to stay in one’s head.
They can be made public—replayed—such that others may appreciate the thinking, borrow
ideas, and make them their own, critique them and add new contributions (Lamberg &
Middleton, 2009).

Now, there is only so far that analogies can take us before they become tiresome. But I hope
that those of you who enjoy music and especially those who have played or sang with others
resonate (see what I did there?) with this description.

When it comes to research on mathematics engagement, new advances in our understanding
are being developed every day. I have boiled these findings down into four fuzzy take-aways that
reflect the larger body of research on engagement, but that highlight new and important avenues
that may benefit scholars who do not focus on engagement, per se, but who must take it into
account when researching learning, teaching, and curriculum. These take-aways are:

Mathematics engagement is embodied—When we engage in mathematical thinking, our
motor cortex, endocrine system, attention and arousal centers of the brain, cortical processing,
sensory and effector systems are activated—always. This, of which my colleague and friend,
Mitch Resnick will speak at this conference, is some of the most exciting work in our field,
indeed in the entire field of cognition. For instance, we have evidence that, when we observe
others doing a task, the same centers in our brain light up as if we ourselves were doing the task.
When we observe others emote, we likewise tend to interpret the experience in ways that evince
the same emotion as the observed. When we rotate objects mentally, our heads tilt and our hands
wave, mimicking the transformation. Emotional mirroring of this sort is often likened to
contagion, wherein one person may begin to laugh triumphantly, and others follow suit
(TIaocoboni, 2009; Mafessoni & Lachmann, 2019).

Mathematics Engagement is emotional—Emotion is implicated into every facet of
engagement. It is not separate from cognition, behavior, or social functioning (Meyer & Turner,
2006). Without taking emotion into account, we cannot understand the reasons students persist in
the face of difficulty, nor when they engage in practices that may be maladaptive from a
mathematical perspective. It is also becoming more evident that mathematics itself—its doing
and the resulting products of that doing—is emotional. Our feelings color the directions we take,
the problem-solving processes and tools we employ, and whether potentially productive ways of
thinking are followed up upon (Goldin, 2007). Lastly emotion directly impacts the depth of
cognitive processing one can employ when engaged in challenging mathematics. Students who
interpret their experience as interesting and enjoyable tend to persist in the face of failure versus
students who are frustrated and anxious (Tulis & Fulmer, 2006).

Mathematics Engagement is multifaceted—when I say that engagement is multifaceted, I
do not mean in a trivial way—that there are many variables that contribute to engagement. What
I mean is that, at any time in a learner’s experience, they engage in many things: Mathematics
problem solving, negotiating social relationships, general mood relating to life events, specific
state characteristics, and physiological dynamics that each color their behavior in the moment of
learning. This multidimensional situatedness implies that not all students will be optimally
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engaged at any one moment in time. While this is obvious to all of us who have taught before, it
has not always been taken as a design imperative for curriculum and instruction. In the past, this
fact has been overlooked in an attempt to create teacher-proof, general materials that turn out to
have little meaning for learners (Thompson, 2013). Recent attempts to address this fact have led
to true innovations including contextualized curriculum, positioning and other affirming teaching
practices, and adaptive curriculum technologies (e.g., Gresalfi & Hand, 2019). Each of these
attempts has been successful, such that curriculum, at least, and some instruction is quite
different now than it was 40 years ago.

But it begs the question, “Is it possible, or even desirable for all learners to be optimally
engaged in all tasks at all times?” My own answer to this question is tied to my belief (and
extensive evidence) that each student has different gifts, different skills, preferences, and
proclivities they have developed because of their past experiences in and out of school. To
address each facet of engagement, cognitive, behavioral, social, and emotional at optimal levels,
we must take the long-term approach, while designing tasks for the short term. What I mean by
this is that social engagement is the critical variable that will determine the optimization. For any
task, if we optimize cognitive engagement, there must be multiple levels of challenge and
multiple means by which students are able to enter the task. Similarly with behavioral
engagement, some students will be more adept at different times with different tools for different
purposes. Emotional engagement will be dependent upon the varied histories of students and
their past relationship with mathematics, their peers, and schooling in general. No single task
will optimize all these facets for all students all the time.

Social engagement is the lever by which, even though at the task level engagement is not
always optimal, over time, the support of the group, if orchestrated with care and inclusion as
key principles can bolster lagging engagement, reward exceptional engagement, and offload sub-
tasks to different members of the group to account for each learner’s personal preferences and
proclivities. Every task may not be optimal, but over time, all students may have the opportunity
and the disposition to engage productively.

Mathematics Engagement is the result of feedback—Following up on this, one of the key
revelations in the past 20 years in the fields of affect, motivation, engagement, and identity, is the
notion that what happens in the short term impacts the long term. This may seem to be a kind of
no-brainer—of course what we learn in the moment impacts our longer-term understandings.
That is why we teach, to create moments that provide the opportunity for people to learn and
grow mathematically. But in the field of educational psychology the focus on general
processes—traits to be more precise—has overshadowed the importance of state processes to the
extent that the unique nature of mathematics concepts, pedagogical practices, and social
environment have been largely ignored, and their respective and collective impact, unexplored
(Middleton, Jansen, & Goldin, 2017). But work in situational interest (Renninger & Hidi, 2019),
achievement-related emotions (Forsblom, et al., 2022), task-based efficacy (Midgely et al.,
1989), and self-regulated learning (Bell & Pape, 2014) show how dramatically what happens in
the moment of learning becomes consolidated into longer-term trait-like habits and preferences.
A Model of Task-Level Engagement

This work is being combined with work on social facets of engagement to reveal a rather
complicated, but still relatively simple system of influences where feedback from the moment
reinforces the long-term attitude of students, which in turn, impacts the student’s initial model of
the learning situation, thereby partly determining their patterns of engagement (Middleton et al.,
2023).
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Together, these newer empirical results can provide some direction for the design of
mathematics curriculum and teaching practices. The syllogism I am drawing here is complex.
The web of implications from object to predicate flows to areas yet unknown, but here are my
understandings of the field of engagement-related research currently, and their implications for
the improvement of the mathematical well-being of students (See Figure 1).
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Figure 1. Major interacting facets impacting mathematics engagement.

When we think of prior mathematics experiences, the residue of these experiences makes up
a person’s memories. In those memories, students recall support they have received by their
peers (or not), as well as that provided by their teachers (or not). Other factors from the student’s
culture and out-of-mathematics class experiences are also implicated here, but I have not
included them in Figure 1 for clarity’s sake. These memories of mathematics past are used as
evaluative templates to help the student determine their role, mode, requisite knowledge, and
feelings about the task set before them.

There is a transition point between the introduction of a task, and its doing. In this transition,
a student may assess their own ability with respect to the task requirements (task efficacy), their
interest in the mathematics, and in the context (situational interest), and how they will fit in with
their group mates (norms of participation). These things determined, even if tentatively, will
color the student’s engagement-in-the-moment.

Then, at the task level, while engaged, there is constant monitoring of the cognitive,
behavioral, social, and emotional characteristics of the task. As one is engaged, the initial model
of the situation may be altered as one recognizes that they have knowledge to bring to bear on
the problem, or that their group mate brings up an important point. So, the situational interest
displayed, the situational efficacy attributed, the behaviors employed, and the person’s social
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role play off each other dynamically. Peers and teacher provide potential support in the form of
scaffolding, motivational talk, helping and feedback. The social acts teachers and peers proffer in
carrying out the task can improve aspects of engagement (for some students) or inhibit them (for
other).

Together, the initial model, its dynamic interaction with situational variables, and the support
interjections of teacher and peers provide information for the learner to update portions of their
long-term engagement attitudes. This feedback reinforces already developed notions of
mathematics and the learner’s ability and role within it and provides another episodic memory
that can be called upon to direct future mathematics engagement in similar situations.

Over time, the stereotypical mathematics problems given to students, the routines of
mathematics classes, and the kind of feedback typically provided students create robust, long-
term attitudes towards mathematics that color students’ future expectations of mathematical
engagement, including their tendency to select mathematically intensive coursework and future
occupational aspirations (Sullivan, 2013; Betz, 2023). We are all familiar with reports showing
the steady decline of positive mathematics motivation from the middle grades onward. Most
students leave compulsory education with less-than-positive long-term engagement patterns. So,
what are the key levers we can employ to reduce the slope of this decline? Might we even be
able to reverse it for more students? It is to this question I devote the remainder of this essay.
Implications for Practice

It has always baffled me why our field tends to focus its attention on the long-term
manifestations of mathematics engagement instead of the short-term. It is only in the moment of
learning where we can make an impact. Luckily there are a handful of practices that have been
shown to improve patterns of engagement, particularly those associated with social support--the
degree that students have opportunities to interact in a social environment such that their ideas
are valued, and they feel welcome to be there. In other words, when students can feel like they
matter, both their mathematical thinking and they as members of the learning community, they
will tend to become more engaged:

Small Group Discourse. Discourse for engagement encourages nearly all participants in a
group to share their thinking. Moreover, students listen to try to understand each other’s thinking
to build consensus around the mathematical idea.

Status Raising. The teacher and students regularly use language that magnifies specific
student’s strengths with respect to knowing and doing mathematics and assumes capability
instead of shortcomings. This kind of feedback serves a reward purpose, enhancing the sense of
task efficacy in the learner, and as information for others regarding what good mathematical
thinking looks like. It is important that such status raising is distributed authentically to good
ideas across each member of the classroom.

Motivational Discourse. When the teacher provides explicit language that supports student
motivation using warm and welcoming language. These efforts can take several forms: 1)
Focusing on the process of learning, challenging students, viewing errors as constructive, or
supporting persistence; 2) Modeling positive affect to reduce anxiety and address emotional
needs; and 3) Encouraging peer support and collaboration emphasizing joint goals & shared
responsibilities.

Accountability/high expectations. When the teacher holds students accountable for
engaging with learning of content such that all students are expected to participate in class (work
hard and put forth effort, communicate their thinking, and listen to the teacher and each other). A
number of strategies here have been shown to be productive including: 1) Cold calling or using
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random calling to lower incidence of loafing; 2) circulating the room and, while doing so,
pushing students to keep working on the math (not letting students get away with not trying hard
in their groups); 3) Using a timer to let students know how much time they have; 4) Enabling
students to share their thinking without being called upon; 5) Using structured protocols to help
students learn to talk with one another — here, group work roles are explicitly referred to; and 6)
ANY methods that don’t allow students to hide—making explicit efforts to get more students
involved in learning content.

Together, these practices have been shown to be related to increased situational interest and
task efficacy in students and reduced negative emotions towards mathematics. Each of these
outcomes is important, but the reduction of negative emotions directed towards mathematics has
a multiplier effect. That is, negative emotions in mathematics are strongly, negatively associated
with the following aspects of engagement: situational interest in the task, social engagement, task
efficacy, and beliefs that the mathematics in the task is useful and important (Middleton, et al.,
2023). So not only do these practices directly support the development of interest and
mathematics self-efficacy, they also may indirectly reduce the impact of the negative emotions
students exhibit in relation to challenging and difficult content.

In a kind of shocking finding, my colleagues and I found that academic support practices like
selecting challenging tasks, scaffolding discussions, assisting, and providing feedback can
actually reduce some important aspects of affective/emotional and cognitive engagement
(Middleton, et al., 2023). When tasks are highly challenging, for example, students necessarily
make more mistakes, become confused and potentially frustrated. Teachers’ attempts to maintain
a rigorous level in mathematics learning experiences can reduce students’ sense of efficacy and
interest, which, unchecked, may lead to less productive engagement, or engagement in other
activities that are unrelated to learning mathematics. In our conversations with students, and in
large scale quantitative assessment, students in our studies felt that challenge was negative, and
that pressing them to explain was also detrimental in relation to their engagement.

The implications of these two seemingly contradictory findings, to me are this: It is the social
support system in the classroom that undergirds rigorous work. The teacher, like the conductor of
an orchestra, must always be pushing to improve the knowledge students are displaying. This can
be difficult and disconcerting and may cause negative feelings such as frustration and
embarrassment. However, with teacher and peers providing social support—i.e., status raising,
motivational discourse, encouragement to keep level of effort high and others, the negative
impacts, motivationally, of rigor may be overcome such that the value of the knowledge gained
in pursuing and tackling hard problems takes a prominent role in promoting a strong sense of
efficacy and interest (Ahmed, et al., 2010). My friend Gerry Goldin called this complex interplay
between emotional content “affective structures” that can take negative emotional content and re-
interpret it as positive when barriers are overcome, and when a person’s contribution to the
collective understanding is respected and valued (Goldin, et al., 2011).

Next Steps in Research

We have an opportunity at this time, to greatly enhance our understanding of mathematics
learning by taking engagement seriously. In the past we have focused too exclusively on the
cognitive or behavioral aspects of engagement to the detriment of its emotional and social
counterparts. These two facets are pregnant with possibility, and I would like to end this essay
with some directions I see as fruitful.

Emotional Object. The latest research on emotion shows quite convincingly that we
experience multiple emotions simultaneously. Work done by Schukalow et al., (2023), and my
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colleagues (Middleton et al., 2023) explain this phenomenon in part by the fact that emotions are
not just positive or negative (valence), they also have intensity (e.g., very angry versus ticked
off), they have activation (e.g., active such as enjoyment, or passive such as boredom), and they
have object (e.g., I am ashamed of myself, or I am ashamed for my classmates). The
combinations of these features create the vast majority of affective patterns we see in the
classroom. Furthermore, they can be shown to associate with different manifestation of
engagement. Mapping these emotional patterns to develop an understanding of productive
emotional engagement and its role in interpreting and evaluating learning experience is a new
and promising area of research.

Social Support. Our understanding of social support is being sped along by researchers
focusing on culturally appropriate practices and identity, as well as others focusing on inclusion.
It is time for the main body of mathematics education research to embrace this activity and try to
incorporate their ideas into our body of work in engagement. As an example, I would like to
point out Melissa Gresalfi and Vicki Hand’s (2019) lovely model of identity construction that
accounts for identity to be seen as building from norms of practice which exist within the frames
and storylines within which students are positioned. These frames and storylines exist within
larger cultural narratives that guide one’s mathematics identity within one’s larger set of
identities related to race, class, gender, and intersectionality. Questioning dominant racial and
economic narratives by which mathematics and its place in society have been positioned, and
proposing intervening narratives has the potential for personal frames and storylines to become
more supportive of diverse identities. But also, in the classroom, positioning, and redefining
what it means to be mathematically competent, corresponds to the very social support practices I
highlight in this article. They have the potential to scaffold students’ playing a new kind of music
in their mathematical experiences. Perhaps mathematics learning will become, like jazz, a
beacon of inclusive artists and aficionados learning from each other and growing as new, diverse
perspectives on mathematics and its role in our lives are shared.

Conclusion

The time is ripe for our community to step back and look at mathematics learning from a
broader perspective: A perspective that accounts for the experience of learning—the engagement
one has with the content, one’s self, and one’s community—as the fundamental unit of change in
mathematics education. Those moments in which students persist in challenging tasks, supported
by peers and teachers to showcase their ability, and where that ability is valued and respected
will improve, ultimately, the affective responses learners have towards mathematics, and more
importantly, change their identity with respect to mathematics in ways far more profound than
focusing on a particular task sequence, or on teachers’ practices isolated from how they impact
engagement.
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We discuss the importance of bringing teaching to the forefront of instructional design. We do so
by describing the process of developing an instructional sequence for early number, using design
research. The instructional sequence was developed with the specific aim of supporting teaching,
conceived as a complex and demanding job, not reducible to predictable routines. The sequence
has caught the interest of an unexpected number of teachers in Mexico. We have followed up
with some of them and have documented that the resource has benefited their practice
significantly. In our account of the design process, we highlight what—from a theoretical point
of view—we have come to regard as three guiding ideas that are central to designing for
supporting teaching: (1) designing for a resource to be viable in teachers’ classrooms, (2)
designing for a resource to be regarded by teachers as relevant to their practice and (3)
designing so that a teacher who has just taken an interest in a resource might fruitfully engage
with it in her practice.

Keywords: Number Concepts and Operations, Instructional Activities and Practices, Teacher
Knowledge.

In the development of resources to support mathematics instruction in schools, instructional
designers must necessarily take a position regarding both learning and teaching. Whether
implicitly or explicitly, multiple considerations come into play not only about how students are
to learn mathematics, but also about the roles that teachers are to play in instruction. A strong
inclination has been to prioritize in the designs issues related to student learning. This, of course,
is an easily justifiable position since the improvement of students’ mathematics learning is
central to our aims as mathematics educators. However, this inclination carries the risk of
overlooking teaching and even misconstruing it, jeopardizing the suitability of instructional
design products to help improve mathematics education.

Commonly, resources are designed with the expectation of them being capable of adequately
supporting students’ learning, if administered appropriately. Many are developed through
research and are based on rather complex and robust conceptualizations of mathematics learning.
In contrast, not much attention is typically given in the design process to how teaching is
conceptualized. Often, it ends up being framed as a practice in which compliance and adherence
are considered to be essential. At the least, it is commonly expected that, for the use of the
resource to render positive results, teachers would have to adhere to the indications of the
developers. Hence, in instructional design, teaching is frequently conceptualized as a practice of
a predominantly administrative and organizational nature, where teachers are seen to be
operating within what Biesta (2007) refers to as “a causal model of professional action” (p. 7).

The framing of teaching as a mainly administrative and organizational occupation stands in
sharp contrast with how research in the field has come to understand it. It has been shown that
teachers necessarily shape how instructional activities play out in classrooms (Brown, 2009;
Gueudet & Trouche, 2012; Pepin, 2018), and decide how student learning ultimately gets to be
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supported (Biesta, 2007; Dewey, 1997; Lampert, 2001). It has been also shown that good
mathematics teaching is demanding, uncertain, and not reducible to predictable routines (Ball &
Cohen, 1999; Lampert, 2001; Schifter, 1995). This is due largely to the relational and adaptive
nature of teaching. Teaching mathematics well “necessarily requires that teachers teach in
response to what students do as they engage in solving mathematical tasks”(Jackson et al., 2013,
p. 647).

The aforementioned research makes it reasonable to question the value of instructional
resources that are designed under the assumption that teaching is a predominantly administrative
and organizational occupation. The use of resources that are based on an erroneous
conceptualization of teaching might not lead to the improvement of mathematics instruction. But
would it even be possible to design resources in which it is assumed that teachers are the ultimate
producers of instruction? If so, could the design of such resources contribute to the substantial
improvement of the teaching and learning of mathematics in classrooms?

For several years, our work as researchers and instructional designers has focused on
exploring what the development of resources for supporting mathematics teaching entails. These
are resources to be used by teachers to support their students’ learning, developed with the
understanding that good mathematics teaching requires functioning effectively in uncertain and
indeterminate situations, where it is necessary to constantly make autonomous judgments, based
on a pertinent rationale (see Hoyle, 2008).

In the paper, we first explain the research approach we have taken in developing the
instructional sequence, which is based on the methodological principles of design research. Next,
we give an account of the process of developing of the instructional sequence, which involved
three research cycles, each of which led us to develop theoretical insights into the design of
instructional resources to support teaching, and to modify the instructional sequence. At the end
of paper, we discuss how, of the three guiding ideas, we came to regard the second as the leading
one: designing for a resource to be regarded by teachers as relevant.

Research Approach
Our research has been conducted following the general guidelines of design research (e.g.,
Bakker, 2018; Cobb et al., 2003), where we have pursed both, the crafting of an educational
innovation and the development of theory. It has consisted, so far, of three research cycles. Each
cycle has been conducted with the purpose of both improving an instructional sequence on early
number and of developing and refining theoretical ideas. In the following three sections of this
paper, we explain what each of these cycles has entailed.

First Research Cycle, a Dual Classroom Design Study

The first research cycle in the development of the instructional sequence consisted of
conducting a dual classroom design study (Gravemeijer & van Eerde, 2009), in a third-grade
preschool classroom (equivalent to kindergarten in the USA). The design study was conducted in
collaboration with Jesica, a preschool teacher who at the time was enrolled in a Master program
and was being supervised by the first author. The decision to conduct the design study was
prompted by Jesica’s concerns about the lack of success she had had in teaching her preschool
students to solve additive word problems, required by the Mexican curriculum.

The first two authors were familiar with the resource known as the Patterns and Partitioning
instructional sequence (P&P; Cobb, Boufi, et al., 1997; Cobb, Gravemeijer, et al., 1997; McClain
& Cobb, 1999), which had been demonstrated to be viable in supporting students to develop
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sophisticated early number ideas. These include developing notions that allow them to solve
simple additive problems by reasoning about composing or decomposing quantities, instead of
by counting by ones (Steffe, 1992; Steffe et al., 1988). Although the P&P was developed as part
of the initial phase of a classroom design study conducted in a first-grade classroom, its
designers considered that it could be a valuable instructional resource in kindergarten (McClain
& Cobb, 1999).

The P&P was designed to support the collective development of early number ideas by
providing opportunities for students to reason about patterns and partitions of collections of up to
ten items, leveraging whole-class discussions. For example, in one of the initial classroom
activities, students are supported to develop familiarity with pairs of numbers that add up to five,
by discussing the different ways in which five monkeys could be in two trees .

The dual classroom design study was conducted with two chief goals. The first entailed
investigating the practicality of using the P&P in a classroom like Jesica’s. This goal included
inquiring about the adaptations that would be necessary to make to the instructional sequence to
increase its possibilities of becoming a viable resource in this type of classroom.

The second goal was to inquire about Jesica's educational practice in relation to the use of the
P&P. Among other things, we planned to investigate how she would make sense of the
instructional sequence, whether she would regard it as a useful resource and, if so, how, and
why. In addition, we wanted to find out if the use of the sequence would lead to positive changes
in her practice. If so, what would those changes be, and which elements of the instructional
sequence would have favored them.

In preparing for the classroom design study, we assessed the students’ elementary
understandings of the number, that were prerequisites for children to be able to productively
engage with the instructional tasks of the P&P sequence. It was found that the vast majority of
Jesica’s students had not yet developed those elementary understanding. Some children in
Jesica’s classroom were only successful with the word number sequence up to three and could
correctly identify the names of only one or two single digit numerals (Cortina & Pefia, 2018;
Pefia, 2018).

The results of the assessment presented the research team with two problems directly related
to developing instructional resources for supporting teaching. The first one concerned the
viability of the resource. The activities proposed at the starting point of the P&P sequence did
not connect to what students in a classroom like Jesica’s already understood about numbers and
could do. Clearly, the P&P sequence could not readily be used in a classroom like Jesica’s, if
expected to be a resource that would help a teacher in supporting the development of numerical
notions in their students.

In addition, the resource offered no guidance as to how it would be viable to start to work
with children in such a classroom, so that they could be supported to eventually become readily
capable of participating in the instructional activities of the P&P sequence. This meant that the
P&P sequence not only lacked prompt viability in Jesica’s classroom but also relevance for a
teacher like her. A teacher in Jesica’s position could reasonably—and correctly—consider the
P&P sequence to be unsuited to her teaching practice, given the educational profile of the
students with whom she worked.

The results of the assessment led us to significantly modify the instructional sequence, in an
attempt to make it viable in Jesica’s classroom and relevant for her. The starting point was
changed and a whole new phase was included at the start, aimed at supporting children’s
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development of essential number notions. The version of the P&P Instructional Sequence that was
used in the classroom design study, with the modification we included, is presented in Table 1.

In an intensive out-of-classroom collaboration with the first author, Jesica conducted the
classroom design study in her preschool (Pefia, 2018; Pefia et al., 2018). The first author and
Jesica met after each lesson to analyze classroom events and co-design the following classroom
activities. During these interactions, the first author both supplied elaborations of the rationale
that justified the instructional sequence and kept a record of what clarifications and elaborations
were needed.

Table 1. The First Version of the Modified P&P Instructional Sequence

Phase Overarching teaching goal Specific learning goals
1 Support the development of the Master the number word sequence
essential number understandings Enumerate with one-to-one correspondence
up to five Use fingers to represent numbers

Identify the names of written numerals
2 Support students’ reasoning about ~ Reason about (and subitise) spatial patterns

patterns and partitioning with Reason about (and subitise) finger patterns
numbers up to five Reason about number partitions in the 10-frame
Subitise and reason about spatial patterns in the
10-frame

Reason about how to solve arithmetic problems
by composing or decomposing quantities,
instead of by counting by ones

3 Support the development of the Master the number word sequence
essential number understandings Enumerate with one-to-one correspondence
up to ten Use fingers to represent numbers

Identify the names of written numerals
4 Support students’ reasoning about ~ Reason about (and subitise) finger patterns
patterns and partitioning with Subitise and reason about spatial patterns in the
numbers up to ten 10-frame
Reason about number partitions in the rekenrek
Reason about how to solve arithmetic problems
by composing or decomposing quantities,
instead of by counting by ones

In an intensive out-of-classroom collaboration with the first author, Jesica conducted the
classroom design study in her preschool (Pefia, 2018; Pefia et al., 2018). The first author and
Jesica met after each lesson to analyze classroom events and co-design the following classroom
activities. During these interactions, the first author both supplied elaborations of the rationale
that justified the instructional sequence, and kept a record of what clarifications and elaborations
were needed.

The classroom design study consisted of 21 instructional sessions that were taught over a 5-
month period. In Phase 1, the teacher supported collective engagement in repeated counting with
words and symbols through activities such as singing number songs, playing number-word
games and board games. In Phase 2, for example, students reasoned about number partitions up
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to five in the 10-frame with a narrative involving a watermelon stall with two decks (see
Figure 1, left). They were asked to advise a teacher’s friend on arranging a number of
watermelons on her market stall. While students proposed different arrangements, the teacher
kept a record of these on the board, specifying how many watermelons would be in the top and
bottom decks (see Figure 1, right).

Figure 1. A watermelon stall and the capture of the record the teacher kept.

Phase 3 included similar activities to Phase 1, but with number words, collections, and
written numerals up to 10. Phase 4 culminated in students reasoning about composing and
decomposing quantities when solving problems about passengers getting on and off a Tour
Bus.

The bus left a park with 4 tourists, made a stop at a museum, and arrived at the destination
with 10 tourists onboard.

When the teacher first asked the whole class to explain what happened at the museum, it was
considered obvious that more tourists had boarded the bus. Lupe explained: “Six got on because
six are missing for ten”. Hernan, when asked whether he understood Lupe’s response, said:
“Yes! Six are missing because there were four, and six are ten”. Both Lupe and Hernan were
amongst the children who showed the least understanding of early number at the beginning of
the classroom design study. Their responses to the problem illustrate how the great majority of
the students not only came to solve rather advanced additive problems correctly, but how they
did so by reasoning composing or decomposing quantities, not by counting by ones.

Our analysis indicated that the modified instructional sequence was viable for the targeted
preschool classrooms (Pefa, 2018; Peia et al., 2018). At the completion of the classroom design
study, the team members had a strong practice-embedded understanding of how the designed
resource could be used to support the reasoning about patterns and partitions up to 10, in
educational settings like the one in which Jesica taught.

Second Research Cycle, Developing an Online Resource

The second research cycle was the result of the two authors remaining in communication
with Jesica and maintaining a collaboration. After concluding her master’s studies, Jesica started
to teach in a new school. There, she was questioned by her concerned principal and colleagues
about why she did not follow the recommendations of the Ministry of Education regarding how
to teach mathematics in preschool. She was using whole class activities rather than small group
work, and was focusing on small numbers instead of “maintaining the challenge” by teaching
tasks with larger numbers. Instead of responding to pressure by reverting to institutionally
legitimate forms of teaching, Jesica defended her teaching decisions by referring to her students’
initial assessments, the results of the classroom design study in which she had participated, and
the research literature.
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Her teaching soon became of interest to her principal and supervisor when they realized how
Jesica’s students became much more eager to participate in mathematics than was typical in the
classrooms of the school zone. Jesica was asked to give short workshops during the staff
meetings, both at the school and the school-cluster levels. Several of her colleagues started to
approach her for advice. We understood that Jesica alone could not provide support to her
colleagues comparable to that she had received during her Master study. Hence, the aim of the
second research cycle was to develop resources that could help Jesica in her efforts to support
her colleagues in improving their early number instruction.

A website was created (www.sentidonumerico.com) with online resources intended to aid
Jesica in leading the workshops and helping the teachers in their planning and decision making.
We understood that if the website was to become a resource capable of participating with
teachers on their selection of goals and tasks that were suitable for their students, our first job
was to facilitate its plentiful, independent, and confident use by teachers. We assured her that the
website was designed well for Jessica’s colleagues most accessible, and often the only,
computer: a smartphone. It included descriptions and short videos of classroom activities, and
printable tools that teachers could adapt and use in their classrooms (e.g., game boards). In
addition to the immediate physical accessibility of the tasks and tools, our aim was to make the
conceptual resources accessible. Each activity was thus labelled to identify a specific learning
goal and a phase of the sequence (see Table 1).

Based on access data and teachers’ questions, we noticed that Jesica’s colleagues were much
more interested in the classroom activities aimed at supporting essential number understandings
(Table 1, Phases 1, 3), than in the rest of the online resources. They readily recognized the
importance of their students developing basic counting skills, despite this not been a priority
explicitly stated in the Mexican curriculum. In contrast, they did not recognize the relevance of
the learning goals within P&P phases of the sequence and found it difficult to justify the
considerable investment of time and effort that pursuing these goals required.

The contribution of P&P activities to supporting early number learning was the key
innovation of the resource. Like any substantial teaching innovation, this presented teachers with
what research on implementation refers to as an ecological disruption (Koichu et al., 2021).
Unsurprisingly in hindsight, the teachers initially responded to this by non-participation with the
innovative parts of the resource.

The research team construed this situation as a design problem that entailed both the
relevance of the resource and its clarity, for the teachers. The resolution required finding ways of
communicating effectively that the innovation addressed problems that the teachers already
considered relevant to their teaching, and how it did so.

It is worth clarifying here that, over several decades, “problem solving” has been a key goal
in the Mexican mathematics curricula (Secretaria de Educacion Publica, 2011), including at the
preschool level. Not surprisingly, the concern for making students problem solvers has entered
the prevailing teacher culture. We knew that there was much frustration amongst Jesica’s
colleagues, because only a few of their students ever became proficient in solving word
problems. In addition, it was apparent to us that if the teachers were to focus solely on supporting
the development of essential number understandings, their students would not come to solve the
Tour Bus problems with flexibility when larger numbers were involved, as the only number
patterns at their disposal would be those of sequential order (i.e., counting up and perhaps down
by ones, cf. Graven, 2016).
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Our instructional design challenge thus became to find ways of adjusting the instructional
sequence so that the teachers could more easily recognize the close relation between the concerns
they already had regarding their students’ difficulties with problem solving and the pursue of the
P&P objectives. We made three modifications to the instructional sequence with the expectation
that it would help the teachers to recognize that (a) by supporting their students to reach the key
learning goals of the instructional sequence, they would be providing them with valuable means
for problem solving, and (b) while the essential number understandings were necessary for
becoming a proficient problem solver, they were not sufficient.

The first modification involved renaming “number understandings” to “number skills”, to
align with the language in which teachers made connections to their practice. The second
modification involved renaming the teaching goals as addressing “basic” vs. “advanced” number
skills (see new Phases 2 and 3 in Table 2). This removed the non-transparent “patterns and
partitioning” language and presented the advanced number skills as a continuation of the basic
skills, aimed at enhancing students’ problem solving beyond the activity of counting. The third
modification involved downgrading the Phase 3 (Table 2) into a transition stage to further
support teachers in recognizing the advanced number skills goals as the key ones they needed to
support.

Table 2. The Second Modification of the P&P Instructional Sequence

Phase Overarching teaching goal Specific learning goals
1 Support the development of the Master the number word sequence
essential number understandings Enumerate with one-to-one correspondence
up to five Use fingers to represent numbers

Identify the names of written numerals
2 Support students’ reasoning about ~ Reason about (and subitise) spatial patterns

patterns and partitioning with Reason about (and subitise) finger patterns
numbers up to five Reason about number partitions in the 10-frame
Subitise and reason about spatial patterns in the
10-frame

Reason about how to solve arithmetic problems
by composing or decomposing quantities,
instead of by counting by ones

3 Support students’ reasoning about ~ Reason about (and subitise) finger patterns
patterns and partitioning with Subitise and reason about spatial patterns in the
numbers up to ten 10-frame

Reason about number partitions in the rekenrek

Reason about how to solve arithmetic problems
by composing or decomposing quantities,
instead of by counting by ones

Formal and informal data indicated to us that the modifications encouraged considerable
increase in teachers’ engagement with both the advanced number skills activities and the
rationale of the instructional sequence. However, our aim here is to illustrate the type of criteria
that were followed when trying to design a resource to support teaching, when teaching is
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understood to be demanding, complex and independent, and teachers are considered to be the
ultimate producers of instruction. Our design failure, which manifested as teachers’ lack of use
of the key parts of the resource, shows where the designers’ work was unfinished. As we have
already illustrated, the resource was not ready, for teachers who had not participated directly in
its development, to be easily recognized by them as worthwhile of fully engaging with it.

Third Research Cycle, Adjusting the Instructional Sequence and the Online Resources
In facilitating teacher workshops with Jesica, we became aware that there was one issue
underlying the design of the sequence that was far from being clear to the teachers, namely, that
it was critical for children to experience fun, joy, belonging and success as they got involved in
the instructional activities, particularly at the beginning of the instructional sequence (Phase 1,
see Table 2). During the classroom design study, we had attempted to ensure that the children

had these kinds of experiences, regardless of how competent they were.

The modifications that we made to the instructional sequence during the second research
cycle, seemed to make it easier for teachers to recognize the importance of supporting their
students’ development of relatively complex number skills with numbers up to ten. However,
they seemed to think that the pursue of such a goal would require a kind of instruction in which
they would have to be instructing and correcting the children, constantly. The instructional
activities of Phase 1 (see Table 2) were based on stories and games, and when Jesica used them,
she focused on conveying to her students that they were good at what she was asking them to do.
In the case of Jesica’s colleagues, it seemed that engaging students in mathematical activities
expecting the children to enjoy them, and without correcting their mistakes, presented a
significant pedagogical innovation.

From a learning perspective, our consideration about trying to ensure that children
experienced fun and joy, when engaging in mathematics instruction, was justified in the
literature (Boaler, 2019; Parks, 2020). In addition, we viewed teaching reliant on correction of
errors as a case in point of what Ranciere (1991) refers to as stultification in schooling: a
mechanism through which students are subtly but persistently positioned as incompetent and
lacking. At this point in the development of the instructional sequence, we became aware that
supporting students to experience fun, joy, belonging and success was also of critical importance
for teaching. As we explain next, it was directly related to the possibility of the instructional
sequence being viable in the teachers’ classrooms and, also, relevant to them.

Students’ willingness to engage in mathematical activities makes teaching more manageable
for the teacher, and the teacher more likely to participate with the resource. Conversely, if
students come to view mathematical activities as tiresome, and themselves as incompetent and
lacking, they will probably become reluctant to participate. This could easily create classroom
management complications and lead a teacher to consider an instructional resource as unfitting
for her class.

Once again, we construed the situation as being an instructional design problem, one that
concerned the clarity of the instructional sequence and also, as we already explained, its viability
and its relevance. We realized that the sequence of goals (Table 2) that described the
instructional sequence addressed only mathematical content, keeping the forms of classroom
engagement hidden. We then decided to include a new phase at the start of the in the
instructional sequence (Phase 0; see Table 3), where the main goal is to support children’s
willingness to engage in early number activities, and enjoyment of doing so. We developed
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activities and teaching routines aimed at supporting teachers in coming to value and pursue this
initial teaching goal based on noticing their students’ enthusiasm.

Encouraging Results
At the current stage of our research project, we feel that there is still much that we need to
understand in relation to designing resources that support teaching. However, there have been
promising developments that suggest that we are on a proper path. Some of them are related to
the interest that Jesica’s colleagues have shown in the instructional sequence, which we have
already mentioned. Others are related to later developments that have taken place on a larger
scale.

Table 3. The Final Modification of the P&P Instructional Sequence

Phase Overarching teaching goal Specific learning goals
0 Support the development of an Become interested and show joy when
interest in and a taste for counting engaging in activities that involve counting
and numbers or working with numbers

The last version of the instructional sequence has caught the interest of an unexpected
number of teachers. In 2020, after Mexican schools closed for COVID-19, we started to
collaborate with several teaching organizations and offered intensive online workshops,
organized in 2-hour increments over three consecutive days. Although we do not know how the
attending teachers adapted the designed resource in their teaching, they valued the experience
positively, to a surprising degree. One of the workshops was attended by 850 teachers who were
present during all three days, even though no external incentives were provided to participate.
The Facebook community that we created to keep in touch with the teachers has reached 7000
members.

In the summer of 2022, we offered a 27-hour online teacher professional development
course, to be delivered in eleven Saturday sessions, throughout the 2022-2023 school year. The
course was advertised in the Facebook community. We designed the course contemplating that
we would have between ten and fifteen participants. However, the number of applications
exceeded one hundred. We decided to select thirty participants, giving priority to the teachers
who worked in public school and, amongst them, those who worked in schools located in rural
areas, where professional development opportunities are scarce.

At the time of writing this paper, nine of the eleven sessions have been held. There are
twelve teachers who have participated in all the sessions. Overall, the course has helped us
identify issues worth looking at closely, to improve the way in which the instructional sequence
is formulated, and also the suitability of the resources we provide teachers online. It has also
helped us to identify clearly that the instructional sequence can become a valuable resource for
teachers who work in significantly different kinds of schools, one that helps them make
judgments about how their groups are progressing, provides them with a pertinent rationale for
deciding how to continue the educational work, and offers them clear suggestions about the
activities, manipulatives and other means that they can employ in pursing specific learning goals.
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Discussion

Our work as researchers and instructional designers has focused on exploring what the
development of resources for supporting mathematics teaching entails, when good mathematics
teaching is understood as being independent, intellectually demanding, and complex. The
resources we seek to develop would be for teachers to use, with their full consent, and they
would be regarded by teachers as useful and beneficial to achieve their educational endeavor.

Our research has led us to propose three theoretically oriented ideas to guide the design,
refinement, and improvement of these types of resources: (1) designing for a resource to be
viable in teachers’ classrooms, (2) designing for a resource to be regarded by teachers as relevant
to their practice and (3) designing so that a teacher who has just taken an interest in a resource
might fruitfully engage with it in her practice. In retrospect, we recognize the second as being the
leading idea. In fact, the importance of the other two can be understood in terms of how they can
make a resource come to be regarded by teachers as relevant.

Concerning the first guiding idea, teachers would not be likely to consider a resource as
relevant if when trying to engage with it, they find that it is incompatible with their students’
current mathematical abilities, or with their real possibilities of progress. Teachers will also not
likely consider a resource as relevant if they find that the proposed means of support are not well
suited to achieve the specified learning objectives. In other words, a resource that is not viable in
a teacher’s classroom, is unlikely to be regarded as relevant, at least in the long run.

In developing resources to support teaching, it is thus important that they be crafted through a
careful and rigorous instructional design process, such as that involved in conducting a
classroom design study. The reader will recall that the P&P sequence was developed as part of a
classroom design study, and the adaptations we made to it during the first research cycle were
the result of another study of the same type.

But the viability of an instructional resource might be necessary condition for it to be
relevant for teachers, but not sufficient. A resource might not be regarded by teachers as
worthwhile of expending time and effort to engage with it and learn how to use it, if they do not
see it as useful in pursuing goals they already consider important—regardless of how rigorous
the research process of developing it was, how innovative it is, and that it has been used
successfully in other classrooms. Hence, as we did during the second research cycle, the
development of a resource to support teaching may require extra design efforts, tailoring it so
that teachers can clearly recognize it as worthwhile. To be sure, this redesign process should not
harm the viability of the resource, or else its relevance would be compromised.

The importance of the third guiding idea can also be seen in terms of relevance to the teacher.
From the perspective of developing resources to support teaching, the proposed starting point of
a resource, crafted in the form of an instructional sequence, must not only be viable in terms of
students’ current capacities to participate in the proposed activities. The activities must also be
viable in terms of teachers’ current capacities to engage with them productively. If a teacher can
not readily engage in the use of an instructional sequence in a way that is productive and
meaningful to her, it is likely that she will not regard it as worthwhile.

Conclusion
Instructional design has long been seen as a good way to seek improvements in mathematics
education. For the most part, the focus has been placed on students’ learning. Resources have
been developed with the intention of making it possible to recreate in classrooms what research
has found to be important in learning mathematics, both in general and of specific fields and
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ideas. Teachers, for their part, have been commonly seen as those responsible for implementing
the innovations. They have been expected to have faith in them and to be keen to assume the
expenditures of time, effort and learning that incorporating the innovations into their teaching
will involve.

In this paper we have introduce a different approach to instructional design, one that entails
considering that the successful support of mathematical learning requires good teaching, and that
this kind of teaching is achieved by teacher who act with conviction, will, judgment, and
autonomy. This generates new challenges for instructional design. As we have explained here,
these challenges include ensuring that the designed resources can be recognized by teachers as
relevant to their teaching, that they are viable in teachers’ classrooms, and that they allow
teachers to engage fruitfully with the resources, from the start.
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STORYTELLING, MATHEMATICS, AND COMMUNITY
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In this plenary discussion, Dr. Chao presents his research framework and reflections from
engaging in Digital Mathematics Storytelling within Black, Asian American, and Asian
American communities in multiple countries. The framework, based heavily around storytelling,
counter-storytelling, and Critical Race Theory, has been employed as a workshop to elicit
mathematics video stories from youth and mathematics teachers. Here, Dr. Chao reflects on
what he’s learned from these workshops and how he’s started to recognize not only the power of
storytelling for forging mathematics and community identities, but the dangers to our society
because of social media and weaponized uses of mobile video everywhere. He ends by calling for
a new critical digital media literacy within our field of mathematics education.

Keywords: Equity, Inclusion, and Diversity; Social Justice; Technology

Objectives
Storytelling, a fundamental thread in the fabric of human culture, serves as the original medium
through which knowledge, traditions, and values get passed down from generation from
generation (de Jager et al., 2017; Prusak et al., 2012). Storytelling can be seen as the original
form of culturally sustainable pedagogy, embodying the essence of shared human experiences
across diverse cultures (Paris & Alim, 2017). Storytelling also entices young minds, particularly
opening up space for voice and agency from young peoples from oppressed communities to
express themselves (Love, 2014; Nunez-Janes & Cruz, 2013). Furthermore, storytelling can
serve as an inclusive tool for acknowledging and respecting the heterogeneity of all cultures and
communities (Solérzano & Yosso, 2002).

Furthermore, storytelling plays a significant role in decolonizing educational practices
(San Pedro & Kinloch, 2017). Focusing on storytelling challenges the hegemony of Western
epistemologies by recognizing and centering knowledge as emerging from the people and the
community, rather than imposing knowledge bases from outside the community as absolute truth
(Matias & Grosland, 2016). This is particularly crucial in indigenous and marginalized
communities, where traditional knowledge systems have often been undervalued or entirely
erased.

In the context of mathematics education, storytelling offers an innovative approach to
learning. Storytelling enables youth to not only showcase the ways they engage with
mathematics within their communities but also facilitates their self-positioning in relation to
mathematics (Chao et al., 2022). Through stories, learners can relate mathematical concepts to
their lived experiences, thus making learning more relatable and meaningful (Zazkis & Liljedahl,
2009).

The objective of this plenary discussion is to weave together the intricate threads of
storytelling, community, and mathematics, and envision how they are intricately intertwined.
This is a snapshot of my thinking in progress, as I engage in the work of how storytelling and
mathematics connect through my own lenses as a Chinese American cisgender male living in the
United States. I have engaged in this research work with Black, Asian American, and Asian
communities in various parts of the United States, Vietnam, and Indonesia. This plenary
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discussion serves as a place to collect my reflections and insight on what I think I’m learning.
And what I am finding is that storytelling in mathematics, in this moment, is significant not only
for educational researchers but also for individuals who are listeners, amplifiers, and storytellers
in the modern digital landscape. Through our conceptual and community imagination, I hope this
plenary discussion details how storytelling can be harnessed as a transformative tool in
mathematics education and community-building, especially within our modern technology-
driven, hyper-connected, and polarized society.

Theoretical Perspectives
Storytelling: The Heart of Community

Storytelling serves as the backbone of human civilization. In an era where technology is
rapidly evolving, storytelling remains a steadfast medium through which traditions, values, and
knowledge are continually passed down (Prusak et al., 2012). For centuries, communities have
relied on stories to fortify their cultural heritage and impart wisdom to subsequent generations.
Furthermore, storytelling can foster inclusive environments in which youth develop strong senses
of identity and agency, often based upon their community, family, and heritage.

However, with the advent of the digital age, mainstream media has (in)advertently created a
disconnect between individuals and their traditional storytelling roots. The dominant narrative
structures, often aligned with Western storytelling formats, overshadow the rich diversity of
storytelling that defines various cultures. This creates a single format for how stories are shared,
creating a true single-story experience, one in which all stories have a traditional protagonist who
must go through Acts 1, 2, and 3 to culminate in a nice, tidy ending. This mono-cultural
storytelling dominance robs children of the variance of storytelling types and formats from
diverse cultures and narratives. Commercialized mainstream media not only shows the same
types of stories over and over again, be it in books, movies, and YouTube videos, but encourages
passive viewership of youth to consume, not just large amounts of media, but also goods and
services (Hill, 2011). So while we live in a world surrounded by stories and technology to create
our own stories, I see that many of the stories we see are still only the stories from the dominant
groups, and they are not used to share important knowledge or culture, but rather to sell, to
influence, and to propagate, rather than helping all of us develop our own storytelling skills or
learn to grow closer to our communities.

We are Inherent Storytellers

Human beings have been guardians and purveyors of stories since the dawn of
consciousness. The rich tapestry of our shared heritage is painstakingly embroidered with
narratives passed down through millennia. In the Black and Asian American communities I have
been working within, storytelling ascends beyond tradition; it becomes the lifeblood that courses
through generations, linking the past to the present and foreshadowing the future. From the
profound ancestral lore among Asian American families to the sagas of defiance and resilience
among Black American families, our stories are interwoven into our very fabrics of existence.

And so, our children are natural-born storytellers. Their vines of imagination and their buds
of narration germinate early. However, traditional education structures often weed out these
budding storytelling skills, especially when connected to mathematics. A folk science myth that
continually lives within our schools is the archaic dichotomy of a “left brain” that focuses on
logic versus a “right brain” that focuses on creativity, wrongfully separating mathematics from
creativity and completely dissociating from storytelling (Geake, 2008). In truth, we know that
mathematics is an art, intrinsically tied to our storytelling ability (Zazkis & Liljedahl, 2009). But
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the straitjackets of standardized mathematics teaching continue to suffocate this creative link
between mathematics and storytelling. So, this is not a mere call to arms; it is a clarion call for
an intellectual insurgency to reclaim spaces within mathematics education that allow children to
unfurl their stories and, through this, bolster their cultural identities and critical thinking: All of
us and our children are mathematical storytellers.

Narrative Identity and Counter-Storytelling

Identity is not only embodied within the stories a person tells about themselves, but also
encompasses the actual act of narrating or storytelling (Sfard & Prusak, 2005). Identity is a verb,
made and remade through the act of storytelling. Our stories are not merely descriptions of a
static reality, but rather dynamic constructs that can change over time and context. Our narratives
serve as constructs that embody our range of experiences, characteristics, and expectations,
thereby defining the creation and evolution of our personal and social identities. Even more
important than telling a story to explore our identity is the way that identities are reified and
endorsed through the acceptance, validation, and re-telling of our narratives. Simply put, our
stories are our identities.

Counter-storytelling, therefore, involves sharing stories and experiences that challenge
existing dominant (and oppressive) narratives and stereotypes (Solorzano & Yosso, 2002).
Counter-storytelling is a tool for individuals in marginalized communities to highlight their
experiences and perspectives, and challenge destructive narratives that perpetuate harmful
stereotypes. Through counter-storytelling, individuals and communities reclaim their own
narratives and thereby their own identities (Chao et al., 2021). And we only learn how to tell
counter-stories if we know how to tell stories first.

Need for Creating Safe Spaces for Sharing Stories

The transformative kiln of storytelling happens during the moment of collective sharing -
around campfires, across kitchen tables, or over steamers of dim sum. Magic happens when
individual narratives, through collective listening and feedback, metamorphize into a story for
the community during the sharing that happens in a storycircle. 1 build on this concept of
storycircles, using Lambert’s StoryCenter model (2013), as a safe space for a small group of
storytellers to share their stories in progress, not just to elicit feedback and commentary from
others, but to also feel out various parts of themselves as they take on and inhabit their own
stories.

In Black and Asian American communities, our youth already navigate an intricate labyrinth
of identity and marginalization based on the many shifting ways they are positioned and how
they position themselves. Engaging in a storycircle, then, in which a young person shares a story
in progress, a story they are still feeling out, to others who are listening and not judging, serves
as a crucible for self-realization, self-actualization, and agency. Here, sharing is not just
cathartic, but an act of defiance and self-assertion. I am no longer just the way you see me; I am
telling my story and together, we are remaking who I am through this story.

I see a parallel the storycircle in the realms of ciphers, written about extensively in the hip-
hop education world (Alim et al., 2023; Emdin, 2016; Love, 2014). As a fan of hip-hop, [ am
enthralled at the magic that happens when artists encircle and express their truths, building off
each other to create rhymes and stories. These ciphers become sanctuaries of unrestrained
creativity, solidarity, and expression in which artists embody their full selves. However, the main
barrier for entering a hip-hop cipher is the ability to rhyme or spit. The cost for entry can be
perceived to be quite high. In contrast, my conceptualization of storycircles is that they are a
“soft” option for anyone to be able to share their story in whatever manner they want, be it
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verbally, through text, or image. I position the storycircle as an inviting space of collaboration, to
collectively generate, define, and revise our community mathematics stories. My emphasis on the
safe space of a storycircle is to refocus our gaze from the polished, finished story and instead on
the intricate, delicate process of how we collectively weave our mathematics stories together.
Grounding Principles of Black Lives Matter

While the Black Lives Matter movement started as a collective call for systemic justice
against police murder of Black people in the United States, the movement itself has become a
global call for justice for all oppressed peoples, particular the violence endured under the
vestiges of imperialism and white supremacy (What We Believe, 2018). The Black Lives Matter
movement has significantly influenced my scholarship, my activism, and my thinking,
particularly the movement’s guiding principles (Chao & Marlowe, 2019). These thirteen guiding
principles are: (1) Restorative Justice, (2) Empathy, (3) Loving Engagement, (4) Diversity, (5)
Globalism, (6) Queer Affirming, (7) Trans Affirming, (8) Collective Value, (9) Intergenerational,
(10) Black Families, (11) Black Villages, (12) Unapologetically Black, and (13) Black Women
(Mathews & Jones, 2022). While each of these guiding principles is important, in this
storytelling work, I find connections to the guiding principles of (2) Empathy, (3) Loving
Engagement, (4) Diversity, (5) Globalism, (8) Collective Value, and (9) Intergenerational.

A focus on storytelling emphasizes listening to each other, creating opportunities to hear each
other’s stories, and practicing empathy. And through hearing each other’s stories and sharing our
stories with each other, we engage in loving engagement, seeing, listening, and recognizing each
other as fellow humans. When we hear more and more of each other’s stories, we gain an
appreciation for the diversity of all of us, collectively, and start to see that our own life histories
are global, are intertwined with a much deeper, much more ancient narrative than what we have
been taught at school. And it is these stories, often from voices unheard, that help define
collective value, allowing every single individual a space to share their story, to share their voice,
to share their identity. And the power of stories is that, when they are shared, they often do not
focus just on one perspective or one generation, they connect generations, they connect us to our
ancestors, biological or chosen, so that we see ourselves as part of a much deeper
intergenerational dynasty. So, while I do not position my work as an active part of the Black
Lives Matter movement, I do align heavily with these guiding principles and hope that my
framing of storytelling can also build on what I see as important guiding principles for all our
youth from oppressed communities.

AsianCrit

Asian American identity is a tapestry in itself, forged through political solidarity against the
onslaught of imperial forces that wrought havoc across Asia over the past four centuries - tearing
asunder histories, languages, and communities (Lee, 2015; Takaki, 1998). This identity, tethered
not only to ancestral bonds, but to the shared tales of survival, coalition-building, and triumph, is
nurtured and perpetuated through storytelling. Even the very term Asian American is a political
one, created as an act of collation building during the Third World Liberation movement to fight
for Asian American studies and acknowledge the solidarity between the Asian American
community and the Black Power movement (Takaki, 1998).

To fully examine and position the Asian American experience through a critical lens, I use
AsianCerit, a subbranch of Critical Race Theory (Iftikar & Museus, 2018; Museus & Iftikar,
2013). AsianCerit offers a lens through which the experiences and identities of Asian Americans
can be analyzed and understood, going beyond surface-level perceptions, and delving into the
complexities that define the Asian American experience. The seven tenets of AsianCrit are: (1)
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Asianization, (2) Transnational Contexts, (3) (Re)Constructive History, (4) Strategic
(Anti)Essentialism, (5) Intersectionality, (6) Story, Theory, and Praxis, and (7) Commitment to
Social Justice.

While each of these tenets is deeply connected to my own history and voice as an Asian
American scholar, I focus heavily on the sixth tenet: Story, Theory, and Praxis. I recognize the
power of storytelling as a mechanism of voice and communication within the Asian American
community and how the multiple and complex stories of Asian Americans that counter racist
stereotypes and destructive narratives have been rare in our history (Chen & Buell, 2017). An
AsianCrit perspective centers the ways storytelling is a powerful tool in unraveling the rich
tapestry of experiences, while not only challenging stereotypes and promoting social justice, but
also engaging in the complicated journey of both building a collective Asian American
community. This is complex, as this work must both recognize the many and multiple groups
that too often are essentialized under the banner of Asian American while promoting community
solidarity, which is basically the fourth tenet, Strategic (Anti)Essentialism. This complexity is
one of the paradoxes of Asian America, to both celebrate one’s unique ethnic and ancestral
heritage, while also acknowledging the necessary ways that collective solidarity in the United
States is built under the general category of Asian American. And to me, there is no better way to
engage with these paradoxes than through telling the stories of people who live in and around
these paradoxes while creating their own counter-stories of what it means to be Asian American.
Our Technology Won’t Save Us, But We Can Save It

I want to address the role of video storytelling in today’s age of TikTok, YouTube, and
Instagram. When I first started my work in digital media, back as an undergraduate in the late
1990s, I was fascinated with the ways I could capture so much video data onto a single MiniDV
tape and then edit that footage in a lossless format. A future in which everyone had access to a
virtual television studio seemed on the horizon. Now, more than twenty years later, that future
has come alive in a way few of us could imagine. Yes, we live in world in which almost all of us
can make engaging, polished videos seemingly instantly on our mobile devices, capturing all
aspects of our lives to share with the public. Yet, other developments in the evolution of digital
video have happened too.

Mobile Video as Democracy. First, the ubiquity of live streams have allowed for
documenting police brutality as it happens, effectively allowing the world to bear witness to the
inhumane treatment that Black people face in their everyday lives (Hockin & Brunson, 2018).
This use of video is not only powerful, but it has also transformed the conversation around
racism in the United States through video evidence that systemic violence, so brutal and jarring
that many of those who live within unaffected communities had trouble believing that this type
of violence could still existed. Videos of Black individuals being murdered during routine traffic
stops and videos of elderly Asian Americans being attacked on the street continually pop up on
my own social media feeds. I’m often not in the mental space to watch them, because they are
triggering. Yet I understand the power these images have in sparking anger, in creating action,
and demanding change.

Mobile Video Spreading Extremism. Second, however, the salaciousness of these violent
videos brings up another side effect of the “video everywhere” era of today: clickability. Because
so many videos are accessed through social media sites focused on generating views, engaging
viewers to spend more and more time on their sites, and on collecting user data, the extremeness
of videos that are immediately clickable or enticing has created an increase amount of videos that
push on extreme viewpoints (Crain & Nadler, 2019). The amount of young people who claim to
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have been radicalized to a particular cause because of being served a more extreme YouTube
video after a more extreme YouTube video is alarming, in which viewers are recommended
videos with extreme or dark views after watching videos with relatively mainstream viewpoints
(Ribeiro et al., 2020). This radicalization is scary and has major implications in the ways our
young people are engaging with the world today. I certainly did not imagine that a byproduct of
the democratization of video production would be that our world views would become extremely
fractured, that our societies would become so polarized, or that once dead and buried
philosophies such as fascism, eugenics, or race-based mathematics intelligence would find new
communities of supporters.

The Need for Digital Media Literacy. Third, the ever presence of mobile video media has
pawned significant dangers surrounding our own privacy, mental well-being, and safety.
Students deal with bullying at school but on their social media feeds, feelings of isolation or
depression can be magnified when staring at seemingly perfect photographs of one’s peers, and
issues of privacy abound as students and teachers can be captured on video at any time. Digital
media literacy is a general term that encompasses the ways that students can be literate not just
about the digital media they are surrounded with, but also be aware of how to safeguard their
privacy, their mental sanctity, and be conscious of the psychological warfare being waged on
them through social media (Park, 2012). A focus on digital media literacy allows young minds to
critically engage with digital content and learn how to leverage digital media not just in a safe
way, but to actually effect change within their communities (Yue et al., 2019).

And so, it is within this world that I am hoping to explore how to bring things back (while
looking forward) by using storytelling. The digital video revolution brings both opportunities and
challenges. While it offers unprecedented avenues for sharing and amplifying stories across the
globe, potentially enriching educational experiences and fostering a sense of community, the
unregulated nature of social media and video streaming apps pose terrifying dangers, such as
misinformation, cyberbullying, extremism, the destruction of democracy, and global genocide.
Our students and us need to walk into this technological landscape warily, with tools for our own
protection, and safeguards so that our children can navigate through it safely.

This is not just a call for revolutionizing mathematics education through storytelling but my
urgent plea for a larger systemic metamorphosis. The same colonial forces that thrived on both a
“divide and conquer” strategy to create infighting rather than solidarity and “bread and circuses”
strategy to create distracting entertainment to dissuade revolution are mirrored in the divisive
nature of social media. Our youth must be shielded and ready to fight.

I believe that as our children learn about mathematics in the world to better navigate it, they
should also learn about how to navigate the digital landscape carefully and conscientiously, learn
about their own power as digital storytellers while being vigilant of its potential, extremism-
inducing pitfalls. We can weave together a safe space for mathematics storytelling, digital media
literacy, and community building for our young minds to make their world a better place.

The Digital Mathematics Storytelling Workshop
The centerpiece of this research is the Digital Mathematics Storytelling Workshop. This
workshop is structured around a few key modules or exercises, designed to engage young
individuals or mathematics educators in the art of storytelling and its connection to mathematics.
These workshops can last for as little as three days to as long as six weeks. In each of these
workshops, I enact a participant action research framework, in which the participants themselves
decide how the research should be enacted, what sorts of data they interested in, and the
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relationship between the workshop and the research study (Bang & Vossoughi, 2016; Kindon et
al., 2007; Mirra et al., 2015). This aspect, of asking participants to decide what the research
should look like, does not always go smoothly. Overall, the workshop involves these modules:

1. Mathematics in Daily Life: In the initial stage, participants create brief videos that
capture the essence of mathematics as it manifests in their homes, families, and
communities. This stage is critical as it helps participants see the ubiquity and relevance
of mathematics in their own everyday life.

2. Drafting and Sharing: Then, participants dedicate time to crafting a rudimentary story
centered around the mathematics they saw or their personal relationship with it. This
story is then shared within small groups through a structured format known as a
Storycircle. In a Storycircle, each participant narrates their evolving story to others who
listen intently without interruption.

3. Reflection and Refinement: After the Storycircle, participants reflect upon the feedback
received and consider the emotional experience of narrating their story to an audience.
Armed with this insight, they meticulously refine their stories.

4. Video Creation: In this stage, participants adapt their revised stories into video format.
This phase allows them to experiment with different multimedia elements to further
enhance the expressiveness of their narratives.

5. Community Screening: In the final stage, we organize a community screening party
where all participants share their stories to friends, family, and community members.
Each storyteller presents their stories; the screening becomes a platform for dialogue as
the audience provides feedback and engages in discussions inspired by the stories.

I am continually revising these modules, hoping to attain the research goals of fostering and
eliciting participants’ mathematics and storyteller identities. I have found that this process starts
the process of bridging the gap between mathematics and storytelling, encouraging participants
to embrace their mathematics selves as an integral and meaningful part of their narratives and
communities. Yet, I still struggle to foster stories that reflect the breadth of the incredible stories
and ideas that participants share during their storycircles.

Reflections on My Research Findings

In this section, while I do not report direct research results, I offer some broader findings and
reflections, based on my undertaking on digital mathematics storytelling in various contexts.
Storycircle is Life: We Must Have Space to Tell Mathematics Stories

Storytelling is a quintessential human tradition. And yet, so many of the youth and the

teachers I have worked with have very little confidence in their abilities as a storyteller. I think
this is due to two things. First, in the vast amount of media we consume, often we see the same
Eurocentric story structures again and again. So, when participants have a template in their mind
of what a story should look and feel like, they often have a traditional three act story structure in
their mind. This might feel disconnected with the ways that they might be thinking about or
perceiving stories in their mind, so it makes them hesitant to share their story. Not all stories
have to follow the same format as a blockbuster Marvel or Pixar film. Second, many of them
have never had the opportunity to think about their own mathematics-connected stories, outside
of devising a story problem. For them, a mathematics story must involve some sort of
mathematics operation or number sentence, which limits the types of stories they can tell.
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A poignant instance of this is a simple observation made during one of my first digital
storytelling studies: a 7-year-old Black girl was intricately arranging beads in rows and telling
me a story about how she was counting the beads in each row. As a mathematics educator, [ am
always mesmerized when listening to a child show me their counting strategies. However, one of
the adult educators from the community was nearby and astutely recognized what the child was
doing and asked the child if she was counting up how many beads she wanted in each braid of
her hair. Immediately, the child excitedly said yes, and the story morphed into one about the
mathematics behind the beading patterns she envisioned for her hair. Something I, as someone
who has less familiarity with Black hair culture and braiding, did not pick up on when listening
to the story. What this anecdote showed me is why we need to share our stories in progress to
others in our community, who are there not just to offer feedback, but to help us better connect to
what these stories even mean to ourselves.

I have found that when my participants engage in their first storycircle, it is a difficult and
vulnerable space. But it is these difficult spaces that are crucial in helping them start to see that
they have the power to tell stories using their own voice. While our students might have multiple
opportunities in their daily school experiences to engage in some form of mathematics and
opportunities to periodically engage in story creation in their literacy or arts classes, they have
probably never had the opportunity to engage in any form of mathematics storytelling. All of us,
not just our students, need these conducive spaces to inspire us to perceive and weave our
mathematics stories divergently, to tell our mathematics narratives in our own voice. And this
development is not instantaneous; it requires time, nurturing, and exposure to an array of
storytelling forms. So, we need spaces like the storycircles, so that, in the end, all of us can be
the storytellers we are meant to be.

Screenings Matters: The Collective Sharing of Stories

Public sharing and collective feedback imbue storytelling with a transformative energy that
fosters community building, social change, and identity affirmation. I have always loved the
celebration that occurs when young people can share their stories publicly, to showcase all the
hard work they put into making their story happen. Often, this screening is a catered event, with
family, friends, and the community invited to view the stories.

However, I have since learned that this screening is an important also a part of the process.
Just because a video is “finished” for a screening, does not necessarily mean it is completed.
During the screening, particularly when the screening is attended by the storyteller’s peers, the
discussion that erupts around the story helps better connect the mathematics to the story. Or the
discussion helps the storyteller better understand what the story means to them. For example,
during one screening, a 7"-grade Asian American girl made a story about how she makes
earrings and is trying to figure out how much to charge for those earrings. In the discussion,
students brought up the concept of a wage, how the idea of trying to figure out how much money
made from the profit of making and selling one earing might be too volatile, but as a worker, you
are deserving of a steady wage for your labor. I was astounded at this insight and realized that
this discussion, during the final screening, was an extremely mathematical conversation that also
led us to connect to ideas of the role of capitalism in our society. What this showed me is that the
final screening opens many opportunities for important discussions that can extend the
mathematics in the original video.

Beware The Video Everywhere Era

While platforms like 7ikTok and YouTube have opened a whole new and exciting space for

video storytelling for today’s youth, I have begun to feel, from my participants, how wary they
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are about the fact that they are continually surrounded by peers with phones that could be
recording them at any time. I want to be clear here. Yes, while I use digital video heavily in this
work, I also want us, as mathematics education researchers, to advocate for our youth as they
navigate environments where the ubiquity of constant video recording is becoming a source of
anxiety. In almost every single digital mathematics storytelling workshop I have done recently, I
have heard stories of people being filmed without their consent and ridiculed on social media. I
have also heard from teachers who are constantly vigilant about phones in their classrooms, wary
that they are being filmed and can be vilified on social media.

So, while I see endless possibilities for community engagement and education through video
media, so are the dangers. With the omnipresence of phones everywhere, we must be aware that
many of our youth and teachers are extremely apprehensive about invasions of privacy and the
potential misuse of their images. We must also be aware of the ways online video tools can be
weaponized against vulnerable individuals or communities, often bullying or shaming people
based on the same categories of gender, race, ability, or language that we see attacked again and
again. In recent work, I have completely rethought my use of public community screenings,
instead offering opportunities for participants to have smaller, more intimate screenings of their
stories, so that they do not feel as vulnerable or exposed.

Critical Digital Media Literacy

Finally, I have come to realize that we live in an exciting, but fragile time, an era beset by a
deluge of information and misinformation, with no real way for any of us to discern what is real
and what is spin. The construct of digital media literacy might not be enough, as it focuses
heavily on the curation and sharing of digital media in and of itself. What we need for our
students and ourselves are stronger skills to better critique and harness the swirling currents of
the digital age, skills that help us create systems of basic safety, skills that help us recognize how
to consume thoughtful media versus extreme media.

I believe our youth can be equipped not only with the skills to navigate the digital world but
also with the knowledge and conviction to utilize these platforms in ways that uplift themselves
and their communities. I am generally referring to these skills as Critical Digital Media Literacy,
a loose grouping of the skills I see as necessary for youth to critically analyze the content they
watch, understanding the psychological impact of the social media the engage with, and learn
how to utilize digital media for positive change. So, as we embrace storytelling and its evolution
through digital media, let us not lose sight of what we are trying to do. We are at a crossroads,
where our digital spaces have largely been overtaken by traditional capitalist notions focused on
generating the largest number of users to sell things to or control. But we can envision a better
digital space, one based on the community knowledges and ways of knowing that come about in
the stories we tell. It is our responsibility to cultivate spaces where diverse stories flourish, where
communities find solace and power, and where the next generation are not merely consumers but
conscientious creators and guardians of narratives that shape their world.

Discussion
My journey using Digital Mathematics Storytelling has taught me so much, not only about
how to get people to make and share mathematics story videos. What I have learned is where the
edges of our world of mathematics education and our digital society are not clear, where our
models break, where there needs to be more definition, and where our role comes in. What I have
also learned is that this intersection between storytelling, community, and mathematics education
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is much more difficult to navigate than I anticipated. Below are spaces where I am still
struggling in this work.

Reciprocity between Storytelling and Mathematics. What I still do not have a strong
handle on is the reciprocal relationship between storytelling and mathematics, how stories
illuminate mathematical concepts and, in turn, how mathematics enriches the fabric of the
stories. I know that it can happen, but I am still not exactly sure what it looks like and how to
elicit it. In theory, I know that when children associate mathematical theories with their daily
lives through storytelling, they internalize concepts with an intensity that rote learning may never
achieve. But what does this look like? The stories that my participants tell still dance around this
deeper connection to mathematics.

Engaging in Counter-Storytelling. Engaging marginalized communities through
counter-storytelling is where I thought this work would take me. And yet, even with setting up
nurturing environments where individuals can engage in counter-storytelling to challenge
dominant narratives and stereotypes, this is not what they choose to do. The prospect of
storytelling is so visceral and so personal, I feel somewhat inauthentic suggesting that their
stories need to have a political purpose, that their stories must also fight stereotypes while talking
about mathematics.

Sustainable Community Building and Identity Formation through Storytelling. We
know that communities are formed through storytelling. Yet, in the storytelling workshops I have
helped create, I cannot help feeling that the whole community falls apart once the workshops are
over. How can we authentically create communities that are based on the identities that come out
during the storytelling, that become true communities about individuals and not just a
storytelling workshop?

I end with these wonderings and hope that sharing my story with you has helped you in your own
journey. I hope to hear your story too.
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As part of a longitudinal study focused on mathematical play, we (Melissa, Amy, and Anita) are
often faced with questions about what counts as play and what mathematics (and other learning)
we see in play, and whose play is most likely to be seen or dismissed. Rather than discuss our
findings from classroom videos of kindergarten children engaged in mathematical play, we
asked scholars who bring different lenses to research on play, young children, and teaching and
learning mathematics to look at some of our data and provide their perspectives. In this session,
we will share video and discuss with our panel (Nathaniel, Naomi, and Tran) various ways to
interpret that video. This paper provides background on the potential of mathematical play and
the details of the study that generated data for analysis. We conclude with a copy of a transcript
that is associated with a video we will watch during the plenary with hopes that participants will
watch prior to the session and come with their own questions/perspectives.

Keywords: early childhood, identity, mathematics, play

Introduction

As content standards become more rigorous and demanding, and high stakes assessment
becomes the norm even early grades, the time for exploration and play is growing increasingly
scarce (Miller & Almon, 2009). Even in the earliest grades, curriculum can be tightly scripted,
recess strictly timed, and toys are often absent or hidden. While prescriptive activities are
efficient solutions to the now-defined work of schooling--moving large numbers of students
through a large numbers of topics—this approach rarely supports students in developing robust
number sense. Further, the practices that such approaches to teaching mathematics require, such
as a focus on efficiency, speed, and memorization, are known to undermine students’ enjoyment
and deep understanding (Boaler, 2002; Boaler & Staples, 2008). In contrast, classrooms that
offer time for exploration, that emphasize reasoning and understanding over accuracy and speed,
and which place student identity at the center of instructional design, have been found to support
a more productive relationship with the domain of mathematics (Cobb et al., 2009; Gresalfi,
2009). And yet, for a variety of reasons, such classroom practices have been challenging to
develop at scale.

One aspect of mathematical exploration that is a topic of great interest, but has received very
little empirical focus, is mathematical play. While the role of play in supporting student learning
is well-understood and often advocated for very young students, we have little understanding
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about mathematical play for older children. Indeed, once children enter formal schooling,
discussions of learning rarely reference play, and work investigating the design of mathematical
learning environments has seldom explores whether or how play might be involved.

Researchers who study play across contexts define play as “spontaneous, naturally occurring
activities with objects that engage attention and interest” (Lifter & Bloom, 1998)p. 164).
Burghardt (2010) argued that play is spontaneous or pleasurable, functional, different from
similar serious behaviors, repeated, and initiated in the absence of stress. Increasingly, educators
have recognized that play provides both social and cognitive benefits, such as increasing
creativity, reducing stress, and promoting problem solving (Elkind, 2007). In this work, we
define play as pleasurable activities that allow children to explore, to engage with interesting
materials, to make choices, and to possibly engage in social interactions. The play is
mathematical if the play context can promote a mathematical learning goal.

For many, “mathematics” and “play” are terms that anchor two opposite extremes, with
things that look like “math” resembling nothing that looks like “play.” But for mathematicians,
play is an acknowledged element of engaging the discipline, in part because mathematicians are
offered a different version of mathematics with which to engage. Rather than taking as their task
the acquisition of other people’s knowledge, mathematicians are afforded the opportunity to
think with and about mathematics, to inquire into its structure, its limits, and its possibilities.
Many scholars have highlighted how play allows one to think beyond oneself, to test and explore
the limits of ideas (Gadamer, 1975; Vygotsky, 1978), and such ideas are expressed by
mathematicians. For example, as Mathematician Sharon Whitton states:

Play has a role both in the work of mathematics and in the evolution of
mathematics. Although play is not often acknowledged as a major contributing
factor in mathematicians’ work, their methods of inquiry resemble many of the
behaviors of children involved in meaningful play (cited in Bergen (2009),
p.421).

We argue that play should not be reserved only for those who are tasked with exploring the
frontiers of mathematics, but rather, that play is itself an important vehicle for exploration,
understanding, enjoyment, and learning. In play children can encounter and explore
mathematical concepts and relationships through their engagement with carefully chosen
materials (Ginsburg, 2006; Tudge & Doucet, 2004), such as when they compare quantities of
toys, compose and decompose shapes of wooden blocks, and count forward and backward on a
gameboard (Seo & Ginsburg, 2004). In lessons where children engage in mathematical play, they
have opportunities to solve problems and explore concepts in low-stakes contexts that encourage
social engagement, experimentation, and the use of interesting materials (Parks, 2015).

Prior research suggests that designing spaces that allow students to explore mathematical
ideas, encounter parameters and structures, develop a sense of mathematical aesthetic, and
engage in cycles of revision and justification would be a productive use of class time (Sinclair,
2004, 2026). Likewise, research has documented what young children learn in mathematics
through play, such as through developing spatial reasoning through block building (Casey et al.,
2008) or magnitude through linear board games (Siegler & Ramani, 2008). However, little
research has sought to link mathematical learning in schools to playful experiences in
mathematics for children in the primary grades (Wager & Parks, 2014), or has addressed how
such play could be supported.
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Why Study Play

Bringing play into the context of mathematics requires recognizing the mathematical content
embedded in spontaneous play and the possibilities for designing mathematical engagement that
embody a spirit of playfulness. For example, work on embodied cognition by Lakoff and Nunez
(2000) has demonstrated how spontaneous play with containers can build concepts that support
set thinking about numbers while play on balance beams can create an embodied sense of the
meaning of equality. At the same time, research on mathematical play that has been orchestrated
by adults, such as work with linear board games or puzzles, has been shown to develop
mathematical understandings while still retaining many of the features of play (Kamii et al.,
2004; Siegler & Ramani, 2008).

The Role of Play in Learning and Identity

There is growing evidence that play can support students’ mathematical competence and the
development of productive mathematical identities (Wager & Parks, 2014). Mathematical play
offers opportunities for children to engage in all of the standards for mathematical practice, for
example by making sense of problems and persevering in solving them, or exploring the
structure of tools, symbols, and numbers. Play with particular materials, such as blocks
(Wolfgang et al., 2003), linear games (Siegler & Ramani, 2008), and puzzles (Clements et al.,
2012) has been shown in a range of empirical research to impact young children’s mathematical
learning of both number and geometry.

With respect to identity, bringing play into mathematics also provides opportunities for
children to come to see themselves as “mathematics people” (Parks, 2015, p. 83). When teachers
create opportunities for children to engage in mathematical play, and when they label children’s
play with mathematics vocabulary, they help children see themselves as people who enjoy
mathematics (Esmonde, 2009). In addition, unlike formal lessons, play contexts often allow for
children and teachers to use language more fluidly and to enact different kinds of social
relationships, which may be more likely to mirror the ways that children talk and play at home.
This can be particularly meaningful for children from low-income or marginalized families who
may experience conflicts between the performance of school mathematics in formal lessons and
the ways they engage at home ((Enyedy & Mukhopadhyay, 2007). Reshaping of mathematics
norms and practices serves to position students differently with respect to the discipline,
broadening not only the kinds of mathematical experiences that students might have, but also,
how those experiences lead them to reach different conclusions about their abilities and
preferences (Gresalfi & Hand, 2019).

Supporting Play in the Mathematics Classroom

Our approach to design begins with the starting point that the classroom is an ecosystem
(Greeno, 1991; Gresalfi et al., 2012): changing one element of the system can influence others,
but not always directly in a simple causal relationship. Play is an excellent example of an activity
that cuts across multiple elements of a system, as it involves attending to the tools and physical
resources available in a classroom, but also the concomitant norms and practices that make space
for such toys and tools to become objects of inquiry. Likewise, while students’ beliefs about
themselves and about mathematics influence how they might play in math class, those beliefs
develop through their participation with these classroom norms (Gresalfi, 2009; Hand, 2010).
Thus, in thinking about how to support mathematical play in elementary school classrooms, we
articulate the different elements of the system, and how those elements of this ecosystem
interact.
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The Role of Tools in Attuning Students to Mathematical Ideas

Within early childhood, Montessori (Montessori, 1917) was one of the earliest advocates for
supporting children’s mathematical learning through their independent engagement with material
objects. Current studies demonstrate that young children who experience Montessori programs
(even when randomly assigned) perform more strongly on mathematics assessments than
children who do not (Laski et al., 2015; Lillard & Else-Quest, 2006). Research suggests that a
wide variety of toys and tools can be productive in promoting mathematics learning, but that
these tools are most productive when children have multiple opportunities to explore the same
materials over time in a variety of contexts, when adults support children in assigning
mathematical meaning to the materials, and when materials make mathematics (rather than the
everyday world) salient (Laski et al, 2015). Likewise, research on children’s mathematical
engagement in museums has demonstrated that allowing children agency in their interactions
with well-designed materials supports their engagement with mathematical concepts (Kelton et
al, 2018) and that observing children’s physical engagements can provide insight into their
developing understandings (Nemirovsky et al., 2012).
The Role of Classroom Culture

Classrooms that support learning through mathematical play offer a different experience for
students than traditional math classrooms. This shift requires an environment in which students
have agency to explore, make their own decisions, and feel comfortable making mistakes - an
environment that invites students to participate (Gutiérrez, 2012) and develop their identities as
learners and doers of mathematics. Agency, the opportunity to take action with regard to one’s
own learning (Gresalfi, Martin, Hand, & Greeno, 2009), enables students to participate in
mathematics in ways that are meaningful and sensible to them (Gresalfi & Cobb, 2006; Nasir &
Hand, 2006). Classroom environments that provide opportunities to participate exercise agency
can “transform how students see themselves as mathematical thinkers, how they see the
discipline, and ultimately, the mathematics they learn” (Turner et al., 2013), p. 229).
The Role of Teachers in Supporting Mathematical Play

The potential of play to support students’ mathematical engagement depends largely on the
teacher. Although students are naturally experts at play, they are less likely, on their own, to play
in ways that easily translate to rich mathematical thinking. When adults make conscious choices
in constructing play environments and choose to intentionally engage with children during play
and other informal activities, student mathematical engagement is enhanced (Trawick-Smith et
al., 2016; Van Oers, 2010) In particular, teachers’ use of ‘math talk’ during formal and informal
lessons has been shown in a variety of studies to have a significant impact on children’s later
learning (Levine et al., 2010; Wiebe Berry & Kim, 2008). More broadly, there is growing
evidence that providing materials that support mathematical play and intervening in play to
deepen thinking and extend vocabulary can promote more significant early mathematics learning
(e.g., van Oers, 2010; Trawick-Smith, Swaminathan & Liu, 2015; Wager, 2013). Trawick-Smith,
Swaminathan, and Liu (2015) found that teachers’ asking of open-ended questions during play
and providing of appropriate levels of guidance during play (not too much or too little) had
positive relationships with mathematics learning in a pretest/posttest study. However, despite the
benefits of appropriate adult interactions in mathematical play, research has found that teachers
sometimes fail to lift up the mathematics in children’s play because they are not skilled at
recognizing the mathematics (Moseley, 2005), lack the time to observe play (Seo & Ginsburg,
2004), or are constrained by curricula and other instructional demands (Parks & Bridges-Rhoads,
2012).
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The Playful Learning Project and the Challenges of Analysis

This four-year longitudinal study was designed to investigate play in early elementary math
education by developing in-depth accounts of: 1) how kindergarten teachers learn to integrate
play into their instruction over multiple years, and how their teaching changes over time; 2) how
the task of integrating play changes with different demands of mathematics curricula over the
grades (kindergarten through second grade); and 3) how the relationship that students develop
with mathematics might be transformed by experiencing playful mathematics learning over their
early elementary careers (kindergarten through second grade).These fairly straightforward goals
have become much more complex as we have embarked upon the study, and new challenges
have emerged. Specifically, and the he focus of this paper and our plenary, is to explore and
problematize mathematical play by considering what mathematical thinking looks like when it is
transformed through play, what counts as play, and how some children’s play is visible,
suppressed, or otherwise rendered invisible by broader structures and biases, from researchers,
teachers, and other children.

Over the first year of the project, the team worked with six kindergarten teachers who taught
in teams in three classrooms at a racially and economically diverse public school in the Southern
United States. The teachers and the project team co-designed four weeks of instruction with the
goal of introducing playful tasks into the lessons of the mandated curriculum. During the weeks
these lessons were taught, the project team video recorded children’s engagement in small
groups using GoPro 360 cameras, which captured all four students per table simultaneously. We
also videoed the teacher during whole-class and small group instruction. From the three
classrooms across the four units, we captured 580 videos of student mathematical play, ranging
from two to twelve minutes in duration.

Because the GoPro cameras record in 360 degrees, analyzing the videos presents several
challenges in terms of attention. Often four children were engaged in four separate activities,
although sometimes the whole group would come together or partners would team up. The video
could be “unwrapped” to see all four children at once or could be watched so the viewer could
control the focus of attention. As a research group, we found that where we directed attention in
the videos and the sense we made of interactions during play about mathematics was shaped by
on our professional backgrounds (e.g., former early childhood teachers and former high school
mathematics teachers often attended to different aspects of the mathematics), our identities (e.g.,
our racial identities shaped our focus and interpretations) and our academic histories (e.g., being
immersed in learning sciences, early childhood education, or teacher education framed
interactions in different ways). This became even more complex when teachers were included in
watching video, as their perspectives brought in additional differences.

Conversations across the group about these differences reminded us of a decades old special
issue in the Journal of Learning Sciences (Sfard & McClain, 2002) where a group of researchers
analyzed the same video through a variety of lenses to provide insight on the role of symbolic
tools in shaping mathematical thinking. At the time, we remembered being struck by the
different understandings of the same video that each theoretical perspective allowed, but in
looking back we noticed instead how similar each of the socio-cultural perspectives taken really
were. This raised some questions for us. We wondered about what perspectives we were missing
even within the diversity of our research group. We were especially concerned with perspectives
that were not represented in our research group and that we would be unlikely to encounter at
mathematics education research conferences, but yet felt highly relevant to play.
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We were interested in what scholars who centered young children’s perspectives and the
social context of schooling might see in the children’s play. This wondering led to this plenary.
We choose a video from the first year of our study, which took place in November, during a unit
on counting to twenty. The video shows four children playing at a center invited children to
design a zoo with plastic animals by putting a specified number of animals in each “pen.” We
chose this video because it revealed rich and diverse social interactions among the children and
because we felt that all the mathematics was not immediately apparent. The points of ambiguity,
both social and mathematical in nature, makes it a good candidate for rich analysis, particularly
analysis that draws from different perspectives.

The children pictured in this video are called Quentin, King, and Kiera (pseudonyms).
Quentin is a black boy who was moved into the classroom about two weeks prior to the episode,
in an effort to balance the children with “challenging behaviors™ across the three kindergarten
classes. In his previous classroom, Quentin was frequently removed from activities due to the
teacher’s perception that he was being disruptive to the class. King is a black boy who tended to
be quiet in class but paid close attention to instructions in general and math in particular and was
almost always on task. Kiera is a white girl who also tended to be quiet in class and was reluctant
to offer answers to questions in whole-class settings. There is a fourth child in the video from
whose parents did not give consent to participate, and therefore we do not include his data (he
spoke very little in this interaction).

We invited three scholars who center young children in their work to share their insights as
part of the plenary. They are Dr. Tran Templeton, whose work draws on critical childhood
studies to explore how young children make sense of their own lives, Dr. Nathaniel Bryan,
whose work draws on Critical Race Theory and PlayCerit theories to understand the experiences
of young Black boys and their teachers, and Dr. Naomi Jessup, whose work draws on Critical
Race Theory to reimagine mathematics education in humanizing ways, with particular attention
to Black children.

Rather than share these scholars’ perspectives in this paper, we invite readers to prepare for
the plenary by engaging on their own with the transcript of the video and to form their own
questions and (admittedly) partial understandings to bring to the conversation. The episode
shown in the transcript below shows the children engaging in the zoo activity described above,
along with occasional interruptions from the kindergarten teacher, Ms. Lane.

In reviewing the transcript, we encourage readers to think about the following prompts:

e What questions about mathematics and play do the interactions in the video raise for

you?

e What theoretical frames do you think would illuminate the analysis?

e Which moments in the video do you find most engaging? Why?

Table 1: Transcript of Zoo Video

Time Quentin King Kiera Ms. Lane

0:00 [Sticks tongue out at
camera and giggles]

0:15 King you have two yellow
ones. I have two orange
ones.

I know.. [unclear]
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Two yellow ones.

0:26 A lion. That’s what I
want.
0:28 Can I have that orange
one cause I have this
orange one right here and
I want this?
0:35 Can I have that orange
one? I just want the
orange one.
0:45 Look these look the exact
same. [showing animal to
Quentin]
0:50 Yeah. I can find them.
ROAR!!
0:55 Stop
0:56 Let’s make this a shoe
store
1:00 Hey
1:09 [Gasp!] I found another
one. Let’s put them all
together.
1:15 These together [pairs up
matching animals]. I got
to get another giraffe.
1:29 No. We can’t put that
together.
1:38 What’s that?
1:40 [Gasp] Why do you put
the stuff up?
1:42 Oh my goodness. This is
something like a.. that’s
a dinosaur, but I don’t
even know what it’s
called.
1:47 You’re messing up our
game. We’re trying to put
two of each on the board.
1:53 XXX, are you
playing?
1:56 Okay, try to do that
one right there.
[pointing to the box
labeled 7 in the zoo
in front of xxx]
1:59 We’re doing this one.
2:03 After you finish you

have to make sure
that you count to
make sure that the
amount of animals
matches this number
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[points to the “13”
on the stickynote in
the box that Quentin
and King are
working on].

2:11 We’re not done. We got [pointing and counting
to put a ri... each animal] 1, 2, 3, 4, 5,
[Adds elephant to animals | 6,7, 8,9, 10, 11. 1, 2, 3,
that King is counting] 4,5,6,7,8,9,10, 11,

12, thir...

2:25 Well, we can knock all of | [knocks down and grabs
them down [knocks about | other half of the animals
half of the animals down | to put back into the bin]
and gathers them
together] and count to..Let
put. Let’s grab. I'm going
to grab a different animal
[grabs animal from bin]

So yeah....

2:37 I’m going to count while
I put them on there.

2:41 [place hippo in 13 square]

Ooooooneeee

2:42 [places elephant in 13
square] One

2:43 [touches elephant] No that
will be two.

[picks up and places
hippo again] One

2:45 One [touches elephant]

2:46 [touches elephant] Two

2:47 [adds dinosaur] Three No. No. [picks up
elephant. One. [picks up
hippo] Two. [adds
giraffe] Three.

2:53 [adds gorilla] Four [points to hippo, giraffe,
elephant, dinosaur, then
gorilla each in turn
counting] One, two,
three, four, five.

2:56 [adds duck] Six

3:00 [adds rhinoceros] Seven.

3:04 [adds squirrel] Eight. [adds chetah] Eight.
Hey you’re copying me.

3:08 [adds deer] Nine.

3:10 [adds lion] Ten.

3:12 [adds giraffe] Ten

2:13 [adds hippo] Eleven.

[adds buffalo]
Twelve.[adds kangaroo]
Thirteen.
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3:23 No that’s thirteen there.
We’re done.

3:25 Now we need to do...

3:26 16. Let me scoot this over
there a little bit [pulls zoo
toward him so that the 16
box lies flat on the table.

3:32 These are a lot of

animals

3:35

3:39 I’m gonna put a fox on
our [unclear]. I want a
fox. [add fox to 16 box].

One.

King can I go - Can I help
you with 16? I’m trying to
do 16. [moves around to
King’s side of the table]. I
want to help with 16.

3:57 [takes a handful of
animals from bin]

4:08 One. [unclear]

4:12 We doing sixteen.

[unclear] Okay.

4:14 18. Stop!

[places lizard, fox,
cheetah on 18 box each
in turn while counting]
One. Two.

4:18 Okay. I’m gonna do Three.
sixteen.

4:22 [places panda, tapir, [places giraffe on 18
koala, lizard each in turn box] Four
while counting] One

4:27 two, three

4:31 Five

3:33 Four. Uh, will you
[unclear]. Excuse me
King! [frustrated]. I'm
trying to put this on the
table to make sure it
works. King, can I get one
of these animals?

4:47 [pointing to each animal Y’all don’t have to
in the 16 box] One two, sit down if you don’t
three, four, five. want to. You can

stand up if it’s
easier. Is it easier?

4:53 Yes Like what Quentin

is doing?

5:03 Okay, we will scoot

your chair in. That
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way you can walk
around the table and
look at [unclear].

5:08 [scoots his chair in and
then goes to scoot King’s
chair in] King. King.

Excuse me. We can push
our chair up the teacher
said and walk around.

5:20 [touching each animal in [touching each animal in
16 box and counting them | 18 box and counting
in turn] One, two, three, them in turn] One, two,
four, five, six. three, four, five, six,

seven, eight, nine, ten,
eleven, twelve, thirteen.

5:29 [puts hippo in 18 box]

fourteen.

5:32 Sixteen. Eighteen. [put 4 new animals in 18
box]. Fifteen, sixteen,
seventeen, eighteen.

5:35 One, two, three, four, five, | What’s this? A bull!
six. [adds new animal to That’s a bull!

16 box] Seven.

5:44 Kiera, could you give me
one of the animals? I need
an animal.

6:02 I know what these are.

Are we? Uh, Kiera —
there's three of us over
here.

6:07 [ know.

6:10 You’re smushing me.

6:12 [moves around the table

to 7 block]

6:13 What about this guys? We [moves back to side with
can scoot your chair down King and Quentin]
here and make it easier.

6:24 What is this? A monkey?

6:28 Yeah! Uh, I don’t know.

Gasp! I know what these
are! Um. They’re twins.
Who wants to match the
twin with m—? Let’s
match the the animals! So
animal...

6:46 Let’s match the animals.

6:49 So this one goes with...

6:52 Oh, it’s not matched yet.

6:54 I’m matching

6:55 Me too!
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6:56 So them go together. The
ones that don’t go
together let’s put them
over here [touches 16
box]

7:03 These go together
[picking up a pair of
matched animals]

7:04 Here, these go together.
[hands Quentin a cheetah
that matches a cheetah in
his hand]

7:06 Oh yeah. Uh, it’s

right...yeah, uh it’s
another one. Here. [hands
her the cheetah]

7:13 Here. Ha! [hands Quentin
a giraffe]

7:15 No. I don’t need that one.

These two match. And
these match.These two
match. I’ve got one over
here that matches.
[handing Kiera pairs of
animals each time]

7:34 Is this an elephant?

7:35 Yep

7:36 Okay elephant

7:45 [continues pairing up

animals and putting them
in front of Kiera]. We’re
trying to match them!

7:50 That’s you. I’'m just
standing right here.

7:54 That’s him that’s not me.
That’s him.

7:57 It’s you too. I'm giving Nuh-uh!

them to you and then
you’re putting them on
the thing.

8:00 We’re not doing — We're
not doing anything BAD!

8:05 We just match them.

8:08 We’re just trying to take
care of the animals
[unclear]

8:12 We don’t need to do that

8:15 Here, here’s this.

8:22 Look at the timer [to

Quentin]
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8:25 Oh, it’s a 6! Clean up.
Let’s clean up. [all
students frantically pick
up animals and put them
back in bin]

8:35 [takes bin and put it in

front of himself] Fast!
Faster! Faster than a -
Let’s do it faster than a
giraffe.

8:45 Calm it down okay.
Go ahead and have a
seat.
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PREPARING TEACHERS TO ENGAGE STUDENTS FOR EQUITABLE
MATHEMATICS EDUCATION
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Preparing teachers to teach mathematics is at the intersection of the three areas where cultural
and racial knowledge intersects with content and pedagogical content knowledge. Consequently,
preparing teachers to teach mathematics must consider all peoples’ practices. This highlights
two Black girls marginalized by their teacher, which provides the space for discussing teacher
discretion and systemic violence. A significant takeaway when preparing teachers is to get them
to think about how they can lead with mathematics rather than violence.

Keywords: Equity, Inclusion, and Diversity; Classroom Discourse; Teacher Educators

Preparing Teachers: Content, Pedagogy, & Cultural and Racial Knowledge

Mathematics teacher education has often concentrated on equipping teachers with the
necessary skills to address three key areas: (a) the content of mathematics they should teach, (b)
knowledge of pedagogy for teaching mathematics, and (c¢) the qualifications required for
teaching mathematics (Berry et al., 2014). Teachers should have deep knowledge of mathematics
content, which correlates positively to students’ achievement (Howard & Milner, 2021).
Additionally, teachers should know the pedagogy for teaching mathematics or mathematical
knowledge for teaching, which is positively related to teachers' use of effective mathematics
teaching practices (Ottmar et al., 2015). By focusing on these three areas, too often, preparing
teachers to engage in equitable mathematics teaching receives minimal attention. There is
widespread agreement among professional organizations in the field of mathematics education
that preparing teachers to develop equitable frameworks in their teaching is necessary for
addressing inequities in students’ experiences (Association of Mathematics Teacher Educators,
2020; National Council of Teachers of Mathematics, 2014, 2018, 2020A, 2020B). Martin (2019)
argued that there is still a considerable amount of effort required to establish equitable and
inclusive access to mathematics education for those who have been historically excluded and
disenfranchised.!

Teachers who teach students from historically marginalized and disenfranchised populations
should not only be prepared to understand mathematics content and pedagogy but should also be
prepared to understand ways of using their students' racial and cultural backgrounds in their
teaching. Howard and Milner (2021) highlight three areas of knowledge for preparing teachers
for equitable education: (a) content knowledge, (b) pedagogical content knowledge, and (c)
cultural and racial knowledge. Preparing teachers to teach mathematics is at the intersection of
the three areas where cultural and racial knowledge intersects with content and pedagogical

! When I use historically excluded and disenfranchised, I am not ascribing a sweeping set of attributes to Black,
Latinx, Indigenous, and poor peoples. I understand that collapsing these groups into one group does not
acknowledge the intersectionality within these groups. However, there are shared histories and experiences among
historically excluded and disenfranchised people.
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content knowledge. Consequently, preparing teachers to teach mathematics must consider all
peoples' practices, including African, Indigenous, and non-Westernized perspectives
(Mukhopadhyay et al., 2009). Building relationships and considering the practices of all peoples
are described by many researchers as building on students’ “funds of knowledge.” Funds of
knowledge encompass various aspects of people's lives, such as cultural experiences, artifacts,
values, emotions, language, and identity (Moll & Gonzalez, 2004).

An example is provided by Civil and Khan (2001), who delved into teaching practices to
establish a connection between students' familial and cultural experiences and mathematics
content. These works all question the belief that teaching mathematics is culturally neutral and
that there is a set of universally accepted teaching practices. Consequently, preparing teachers to
teach mathematics must elicit frameworks for making meaningful connections between teaching
with students' cultures, lives, and experiences.

The vignette below highlights the importance of making meaningful connections between
teaching with students' cultures, lives, and experiences. The vignette focuses on the role of
mathematical discourse as a pedagogical practice intersecting with Black girls' experiences and
ways of knowing. Specifically, the Black girls, Alexa and Jasmine, are marginalized by their
teacher, which provides the space for discussion of teacher discretion and systemic violence due
to the girls being marginalized.

Vignette: Alexa and Jasmine

Ms. Lewis, a fourth-grade teacher, uses Cuisenaire Rods to make sure her students
understand the concepts of unitizing (treating an object as a unit or whole), partitioning
(separating a unit/whole into equal parts), and iterating (repeating a part to produce identical
copies of it) (McCloskey & Norton, 2009). In previous grades and lessons, students used
Cuisenaire Rods to compare fractions, add fractions with like denominators, and subtract
fractions with like denominators. In this lesson, Ms. Lewis builds on the previously learned
concepts to introduce adding fractions with unlike denominators. She starts by saying, “If the

brown rod is the whole, how might we solve % + i?”

The students worked on the problem individually and then in pairs. Alexa and Jasmine, two
Black girls, paired up to share their work and thinking with one another. Alexa’s representation
of the problem is below.

Alexa stated, “since brown is the whole, purple is one-half because two purples make a
brown, and red is one-fourth because four reds make a brown.”
Simultaneously, Jasmine explains her representation below.
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Jasmine stated, “the purple is the same as two reds, so two reds are one-half. That is the same
as two-fourths. So, you put another red, and the answer is three-fourths.” The discussion between
the girls continued, with both working to make sense of the representations and convince each
other why their representation made more sense.

Alexa and Jasmine were talking and referencing their representations simultaneously in a
dynamic rather than a linear pattern. Their voices were elevated, and they expressed themselves
nonverbally using hand gestures. While making her rounds to the pairs in the classroom, Ms.
Lewis said to Alexa and Jasmine, “Ladies, one at a time.” There was no acknowledgment of their
mathematical representation or the content of what was said.

When it was time for the whole group class discussion, Alexa and Jasmine enthusiastically
raised their hands to share but were not acknowledged. After three students shared, Ms. Lewis

presented a second task. “If the blue rod is the whole, how might you solve 2 + S?”

Alexa decided not to engage with the task, and Jasmine spent much time trying to get Alexa
to do the task. Alexa asked, “Why should I do it? . . . she not gonna call on us.” Jasmine
responded, “that don’t matter . . . come on, just do it.” After a few moments, Ms. Lewis made her
rounds to Alexa and Jasmine and noted that neither had started the second task. Ms. Lewis
stated, “I need you, ladies, to get started and follow directions.” Jasmine started representing the
task with the Cuisenaire Rods, while Alexa decided not to engage.

As I reflect on Alexa and Jasmine’s positioning in Ms. Lewis’ classroom, I wonder if the
girls’ discourse pattern was perceived as not competent. As a result, Alexa felt marginalized and
disconnected. What if Ms. Lewis had led by getting a sense of the girls’ mathematics
understandings, rather than focusing on the ways the girls were engaging? If Ms. Lewis had
taken this approach, would Alexa have continued to stay engaged throughout the lesson? Alexa
and Jasmine’s discourse patterns are informed by their experiences within the Black community.
This chapter challenges readers to examine the intersections between discourse patterns informed
by communal experiences, teaching practices, and systemic violence.

Mathematical Discourse, Systemic Violence, and Discretionary Spaces

There is widespread agreement on the role of mathematical discourse in positively impacting
students’ mathematical experience. Promoting and valuing students’ participation in
mathematical discourse is a way of positioning them as mathematically competent (Berry, 2018).
Mathematical discourse involves several practices, such as asking and answering questions,
exchanging mathematical representations and ideas, and constructing, evaluating, and refining
arguments, among other methods. The use of mathematical discourse practices allows students to
demonstrate their mathematical understanding and to connect with other students. However,
mathematics teachers must be mindful of how focusing on discourse practices to the exclusion of
mathematical and cultural understanding and experiences can position students as incompetent.
In the vignette, Ms. Lewis focused on discourse without acknowledging Alexa and Jasmine’s
mathematical understanding. She responded to how the girls engaged in discourse rather than
their mathematical understanding reflected in their discourse.

Even when focusing on mathematical understanding for discourse, students may be
positioned as “at-risk.” For example, constructing viable arguments and critiquing others’
reasoning are practices used in mathematics teaching that might have risk-taking implications for
students. Constructing viable arguments and critiquing others’ reasoning are practices that, when
performed outside the mathematics classroom, may put historically excluded students,
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specifically Black students, at risk of negative consequences. When Black students construct
arguments and critique the reasoning of those in authority or engage in this practice outside of
mathematics classrooms, educators must consider the potential consequences. Argumentation
may involve the projection of voice, tone, positioning of bodies, and proximity. These forms of
engagement may be considered deficit if there is little understanding of social and cultural
contexts for argumentation. In preparing teachers it is important to convey that there may be
teaching practices that position students as “at-risk.”

The potential risk for Black students engaging in argumentation occurs when their ways of
engagement do not align with expected norms for participating in this type of discourse, creating
the potential for negative consequences. Alexa and Jasmine’s discourse patterns were not aligned
with Ms. Lewis’ expectations for students’ participation in discourse. Many Black students come
from communities where argumentation is non-linear and can be perceived as loud and
aggressive, with several people talking simultaneously while engaging with one another. The
assumption may be that no listening is occurring if multiple people are talking simultaneously.
Such an assumption ignores the experiences and resources students bring from their
communities. This argumentation pattern is inconsistent with turn-taking, where one person
speaks while others listen, with everyone using “inside voices.” Policing argumentation based on
assumptions and a specific pattern of discourse ignores that students may be highly engaged in
mathematics. Understanding the assumptions and argumentation patterns helps teachers
recognize that discourse in some communities is dynamic and multi-tiered.

Research in mathematics education reveals that Black students often face devaluation,
inequity, exclusion, and violence (Battey, 2013; Berry, 2008; Joseph et al., 2019; Martin, 2015;
McGee & Martin, 2011). In everyday language, “violence” is primarily defined as physical
aggression against a person or group (Leonardo, 2013). In this context, violence is used to
describe the emotional and psychological acts occurring in spaces where students feel
disconnected and marginalized. Although this type of violence may not result in physical harm, it
is still considered as such due to its detrimental effect on an students emotional and
psychological well-being. The experiential aspects of violence in mathematics for historically
excluded students can result in teaching and learning that lead to little or no engagement in
activities that promote reasoning. In the second task in the vignette, Alexa chose not to
participate because she felt she had not been acknowledged for her mathematical thinking,
resulting in her feeling disconnected. An argument can be made that in this scenario, Alexa
experienced violence.

Many Black students come to schools and classrooms with contexts rooted in the culture and
traditions of the Black experience (Berry, 2020). Consequently, educators must know and
understand Black students’ resources and find ways to incorporate these into mathematics
teaching and learning. Considering Alexa and Jasmine’s perspectives in the vignette, it is
plausible that their discourse pattern might be rooted in their cultural context and familiar
traditions. Unfortunately, classroom teaching practices too often ignore context and traditions
familiar to students and default to normalizing whiteness as the source of standard practices. This
does not imply that all such practices are detrimental to Black students; however, it is necessary
to understand how classroom practices differentially impact students’ experiences.

Teachers make daily decisions in classrooms that have a significant impact on their students'
experiences. According to Ball (2018), these decisions are made in what he refers to as
"discretionary spaces." In mathematics, discretionary spaces include but are not limited to task
selection, means of engagement, positioning of students, and decisions about discourse. Ball
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(2018), argues that discretionary spaces are driven by both policies and the autonomous
discretion of teachers. For example, policy-driven practices might require specific teaching
practices and resources, test preparation strategies for standardized tests, and standardizing
content coverage through the narrow use of a pacing guide. The tensions between policy-driven
teaching practices and teacher autonomy create what Ball (2018) described as a paradox of
constraint and discretion in teaching.

Constraint teaching while positioned to disrupt inequities, can also restrict teachers’ use of
their professional judgment through standardization, and impede efforts to make schools
contextually and culturally responsive. Discretion in teaching can make it possible to teach in
contextually sensitive and culturally responsive ways and enable teachers to connect the school
to the world, but it can also allow marginalization and other forms of oppression to flow into
schools. Thus, Ball’s (2018) paradox suggests that there are nuanced spaces necessary for both
constraint and discretion in teaching to address systemic violence.

Ms. Lewis used a district-level mandated curriculum in her classroom that incorporated many
teaching strategies supported by the National Council of Teachers of Mathematics (NCTM,
2020). For example, the curriculum incorporated mathematical discourse strategies that
encourage students to provide reasoning and justifications for their mathematical thinking. While
one can argue that using the curriculum and its materials are policy-driven, implementing those
practices was at Ms. Lewis’ discretion. It was clear that Ms. Lewis followed the basic outline of
the lesson as prescribed in the curriculum materials. However, her decision not to acknowledge
Alexa and Jasmine was at her discretion. The paradox is that the curriculum was designed to
provide a high-quality mathematics experience for students, but the implementation can lead to
disconnection and marginalization.

Every classroom is fertile with opportunities to elevate or stifle students through various
modes of participation, valuing their thinking, and building community. Ball (2018) unpacks
micro-moments in which teachers send implicit and explicit messages to students through
decisions made in discretionary spaces. For some students, discretionary spaces serve as a source
of systemic violence. Systemic violence can address behavior, position students’ mathematical
competency, and relate to culture and language in mathematics teaching. One way to disrupt
systemic violence is to focus on students’ humanity, cultural ways of knowing, and experiences
that can create opportunities for engagement through mathematical discourse.

Leading with Mathematics

Let’s ponder how the lesson would have been different if Ms. Lewis had focused on
mathematics instead of how Alexa and Jasmine engaged with one another. Instead of saying,
“Ladies, one at a time,” what if Ms. Lewis had said, “Tell me about your representation” or
“Describe your Cuisenaire Rods”? These questions suggest that leading with mathematics
creates opportunities for both the teacher and the learner. One major takeaway from the vignette
when preparing teachers is to get them to think about how they can lead with mathematics rather
than violence. Leading with mathematics focuses on pedagogical choices that position students
as competent, experts, and safe. Teachers use questions to elevate students’ mathematical
thinking and representations rather than focusing solely on behaviors and how students are
engaging in discourse while excluding mathematics. Positioning students as competent, experts,
and safe demonstrates the discretionary spaces teachers use as part of their professional judgment
to diminish and eliminate systemic violence and psychological, cultural, and spiritual harm to
students. When teachers engage in discourse practices to support positive identity development,
build community, and give students autonomy to engage in mathematics using the resources they
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bring to the classroom, they can reflect on the impact of their practices on students’ well-being.
Reflecting on this vignette should push mathematics teacher educators to consider how to
prepare teachers to use spaces of discretion.

References

Association of Mathematics Teacher Educators (AMTE). (2020). Standards for Preparing Teachers of
Mathematics:(black+ White Version). Information Age Publishing, Incorporated.

Ball, D. L. (2018, April). Just dreams and imperatives: The power of teaching in the struggle for public education. In
Presidential Address to the American Educational Research Association Annual Meeting, New York (Vol. 19).

Berry, R. Q., II1. (2008). Access to upper-level mathematics: The stories of successful African American middle
school boys. Journal for Research in Mathematics Education, 39(5), 464—488.

Berry, R. Q., I1I. (2018, July). Positioning students as mathematically competent [NCTM blog post].
https://www.nctm.org/News-and-Calendar/Messages-from-the-President/Archive/Robert-Q -Berry-
[1I/Positioning-Students-as-Mathematically-Competent/

Berry, R. Q., I1I. (2020, February). How do we help teachers teach math to Black kids? My response [NCTM blog
post]. https://www.nctm.org/News-and-Calendar/Messages-from-the-President/Archive/Robert-Q -Berry-
[11/February-2020/

Berry, R. Q., I1I, Ellis, M. & Hughes, S. (2014). Examining a history of failed reforms and recent stories of success:
Mathematics education and Black learners of mathematics in the United States. Race Ethnicity and Education,
17(4), 540-568. doi:10.1080/13613324.2013.818534.

Civil, M., & Khan, L. H. (2001). Mathematics instruction developed from a garden theme. Teaching Children
Mathematics, 7(7), 400 — 405.

Howard, T. C., & Milner, H. R. (2021). Teacher preparation for urban Schools. In H. R. Milner & K. Lomotey
(Eds.), Handbook of urban education (2nd ed., pp. 221-237). Routledge.

Joseph, N. M., Hailu, M. F., & Matthews, J. S. (2019). Normalizing Black girls’ humanity in mathematics
classrooms. Harvard Educational Review, 89(1), 132—155.

Leonardo, Z. (2013). The story of schooling: Critical race theory and the educational racial contract. Discourse:
Studies in the Cultural Politics of Education, 34(4), 599-610.

Martin, D. B. (2015). The collective Black and Principles to Actions. Journal of Urban

Mathematics Education 8(1), 17-23.

Martin, D. B. (2019). Equity, inclusion, and antiblackness in mathematics education. Race Ethnicity and Education,
22(4), 459-478. https://doi.org/10.1080/13613324.2019.1592833

McCloskey, A. V., & Norton, A. H. (2009). Using Steffe’s advanced fraction schemes. Mathematics Teaching in the
Middle School, 15(1), 44-50.

McGee, E. O. & Martin, D. B. (2011). “You would not believe what I have to go through to prove my intellectual
value!” Stereotype management among academically successful Black mathematics and engineering students.
American Educational Research Journal, 48(6), 1347—1389. doi:10.3102/0002831211423972.

Moll, L. C., & Gonzalez, N. (2004). Engaging life: A funds of knowledge approach to multicultural education. In J.
Banks & McGee Banks (Eds.), Handbook of research on multicultural education (Second edition) (pp. 699 —
715). NY: Jossey-Bass.

Mukhopadhyay, S., Powell, A. B., & Frankenstein, M. (2009). An ethnomathematical perspective on culturally
responsive mathematics education. In B. Greer, S. Mukhopadhyay, A. B. Powell, & S. Nelson-Barber (Eds.),
Culturally responsive mathematics education (pp. 65 — 84). New York, NY: Routledge.

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all.
Reston, VA: NCTM.

National Council of Teachers of Mathematics (2018). Catalyzing Change in High School Mathematics: Initiating
Critical Conversations. Reston, VA: NCTM.

National Council of Teachers of Mathematics (2020A). Catalyzing Change in Early Childhood and Elementary
Mathematics: Initiating Critical Conversations. Reston, VA: NCTM.

National Council of Teachers of Mathematics (2020B). Catalyzing Change in Middle School Mathematics:
Initiating Critical Conversations. Reston, VA: NCTM.

Ottmar, E. R., Rimm-Kaufman, S. E., Larsen, R. A., & Berry, R. Q., III (2015). Mathematical knowledge for
teaching, standards-based mathematics teaching practices, and student achievement in the context of the
responsive classroom approach. American Educational Research Journal, 52(4), 787-821.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

58



WELCOME TO THE WORLD OF MATHEMATICS -- WHERE ANYTHING IS
POSSIBLE!

i BIENVENIDO AL MUNDO DE LAS MATEMATICAS, DONDE TODO ES POSIBLE!

Mitchell J. Nathan
University of Wisconsin—Madison
MNathan@wisc.edu

In my Keynote Address to PME-NA 45, I offer an embodied framework for naming what makes
mathematics powerful for mathematicians and scientists, yet intractable for many learners. The
essential claim is this: Students reside in the Real World, where math is grounded, embodied and
meaningful, while mathematics resides in the ungrounded, disembodied realm of the UnReal
World. To make all educational experiences meaningful, I consider ways to prepare students to
be tourists to the UnReal World, such as progressive formalization and immersion in eXtended
Reality (XR). Even so, educators must remember that learners remain citizens of the Real World
even when visiting the UnReal World. I share examples of how embodied learners make sense of
UnReal things, method of making bridges between these worlds, and concerns that entrenched
assessment practices neglect the nonverbal ways of knowing expressed by embodied learners.

Welcome to the world of mathematics -- where anything is possible! This is both wonderful
(for mathematicians) and terrible (for students). Wonderful, in that mathematics delivers a set of
formal systems with precise and powerful rules for generating (and verifying) mathematically
correct statements to model patterns, both real and imagined Terrible, because the truths that are
generated are detached from the Real World and frequently defy the intuitions and expectations
students have developed from their lived experiences. I offer this frame because my scholarship
is positioned with a guiding value: All educational experiences should be meaningful to
students. I arrive at this based on ethical considerations that educational institutions must be
committed to improving students’ lives and futures, and based cognitive considerations that
meaningful information is more readily accessed, retained, and applied (Bransford et al., 2000). I
refer to this focus on meaningful learning as achieving a grounded understanding (Nathan,
2014). Ideas and symbols that are abstract and unfamiliar become grounded for learners when
they are connected to one’s lived and felt experiences, including those ideas and symbols that are
embodied through one’s perceptions, actions, and social and cultural practices.

1. Students Reside in the Real World; Mathematics in the UnReal World

Mathematics education encounters an apparent enigma: If people naturally do math as they
go about their lives, what makes learning math so difficult? The quandary falls away when we
recognize that the math people do is what I call Grounded and Embodied Math, or GEM. It is
the math that people can do because as embodied beings, people are grounded in their lived,
contextually bound experiences. This is the mathematics of the Real World (RW) where people
-- myself included! -- actually reside. Here in the RW, things have mass, and extent; operations
take time and energy; capacities are limited, space confined. Hardly anything (perhaps not
anything) is truly linear, exact, discrete, or known with certainty. In the RW where GEM occurs,
all things are not possible. Herein lies a central challenge for math education.

One can also imagine a different world, the UnReal World (unRW), where UnGrounded
and disEmbodied Math (unGEM) is relevant and has meaning. This is a realm filled with
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dimensionless points, lines of infinite length, perfect correlations, and certainty.

1 use these terms, RW, unRW, GEM, and unGEM -- cumbersome as they may be
-- to help firm up my thoughts about the current challenges facing math education
and some of the promising pathways forward.

When we teach math, we are really asking rwo things of students:

I.  Master the formal systems of notation that describes the behavior of objects that adhere to
the rules of unGEM; and

II.  Become a resident of unRW, so that unGEM becomes meaningful.

Our educational institutions predominantly support students only with the first of these, and
largely ignores the second. I believe it is imperative that we consider both propositions because
there are many documented occasions where students can reliably apply the rules of unGEM
(consistent with Proposition I), even as the formal statements of unGEM remain meaningless
with respect to the world in which they reside (counter to Proposition II; e.g., Koedinger &
Nathan, 2004; Landy & Goldstone, 2007). More commonly, students adhere to Proposition I by
mastering unGEM even when they can demonstrate their understanding of the mathematical
ideas to which the unGEM symbols refer. This is observed, for example, when students who
speak different languages exhibit nonverbal ways of effectively expressing their mathematical
reasoning during collaboration, thus circumventing unfamiliar terms (Swart et al., 2021).

2. Preparing Tourists to the UnReal World
One reason for this disconnect is a lack of common ground between phenomena in the RW
and the unRW (Alibali et al., 2019). Naming the dichotomy between the grounded and embodied
nature of the RW and the ungrounded and disembodied nature of the unRW helped me frame my
goals in terms of an educational question: How can we support students to become competent
tourists in unRW? 1 am aware of three promising ways (which need not be mutually exclusive):

1. Progressive formalization. This builds on the natural ability of humans to incrementally
ground from concrete experiences to idealized descriptions (i.e., abstractions) of those
experiences by establishing a new grounding of previously unfamiliar ideas in successive
iterations. For example, manipulating physical objects (i.e., performing operations on
RW objects) often provides the necessary grounding when first encountering numbers,
while numbers later ground arithmetic operations, arithmetic comes to ground algebraic
expressions, and so on. Realistic Mathematics Education (Gravemeijer & Doorman,
1999; Van den Heuvel-Panhuizen & Drijvers, 2020) and Concreteness Fading (Bruner,
1966; Fyfe et al., 2014; Ottmar & Landy, 2017) are two approaches to progressive
formalization in math education with substantial empirical support. These approaches
incrementally shifts RW experiences towards unGEM of unRW by successively stripping
away the perceptual richness of RW actions and objects, so they come to serve as
increasingly idealized representations of the original experience.
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2. Professional Vision. Changes in one’s perceptions and language through instruction
enables one to see and describe RW phenomena through a lens of unGEM (Goodwin,
1994; Stevens & Hall, 1998). Powerful examples of this are seen in Bob Moses’ Algebra
Project (Moses & Cobb, 2002), Learning Along Lines (Ma, 2016; Taylor, 2017), and
Dallas Math Walks (Wang & Walkington, 2023). These approaches brings unGEM into
RW by grounding unRW concepts in students’ lived perceived and embodied
experiences.

3. Immersion in Microworlds. This invites learners into spaces where objects only behave
according to rules of unGEM. The includes approaches with varying degrees of
immersion, from tablets that present manipulable mathematical objects for number
(TouchMath; Sinclair & Heyd-Metzuyanim, 2014), algebraic expressions (Graspable
Math; Ottmar et al., 2015), and geometric objects (Carbri, GeoGebra), to eXtended
Reality (XR) environments (including VR and AR) that sensorially immerse one in
unRW spaces (Dimmel et al., 2023; Johnson-Glenberg & Megowan-Romanowicz, 2017;
Walkington et al., 2022). These approaches puts residents of RW in unRW to adopt the
practices of unGEM; and, ideally, reflect upon those practices when they return to RW.

Each of these approaches rests on the amazing plasticity of the human neural system, and a
realization that with the appropriate sensorimotor experiences, we are able to (temporarily)
realign our expectations for how things ought to behave in the world. Examples such as the
rubber hand illusion (National Geographic, 2015), illustrate the range of situations to which
humans are able to adjust.

3. We Remain Citizens of the Real World Even When we Visit the UnReal World

As educators and educational researchers, it is important to keep in mind that people are
inclined to apply the rules and expectations that have successfully guided their RW experiences
even when visiting the unRW. To illustrate, humans -- mathematicians included, LOL! -- are
inclined to interpret phenomena of the unRW through a GEM lens. Thus, numbers are locations
in space, operations are physical actions on mathematical “objects,” limits are fictive motion
(Lakoff & Nuiiez, 2000), logic is a sequence of cause and effect, and set theoretic statements are
idealizations of containers for collecting, categorizing and classifying objects (Johnson, 1980). In
visual art, M. C. Escher’s Ascending and Descending, intrigues us because it offers a twist
(literally and actually) on our experiences of gravity the RW. Even the Theory of Relativity,
arguably the paradigmatic case of thinking “outside the box,” is said to have its origin in the
mundane nature of Einstein’s contemplations of the variations in train schedules across Europe
as he commuted to and from his job at the patent office in Bern (Galison, 2004). It is not that
people are unable to perceive unGEM objects, but that they will project their RW interpretations
onto objects from unGEM. We see this abound from work analyzing students’ math errors (e.g.,
Landy & Goldstone, 2007; Koedinger & Nathan, 2004; VanLehn, 1990) demonstrating that these
errors often arise when people try to make unGEM objects conform to their RW. Thus, it is
important to acknowledge -- and accommodate -- learner’s natural tendencies.

This should not be taken to suggest that people are basically literal thinkers, or lack
imagination. Contrarily, people exhibit great imagination in their contributions to science,
technological innovation, and the arts. Rather, these realizations highlights how people are
naturally inclined to use their experiences to rationalize problem spaces, and, further, to point out
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that even people’s imagination is not limitless; it is tethered to one’s RW, embodied experiences.
Artists such as Escher (1972; see note 1) in the visual realm, and Pink Floyd in music (Waters,
Wright, Mason, & Gilmour, 1970; see note 2) demonstrate that even when people imagine
behaviors that violate the laws of the RW, they do so while standing on terra firma.

While we all live in the RW, there are actual residents of the unRW: ChatGPT# (currently at
version 4) is one example, and so is your smartphone. These residents are comfortable with
living in ungrounded, formal spaces. Borges’ (1962/ 2007) Library of Babel is one such space.
Borges imagined an institution that contains every conceivable book by generating every
orthographic variations of the alphabet, regardless of whether it is readable or accurate (e.g., the
entire contents of my future talk). Personally, as a trained mathematician, I like to visit unRW
and partake in unGEM, but as a trained engineer, I do not wish to reside there permanently.

One of our superpowers as human beings is our ability to process all events from a grounded
and embodied perspective. Just because humans have developed strings of symbols to represent
systems of language, culture, art, and mathematics, does not mean that we take comfort in their
arbitrary associations to ideas and events. Unlike Al, we do not simply store these formalisms
verbatim or process them blindly. Rather, people project meaning onto these symbol systems
because of their cultural associations, embodied affordances, and the mental simulations they
invoke (Bransford et al., 1972; Gallese & Sinigaglia, 2011; Glenberg & Robertson 2000). This
tethering to worldly experiences is one of the advantages people have over Al systems and it is
one reason why humans excel in expressing themselves through art and mathematics. Practice
and feedback from the RW affords humans opportunities to get better at accurately recognizing
and generating images that represent RW objects. Ironically, generative Als trained on synthetic
data produced by other generative Als rapidly degrade with practice and feedback, and the
images they produce become further removed from real-looking objects (Alemohammad et al.,
2023). unGEM, operating in its own self-referential world, becomes self-consuming and
increasingly absurd (Eisenstein, 2023).

4. Final Thoughts: Assessing the Understanding of Grounded and Embodied Learners

Since its inception, the PME community has acknowledged a key insight by focusing on the
Psychology of Mathematics Education. Educational practitioners and leaders, working with
members of the education research community, must bridge GEM and unGEM. At its core, these
bridging activities necessitate a continued understanding of the psychological needs of students
and teachers to adopt the reasoning and practices of an unReal World that has tremendous utility
for modeling the RW and gifting it with innovations that further the Public Good. Existing and
emerging educational practices and technologies offer promising inroads, but ultimately depend
upon an understanding of human thinking, human development and human behavior.

This is made imminently clear by examining a persistent misalignment between our
emerging conceptualizations of student knowledge and current knowledge assessment practices.
Once we recognize the grounded and embodied nature of people’s mathematical thinking and
learning, including students’ nonverbal and nonsymbolic ways of knowing and expressing their
thinking, it is clear that formative and summative knowledge assessment practices must follow
suit. Fortunately, teachers who themselves engage in and reflect upon their own embodied
mathematical behaviors seem to become more inclined to notice students’ nonverbal ways of
expressing their mathematical reasoning and to address students’ embodied behaviors in their
formative assessment practices (Sung, Swart & Nathan, 2021). Considerations of both formative
and summative assessment practices designed with grounded and embodied learners in mind
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offer some of the most promising next steps for advancing mathematics education for all
learners.

Author Notes

Note 1. M. C. Escher’s lithograph Waterfall (Dutch: Waterval, Escher, 1972) gives the
appearance of a normal flow of water that endlessly cycles upward or downward. The
watercourse uses two Penrose triangles to create the illusion. The Penrose triangle was designed
by Oscar Reutersvérd in 1934, and independently discovered by Roger Penrose in 1958 (Penrose
& Penrose, 1958).

Note 2. Pink Floyd’s (1970) “Echoes” is a composition on the Meddle album that runs over
23 minutes. The composers used the Shepard-Risset Glissando, a variant of the Shepard Tone
created by psychologist Roger Shepard (1964), which can be heard at the end of composition,
beginning just after the 22-minute mark in the Meddle version,
https://www.youtube.com/watch?v=KBca3xf-j3o0.
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Pedagogical content knowledge (PCK) has been a topic of much interest for the last 37 years
(Duni, 2019). When trying to understand teacher knowledge, in introducing measures of central
tendency (MCTs) in middle school, finding a framework to adapt to this work was difficult. The
problem is that most frameworks are too general and do not lend themselves to the questions
being posed. So, the lack of specificity in the existing frameworks forced me to the create a new
conceptual framework to analyze teacher knowledge.

As established by previous research (Ball, Thames, &Phelps, 2008; Hill et al., 2008; Groth,
2013), I conceptualized PCK as the knowledge of curriculum (KC), knowledge of content and
students (KCS), and knowledge of content and teaching (KCT). What I contributed and
elaborated on, was the specific components of each of knowledge variate as it pertains to
teaching MCTs in middle school statistics. I analysed curriculum documents (NCTM, 2000;
CCSSO0, 2010), policy documents (Franklin et al., 2007; Franklin et al., 2015), and research
(Mokros & Russel, 1995; Strauss and Bichler, 1998; Tarr & Shaughnessy, 2003; Zawojewski &
Shaughnessy, 2000) pertaining to how students learn, and how teachers teach MCTs in middle
school statistics (Duni, 2018). From that literature review I compiled the different components of
the framework (that I will present here) that [ used to analyze teachers’ pedagogical content
knowledge.

Components

KC emphasizes the need for students to understand the differences and choose between the
different MCTs, and that students need to have a conception of the mean that does nor revolve
around the algorithm of add-and-divide. Kader et al. (2013) and NCTM (2000) recommended the
concept of the fair share and balance point as good introductions to the mean. NGA & CCSSO
(2010) recommended that students should also understand that all three MCTs are used to
represent the data with a single number, and that students should make connections between
MCTs and variability.

KCS incudes mostly conceptions and misconceptions students have about finding MCTs.
Students tend to: think of minimums and maximums as outliers, ignore 0 in the data set when
computing measures of center, not order data before finding the median, use the mode in the
beginning to represent typicality, ignore mean when it is not part of the data, have difficulty
calculating weighted means, only know the mean procedurally.

Lastly, KCT included the investigative cycle at the center as well as recommendations to
connect statistics to other areas of mathematics, relying on real data, and making effective use of
technology (Franklin et al., 2007; NCTM, 2000).

This research shows that the existing overarching frameworks on PCK are useful, but they
need to be adapted to the specific work done. Having this framework allows faculty to be
specific on recommendations for teacher preparation and professional development.
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Student’s engagement in learning impacts student performance in math. Therefore, a quasi-
experimental study was conducted to investigate the impact of using story telling as a context to
teach math verses using a traditional lecture approach in a fifth-grade classroom. The control
group received traditional instruction while the experimental group received a digital
intervention that incorporated story telling. The findings revealed that using a ST approach of
teaching was more effective in enhancing students’ engagement at grade 5 in mathematics
classroom.

Keywords: Mathematical Knowledge for Teaching; Storytelling; Student’s Engagement.

The objective of this study is to investigate how storytelling could enhance behavioral,
emotional, and cognitive engagement in the math-classroom. Storytelling (ST) incorporates both
logical (i.e., what makes sense) and aesthetic (i.e., how it feels to the reader) aspects. It addresses
what make sense and how it feels. It ignites both cognitive and emotional engagement in
learning. This study investigated: How storytelling support 5" grade students’ emotional,
behavioral, and cognitive engagement in math classroom.

Integrating Storytelling with math, engages students because it provides students a
meaningful context that makes learning interesting (Lemonidis & Kaiafa, 2019; Zazkis &
Liljedahl, 2009). Therefore, students are more engaged, and they perform better in math (Moyer,
2000). There are three kinds of engagement: Cognitive (Lemonidis & Kaiafa, 2019) social
(Altieri, 2009), and emotional engagement (Goral & Gnadinger, 2006; Toh et al., 2016).
Storytelling approach in classroom have incorporate all these kinds of engagements (Marsico,
Molo, Albano, & Perin, 2019; Kim & Li, 2021). Behavioral engagement (BE) means the
observable acts of students being involve in learning (Fredricks et al., 2004; Griffin et al., 2008).
Students’ participation and efforts to perform tasks and interact appropriately are categorize as
behavioral engagement. In our framework,

A quasi-experimental design research was used to compare traditional method and
storytelling-based approach (Gribbons & Herman, 1997). Sixty fifth grade students took part in
this study and filled out a questionnaire related to behavioral engagement, cognitive engagement,
and emotional engagement. The control group participated in a traditional lecture where they
listened to a lecture, took notes, and did sample problems and the experimental group
participated in a technology-based instruction that incorporated story telling. The findings
revealed that the technology-based lessons that incorporated story telling significantly increased
student engagement.
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Objective

Mathematics is considered to be a “gatekeeper” (e.g., Douglas & Attewell, 2017), a subject
that allows some students to move forward while holding others back (Moses, Kamii, Swap, and
Howard, 1989). Students with visual impairments (SVI) are among those who are excluded from
mathematics education due to the visual nature of mathematics which can limit their access (Bell
& Silverman, 2019; Jitngernmadan, Stoger, Petz, & Miesenberger, 2017).

Teachers for students with visual impairments (TSVIs) are one source of academic support
for SVIs. However, TSVIs struggle to support SVIs in mathematics education because they often
lack mathematics education in their academic and professional development (McBride, 2020).
This poster considers what mathematical pedagogical content knowledge (MPCK) TSVIs bring
to their work with SVIs in mathematics education.

Theoretical Framework
Chick’s (2006) MPCK framework was used to analyze the data in three categories: (1)
Clearly PCK, (2) Content Knowledge in a Pedagogical Context, and (3) Pedagogical Knowledge
in a Content Context.

Methods
I conducted a 60-minute semi-structured interview with a math teacher working in a school
for SVIs. The teacher also had 15 years teaching mathematics in mainstream schools.

Results and Implications

The teacher was very purposeful in his use of Clearly PCK and of Content Knowledge in a
Pedagogical Context. For example, when working with fractions, the teacher considered whether
the student was sighted or not. For a sighted student, the teacher would use visual symbolic
representation to explain fractions. However, for a SVI, the teacher would use verbal sense-
making and specific wording to support the SVI to do fractions in their head. After the verbal
sense-making stage, the teacher would then work with the SVI on symbolic representation in
braille or large print. The teacher used Pedagogical Knowledge in a Content Context when he
encouraged SVIs to use their tools, engage with others, develop a growth mindset and positive
attitude towards mathematics, and have better access and inclusion in mathematics fields.

The study showed the differences between one teachers work with SVIs and sighted students.
The study also showed that TSVIs might focus on the visual aspects of math and the necessary
adaptations rather than focusing on SVIs’ sensemaking with or without those adaptations and
accommodations. Future work might investigate how to best support TVIs’ MPCK development
to effectively support SVIs.
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RECOGNIZING REFERENT UNIT IN FRACTION MULTIPLICATION PROBLEMS:
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Teachers’ attention and flexibility on referent unit is important to better understand fractions
and fractions operations while it is documented that teachers struggle with it. In this study, we
explored teachers’ different levels of identifying referent unit in a fraction multiplication
problem involving a drawn representation. By analyzing data from five pilot interviews with five
middle school mathematics teachers, we found out that teachers attended referent unit
differently. Moreover, their different levels of mastering referent unit related to what they view
as a whole through their thinking.

Keywords: Referent Unit, Fraction Multiplication/Division, Visual representations, Teacher
Knowledge

Backgrounds

Numerous studies have investigated the understanding of fractions among both in-service
and pre-service teachers. Given that fraction plays an important role for upper elementary and
middle school grades (e.g., CCSSM, 2010), including topics such as using visual models to
understand fraction multiplication and division, a robust teaching of this content is necessary.
Recent studies have reported that teachers having constrains on comprehension of fraction
operations and on facilitating fractions across different representations (Copur-Gencturk &
Olmez, 2022; Izsak et al., 2019; Lee, 2017; Lee et al., 2011; Lo & Luo, 2012; Philipp &
Hawthorne, 2015).
Prior Research

Recent research noted about teachers’ struggle with referent unit. For example, teachers’
attention to referent unit and their flexibility with the referent unit are considered as indicators of
understanding of fractions as well as fraction operations. Referent unit is different from unit in a
way that referent unit may change according to the situational needs, as Lee (2017) defined:
“referent units are units that are needed when numbers are embedded in problem situations.” (p.
329). Lee et al. (2011) investigated on how twelve teachers’ reasoning and understanding of
mathematical visual representations with referent unit, and they found out that the participants
lack flexibility of keeping track of “unit to which a fraction refers” (p. 204). Consistent with
them, Lee (2017) studied 111 pre-service teachers, only 12% of whom showed flexibility of
referent unit by providing “appropriate representations” (p. 345). To examine teachers’ attention
to referent unit, Copur-Gencturk and Olmez (2022) reported approximately half of their in-
service teacher participants (N=246) attended referent unit, by referring “different wholes or
unit” where 1/3 could be greater than .

While there is limited research particularly examining teacher’ understanding of referent unit,
making sense of visual representations is often adopted as a way of such kind of exploration,
such as length representations or area model representations (Izsdk et al., 2019; Lee et al., 2011;
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Orrill et al., 2008; Orrill & Brown, 2012). Those studies documented variety level of teachers’
struggle with coordinating fractional reasoning in the context of both representations.

Perspectives

Majority research demonstrated that teachers could solve fraction multiplication/division
problems by algorithm (e.g., Lo & Luo, 2012), but more importantly, they need to make sense of
it both for themselves and thus for their students. Specifically, in the case of referent unit, they
need to know how to facilitate the fractions operations in different visual representations, so that
they can help with future students’ conceptual understanding. According to Shulman (1986), it
requires not only teachers’ content knowledge (CK) but also their pedagogical content
knowledge (PCK), since PCK includes knowledge of students and making sense of different
representations to students. To explore teachers’ knowledge through this lens, we are driven by
this research question: to what extend teachers attend to referent unit when interpreting drawn
representation?

Methods

The present study involved conducting interviews with a convenience sample of five middle
school mathematics teachers, consisting of two currently practicing teachers (Kevin and Hunter)
and three recently retired teachers (Laura, Beth, and Wendy). They are all pseudonymous. Kevin
taught at a private school, while the rest of the participants were public school teachers. For two
of the retired teachers, they are considered within the context of school settings, because Beth
teaches as a long-term substitute and Wendy last taught in the 2019-2020 school year. Among
the sample, Beth was the only Black teacher, while the other four participants were white.

Each interview, conducted over Zoom, lasted approximately an hour, during which the
teachers were asked to work on tasks on Jamboard. Meanwhile, they were asked to share their
screen for both parties to show their pointers moving around or their notes or scratches while
they are thinking. Jamboard containing 19 pages of questions related to nine different situations,
with one to two questions per screen. The interviews were recorded and transcribed by Zoom,
and one of the authors reviewed and edited the transcript to ensure the accuracy of transcribed
conversation.

This work focuses on only one area model representation (figure 1) form a situation where
there are four different students’ work. We first had the teachers looked at four students’ work
separately, with a purpose of revealing teachers’ knowledge about how to make sense of each
area model representation from students’ work. Before they responded, they were informed to
consider the fraction multiplication problem 7 % %, and to solve it using an area model,
students colored in the model as shown below. Following the students’ drawing, we asked them
to solve task one with two separate questions: Where do you see % in Donald’s drawing? How
about 2/3?

Our intention for task one is to capture whether teachers can identify there are two different
wholes in this representation. Specifically, the first whole is the entire rectangular shape, we can
consider it as % [of the whole rectangle], or three blue of the whole shape, which represents the
blue-shaded parts. However, the second whole as we intended now is supposed to be the blue-
shaded parts, through which it reflected a thinking of 2/3 [of the blue shaded parts], or 2 parts of
3 blue parts represents the two orange-shaded parts.
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Data was analyzed qualitatively to determine whether each teacher successfully identified the
two different wholes as we indented to, if not, what whole did they refer to when they responded
to the two separate interview questions.

Donald

Figure 1: A student’s work of modeling 3/ 4 % 2 /3

Results

Where Did the Teachers See 3/4

All five teachers identified ¥ as the blue-shaded parts quickly. They either marked the three
blue shaded parts on Jamboard or mentioned it as the “blue lines.” Interestingly, when they
talked, they did not explicitly refer to the relationship of the blue shaded parts to the whole
rectangle. Only one teacher, Kevin, explicitly attended to the relationship of the blue section to
the whole by typing a note to himself on Jamboard saying, “Blue=3/4 of whole.”

Regardless of their ways of indication (verbal or written), we agreed that all of these five
teachers were aware of where the 3/4 could be seen in this representation, with recognizing the
whole as the entire rectangular shape.

Where Did the Teachers See 2/3

Among five teachers, two teachers (Kevin and Laura) successfully identified 2/3 as two
orange parts of three blue parts. Kevin typed his notes on Jamboard saying, “Red [Orange] = 2/3
of blue shaded”. Laura explained, “...so the two-thirds are the orange lines going this way, and
the two-thirds doesn’t include this one [the top right blue part], so it is 2/3 of the blue lines.”

The other three teachers explicitly expressed confusion when they trying to identify 2/3. For
example, Wendy mentioned that the denominator “is confusing,” because she thought the student
did not realize “[the whole rectangular shape] is not partitioned into thirds.” Similarly, Hunter
said, “I honestly don’t see the two-thirds... I would like to cut it into three pieces, but I don’t see
where the two-thirds are in his drawing.” Further extending the idea of partitioning that Hunter
introduced, Beth said, “...where is [2/3]? Um...In order to multiply this [2/3], I would have done
it [the whole rectangle] into twelfths, because I could see it a little better: 6/12.”

All three of these teachers (Wendy, Hunter, and Beth) were unable to identify where the 2/3
appears in the representation and they also all seemed to be searching for 2/3 of the original
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rectangle, rather than 2/3 of the 3/4. Wendy and Hunter wanted to partition the entire rectangle
into fourths or into thirds. Thus, we interpreted that they were not shifting to think about a
different whole when they were looking for 2/3. Even though Beth gave an alternative way of
partitioning the entire rectangle into a common denominator (twelfths), she was trying to find
both % and 2/3 in the original rectangle, rather than attending to the whole to which each fraction
referred. In another words, she was thinking of the same whole.

In contrast, Kevin and Laura were smoothly and explicitly, transitioning from the-entire-
rectangle-as-a-whole into the blue-shaded-part-as-a-whole. Thus, we concluded that, two of the
five teachers showed some flexibility of referent unit as they successfully identified what the unit
is based on the situational needs.

Discussion

The present study is consistent with prior research about teachers struggle with referent unit
(e.g., Izsék, 2008) and provide more evidence on the difficulties teachers have on identifying
referent unit when they deal with the area model for fraction multiplication situations. Our
findings revealed that it was not anomalous that the given area (rectangle) was conceived as the
whole by teachers even when the discussion should have been about the blue section of the
rectangle. This is the same phenomenon described by Izsak (2008) who drew from Steffe’s
(1994; 2003) work with children to explain the issue as the teacher not attending to two levels of
units: the whole rectangle and the new “whole” comprised of the three blue boxes.

Interestingly, as one of four different student representations in this pilot task, the researchers
had anticipated that Donald’s drawing would be relatively clear for teachers. However, it seemed
that the other representations, which were all area models partitioned into more equal pieces
were easier overall. Additional analysis needs to be completed to determine the extent to which
the teachers attended to the shifting unit in the other drawn representations. We ponder whether
this task, with its four unique area models, might differentiate teachers’ understanding of referent
units.

By illustrating the importance of looking at whether teachers attended to referent units in a
drawn representation situated in fraction multiplication problem, we hope to contribute on the
existing research about teachers’ attention as well as flexibility of referent unit.
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Objective

For decades, there has been a call in mathematics teaching and learning to focus on
mathematical structures. This was a pillar of “new math” (Phillips, 2015) and part of the way the
National Council of Teachers of Mathematics (NCTM) defined mathematics in both sets of
standards (NCTM, 1989, 2000). It is also a Standard for Mathematical Practice in the Common
Core (CCSSI, 2010). However, little research considers teachers’ knowledge of structural
relationships. Certainly, it has been posited that teachers who understand mathematical structure
will be more capable of supporting students in learning about them (Mason et al., 2009). This
conjecture has neither been tested nor explored in terms of the extent to which teachers are aware
of structural relationships.

Here, we report a pilot study aimed at understanding how practicing teachers understand
invariance as it relates to fractions. While invariance is often considered for proportional
reasoning situations, it is rarely a focus of discussion or instruction for fractions. Thus, we
wondered how teachers might make sense of novel tasks that asked them to attend to aspects of
invariance with fractions.

Response to Issue

This poster reports an exploratory study undertaken as a pilot of an interview instrument. We
interviewed a convenience sample with five current (Kevin and Hunter) or recently retired
(Laura, Beth, and Wendy) middle school mathematics teachers. (All names are pseudonyms)

We considered how the teachers responded to a single item contrasting fractions and
proportions by considering how two different drawings (one area model and one with shaded
dots) might show that 2/3 is equivalent to 8/12. One of the main take-aways was that these
participants did not attend to the relationship of the numerator to the denominator in their
sensemaking about equivalence. Interestingly, the teachers also had different conceptions of the
referent unit as they interpreted the drawings, as well.

Given that this was only one task considered by five participants, we are careful not to
overstep our claims. More questions need to be asked of more teachers to understand this issue.
However, the work reported here supports our assertion that teachers may not attend to structural
aspects of fraction situations when solving for themselves. Further, it suggests that research is
warranted in this area.

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant
No. 2201125. Any opinions, findings, and conclusions or recommendations expressed in this

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

77



material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

References

Common Core State Standards Initiative (2010). Common core standards for mathematics.
https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf

Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structure for all. Mathematics Education
Research Journal, 21(2), 10-32.

National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics.
National Council of Teachers of Mathematics.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. National
Council of Teachers of Mathematics.

Phillips, C. J. (2015). The new math: A political history. The University of Chicago Press.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

78



TEACHERS’ KNOWLEDGE AND USE OF VISUAL FRACTION REPRESENTATIONS

Karl W. Kosko Christine K. Austin Maryam Zolfaghari
Kent State University Kent State University Kent State University
kkoskol@kent.edu caustil 7@kent.edu mzolfagh@kent.edu

The purpose of this study was to examine the relationship between in-service teachers (ISTs’)
reported use of manipulatives and their pedagogical content knowledge for teaching fractions
(PCK-Fractions). The study’s results indicated no significant relationship between ISTs’
reported use of visual representations and their PCK fractions. However, trends were observed
across ISTs’ education, taught grade levels, PCK, and use of visual representation. The
implications and future needs for the study are discussed in the paper.

Keywords: Mathematical representations; instructional activities and practices; teacher
knowledge.

Mathematical Knowledge for Teaching (MKT) involves the content and pedagogical content
knowledge used by teachers to engage in pedagogy in its various forms (Ball et al., 2008; 1zsak,
2008). Over the past two decades, research on MKT has shown various factors are associated
with lower and higher MKT. For example, while years of experience alone are positively
associated with higher MKT scores (Copur-Gencturk & Li, 2023; Hill, 2010), a stronger
association is typically found when focusing on experience in contexts where specific concepts
are taught (Herbst & Kosko, 2014; Hill, 2010; Zolfaghari et al., 2022). Various other factors
have been explored including those associated with indicators of content knowledge (Copur-
Gencturk & Li, 2023; Hill, 2010; Ko & Herbst, 2020) and pedagogy used (Hill et al., 2008;
Jacobson et al., 2021; Morin, 2013). This paper focuses on one particular pedagogical approach
often posed as associated with higher MKT: use of visual representations and manipulatives.

Manipulative use has long been tied with definitions of MKT. For example, Hill et al. (2005)
describe developing items of specialized content knowledge so that teachers could “show or
represent numbers or operations using pictures or manipulatives...” (p. 388). Later validating the
Mathematical Quality of Instruction rubric, Hill et al. (2008) included use of representations,
including manipulatives, as a category that aligned with MKT scores. Examining teachers” MKT
for fraction multiplication, Izsak (2008) noted a relationship between teachers’ skill and
frequency in using visual representations for fraction arithmetic and their demonstrated MKT.
Morin (2013) found that the relationship was particularly evident in one teacher’s incorporation
of a concrete to figurative to abstract progression for students’ meaning-making. This included
knowledge of varying manipulatives that allowed for adjusting activities should one
representation not facilitate the connections to underlying concepts the teacher sought.
Examining the topic more explicitly, Jacobson et al. (2021) found that teachers’ evaluation of
visual representations corresponded with their demonstrated pedagogical content knowledge.
Despite the common assumption of manipulative use being tied to higher MKT scores, the bulk
of such scholarship is qualitative. Thus, the purpose of this exploratory study is to examine
whether and to what degree Inservice teachers’ pedagogical content knowledge for teaching
fractions (PCK-Fractions) is associated with their reported use of manipulatives for teaching
fractions.
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Pedagogical Content Knowledge for Teaching Fractions

Research on MKT for fractions is common, with studies providing evidence for a lack of
content knowledge amongst preservice and inservice teachers (Erdam, 2016; Huang et al., 2009;
Izsék et al., 2019). For example, Izsék et al. (2019) reported many teachers were unable to
coordinate three levels of units — an important conceptual level for understanding fraction
multiplication and division. Such reasoning is also important as Izsak (2008) observed teachers’
ability to coordinate such units corresponded with how they used visual representations.
Similarly, Thurtell (2019) found that preservice teachers who had less robust content knowledge
of fractions were limited in their use of visual representations. Thurtell (2019) suggested that an
overreliance on symbolic representation as an ideal for representing mathematics was at fault.
Rather, “the undercurrent of calculational views evident in the preservice teachers’ learning
approaches were reflected clearly in their teaching approaches” (p. 305) despite dispositions
generally supportive of using visual representations. More recently, Zolfaghari et al. (2022)
found that preservice teachers who have field experiences in upper elementary grades (3-5)
demonstrated higher PCK for fractions. Key in this finding is that Zolfaghari et al. (2022)
defined higher PCK as an ability to assess more sophisticated unit coordination in students’
reasoning. Taken altogether, scholarship on teachers’ MKT for fractions suggest content
knowledge is generally weaker than it should be. However, preservice teachers would benefit
from explicit experience in upper elementary classrooms (Zolfaghari et al., 2022) and by
interrogating an overreliance on symbolic representations for teaching fractions (Thurtell, 2019).
Visual Representations and Manipulatives

Visual representations are commonly advocated for the teaching and learning mathematics
(Bolden et al., 2015). Visual representations are defined as both concrete and pictorial, with
common mathematical visuals including groups of and array models for multiplication (Kosko,
2018) and fraction strips, number lines, and pie charts for fractions (Cramer et al., 2008; Tung-
Pekkan, 2015). Different studies have reported teachers’ usage of visual representations at
various grade levels. For instance, surveying 603 primary and 336 secondary teachers, Howard et
al. (1997) found that most teachers felt confident in using visual representations. However, the
use of visual representations was significantly lower in secondary mathematics classrooms
compared to elementary classrooms. Similarly, Gilbert and Bush (1988) surveyed 220
elementary teachers and found that as teachers’ grade level increased, their use of visual
representations decreased. Examining 820 teachers from K—10, Swan and Marshall (2010) found
teachers’ reduced use of visual representations was due to the complexity of topics taught.
Rather, “teachers associate the use of mathematics manipulatives with concept formation and
hence to be abandoned when the mathematics becomes more complex.” (p.17). These findings
were corroborated by similar surveys (O’Meara et al., 2020; Uribe-Florez & Wilkins, 2010).
Additionally, O’Meara et al. (2020) found that teachers’ use of manipulatives was negatively
associated with a lack of training available in how to use them.

Method
Participants & Measures (1 paragraph)

The sample consisted of 47 in-service teachers (ISTs) who taught in Midwestern schools
districts. Much of this sample identified as white (n = 45), female (n = 36), and had an average of
18.23 years of teaching experience. Our sample consisted of 12 third grade, 18 fourth grade, 6
fifth grade, and 11 sixth grade teachers. Of the 47 participants, 37 reported to have a master’s
degree which includes a master’s in general education/curriculum (n = 10), elementary education
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(n = 3), secondary mathematics (n = 2), literacy/reading (n = 10), administration/leadership (n =
6), education psychology (n = 2), and education technology (n = 1).

Participants were recruited via email from nearby school districts that taught grades third
through sixth and were asked to participate in a survey to be completed on Qualtrics. The survey
consisted of 14 pictures of fraction manipulatives that the ISTS had to indicate if they were
aware of (see Table 1). If they indicated that they knew the manipulative they were then asked
how often they used the manipulative (physical and virtual) on a Likert scale (0 = Never, 1 =
Rarely, 2 = Sometimes, 3 = Often, 4 = Always). Then, the ISTs were given a Pedagogical
Content Knowledge of Fractions instrument (PCK-Fractions) that was designed to measure a
teacher’s level of PCK for the teaching and learning of fractions of upper elementary
mathematics (Zolfaghari et al., 2021; 2022). The instrument consisted of 17 multiple choice
items that have the teachers look at a student’s mathematical work and assess their reasoning.
Analysis & Results

ISTs demonstrated higher PCK-Fraction scores (M = 0.35, SD = 0.96), which is to be
expected when considering the measure assesses teachers from preservice to inservice (see
Zolfaghari et al., 2022). On average, most of the sampled ISTs are aware of various fraction
manipulatives (Table 1). However, fewer participants knew of using Geoboards (n = 24) or
playdoh (n = 5) for teaching fractions. Spearman Rho correlation coefficients were calculated to
examine the relationship between ISTs” PCK-Fractions, their knowledge of various fraction
manipulatives and their reported use. To facilitate this, we created composite variables for all
visual representations (excluding symbolic numeral and symbolic number lines) for knowledge
of (0=.82, M=.72, §D=.23) and use of (0a=.83, M=1.33, SD=.61) various visual representations of
fractions. The correlation analysis indicates a strong significant relationship between the number
of manipulatives known and the average reported use (p = 0.580, p <.001). However, no
statistically significant relationship was observed between PCK-Fractions with either knowledge
(p=-0.230, p = .879) or reported use (p = -0.097, p = .516) of fractions visual representations.

Table 1: Percent of Participants who Know of Manipulatives and Average Reported Use

Know Use Know Use
Symbolic Numerals w/ Pictures 95.75% M=2.93 Counters 80.85% M=1.36
Symbolic Numerals 100% M=2.60 Fraction Tiles 74.47% M=1.30
Symbolic Number Line 97.87% M=2.50 Fraction Squares 74.47% M=1.11
Fraction Strips 89.36% M=2.11 Linking Cubes 70.21% M=1.02
Fraction Circles 93.62% M=1.89 Cuisenaire Rods 68.10% M=0.77
Tactile Number Line 80.85% M=1.51 Geoboards 51.06% M=0.53
Pattern Blocks 74.47% M=141 Play-Doh 10.64% M=0.06

Likert Use Scale: 0 = Never, 1 = Rarely, 2 = Sometimes, 3 = Often, 4 = Always

To better understand these results, we examined the potential effect of various demographic
variables that may influence teachers’ use of manipulatives. Of particular interest, we found that
the highest degree earned (bachelors or masters) had a statistically significant and negative
relationship with the use of manipulatives (p =-0.397, p = .006). Table 2 reports participants by
their highest degree earned and the grade level taught along with the average years of experience
and average reported use (0 = Never, 1 = Rarely, 2 = Sometimes, 3 = Often, 4 = Always). As
seen in Table 2, other than fifth grade, ISTs who have a master's degree, on average, reported
using manipulatives less frequently. Another interesting trend evident in Table 2 is that the
specific grade level taught appears to influence reported manipulative use, with grade 6 teachers
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reporting the lowest use of visual representations and grade 5 the highest. Unfortunately, the
relatively small sample size per subgroup in Table 2 prevented further statistical analysis.

Table 2: Average Reported Years’ Experience by Highest Degree Earned and Grade Level

Taught
Highest Degree Grade PCK Experience Use

Third M=-0.03 M=17.00 M=1.73

(n=23) SD = 0.66 SD = 6.56 SD =1.00

Bachelors Fourth M=0.22 M=15.60 M=2.08
(n=10) (n=Y5) SD=1.19 SD=11.87 SD =0.90
Fifth M=-123 M=6.50 M=1.45

(n=2) SD=1.82 SD=2.12 SD=1.06

Third M=0.43 M=13.11 M=1.07

(n=9) SD=0.72 SD = 8.45 SD = 0.46

Fourth M=0.49 M=20.46 M=1.28

Masters (n=13) SD =1.00 SD =17.68 SD =0.72
(n=37) Fifth M=158 M=25.00 M=1.68
(n=4) SD =0.39 SD = 4.69 SD =0.19

Sixth M=0.15 M=23.73 M=0.84

(n=11) SD = 0.58 SD =6.97 SD = 0.49

Discussion

Results presented here are from an exploratory study examining the relationship between
PCK for fractions and ISTs’ reported knowledge and use of visual representations for fractions.
Despite significant scholarship positing a relationship between use of visual representations and
MKT (Hill et al., 2008; 1zsak, 2008; Jacobson et al., 2021), we found no statistically significant
relationships. However, trends in the descriptive data suggest that grade level and graduate
coursework may have varying effects on visual representation use and the role of PCK. Our
study did not examine the role of content knowledge, and future work should consider this given
prior research suggesting its influence on how teachers use visual representations (Izsak, 2008;
Thurtell, 2019). Additional research is also needed to better understand how graduate work may
detract from use of manipulatives. More focus may be drawn to the concentration of such
degrees (i.e., the majority in this study were in literacy due partly to a state mandate), the quality
of degrees themselves, and so forth. One final implication from this study is that despite
knowledge of various visual representations, most teachers use such representations less than
“often” when teaching fractions. This finding is alarming, given that more effective use of
manipulatives occurs at least on a weekly basis (Uribe-Florez & Wilkins, 2010).
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Objectives
To address the need of making mathematics meaningful to all learners, I explore the research
question: How do teachers’ identities align with their movements in a small group mathematics
station? I argue that teachers communicate parts of their identities through movement. Directly
aligning with the theme, body-based movement such as gesturing facilitates learning, meaning-
making, rapport-building, and enhances students’ engagement.

Theoretical Framework

I use frameworks of embodied cognition and identity as performance. Embodied cognition is
a process through which an organism navigates its surroundings using its body and connects new
ideas and representations to prior experiences, facilitating meaning-making (Nathan, 2021;
Nufiez et al., 1999). Examples include gesturing such as pointing or tracing a triangle in the air
(Alibali & Nathan, 2012). I focus on a sociocultural lens of embodied cognition to account for
both individual and collaborative interactions (Danish et al., 2020). Next, identity as performance
is “the performance and the recognition of the self...by telling stories, joining groups, [and]
acting in a particular way at a particular time” (Butler, 1988; Darragh, 2016, p. 29). Both the
teacher’s performance and input from students inform her identity.

Methods

I apply a qualitative case study methodology (Merriam & Tisdell, 2016) to provide intensive
and holistic description and characterize movement and identity. After listening and participating
in a read-aloud in a kindergarten classroom, kindergarteners separated into integrated stations
around the classroom including a mathematics station. Using qualitative methods, I found
through transcription, coding, and thematic analysis of video and interview data that I collected
that participants made both conscious and subconscious choices with actions. Through an
interpretivist perspective, I aligned parts of my participants’ semi-structured interviews about
their identities with the movements that they performed during facilitation to extract meaning.

Results and Implications

My first participant identified as a teacher and mother. Through past experiences of teaching
elementary students, some of her conscious actions aligned with her identity as a teacher like
lightly touching a students’ forearm to redirect attention, forming shapes with her hands, and
folding her hands in her lap to model respect. My second participant identified as both a teacher
and teacher educator, and similarly she used conscious movements to connect the activity to real
life contexts while also noting in an interview that some movements were subconscious. For
future directions, I plan to study facilitation in informal science, technology, engineering, and
mathematics (STEM) learning spaces.
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Graphical representations are common in STEM fields for modeling, communicating, and
analyzing phenomena. Results from research (e.g., Lai et al., 2016), including large-scale
national assessments (e.g., Nation’s Report Card, 2005), indicate that U.S. students have not
been provided sufficient opportunities for developing rich graphing understandings. However,
much of the research and tasks used to examine students’ graphing understandings have assumed
that students have established understandings of the Cartesian plane needed to construct and
interpret graphs. In our work, we address this issue by designing tasks that attend to students’
understandings of three layers constituting a graphical representation: frames of reference,
coordinate systems, and graph (Joshua et al., 2015; Lee et al., 2020) (see Figure 1a).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Task Design/Re-Design Framework Guiding Questions (TDGQs)
3 1. Frames | TDGQ1.1. Is the task situated in (what we perceive to be) a spatial or quantitative

I of context?
L - Reference | TDGQ1.2. What features of the task will/did support students in identifying (a) a
Graph (FoR) reference point, (b) a directionality, and (c) a unit of measure?
QugptityB™ T z (All of the questions above and)
7 Coordlnate TDGQ2.1. Is the task situated in (what we consider) a spatial or quantitative
< 7 QuantityA~ Systems | context?
\L A Coordinate System (CS) TDGQ2.2. What features of the task will/did support students in coordinating two
D _ or more FoR to construct a spatial or quantitative coordinate system?
; i ~QuantityA  What, from where,in -~ 3.Graphs | (All of the questions above and)
A Graphical Representation " Quantity s Which direction, how?,- TDGQ3.1. Is the graph situated in (what we perceive to be) a spatial or
g,’,,,,,,,,,,}/ ,,,,,,,,,,,,,,,,, _ quantitative CS?
\, Frames of Reference TDGQ3.2. What features of the task will/did support students in constructing or
interpreting graphs in a spatial or quantitative CS?
(a) (b)

Figure 1: (a) Three layers of a graphical representation and (b) task design framework

In this poster, we leverage conceptual analysis (Thompson, 2008) to unpack the three layers
of a graphical representation and our associated task design framework (see Figure 1b). We
illustrate how this novel framework was used to design tasks for middle-grades students and the
role the framework played when analyzing students’ engagement with the tasks.

We implemented the tasks in one-on-one clinical interviews (Clement, 2000; Goldin, 2000)
with 15 sixth-grade students to gain insights into their existing graphing understandings at the
onset of a teaching experiment (Steffe & Thompson, 2000) aimed at building upon these
students’ graphing understandings. We discuss affordances and limitations of our approach, as
well as potential task revisions we are considering as a result of our analyses of students’
activities.
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Elizabeth Roan Jennifer A. Czocher
Texas State University Texas State University
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Previous research on differential equations notes that students tend to conflate rate of change
and amounts of change. In this study, we create a local causal explanation (Maxwell, 2004) for
why one participant did distinguish between the rate of change in a population and change in a
population, while the other did not. We conjecture that students may only be able to construct (or
talk about) rates of change if they have the appropriate quantities available to them in which to
coordinate.

Keywords: Modeling, Undergraduate Education, Advanced Mathematical Thinking.

It has been well documented that students tend to conflate the rates of change with change in
the amounts (Mkhatshwa & Doerr, 2018; Rasmussen & King, 2000; Rasmussen & Marrongelle,
2006; Rowland & Jovanoski, 2004). For example, Rowland and Jovanoski (2004) found that
students consistently did not distinguish between “amounts” and “rates of change of amounts”
throughout different contexts (adding and removing fish in a pond farm, drugs being
administered to a patient, and a car slowing down). This aligns with Rasmussen and King’s
(2000) study on finding starting points to teach differential equations via guided reinvention. In
their study, they noted that one student distinguished between the rate of change of the fish
population and the change in the fish population, while two students did not. They inferred that
students did not make the distinction when they did not “conceptualize the situation in a way that
involved a rate of change”. We aimed to investigate why participants might use language that
describes change in amounts when talking about the rate of change of amounts. We address the
question: What conditions led participants to (not) distinguish between the rate of change of a
population and the change in a population when constructing a model of how quickly a disease
spreads through a community?

Theoretical perspective

To describe the conditions under which participants distinguished the rate of change of a
population and change in a population, we will first explain the theoretical perspective we take
on how one may construct a differential equation (a type of mathematical model) to represent
real-world situations. We operationalize mathematical modeling using theories of quantitative
reasoning. With this lens, quantities are seen as the building blocks of the model (Larson, 2013).
A quantity is different from a variable; it is a mental construct that is characterized by
conceptualizing an object that has an attribute that an individual can imagine measuring
(Thompson & Carlson, 2017). For example, when modeling disease transmission, one could
conceptualize a quantity like the number of sick people at a specific time. The object would be
the sick population, the attribute would be the amount, and one could envision counting the
number of sick people on a given day even if it would not be possible to do. One constructs a
mathematical model by operating on the quantities they impose onto the task scenario. Operating
on quantities has been described in terms of quantitative operations and covariational reasoning
(Kularajan & Czocher, 2022). A quantitative operation is a conceptual operation where an
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individual creates a new quantity in relation to one (or more) already created quantities (Ellis,
2007; Thompson, 2011). For example, one could additively compare the number of sick
individuals on day one with the number of sick individuals on day three to create the change in
the amount of sick population during two days. Covariational reasoning occurs when one
envisions two quantities that can vary and thinks about the ways they change in relation to each
other, and how they vary simultaneously. For example, an individual could envision the number
of sick people at an instance varying with time. Covariational reasoning has been described
through increasing levels of more complex ways of coordinating pairs of quantities (Thompson
& Carlson, 2017). An important theoretical implication of taking this lens is that the models one
constructs are dependent upon the quantities they impose onto the task scenario (Czocher et al.,
2022).

Methods

This study was part of a larger study of the efficacy of facilitator scaffolding moves during
modeling. Participants in the larger study worked on several modeling tasks over the course of
10 1-hour long sessions. Data were collected via individual clinical task-based interviews held
over Zoom. We report on 2 STEM undergraduates’ work on the disease transmission task, which
was the last modeling problem in the sessions. In the disease transmission task, participants were
asked to imagine a disease spreading through a community of sick and well members and asked
to model the rate of spread of the disease through the community. The canonical differential

equations associated with this task are: g =aXxS(t)xW(t); C;—V: = —a X S(t) X W(t),where

S(t) represents the number of sick people at time t, W (t) represents the number of well people
at time t, and « represents the probability of transmitting the disease between the sick and well
individuals. We report on work from Roion, a computer science major, who built a model for the
amount of change of the sick population in an instant, and Niali, an electrical engineering major,
who built a model for the rate of change of the sick population. Both participants self-reported
typically receiving As and Bs in their math classes. We chose to report on these two students to
contrast one participant who did make the distinction between the rate of change of an amount
and the change in amount and one who did not. The contrasting cases offer a chance to examine
why a participant may or may not distinguish between the rate of change of a population and the
change in a population. Data were analyzed by taking stock of the quantities students imposed
onto the task scenario by noting the object, attribute, and evidence of quantification (Czocher et
al., 2022). We then documented how and why (or inferred the reason why) participants chose to
combine quantities to construct the rate of change of the infected population. This was done by
attending to participants’ answers when asked “why did you multiply/divide/subtract/add
quantity X with/by quantity Y.” When participants did not explicitly state their reason, we
inferred why they combined quantities by appealing to the dimensional units participants
ascribed to their quantities.

Results
Given our theoretical perspective, the conditions under which participants did/did not
distinguish the rate of change of a population and the change in a population are determined by
the quantities they imposed onto the task scenario and how the participants decided to operate on
those quantities.
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Roion’s final equation modeling how quickly a disease spreads through a community is
shown in Figure 1. Roion built his equation as follows: First, Roion constructed two quantities:
the number of infected people at time ¢, represented by I(t), and the number of well people at
time t, represented by W (t). Roion then multiplicatively combined the number infected people
at time t and the number of well people at time t to create a new quantity called the maximum
interactions between infected people and well people at time t. Roion then took a subset of the
maximum number of interactions to get the number of interactions that happen (which he
denoted ¢ X W (t) x I(t)). He then took a subsequent proportion of the interactions that actually
happen to get the number of interactions that result in infection (which he denoted a - (¢ - W(t) -
1(t)). Roion did not ascribe any dimensional units to a and c. To him, they were unitless

2RI R (C;,M,éf)},z<9¢))

/

o A Wz/l(

Figure 1 Roion's equation amount of change of the sick population in an instant

proportions, and so a - (c W(t) -1 (t)) represented an amount of interactions at time t that
result in infection. We infer that Roion calculated the amount of change in an instant.

Niali’s final equation that modeling quickly a disease spreads through a community is shown
in Flgure 2 (left).
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Figure 2 Niali's equations for newly infected at time t (left), and newly infected during an
arbitrary duration of time (right)

Niali followed a similar path to Roion at first. For Niali, S(t) denoted the number of sick people
at time t, and H(t) denoted the number of healthy people at time t. Niali combined these two
quantities multiplicatively to get the maximum number of interactions between the two
populations at time t. Niali then multiplied by two percentages to get the number of interactions
that resulted in infection at time t (E represented the percentage of interactions that actually
happened and T represented the percent of actual interactions where disease was transmitted).
Niali noted that the number of interactions that resulted in infection at time ¢ is the same
calculation as newly infected at time ¢t. It is at this point that Niali and Roion diverged. Niali
coordinated the number of newly infected with an arbitrary duration of time to construct the
number of newly infected during a duration of time At as seen in Figure 2 (right). By doing this,
Niali is coordinating the multiplicative change in the infected population with additive change in
time. This coordination results allowed Niali to write an equation for the average rate of change
of the infected population.

Discussion
In this paper, set out to describe the conditions that led participants to (not) distinguish
between the rate of change of a population and the change in a population when constructing a
differential equation. By attending to the quantities participants imposed onto the scenario and
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how they operated on those quantities, we were able to detect differences in how our participants
constructed their models for disease spread. These differences may explain why one may/may
not distinguish between rates and amounts. In our examples, Niali distinguished the amount of
change in the sick population from the rate of change in the sick population because the
quantities he imposed onto the task scenario could be operated on to create a rate of change.
Niali created quantities called newly infected during At and called duration of time (At) and
operated on those quantities to create the average rate of change of the sick population (a
coordination of the newly infected and duration of time). Roion, however, did not impose
quantities onto the scenario that could be operated on to create a rate of change. We found no
evidence that Roion imposed a quantity that described the duration of time in this task, thus we
hypothesize that Roion did not have the “building block” necessary to create a rate of change of
the sick population, but he did have the “building blocks” necessary to build a model for the
amount of change in an instant. Our theoretical perspective and methodological approach
allowed us to create a local causal explanation for why Niali did distinguish between the rate of
change in the sick population and change in the sick population, while Roion did not. Our
interpretation is consistent with Ellis et al. (2012)’s work on building exponential growth with
8th-grade students. In her study, the students were able to conceptualize exponential growth as
constant multiplicative rates of change by coordinating multiplicative ratios of height
(multiplicative change in the plant) with additive differences for the time (additive change in
time). Importantly, the students first had to quantify the multiplicative change in the plant and
change in time as quantities themselves that could be coordinated. That is, students may only be
able to construct (or talk about) rates of change if they have the appropriate quantities available
to them in which to coordinate.

A goal of this paper was to document contrasting cases of students thinking about differential
equations to inform future research and instruction about how students think about differential
equations in a canonical context. Rasmussen & King (2000) originally gave students a SIR
disease model and then moved on to an unbounded exponential growth model when students had
difficulty articulating the meaning of the differential equations. Researchers and teachers might
consider helping the student quantify change in amount and change in time such that the student
has the opportunity to coordinate the two to construct a rate of change. However, given that both
participants in our study came to a model that described the spread of the disease through a
community that looked normatively correct and was satisfactory for them, we suggest that
researchers and teachers consider whether it might be beneficial to the student to background the
distinction between rate of change of an amount and the change in an amount in an instant when
working with students at this level. That is, if we want students to develop mathematical models
for real-world contexts that are meaningful for them that work mathematically the same as the
normatively correct model, then it might be worth allowing students to use amount languages
when discussing rates of change. We do not assert that our results would generalize across
people. The strength of the relationship between the quantities a student has available and their
use of amount language to talk about rates needs further exploration.
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AN APPLICATION OF HABERMAS CONSTRUCT OF RATIONALITY TO SUPPORT
STUDENTS' PROOF VALIDATION SKILLS

Yuling Zhuang
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Proofvalidation plays a significant role in students' understanding and learning of mathematical
proofs. Recent studies have shown that university students were lacking skills in proof validation
and were challenged by the implementation of the appropriate acceptance criteria when
validating proofs. Drawing on Habermas’ construct and rational questioning, the present study
develops a proof validation framework that seeks to improve students' proof validation skills.

The written responses of students' proof validation were analyzed based on their use of the proof
validation framework in the context of a transition-to-proof course. The results showed that
students primarily focused on the epistemic rationality component when they accept or reject the
purported proof and that the students experienced difficulties with meeting the requirements of
rationality components. Some educational implications are provided.

Keywords: Reasoning and Proof, Research Method, Design Experiment.

Mathematical proof is an essential component of undergraduate mathematics courses and
serves as a prerequisite for students' advanced mathematical learning. Research in mathematics
education indicates that most students have experienced substantial difficulty with proofs at the
undergraduate level or beyond (Selden, 2012; Sommerhoff & Ufer, 2019; Weber, 2010). Many
universities have instituted transition-to-proof courses (ct. Moore, 1994) to help students to
review methods of mathematical proof (e.g., direct proof, proof by contradiction, proof by
induction) to equip them for advanced mathematics courses that require mathematical proving
skills. Students are expected to be able to read, evaluate, and write proofs through such a
transition-to-proof course. The research studies on these courses have primarily concentrated on
investigating students' beliefs regarding proofs, as well as their approaches to and challenges
with proof comprehension, construction, and validation (e.g., Ko & Knuth, 2013; Mejia-Ramos
et al., 2012; Segal, 2000; Selden & Selden, 2015; Weber, 2010). A few studies on proof
validation have reported that university students often encounter substantial obstacles in
accurately validating proofs and offering solid justifications for their judgments (see Alcock &
Weber, 2005; Bleiler et al., 2014; Ko & Knuth, 2013; Kirsten & Greefrath, 2023; Selden &
Selden, 2003, 2015; Sommerhoff & Ufer, 2019). However, little empirical research exists on
how to improve students’ skills of validation of proofs as in Selden and Selden, 1995 which
focused on "proofs as texts that establish the truth of theorems and on readings of, and reflections
on, proofs to determine their correctness" (Selden & Selden, 2003, p. 5). Proof validation plays a
significant role at university level mathematics because university students who take advanced
mathematics courses are expected to spend substantial study time reading and evaluating proofs
and arguments that are presented by lectures or textbooks (Inglis & Alcock, 2012; Selden &
Selden, 2003; Weber, 2004). Researchers (e.g., Alcock & Weber, 2005; Kirsten & Greefrath,
2023; Selden & Selden, 2003; Sommerhoff & Ufer, 2019) have suggested that validation of
proofs should be taught explicitly in the university.

Studies that have focused on proof validation have typically explored the ability of students
to differentiate between valid and invalid arguments (e.g., Alcock & Weber, 2005; Bleiler et al.,
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2014; Ko & Knuth, 2013; Selden & Selden, 2015; Weber, 2010). In his study of 28
undergraduate mathematics majors who had completed a transition to proof course, Weber
(2010) found that the students judged invalid proofs to be valid proofs 60% of the time (64 out of
106). Furthermore, researchers have sought to gain insights into the cognitive processes involved
in students' proof validation process by employing assessment models to better understand how
students make these judgments. For instance, Selden and Selden (2003) found that
undergraduates focused too much on the surface features of an argument, in which students tend
to check proofs step by step rather than by the logical structure of proofs. Harel and Sowder
(2007) proposed the idea of using "proof schemes" to describe and evaluate student performance
in proving. The results of these studies revealed that many students judged invalid empirical
arguments to be valid proofs because their ability to determine whether arguments were proofs
was very limited, and they had problems with implementing appropriate acceptance criteria for
validating proofs. However, these assessment models or proof schemes mainly focus on
documentation of students' current situations or difficulties they experience while validating
proofs, so these models cannot address the distance between the students' proof validation
performance and the teacher's expectations. Consequently, several researchers (e.g., Selden &
Selden, 2013, 2015; Sommerhoff & Ufer, 2019; Weber & Alcock, 2005) have advocated for
further research aimed at developing instructional tools to address students' challenges with
proof validation. They have argued that instruction in transition-to-proof courses should
incorporate the introduction of these tools with the goal of enhancing students' proof validation
skills.

Proof by contradiction (PBC) is an essential proof method across all mathematical content
areas and is often viewed as more difficult than direct proof (Quarfoot & Robin, 2022).
According to Robin and Quarfoot (2022), students need opportunities for validation of proofs
using the PBC method before being able to link these experiences in their written work. The
present study examined how a cohort of mathematics students used a proof validation framework
that was adapted from Habermas' (1998) construct of rationality in the context of a transition-to-
proof course to validate proofs that focused on PBC.

Theoretical Framework

In the field of mathematics education, Boero (2006) started to use Habermas' (1998)
construct of rationality as a theoretical framework to study various mathematical discursive
activities (e.g., proving, argumentation, problem-solving) based on the three components of
rationality: epistemic (inherent in the control of validation of statements), teleological (inherent
in the strategic choice of tools to achieve the goal of the activity), and communicative (inherent
in the conscious choice of suitable means to communicate understandably within a given
community). In recent years, following Boero (2006), several researchers (e.g., Boero et al.,
2010; Boero & Planas, 2014; Morselli & Boero, 2011; Urhan & Biilbiil, 2022a, 2022b; Zhuang,
2020; Zhuang & Conner, 2018, 2020, 2022a) have used Habermas' construct of rationality to
analyze students' behavior in proving and problem-solving processes and developed instructional
tools to help teachers plan and manage argumentative discourse according to rationality
components. Moreover, considering the gap exists between the rationality of teachers and
students, some researchers (e.g., Boero & Planas, 2014; Boero et al., 2018; Urhan & Biilbiil,
2022; Zhuang & Conner, 2022a) have suggested the explicit introduction of Habermas' construct
of rationality to students for pedagogical purposes to facilitate students' awareness of rationality
requirements in proving and argumentation activities according to the teacher’s expectations.
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Drawing on Habermas’ (1998) construct of rational behavior, Zhuang and Conner (2018,
2022a) developed a rational questioning framework for teachers to support students in meeting
the requirements of rationality in argumentation. The present study views rational questioning as
a didactical tool that can be introduced to students in order to guide them in the validation of
proofs as shaped by rationality requirements; because rational questioning guide students to
concern the choice of appropriate and efficient methods (teleological rationality) on the basis of
mathematical knowledge (epistemic rationality), such as rules, theorems, axioms, and principles
and communicate in a precise way with the choice of understandable means of communication
within the shared mathematical community (communicative rationality), which corresponds to
what policy documents and mathematics educators suggest as important characteristics of proof
in mathematics (Boero et al., 2010; Boero & Planas, 2014; NCTM, 2000; Stylianides, 2007).

By adapting Habermas' (1998) construct of rationality and Zhuang and Conner's (2018,
2022a) rational questioning framework, this study develops a proof validation framework (see
Table 1) to support students' proof validation skills via the use of rational questioning. The
purpose of this study is to explore how students validate the purported proofs (ctf. Selden &
Selden, 2003) through the use of the developed proof validation framework. More specifically,
this study addresses the following research questions:

1. Which rationality component is privileged when students accept or reject the purported
proof?

2. Which rationality components students are competent when they validate the purported
proof?

Table 1: Proof Validation Framework

Components of Habermas' Rational questioning to consider when validating
Rationality purported proofs
Epistemic Rationality (ER): E1. What are the mathematical definitions,
Uses valid definitions, axioms, and axioms, or theorems stated in the proof? Are
theorems shared by the they true?
mathematical community. E2. Are there any other definitions, axioms, or

theorems that would more reliably account for
the stated mathematical claims?

E3. What are the warrants or reasons used to
support the stated mathematical claims and
mathematical arguments?

E4.Does the proof provide correct warrants or
reasons to justify the stated mathematical
claims and mathematical arguments?

ES. Are the warrants or reasons convincing enough
to help someone understand why the stated
mathematical claims are true?

Teleological Rationality (7R): T1.What the proof methods (e.g., proof by
Employs efficient proof strategies contradiction, direct proof) are used to prove
(e.g., direct proofs, proof by the stated mathematical claims and
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contradiction, proof by induction, mathematical arguments? Are the proof
etc.) to achieve the goal of proof. methods used correctly and logically to
achieve the goal of the proof?
T2.How efficient is the applied proof method?
Could any other methods be taken into
account?
T3. Could these proof methods be used to solve a
similar problem?

Communicative Rationality (CR): C1.Are the proofs or arguments represented
Writes with forms of expression clearly?

(e.g., mathematical language, visual C2.Do the proofs or arguments contain
representations, symbolic notation, mathematically correct language, visual
etc.) that are understandable in the representations, or symbolic notations?

mathematical community. C3.Are there any ways to organize or write the

proofs or arguments more clearly? Are there
any irrelevant or distracting points?

Methodology

By following an instrumental case study (Stake, 1995), this study analyzed a cohort of
mathematics graduate students' written responses from one of their course assignments in an
online transition-to-proof course. The course serves as an introductory course for a master's
mathematics program at a comprehensive state university in the United States to help students to
review methods of mathematical proofs before they take advanced graduate-level mathematics
courses. Because it is an online course, the participants of this study come from all over the
world. Most participating students hold a bachelor’s degree related to mathematics (i.e., pure
mathematics, applied mathematics, mathematics education) or have studied a STEM-related
major (e.g., computer science) for their undergraduate degrees. A few students have some
experience in proof-related mathematics courses, such as advanced calculus and abstract algebra,
but none of them have taken a transition-to-proof course that specifically focuses on proof
validation and written techniques. Many students in this class hope to teach mathematics at a
community college after completing the master's program in mathematics.

During the first couple of weeks of the course, the instructor introduced the proof validation
framework (see Table 1) to the class and guided students to use the framework to validate the
proofs that focused on direct proof methods through an online interactive learning community.
Next, the students were expected to use the proof validation framework to complete the weekly
Proof Writer's Workshop (PWW) assignment in which the students needed to read, evaluate, and
critique at least one purported proof that is common to the new proof methods that are covered in
the course. Students had to decide whether the purported proof that was given by the instructor
should receive a pass (solid) proof, a revised (developing proof), or a failed grade (flawed proof),
and the students were asked to justify their validations. In the assignment, the students were
given a reflection question about the use of the proof validation framework: "Which components
of rationality help you analyze this proof/argument? Explain." after they evaluated the purported
proof.

The data in this study include 16 participating students' written responses on a purported
proof that focused on PBC. The purported proof and the reflection question from their PWW
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assignments are shown in Figure 1. Before working on the PWW assignment, students were
assigned to read the textbook How To Prove It (Velleman, 2019) in regard to PBC content. For
this purported proof, the instructor expects the students to determine whether a fundamental flaw
exists in reasoning about the definition of set difference (epistemic rationality). Although the
PBC was used correctly, it may not be the most efficient proof method to apply, proof by
contrapositive can be considered as a more efficient strategy (teleological rationality). This
purported proof is well-written in text, but it could be more consistent with symbolic notations,
such as the use of the set difference signs as "\" or "-" (communicative rationality).

This study conducted a microanalysis of each student's written responses for one of their
weekly PWW assignment (Corbin & Strauss, 2015). The responses provided by the students for
the first question were utilized to assess the accuracy of their proof validation, as well as to
analyze the rationality components in which students demonstrated competence during the
validation of the proposed proof (RQ2). Through the use of the constant comparative method
(Glaser & Strauss, 1967), the students' answers to the reflection question were used to investigate
which rationality component is privileged when they make judgments (RQ1).

The goal of the proof writer’'s workshop assignment is to help you

get a better sense of what counts as a “solid proof’, a “developing

proof’ and a “flawed proof”. Each assignment will have at least one

proof/argument for you to read, evaluate and critique. You will take

the role of the grader: your job is to decide whether each proof/argument
should receive a pass (solid proof), a revise (developing proof) or a

failed grade (flawed proof).

Theorem 1: Suppose A C B and C' is any set. If z € A — C then
reB-C.

Proof. We will give a proof by contradiction. Suppose for contradiction
that z € A\ C but z ¢ B\ C. From the definition of set difference,
this tells us that t ¢ Band z € C. But z € A\ C tellsus that z € A
and = ¢ C. It is impossible to have z € C and = ¢ C, so we have a
contradiction. Therefore the theorem statement is true. d

Q1: Overall, would you rate this proof/argument as a pass or a revise?
Or do you think there is a fundamental flaw in this proof/argument?
Please justify your decision. You may consider evaluation proof/argument
via the use of the Proof Validation Framework.

Reflection Question: Which component(s) of rationality help you
analyze this proof/argument? Explain.

Figure 1: Proof Writer's Workshop (PWW) Assignment Used in this Study

Results
Through the analysis of the students” PWW assignment written responses, 14 out of 16
students gave the purported proof (see Figure 1) either a revised or a failed grade. Interestingly,
the two students who made the wrong evaluation, in which they gave a grade of pass, did not
validate the purported proof based on rationality components. This section reports how these 14
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students validated the purported proof through the use of the proof validation framework (see
Table 1).
Privileged Rationality Component

Based on students' written responses to the reflection question, all 14 students stated that they
evaluated the given purported proof through epistemic rationality. Most of the students drew on
epistemic rationality to analyze the correctness of the definition of set difference (under the
guidance of E1 rational questioning, see Table 1). For instance, one student responded, "The
epistemic rational element was the primary element that helped me analyze this proof because
not stating a valid definition is what leads to the flaw in reasoning. You could also say that a
valid definition (set difference) was incorrectly applied." A few students pointed out that the
purported proof had a lack of warrants or reasons to support the stated theorem because the
definition of the subset (given A € B) should be employed (under the guidance of E4 rational
questioning).

Eight students mentioned that they applied teleological rationality when they validated the
purported proof. One student highlighted that "The main rationality element that helped the most
with this proof is teleological because the use of PBC seemed odd to me." The students generally
drew on teleological rationality to evaluate the correctness of the proof method (under the
guidance of T2 rational questioning, see Table 1). However, students rarely focused on the
effectiveness of the proof method (under the guidance of T3 and T4 rational questioning). Only
one student suggested that the proof could be shorter if a direct proof method were employed.

Eight students concentered on the communicative rationality of the purported proof. Most of
them were satisfied with the language and notation that was used in the given purported proof
(under the guidance of C1 and C2 rational questioning). Some students have different opinions
as to whether the proof method should be stated in the beginning. For instance, one student stated
that "It was also nice to have them state the proof method in the first sentence, so the reader
knows what assumptions should be expected." Another student commented, "Maybe a little
redundant to say proving by contradiction and then stating again that they were supposing for
contradiction."

Overall, when validating the given purported proof, 7 students articulated that all three
components of rationality helped them to validate the purported proof. Five students merely
mentioned epistemic rationality. One student focused on both epistemic and teleological
components of rationality and another focused on both epistemic and communicative
components of rationality. In this sense, epistemic rationality appears to be the privileged
rationality component when students accept or reject the given purported proof.

Competent Rationality Components

Among students who focused on the epistemic rationality component, 11 students were able
to determine the correctness of the definition of set difference as stated in the purported proof,
"From the definition of set difference, this tells us that x € B and x € C. " In addition, five of
them corrected the definition in their written responses either by stating the correct definition or
providing a counterexample. On the other hand, three students thought that the writer stated the
definition of set difference correctly.

Of eight students who attended the teleological rationality component, four thought that the
PBC method was applied correctly. Another four students articulated that the writer did not
follow the PBC strategy due to incorrect assumptions. For instance, one student stated that "The
use of contradiction is wrong since the contradiction used, x € B — C which contradicts the
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primary given assumption." The rest of the three students argued that the writer should assume
x & A — C because according to their understanding of PBC, the writer should assume the
negation of the if portion of the statement.

The students who have paid attention to the communicative rationality all agreed that the
purported proof was written clearly in the text. As one student commented, "The proof was
written clearly and used correct notations." Several students recommended improving the
written work by ensuring consistency in the usage of notations, such as the set difference sign.

The results of this study also showed that 3 out of 14 students provided both invalid
interpretations of epistemic and teleological rationality even though they rated the purported
proof as revised. In addition, the two students who gave the grade of pass did not apply the proof
validation framework. Without focusing on any rationality component, one student simply
commented that "This proof looks to be sufficient to support the conclusion." Another student
applied the direct proof method to show that the given purported proof was true in terms of the
theorem and therefore concluded that the presented purported proof should pass with a lack of
concentration on the purported proof itself.

Discussion

Researchers have used Habermas’ (1998) construct to identify and interpret the challenges
that are experienced by university students in mathematical proving and problem-solving
activities (e.g., Boero & Morselli, 2009; Urhan & Biilbiil, 2022b). This study responds to the call
within the field to conduct research that develops approaches to teaching proof validations
explicitly. The results of this study indicate that the proof validation framework (see Table 1)
based on Habermas’ (1998) construct of rationality and guided by rational questioning (Zhuang,
2020; Zhuang & Conner, 2018, 2022a) provides students with a tool to validate mathematical
proofs in terms of rationality components rather than simply focused on what Selden and Selden
(2003) called the surface features of proofs and arguments. According to Boero et al. (2010), the
goal of developing rational behavior in proving must be guided and promoted by teachers. The
introduction of the proof validation framework to students scaffolds them to be aware of the
rationality requirements inherent in proving and to facilitate students' maturation of acting
rationality in proving activities in a long-term teaching intervention. As one student replied in the
reflection question, “All three of the elements of rationality helped me to analyze this proof. I
found that the rational questions provided helped me the most. The questions allowed me to look
for specific reasoning in the proof. This allowed me to break apart the proof, sentence by
sentence, and apply the rational elements.”

Previous research that examined students' abilities in proof validation has primarily
concentrated on assessing the accuracy of their judgments regarding the warrants or reasons
presented in the purported proofs (Alcock & Weber, 2005; Selden & Selden, 2003; Sommerhoff
& Ufer, 2019; Weber & Alcock, 2005). Habermas' construct provides us with a more
comprehensive frame in which to understand varying aspects of students' acceptance criteria for
validating mathematical proofs, especially for teleological rationality and communicative
rationality. The construct enables teachers to identify students' competence in rationality
components and embeds students' competence in rationality components into their classroom
instruction.

The result of this study showed that the epistemic rationality was represented as the
privileged rationality component when students validated the given purported proof. This finding
is unsurprising given that the principal flaw inherent in the purported proof lies in the incorrect
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definition of the stated set difference. This finding is also consistent with previous studies (see
Alcock & Weber, 2005; Inglis & Alcock, 2012; Ko & Knuth, 2013; Kirsten & Greefrath, 2023;
Selden & Selden, 2003; Sommerhoff & Ufer, 2019) in which students tended to check proofs
line by line to make sure that each statement in the argument is mathematically correct. In
addition, this study found that only 8 out of 14 students considered either the teleological or the
communicative rationality component when they made judgments. This result implies that
students prioritized the evaluation of the truthfulness of the stated assertions, rather than
critically assessing the appropriateness and effectiveness of the employed proof method, as well
as the clarity of the proof presentation. What is most disappointing is that only a single student
acknowledged the efficiency of utilizing PBC in the purported proof. Hence, it is imperative for
teachers to provide guidance to students regarding the teleological and communicative rationality
during the process of proof validation, in order to direct the students’ attention toward the overall
strategy employed and the written structure of the proof.

Although the students who applied the proof validation framework (see Table 1) correctly
rated the purported proof as either revised or failed under the guidance of rational questioning, it
was noticed that some students' interpretations of rationality components were incompetent. The
failures of interpretations include inadequate knowledge of the definition of set difference
(epistemic rationality) and the incorrect assumption of negating if statement regards PBC
(teleological rationality). These results demonstrate the importance to ask students to provide
justifications for their validation according to the three rationality components because it enables
teachers to determine the rationality components at which the students are competent. In this
way, teachers can plan and design the follow-up process of teaching not only by focusing on
students' gaps in mathematical knowledge but also by taking the rationality components into
account based on the rationality requirements that teachers expect students to achieve in proving
activities.

Implications and Future Directions

A number of studies (e.g., Kirsten & Greefrath, 2023; Selden & Selden, 2003, 2015;
Sommerhoff & Ufer, 2019) have consistently revealed the challenges encountered by university
students in the process of validating proofs. However, the skills critical for proof validation often
do not receive adequate emphasis within the mathematics classroom.

This study proposes the idea of introducing the proof validation framework (see Table 1) to
students in a transition-to-proof course. This framework provides a way for students to
implement rationality components when they validate proofs, so they may benefit from
interventions that focus on the requirements of rationality behavior in proving activities.
Moreover, the utilization of the proof validation framework enables teachers to evaluate students'
proof validation performance at a meta-level, as described by Boero et al. (2010), encompassing
an awareness of the constraints associated with the three components of rationality as well as the
content of the proof. For pedagogical purposes, the proof validation framework scaffolds
students to realize proving as a rational process and guides them to gradually move to an
awareness of epistemic, teleological, and communicative requirements of rationality that is
inherent in proving as a long-term teaching intervention.

The present study proposes one potential way to improve students’ proof validation skills,
and other possible ways to improve students’ skills in proof validation are worthy of
investigation. Zhuang and Conner (2022b) discussed the use of students' incorrect answers
through classroom-based argumentation, so it may be beneficial to examine errors in proofs that
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are constructed by students. Additionally, it would be interesting to investigate whether students
are able to apply the skills of proof validation in terms of rationality components to their
construction of proofs.
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COMBINING COVARIATIONAL REASONING AND CAUSALITY TO
CONCEPTUALIZE FEEDBACK LOOPS

COMBINANDO EL PENSAMIENTO COVARIACIONAL Y LA CAUSALIDAD PARA CONCEPTUALIZAR
BUCLES DE RETROALIMENTACION

Dario Gonzéalez
Universidad Autonoma de Chile
dario.gonzalez@uautonoma.cl

This paper introduces two theoretical constructs, open-loop covariation and closed-loop
covariation, that combine covariational reasoning and causality to characterize the way that
three preservice mathematics teachers conceptualize a feedback loop relationship in a
mathematical task related to climate change. The study’s results suggest that the preservice
teachers’ reasoning about feedback loop between quantities involved the ability to conceive
closed-loop covariation, which in this study was characterized by two cognitive realizations: (i)
the conception of simultaneous change and (ii) the recognition of circular causality. These
realizations, at least for the participants, appeared to be independent from one another. The
theoretical distinction between open- and closed-loop covariation could inform instructional
strategies to develop students’ ability to think about and model feedback loops.

Keywords: Cognition, Integrated STEM / STEAM, Modeling, Sustainability.

Purpose of The Study

Authors from disciplines as diverse as biology, chemistry, engineering, economy, and
mathematics have proposed that current global, complex, politically charged, socio-scientific
issues (universal income, evolution, pandemic and vaccines, climate change, etc.) require STEM
professionals to understand them as complex systems (Ghosh, 2017; Orgill et al., 2019; Renert,
2011; Richmond, 1997; Roychoudhury et al., 2017; Schuler et al., 2018). This holistic
perspective, known as systems thinking, focuses on understanding phenomena in terms of
relationships, connectedness, and context. Systems thinking complements the analytic or
reductionist perspective commonly used in STEM and STEM education fields. An important
distinction between these perspectives involves causality; while the reductionist perspective
focuses on linear, direct cause-and-effect relationships, systems thinking involves identifying
complex causality relationships. An important type of these relationships are feedback loops, or a
“succession of cause-effect relations that start and end with the same variable. It constitutes a
circular causality, only meaningful dynamically, over time” (Barlas, 2002, p. 1147).

Mathematics represents a powerful way to make sense of relationships, which can be
understood as two (or more) quantities changing together over time. Feedback loops, therefore,
can be seen as two (or more) quantities changing simultaneously in a way such that, the first
quantity causes the second quantity to change, and that change causes the first quantity to change
again, and so on. In particular, I believe that combining covariational reasoning with the notion
of causality can provide insights into how students can understand feedback loop relationships in
mathematics.

In this paper, I combine covariational reasoning and causality to introduce two theoretical
constructs, open-loop covariation and closed-loop covariation, which can characterize the way
that three preservice teachers conceptualize a feedback loop relationship in a mathematical task
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related to climate change. The constructs also have the potential to address a gap in the literature
focusing on covariational reasoning which have a tendency to consider only unidirectional
implications of change and leave underexplored the role of real-world causality. I also discuss
possible implications for mathematics learning and teaching.

Conceptual Framework
Covariational Reasoning and the Multiplicative Object
Covariational reasoning finds one of its earliest definitions in the work of Saldanha and
Thompson (1998), who defined it as follows:

Someone holding in mind a sustained image of two quantities’ values (magnitudes)
simultaneously. It entails coupling the two quantities, so that, in one’s understanding, a
multiplicative object is formed of the two. As a multiplicative object, one tracks either
quantity’s value with the immediate, explicit, and persistent realization that, at every
moment, the other quantity also has a value ... An operative image of covariation is one in
which a person imagines both quantities having been tracked for some duration, with the
entailing correspondence being an emergent property of the image. (pp. 298-299)

The multiplicative object in their definition is analogous to the logical conjunction “and” that
joins or units two propositions to produce one proposition that is true if and only if both of the
constituent propositions are true. In the case of covariation, the multiplicative object joins the
corresponding values of two covarying quantities so that the student “mentally unites their
attributes to make a new attribute that is, simultaneously, one and the other” (Thompson et al.,
2017, p. 96). This multiplicative object supports the student’s ability to conceptualize two (or
more) quantities changing simultaneously and interdependently.

Open- and Closed-Loop Covariation

Covariational reasoning support the conceptualization of two quantities changing
simultaneously. However, simultaneity may not be enough to conceptualize feedback loop
structures in a system. I propose that the way causality is conceived may also play an important
role in conceptualizing a feedback loop relationship between two covarying quantities. To
address this distinction, I introduced two constructs: open-loop covariation (OLC) and closed-
loop covariation (CLC).

Let’s consider the filling bottle problem where water is being pour into the bottle at a
constant rate, increasing the volume of water, ¥, and the water height, 4, in the bottle. The
multiplicative object allows one to visualize V" and 4 changing simultaneously over time so that
there exist a pair (V(¢), A(¢)) for any ¢ in some interval of conceptual time. One imagines that if
changes, so does /4, and if / changes, so does V; they change together. The multiplicative object,
thus, support a student’s ability to conceptualize simultaneous change between two quantities.

However, the multiplicative object does not provide an answer to the questions of #ow and
why a change in V results in a change in A, or vice versa. In this paper, I use the term causality as
a way of describing how and why the state of a dynamic process changes as time goes on (Sauer,
2010). The volume of water V, or the space taken by the water in the bottle, is growing since
more and more water is entering the bottle. One also observes (or imagines) that the water
height, 4, is increasing as water enters the bottle; that is, 2 grows as V' grows. One could say that
the growing volume of water in the bottle causes the water height to increase; the more water
enters the bottle, the more the water height increases. This is a description of how and why a
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change in V causes a change in /4. It is important to point out that thinking of causality in the
opposite direction may not be as natural or intuitive; mathematically, changing the value of /
would change the value of V, but it is hard to imagine that, in a real-world context, an increase in
h would cause more water to enter the bottle. I use causality in that second “real-world” sense
and consider the covariation of 4 and V as OLC, which shows simultaneity (V and h change
together) and only linear causality (a change in V' causes a change in 4, and may not be as
intuitive to say that a change in /4 causes a change in V).

The conceptualization of a feedback loop structure between covarying quantities is only
possible when there exists circular causality between those quantities. For instance, consider a
simple predator-prey model relationship in which P is the number of predators in a region and N
is the number of preys in the same region. We assume that predation (magnitude of P) is the only
factor affecting N and that prey availability (magnitude of N) is the only factor affecting P. With
those assumptions, P increases when N increases because an increase in availability of prey
produces prosperity for predators, who can reproduce more. However, when P increases passed
certain value, N starts to decrease because an increase in predator means that more preys would
die. When N decreases passed certain threshold value, P would start to decrease as well because
predators do not have enough food to sustain their population. As P decreases passed certain
value, N becomes to increase again because there are less predators and less preys get eaten. This
is an example of CLC, which shows simultaneity (P and N change together) and circular
causality (changes in N cause changes in P, which in turn cause changes in N again and so on).
Conceptualizing circular causality, as illustrated by the predators-prey model, seems to be more
cognitively demanding than conceptualizing linear causality (Ghosh, 2017; Hokayen et al., 2015;
Roberts, 1978; Wellmanns & Schmiemann, 2022).

Methodology

This paper is part of a larger study that investigated how PSTs make sense of some elemental
mathematics behind modeling climate change. Three secondary PSTs —hereafter Jodi, Pam, and
Kris— enrolled in a mathematics education program at a large Southeastern university
participated in the larger study. These PSTs had completed Calculus I and II and an Intro to
Higher Mathematics course and were completing a Math Modeling for Teachers course by the
time the larger study took place. The PSTs were asked to complete an original sequence of
mathematical tasks while participating in individual, task-based interviews (Goldin, 2000). In
this paper, I focus on the PSTs’ responses to the Energy Balance task.

The Energy Balance (EB) Task

An energy balance model describes the continuous heat exchange between the sun, the
planet’s surface, and the atmosphere (Figure 1a). The planet’s surface is warmed by a fraction of
the sun’s radiation (S). As the surface’s temperature increases, it radiates heat towards the
atmosphere (R). The majority of it (B) is absorbed by greenhouse gases (GHG), which rises the
atmosphere’s temperature. As it warms up, the atmosphere radiates a fraction of the absorbed
heat back to the surface (4). The latter further increases the surface’s temperature, which results
in an increase of surface radiation towards the atmosphere and an increase in the atmosphere’s
temperature. The continuous heat exchange between the surface and the atmosphere is known as
the greenhouse effect and has a key role in controlling the planet’s mean surface temperature, 7.
The relative abundance of GHG in the atmosphere regulates the amount of heat it absorbs.
Therefore, changes in the concentration of GHG are followed by changes in 7.
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The EB task (Figure 1b) describes a simplified situation that begins with an energy balance at
the surface; that is, the surface absorbs heat at the same rate it releases it (S + 4 = R in Figure
1a). Then, it is assumed that a unique and instantaneous pulse of carbon dioxide (CO») is
released at # = 0 to increase its concentration in the atmosphere. The EB task focuses on CO, for
it is one of the main drivers of global warming (IPCC, 2018). The instantaneous increase in CO>
is followed by an instantaneous increase in A4, the heat radiation from the atmosphere to the
surface. Thus, at ¢ = 0, the surface is absorbing heat at a higher rate than that at which it is
releasing it (S + A > R in Figure 1a). The surface then begins to warm up as time elapses (7
increases as ¢ increases) and to increase its heat radiation towards the atmosphere (R increases as
t increases). The atmosphere also begins to warm up and to further increase its heat radiation
back to the surface (4 increases as ¢ increases). This further warms the surface and further
increases the surface heat radiation towards the atmosphere (7 and R continue to increase as ¢
increases). This energy feedback loop between the surface and the atmosphere allows for R to
increase enough so that a new energy balance is reached (S + 4 = R). This balance is
accompanied by a new (higher) value of 7. Thus, the goal of the EB task was to engage PSTs
into thinking about how the Earth’s energy balance’s response to an increase in CO> results in an
increase in the mean surface temperature, 7, thus connecting CO; pollution to global warming.

The current paper examines the PSTs’ reasoning regarding the feedback loop between the
surface and the atmosphere in terms of a covariation between R and 4 with respect to time. The
results will mainly focus on the PSTs’ responses to the second part of the EB task, in which they
were asked to draw the graph of T as a function of time ¢ (Figure 1b).

Mathematical Task — S2T2

An increase in the atmospheric concentration of CO2 results in an energy imbalance in the
Earth’s energy budget. This initial imbalance is known as forcing by CO2. We want to

Sun examine how the planetary energy imbalance N(t) and the planet’s mean surface temperature
' T(t) vary over time after the forcing. Use what you learned about the Earth’s energy budget.
B the greenhouse effect, and the definition N(t) = (S(t) + A(t)) — R(t) to determine how:

a) N(t) varies over time and sketch its graph.
b) T(t) varies over time and sketch its graph.

N(t)
()

Earth’s Surface

Figure 1: (a) An Earth’s energy balance model (left) and (b) the EB task (right)

Data Collection

Before working on the EB task, the PSTs participated in a 32-minute-long, individual
minilesson where some basic concepts related to the Earth’s energy balance and the greenhouse
effect were discussed. The goal was to provide PSTs with enough knowledge about those
concepts so that they could start working on the EB task. The minilesson began with a 7-minute-
long video retrieved from the NASA YouTube channel NASAEarthObservatory introducing the
energy balance and the greenhouse effect. Then, each PST and I held a 5-minute-long Q&A
session in which we clarified questions about the ideas discussed in the video. During the next 20
minutes, each PST and I worked with a diagram of the energy balance similar to the one in
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Figure 1a. We talked about what each of the quantities S, R, L, B, and A represented and how
they related to one another. Then, we talked about the energy balance at the surface as the
equality S + 4 = R, and I illustrated it for some specific initial values of S, 4, and R. We also
discussed what inequalities such as S+ A4 > R or § + 4 < R could mean in terms of temperature.

A week after the minilesson, each PST completed the EB task during a 60-minute-long,
individual, task-based interview (Goldin, 2000). The interviews were semi-structured and had an
interview protocol with pre-defined questions so that all participants received similar prompts
during the interviews. To help PSTs understand how the energy balance responds to the increase
in CO», the following recursive rules were made available to them: B; = kR, Ai = Y2'B, and R+ 1
=S+ A, for some 0 <k < 1. By using these rules, they could find the values of B, 4, and R for
successive values of time, thus observing how these quantities change dynamically. This
modelling strategy is known as Discrete Event Simulation and can be used to help students
understand the dynamics of systems in particular situations (Hoad & Kunc, 2018).

Data Analysis

The interview videos and transcripts were analyzed through thematic analysis (Braun &
Clarke, 2006; 2012). This qualitatively method of data analysis allows for systematically
identifying, organizing, and offering insight into patterns of meaning across a data set though the
development of codes and themes. Thematic analysis is a widely used analytic strategy to
identify and make sense of collective or shared meanings and experiences. The method can be
summarized into six phases: familiarizing yourself with your data, generating initial codes,
searching for themes, reviewing themes, defining and naming, and producing the report.

I watched all interview videos and took notes while doing so. The videos were separated into
shorter, more manageable episodes, each one covering a single topic or showing evidence of a
particular way of reason covariationally. The notes informed my first round of coding for the
interview transcripts. Then, the episode transcripts were sorted according to similar codes to look
for patterns in participants’ responses. This allowed me to revise and refine the initial codes,
reducing them to two main themes. Thus, the five initial codes “asynchronous”, “synchronous”,
“feedforward but not feedback”, “verbalizing/indicating circularity”, and “circular relationship”
were collapsed into two themes: “Simultaneous Change”, with “asynchronous” being the
absence thereof and “synchronous” being the presence thereof, and “Circular causality”, with
“feedforward but not feedback” representing the absence thereof and “verbalizing/indicating
circularity” and “circular relationship” representing the presence thereof.

Using the analytic framework previously described (Table 1), I indexed all episode
transcripts into three analytic matrices, one per participant. These matrices allowed me to look
for patterns in the distribution of themes, which provided the information needed to meet the
research goals.

Results

The analysis revealed that, for this group of preservice teachers, two main cognitive
realizations appear important to conceptualize the energy feedback loop between the surface and
the atmosphere (the greenhouse effect) as a CLC between the quantities R and A: conceiving
simultaneity of change and a circular causality relationship between those quantities. When one
of these realizations was not supported, the PSTs developed inaccurate conceptualizations of the
greenhouse effect and, by extension, this had an impact on their understanding of the link
between COz pollution and global warming.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

110



Table 1: Analytic Framework

Theme Descriptions

Asynchronous

The PST describes or represents changes in 4 and R as occurring asynchronously (4 changes
Simultaneity first, then R changes, then A4 again, and so on).
Synchronous
The PST describes or represents changes in 4 and R as occurring simultaneously as time elapses.
Linear
The PST describes or represents causality in one direction between A and R. Either change in 4
causes change in R or change in R causes change in 4.
Circular
The PST describes or represents a circular causality between A4 and R so that change in 4 causes
change in R, which in turn causes change in 4 again.

Causality

The PSTs explored the greenhouse effect as an energy feedback loop while working on their
graphs of 7'= g(¢). I start the discussion with Kris” work because she conceptualized the
greenhouse effect in terms of CLC. More specifically, Kris made remarks about R and 4
increasing simultaneously as time, ¢, increased: “So, as R increases, 4 increases ... the new R is
affected by S plus A4 [points at S and A]. So, when 4 increases, R is going to be [bigger]. It can’t
just keep increasing”. Kris also made remarks suggesting she conceived of a circular causality
relationship between the quantities R and 4.

Well, [the surface] keeps in taking. I think it is warming up because once we added more
COo, that is less of the emitted energy that is getting just like shut out passed the atmosphere,
leaked from it. So then, more of it is going to be absorbed by the atmosphere ... Whatever is
absorbed by the atmosphere [points at B] is going to be absorbed back into the [points at the
surface], well half of that plus the sun’s energy [points at S| is going to be absorbed by the
Earth, which is going to keep increasing, as we saw with like the 400 [points at the R-value
of “400°"]. Then, from the A value [with a capped marker, traces the top half of a circle,
going from R to A], just with the 4, [the surface] absorbs 160, and then we add a new R-value
[with the capped marker, traces the bottom half of the circle, going from A to R], whatever
that was, and then [the surface] absorbs 164 [with the capped marker, re-traces the top half
of the circle, going from R to A]. So, I think it is going to keep increasing [draws an
increasing, concave-downward graph for T = g(t) that appears to have a horizontal
asymptote that she labels as “new equilibrium temperature’].

In the above excerpt, Kris repeatedly referred to the relationship between R and 4 as a “cycle”,
which suggests an awareness of circular causality between the quantities. Also, notice how she
gestured both, the feedforward relationship from 4 to R and the feedback relationship from R
back to A4, further suggesting circular causality. Kris also drew an accurate graph of 7= g(¢)
showing asymptotic growth towards a new equilibrium value (Figure 2a); this suggests an
awareness of the balancing quality of the feedback loop. Kris’s CLC coincided with her
demonstrating an accurate conception of the greenhouse effect, which guided her to conclude
that an increase in CO; causes a warming effect over the planet’s surface, correctly relating CO-
pollution to global warming.
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B t
Figure 2: (a) Kris’s graph of 7 = g(7) (left) and (b) Pam’s graph of 7 = g(7) (right)

The case of Pam illustrates the conceptualization of OLC, where simultaneous change is
conceived but not circular causality. She described R and 4 as two quantities increasing in
tandem as ¢ increased but only in the 4-to-R direction (“R increases as [emphasis added] 4
increases. So, as [emphasis added] our 4 increases, R increases’). Pam also interpreted the
increase in R and 4 as the planet’s surface emitting more heat than the heat it was absorbing,
which suggested additional evidence of only conceiving causality from 4 to R.

A lot [of heat] is going in, but more is coming out, like R increases as 4 increases. So, as our
A increases, R increases. But our S is staying the same. But our 4 is always less than R. So,

more [heat] is coming out [pauses to think]. So, the Earth is trying to cool itself off, so the
temperature is decreasing from here to here.

Pam again implied that an increase in 4 causes an increase in R, but did not appear aware that

the

increase in R also causes a new increase in 4. She referred to R as heat leaving the surface and
being larger than the heat absorbed by it. This claim overlooked that 4 is actually a fraction of R
that is reabsorbed by the surface. This might have kept Pam from conceptualizing the feedback

relationship from R back to 4. Pam’s OLC coincided with her demonstrating an inaccurate
conception of the greenhouse effect, which may have led her to incorrectly conclude that the
planet’s surface cools down after an increase in COa, as her graph shows (Figure 2b).

Finally, Jodi’s reasoning did not support simultaneous change but supported circular
causality between R and 4. In the following excerpt, Jodi appeared to imagine R and 4 as
changing asynchronously—A changes first, then R changes, and then 4 again, and so on—but
seemed aware of the circular causality between those two quantities.

I am trying to look at the differences. So, like here [points at the R-value “390”" and the A-
value “1507]. Ok, so here the change was five [points at the R-value “395” and the A-value

“1557]. The change was two [points at the R-value “397” and the A-value “157”]. Is it, |
mean, is it not changing? ... The flow of energy increased by five [points at the A-value

“1557], but then it decreased by five [points at the R-value “395”"]. Then it increased by two

[points at the A-value “157], and then it decreased by two [points at the R-value “397"].
So, it is almost as if there was no change in temperature because I associate like energy as
kind of having a relationship with temperature. So, if the energy increases, then the

temperature increases. But, in this scenario, an equal change in energy [points at A] was an
equal change in output [with her index finger, traces the bottom half of a circle from A to R]

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

112



... Ok, cycle started here [points at B], and here the Earth’s temperature would’ve been
something. Equal input of energy, equal output of energy [with her index finger, traces a
circle connecting A, R and B]. Ok. So, when the cycle started, there was an input of energy
[points at A], and then it got released [with her index finger, traces the bottom half of a circle
from A to R]. Another cycle starts [points at B], input of energy, release of energy [with her
index finger, traces a circle connecting B, A, and R]. So, it would almost be like [draws a
periodic curve formed by identical arcs].

Notice how Jodi described the changes in R and A4 as happening at different times rather than
simultaneously. This suggests Jodi did not develop a multiplicative object and her reasoning may
not be considered covariational. In contrast, she did allude to circular causality by tracing circles
with her finger connecting R and A. I also interpreted the periodicity of her graphs (Figure 3) as
additional evidence of awareness of circular causality. Jodi’s way of reasoning coincided with
her demonstrating an inaccurate conception of the greenhouse effect and arriving to an incorrect
conclusion regarding the real impact of CO: pollution on the planet’s surface temperature.

Figure 3: Jodi’s periodic graphs of 7 = g(¢)

Conclusion

Some situations that involve two quantities changing together over time also require the
recognition of an underlying feedback loop structure between them. The study’s results suggest
that, for this group of preservice teachers, reasoning about feedback loop between quantities
involved the ability to conceive closed-loop covariation, which in this study was characterized
by two cognitive realizations: (i) the conception of simultaneous change and (ii) the recognition
of circular causality. The first realization is based on the mental construction of a multiplicative
object between those quantities (Saldanha & Thompson, 1998; Thompson et al., 2017), while the
second realization involves noticing that changes in a quantity cause change in the second
quantity, which in turn cause new changes in the first quantity and so on. The results also
suggests that these two realizations, at least for these preservice teachers, appeared to be
independent from each other. Kris demonstrated both realizations, while Pam and Jodi
demonstrated one or the other but not both. An implication of this is that instructional strategies
aiming to support students’ ability to understand feedback loops mathematically should focus on
developing both realizations at the same time.

It also important to point out that many school mathematical tasks involving change between
quantities may only require open-loop covariation, where students oftentimes only need to attend
to linear causality between the quantities. Examples of these are situations modeled by linear or
quadratic functions. However, closed-loop covariation may be an interesting and novel way to
explore situations involving exponential growth (e.g., compound interest or population growth),
where the current value of the dependent quantity plays a role on how that quantity changes.
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COMBINING COVARIATIONAL REASONING AND CAUSALITY TO
CONCEPTUALIZE FEEDBACK LOOPS

COMBINANDO EL PENSAMIENTO COVARIACIONAL Y LA CAUSALIDAD PARA CONCEPTUALIZAR
BUCLES DE RETROALIMENTACION

Dario Gonzélez
Universidad Auténoma de Chile
dario.gonzalez@uautonoma.cl

This paper introduces two theoretical constructs, open-loop covariation, and closed-loop
covariation, that combine covariational reasoning and causality to characterize the way that
three preservice mathematics teachers conceptualize a feedback loop relationship in a
mathematical task related to climate change. The study’s results suggest that the preservice
teachers’ reasoning about feedback loop between quantities involved the ability to conceive
closed-loop covariation, which in this study was characterized by two cognitive realizations: (i)
the conception of simultaneous change and (ii) the recognition of circular causality. These
realizations, at least for the participants, appeared to be independent from one another. The
theoretical distinction between open- and closed-loop covariation could inform instructional
strategies to develop students’ ability to think about and model feedback loops.

Keywords: Cognition, Integrated STEM / STEAM, Modeling, Sustainability.

Purpose of The Study

Authors from disciplines as diverse as biology, chemistry, engineering, economy, and
mathematics have proposed that current global, complex, politically charged, socio-scientific
issues (universal income, evolution, pandemic and vaccines, climate change, etc.) require STEM
professionals to understand them as complex systems (Ghosh, 2017; Orgill et al., 2019; Renert,
2011; Richmond, 1997; Roychoudhury et al., 2017; Schuler et al., 2018). This holistic
perspective, known as systems thinking, focuses on understanding phenomena in terms of
relationships, connectedness, and context. Systems thinking complements the analytic or
reductionist perspective commonly used in STEM and STEM education fields. An important
distinction between these perspectives involves causality; while the reductionist perspective
focuses on linear, direct cause-and-effect relationships, systems thinking involves identifying
complex causality relationships. An important type of these relationships are feedback loops, or a
“succession of cause-effect relations that start and end with the same variable. It constitutes a
circular causality, only meaningful dynamically, over time” (Barlas, 2002, p. 1147).

Mathematics represents a powerful way to make sense of relationships, which can be
understood as two (or more) quantities changing together over time. Feedback loops, therefore,
can be seen as two (or more) quantities changing simultaneously in a way such that, the first
quantity causes the second quantity to change, and that change causes the first quantity to change
again, and so on. In particular, I believe that combining covariational reasoning with the notion
of causality can provide insights into how students can understand feedback loop relationships in
mathematics.

In this paper, I combine covariational reasoning and causality to introduce two theoretical
constructs, open-loop covariation and closed-loop covariation, which can characterize the way
that three preservice teachers conceptualize a feedback loop relationship in a mathematical task
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related to climate change. The constructs also have the potential to address a gap in the literature
focusing on covariational reasoning which have a tendency to consider only unidirectional
implications of change and leave underexplored the role of real-world causality. I also discuss
possible implications for mathematics learning and teaching.

Conceptual Framework
Covariational Reasoning and the Multiplicative Object
Covariational reasoning finds one of its earliest definitions in the work of Saldanha and
Thompson (1998), who defined it as follows:

Someone holding in mind a sustained image of two quantities’ values (magnitudes)
simultaneously. It entails coupling the two quantities, so that, in one’s understanding, a
multiplicative object is formed of the two. As a multiplicative object, one tracks either
quantity’s value with the immediate, explicit, and persistent realization that, at every
moment, the other quantity also has a value ... An operative image of covariation is one in
which a person imagines both quantities having been tracked for some duration, with the
entailing correspondence being an emergent property of the image. (pp. 298-299)

The multiplicative object in their definition is analogous to the logical conjunction “and” that
joins or units two propositions to produce one proposition that is true if and only if both of the
constituent propositions are true. In the case of covariation, the multiplicative object joins the
corresponding values of two covarying quantities so that the student “mentally unites their
attributes to make a new attribute that is, simultaneously, one and the other” (Thompson et al.,
2017, p. 96). This multiplicative object supports the student’s ability to conceptualize two (or
more) quantities changing simultaneously and interdependently.

Open- and Closed-Loop Covariation

Covariational reasoning support the conceptualization of two quantities changing
simultaneously. However, simultaneity may not be enough to conceptualize feedback loop
structures in a system. I propose that the way causality is conceived may also play an important
role in conceptualizing a feedback loop relationship between two covarying quantities. To
address this distinction, I introduced two constructs: open-loop covariation (OLC) and closed-
loop covariation (CLC).

Let’s consider the filling bottle problem where water is being pour into the bottle at a
constant rate, increasing the volume of water, ¥, and the water height, 4, in the bottle. The
multiplicative object allows one to visualize V" and 4 changing simultaneously over time so that
there exist a pair (V(¢), A(¢)) for any ¢ in some interval of conceptual time. One imagines that if
changes, so does /4, and if / changes, so does V; they change together. The multiplicative object,
thus, support a student’s ability to conceptualize simultaneous change between two quantities.

However, the multiplicative object does not provide an answer to the questions of #ow and
why a change in V results in a change in 4, or vice versa. In this paper, I use the term causality as
a way of describing how and why the state of a dynamic process changes as time goes on (Sauer,
2010). The volume of water V, or the space taken by the water in the bottle, is growing since
more and more water is entering the bottle. One also observes (or imagines) that the water
height, 4, is increasing as water enters the bottle; that is, 4 grows as V' grows. One could say that
the growing volume of water in the bottle causes the water height to increase; the more water
enters the bottle, the more the water height increases. This is a description of how and why a
change in V' causes a change in /4. It is important to point out that thinking of causality in the
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opposite direction may not be as natural or intuitive; mathematically, changing the value of /
would change the value of V, but it is hard to imagine that, in a real-world context, an increase in
h would cause more water to enter the bottle. I use causality in that second “real-world” sense
and consider the covariation of 4 and V as OLC, which shows simultaneity (V and h change
together) and only linear causality (a change in V' causes a change in 4, and may not be as
intuitive to say that a change in 4 causes a change in V).

The conceptualization of a feedback loop structure between covarying quantities is only
possible when there exists circular causality between those quantities. For instance, consider a
simple predator-prey model relationship in which P is the number of predators in a region and N
is the number of preys in the same region. We assume that predation (magnitude of P) is the only
factor affecting N and that prey availability (magnitude of N) is the only factor affecting P. With
those assumptions, P increases when N increases because an increase in availability of prey
produces prosperity for predators, who can reproduce more. However, when P increases passed
certain value, N starts to decrease because an increase in predator means that more preys would
die. When N decreases passed certain threshold value, P would start to decrease as well because
predators do not have enough food to sustain their population. As P decreases passed certain
value, N becomes to increase again because there are less predators and less preys get eaten. This
is an example of CLC, which shows simultaneity (P and N change together) and circular
causality (changes in N cause changes in P, which in turn cause changes in N again and so on).
Conceptualizing circular causality, as illustrated by the predators-prey model, seems to be more
cognitively demanding than conceptualizing linear causality (Ghosh, 2017; Hokayen et al., 2015;
Roberts, 1978; Wellmanns & Schmiemann, 2022).

Methodology

This paper is part of a larger study that investigated how PSTs make sense of some elemental
mathematics behind modeling climate change. Three secondary PSTs —hereafter Jodi, Pam, and
Kris— enrolled in a mathematics education program at a large Southeastern university
participated in the larger study. These PSTs had completed Calculus I and II and an Intro to
Higher Mathematics course and were completing a Math Modeling for Teachers course by the
time the larger study took place. The PSTs were asked to complete an original sequence of
mathematical tasks while participating in individual, task-based interviews (Goldin, 2000). In
this paper, I focus on the PSTs’ responses to the Energy Balance task.
The Energy Balance (EB) Task

An energy balance model describes the continuous heat exchange between the sun, the
planet’s surface, and the atmosphere (Figure 1a). The planet’s surface is warmed by a fraction of
the sun’s radiation (S). As the surface’s temperature increases, it radiates heat towards the
atmosphere (R). The majority of it (B) is absorbed by greenhouse gases (GHG), which rises the
atmosphere’s temperature. As it warms up, the atmosphere radiates a fraction of the absorbed
heat back to the surface (4). The latter further increases the surface’s temperature, which results
in an increase of surface radiation towards the atmosphere and an increase in the atmosphere’s
temperature. The continuous heat exchange between the surface and the atmosphere is known as
the greenhouse effect and has a key role in controlling the planet’s mean surface temperature, 7.
The relative abundance of GHG in the atmosphere regulates the amount of heat it absorbs.
Therefore, changes in the concentration of GHG are followed by changes in 7.

The EB task (Figure 1b) describes a simplified situation that begins with an energy balance at
the surface; that is, the surface absorbs heat at the same rate it releases it (S + 4 = R in Figure
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1a). Then, it is assumed that a unique and instantaneous pulse of carbon dioxide (CO») is
released at ¢ = 0 to increase its concentration in the atmosphere. The EB task focuses on CO, for
it is one of the main drivers of global warming (IPCC, 2018). The instantaneous increase in CO2
is followed by an instantaneous increase in A4, the heat radiation from the atmosphere to the
surface. Thus, at # = 0, the surface is absorbing heat at a higher rate than that at which it is
releasing it (S + A > R in Figure 1a). The surface then begins to warm up as time elapses (T
increases as ¢ increases) and to increase its heat radiation towards the atmosphere (R increases as
t increases). The atmosphere also begins to warm up and to further increase its heat radiation
back to the surface (4 increases as ¢ increases). This further warms the surface and further
increases the surface heat radiation towards the atmosphere (7 and R continue to increase as ¢
increases). This energy feedback loop between the surface and the atmosphere allows for R to
increase enough so that a new energy balance is reached (S + 4 = R). This balance is
accompanied by a new (higher) value of 7. Thus, the goal of the EB task was to engage PSTs
into thinking about how the Earth’s energy balance’s response to an increase in CO> results in an
increase in the mean surface temperature, 7, thus connecting CO; pollution to global warming.

The current paper examines the PSTs’ reasoning regarding the feedback loop between the
surface and the atmosphere in terms of a covariation between R and 4 with respect to time. The
results will mainly focus on the PSTs’ responses to the second part of the EB task, in which they
were asked to draw the graph of T as a function of time ¢ (Figure 1b).

Mathematical Task — S2T2

An increase in the atmospheric concentration of CO2 results in an energy imbalance in the
Earth’s energy budget. This initial imbalance is known as forcing by CO2. We want to
examine how the planetary energy imbalance N(t) and the planet’s mean surface temperature
T(t) vary over time after the forcing. Use what you learned about the Earth’s energy budget,
‘B the greenhouse effect, and the definition N(t) = (S(t) + A(t)) — R(1) to determine how:

a) N(t) varies over time and sketch its graph.

b) T(t) varies over time and sketch its graph.

N
()

Earth’s Surface

Figure 1: (a) An Earth’s energy balance model (left) and (b) the EB task (right)

Data Collection

Before working on the EB task, the PSTs participated in a 32-minute-long, individual
minilesson where some basic concepts related to the Earth’s energy balance and the greenhouse
effect were discussed. The goal was to provide PSTs with enough knowledge about those
concepts so that they could start working on the EB task. The minilesson began with a 7-minute-
long video retrieved from the NASA YouTube channel NASAEarthObservatory introducing the
energy balance and the greenhouse effect. Then, each PST and I held a 5-minute-long Q&A
session in which we clarified questions about the ideas discussed in the video. During the next 20
minutes, each PST and I worked with a diagram of the energy balance similar to the one in
Figure 1a. We talked about what each of the quantities S, R, L, B, and A4 represented and how
they related to one another. Then, we talked about the energy balance at the surface as the
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equality S + 4 = R, and I illustrated it for some specific initial values of S, 4, and R. We also
discussed what inequalities such as S+ A4 > R or § + 4 < R could mean in terms of temperature.

A week after the minilesson, each PST completed the EB task during a 60-minute-long,
individual, task-based interview (Goldin, 2000). The interviews were semi-structured and had an
interview protocol with pre-defined questions so that all participants received similar prompts
during the interviews. To help PSTs understand how the energy balance responds to the increase
in CO», the following recursive rules were made available to them: B; = k'R, Ai = "2'B, and R+ 1
=S+ A, for some 0 <k < 1. By using these rules, they could find the values of B, 4, and R for
successive values of time, thus observing how these quantities change dynamically. This
modelling strategy is known as Discrete Event Simulation and can be used to help students
understand the dynamics of systems in particular situations (Hoad & Kunc, 2018).

Data Analysis

The interview videos and transcripts were analyzed through thematic analysis (Braun &
Clarke, 2006; 2012). This qualitatively method of data analysis allows for systematically
identifying, organizing, and offering insight into patterns of meaning across a data set though the
development of codes and themes. Thematic analysis is a widely used analytic strategy to
identify and make sense of collective or shared meanings and experiences. The method can be
summarized into six phases: familiarizing yourself with your data, generating initial codes,
searching for themes, reviewing themes, defining and naming, and producing the report.

I watched all interview videos and took notes while doing so. The videos were separated into
shorter, more manageable episodes, each one covering a single topic or showing evidence of a
particular way of reason covariationally. The notes informed my first round of coding for the
interview transcripts. Then, the episode transcripts were sorted according to similar codes to look
for patterns in participants’ responses. This allowed me to revise and refine the initial codes,
reducing them to two main themes. Thus, the five initial codes “asynchronous”, “synchronous”,
“feedforward but not feedback”, “verbalizing/indicating circularity”, and “circular relationship”
were collapsed into two themes: “Simultaneous Change”, with “asynchronous” being the
absence thereof and “synchronous” being the presence thereof, and “Circular causality”, with
“feedforward but not feedback” representing the absence thereof and “verbalizing/indicating
circularity” and “circular relationship” representing the presence thereof.

Using the analytic framework previously described (Table 1), I indexed all episode
transcripts into three analytic matrices, one per participant. These matrices allowed me to look
for patterns in the distribution of themes, which provided the information needed to meet the
research goals.

Results

The analysis revealed that, for this group of preservice teachers, two main cognitive
realizations appear important to conceptualize the energy feedback loop between the surface and
the atmosphere (the greenhouse effect) as a CLC between the quantities R and 4: conceiving
simultaneity of change and a circular causality relationship between those quantities. When one
of these realizations was not supported, the PSTs developed inaccurate conceptualizations of the
greenhouse effect and, by extension, this had an impact on their understanding of the link
between COz pollution and global warming.

Table 1: Analytic Framework
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Theme Descriptions

Asynchronous

The PST describes or represents changes in 4 and R as occurring asynchronously (4 changes
Simultaneity first, then R changes, then 4 again, and so on).
Synchronous
The PST describes or represents changes in 4 and R as occurring simultaneously as time elapses.
Linear
The PST describes or represents causality in one direction between A and R. Either change in 4
causes change in R or change in R causes change in 4.
Circular
The PST describes or represents a circular causality between A4 and R so that change in 4 causes
change in R, which in turn causes change in 4 again.

Causality

The PSTs explored the greenhouse effect as an energy feedback loop while working on their
graphs of 7'= g(¢). I start the discussion with Kris” work because she conceptualized the
greenhouse effect in terms of CLC. More specifically, Kris made remarks about R and 4
increasing simultaneously as time, ¢, increased: “So, as R increases, 4 increases ... the new R is
affected by S plus A4 [points at S and A]. So, when 4 increases, R is going to be [bigger]. It can’t
just keep increasing”. Kris also made remarks suggesting she conceived of a circular causality
relationship between the quantities R and 4.

Well, [the surface] keeps in taking. I think it is warming up because once we added more
COo, that is less of the emitted energy that is getting just like shut out passed the atmosphere,
leaked from it. So then, more of it is going to be absorbed by the atmosphere ... Whatever is
absorbed by the atmosphere [points at B] is going to be absorbed back into the [points at the
surface], well half of that plus the sun’s energy [points at S| is going to be absorbed by the
Earth, which is going to keep increasing, as we saw with like the 400 [points at the R-value
of “400°"]. Then, from the A value [with a capped marker, traces the top half of a circle,
going from R to A], just with the 4, [the surface] absorbs 160, and then we add a new R-value
[with the capped marker, traces the bottom half of the circle, going from A to R], whatever
that was, and then [the surface] absorbs 164 [with the capped marker, re-traces the top half
of the circle, going from R to A]. So, I think it is going to keep increasing [draws an
increasing, concave-downward graph for T = g(t) that appears to have a horizontal
asymptote that she labels as “new equilibrium temperature’].

In the above excerpt, Kris repeatedly referred to the relationship between R and 4 as a “cycle”,
which suggests an awareness of circular causality between the quantities. Also, notice how she
gestured both, the feedforward relationship from 4 to R and the feedback relationship from R
back to A4, further suggesting circular causality. Kris also drew an accurate graph of 7= g(¢)
showing asymptotic growth towards a new equilibrium value (Figure 2a); this suggests an
awareness of the balancing quality of the feedback loop. Kris’s CLC coincided with her
demonstrating an accurate conception of the greenhouse effect, which guided her to conclude
that an increase in CO; causes a warming effect over the planet’s surface, correctly relating CO-
pollution to global warming.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

120



) t
Figure 2: (a) Kris’s graph of 7 = g(7) (left) and (b) Pam’s graph of 7 = g(7) (right)

The case of Pam illustrates the conceptualization of OLC, where simultaneous change is
conceived but not circular causality. She described R and 4 as two quantities increasing in
tandem as ¢ increased but only in the 4-to-R direction (“R increases as [emphasis added] 4
increases. So, as [emphasis added] our 4 increases, R increases’). Pam also interpreted the
increase in R and 4 as the planet’s surface emitting more heat than the heat it was absorbing,
which suggested additional evidence of only conceiving causality from 4 to R.

A lot [of heat] is going in, but more is coming out, like R increases as 4 increases. So, as our
A increases, R increases. But our § is staying the same. But our 4 is always less than R. So,
more [heat] is coming out [pauses to think]. So, the Earth is trying to cool itself off, so the
temperature is decreasing from here to here.

Pam again implied that an increase in 4 causes an increase in R, but did not appear aware that the
increase in R also causes a new increase in 4. She referred to R as heat leaving the surface and
being larger than the heat absorbed by it. This claim overlooked that 4 is actually a fraction of R
that is reabsorbed by the surface. This might have kept Pam from conceptualizing the feedback
relationship from R back to 4. Pam’s OLC coincided with her demonstrating an inaccurate
conception of the greenhouse effect, which may have led her to incorrectly conclude that the
planet’s surface cools down after an increase in COa, as her graph shows (Figure 2b).

Finally, Jodi’s reasoning did not support simultaneous change but supported circular
causality between R and 4. In the following excerpt, Jodi appeared to imagine R and 4 as
changing asynchronously—A changes first, then R changes, and then 4 again, and so on—but
seemed aware of the circular causality between those two quantities.

I am trying to look at the differences. So, like here [points at the R-value “390”" and the A-
value “1507]. Ok, so here the change was five [points at the R-value “395” and the A-value
“1557]. The change was two [points at the R-value “397” and the A-value “157"]. Is it, |
mean, is it not changing? ... The flow of energy increased by five [points at the A-value
“1557], but then it decreased by five [points at the R-value “395”’]. Then it increased by two
[points at the A-value “157], and then it decreased by two [points at the R-value “397"].
So, it is almost as if there was no change in temperature because I associate like energy as
kind of having a relationship with temperature. So, if the energy increases, then the
temperature increases. But, in this scenario, an equal change in energy [points at A] was an
equal change in output [with her index finger, traces the bottom half of a circle from A to R]
... Ok, cycle started here [points at B], and here the Earth’s temperature would’ve been
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something. Equal input of energy, equal output of energy [with her index finger, traces a
circle connecting A, R and B]. Ok. So, when the cycle started, there was an input of energy
[points at A], and then it got released [with her index finger, traces the bottom half of a circle
from A to R]. Another cycle starts [points at B], input of energy, release of energy [with her
index finger, traces a circle connecting B, A, and R]. So, it would almost be like [draws a
periodic curve formed by identical arcs].

Notice how Jodi described the changes in R and A4 as happening at different times rather than
simultaneously. This suggests Jodi did not develop a multiplicative object and her reasoning may
not be considered covariational. In contrast, she did allude to circular causality by tracing circles
with her finger connecting R and A. I also interpreted the periodicity of her graphs (Figure 3) as
additional evidence of awareness of circular causality. Jodi’s way of reasoning coincided with
her demonstrating an inaccurate conception of the greenhouse effect and arriving to an incorrect
conclusion regarding the real impact of CO: pollution on the planet’s surface temperature.

a b cl
Figure 3: Jodi’s periodic graphs of 7 = g(¢)

Conclusion

Some situations that involve two quantities changing together over time also require the
recognition of an underlying feedback loop structure between them. The study’s results suggest
that, for this group of preservice teachers, reasoning about feedback loop between quantities
involved the ability to conceive closed-loop covariation, which in this study was characterized
by two cognitive realizations: (i) the conception of simultaneous change and (ii) the recognition
of circular causality. The first realization is based on the mental construction of a multiplicative
object between those quantities (Saldanha & Thompson, 1998; Thompson et al., 2017), while the
second realization involves noticing that changes in a quantity cause change in the second
quantity, which in turn cause new changes in the first quantity and so on. The results also
suggests that these two realizations, at least for these preservice teachers, appeared to be
independent from each other. Kris demonstrated both realizations, while Pam and Jodi
demonstrated one or the other but not both. An implication of this is that instructional strategies
aiming to support students’ ability to understand feedback loops mathematically should focus on
developing both realizations at the same time.

It also important to point out that many school mathematical tasks involving change between
quantities may only require open-loop covariation, where students oftentimes only need to attend
to linear causality between the quantities. Examples of these are situations modeled by linear or
quadratic functions. However, closed-loop covariation may be an interesting and novel way to
explore situations involving exponential growth (e.g., compound interest or population growth),
where the current value of the dependent quantity plays a role on how that quantity changes.
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Emergent graphical shape thinking (EGST) entails conceiving a graph as being dynamically
generated via the trace of a moving point constrained by two changing quantities. As such,
Paoletti et al. (2023) argue that meanings for quantities within a situation and meanings for
graphical representations must be connected, or bridged, to engage in EGST. In this report, we
explore this bridging process through a case study investigating how two students made
connections that bridge their situational and graphical meanings during their work on a
mathematical task. We found that the pair’s connections between situational and graphical
meanings emerged most prominently only after recursive engagement with reasoning in both
contexts. We discuss the implications of these findings for researchers and practitioners seeking
to support students as they develop EGST.

Keywords: Algebra and Algebraic Thinking, Middle School Education, Learning Trajectories
and Progressions; Reasoning

Students’ graphical reasoning plays an important role in their learning across STEM fields
and their participation as critical citizens (e.g., Glazer, 2011; Potgieter et al., 2008). In particular,
emergent graphical shape thinking (EGST) can be useful, as it entails conceiving a graph as
being dynamically generated via the trace of a moving point constrained by two changing
quantities (Moore, 2021; Moore & Thompson, 2015). For instance, Figure 1 shows how a
student can represent a conceived relationship between the dynamic quantities of the base
segment length and area of a growing shape via a graph that is produced from the movement of a
dynamic point. Paoletti et al. (2020) noted that EGST is important to interpret many graphs
across STEM textbooks and practitioner journals in ways consistent with the authors’ intentions.
However, such reasoning is non-trivial. For example, less than 30% of the 121 U.S. teachers in
Thompson et al.’s (2017) study provided evidence suggestive of EGST on a task that could
potentially elicit such reasoning. Hence, there is a continued need to explore ways to support
students’ in developing EGST.
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Figure 1: Four screenshots showing a point as a dynamic trace of the relationship between

two situational quantities.

In order to engage meaningfully in EGST, Paoletti et al. (2023) argued that learners need to
engage both in reasoning specific to the situation (real-world or abstract) and in reasoning about
objects in graphical representations. However, the process by which students bridge their
thinking in situational and graphical contexts to support EGST is still relatively unexplored.

In this paper, we present a case study (Yin, 2018) to explore learners’ situational and
graphical bridging process. We feature the activity of a pair of sixth-grade students as they
engaged in a teaching experiment (Steffe & Thompson, 2000) to investigate how we might
support students to engage in such bridging. To provide context for our case study, we first
elaborate on the literature showing the relevance of situational and graphical representations to
the development of EGST. Then, we present our methods and results, highlighting how students’
iterative engagement with situational and graphical connections corresponded to greater
specificity in both domains. Finally, we share implications for researchers and educators who
wish to support their students in EGST.

Situations and Graphs in Emergent Graphical Shape Thinking

This case study builds upon the local instruction theory presented in Paoletti et al. (2023).
The local instruction theory posited that students must engage in quantitative and covariational
reasoning both with respect to situational quantities and with objects represented graphically
prior to engaging in EGST. Reasoning quantitatively, both situationally and graphically, entails
an individual constructing quantities to interpret their experiential worlds (Smith & Thompson,
2008; Steffe, 1991; von Glasersfeld, 1995). Covariational reasoning entails a learner mentally
coordinating two varying quantities (Thompson & Carlson, 2017). Covariational reasoning often
follows a developmental progression (Paoletti et al., 2023; Carlson et al., 2002) in which a
student coordinates two quantities by thinking “of one, then the other, then the first, then the
second, and so on” (Saldanha & Thompson, 1998, p. 299) until they have constructed a
relationship that entails both quantities simultaneously being tracked for some duration.
Researchers (Saldanha & Thompson, 1998; Thompson et al., 2017) refer to such a conception as
a multiplicative object (i.e., a Cartesian product).

Although we often use mathematical representations (e.g., graphs, equations) to represent
relationships between covarying quantities, covariational reasoning does not require such
representations (e.g., Paoletti & Moore, 2018; Castillo-Garsow et al., 2013; Johnson, 2015).
Learners often construct and coordinate covarying quantities to develop meanings for situational
quantities and relationships between quantities. These meanings for a situation (M.S) can serve
as the foundation for their mathematical activity (e.g., constructing a graph representing a
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relationship) or can result from their interpreting mathematical representations (e.g., developing
a novel meaning for a situational relationship as they interpret a graph).

As a pre-requisite to engaging in EGST, learners must also engage in quantitative and
covariational reasoning with respect to objects in a graphical representation (Moore, 2021;
Paoletti et al., 2023). Paoletti et al. (2023) described a particular sequence of three meanings in
graphical representations (M.R) that can support students’ EGST. They described a learner must
first consider how a segment length can represent a quantity’s magnitude (M.R.1). Next, in a
Cartesian coordinate system, a learner can consider changes in two orthogonal segment lengths
in relation to two covarying quantities (M.R.2). Then, a learner can conceive of or anticipate a
point in the coordinate system as a multiplicative object simultaneously representing the two
segments’ magnitudes (M.R.3).

Reflected in the above descriptions, to engage in EGST, learners must ultimately coordinate
their situational (M.S) and graphical meanings (M.R) to conceive of a graph as being generated
by the dynamic trace of a point. Paoletti et al. (2023) contended that there is likely a dialectal
relationship between students’ situational and graphing meanings, stating, “our LIT does not
outline a single, linear, or developmental progression; rather, we call for repeated and connected
occasions for students to engage in M.S, M.R, and [emergent reasoning] as they develop stable
graphing meanings that entail EGST” (p. 205). However, the way in which students construct
these connections has not been explored in detail.

Methods

We applied case study methodology (Yin, 2018) to respond to the following research
question: How might students make connections between situational quantitative and
covariational reasoning (M.S) and graphical representations of covarying quantities (M.R) as
they build toward EGST? We drew our case from data collected during a teaching experiment
(Steffe & Thompson, 2000) with one pair of students. We engaged the pair in tasks we intended
to support their EGST. In this report, we present results from the students’ activity during one
session where we identified that students were engaged in reasoning to relate situational (M.S)
and graphical (M.R) meanings in explicit ways.

Participants, Context, and Task

We conducted our teaching experiment with sixth grade students in a public charter school in
the Northeastern United States. The first author facilitated the teaching experiment as the
teacher-researcher (TR). In our selected case, our participants were Sebastian (age 11; self-
identified as male and Black, Puerto Rican, and Latino) and Tom (age 11; self-identified as male
and White). Both participant names are pseudonyms selected with student input.

In our case for this report, the pair collaborated on a task we designed in Desmos called The
Big Event. We presented students with a dynamic scenario in which two teachers (Mr. K and
Mrs. B) are walking away from a podium and post respectively to create a growing area where
hypothetical students could stand for a presentation (the shape grew as shown in Figure 1).
Throughout the task, we asked Sebastian and Tom to identify and coordinate Mr. K’s distance
from the podium (i.e., the horizontal base segment length) and the area of the shape formed
(M.S). In this scenario, as Mr. K’s distance increases, the total area of the shape increases and the
amounts of change of area (hereafter AoC, see Carlson et al., 2002) decrease. Students had the
option to toggle between views of the scenario changing smoothly (e.g., Figure 1) and changing
in chunks (as in the triangular image in Figure 2).
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Our report focuses on Sebastian and Tom’s activity with respect to two prompts in the Big
Event Task that we designed to transition students from reasoning situationally (M.S) to
reasoning graphically (M.R). Prompt 1 presented students with three dynamic line segments
(blue, orange, and purple) alongside the growing shape (Figure 2). Whereas the blue line
segment grew by equal amounts for each jump of change in the shape, the orange segment grew
by increasing amounts and the purple segment by decreasing amounts. Similar to the Which One
Task (Liang & Moore, 2021), the text asked them to select a segment that could represent Mr.
K’s distance from the podium and the shape’s area respectively (M.S & M.R.1). After selecting
segments, Prompt 2 presented students with a blank coordinate plane and axes labeled with each
focal quantity. The text requested that students consider plotting points along each axis (M.R.2)
and then asked students to plot points in the plane (M.R.3).

Prior to engaging with this task, Sebastian and Tom had constructed and interpreted graphs
during the teaching experiment. Specifically, they had completed the Faucet Task, wherein they
coordinated the directional changes between the amount of water and temperature of the water
depicted in a dynamic faucet applet (see also Paoletti, 2019; Paoletti & Vishnubhotla, 2022).
They also graphed another scenario in the Big Event Task that showed a triangle growing by
more each time.

BluerRurple

Al

Figure 2: Screenshot from the Big Event Task showing the chunkily growing scenario
alongside the segments (blue, orange, and purple) in Prompt 1.

Data Collection and Analysis

We audio- and video-recorded Tom and Sebastian’s activity with a camera and screen
capture tool. We conducted a conceptual analysis (Thompson, 2008) as we analyzed the data to
build models of the students’ meanings that viably explained their words and actions. With this
goal in mind, after each session we constructed an event map (Green & Bridges, 2018) to
organize the key events of each session. This process supported us to identify and bound our
case. We transcribed the activity (i.e., dialogue, written activity, and gestures) from the segment
we identified as informing our case analysis. Next, we analyzed the transcript at the utterance
level, highlighting moments in which 1) the TR or text of the task prompted or 2) the pair
engaged in building connections between M.S and M.R. We leveraged the patterns in our
analysis to organize an account of activity that could address our research question.

Results
To explore how Tom and Sebastian might bridge their situational quantitative and
covariational reasoning (M.S) with their developing graphical representations of covarying
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quantities (M.R), we presented prompts that we intended to provide consistent and progressively
specific connections between these meanings. In this case, the students first proceeded through
the task as designed (which we intended to support a shift from M.S. to M.R), which only
supported limited connections between the situation and graph (Pass 1). The TR subsequently
prompted Sebastian and Tom to consider more explicit connections between the situational
quantities and graphical representations at each stage of their activity. Such prompts supported
the students to construct a graph with increasing precision and justification (Pass 2). We
illustrate how students’ recursive and specific connections between situations (M.S) and graphs
(M.R) across Pass 1 and Pass 2 prepared them for the transition to EGST.

Pass 1: Addressing the Task with a Linear Progression from M.S to M.R

As Tom and Sebastian engaged in their first pass through the task, they read Prompt 1 to
select a segment corresponding to the situational quantities of Mr. K’s total distance from the
podium and the total area of the shape (i.e., to bridge M.S. with M.R.1). Sebastian identified the
blue segment as representing Mr. K’s total distance, gesturing between the “same jumps” he
observed in the situational context (M.S) and in the blue segment. Subsequently, Tom added that
the area of the triangle would match the purple segment “because the biggest jump [gestures to
Sit-A in Figure 3a] is the first one [gestures to Seg-A in Figure 3a] and then it gets smaller every
time.” We note how Tom engaged in gestures indicative of connection between the changes in
the quantity of area (M.S) and the changes in the partitions of his segment choice (M.R.1).

Next, the students advanced to Prompt 2, requesting a graph. The TR added an explicit
request for students to consider how the segments on the previous slide (M.R.1) could support
the construction of the graph itself (M.R.2 & M.R.3) and re-read the labels of the quantities on
the axes (M.S). However, reflecting the non-trivial nature of bridging meanings across situations
and graphs necessary to engage in EGST, neither Tom nor Sebastian explicitly referenced both
situational quantities as they presented their strategies to graph points. For example, Sebastian
described that points on the graph would begin in the top right area of the plane and proceed
toward the origin to “go down smaller and smaller.” Sebastian explained that this was because he
expected the graph to move in the opposite direction as the increasing and concave-up graph they
had constructed from the growing triangle portion of the Big Event Task. We note that Sebastian
did not reference either of the situational quantities (Mr. K’s total distance or the area) to support
his conjectures.

Tom disagreed with Sebastian’s strategy. Although Tom verbally described the situational
quantities of Mr. K’s total distance and area of the triangle, his gestures did not correspond to the
quantity of area. His graphing activity focused on marking points in the situation in his
constructed graph as opposed to representing the intended quantities (M.R.2 & M.R.3). First,
engaging with the animation of the triangle, Tom explained:

I would put...[Mr. K’s] dot right there [points as in (1) in Figure 3b] and then for the area
roped off, the dot right there [points as in (2) in Figure 3b] so I would, like, combine those
[gestures as in (3), reaching location (4) in Figure 3b] and put it there.

To support his description, Tom plotted a first point on the graph, followed by a second point at
the TR’s request (Figure 3¢). We note that the location of these points strongly mirrors the
locations Tom identified in the situation (Figure 3b). As such, we conjecture Tom was
reproducing an image (i.e., iconic graphical reasoning; see also Clement, 1989; Johnson et al.,
2020) rather than engaging with explicit quantities (M.S). When the TR prompted more
specifically about the match between the situational quantities of both distance and total area and
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the graph, Tom further acknowledged a disconnect: “Yeah, it’s not the same because it [gestures
to triangle from left to right] increases over time.” Although we could interpret “it” in this
statement to area, such an attribution is still unclear. However, the students explicitly
acknowledging a disconnect provided an opportunity for them to further develop explicit
connections between the situational quantities (M.S) and the graphical representation (M.R).

1 ) =
| Seg-E %
Seg-D g
b 2
Seg-C
)
Seg-B
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Seg-A
K
b Mr K.'s distance from the podium
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Figure 3: (a) A reference image for students’ gestures to the situation and purple segment
and (b) a recreation of Tom’s gestures prior to (c) plotting initial points in the graph.

Pass 2: Addressing the TR’s Iterative Prompting to Engage M.R and M.S

The TR conjectured the students were not explicitly attending to the situational quantities
(M.S). This led the TR to provide additional prompts to support increased specificity with
respect to situational quantities before returning to the graph to support Sebastian and Tom
developing meanings for EGST. Hence, the TR returned to Prompt 1 with the segments. On this
pass, the TR’s prompts extended beyond asking students to identify a segment to match the total
area of the triangle to a request to analyze how and why the segment matched in specific ways.

Viewing the screen in Figure 2, the TR focused first on a scenario in which Mr. K had only
made three equal-sized jumps in his distance from the podium. The TR asked, “What would that
purple segment look like?” Sebastian first described that “on the purple segment, it’s like, big
[puts hand in a “C”] to little [moves “C” upward while framing a smaller space], to little
[repeats].” The TR subsequently prompted for Sebastian to explain the parts of both the segment
and the diagram he was “paying attention to.” Sebastian explained:

Like the yellow right here [gestures Sit-A in Figure 3a] which is right here [gestures from
bottom to top to bottom of Seg-A in Figure 3a] and the white [gestures to Sit-B in Figure 3a],
right here [points to Seg-B in Figure 3a] and then the pink [gestures to Sit-C in Figure 3a],
would be right here [points to Seg-C in Figure 3a].

We note the increasing specificity of Sebastian’s gestures between corresponding quantities in
the situation (M.S) and portions of the segment (M.R.1), particularly related to distinguishing
AoC of area. The TR followed Sebastian’s explanation by asking, “[If] I want to look at the total
area...roped off at that point, what would we be looking at?”” Tom repeated Sebastian’s
connections between AoC of area and the segment components, and then described, “We’re
looking at a line where it stopped...so it’d stop like [points to the highest point of Seg-C in
Figure 3a] right there.” We highlight the explicitness of Tom’s connections between the area and
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the segment representation (M.S and M.R.1) in terms of both AoC and total amounts.

The TR then asked the pair to consider the AoC and total area in the situation and segment as
Mr. K transitioned to his fourth jump in the diagram: “Is my [purple] line segment going to be
bigger or smaller?” Tom began by gesturing across the triangle diagram from left to right: “So
the triangle’s going to get less but the total area is not... they are all combining.” Sebastian
further described that the activity felt like “reverse psychology,” explaining:

We start off with big jumps [gestures over Sit-A in Figure 3a] and started to decrease
with smaller jumps [moves across triangle to Sit-E in Figure 3a] but the area starts to get
bigger as those jumps [waves three times from left to right with hand] go on.

We take Sebastian’s detailed explanation as evidence of the productive shifts in the relationship
he conceived between situational quantities (M.S) and corresponding segments (M.R.1). Given
this specific evidence, the TR advanced again to the graphing slide. To set up the task, the TR
reminded the students of prior activity graphing with dynamic, orthogonal segments in the
Faucet Task (M.R.2) and repeated their conclusions from the activity on the previous slide
(M.R.1). Tom constructed the initial graph for the pair:

So, I think, each jump from Mr. K [moves over 3 times as in (1) in Figure 4a] is going to be
the exact same, but first [ am gonna start out with [moves mouse to (2) in Figure 4a] a big
jump [moves mouse up as in (3), plotting point] like that, and then we’re going to go here
[moves mouse to (4) in Figure 4a] and then it’s a smaller jump [moves mouse up as in (35),
plotting point].

Tom continued to plot an additional three points in this way (see Figure 4b), explaining the
jumps in area were “getting smaller every time we do it.” Sebastian further interpreted Tom’s
graph: “As Mr. K’s distance is increasing and the jumps are getting smaller, [the total area]’s still
getting bigger [places hands orthogonally], no matter how far Mr. K walks [motions horizontal
hand from left to right, repeats twice more].”

We consider Tom and Sebastian’s activity collectively to emphasize how their iterative
engagement with situational quantities (M.S) and segments (M.R.1) supported shifts in their
graphing activity. First, the students displayed explicit indications of conceiving orthogonal
segments along each axis (e.g., Sebastian’s orthogonal hand gestures, M.R.2). Furthermore, the
students also indicated the simultaneity of those segments in the points they constructed (e.g.,
Tom’s over and up gesturing “getting smaller every time we do it,” M.R.3). Importantly, these
graphical objects were not described as contextless; rather, Sebastian, in particular, referenced
situational quantities explicitly in his interpretation of the points (M.S). In response to the TR’s
prompts, the pair specifically engaged with AoC and total area as they drew connections directly
to segments. This activity supported their graphing with greater justification and support.
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Figure 4: (a) A recreation of a subset of Tom’s gestures in constructing his second graph
and (b) Tom’s final graph.

Discussion and Conclusion

In this paper, we presented a case study to address our RQ and describe how two students
built connections between situational quantitative and covariational reasoning (M.S) and
graphical representations of covarying quantities (M.R) as they progressed toward EGST. We
note that the linear progression we initially designed from a situation to a graphical
representation in Pass 1 did not provide sufficient opportunities for our students to reason in a
coordinated way about how to represent the same two quantities across both contexts. In Pass 2,
the students iteratively engaged with situations and graphs (that is, returning to M.S and
repeatedly making connections between each component of M.R with M.S) in a way that
resulted in more specific thinking. Thus, we conjecture that by engaging in both Pass 1 and Pass
2, the students developed robust connections between situational quantities (M.S) and graphs
(M.R); we present Figure 5 to synthesize these results. Although we do not detail Tom and
Sebastian’s full construction of a smooth graph and EGST later in their activity here, we show

evidence of robust connections between quantities in situations and graphs that prepared them
for this next step in their reasoning.

// \\\

_ L _
[ M.S ! M.R )
T~

e
I M.R.1
: b
I
-]
T
N
I
\ ‘\ o” i
N 2 e
\\ N
\ ]
\\\ II Pass 1

Figure 5: Visual presentation of the relationship between Pass 1 and Pass 2 in supporting
students’ connections between meanings in situations (M.S) and graphs (M.R).
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In this report, we describe the process by which two students bridged their thinking in
situational and graphical contexts. Reflecting the non-trivial nature of EGST (e.g., Thompson et
al., 2017), our case provides evidence of the importance for students to have “repeated and
connected occasions for students to engage in M.S [and] M.R,” (Paoletti et al., 2023, p. 205) as
they build towards EGST. Such findings have implications for practitioners and researchers
intending to support learners’ graphing meanings. Importantly, providing students recursive
opportunities to make connections between meanings for situations (M.S) and graphical
representations (M.R) is critical in the design of tasks and instruction. Future researchers may be
interested in exploring other ways to students may connect situational quantities and graphical
representations to support EGST. Such investigations could further efforts to improve the
teaching and learning of graphing in ways that are attentive to the needs of STEM fields.
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While proving, and more broadly conceived “reasoning and sense-making,” have received a
great deal of attention in mathematics education research over the past three decades, recently
scholars have argued for the importance of justification as a learning and teaching practice. As
teachers work toward realizing goals for more equitable classroom environments, little is known
about whether teachers’ conceptions about mathematical practices, such as justification, reflect
an understanding of how students’ engagement in those practices can support more than just
mathematical achievement. In this paper, we present findings from our analysis of interviews
with 10 secondary mathematics teachers engaged in participatory action research to explore
connections, and potential disconnections, between teachers’ conceptions of justification and
their visions for equitable instruction.

Keywords: Teacher Beliefs; Reasoning and Proof; Professional Development

Developing a deep understanding of mathematics is a core principle of equitable mathematics
teaching (Horn, 2012). Scholars have examined, both theoretically and empirically, the role that
opportunities to justify play in advancing equitable learning outcomes in K-12 classrooms
(Bartell et al., 2017; Boaler & Staples, 2007). Some existing research has offered insights about
whether opportunities that teachers provide students to engage in sensemaking and justification
are robust, meaningful opportunities (Bieda, 2010; Henningsen & Stein, 1997), and other studies
have provided insight into how classroom norms can influence students' access to and
participation in argumentation practices (Klosterman, 2016; Staples, 2007; Yackel & Cobb,
1996). However, little is known about whether teachers’ conceptualizations of justification and
its role in school mathematics aligns with teachers’ views about equitable learning outcomes. We
argue that how teachers conceive of what justification is, and its role in teaching and learning
mathematics, influences how they utilize justification opportunities as a tool to advance equitable
learning outcomes. This paper explores the question, “In what ways do teachers’ conceptions of
justification align with, or deter from, their visions for equitable classrooms?”

Background
Teachers’ Conceptions of Justification
Although the role of proof in the discipline of mathematics has been well-documented, there
is less understanding of the role of justification and its relationship to proof and proving and
other mathematical reasoning processes essential to learning mathematics (Ellis et al., 2021).
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However, teachers may see a bigger role of justification in school classrooms, as they often
question the role that formal proof should play in students’ learning of mathematics and what
students are expected to learn and be able to do (Knuth, 2002). In interviews with seventeen high
school mathematics teachers, Knuth found that fourteen teachers did not feel proof should play a
central role in learning mathematics, whereas all of the teachers indicated that informal proofs —
such as explanations and being able to justify one’s reasoning — were an important part of
learning mathematics. Given the importance that teachers place on justification to support
students’ mathematical learning, understanding how they define justification may offer windows
into the ways that they incorporate this process into the teaching of mathematics.

The Role of Justification in Teaching and Learning Mathematics

Teachers’ conceptions of justification, and the role it plays in learning and teaching
mathematics, influences the opportunities teachers provide for students to engage in justification
(Gonzalez Thompson, 1984). The work of Staples, Bartlo, and Thanheiser (2012) specifically
explored ways that teachers came to understand the role of justification through a professional
development with 12 middle school teachers (grades 6 - 8) designed to co-inquire with teachers
to-understand justification at the middle school level and its importance for learning
mathematics. Staples and colleagues discovered that teachers aligned the purposes of
justification much more with its role as a teaching practice and a learning practice than its
usefulness in establishing the validity of mathematical results. Specifically, teachers discussed its
value in students’ mathematics learning, particularly promoting conceptual understanding,
fostering valued mathematical skills and dispositions. Additionally, teachers discussed
justification’s value to support teaching, such as gathering information about what students
know, supporting students’ engagement with other students and enabling more student-student
interactions, and supporting students’ sense of agency in and outside of the classroom.

The study reported in this paper builds upon the work of Staples, Bartlo and Thanheiser
(2012) to explore how teachers see justification as playing a role in teachers’ efforts to create
more equitable learning environments. Specifically, we explore conceptually the connections
between ways justification is defined and the dominant and critical dimensions of equity as
conceptualized by Gutiérrez (2012). Further, we illustrate, based on data from 11 high school
mathematics teachers participating in a study group, alignments and disconnections between
teachers’ conceptions of justification and their descriptions of equitable learning environments.

Theoretical Framework

Gutiérrez (2012) conceptualized equity in mathematics education as comprising dimensions
that reflect a dominant perspective (access and achievement) as well as a critical one (identity
and power). The components of the dominant perspective have been the traditional focus of
gaps-oriented equity work, namely the opportunities each and every student has to learn rigorous
and meaningful mathematics (access) as well as how well they can demonstrate what they have
learned as a gateway for academic success (achievement). In the past two decades, elements of
the critical dimension have gained more prominence in mathematics education research, due in
part to their role in rewriting the script of how mathematics should be taught and learned.

Gutiérrez frames identity using a window/mirror metaphor; “students need to have
opportunities to see themselves in the curriculum (mirror), as well as have a view onto a broader
world (window)” (2012, p. 19-20). As students are able to use mathematics to make sense of the
world, they need agency to engage in social transformation as a result of their mathematics
learning.
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This component, power, prompts us to consider how we are promoting students with the
mathematical power they need to change systems they deem unjust.

In our work, we draw upon this frame to think about how possible conceptions and purposes
of justification may work to support these aspects of equity. For example, if we consider
justification as “the process of supporting your mathematical claims and choices when solving
problems or explaining why your claim or answer makes sense” (Bieda & Staples, 2020, p. 103),
the role of justification in teaching and learning mathematics goes beyond explaining the
veracity of a claim. By also seeing moments where students explain their problem-solving
choices as the mathematical practice of justification, teachers implicitly communicate that
students have agency to not only argue why they have a correct answer, but also why their
solution strategy is valid (even if it is different from other strategies). This conception not only
supports students’ achievement (dominant axis), but also students’ identity (critical axis), in that
their ways of doing mathematics have a space to be legitimized through justification.

Building on our data, we argue first that teachers’ conceptions of justification matter for
how justification can be employed in their classrooms to advance equity goals. We further
argue that various conceptions and purposes of justification align with components of
Gutiérrez’s (2012) frame on equity more principally than other components. We might
imagine these conceptions imposed on the dominant and critical axes of Gutiérrez’s framing of
equity, with their placement highlighting how particular conceptions frame justification
relative to dominant and critical mathematics within school mathematics. For instance, Figure
1 shows the placement of Bieda and Staples’ (2020) conception along the axes.

Ide Bieda &
Staples (2020) Ac

Achieve p

Figure 1: Plotting conceptions of justification along dimensions of equity Methods

Research Context

To better understand how teachers conceptualize justification and its relationship to equity,
we have been working with ten teachers and one teacher candidate from two high schools in two
different states (one in the Midwest and one in the Northeast) to conduct participatory action
research over the course of the 2022-2023 academic year. These teachers volunteered to
participate in this collaboration given their interests and commitments to advance equity in their
classrooms. The majority of the participants are white, and the majority of their students come
from minority backgrounds and homes with low income. The teaching experience of the in-
service teachers range 3-33 years and averages 12.4 years.

Prior to their participation in the study group, participants engaged in two activities. First, we
conducted a pre-interview with each participant to gather background information and
experiences, including their initial thoughts about justification and equity. Second, during
summer 2022, we held a workshop at each school (12-15 hours) with the goal of working toward
shared understanding of justification and equity within each group. Since the start of the school
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year, we have held 1.5-hour study group meetings with the participants twice per month at each
site. During the meetings, teachers report about the successes and challenges they are
experiencing in supporting equitable learning opportunities and in providing students
justification opportunities. Teachers’ thoughts about the relationship between these two are also
discussed.
Data Collection

This paper presents findings from our pre-interviews with each teacher. The pre-interviews
gathered each teacher’s initial conceptions of justification and equity. Teachers were asked,
“How would you define justification in mathematics?”, “What is the relationship you see
between equity and justification?”, and “When you think about creating equitable opportunities
to learn, what does that mean to you?” Interviews were conducted by two members of the project
team on Zoom, recorded, and transcribed.

Data Analysis

To understand the alignment between teachers’ conceptions of justification and equity, we
analyzed responses to each question separately and then looked across analyses to synthesize
findings. To analyze responses to the questions, “How would you define justification in
mathematics?” and “What is the relationship you see between equity and justification?”’, we first
conducted open coding using a thematic analysis (Braun & Clarke, 2006) approach to teachers’
definitions of justification. To analyze responses to the question, “When you think about creating
equitable opportunities to learn, what does that mean to you?,” we identified utterances
corresponding to specific dimensions of Gutiérrez’s (2012) framework for equity.

Findings

In this section, we present findings from our analysis of three cases that represent the range of
responses provided by participants about their definitions of justification. In sharing these cases,
we will juxtapose their definitions of justification with their thoughts about equitable
opportunities to learn, to explore the alignments, and potential contradictions, between these
conceptions.
Case 1: Justification as Revealing Students’ Thinking

The first case, William, is an 9"-grade mathematics teacher in his fifth year of teaching.
When asked to define justification, he responded:

“I mean, as simple terms, it’s their thought process. How they got their answer. Getting it on
paper. Because your goal as a teacher is to kind of provide those skill sets and for them to,
you know, understand the process and the math skills that are needed to answer that, to
breakdown a question. And so that justification piece is really, you know... show me your
work. But it’s more than that. But like, you’re critical, like what was your thought process?
How did you know that? What did you do? Why did you do it? And just getting that on paper
because that's, end of the day, is like when they take those tests you know they have to be able
to get it on paper. So that's that justification piece for me” (William, Pre-Interview)

William’s conception of justification is focused on assessing student’s understanding, or
“thought process.” He discusses that justification involves how students arrived at their answer
and why they solved the problem in the way they did. We also noted that his definition focuses
more on individual understanding, rather than the collective understanding of the class.
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We found that all of William’s statements about equitable learning opportunities were coded
on the dominant axis. For him, equity was about providing each individual student (access) what
they need to be successful (achievement). He mentioned, “Success looks different for every
student and I think giving students you know opportunities to improve their practice is crucial,
but what you provide each student to be successful is going to be different... and so the equity
piece is just giving students opportunities to improve in different ways at the level they're at.”
Thus, if justification is a means for assessing students’ thought processes, it is a tool for
supporting both the access and achievement elements of Guttiérez’s (2012) dimensions of equity.
Case 2: Justification as Explaining and Convincing Other People

Lynda is a high school mathematics teacher (grades 10-12) in her fourth year of
teaching.
Lynda described justification as:

“basically explaining your thinking and being able to prove whatever it is that you want to
claim in a way that makes sense to other people. So I think a lot of times you can justify
something in your own mind, but then actually coming up with the words or the logic or the
picture or whatever the case may be to prove it to somebody else.” (Lynda, Pre-Interview)

In contrast to William’s definition, Lynda describes justification as going beyond explaining
your thinking to be able to “prove whatever it is that you want to claim in a way that makes sense
to other people.” Lynda’s definition emphasizes how justification is a collective activity; coming
up with a justification involves considering what will be convincing to somebody else.

When asked to explain about creating equitable learning opportunities, Lynda emphasized
access and identity:

“I think [the basic idea is] that everybody has access. But to expand on that, right, that
everybody would be able to, like, assess the problem from the beginning, but also, like
remain in the problem the entire time. So I think like some lessons are built so that you know,
there's like the opener that everybody can access, but then things step up, and maybe you lose
people on the way. So to create like a whole equitable lesson some way that everybody can
get in. And if you kind of fall out that there's a way back in. And I don't know, just being
mindful of people's different like backgrounds in terms of like background knowledge for the
math needed background in terms of just like cultural experiences, that may or may not play
a part in the lesson. And then also just different, like accessibility needs if people have like,
different impairments that might need to be adjusted for.” (Lynda, Pre-Interview)

Lynda’s attention to how lessons need to provide access for each student, and her awareness
of differences in students’ mathematics and cultural backgrounds, reflects a commitment to
ensuring that all students can participate in her classroom mathematical community. By defining
justification in a way that is not just convincing to oneself but also to others, it positions
justification as building a classroom where students’ access to the mathematical tasks is
important and students’ varied backgrounds are embraced as part of their mathematical identities.
Case 3: Justification as Knowing Why

Emma is a 9"~ and 10™-grade mathematics teacher in her sixth year of teaching. When asked
to define justification, Emma stated:

“I think it's being able to like to explain to somebody why you did something rather than just
what you did. I think a big issue is that we tend to teach processes and how to memorize
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processes, and we don't spend as much time focusing on like why are we actually doing this,
what does it connect to. And so I think that that mathematical justification is just being able to
explain the why rather than just the what.” (Emma, Pre-Interview)

We argue that Emma’s response is somewhat of a blend of the ideas from William’s and
Lynda’s responses. Emma’s focus on justification promotes understanding the “why” behind the
processes echoes William’s attention to justification going beyond a student explaining how they
got an answer. Yet, like Lynda, Emma also mentions that justification involves explaining to
others. When asked about what it means to create equitable learning opportunities in her
classroom, Emma’s responses reflected attention to access in a couple of ways. She indicated:

“And so I try to think about like not just creating learning experiences based off of what like
I would be able to successfully engage in, but thinking about the different things that might
hold somebody back or make them experience it differently.” (Emma, Pre-Interview)

She continued: “... it starts with just like getting to know your students and figuring out what
they need.” Her attention to knowing students and their lives outside of class was predominant in
her responses to questions related to creating equitable opportunities to learn, reflecting her
concern for supporting students’ identities, and using knowledge about their out-of-class
identities to inform her instruction.

When considering if Emma’s conception of justification aligns with her vision for creating
equitable opportunities to learn, it is less clear whether her emphasis on being able to “explain to
somebody why you did something” is supportive of her efforts to create a learning environment
that connects with who they are and how they learn within and outside of the mathematics
classroom.

Holistic Results

Overall, the majority of teachers (8 of 10) describe justification as an individual activity that
involved some kind of written record and provided a detailed accounting of what they students
knew or how they had solved a problem. Only 2 of 10 teachers suggested justification was a
practice where students engaged one another and potentially built knowledge. Additionally,
when discussing what it means to create equitable learning opportunities, the majority of
teachers’ responses reflected aspects of the dominant axis of equity (Gutiérrez, 2012) and only 3
of the 10 teachers discussed aspects related to supporting the critical axis. Although a noticeable
minority, the responses from those three teachers reflected a vision of supporting the identity
dimension of the critical axis (Gutiérrez).

Discussion

Although scholars have argued how justification plays a role in promoting equity (Bieda &
Staples, 2020; Boaler & Staples, 2008), little empirical work has been done to show that
teachers’ conceptualizations of justification, and therefore the nature of the justifications and
justification activity they expect from students, reflect, and align with their goals for creating
equitable learning opportunities. In our findings, we discovered that most of the participating
teachers conceive of justification as an activity that can promote students’ access to deeper
understanding of mathematics but tend to focus less on how justification can support students’
mathematical identities and become a tool for exercising power in changing their worlds.
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Moreover, the tendency to focus on elements of access and achievement were evident in their
vision for creating equitable learning opportunities in their classrooms. What these findings
suggest is that more work is needed to help teachers go beyond recognizing justification as a
means for showing deeper understanding and explaining why, but to also conceptualize
justification as an activity that builds mathematical identities needed for students to both step
into and exercising agency with advocating for change in society.
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The problem of conspiracy theories and epistemically unwarranted beliefs is being addressed
by media literacy specialists (Jones-Jang et al., 2021), social psychologists (Douglas & Sutton,
2018), science educators (Fasce & Pico, 2019), among others. What role can mathematics
education play in reducing our societal susceptibility to unwarranted beliefs? Unwarranted
beliefs are defined as beliefs not based on valid reasoning or credible data and which are
maintained even in the face of countervailing evidence. Mathematics education should be able to
provide skills related to validity and credibility, but there are two interrelated drawbacks which
must be overcome. First, mathematical reasoning must avoid the danger of being taught narrowly
so that it is constrained to a procedural exercise exclusive to school mathematics (Reid &
Knipping, 2010). In other words, we must instill transferrable reasoning skills. Second, we must
help students form the disposition to actually apply those analytical reasoning skills. Falling for
fake news headlines, for example, seems to be more a matter of failing to apply analytical skills
than it is a matter of the oft-assumed confirmation bias (Pennycook & Rand, 2019).

We employ boundary crossing (Akkerman & Bakker, 2011) as a theoretical perspective for
the design of a curriculum unit intended to build students’ reasoning skills in a manner relevant
not only for school mathematics but also for social and political discourse. This approach
explicitly attends to the building of habits within and beyond mathematical contexts so that
students are more likely to actively use their analytic skills when faced with unwarranted claims.
We identify the boundary as being between school mathematics situations and social situations
in which political or current event arguments are made. We have designed scenarios from
political debate that have mathematical substance and can be brought into the school
mathematics space, while also designing a “pedagogical device” in the mathematics instruction
that can be a boundary object for political debates or when consuming news media.

The pedagogical device is consistent with media literacy guidelines (Aufderheide, 1993;
Jones-Jang et al., 2021) and interventions that have successfully inoculated students against
unwarranted beliefs (Dyer & Hall, 2019) and is simultaneously well-suited, we believe, for
spurring mathematical reasoning. It consists of two questions that we can constantly ask when a
claim arises: “How do you know that is true?” and “Could that possibly be wrong?”” These
questions are framed not as personal attacks (which are unproductive in classrooms and in
confronting unwarranted beliefs) but in the spirit of collective understanding and sense-making.
The poster presentation will include multiple examples of these questions being used to spur
reasoning and debate within mathematics, such as when faced with the (false) claim that an
exponential function cannot “catch up” to a polynomial function with a very large exponent
(Otten et al., 2023). The questions will also be applied to political claims such as the story that
enough dead people voted in the 2020 U.S. presidential election to sway the outcome.

By teaching mathematical reasoning in a manner that promotes active wondering about the
basis of claims (“how do you know that is true?”) and invites curiosity, not confrontation, about
the possible existence of counterevidence (“could that possibly be wrong?”’), we hope to
exemplify one possible approach to the design of learning opportunities that will resonate across
mathematical and political boundaries and increase the likelihood that students activate their
analytic skills in ways that inoculate them to unwarranted beliefs.
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The aim of this study is to characterize ways of reasoning and arguing that first year university
mathematics students exhibit in problem-solving activities from a course that emphasizes the
importance of formulating conjectures and the search for different ways to support or validate
them. The use of a Dynamic Geometry System in the representation of problems and in the
formulation of conjectures or relationships that are important in the solution processes is
highlighted. In this context, students have the opportunity to look for different ways to argue and
support the relevance and validity of the conjectures. Results indicate that students extend their
ways of reasoning so that allows them to move from empirical to formal arguments within
problem solutions

Keywords: Undergraduate Education; Problem Solving; Reasoning and Proof; Technology

According to admission profiles for higher education, in Physical-Mathematical Sciences and
Engineering, students are expected to have a solid knowledge of basic concepts from High
School Calculus, Analytical Geometry and Algebra, as well as to be interested in problem
solving. However, data from diagnostic exams for admission to the bachelor’s degree in
Mathematics of various institutions show that most students enter this area of study without an
adequate understanding of basic mathematical concepts and with skills and strategies for
problem solving focused on a basic level of reproduction. This shows that students will have
significant difficulties during their integration into higher education.

This highlights the need to provide a mathematical education that encourages students to
focus their interest and attention on the development of skills and strategies for the management
of concepts, the resolution of mathematical problems and the elaboration of arguments that allow
them to go beyond the reproduction of knowledge to build a robust and abstract mathematical
thinking that enables them to formulate and solve different types of problems in any area of their
academic, social and labor training.

With this in mind, it becomes important to continue researching on aspects and factors that
have an influence on a successful or deficient integration at university level, mainly in the
Mathematics area. Thus, in this research we sought to characterize, by means of a task focused
on Problem Solving (PS) (Polya, 1965; Schoenfeld, 1985), which are the tools, skills and
difficulties within the process of argumentation and mathematical reasoning that first-year
undergraduate students in Mathematics show, therefore the following research question was
posed How does the use of Dynamic Geometry System (DGS) within the PS promote the
development of mathematical processes such as obtaining conjectures, arguing and validation, so
this allows students to get in higher level mathematical activities?
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Contextual framework

Research on the secondary-tertiary transition in Mathematics has considered different
perspectives in order to explain and address the problems and stages that students go through
during this transition period. In this regard, Leviatan (2008) states that students' difficulties are
due to the fact that high school mathematics tends to focus on developing algorithmic skills for
resolution of concrete and routine exercises, while at university, skills for abstraction and aspects
of inquisitive questioning are required, while non-routine problem solving, and mathematical
rigor are emphasized. On the other hand, Clark and Lovric (2010) define that transition from one
level to another involves the process of a rite of passage divided into three phases: 1) Separation
from the level, from the previous ways and routines of learning; 2) Liminality, a phase in which
routines, beliefs and habits from high-school level still form part of students’ attitudes within the
new educational system not yet assimilated; and 3) Incorporation into the new environment. This
transition implies a crisis that leads the interruption, modification, and distortion of previous
routines, so this crisis is inevitable but necessary for students to develop advanced mathematical
thinking and autonomy before their training. Considering this, it becomes feasible to investigate
aspects that could smooth this process. Thus, Rach and Heinze (2016) identified 5 variables
involved in academic success or failure during second-tertiary transition: 1) interest in
mathematics, 2) self-concept as a mathematics learner, 3) previous achievements as a
mathematics learner, 4) previous knowledge of mathematics, and 5) quality of learning
strategies. For their part, Di Martino and Gregorio (2019) established five categories of causal
attributes that lead to the difficulties presented during integration to university education: 1)
Context factors; 2) Transition aspects; 3) Inadequate knowledge; 4) Inadequate way of thinking
in/for mathematics; and 5) Comparison with peers. Considering these aspects allows us to
generate alternatives to support the student in facing these problems.

As can be seen, problems that students will face during this transition have a multicausal
nature. In this regard, Adelman (2006) suggests that students previously need examples of the
activities performed during the first year of university education and the kind of future exams in
order to have a better idea of what students are expected to do. Thus, it is important for students
to have approaches to processes linked to argumentation and mathematical reasoning. For his
part, Schoenfeld (2022) mentions that the educational challenge lies in creating robust learning
environments that support students in developing not only the authentic knowledge and
processes that underlie mathematics, but that promote the development of a sense of agency and
authority to make sense of mathematical objects and practices within robust mathematical
thinking.

Given the above, it becomes necessary to contribute to research on aspects, factors and
practices that contribute to a more accessible and with greater opportunities to succeed during
Mathematics education. The analysis presented in this paper is on the basis of, as mentioned
before, the results of a task based on PR within a Geometry course whose methodology includes
aspects related to the five dimensions to create powerful mathematics classrooms (Schoenfeld,
2014): 1) Mathematical content; 2) Cognitive demand; 3) Access to mathematical content; 4)
Agency, authority and identity and 5) Use of assessments. Thus, first is given a general
description of the teaching practices carried out in the course, followed by a descriptive analysis
of the processes set in motion by the group of participating students. For the analysis of data
obtained, we identified resources and heuristics (Schoenfeld, 1985), as well as conceptual and
procedural tools (Melhuish, Vroom, et al., 2022) that students use and that bring them closer to
the realization of authentic mathematical activities. For this purpose, we consider Authentic
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Mathematical Proof Activity (AMPA) theoretical framework proposed by Melhuish, Vroom, et
al. (2022), from the ten procedural tools expressed by the authors, we sought to identify: 1)
refinement or analysis of a proof, a statement, or definition by focusing on the attainment of
assumptions; 2) elaboration of formalizations, i.e., the process of translating informal ideas into
formal or symbolic rhetorical forms; 3) elaboration of analogies, i.e., the process of importing
proofs, statements or concepts across different domains adapting them to new schemas; 4) use of
examples, a specific and concrete representation of a statement, concept or proof that represents
a class of objects; and 5) elaboration of diagrams and visual representations of mathematical
objects (statements, concepts or proofs) that capture structural properties.

Description of didactic methodology

Group G1 consisted of 8 undergraduate mathematics students who participated on a
voluntary basis and who were taking a Modern Geometry I course from a public university.

Contents of the course were developed on the basis of problems or initial questions posed by
the teacher, which students had to explore prior to the class. During the class, the teacher used
the Dynamic Geometry System Geogebra (DGS) to explorate the proposed problems, as well as
to simulate geometric straightedge-and-compass constructions and to verify initial conjectures,
so that students were familiar with this technology and could use it to explore problems
presented on their own.

The dynamics of the course sought to provide opportunities for students to have equal access
to the contents developed, by means of course notes, suggested bibliography, interactive applets
in Geogebra and the possibility of research via the internet. Students were encouraged to develop
the ability to argue and not only the use of established formulas or algorithms; on the contrary,
through the problems and questions posed, students were encouraged to generate conjectures and
different ways to corroborate the validity of them, as well as the exchange of ideas in groups to
meet the dimension of cognitive demand (Schoenfeld, 2014) and to generate both individual and
collaborative commitment in the performance of the activities by students.

Thus, by the time the task was assigned, students had received training aimed at obtaining
conjectures, arguing and exploration using Geogebra. In addition, by this time they had reviewed
content related to triangles properties, triangles congruence and similarity criteria, inscribed
angles and cyclic quadrilaterals properties.

Context of the Problem Solving Task Assignment

The group of students was given the following task: There is a square ABCD. If on the DA
side you construct the midpoint E, then draw the segment BE and construct the perpendicular
segment CF with F the perpendicular foot on BE. What kind of triangle do the points C, D and F
form? Prove your conjecture in two different ways.

Students had the option of tackling the task individually or in pairs, as the latter modality of
work prevailed in the dynamics of the course. Students took the problem home and had about
three days for a first approach to it. Then, in a classroom class, space was provided for the group
to present the conjectures obtained, the initial ideas for the demonstration of the conjecture and
possible doubts or concerns. This class was part of the control elements of the RP (Schoenfeld,
1985), so the necessary feedback was given to the students.

To collect data, a logbook was requested to record the resolution processes, as well as the
questions, ideas or actions that arose during the resolution of the task. For this purpose, the
following elements were requested:
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1. Description of the exploration, understanding of the problem and making a conjecture.
For the analysis of data in this section, we sought to determine what means, instruments
and processes students used or followed to explore and understand the problem, as well
as to make a conjecture.

2. Description of the process of developing a plan or strategy for solving the problem. In
this section we sought to identify whether students recognized the resources (concepts,
mathematical content, evidence or previous results) they had or did not have to tackle the
problem, so that this would lead them to determine a possible path to follow for the
solution or to consider various sources of research.

3. Process of solving the problem. This section analyses arguments and processes that led to
proving the conjecture obtained.

4. Problem extensions. This section analyses whether students pose new questions or
problems to be solved based on what has already been solved.

From the analysis of these elements, the aim is to describe the type of reasoning and ways of
acting that students put into practice in order to solve problems, as well as the difficulties they
faced and the ways in which they overcame them.

Analysis of results

For the analysis of the results, it was considered the evaluation of three logbooks developed
in pairs (E1, E2, E3) and one individually developed logbook (E4) of group G1. In this report,
the tools and processes within the logbook developed by students are exemplified with short
episodes. It should be noted that in the logs it is observed that the predominant way of working
to understand and explore the problem was individual, as well as for the general writing of the
log, while students worked collaboratively mainly to exchange and verify ideas during the
planning of a strategy, in the process of solving it, and to obtain feedback from their peers. The
results obtained in the team logbook sections are described below.

Analysis: Exploring and Understanding the Problem

Students in each team were very descriptive in terms of the acts they performed to
understand the problem, and they were also open in expressing their way of acting and thinking
about the processes during the RP, which allows us to identify, at least in a global way, their
belief system in relation to this activity (Schoenfeld, 1985).

As can be seen in Table 1, all students used Geogebra to carry out the construction, and also
used the software tools either to measure distances between points or the construction of circles
to compare radii and thus compare lengths. The use of Geogebra helped students to represent and
understand the problem, and thus to make a conjecture about the type of triangle generated in the
construction.

Table 1. Responses from exploration and understanding phase

Problem Processes followed by each team
representation
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D

V1

4.47

E1. We first developed the construction that posed the problem with
the help of the Geogebra plotter. When we made the model, we realised
that the triangle CDF was isosceles, since its bisector, height and
mediatrix of D coincided, which is characteristic of a triangle of this
type, and we subsequently checked this by measuring the distances DF
and DC with the help of the program.

lw}

()

E2. The first thing I did was to construct the figure in Geogebra to
get a clearer idea of what was being drawn. Then when I looked at the
triangle, at first glance it looked like an equilateral triangle, but after
comparing the lengths of the sides, using circles, I realised that it was
actually an isosceles triangle.

ol

E3. First I traced [the figure] freehand, as I didn't get very far, I
plotted the hypotheses in Geogebra and there I discovered that the
triangle was isosceles.

E4. I decided to open Geogebra to build the construction step by step
(I suspected it would be complicated). After building it I realized that
the triangle FCD is isosceles. Now I wonder how to prove it, because I
can't think how I know it is isosceles.

All the students conjectured that the triangle in question is isosceles. Thus we have that

students implement the strategy of elaborating diagrams accompanied by the use of technology,
and it is also observed that they have the necessary resources to elaborate the construction based

on the structural characteristics of the mathematical objects. On the other hand, it is observed
that students have acquired a certain degree of confidence both in making decisions regarding
their actions as problem solvers and in the use of auxiliary tools or devices.

Analysis: Drawing up a Plan

In general, it can be observed that for the first demonstration of the conjecture, the students

considered two possible ways, the first related to demonstrating that two sides of the triangle

have the same length, the second, demonstrating that in the triangle there are two internal angles
that measure the same, for which they mentioned that they could use congruence or similarity of
triangles. One team highlighted as an important aspect the fact that both the angles formed by the
perpendicular and those of the square are right angles, which allowed them to consider the CDEF
quadrilateral and hence to consider the use of results relating to cyclic quadrilaterals. Below are

fragments of what the students expressed in search of a first demonstration.

E1l. At the beginning we came to the conclusion that we could find equal angles from the

figures formed by the construction [...] and consider that there were congruent triangles.

E2. I felt that the best way to test this was to use triangle congruence.

E3. The fact that the sides [of the quadrilateral] measure the same and the angles are right
angles is relevant, because in this way we see that it is a cyclic quadrilateral and so we
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can relate this to other results such as congruence, similarity of triangles and angles
inscribed in a circle.
E4. First I will try to arrive at the equality of two angles of the triangle FCD.

It is worth mentioning that both in this stage and in the comprehension stage, the
identification of the resources available to the students becomes evident, from which it is
possible to draw up a suitable diagram and define a first approach or resolution plan.

Analysis: Problem-Solving Process

The students mentioned that after having obtained the conjecture, they faced several
moments of frustration and despair, as they did not quickly find a way forward to prove their
assertion. Some of them expressed "letting the ideas and frustrations rest" for a considerable time
and then resuming with a calmer attitude, during this time a face-to-face class was held in which
the initial ideas were expressed as a group lesson, which allowed the students to reconsider the
resources they had and other possible ways of approaching the conjecture. Thus, for the
demonstrations, teams E1, E2 and E4 also considered results relating to cyclic quadrilaterals and
angles inscribed in a circle.

The resolution processes followed by two teams are described and analyzed below.

Figure 1. Answers corresponding to the resolution of the problem (on the left side
demonstration 1 of E1, on the right side demonstration 2 of E4).

In general, it is observed that students used results related to characteristics of cyclic
quadrilaterals, criteria of congruence and similarity of triangles, and inscribed angles in a circle.
In addition, they expressed using Geogebra to verify the ideas that emerged in this process.

In the argumentation generated by E1, it can be observed that they use (although it is not
explicitly mentioned) the property that the internal angles of a triangle add up to 180° together
with the fact that the angles of the initial square are right angles in order to obtain the value of
other angles. In addition, it is observed that one of the (almost immediate) ways of acting of the
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students is to obtain results by means of mathematical calculations even when the relevance of
performing certain calculations has not been established, i.e. more calculations are performed
than necessary (not for that reason incorrect), so that the process of monitoring and refining the
elaborated demonstration could be improved. Subsequently, they use the fact that if in a convex
quadrilateral its opposite angles are supplementary (add up to 180°) then the quadrilateral is
cyclic, this result is also not explicitly expressed. Finally, they also implicitly use the property
that in a cyclic convex quadrilateral the measure of an angle formed by one side and a diagonal is
equal to that of the angle formed by the side opposite to the first and the other diagonal.

In E4's answer we can see that their argumentation takes as a starting point that the
quadrilateral FEDC is cyclic, this is argued because the [opposite] angles of the quadrilateral are
supplementary. On the other hand, in point 2, it is not argued why point G is the midpoint of the
segment AB. Then, like E1, in (3) they implicitly use the fact that in a convex cyclic
quadrilateral the measure of an angle formed by one side and one diagonal is equal to that of the
angle formed by the side opposite to the first and the other diagonal. In (4) it is observed that
although students handle the concept of congruence and the criteria that allow them to establish
the congruence of triangles, they do not correctly use the notation to express this fact, which
subsequently leads them to compare sides and corresponding angles correctly or incorrectly
(point 5). In (8) it is established that by considering equal angles and subtracting other angles
whose measure is equal, equal angles will be obtained, which will make it possible to establish
the equality of two internal angles of the triangle in question in order to demonstrate that it is an
isosceles triangle. Although the students' reasoning is correct and allows them to reach the
desired conclusion, it is observed that the equality considered in (7), the expressions
corresponding to the angles and the corresponding subtractions are incorrect. This shows that
there is still a need to work on the process of transferring the ideas [oral or thought] to a written
and formal argumentation.

Analysis: Problem extensions

In group G1 it was observed that the extension phase was not developed by most of the
students as they omitted this section, those who elaborated an answer (E3) considered asking
about some properties that are generated by other objects in the construction or if the
circumcircle of the triangle DEB is considered, how many other circumcircles present in the
construction are going to be cut by the first one? None of these questions are answered. On the
other hand, one student in particular, expressed that by means of Geogebra she built (and
replicated) the initial construction, with which she observed that "a repetitive figure" was
formed, with which she asks herself if this construction forms a fractal, "how does it look like to
repeat this process", "how is it demonstrated that point D is the midpoint of LK and that D is the
vertex of ED? These questions are left open for further exploration.

Conclusions

The dynamics implemented in group G1 course encouraged students to use Geogebra as a
means for exploration, understanding, obtaining conjectures, and verifying some initial ideas.
This leads us to conclude that it is important to provide physical and temporal spaces in high-
school and university mathematics courses for students to use GDS not only as a means of
representation but also to manipulate the elements that make up the construction to obtain
conjectures and verify them, and even more so, to obtain their own or additional results of the
problem from this manipulation.
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With regard to argumentation, on the one hand, it is important for students to first recognize
the mathematical resources they have and then to be able to apply them in problem solving; on
the other hand, it is also important that during mathematics education, spaces are created to
develop oral and written arguments that allow them to develop an informal mathematical
thinking, but with a logical sequence that brings them closer to the process of abstraction and
demonstration. Thus, it was observed that the students had the opportunity to put into action
various mathematical skills and seek different ways of arguing and supporting the relevance and
validity of the conjectures. The results indicate that the students extended their ways of
reasoning, allowing them to move from empirical arguments to formal arguments in the
presentation of solutions to the problems.

On the other hand, it was observed that within the group dynamics there is a lack of space for
students to pose their own problems, either based on those proposed by the teacher or not. Thus,
the role of the teacher in guiding and providing feedback during the monitoring and control
processes is considered to be of utmost importance.

Finally, it is crucial that dynamics in mathematics courses encourage students to make
decisions regarding the way in which the mathematical problems presented are approached, the
manipulation of auxiliary tools such as technologies for the exploration and construction of
mathematical objects in order to obtain conjectures and create spaces for the generation of formal
arguments, the use of mathematical notation and symbology and the refinement of proofs to
strengthen mathematical reasoning during the transition to university.
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The Realistic Mathematics Education (RME) approach was developed and popularized in the
Netherlands in the 1970s, built on Freudenthal’s observation that mathematics is a human
activity (Treffers, 1993). RME involves students working on context problems, problems whose
context is experientially real to them. When looking at student work on context problems,
Gravemeijer and Doorman (1999) highlighted different models generated by students and ways
that students might transition between them. Realistic modeling, an important perspective on
mathematical modeling, focuses on students’ abilities and skills to model and understand real-
world and authentic problems (Pollak & Garfunkel, 2013; Abassian, 2020). Research in both
RME and realistic modeling emphasizes the importance of the models students produce and use
when solving realistically grounded contexts. In this work we considered how preservice
teachers’ knowledge of the problem context and their interest in the setting influence their
choices when engaged in mathematical modeling.

This report is part of a broader study whose primary goal is to unpack the quality and content
of interactions around mathematical modeling tasks. We conducted clinical interviews with
participating teachers. The data was analyzed to determine what factors influenced the choices
that the participants made. We found distinct ways the participants’ use of embedded mental
models impacted the choices they made while working on modeling tasks. Participants working
on one of the tasks used in the study, “the classroom task™ is discussed below as an illustration.

The task involved determining the number of desks that could fit into a classroom based on
the CDC COVID guidelines. No model was included as part of the task; instead personal
experiences shaped the assumptions made in exploring the problem. These personal experiences
enforced particular conditions on the models produced and used by the participants. These
particularities are what we call embedded mental models. Drawing on previous research around
implementation of RME amongst young learners, we further note that working from an
embedded model had many affordances for our participants. They engaged quickly and easily
with the task and stayed engaged until they felt they had solved it. They quickly sketched a
picture and discussed variables and parameters worthy of consideration. These practices were
consistent with what they had experienced as students in regular classrooms.

Working with an embedded model imposed distinct constraints on participants’ modeling
process. It prevented them from considering alternative design approaches. Although the task
could be seen as a packing problem, participants did not consider layouts other than rows and
columns or table shapes other than rectangular model. When asked about a different layout for
classroom set up, they expressed that they were unable to visualize a different arrangement. As
such, embedded mental models limited the variables the participants considered or viable
approaches that could move them towards constructing a generalized model.

When working with participants on mathematical modeling tasks (whether teachers or
students), it is important to identify when they might be using an embedded mental model and
what specific affordances and constraints they will experience as a result.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

152



References

Aline Abassian, Farshid Safi, Sarah Bush & Jonathan Bostic (2020) Five different perspectives on mathematical
modeling in mathematics education, Investigations in Mathematics Learning, 12:1, 53-
65, DOI: 10.1080/19477503.2019.1595360

Gravemeijer, K., Doorman, M. Context Problems in Realistic Mathematics Education: A Calculus Course as an
Example. Educational Studies in Mathematics 39, 111-129 (1999). https://doi.org/10.1023/A:1003749919816

Pollak, H., & Garfunkel, S. (2013). A View of Mathematical Modeling in Mathematics Education. Journal of
Mathematics Education at Teachers College. https://doi.org/10.7916/jmetc.v0i0.658

Treffers, A. Wiskobas and Freudenthal realistic mathematics education. Educ Stud Math 25, 89—108 (1993).
https://doi.org/10.1007/BF01274104

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

153



MUTABILITY OF STEM MAJORS’ ABSTRACTED QUANTITATIVE STRUCTURES

Jennifer A. Czocher Andrew Baas
Texas State University Texas State University
czocher.1@txstate.edu andrew.baas@txstate.edu

Elizabeth Roan Abigail Quansah
Texas State University Texas State University
eaw 1 09@txstate.edu alg8@txstate.edu

Recently, abstracted quantitative structures (AQS), a construct from quantitative reasoning, has
been offered as a means to conceptualize and study mathematization during mathematical
modeling. Extending this theoretical work, we provide empirical evidence that an intervention
targeting participants’ AQS can assist in aligning modelers’ models with normatively correct
models. We report on a pre/post intervention study designed to elicit alignment between symbolic
forms and AQS and alignment between AQS and modeling scenarios. We used the Sorenson-
Dice coefficient and cluster analysis to identify shifts in student associations of symbolic forms
with modeling scenarios.

Keywords: modeling, mathematical representations, undergraduate education

Developing students’ capacity to apply their mathematical knowledge to real-world scenarios
is a central goal of mathematics education, especially for undergraduate STEM majors. Transfer
of mathematics knowledge to a non-mathematical domain is difficult for students to do (Lesh &
Zawojewski, 2007; Wake, 2014) and is challenging for researchers to study (Carraher &
Schliemann, 2002; Evans, 1999; Lobato, 2006). Within research on the teaching and learning of
mathematical modeling, the idea of transfer is captured by the idea of mathematizing or
recognizing mathematical structure within a real-world scenario (MaaB3, 2006; Zbiek & Conner,
2006). Mathematization has been difficult to study because it largely occurs as a modeler’s
mental actions, and despite this fact, has been under-theorized (Cevikbas et al., 2021). Recently,
the field has made considerable efforts towards finding theoretically-grounded ways to
operationalize mathematization such that it can be studied; specifically, scholars have made
progress in explaining modeler’s mental actions from a cognitive constructivist perspective by
examining modeling from a quantitative reasoning lens (Czocher & Hardison, 2019; Czocher et
al., 2022; Kularajan, 2023; Niss, 2010). Such approaches are necessarily based in the students’
own interpretations of real-world scenarios and representations of them. Some hypotheses have
emerged. One is that transfer of mathematical knowledge between scenarios can be traced by
attending to individuals’ abstracted quantitative structures (AQS), which are networks of
quantitative operations an individual has interiorized to such an extent that it is independent of
figurative material (Moore et al., 2022). Another is that operationalizing mathematization
through the theoretical machinery of quantitative reasoning provides leverage for designing
interventions and supports that may improve students’ overall modeling skills. This paper adds to
the conversation by addressing both hypotheses.

If the approach of operationalizing modeling in terms of quantitative reasoning is viable,
then the field needs empirical evidence that abstracted quantitative structures are mutable during
modeling and that real-world scenario can be assimilated into schema associated with modelers’
AQSs. In this study, we operationalize AQS in terms of Sherin’s (2001) symbolic forms and
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report on a pre/post intervention conducted with undergraduate STEM majors. We answer the
research questions: Are participants’ ways of reasoning with abstracted quantitative structures
stable, when subjected to a learning environment focused on modeling with those structures? and
Is there an impact on participants’ associations between symbolic forms and scenarios?

Theoretical Perspectives on Modeling & Empirical Background on Mathematical Concepts

We adopt the cognitive perspective on mathematical modeling which is suitable for studying
modelers’ processes of rendering a real-world problem as a mathematical problem to solve
(Kaiser, 2017). The cognitive perspective articulates the phases a modeler may pass through to
specify a mathematical problem. These phases include anticipating mathematical structures that
may be useful in representing and solving the problem, carrying out a solution process, and
interpreting and validating the solution in terms of real-world constraints. Mathematizing, one
phase of mathematical modeling, refers specifically to introducing conventional representational
systems (e.g., equations, graphs, and tables) to represent mathematical “properties and
parameters that correspond to the situational conditions and assumptions that have been
specified” (Zbiek & Conner, 2006, p. 99). Others have pointed out that mathematizing entails
“anticipating mathematical representations and mathematical questions that, from previous
experience, have been successful when put to similar use” (Stillman & Brown, 2014, p. 766).
That is, modelers need an idea of what to try out as a model that might be adequate. While the
idea of anticipation and implemented anticipation (Niss, 2010) has gained traction in modeling
research for their descriptive power, they lack both explanatory and predictive power with
regards to how to aid students during mathematization. We view the idea of implemented
anticipation through the lens of quantitative reasoning to explain what is anticipated and how
anticipated structures are formed.

Sherin (2001) elaborated on the construct of symbolic forms that contemplates modelers’
associations between algebraic templates and conceptual schema. The template is a format (e.g.,
_ X _=_) that can express a mathematical idea or relationship (e.g., rate of change is
proportional to amount present). Symbolic forms help explain how and why a modeler might
choose to use X instead of + when constructing an equation to represent a scenario. Theoretical
work on quantities, quantification, and quantitative reasoning helps explain how individuals
imbue the templates, variables, and conceptual schema with situationally relevant meanings.
Quantitative reasoning means conceiving quantities and relationships among quantities; those
relationships may be arithmetic (numerically evaluated) or quantitative (mental operations)
(Thompson, 1990). Thompson gave an example using two individuals’ heights to demonstrate
that an additive comparison (mental operation) can be evaluated using subtraction (arithmetic
operation). However, a comparison of the difference in two individuals’ heights to the difference
in another two individuals’ heights (the difference between A and B is N times more than the
difference between C and D) does not require evaluation of the differences in order to conceive
the quantitative meaning. An abstracted quantitative structure (AQS) is a network of quantitative
operations that an individual has interiorized and can operate as if it is independent of a
figurative material (Moore et al., 2019). The core idea is that when a modeler has constructed an
AQS, it is available to the individual when the scenario that engendered its construction is no
longer present. Moore et al. (2019) clearly demonstrated evidence of the construction of AQSs
and evidence of assimilation of new-to-the-student scenarios to previously constructed AQSs.
Moore et al. (2019) also hypothesized that AQSs play an important role in transfer due to
cognitive reorganization of previous experiences. Here, by transfer, we mean recognizing the
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applicability of symbolic forms for the purpose of mathematizing a given scenario, that is,
implemented anticipation (Niss, 2010).

Mathematization of a real-world scenario is notoriously difficult for students across grade
bands and content areas. Even students in advanced mathematics find it challenging because they
face more complex scenarios where rate of change takes on dual roles as both dependent and
independent variables. In such scenarios, students struggle with the idea that time is an implicit
variable (Keene, 2007) and often interchange a differential equation with its solution (Donovan,
2002). Scaffolding for these students includes placing emphasis on the system being modeled
and making explicit connections between the equation and the system it represents (Baker, 2009;
Czocher, 2017; Myers et al., 2008; Pennell et al., 2009). For these reasons, we designed a study
to generate empirical evidence as to whether participants’ ways of reasoning with AQSs are
stable throughout a learning environment focused on modeling with those structures. With
reference to previous work on differential equations, our study focused on the templates of
symbolic forms in Figure 3 and the learning environment emphasized these forms as
representing conceptual schema like rate of change is constant (A), rate of change is
proportional to quantity present (B), and net rate of change (C). Throughout, we will refer to the
answer choices in the Matching Tasks as “templates,” intending to correspond to a family of
symbolic forms and we will use “AQS” to refer to the abstracted quantitative structures we
observed participants create, use, and re-use during the open modeling tasks comprising the
learning environment. The templates operationalize the AQS as generic formats.

Methods

We conducted a pre/post intervention study within a design research project, which we
evaluated using a paired samples t-test and a follow-up study using cluster analysis techniques.
The intervention was a learning environment — task sequence and scaffolding — designed to build
participants’ mathematizing competencies. The learning environment comprised 10 hour-long
task-based interviews with each of 23 undergraduate STEM majors recruited from courses listing
differential equations as a prerequisite. The 10 sessions were organized so that the first and last
sessions — our focus in this report — featured prompts intended to (a) document the criteria
participants used to classify scenarios and (b) document participants’ association of templates
with the given scenarios. The middle 8 sessions consistently emphasized recognizing symbolic
forms and associating them with quantitative structures participants recognized in the real-world
scenarios presented in the tasks.

We describe the intervention’s tasks using Yeo (2007) classification framework. The
tasks were mathematical modeling problems with well-defined goals (develop a model for the
scenario) but ill-defined answers (multiple valid models). Earlier tasks in the sequence provided
built-in guidance and were relatively simple in that they called for fewer quantities and
quantitative operations. Later tasks were not guided and were also more complex, being open to
constructing many quantities and manipulating them with quantitative operations and
relationships. In this paper, we focus on the first and final sessions, which featured pre/post items
intended to document the participants’ associations between scenarios and quantitative
structures. In Sessions 1 and 10 we gave the Matching Task to document stability of reasoning
with the target templates.

The Matching Task prompt (Figure 3) asked participants to match scenarios to the
templates (a) — (e) based on what they saw as relevant within the problem scenario. For example,
Item 9 is an abbreviated prompt based on a canonical salty tank problem from differential
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equations. It was an open problem during the modeling sessions and as a pre/post item was

reduced to indicating the template perceived as appropriate to the participant. Participants were

asked for explanation of their answers, information which we use to enrich our analysis.
Consider the following mathematical expressions:

a)%:k b)%zk'Q(t) Ol=a+h di=k-a-b e) L = kP(£)Q()

dt
where Q(t) and P(t) are quantities, Q'(t) is the rate Q(t) changes with respect to time, k is a constant, and
a, b, and I are quantities that possibly depend on time (or not) or may be composed of other quantities (or not).
Which of the mathematical expressions above (either individually or as a composition) can be used to model
the real-world scenarios below?

Item 4: Consider a natural habitat where bobcats are natural predators of rabbits. Bobcats are very good hunters,
but they aren’t perfect. Therefore, not all of the bobcat/rabbit encounters result in a rabbit’s death. Model the
number of rabbit deaths due to only predation by bobcats.

Item 9: Consider a tank where water and a salty solution enters the tank while the well-mixed liquid inside the
tank exits the tank. Model the rate at which the amount of salt in the tank changes with respect to time.

Figure 3: Abbreviated statement of Matching Task

A total of N = 23 undergraduate STEM majors participated in the design research project
whose result was the modeling intervention reported in this paper. The participants were
generally high preforming, reporting high grades in mathematics (M = 3.4,5D = 0.5) and a high
level of confidence with relevant mathematical concepts (M = 364,SD = 69 out of 500 points
on a confidence scale). We describe the sample composition by gender and major, but do not
analyze the data according to these subgroups because of the small resulting sample sizes.
Approximately 22% of participants identified as female, 74% as male, and 4% as non-binary.
Approximately 30% of participants were pursuing a degree related to computer science, 35% in
electrical engineering, 17% in civil engineering, 13% in physics, and 4.3% in mechanical
engineering. Because the overall project used design methodology to develop the intervention,
the Matching Task was revised after Implementation 1 (N = 6) to provide response E. We
exclude N = 9 participants’ responses from the t-test and pre/post response comparisons because
the pre/post response options were not the same for participants in the earliest implementations
(N = 7), and some participants did not complete the post-test (N = 2). However, we did include
all participants' responses in the pre-test cluster analysis (N = 23) and all except the latter in the
post-test analysis (N = 21) by using the response similarity metric (described below).

To quantify similarity of participants’ ways of reasoning with the templates, we established a
metric for response pattern proximity, as follows. Participants were encouraged to consider the
templates as composites. For example, the normatively correct response for Item 9 was keyed as
B&C, where the template B reflects the fact that the rate at which salt leaves the tank is
proportional to the current amount of salt in the tank, and C reflects additive comparison of the
inflow and outflow (net rate). Selecting C was regarded as closer to the keyed answer than
selecting A and scoring reflected this. We chose the Serenson-Dice coefficient (SDC) as a
similarity metric to calculate scores because it both emphasizes similarities in response patterns
and ignores template options which were neither included in the student answer nor the keyed
answer. The SDC provides a 0 to 1 score for each item which can be interpreted as a percent
overlap of the participant and keyed answers and is computed as SDC = 2|P N K|/(|P| + |K]|)
for student answers P and keyed answers K (Serenson, 1948). We calculated SDC per item and
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then summed to generate a participant pre- and post-test score between 0 and 9. We conducted a
paired samples t-test on these scores, which met all assumptions.

We then explored shifts in associations per-participant and per-item using hierarchical cluster
analysis techniques available in SPSS. Cluster analysis is a “data-driven approach” that allows
clumping together participants who respond similarly, instead of using a priori groups. The goal
is to organize heterogeneous samples into smaller groups that are maximally similar within-
group and maximally dissimilar across groups (Woods et al., 2020). We estimated similarity by
applying the SDC metric on participant responses to the Matching Task items to determine
similarity between sets of participant responses. Finally, we teased apart the influence of item-
and individual-level response patterns to articulate an account of shifts in participants’
associations between symbolic forms (represented by the response choices) and scenarios.

Results

A paired t-test of the scores of the pre-tests (M = 4.37, SD = 1.54) and post-test (M =
6.42, SD = 1.29) suggest that the intervention resulted in additional normatively-correct
associations between the templates and problems (¢(13) = 4.8,p < 0.001), with a paired
samples effect size of d = 1.25. In the aggregate, participants’ associations between scenarios
and templates shifted. Calculating the SDC between students’ pre and post answers to each item
(n = 126 pairs of pre/post responses from 9 items and 14 participants), we found that 41% of the
post-test responses had no similarity with the corresponding pre-test answer, with an average
pre/post-test similarity of 0.50. The cluster analysis revealed that similarity of participants’
responses was lower on the pre-test than on the post-test (Table 1). Clustering performed on pre-
test response sets yielded low average similarity. The two primary pre-test clusters included 11
of the 23 participants with average internal similarities of 0.63 £ 0.08 and 0.66 + 0.08. The
post-test revealed two clear primary clusters containing 8 and 7 participants respectively, and the
6 remaining participants were clear outliers from either cluster. Table 1 provides the similarity
details of the post-test clusters, as well as average performance of students within these clusters.

Table 1: Post-Test Cluster Statistics

Internal Similarity Matching Task Performance
Group n Mean Range Pre? Post Improvement?
Cluster 1 8 0.76 £ 0.07 (0.59,0.93) 527+ 131 7.43 +£0.68 2.16 + 1.65
Cluster 2 7 0.76 £ 0.08 (0.55,0.91) 3.87 +£1.33 6.10 + 0.64 2.25+1.58
Outliers 6  040+0.10  (0.19,0.56) 3154052  431+035  1.17+0.17
o The cluster analyses revealed overall shifts towards the normatively correct response

patterns and also indicated non-conforming item- and participant-level response patterns.
For example, pre/post response patterns on Item 4 and Item 9 are shown in

2 These columns only include scores on the final form of the pre/post test, resulting in n; = 6,n, = 6,n,,, = 2.
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Figure 4. For the n = 14 participants who took the same version of the pre/post tests, the graphs
illustrate a general shift towards the normatively correct responses for each item. On Item 9, just
shy of 60% of participants included E in their responses, while only 29% included C, and 14%
selected both. Participants who provided a justification for selecting only E mentioned it looked
similar to what they recalled from their differential equations class and that the multiplicative
factors represented inflow and outflow. On the post-test, 86% associated template C with the
scenario, and only 14% kept E, indicating that many participants learned to associate the
conceptual schema for the superposition of flows with template C as necessary to model the salt
tank problem.

On some items, participant response patterns did not shift towards the keyed answers. In item
4, the response frequency for E increased though D was the keyed answer. Item 4 describes a
predator-prey scenario. The item requests a model for the number of rabbit deaths due to
predation, explicitly prompting the participant for an amount rather than a rate. The keyed
answer D reflects a proportion of the possible interactions between the bobcat population and the
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rabbit population. On the pre-test, the most selected template was C (43%). Participant
justifications indicated they were conceiving the predator-prey interactions as being one-to-one,
implying that the number of rabbits killed by bobcats was equivalent to the number of bobcats.
On the post-test, the percentage of participants selecting C dropped to 14% while the proportion
who chose E rose from 7% to 64% and the percentage who chose D rose from 29% to 50%. One
of the open modelling tasks during the sessions featured a predator-prey scenario in which
participants leveraged a symbolic form which fits into template E (as in the Lotka-Volterra
equations). In comparison, Item 5 presented another predator-prey scenario and requested a
model for the species interactive dynamics. The keyed answer was B&C&E to reflect two
equations for the two species. On this item, participant responses did shift towards the keyed
answer, with B rising from 21% to 50%, C from 29% to 57%, and E from 36% to 86%. No
participants selected A in pre or post, and D decreased from 36% to 29%. Thus, the response
patterns suggest that many participants learned to associate the template with the predator-prey
scenario, but that the finer conceptions involved in transferring an AQS that call for distinction
between amounts and rates-of-change of amounts were obscured.

Item 4 Item 9
1 1
09 0.9
0.8 0.8
0.7 0.7
% 0.6 0.6
T 05 0.5
& 04 0.4
2 0.3 0.3
0.2 0.2
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Figure 4 Relative Frequency of Multi-Select Responses to Items 4 and 9

To better understand shifts in patterns of reasoning in relation to the item contexts, we
closely examined Yixli, Tien, Niali, and Khriss. These participants were chosen because they
exhibited four archetypal cases arising from a 2 X 2 configuration: associations were (not)
shifted X associations were (not) normatively correct. The existence of the four archetypal cases
demonstrates that shifting associations does not imply a shift to a normative association. For
each participant, we describe how their ways of reasoning with AQS may have changed (or not)
from pre to post. Yixli revised his responses to only Item 4 and 5 from pre to post; his post score
was in the lower third of the sample (5.5/9). Explaining his change from C to E on Item 4, he
stated, “because at this point it’s, like, beaten into my skull from all the problems that we did” [in
the sessions]. Yixli successfully developed a system of differential equations for the predator-
prey scenario during the open modeling sessions. Thus, his statement supports the inference that
he learned to associate predator-prey scenarios with template E but still inconsistently associated
an AQS for rate of change in amount with a prompt requesting an amount, a common conflation
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when learning to model with differential equations (Rasmussen & King, 2000; Rowland &
Jovanoski, 2004). More generally, Yixli demonstrated high levels of recognition of key features
of the scenarios but did not associate normatively correct AQS with those features. For example,
in items 2 and 4, he selected non-normative responses because he furnished a rate of change
equation instead of an amount equation. In item 6, he selects one keyed response accounting for
only part of the information presented in the prompt. Finally, on item 8, Yixli associated the
scenario with exponential growth (B) instead of linear growth (A) based on the real-world setting
rather than its properties. Considering Yixli’s response patterns across items explains why the
majority of his responses — which were non-normative — did not shift from pre- to post. There
were few non-normative associations for the intervention to address and Yixli’s tendency to
focus on the real-world setting rather than its features was unperturbed by the intervention.

Tien changed responses to 4 items, selecting additional templates on the post while
maintaining the templates he selected on the pre. He scored in the top third of the sample on post
(7.3/9). On his pre-test, Tien selected at least one keyed response on all except two items; on
items 4 and 9 he selected options C and E, respectively. He changed his response on item 4 to
C&D&E, explaining that, for him, D reflected the number of rabbit deaths due to bobcats, while
C and E reflected other quantities in the scenario. He similarly revised his responses to items 5
and 6 to select C&D&E, which overlapped with the keyed response B&C&E. Items 5 and 6
treated population dynamics, indicating that Tien viewed the C&D&E composition of templates
as important for modeling population dynamics. Finally, Tien revised his response to item 9 from
C to C&E, overlapping with the keyed response B&C. However, Tien explained that C reflected
the sum of salt content and solution content, yielding the total amount of substance in the tank,
not the additive comparison of inflow to outflow. We interpret Tien’s response patterns as
indicating that he began the intervention with mostly normative associations between scenarios
and productive symbolic forms and also gained additional association with quantitative
structures that would aid him in modeling population dynamics. Additionally, his associations of
forms with the salty tank scenario were correct for his conceptions, but non-normative.

Unlike the previous two, Khriss revised his answers on all but 3 items but only slightly
improved his score by a single point from 3.7 to 4.7, ending up scoring in the bottom tenth of the
sample. On the pre-test, Khriss exclusively utilized the templates B, C, and E. On problem 2 he
wrote out a normative equation but selected a non-normative template. Similarly, on problems 3
and 8 he selected the template E to model an exponential growth problem, demonstrating that he
had a normatively correct answer on 3 and a common non-normative answer on 8, but simply
selected a non-normative template to describe those models. This was continued in the post-test
on which Khriss was able to identify normative equations which modelled every problem, but
then associated the scenarios with non-normative templates. The primary distinction between
Khriss’s pre and post tests was that the equations Khriss wrote for the post-test responses were
more detailed and normatively-correct than the equations Khriss wrote while taking the pre-test.
This indicates that, while Khriss’s associations of templates with scenarios did not generally
become more normative, the symbolic forms used by Khriss did.

Finally, Niali revised his responses to nearly all items, improving from 2 to 7.2, and scored in
the top third of the sample on the post-test (7.2/9). During the sessions, Niali indicated a robust
association between template A and scenarios featuring linear growth and between template B
and scenarios featuring exponential growth. Thus, we infer that his low pre-test scores were not
due to a lack of transferrable AQS’s adequate to distinguishing those scenarios mathematically.
Instead, he over-selected E for exponential growth scenarios rather than B. By the post-test, Niali
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associated E with scenarios featuring a rate of change dependent upon interaction between two
quantities. Like Yixli, he responded to the real-world setting of item 8 rather than the scenario-
specific features in the item.

Conclusions

The paired samples t-test indicates that undergraduate STEM majors’ ways of reasoning with
abstracted quantitative structures can be modified through modeling with those structures. The
cluster analyses also revealed overall shifts towards the normatively correct response patterns
and also indicated non-conforming item- and participant-level response patterns. We observed
that for some participants, the context was a stronger indicator of response selection than
scenario-specific features. In previous literature, this phenomenon has been referred to as
focusing on “surface features” vs. “deep structure” (Schoenfeld & Herrmann, 1982) However,
we argue that the conclusion is not so simple. Our participants proffered “deep structural”
explanations based on their structural conceptions of quantities and relationships among
quantities even when seemingly focused on contextual features. That is, many selecting non-
normative responses demonstrated evidence of structural ways of reasoning rather than
superficial reasoning.

One limitation of our approach is that template-matching is not perfectly predictive of
associations between scenarios and symbolic forms, as Khriss’s response patterns revealed.
Teasing this apart might require developing a more nuanced similarity metric that accounts for
the idea that template B is actually a sub-template of E, both of which can be expressed as
instances of C (though many participants did not evidence awareness of these insights).
However, overall, the Sorensen-Dice coefficient enabled a complex metric that modeled the
response pattern data well. It supported a robust comparison of similarities in participants' ways
of reasoning with sets of responses, providing an additional tool for evaluating complex
reasoning patterns. Thus, we are optimistic about the approach to measuring the assimilation of
scenarios to AQS’ in this way because it opens possibilities for future work on AQS.

Our objective in the present study was to examine the stability of participants’ ways of
reasoning with symbolic forms when engaging with modeling tasks designed to help them
assimilate scenarios to those forms. Recently, Kularajan (2023) argued that a promising approach
to studying (and subsequently improving) students’ capacity for mathematizing is to examine
and respond to their emergent quantitative reasoning about the scenario. Our contribution is
providing empirical support to this conjecture. We conclude that participants showed evidence of
changing which scenarios are assimilated to a given AQS by matching it with a template as a
consequence of engaging with modeling scenarios that reinforced the use of symbolic forms
matching those AQSs. The next steps in this line of research are articulating the contours of
learning environments that may be fruitful for students with differing ways of reasoning.
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Deliberate Practice of Mathematics Collaboration

CASCADE is designing simulations of collaboration on tasks involving algebra and statistics
that arise in STEM careers. Players engage with aspects of tasks, discourse, and social dynamics
that shape mathematics collaboration (Hamm, Farmer, Lambert, & Gravelle, 2014; Heck &
Hamm, 2016; Lotan, 2003; Smith & Stein, 1998). The simulations are designed in partnership
with BIPOC professionals in STEM fields and leaders of programs serving grades 6-12 youth
historically underrepresented in STEM careers. PROJECT’s design research first draws on
frameworks of mathematics collaboration and deliberate practice to design simulations, then
adapts the design based on student playtesting.

Set in STEM career fields, the simulations engage players with processes of communication
and problem solving to practice collaboration skills (Heck & Hamm, 2016) with virtual work
partners. Following tenets of deliberate practice (Ericsson, Krampe & Tesch-Romer, 1993),
players have repeated chances to try specific skills of collaboration, experience consequences,
and receive feedback. Players’ practice is low stakes in terms of achievement or consequences.
Designing the Simulation as a Learning Environment with Practice and Feedback

PROJECT simulations place players in virtual environments of STEM career fields with a
narrative built around a mathematics task common in these careers. In first-person perspective,
players encounter virtual partners with whom they collaborate. We utilize the three central
features of mathematics collaboration—tasks, discourse, and social dynamics—to engage players
with targeted challenges. As each challenge arises, players choose among options reflecting
varying levels of collaborative functioning. Players receive two types of feedback: implicit
feedback—a direction the narrative takes in response, and explicit feedback—explanations and
guidance delivered by a mentor character (Folsom-Kovarik, Newton, Haley, & Wray, 2014).
Adapting the Simulation Design through Lessons Learned

Seven pairs of adolescents from a college pathway program playtested a simulation
prototype. Their play was recorded using screencapture and a camera with audio, and researchers
conducted debriefing interviews. Rather than having their choices judged “right” or “wrong,”
players appreciated receiving feedback and the experience of seeing both positive and negative
consequences play out. Analysis of playtesting data generated two additional design elements.
First, players are explicitly encouraged to explore choices they feel are non-productive, so they
can see what consequences arise. Second, when players choose the most productive options,
resulting feedback includes consequences that would have resulted from non-productive choices.
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Extant research has demonstrated that problem-posing and problem-solving mutually affect one
another. However, the exact nature and extent of this relationship requires a detailed
elaboration. This is especially true when adidactical problem-posing arises within a problem-
solving context. In this study, we analyze the scripting journey used by two students to record
their investigation of sums of consecutive integers. We analyze the adidactical problem-posing
found within the scripting journey using three facets of a problem posing framework:
mathematical knowledge base, problem-posing heuristics, and individual considerations of
aptness. Our analysis reveals how these aspects of problem-posing emerge within a
mathematical investigation, how they are related to surrounding problem-solving, and what
types of activity act as catalysts to promote further problem-posing activity.

Keywords: Problem Solving; Undergraduate Education; Preservice Teacher Education

Introduction

“How are problem-posing skills related to problem-solving skills?” (Cai et al., 2015, p. 14).
According to Cai et al. (2015), this question is yet unanswered, but exploring it could lead to
advances in the collective understanding of students’ mathematical activity. We note that this is
not a question of the existence of a relationship; at the time, extant research already supported
the hypothesis that successful problem-posers were also successful problem-solvers, and vice
versa (cf. Silver & Cai, 1996; Cai & Hwang, 2002; 2003). Instead, the question suggests that it is
the fundamental character of this relationship that remains unclear—and it calls for mathematics
education researchers to explore the nature and extent of the connection between problem-posing
and problem-solving.

This call was not ignored. Liljedahl and Cai (2021) reported on advances in both problem-
solving and problem-posing from the intervening years—and in particular, those studies that
sought to understand better how the two fields intersect. For example, Elgrably & Leikin (2021)
discovered that initial problem-solving efforts can spark later problem-posing creativity;
conversely, Hartmann et al. (2021) noted that initial problem-posing can lead to unexpected
student success in later problem-solving.

Although the two studies cited above combined problem-solving and problem-posing, in
each case, all problem-posing activity was incited directly by the task itself. That is, participants
were explicitly instructed to pose mathematical problems. However, Koichu (2020) exemplified
that problem-posing can be instigated adidactically, “as an activity necessitated for the posers by
the need to find or create problems that would serve another goal” (p. 3). In Koichu’s work, this
other goal was pedagogically oriented; problem-posing arose adidactically as participants
prepared to teach a difficult topic. We wondered to what extent adidactical problem-posing
might naturally arise when the ultimate goal is not to teach a particular mathematical idea, but
instead, to investigate a particular mathematical phenomenon through problem-solving.

To this end, we developed an investigative task without an explicit problem-posing
component. The data in this study is a self-reported dialogue inspired by participants’ firsthand
experiences as they use problem-solving to explore the task; we call this type of dialogue a
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scripting journey. We address the following research question: How does adidactical problem-
posing emerge when engaging with a problem-solving investigation? A framework for the
analysis of problem-posing, an overview of scripting journeys, and the task itself are provided in
the following sections.

A Theoretical Framework for Problem-Posing Analysis

To address our research questions, we draw on a framework proposed by Kontorovich et al.
(2012). The framework consists of attributes that attend to the cognitive, affective, and social
dimensions of problem posing. In this paper, we analyze episodes of adidactical problem-posing
activity using three of these attributes: mathematical knowledge base, problem-posing heuristics
and strategies, and individual considerations of aptness.

A problem poser’s mathematical knowledge base includes mathematical definitions, facts,
procedures, prototypical problems, and competencies related to mathematical discourse and
writing. Problem-posing heuristics and strategies refer to the systematic approaches that a
problem poser adopts to analyze and transform a mathematical situation and, later, to pose
problems. Drawing on previous research, Kontorovich et al. (2012) composed a provisional list
of such strategies, three of which are of interest to this report:

1. Numerical manipulation: Posing a new problem by assigning different numerical values
to given constraints.

2. What-if-notting: Posing a new problem by removing or changing either a given constraint
or an underlying assumption about the mathematical setting.

3. Generalization: Posing a new problem “for which the given problem is a special case”
(Kontorovich et al., 2012, p. 152).

Finally, throughout a problem-posing task, problem posers consider the suitability of posed
problems for a particular audience. This audience might include themselves, a real or
hypothetical evaluator, or an intended audience who will be tasked with solving the problem.
Individual considerations of aptness are the problem posers’ conceptualizations of the explicit
and implicit criteria by which this audience will judge the posed problem (or by proxy, the
problem-poser) and how necessary it may be to meet these criteria. For example, when
considering whether a problem is appropriate for a later problem solver, the problem poser could
try to anticipate whether the problem will be mathematically challenging, engaging, or capable
of successfully teaching a desired concept to the solver.

The Task

Scripting Tasks and Scripting Journeys

A scripting task is an activity centered around the construction a mathematical dialogue,
typically involving some combination of teacher- and student-characters. Sometimes, a scripting
task provides a prompt—a few introductory lines of dialogue that introduce the topic of the
script. When a prompt is included, it typically introduces a mathematical question of a student
(e.g., Bergman et al., 2022; Kontorovich & Zazkis, 2016; Marmur & Zazkis, 2018), a
misunderstanding (e.g., Zazkis et al., 2013), or a disagreement (e.g., Marmur et al., 2020; Zazkis
& Zazkis, 2014) that the script should attend to and eventually resolve.

Recently, researchers have explored the application of scripting tasks that produce a
particular type of dialogue referred to as a scripting journey (Kercher et al., in press). Unlike
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dialogues resulting from other types of scripting tasks, a scripting journey is not a continuation of
a prompt; rather, the scriptwriters use their own mathematical activity as a model for
constructing the scripting journey. Kercher et al. (in press) observed that student-written
scripting journeys contain robust mathematical activity and are thus appropriate for analysis in
mathematics education research. With this result in mind, we leverage scripting journeys to
capture and analyze the emergent adidactical problem-posing activity within a problem-solving
investigation.
The Consecutive Integers Task

The activity used to stimulate adidactical problem-posing was the Consecutive Integers task
(CI task). Its introductory instructions are presented in Figure 1.

The number 294 has the following interesting property:
294 =39+40+41+42+43 +44+45
That is, it can be written as the sum of 7 consecutive integers.

Your task is to investigate this property and its variations. That is, your task is to investigate
the sums of consecutive integers. The following questions can guide the beginning of your
investigation. You do not need to address all the suggested questions. You can choose a few or
you can proceed with your own problems/ questions.

Figure 1: The introduction of the Consecutive Integers task.

Participants were then provided with a selection of example questions to direct their
explorations, which included: Consider any number of your choice. What values are possible for
K? Can you find all of them? Can you generalize further? That is, given any natural number, can
it be written as the sum of consecutive integers? If so, in what ways? If not, why?

Thus, the CI task can be thought of as a modular, semi-structured investigation in which
participants were free to select from a number of smaller problem-solving tasks of varying
degrees of open-endedness and mathematical sophistication. The task also invites participants to
explore sums of consecutive integers independently of the suggested problems, and in doing so,
guides participants towards posing and solving their own problems. Completion of the CI task
required participants to record their mathematical activity as a scripting journey.

Participants, Data Collection, and Analysis

The data in this study is part of a larger study on the adidactical problem-posing of
prospective elementary school teachers enrolled in a mathematics methods course. We focus on
the work of Brandi and Ben (pseudonyms), who completed the CI task outside of usual
classroom hours. Both scripting tasks and mathematical investigations were a typical component
of the course, but the CI task was the first assignment in which the participants had been required
to record their work as a scripting journey. The course did not include explicit problem-posing
activities or instruction.

The research team first read and reread Brandi and Ben’s scripting journey, in which they
featured themselves as characters, to become familiar with their investigation. Then, the first
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author coded the script for instantiations of adidactical problem-posing. Considering that the
participants were not asked to set aside a comprehensive list of what they considered to be the
problems that they posed over the course of their investigation, two different methods were used
to distinguish posed problems within the dialogue. First, we identified some explicit questions as
posed problems—such as when Brandi asks, “But if 294 is X, what happens when X is
unknown? For example, 7N + 21 = X?” On the other hand, some posed problems were inferred
from statements of intent or from a character’s musings. These problems did not always appear
in the form of a question, but the remark was coded as a posed problem if it was suggestive of
particular constraints and goals that the speaker had in mind. For example: “I wonder if this can
be written as a formula to work with other patterns.”

The second author then independently coded the scripting journey for adidactical problem-
posing, and these codes were compared with the first author’s codes. Discrepancies were
resolved by discussion until complete agreement was reached. Brandi and Ben’s scripting
journey was then subjected to analysis using the framework of Kontorovich et al. (2012).
Throughout the application of the analysis framework, the entire authorial team met regularly to
discuss their interpretations of the observed problem-posing activity.

Findings: Brandi and Ben

In this section, we first present a summary of Brandi and Ben’s scripting journey in the form
of a short vignette. Following the vignette, we analyze the recorded problem-posing behavior
using the framework of Kontorovich et al. (2012).
Vignette

Immediately upon beginning their investigation, Brandi and Ben work together to establish a
way of representing 294 as the sum of 7 consecutive integers algebraically. First, Brandi
wonders if the property that 294 can be written as the sum of 7 consecutive integers “can be
written as a formula to work with other patterns.” In response, Ben proposes a formulation using
the variable N:

I think it should only go to N + 6 because N is the first integer and N + 1 is the second.
Therefore, seven consecutive integers would end at N + 6. It should be: N + (N + 1) +
(N+2)+(N+3)+(N+4)+ (N+5)+ (N +6).

Note that Ben uses the variable N to represent the smallest integer in the sequence even though
the exact sequence of integers is given by the task (see Figure 1). This behavior, taken in context
with Brandi’s stated desire to work with “other patterns,” suggests that the student-characters in
this excerpt are working to solve an implicitly posed problem: namely, they are attempting to
discover an algorithm that will allow them to locate a sequence of integers that add to a given
sum without guessing and checking.

In support of this overarching problem, Brandi and Ben go on to pose a number of follow-up
problems that they anticipate will help them better understand the functionality of their
developing algorithm:
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Table 1: Posed problems in response to the developing algorithm

Speaker Dialogue
[1] Brandi Butif 294 is X, what happens when X is unknown? For example, 7N +
21 =X.
[2] Ben [After noticing the sum is divisible by the number of divisors] Do you think
that can work if the number of consecutive integers is an even number?
[3] Ben What happens when we solve for N and it’s not a round whole number?

In the process of answering these problems, Ben eventually realizes procedure they have
been using can be improved by simply dividing the desired sum by the number of consecutive
integers. Then, “any quotient that is a whole number will have an odd number of consecutive
integers, [...] and any quotient that is a half number will have an even number of consecutive
integers.” The student-characters decide to leverage technology and construct a spreadsheet that
will handle these computations. Freed from the responsibility of manual arithmetic, Brandi and
Ben pose a sequence of problems that attend to more abstract concerns. These include:

Table 2: Posed problems in response to the creation of the spreadsheet

Speaker Dialogue
[4] Brandi What are you going to put in the table?
[5] Brandi How will you know which numbers [of consecutive integers] to check?
[6] Brandi Can it go to an unlimited number of even or odd consecutive integers?
[71 Brandi What happens when we have a huge number of consecutive integers?
[§] Brandi Well, I guess we can go to negative numbers?

Brandi wonders first about the information that should be provided to the spreadsheet; that is,
she considers which information in the task should be considered a constraint and which should
be a goal. The student-characters then explore the boundaries of what reasonable values for K,
the number of consecutive integers, might be. In particular, Brandi wonders about a hypothetical
upper bound on K; in response, the student-characters consider the inclusion of negative numbers
and zero as one avenue for generating a “huge number of consecutive integers.”

After attending to these considerations and building the spreadsheet (Figure 2), Brandi
suggests that they test it with a newly posed problem: to find a list of all possible values of K for
a completely different number, 165. Using their spreadsheet, they divide 165 by consecutive
integers starting at 2, consider the quotient, and, where possible, produce the sequence of
consecutive integers that sum to 165 by using the quotient as the midpoint of the sequence.
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Dividend of Consecutive Quotient this Sum
1 Integers work?
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 165 2 82.5 Y 165 82 + 83
4 165 S 55 Y 165 54 + 55 + 56
5 165 4 41.25 N 0
6 165 5 33 Y 165 31 + 32 + 33 + 34 + 35
7 165 6 27.5 Y 165 25 + 26 + 27 + 28 + 29 + 30
8 165 7 23.5714 N 0
9 165 8 20.625 N 0
10 165 9 18.3333 N 0
11 165 10 16.5 Y 165 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21
12 165 11 15 Y 165 100 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
13 165 12 13.75 N 0
14 165 13 12.6923 N 0
15 165 14 11.7857 N 0
16 165 15 11 Y 165 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18
17 165 16 10.3125 N 0
18 165 17 9.70588 N 0
19 165 18 9.16667 N 0
20 165 19 8.68421 N 0
21 165 20 8.25 N 0

Figure 2: The first 20 of the 450 rows in Brandi and Ben’s spreadsheet.

Compiling this list of ways in which 165 is expressed as the sum of integers inspires Brandi
to pose a new collection of problems:

Table 3: Posed problems in response to the application of the spreadsheet to an example

Speaker Dialogue
[9] Brandi  Is there something to do with the factors of the number?
[10] Brandi Why won'’t that [choosing K = 18] work?

In what follows, the student-characters attempt to uncover an underlying mathematical
justification for the acceptable values of K identified by the exhaustive search they undertook
with the aid of their spreadsheet. For example, the student-characters readily accept that 18
consecutive integers will not sum to 165 after consulting their spreadsheet; to supplement this
conclusion, they examine the prime factorization of 165 and attempt to rationalize why 18 did
not work but, on the other hand, 15 did.

Analysis

Mathematical knowledge base. Brandi and Ben used mathematical knowledge when they
addressed the validity of using negative numbers in their sequence of consecutive integers
[Problem 8]. Furthermore, much of Brandi and Ben’s work before the creation of their
spreadsheet leveraged their knowledge of divisibility rules and properties. After the spreadsheet,
they used their knowledge of divisibility and prime factorizations to attempt to find a relationship
between valid choices of K for a number and its prime factors [Problems 9, 10].

In addition to their knowledge of mathematical content, Brandi and Ben also demonstrated an
awareness of mathematical norms for justification, generality, and efficiency. For example,
problems in the dialogue attended to multiple cases [Problems 2, 6], and Ben’s initial suggestion
to work with the variable N can be seen as a way of ensuring that these separate cases can be
united under a sufficiently general notation. We also draw attention to the characters’ attempts to
streamline their spreadsheet application [Problems 4, 5, 7], which we take as evidence of their
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desire to avoid an impractical guess-and-check approach for locating possible values of K.
Brandi and Ben seem to feel that such an approach would not sufficiently address the
mathematical goal of the task.

Problem-posing heuristics and strategies. Brandi and Ben engaged with the generalization
heuristic when they attempted to capture the mathematical situation using equations and
variables; their attempts to unite multiple cases under a single algorithm are another form of
generalization. Considering different cases typically required the numerical manipulation
heuristic, as did testing conjectures on different examples [Problem 10]. The symbolic
representation proposed by Ben also allowed the characters to easily manipulate not only the
number of consecutive integers but also the value of the target sum [Problem 1]. Later, the
spreadsheet would serve the same goal of allowing Brandi and Ben to apply the numerical
manipulation heuristic as quickly as possible.

Brandi and Ben also employed the what-if-not strategy to challenge their implicit
assumptions about the CI task. First, when they realized that they had taken for granted that K
must be less than the desired sum and posed problems questioning whether that really was its
upper bound [Problems 5, 7]; and second, when they wondered whether they should be allowed
to use a sequence of consecutive numbers that included negative values [Problem 8]. Both of
these applications of the what-if-not strategy were instigated by the use of the spreadsheet, which
removed the computational barrier and enabled them to examine the reasonable bounds of K.

Individual considerations of aptness. The primary consideration of aptness made by Brandi
and Ben concerned whether or not a problem would be immediately appropriate for furthering
their understanding of the mathematical situation at hand. That is, a good problem in the context
of the scripting journey was one that would yield progress in the ongoing investigation. In this
sense, Ben’s suggestion to consider even numbers [Problem 2] was apt in that it addressed a case
that the group had not yet attended to; similarly, Brandi’s problem attempting to integrate prime
factorization [Problem 9] was considered apt because it allowed the characters to refine their
procedure for locating appropriate values of K. This latter example highlights that Brandi and
Ben valued efficiency as an appropriate criterion for their posed problems.

Brandi and Ben also considered a problem apt when it invoked a symbolic representation of
the CI task, as demonstrated early in the vignette. Although neither character said outright why a
symbolic representation was valuable, we might interpret this preference in multiple ways. First,
a symbolic representation might be considered apt in that it is a more efficient way to test
possible values of K; this interpretation is in line with Brandi and Ben’s other evident priorities
and explains why their symbolic system was abandoned once they had constructed the more
efficient spreadsheet. Second, it could be that the characters expected that the required “general
solution” to the CI task would only be sufficiently general if its steps could be demonstrated
symbolically. In this sense, the characters would consider representing the task symbolically to
be apt not only because it furthered their understanding but because it was an implicit
requirement of a correct solution.

Discussion
The research question guiding our study was: How does adidactical problem-posing emerge
when engaging with a problem-solving investigation? In addressing this research question, we
focus on the process of problem-posing, the purpose of problem-posing, and the conditions under
which problem-posing appears.
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When we interpret this question in terms of the mechanical process of forming a novel
mathematics problem, we see that there are many similarities between didactical and adidactical
problem posing—in both cases, the problem poser relies on their mathematical knowledge base
and a selection of heuristics to construct a problem that is relevant to the mathematical setting.
This report illustrates the nuanced relationship between these three components of the analysis
framework. For example, Brandi and Ben applied the what-if-not heuristic when they questioned
their implicit assumption that the sequence of consecutive integers should consist of only
positive numbers. But in order to apply this heuristic, they first had to consult their mathematical
knowledge base and clarify the elements of the set of integers. Finally, they considered whether a
problem that makes use of negative integers would even be appropriate for making progress in
the investigation at hand.

Another aspect of addressing our research question lies in examining not only the means by
which problems are posed but also for what purpose they are posed in an investigation.
Certainly, one purpose of posed problems was to complete the CI task. We note that this goal
necessarily reduced the amount of variation in problem type that Brandi and Ben felt compelled
to explore. That is, participants’ problem-posing activity was limited by the aptness of a problem
for contributing to their ongoing investigation into sums of consecutive integers. We note that
Problem 6 received very little follow-up in the scripting journey; this could be because Brandi
and Ben recognized that sequences of odd or even numbers was beyond the scope of their
investigation of sums of consecutive integers.

Although some of the constraints of the consecutive integer task were immutable,
participants decided independently when their investigations had reached a natural conclusion.
The point at which a group found their work on the CI task to be satisfactory illuminated what
kinds of mathematical artifacts they perceived to be normatively valued within their mathematics
course. Brandi and Ben were not satisfied with their work until they had answered some subset
of the example problems provided by the task; however, they also posed and endorsed their own
problems that dealt with formal mathematical representations, the efficiency or reliability of
algorithms and formulae, or justifications that demonstrate generalizability. In this way, the CI
task prompted problem-posing to emerge not only in service of solving a given problem but also
as a consequence of solving that problem.

Finally, we address our research question by considering when in the course of problem-
solving it is likely that students will engage in a didactical problem-posing. We observed that the
creation of the groups’ spreadsheet engendered a flurry of problem-posing unrestrained by
computational limitations. These posed problems explored how the new spreadsheet might
become even more efficient with a better understanding of the mathematical setting [Problems 4-
8]. Because it triggered a burst of novel problem-posing activity, we identify the creation of the
spreadsheet as an example of what we call a problem-posing catalyst. A problem-posing catalyst
is a shift in perspective brought about by the removal of constraints or a mathematical
realization. The problem-posing activity that follows a catalytic event is more concentrated
because the catalyst creates a “fresh” problem space; problems occur more easily to the posers
because they appear from previously unexplored directions. Consequently, the fact that post-
catalyst problem-posing takes place within a newly conceptualized mathematical setting means
more potential for further insights—that is, more catalysts. In this way the cycle of didactical
problem-posing fuels itself.
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Concluding Remarks

This report contributes to problem-posing literature by describing different ways in which a
problem-poser’s mathematical knowledge base, problem-posing heuristics and strategies, and
individual considerations of aptness might play a role in the didactical problem-posing they
exhibit during an investigation involving problem-solving activity.

Additionally, we introduce the construct of a problem-posing catalyst to provide a touchstone
for future explorations of a didactical problem posing. This study illustrates problem-posing
catalysts that arise through investigative problem-solving activity; however, we note that because
catalysts are characterized by a shift in perspective, they might emerge in other settings. Future
studies could describe catalysts in other types of tasks with potential fora didactical problem-
posing, such as when students must generate a variety of examples or search for visual patterns.

Because scripting journeys are participants’ self-reported retellings of problem-solving
activity, conclusions that we are able to draw about their problem-posing come with caveats. By
attempting to capture their engagement with the CI task as a narrative dialogue, the participants
could be expected to selectively include only those problems that they perceived as contributing
to their mathematical progress. This can be seen as a limitation. That is, the scripting journeys
may have included only those problems, both solved and unsolved, which already met the
scriptwriters’ individual considerations of aptness. Future research might use other methods of
monitoring problem-posing activity, such as video recordings of group work, to capture
problems that were posed by the group but not included in their scripting journey.
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Drawing on a concept-map methodology, we investigated how 18 prospective elementary
teachers (PSTs) conceptualize STEM thinking as habits of mind shared across STEM domains in
the context of problem-solving prior to explicit classroom discussions about STEM thinking. A
28-question, 5-point Likert-scale survey was used to explore PSTs’ orientations for STEM
thinking in elementary school mathematics classrooms. Our results show that PSTs come to
teacher education with many general ideas about STEM thinking in problem-solving contexts but
do not necessarily see STEM ways of thinking as common habits of mind supporting problem-
solving across STEM domains. Our data also reveals that PSTs come with positive overall STEM
thinking orientations, but they tend to be hesitant to think about themselves as future teachers
who foster STEM thinking in their elementary school classrooms. We discuss implications for
teacher preparation.

Keywords: Integrated STEM / STEAM, Preservice Teacher Education, Problem Solving,
Teacher Beliefs

Background

The importance of STEM education, which refers to teaching and learning science,
technology, engineering, and mathematics, has been established for many years. STEM
education contributes to developing a STEM-literate society (Bybee, 2013). Early on, STEM
education was interpreted through the lens of improving student learning in isolated STEM
disciplines, primarily science, and mathematics (Breiner et al., 2012; Sanders, 2009; Wang et al.,
2011). Over the years, the meaning of the acronym STEM has shifted from thinking about
STEM as a collection of isolated disciplines—S, T, E, and M to thinking about STEM as an
interdisciplinary domain centered around authentic problems that allow for integrating two or all
of the STEM content (Tytler et al., 2019). Recently, some STEM education researchers
advocated for expanding thinking about STEM education from content integration to focusing on
common habits of mind that link STEM disciplines (Bennett & Ruchti, 2014; Kelley & Knowles,
2016; Maiorca & Roberts, 2022; Roberts et al., 2022; Williams & Roth, 2019). Kelley and
Knowles (2016), for example, proposed interpreting STEM integration through the lens of
problem-solving practices shared across the STEM disciplines. Bennett and Ruchti (2014)
argued for interpreting STEM integration through the lens of reasoning skills foundational to all
STEM disciplines. Roberts et al. (2022) viewed integrated STEM as problem-solving practices
and ways of thinking that support problem-solving across the STEM domains.

Advocates of more integrated approaches to STEM education argue that teaching STEM in a
more connected manner in the context of solving real-world problems helps students understand
the characteristics and features of STEM disciplines as forms of human knowledge and inquiry
and generates student awareness of how STEM fields shape human environments (Roberts et al.,
2022; National Research Council, [NRC], 2014).
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There is an increased trend to prepare STEM-focused teachers. However, despite the
emphasis on STEM integration in K-12 education and calls for providing elementary students
with early experiences with STEM, limited research addresses prospective elementary school
teachers (PSTs’) preparation for STEM integration. Our research explores perceptions about
habits of mind across STEM problem-solving that elementary PSTs hold prior to engaging them
in discussions about STEM thinking in a teacher education program. This research was guided
by the following research questions: (1) What is elementary PSTs’ initial understanding of habits
of mind shared across STEM domains in the context of problem-solving before explicit
instruction about STEM thinking? and (2) What is PSTs’ initial orientation for STEM thinking in
elementary school mathematics classrooms?

Conceptual Foundations

We drew on phenomenography as our research methodology to investigate PSTs’
perceptions of STEM thinking (Marton, 1986; 1988). Our goal was to construct an initial
framework that describes our PSTs’ perceptions of STEM thinking in the context of problem-
solving and track changes in our PSTs’ understandings of STEM thinking. A central focus of
phenomenography studies is the examination of learners’ conceptions of a phenomenon of
interest. However, we find it useful to briefly discuss how STEM thinking is conceptualized in
the existing research literature.

Like other researchers (e.g., Bennett & Ruchti, 2014; Denick et al., 2013, Kelley & Knowles,
2016; Williams & Roth, 2019), we view STEM thinking as a way of STEM integration through
the lens of problem-solving practices shared across the STEM disciplines. Consistent with NRC
(2014) descriptions, we conceptualize STEM thinking as purposeful thinking in problem-solving
situations that incorporates concepts, methods, attitudes, and practices from science, technology,
engineering, and mathematics. We operationalize STEM thinking as the use of disciplinary
practices related to problem-solving that transcend across STEM disciplines. Examples of these
practices include asking questions, evaluating information, defining and interpreting problems,
planning, carrying out investigations, developing and using solution models, analyzing and
interpreting information, testing ideas, constructing and justifying arguments, constructing
explanations, or communicating information.

Given the intricacies of STEM thinking and practices, we drew on concept mapping to allow
PSTs to externalize their interpretations of STEM thinking. Concept maps are visual displays
that show how individuals represent their knowledge by organizing their thoughts and
experiences about a phenomenon of interest. The existing literature on concept mapping in
teacher education provides evidence that concept maps can serve as useful and valid assessment
tools for gaining insights into student knowledge (Brinkmann, 2003; Kinchin et al., 2000;
Schmittau, 2009). Past researchers also documented that concept maps provide valid and reliable
research tools (Miller et al., 2009).

Our conceptualization of prospective teachers’ orientation for fostering STEM thinking in
their future practice was grounded in the Theory of Planned Behavior (Ajzen, 1991). The Theory
of Planned Behavior describes behavioral intentions as the predictive variables of one’s
behavior. We also drew on the existing research that provides evidence that beliefs,
understandings, and intentions form a predictive platform on which prospective teachers build
their orientations for fostering STEM subjects in their future classrooms (e.g., Kurup et al., 2019;
Wau et al., 2022). For our study, we selected four behavioral domains as a platform for describing
PSTs’ orientations for STEM thinking: prospective teachers’ (a) emotional readiness for STEM
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thinking practices in problem-solving contexts, (b) visions of the importance of STEM thinking,
(c) perceptions of classroom implementation of STEM thinking, and (d) self-efficacy beliefs
about their ability to engage in STEM thinking and foster STEM thinking in elementary
classrooms.

Method

Participants and study context. The study was conducted in the context of a larger project
that produced curricular materials designed to support teacher candidates’ learning about STEM
thinking in elementary mathematics classrooms. Participants were 18 PSTs enrolled in Problem
Solving and Reasoning for Teachers course. The vast majority were in their first year at the
university (12 PSTs), and the remaining participants were either in their second year (3 PSTs) or
in their third year (3 PSTs). For all PSTs, the course that provided the context for the study was
their first mathematics course in a 3-course mathematics sequence for elementary education
majors. The 75 minutes long class sessions met twice a week for 14 weeks. This paper reports
data collected during the first week of the course, during which PSTs engaged in a problem-
solving activity from the first module. The initial class activity asked PSTs to build the tallest
freestanding tower, given 20 pieces of uncooked spaghetti, clear tape, one yard of string,
scissors, and a measuring tape. By working in groups of three, PSTs had 18 minutes to
accomplish their task. Following the activity, the instructor introduced Polya’s (2004) problem-
solving framework as a general guide for organizing problem-solving activities and invited PSTs
to reflect on their problem-solving approaches, strategies, and thinking in the Spaghetti Tower
problem context. Individual students and groups shared how they made sense of the problem,
planned solution approaches, evaluated and tested their ideas and strategies, what knowledge
they drew upon, how they decided which materials to use, etc.

Data and Data Analysis. As part of their homework, following the Spaghetti Tower activity,
PSTs were asked to construct and explain a concept map that illustrates their interpretation of
ways of thinking that support solving problems across STEM disciplines (STEM thinking). We
analyzed concept maps and reflections on STEM thinking (n = 18) to answer RQ #1.

At the beginning of the semester, PSTs were also asked to respond to 28 (5-point) Likert-
scale survey questions designed to gain insights into their initial orientations for STEM thinking
(n = 18). Consistent with our conceptual framework, the survey questions addressed each of the
four predictive behavior categories described earlier. The survey questions were adapted from
the existing literature (e.g., Kurup et al., 2019; Wu et al., 2022) and included seven questions per
category. Included in Figure 1 are sample survey questions from each question category.

Emotional readiness questions (ER): Visions of importance questions (VI)

Q3: I enjoy thinking about becoming a teacher who QO: I think the focus on STEM thinking in elementary
takes on a STEM thinking approach in my lessons. mathematics classrooms can improve students’

employment competitiveness.
Q6: I feel it is important for a teacher to be able to

Joster STEM thinking in the elementary school Q10. I think the focus on STEM thinking in elementary

mathematics classroom. mathematics classrooms helps to cultivate students’
ability to solve real-life problems.

Perceptions of implementation questions (PI) Self-efficacy questions (SE)
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Q16: I do not think implementing STEM thinking in my
elementary school classroom will make me feel
stressed and anxious.

Q 19: If I have an option, I would like to teach in a
place where STEM thinking and STEM integration are
valued.

Q23: [ feel confident that I will be able to motivate
students who have a low interest in activities that
facilitate STEM thinking.

Q 28: I feel confident in my ability to understand and
apply concepts and methods from STEM subjects in
different problem situations.

Figure 1: Examples of survey questions from each behavioral category

Analysis of PSTs’ reflections and concept maps. We first utilized qualitative content
analysis methods and open coding (Saldana, 2016) to identify PSTs’ initial views about thinking
strategies that transcend STEM problem-solving. This data analysis stage comprised multiple
passes through the data, during which each response was carefully annotated and scored. The
identified concepts were then organized into broader categories that emerged from patterns in the
data set. While revising our coding, we kept track of concepts that did not fit the initial list of the
broader categories and further expanded our initial list of categories using patterns from the
analysis. Ultimately, concepts that PSTs connected to STEM problem-solving were organized
into five broader categories: (1) Analyzing, (2) Planning, (3) Executing, (4) Evaluating, and (5)
Other. The Other category included more general concepts identified across the data that did not
fit the first four categories. We then tabulated code frequencies to provide a collective summary
of concepts that our group of PSTs connected to STEM thinking in problem-solving.

We also applied a concept map scoring rubric adapted from (Watson et al., 2016) to provide
the overall picture of each PST’s views of STEM thinking. Each map was scored on (a) the
overall breadth of ideas related to STEM thinking in problem-solving included in the map, (b)
the level of interconnectedness of ideas, and (c) the overall map design. Each aspect was scored
on a 4-point scale (max. 12). The overall map score for each PST was computed as the average
across concept map score categories. The overall map score provided a measure of the strength
of each PSTs’ vision of STEM thinking in problem-solving. We then computed the average
concept map score for our PSTs cohort.

Analysis of survey responses. We first constructed survey scale sub-scores by combining
PSTs’ responses to questions from each group. For each PST, the survey sub-scores were defined
as a sum of the PST’s responses to all questions from a respective category (Sullivan & Artino,
2013; Norman, 2010). The sub-scores provided a measure of variables associated with each
category: ER, emotional readiness for STEM thinking; VI, visions of the importance of STEM
thinking; PI, perceptions on classroom implementation of STEM thinking; and SE, self-efficacy
with STEM thinking (scale 7-35). We then conducted a non-parametric Friedman test to examine
the distribution of median sub-scores and explore the extent to which each sub-score contributed
to our PSTs” STEM thinking orientation. We conducted a Wilcoxon post hoc test with a
Bonferroni adjustment for multiple comparisons to identify possible differences between sub-
score pairs. For each PST, we also examined the percentage of survey questions for which the
PST responded with a “strongly agree” score of 5 or “agree” (score of 4) to provide the overall
summary of STEM thinking orientation for PSTs in our cohort.

Results
RQ1. How do elementary PSTs understand habits of mind shared across STEM domains in
the context of problem-solving before explicit instruction about STEM thinking?
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Included in Table 1 is a summary of ideas identified across the analyzed concept maps and
accompanying explanations that our PSTs associated with STEM thinking.

Table 1 shows that, as a group, collectively, PSTs associated with STEM thinking a broad
range of habits of mind. About 60% of our PSTs considered some aspect of thinking related to
analyzing problem information as a common thinking habit across STEM problem-solving. Over
70% of our PSTs considered some aspect of thinking related to solution planning as common
habits across STEM problem-solving. As summarized in Table 1, half of our PSTs also thought
about STEM problem-solving in terms of creativity. Less often, PSTs in our cohort associated
STEM thinking in problem-solving with ways of thinking focused on executing or evaluating
problem-solving activity. While, as a group, our PSTs associated a broad range of concepts with
STEM thinking, the visions of STEM thinking shared by individual PSTs were more limited.
PSTs’ maps included between 1-12 concepts. The average map score for the group was 1.85, and
the distribution of individual overall map scores was as follows: 5 PSTs (scores between 3-4); 4
PSTs (scores between 2-3); 9 PSTs (scores between 1-2). Most of the analyzed concept maps had
limited breadths (number of concepts included) and minimal or no connections illustrating how
the included concepts support thinking across STEM problem-solving.

Table 1: PSTs’ collective views of STEM habits of mind in problem-solving
Category Included Concepts #PSTs (%)
Analyzing *Thinking about problem information, what is 11 (61%)

known, interpreting problem situation, thinking
about the knowledge needed to generate problem
solution, making a mental picture of the problem
and what is needed to address/solve, organizing

information

*Generating and asking questions, wondering about 6 (33%)

*Thinking about similarities and differences in 5 (27%)

problems and solutions, considering patterns,

*Making observations 3 (16%)
Planning *Anticipating how a solution could look like, 14 (77%)

brainstorming, thinking about/considering options,

having an open mind to possibilities, experimenting

with ideas

*Thinking out of the box, thinking 9 (50%)
creatively/flexibly, being open to risk-taking,

thinking in innovative ways

*Thinking about different tools 7 (39%)
Executing *Testing options and strategies, creating new 7 (39%)
strategies/prototypes/models
*Engaging with others in a team, 7 (39%)
communicating/explaining solutions
Evaluating *Reflecting on understanding, reflecting on what 5 (28%)

works and what does not, thinking about progress,
thinking about better worse ideas/solutions
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Other *Using logic and reasoning, thinking in systematic 6 (33%)
ways

Figure 2 shows an example of a concept map drawn by Alice (pseudonym). Alice’s map and
her explanation (Figure 1) illustrate that she might not perceive STEM thinking in terms of
habits of mind that connect the STEM disciplines in problem-solving. Like many other PSTs,
Alice considered a limited number of concepts overall and associated those concepts with
isolated disciplines. Her star-like map design and the explanation she provided for her map show
that she might think about STEM as a collection of isolated disciplines and not see the STEM
habits of mind as overarching ways of thinking applicable to problem-solving situations across
the STEM disciplines.

...Science allows to experiment and explore
outside world. Observe things around, ask
questions and wonder. Being pushed to

find reasoning. Technology allows to be
creative and independent when figuring

out on the computer. Engineering allows

I for communication and team work.
S Mathematics brings mental discipline. ...

Figure 2: An example of a concept map and an excerpt from the accompanying
explanation (Alice)

RQ 2. What is PSTs’ initial orientation for STEM thinking in elementary school mathematics
classrooms prior to the instruction about STEM thinking?

The analysis of survey responses revealed that, overall, our PSTs had positive STEM
thinking orientations. Eleven of the PSTs (61%) responded “strongly agree” or “agree” to more
than 50% of survey questions. The analysis of survey responses, disaggregated by question
group, showed that PSTs” STEM orientations differed along the four behavioral domains of
interest.

Figure 3 summarizes distributions of PSTs’ survey responses disaggregated by each of the
four behavioral domains of interest: Emotional readiness for STEM thinking. ER; Visions of the
importance of STEM thinking, VI; Perceptions of classroom implementation of STEM thinking,
PI; and Self-efficacy beliefs about one’s ability to engage in STEM thinking and foster STEM
thinking in elementary classrooms, SE.
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Figure 3: Distribution of median survey sub-scores

PST’s orientations for STEM thinking differed across the four behavioral domains: ER
(median = 29, range 18-35); VI (median = 28.5, range 21 - 35); PI (median = 19, range 14 - 26),
and SE (median = 25, range 11-35). Friedman’s test revealed statistically significant differences
across PSTs’ responses to these four groups of survey questions: ¥2(3, N =18) =33.16, p = 0.01.
Kendal’s coefficient of concordance of 0.614 indicated that the observed differences in PSTs’
orientations for STEM thinking were fairly large across the four domains.

We conducted follow-up comparisons using a Wilcoxon test and controlling for Type I error
across these comparisons at the 0.05 level using the LSD procedure. The median for perceptions
of implementation (PI) was significantly lower than the median for emotional readiness (ER), p
< 0.01, the median for visions of importance (VI), p < 0.01, and the median for self-efficacy
(SE), p <0.01. The median for self-efficacy (SE) was significantly lower when compared to the
median for emotional readiness (ER), p = 0.02, and the median for visions of importance (VI), p
=0.006.

Discussion

There is an increased focus on providing elementary school students with STEM experiences
and engaging them in STEM problem-solving practices and ways of thinking (Estapa & Tank,
2017). At the same time, little is known about ideas about STEM thinking that prospective
elementary school teachers bring to their preparation programs and what initial orientations for
STEM thinking they have. Below, we discuss the implications of our research for teacher
educators and future studies.

The analysis of concept maps our PSTs generated following the first class activity suggests
that PSTs come with some ideas about STEM ways of thinking in problem-solving contexts.
When considered as a group, our PSTs included many concepts and ideas about STEM thinking
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that were consistent with the existing literature (e.g., Bennett & Ruchti, 2014; Denick et al.,
2013, Kelley & Knowles, 2016; Roberts et al., 2022; Williams & Roth, 2019). For example,
thinking about structural similarities or differences across problems and solutions, anticipating
how a problem solution could look like, asking questions, and wondering. But when considered
individually, our PSTs shared more limited perspectives about STEM thinking in problem-
solving contexts. Their maps were not well developed and generally included a limited number
of concepts. In addition, the overall designs of their maps suggested that many of our PSTs might
not think about STEM thinking as a form of STEM integration. To prepare PSTs for meeting the
challenges of teaching mathematics in a way that supports STEM integration, teacher educators
need to engage PSTs in explicit discussions about shared ways of thinking and practices that
support STEM problem-solving. A possible entry point for supporting PSTs in developing views
of habits of mind that connect STEM disciplines in problem-solving contexts could be explicit
discussions about ways of thinking that contribute to problem analysis, planning, and execution
across STEM problem-solving situations.

Our study shows that elementary PSTs come to their preparation programs with many
positive orientations toward STEM thinking overall. About two-thirds of our participants
documented positive emotional readiness for STEM thinking, viewed STEM thinking as
important for students to develop, and many of the PSTs had positive self-efficacy beliefs about
their ability to engage in STEM thinking in problem-solving contexts.

Our analysis of survey responses also revealed that our PSTs were most concerned about
classroom implementation of STEM thinking. Their responses suggested that they appear to be
hesitant to think of themselves as future teachers who can foster STEM thinking in their
elementary school classrooms. This finding deserves special attention from teacher educators.
Our results show that even though PSTs might think highly about the importance of engaging
students in STEM thinking, they might not facilitate this engagement in their future classroom
practice without proper support.

In future research, we are interested in seeking more information about ways in which
prospective elementary school teachers make sense of STEM thinking in problem-solving
contexts as a way of integrating STEM domains. We are also interested in exploring how to best
support the development of PSTs’ knowledge about STEM thinking as a way of STEM
integration in problem-solving contexts and their dispositions for STEM thinking.
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In this report, we present cases where students constructed new quantities through operating on
quantities that does not fit the definitions of existing theories on quantitative operations. As a
result, we identified five quantitative operators—operators that can be used on single qualities in
order to transform the quantity to a new quantity—students used while constructing
mathematical models for real-world scenarios.

Keywords: Quantitative Reasoning, Mathematical Modeling, Operations on Quantities

Mathematical modeling is an important skill for students to learn. However, it is still a
challenging subject for students (Stillman et al., 2010; Jankvist & Niss, 2020). In an effort to
mitigate some of these challenges, recently, mathematical modeling scholars have adopted
theories from quantitative reasoning (Thompson, 1994; 2011) to operationalize mathematical
modeling competencies (e.g. Czoher et al., 2022; Larsen, 2013; Roan & Czocher, 2022). In this
adaptation, quantities are viewed as building blocks of a mathematical model (Larsen, 2013).
That is, a new quantity can be constructed through operating on one or more existing quantities.
As a result, a mathematical model maybe viewed as a network of such operations on quantities
(Thompson, 1990). If this perspective on mathematical models and mathematical modeling is to
be taken to investigate students’ mathematical modeling, then more work needs to be done on the
mechanisms involved in the conception of a new quantity through operating on existing quantity
or quantities. These mechanisms have been explicated by scholars as quantitative operations
(Thompson, 1990) and (co)variational reasoning (Carlson et al., 2002) through investigating,
predominantly, K-12 students’ mathematical reasonings. However, it is still not clear exactly
how theories from quantitative reasoning explain students’ reasoning as students mathematically
model dynamic, complex situations, especially those that require differential equations. For
example, students have constructed rate of change through operating on existing quantities in
ways that cannot be explained by the current theories of quantitative reasoning (Kularajan &
Czocher, 2022). In this report, we share examples from a study of students’ reasoning during
mathematical modeling that demonstrate the need for amending and extending theories of
quantitative reasoning to include quantitative operators.

Operation on Quantities

Quantities are conceptual entities that exist in the mind of an individual. Thompson (1994)
defined quantity as a mental construct consisting of three interdependent entities: an object, a
measurable attribute, and a quantification. Quantification involves conceiving a measurable
attribute of an object and a unit of measure and forming a proportional relationship between the
attribute’s measure and the unit of measure (Thompson, 2011). While objects are constructions
taken as given, the attributes that one conceives as measurable are imbued by the individual
conceiving them (Thompson, 1994). Thompson (1990) explains this phenomenon through the
ideas of motion and distance moved in an amount of time. For example, for a young child
watching a cat running to hunt a bird in the backyard, the cat probably is an object, and the
young child may have imbued the attribute motion to the running cat. However, for this young
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child, the running cat probably does not have the attribute distance moved in a corresponding
amount of time.

A relationship among measurable attributes is established through operating on quantities.
Thompson (1994) defines quantitative operation as the “mental operation by which one
conceives a new quantity in relation to one or more already-conceived quantities” (p.10). As a
result of a quantitative operation a quantitative relationship is created: the quantities operated
upon along with the quantitative operation are in relation to the result of operating (Thompson,
1994). In other words, a quantitative relationship is the “conception of three quantities, two of
which determine the third by a quantitative operation (Thompson, 1990, p. 12).” Examples of
quantitative operations include combining two quantities additively, comparing two quantities
additively, combining two quantities multiplicatively, comparing two quantities multiplicatively,
instantiate a rate, generalize a ratio, and composing two rates or ratios (Thompson, 1994). For
example, how many more cats visited my backyard on Saturday than on Sunday is a quantity that
we may construct by additively comparing the number of cats that visited my backyard on
Saturday and the number of cats that visited my backyard on Sunday. At the same time, we may
construct the total number of cat-bird interactions on Saturday during the time period 9am to
Spm by instantiating a rate of 10 cat-bird interactions per hour for 8 hours.

Although Thompson (1994) defined quantitative operations as the mental operations on “one
or more already-conceived quantities” to construct a new quantity, the definition of a quantitative
relationship (Thompson, 1990) and the examples given for quantitative operations (Thompson,
1994) emphasize operations on two quantities to conceive a third new quantity. Therefore, it is
not clear through the definition of quantitative operations (Thompson 1994a), quantitative
relationships (Thompson, 1990), and the examples of quantitative operations, whether mental
operations performed on one quantity to construct a new quantity fall within the scope of
Thompson’s quantitative operations. In addition, students may engage in operations on quantities
without clear evidence of the operations having a situationally relevant quantitative meaning, but
the resultant quantity has a quantitative meaning for the student. We refer to these borderline
instances as pseudo-quantitative operations and present examples in our findings.

Methods

Data for this report were drawn from a larger study of effective scaffolding for promoting
modeling competencies. We worked with 34 undergraduate STEM majors who were enrolled in
or had already taken differential equations at the time of the interviews. The students participated
in 10 hour-long task-based clinical interviews (Goldin, 2000) where they developed
mathematical models for real-world systems. We present examples, to illustrate our case, from
four students’ work—Ivory, Szeth, Pattern, and Winnow—on The Cats and Birds Task, The
Tropical Fish Task, The Pruning Task, and The Tuberculosis Task.

The Cats and Birds Task: Cats, our most popular pet, are becoming our most embattled. A
national debate has simmered since a 2013 study by the Smithsonian’s Migratory Bird Center
and the U.S. Fish and Wildlife Service concluded that cats kill up to 3.7 billion birds and
20.7 billion small mammals annually in the United States. The study blamed feral
“unowned” cats but noted that their domestic peers “still cause substantial wildlife
mortality.” In this problem, we will build a model (step-by-step) that predicts the species’
population dynamics, considering the interaction of the two species.
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The Tropical Fish Task: To regulate the pH balance in a 300L tropical fish tank, a buffering

agent is dissolved in water and the solution is pumped into the tank. The strength of the

—t
buffering solution varies according to 1 — ezo grams per liter. The buffering solution enters
the tank at a rate of 5 liters per minute. Create an expression that models how quickly the

amount of buffering agent in the tank is changing at any moment in time.

The Pruning Task: Imagine you have a hedge in your garden of some size, S, and you want it
to increase its size even more. You hire a gardener for some advice on growing this particular
plant. She advises you that the overall rate of growth will depend both on the extent of
pruning and on the regrowth rate, which is particular to the plant species and environmental
conditions. Both rates can be measured as a percentage of the size of the plant. The pruning
rate can be adjusted to result in a target overall growth rate. Can you derive a model for the
rate of change of the size of the plant?

The Tuberculosis Task: Tuberculosis (TB) is a serious infectious disease caused by a
bacterium that originated in cattle, but can affect all mammals including humans. It typically
affects the lungs, causing a general state of illness, coughing, and eventual death. Many
infected individuals carry a latent (inactive) infection for a long time before their lungs
succumb to the damage caused by the bacteria. The disease is highly contagious; it is spread
from person to person when an infected individual coughs, spits, speaks, or sneezes. Because
transmission rates are so high, TB outbreaks are frequently associated with poverty
conditions — locations where overcrowding is common. In these communities, spread (rate of
new infections) can be very high and decimate a community rapidly. Imagine a community
where sick and well members move about freely among one another. Create a mathematical
model for the rate that the disease will spread through the community.

The interviews were retrospectively analyzed to construct second-order accounts (Steffe &
Thompson, 2000) of students’ reasonings via inferences made from students’ observable
activities such as verbal descriptions, language, written work, discourse, and gestures. The
retrospective analysis consisted of multiple passes of the data to arrive at examples that illustrate
the different ways students engaged in Pseudo-Thompsonian Quantitative Operations. First, we
watched the videos in MAXQDA in chronological order and paraphrased each interview by
chunks. Next, we created accounts of students’ mathematics and the reasons they attributed to
their mathematics. Next, we reviewed the accounts and the videos at the same time and refined
our accounts by adding details using theories from quantitative reasoning. We credited a student
to have instantiated a quantity if we were able to infer from his reasonings that he had conceived
an object, attribute, and a measurement process for the attribute. As evidence of student to have
conceived a measurement process, we checked if at least one of the quantifications criteria was
met (see Czocher & Hardison, 2021). We used segments of transcripts, where the students
engaged in quantitative reasoning along with inscriptions and gestures as evidence for our
claims. Next, from these accounts, we selected instances where the students constructed a new
quantity by operating on a singular quantity or the operation itself (to construct the new quantity)
did not have clear evidence of a situationally relevant quantitative meaning. Finally, we refined
our second-order accounts by triangulating with utterance and gestures to support our claims.

Findings
We identified five examples where students engaged in pseudo-quantitative operations: (1)
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constructing rate of change through taking the derivative, (2) constructing total amount through
taking the integral, (3) constructing percent through considering parts of a whole, (4)
constructing amount through considering a proportion of the whole, and (5) constructing rate of
change through negation. We illustrated the first example in Kularajan & Czocher (2022), where
we showed two modelers taking the derivative to construct the rate of change of the bird
population due to predation by cats, in The Cats and Birds Task. In this report, we present
examples of (2)-(5).

Taking the Integral to Construct Total Amount

To illustrate this operation, we present Ivory’s work from The Tropical Fish Task. In the
Tropical Fish Task, Ivory was working towards constructing a model for the amount of buffering
agent in the tank at time t. To accomplish this goal, Ivory first constructed expression 1 to
represent the rate at which the amount of buffering agent enters the tank.

-t
mg(t) =5- (1 —ez) (D
In expression 1, Ivory defined mg(t) as the rate at which the amount of buffering agent
enters the tank at time t. After constructing expression 1, she stated that she would take the
integral of my(t) in order to construct an expression for the amount of buffering agent in the
tank at time t. Following this reasoning, Ivory constructed the expression below to represent the
amount of buffering agent inside the tank at time t.
M@®) = [mg(®) @)
The interviewer pointed out that the expression 2, as written, only accounts for the amount of
buffering agent that had entered the tank and ignores the amount of buffering agent that exits the
tank. In response, Ivory modified expression 2 to the one shown in Figure 1 while confidently
voicing that expression 2 “does work.” In Figure 1, Ivory defined m; (t) as the rate at which the
amount of buffering agent leaves the tank at time t. Through the expression in Figure 1, we infer
that Ivory constructed the amount of buffering agent in the tank at time t, by additively
comparing the amount of buffering agent that enters the tank and the amount of buffering agent
that leaves the tank.
149

() t/W\E (&) — ML (fv)

Figure 1: Ivory’s model for the amount of buffering agent in the tank at time ¢

We infer that Ivory first constructed the rates at which the amount of buffering agent enters
and leaves the tank to operate on them further through taking the integral to construct the amount
of buffering agent that enters the tank and the amount of buffering agent that leaves the tank,
respectively. Even though Ivory constructed a quantity that had situationally relevant meaning to
her (amount of buffering agent that enters (leaves) the tank at time t), the operation (taking the
integral) on the singular quantity (rate at which the amount of buffering agent enters (leaves) the
tank) did not have clear evidence of a situationally relevant quantitative meaning. For Ivory,
taking the integral was an operation that could be performed on the measurable attribute rate of
change to construct the amount.
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Envisioning Parts of the Whole to Construct Percent

To illustrate this operation, we present Szeth’s work from the Pruning task. Szeth first
constructed Expression 3 where Szeth defined R’ as the rate at which the plant would be
growing, P as the “pruning,” G’ as the “regrowth rate,” and E as “environmental conditions.”

Rr=P+G +E 3)
After Szeth constructed expression 3, he mathematized R’ and G’ as R’ = % and G' = 1%

because “both rates can be measured as a percentage of the size of the plant.” We interpret that
when Szeth read the task “the overall rate of growth [of the plant] will depend both on the extent
of pruning and on the regrowth rate...Both rates can be measured as a percentage of the size of
the plant,” he interpreted “both rates” to be the rate at which the plant is growing (R" ) and the
regrowth rate (G'), as oppose to regrowth rate and the extent of pruning. Therefore, Szeth

th
constructed R’ and G' as a percentage of the size of the plant, S, through considering ﬁ of the

th
size of the whole plant S. In this instance, for Szeth, considering Flo of the size of the plant S
was an operation on the quantity S in order to construct the new quantity “regrowth rate.” Szeth
said that he would substitute R" = % and G' = % in expression 3. Following this, the

conversation below was exchanged among us.

Interviewer: You have R’ = % and G’ = %. So, does that say that R" and G’ are both equal

to each other, or can they be different percentages?

Szeth: I guess it does say they're equal. I wouldn't take them to be equal. In real life
perspective, they are supposed to be different things.

Interviewer: And how would you modify it so that they're not equal?

Szeth: Think I would just get rid of this [scratches off R' = 15—0], because G' is already in an

equation that affects R'. So, if I put this, let's substitute that [pointing at G' = 1%] into

there [pointing at G' in R" = P + G' + E], then it's still true that this rate [referring to R’]
can be measured as a percentage of the size. It still be involved in this equation up here.

In the above excerpt, when the interviewer asked Szeth if R" and G’ are equal, Szeth
responded that “in real life...they are supposed to be different things.” By that, we interpret that
he meant R’ and G' measure different qualities of the plant, that may (or may not) have different
values. We take this as evidence that for Szeth considering a fraction of the size of the plant—in

th
particular considering ﬁ of S—was a mental operation performed on the size of the plant, to

construct the quantities that can be written as a percentage as a size of the plant. In response,
when we asked how he would modify R" and G’ such that they wouldn’t be equal, Szeth

indicated that he would substitute G' = Tog D expression 3 and modified expression 3 as below.

S'=P+—+E (4)
In expression 4, Szeth replaced R’ = S’ and indicated that S’ is implicitly written as a percentage
s

of the size of the plant because S’ is written in terms of G’ = Too"

In this example, we illustrated how Szeth constructed the quantity G'—‘regrowth rate”—through
operating on the quantity S—*“the size of the plant”—by considering a portion of S. In other
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words, we illustrated how Szeth constructed G’ by structurally conceiving percent through

th
imagining a part, in particular ﬁ , of a whole size of the plant.

Envisioning a Proportion of the Whole to Construct Amount

To illustrate this operation, we present Pattern’s work from the Cats and Birds task. In
The Cats and Birds Task, Pattern was working towards constructing a model for the number of
cat-bird encounters that result in a bird’s death. To accomplish this goal, Pattern first constructed
an expression to calculate the maximum number of cat-bird encounters at time t (Figure 2(a)).
Pattern was then asked to consider how he might modify his expression to account for the fact
that only a proportion of the maximum encounters are realized. In response to this, Pattern
elected to multiply the number of maximum number of cat-bird encounters at time t by some
percentage a, shown in Figure 2(b). Pattern explained his reasoning for multiplying by « as
follows.

Pattern: So this [referring to the expression in Figure 2(a)] is the total possible encounters
that could possibly happen if perfect conditions are met for each cat to meet each bird,
and then you're going to take a percentage of that total, and that would be your total.

In this instance, Pattern constructed the number of encounters that actually happened by
envisioning a proportion of the maximum number of cat-bird encounters at time t. Here, for
Pattern, o acted as a multiplicative scaling factor to quantify the proportion of cat-bird
interaction that were realized. There was no clear evidence that a had a situationally relevant
quantitative meaning for Pattern. That is, we were not able infer a situational referent (an object)
and the attribute @ was measuring.

Later, Pattern was asked to adapt his model (Figure 2(a)) to account for the fact that
sometimes a bird might escape. In response to the request, Pattern decided to multiply the
maximum number of cat-bird encounters at time t by some percentage [ as shown in Figure
1(c). Pattern explained his decision to multiply by S as follows.

Pattern: Because what I did here was I made it really easy for myself by creating this baseline
[referring to C(t) - B(t))]. And from here, you can... Since they're not giving it to me, |
can add whatever I want. So that gives me the freedom of being like, well, since you want
to know how many birds die, we can just create this percentage [referring to

(c@®-B®)- Bl

In this instance, Pattern constructed the number of encounters that result in a bird’s death by
taking a different proportion of the maximum number of cat-bird encounters at time t. Through
Pattern’s reasoning above, we interpret that, C(t) - B(t) acted as a “baseline” to consider
different proportions of the maximum number of cat-bird interactions—number of cat-bird
interactions that realized and number of cat-bird interactions that resulted in a dead bird. Pattern
accomplished this by using multiplicative scaling factors (e.g. % and %, respectively) that
reduced the size of the whole—maximum number of cat-bird interactions. In both of these
instances, Pattern constructed new quantities by considering a proportion of the “baseline” via
using multiplicative scaling factors . However, % and % were not associated with a
discernable or situationally relevant attribute.
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Figure 2: Pattern's models for (a) maximum number of cat-bird encounters, (b) number of

actual cat-bird encounters, (¢) number of cat-bird encounters that resulted in a birds death

Negating a Rate of Change to Construct a New Rate of Change

To illustrate this operation, we present Winnow’s work from The Tuberculosis Task.
Winnow constructed expression 5 as a model for the rate of change of the sick people with
respect to time.

das m
@ sOxHD H(t) ®)

In expression 5, Winnow defined H(t) as the number of healthy people at time t, S(t) as the
number of sick people at time t, and m as the number of contacts between healthy and sick
people that actually occur. When the interviewer asked for a model for the rate of change of the
healthy people with respect to time. Winnow noted immediately that the rate of change of the
healthy people “would be a negative number because the healthy people would be—the number
of healthy people would be decreasing.” Following this reasoning, Winnow constructed an initial
model for the rate of change of healthy people with respect to time as shown in expression 6.

dH

~— % S(t) (6)

dt S(t)XH(t)
After constructing expression 6, Winnow validated his model by checking against specific
conditions, S(t) = 10 and H(t) = 10. He was happy that substituting for S(t) = 10 and H(t) =
10 in expressions 5 and 6 yielded the same value, but the negation of one another, asserting that
the rate of change with respect to time for sick people would be the same value as the rate of
change with respect to time for healthy people.
To perturb Winnow, the Interviewer asked him to validate his model against the values

S(t) = 2 and H(t) = 10. Realizing that g and Z—Z would not yield the equal values, Winnow

modified his model for the rate of change of healthy people with respect to time to be Z—I: =——.

Winnow justified his modification to his model as “the number of new sick people and the
decrease in healthy people should be the same.” Through this we infer that winnow negated the
rate of change of sick people with respect to time to construct the rate of change of healthy
people with respect to time, because for Winnow, the number of new sick people, directly

corresponds to the decrease in the number of healthy people. However, there was no clear

w . dH ds . .
in — = — — represented a quantity, let alone —1, for Winnow.

evidence whether the " —
dt dt

Discussion

We introduced the construct pseudo-quantitative operations to account for five instances of
modelers constructing quantitative relationships without clear evidence that the operations
performed on quantities had situationally relevant quantitative meaning. In this report, we
presented four such instances. First, we illustrated how Ivory constructed the amount of
buffering agent entering and leaving the tank by taking the integral of the rate at which the
buffering agent enters the tank and the rate at which the buffering agent leaves the tank,
respectively. Next, we presented an example of how Szeth constructed the “regrowth rate” of the
plant by considering a fraction of the whole size of the plant, by using a multiplicative scaling
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factor of ﬁ. Third, we illustrated how Pattern constructed the number of birds that died due to

predation by cats by shrinking the total number of cat-bird interactions that realized through
using a multiplicative scaling factor a. Finally, we presented how Winnow considered the
negation of the rate of change of the sick people with respect to time in order to construct the rate
of change of healthy people with respect to time.

What do we mean by the operations on quantities having no situationally relevant
quantitative meaning? Recall the example where Winnow constructed the rate of change of

healthy people with respect to time by negating the rate of change of sick people with respect to

. . .. . dH as —1 healthy person
time. If Winnow had indicated that the — in — = — — represented ——2F —
dt dt 1 sick person

measurable attribute of the system of healthy and sick people—then we would have credited
Winnow to have engaged in the multiplicative combination of two quantities (number of people
removed from the healthy population for each person getting sick and the rate of change of the

sick people with respect to time), making it a quantitative operation as Thompson (1990) defined

. ) . dH ds as . oo dH
it. For Winnow, the — in Tl acted as an operator to transform ;> Inturn quantifying e

Similarly, when Pattern constructed the number of birds that died due to predation by cats by
shrinking the total number of cat-bird interactions that realized through using a multiplicative
scaling factor a, we were not able to infer whether for Pattern a carried any situationally relevant
quantitative meaning. We would have credited Pattern to have engaged in a quantitative
operation—instantiating a rate—between a and C(t) - B(t), if he had shown clear evidence that
a measured the number of cat-bird interactions that resulted in a dead bird for every 100 cat-bird
interactions, an attribute of the system of cats and birds. However, for Pattern a acted as an
operator that shrank the size the total number of possible cat-bird interaction to represent a

subset of that amount. Likewise, when Szeth constructed a percentage of the size of the plant as

S

Y the ??o acted as an operator to transform S in order quantify the “regrowth rate.” At the

same time, for Ivory, the integral acted as an operator to transform a rate to an amount; there was
no clear evidence whether the integral involved the coordination of two quantities.

Even though taking the derivative, integral, using a multiplicative scaling factor, and
negating in and of itself may not be credited as quantitative operations, they are operations that
the students performed on existing quantities to construct a new quantity. In addition, the
aforementioned operations on existing quantities are an image that is prevalent in undergraduate
learners and the result of that action is often useful for mathematical modeling. Adhering to the
definitions of quantitative operations, as Thompson defined it, instances such as illustrated in this
report will be missed. Therefore, to investigate students’ quantitative reasoning in mathematical
modeling, we propose to extend the definition of operations on quantities to include operations
on singular quantities to construct new quantities through the aid of quantitative operators. We

) ) o d 1
identified five such quantitative operators: d—:, f moaXm X0, and —m. These

quantitative operators can be viewed as functions that take in a quantity and output a new
quantity, where a quantity itself can be operationalized as a function consisting of three variables
(object, attribute, and quantification). The inclusion of these quantitative operators allows us to
make better sense of the mechanisms involved in the construction of new quantities in students’
mathematical modeling. Our findings reaffirm that quantitative reasoning is essential to
mathematical modeling, but also caution that not every parameter, variable, or operation in the
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student’s work needs to signify a situational referent in order for their modeling activities to be
productive.
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SECONDARY TEACHERS’ CONCEPTIONALIZATIONS OF THE RELATIONSHIPS
BEWEEN MATHEMATICAL MODELING AND PROBLEM SOLVING
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The purpose of this study is to gain understanding of how secondary teachers conceptualize the
relationships between mathematical modeling and problem solving. Eight secondary teachers
participated in semi-structured, think-aloud individual interviews. Some conceptualizations
include (a) modeling and problem solving are two distinct processes, (b) modeling is a subset of,
or a tool for, problem solving; (c) the two processes share similar characteristics such as a real-
life scenario but are different in terms of whether a single correct answer exists, (d) the two
processes are inseparable, completely enmeshed in each other, and co-dependent; and (e)
problem solving is a reduced process of modeling. Teachers’ conceptualizations are related to
their preferred instructional sequence and the types of problems or activities they d rather use.

Keywords: Modeling, Problem Solving, Teacher Knowledge, Teacher Educators

Mathematical modeling, or responding to real-world problems mathematically, meets the
needs and interests of 21st century learners by offering abundant opportunities for developing
critical skills such as adaptability, systems thinking, nonroutine problem solving, and complex
communication skills (Bybee, 2010). As an example, Model Eliciting Activities (MEAs) are
open-ended and context-rich activities that challenge learners to generate models or systems as
useful solutions for complex real-world situations (Aguilar, 2021; Lesh & Doerr, 2003). Lesh
and colleagues (e.g., Lesh & Harel, 2003; Lesh & Lehrer, 2003) implemented MEAs with
students who were enrolled in remedial mathematics and were from poor, large urban school
districts. Learners in these studies were competent in developing conceptual tools as they
simultaneously built “communities of mind” and “the thinking of teams” (p.187). Despite the
potential of mathematical modeling for actively engaging and motivating diverse learners, there
is evidence that teaching of mathematical modeling is limited in P-12 classrooms (Doerr, 2007,
Zbiek, 2016; Zbiek & Conner, 2006).

Purposes of Study

It has been difficult for the mathematical modeling community to come to an agreement on

(a) a unified definition of mathematical modeling, (b) the characterization of the modeling
process, or (c) how modeling is differentiated from traditional application problems. This lack of
agreement has become one of the major challenges for teaching, learning, and research of
modeling in the context of P-12 mathematics education (Cai et al., 2014).

The boundary between problem solving and modeling has never been clear. Some
researchers (e.g., Blum & Niss, 1991; Lesh & Doerr, 2003) emphasize the differences between
mathematical modeling and traditional problem solving and avoid using the term “problem
solving” without qualification. These researchers often point out that the facts and rules in
traditional application problems are restricted artificially so that the problems can be solved with
readily available algorithms or basic operations. Therefore, traditional application problems are
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also called “dressed up” word problems (Blum & Niss, 1991) or “pre-modeled problems”
(Burkhardt & Pollak, 2006). While traditional problem solving often requires one cycle of
straightforward interpretation of a real-world scenario, mathematical modeling requires multiple
cycles of adapting, modifying, and refining ideas (Lesh & Harel, 2003).

Other researchers such as Selden et al. (1999) call all non-routine or novel problems that
require higher-order reasoning simply “problems,” and routine problems that can be solved using
clear procedures “exercises”. In their conception of problems, mathematical modeling is problem
solving, whereas traditional problem solving is just an exercise.

Although we have some knowledge of how researchers perceive the relationship between
mathematical modeling and problem solving, limited studies focused on teachers’ perspectives
and how their perspectives might help explain their instructional practices and decisions. The
purpose of this study is to gain understanding of teachers’ perspectives of the relationship
between mathematical modeling and problem solving. Two research questions guide this study:

(1) How do secondary teachers conceptualize the relationships between mathematical
modeling and problem solving? (2) How are teachers’ conceptualizations related to their
perceptions of teaching mathematical modeling in mathematics classrooms?

Perspectives

Doerr and English (2003) define modeling as a process to develop “systems of elements,
operations, relationships, and rules that can be used to describe, explain, or predict the behaviour
of some other familiar system” (p. 112). Several common and essential features of the modeling
process include (a) modeling is a cyclic process that usually requires multiple iterations, (b) the
process typically begins with a real situation, (¢) modeling typically ends with the report of a
successful result or the decision to revise the initial model to achieve a better result, and (d) the
entire modeling process contains several common steps such as formulation, computation,
interpretation, and validation (Blum & Leif3, 2007; Blum & Niss, 1991; Galbraith & Stillman,
2006; Pollak, 2003; Zbiek & Conner, 2006). Early depictions of modeling are often rooted in
applied mathematics and do not differentiate between the modeling process and the problem-
solving process (Burkhardt & Pollak, 2006).

However, more recent characterizations of the modeling process tend to point out the various
distinctions between traditional application problems and modeling. Not all applied
mathematical problem solving qualifies as modeling. This is because traditional problem solving
usually takes a single cycle from givens to goals; whereas modeling tasks involve iterative cycles
during which the emerging/initial model is subject to refinement, revision, adaptation, and
modification (Dossey, 2010; Lesh & Doerr, 2003; Lesh & Harel, 2003; Lesh & Yoon, 2007;
Lesh & Zawojewki, 2007). Solving traditional application problems may also be considered a
reduced process of the modeling cycle (Blum & Niss, 1991; Lesh & Doerr, 2003; Lesh & Yoon,
2007). In MEAs, making symbolic descriptions of meaningful real problem situations, or
mathematization, is at the heart of the tasks. However, in traditional application problems,
students make meaning of symbolically described situations (Lesh & Doerr, 2003; Lesh & Harel,
2003). In other words, traditional application problems have already mathematized the situations
for students.

In addition, traditional application problems and modeling often lead to very different
products or outputs. Many traditional problems typically require a short answer in the form of a
sentence or a number. On the other hand, for modeling tasks, students create conceptual tools
and artifacts such as new techniques, examples, systems, approximations, and algorithms.

Lamberg, T., & Moss, D. (2023). Proceedings of the forty-fifth annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education (Vol. 1). University of Nevada, Reno.

196



(Dossey, 2010; Lesh & Doerr, 2003; Lesh & Harel, 2003; Pollak, 2003)The criteria for judging
the quality of modeling and traditional problem solving tend to be different as well. The solution
to an application problem is typically judged based on correctness.

The criteria for judging a mathematical model may include reusability, modifiability, and
shareability, as well as model’s generalizability beyond the specific problem situation (Doerr,
2016; Lesh & Harel, 2003; Lesh & Yoon, 2007; Zawojewski, 2013). Lesh and Zawojewki (2007)
have pointed out the “end in view” nature of MEAs, where models are judged based on the
expressed needs of the client given at the beginning of the modeling task.

One subtle difference between mathematical modeling and solving traditional application
problems is reflected in the relation between the modeling process and the world outside of
mathematics. A modeling task arises from the real world. Modeling is a process to mathematize
the real world, i.e., bringing the real world into contact with mathematics. On the other hand, a
traditional problem is a process of realizing mathematics, i.e., given the mathematical knowledge
and problem-solving strategies and heuristics, apply them to solve real world problems (Lesh &
Doerr, 2003; Lesh & Lehrer, 2003). The best characterization of this difference is given by
Dossey (2010), who states:

Modeling involves standing outside mathematics and looking into mathematics to find things
that conceivably might help resolve the driving question. Applications, on the other hand, come
from standing inside mathematics and noting that particular pieces can be used to better
understand or highlight objects outside of mathematics. (p. 88)

Finally, Models and Modeling Perspectives (MMP) proposed by Lesh and colleagues (e.g.,
Lesh & Doerr, 2003; Lesh & Harel, 2003; Lesh & Zawojewki, 2007) is in direct contrast with the
traditional view of the relationships between modeling, applied problem solving, and traditional
problem solving. In the traditional view, applied problem solving is treated as a subset or special
case of traditional problem solving. Within this view, modeling is a type of applied problem
solving. In contrast, MMP treats traditional problem solving as a subset or a special case of
“applied problem solving as modeling activities” (Lesh & Yoon, 2007, p.783).

Methods
Participants and Contexts

Participants included eight secondary (6-12) math teachers (Alexis, Alicia, Ann, Brian, Carrie,
Eric, Katherine, Sarah, pseudonyms) who taught at eight different schools, and their ages ranged
from mid-20s to late-40s. Prior to this study, the eight teachers were enrolled in a two-year
secondary teacher preparation program (6-12) at a public university located in the Southeastern
United States. The program was a non-traditional program designed for those who have a
bachelor’s degree in a content area. Half of the eight teachers held a bachelor’s degree in an
economics or business field: Katherine (Business Management), Ann (Accounting), Sarah
(Finance), and Eric (Econometrics). Brian held a bachelor’s degree in Aeronautics. The rest of the
participants (Alicia, Alexis, and Carrie) majored in mathematics.

Prior to this study, the eight teachers participated in another study (about 1.5 years before this
study) during which they had developed conceptual understanding of (a) the meanings of
mathematical modeling, (b) the modeling cycle, and (c¢) criteria for judging the products of
mathematical modeling. The eight teachers also solved one MEA and analyzed two sets of MEAs
together during the earlier study. This study engaged the teachers in reasoning about the
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relationships between problem solving and mathematical modeling, an aspect that was treated
briefly and given only tentative interpretations in the earlier study.

Data Collection

Alexander and Dochy’s (1995) graphic catalyst (displayed in Figure 1) was adapted to elicit
the eight teachers’ conceptualizations of the relationship between mathematical modeling and
problem solving. Teachers were asked to indicate which option best represented their
understanding of the relationship between modeling and problem solving. In addition, teachers
were free to create their own model of this relationship as an alternative. Alexander and Dochy’s
categories: separate, overlapping, inseparable, knowledge subsumption, and belief subsumption,
along with their meanings, were borrowed directly for this study except that the last two
categories were changed to modeling subsumption and problem-solving subsumption according
to the purpose of this study.

The meanings of these categories were presented to the teachers using the exact words from
Alexander and Dochy (1995): (a) Separate (Option 1) shows modeling and problem solving are
“two distinct and unrelated entities;” (b) Modeling subsumption (Option 2) suggests that
modeling is a component of problem solving; (c) Problem-solving subsumption (Option 3) shows
modeling “as embedded within” problem solving; (d) Inseparable (Option 4) means modeling
and problem solving are “completely overlapping and indistinguishable constructs;” and finally,

(e) Overlapping (Option 5) indicates “some dimensions of modeling are integrated with
problem solving, still allowing for some aspects of each construct to remain separate and
distinct” (p. 417, 419). “Problem solving” was intentionally left ambiguous or unqualified to
elicit potentially diverse responses from the teachers. In addition, although each of the graphical
representations in Figure 1 and their associated meanings were provided at the beginning of the
study, teachers were also free to give their own interpretations.

Each of the eight teachers participated in a semi-structured think-aloud individual interview.
Think-aloud interviews are likely to unveil underlying mental processes and knowledge
structures, and therefore, are appropriate for a study that seeks to understand teachers’ mental
representations of the relationship between modeling and problem solving (Kelly & Lesh, 2000).
Open-ended and broad prompts were used to elicit a wide range of productive thinking as
naturally as possible. Each interview lasted for about an hour.
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Figure 1: Graphic Representations of Various Relationships Between Modeling and
Problem Solving
At the beginning of the interview, each teacher was given (a) Figure 1 and (b) transcript of
their verbal response to the question: “What does mathematical modeling mean to you?” (At the
end of the earlier study mentioned above). Each teacher was asked to choose one representation

I
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or draw an alternative one that best captured their understanding of the relationship based on
their response to the question above, and then explain and justify their choice. Each teacher was
also given the chance to change their choice based on their thinking at the time of the interview,
an opportunity that none of the eight teachers took. In addition, each teacher was asked to
explain how their choice might influence their perceptions of teaching mathematical modeling in
6-12 mathematics classrooms.

Data Analysis

A hybrid approach of inductive (emergent) and deductive (theoretically guided) coding
(Fereday & Muir-Cochrane, 2006) was used to analyze the data. Alexander and Dochy’s (1995)
graphic representations and the corresponding categories existed a priori and were applied to the
data directly as provisional codes. However, codes that emerged during the analysis were also
allowed to avoid premature closure, and to uncover new ideas (Saldafia, 2016; Strauss & Corbin,
1990). Several rounds of coding were performed on the data. The first round of coding focused
on identifying and labeling excerpts of interest. The second round of coding refined the initial
codes as guided by the research questions. Codes that were considered as trivial or less relevant
to the study were removed. As analysis continued, codes that shared similar attributes were
grouped together into categories or themes during the third round of coding. Finally, a fourth
round of coding was conducted to make appropriate modifications to achieve a better fit between
the final codes and the data and to make sure that the coding categories had stabilized.

Results
Teachers’ Conceptualizations of the Relationship between Modeling and Problem Solving

Each of the final coding categories and sample responses from the eight teachers are
presented in Table 1. Alexis was the only teacher who chose Option 1. She was hesitant to claim
that the two processes are completely unrelated, but she was certain that they are distinct from
each other due to the very different natures of the two processes. Although problem solving has
an obvious path; with modeling, the learner needs to find the “entire mathematics approach.”

Brian and Alicia both chose option 2. For both teachers, problem solving is the bigger
purpose. Modeling also serves the purpose of solving problems. When asked how traditional
application problems are different than MEAs, Brian explained that traditional application
problems are “very basic,” then he shared the example of giving students a constant speed of a
train and a travel distance, and ask them: “How long is it going to take to go this far?”” On the
other hand, Brian viewed MEAs as more complicated: “take a step outside of this [real-life
scenario], and we can start applying some math concepts to it, then step back into our real-world
scenario” to find out whether a solution “fits the bill.” Alicia described MEAs as requiring “more
depth of knowledge,” and “really, really difficult, like having them [students] think outside of the
box.” For both teachers, the larger box contains all kinds of problem solving, including context-
free problems, such as solving or manipulating an equation. Applied problem solving that
involves real-world contexts belongs to the box in the middle. MEAs or other advanced
modeling activities also belong to the box in the middle and constitute a more difficult subset
[not shown on the figure] of all applied problem solving.

Ann was the only teacher who chose Option 5. She explained that the part that belongs to
only problem solving but not modeling represents solving “cut and dry equations” using a given
formula [i.e., context-free problems]. The part that belongs to modeling but not problem solving
are problems or activities like MEAs that are “open-ended” and “extensive,” and may not always
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lead to an accurate answer. The part where modeling and problem-solving intersect must
“making sense of real-world situations” and require interpretation before coming up with a
solution, but still must have an “accurate” answer or “one true answer.”

Sarah chose Option 3. Carrie was debating between Option 3 and Option 4. Both teachers
believed that problem solving in a mathematics classroom must involve mathematical symbols or
expressions; and therefore, only after a real-world situation is mathematized, problem solving
begins. The steps before mathematization such as interpreting and visually representing a
scenario are part of modeling or preparation for problem solving but not problem solving.

Katherine and Eric chose Option 4 as their best representation of the relationship between
modeling and problem solving. These teachers emphasized the cyclic and iterative nature of the
modeling process and how problem solving, and modeling are integrated into the same process
and are mutually dependent on each other. Carrie (who chose both Option 3 and Option 4) also
pointed out even “simple little problem” like 3 + 2 can be a mathematical representation of a
real-world scenario and therefore, math is all about describing the real world. Eric shared a
similar view and argued that addition and subtraction in early grades, as well as using
multivariate functions to represent and predict an economic phenomenon in econometrics are all
mathematical modeling except for their “varying degrees of difficulty and fluidity.”

Table 1: Sample Responses for Each of the Coding Categories

Coding Categories Sample Responses

Straightforward  Classroom-based problems, I’m literally only looking for a solution. I
versus open-ended  am not really looking for the in between...simply do what the formula
is asking me to do...whereas with modeling...still given a given, but

you have to produce the goal, and you have to produce everything in

between, like your approach to how to get your solution. (Alexis,

Option 1)
Modeling as a tool for Modeling can be used for problem solving. (Brian, Option 2)
problem solving The whole purpose of modeling is to assist with problem solving...

Problem solving would be the bigger picture. (Alicia, Option 2)

Overlappingbut  The problem solving [part], I feel like is just like handing them an
different equation to solve, that's problem, and it's got to be right or wrong
answer... the modeling part I kind of...realized that's even more real-
world type situations in context ... A lot of times, one student may
interpret it differently than another student. They're not necessarily
always getting the same answer...Modeling is not always accurate, |
guess, because you can get, you know, different opinions from groups
or students...modeling could help solve the problem, so maybe that
would be the middle...[but] also has to be accurate. (Ann, Option 5)

Problem solving  Problem solving is embedded within modeling. (Sarah, Option 3)
embedded in modeling There’s more to modeling the real world than just problem solving.
(Carrie, Option 3 & 4)
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Modeling and
problem solving as an
integrated process

Can’t have one without the other...Modeling is just like math in
general...used to describe the real world...you can’t have modeling
without math, and you can’t really have math without modeling.
(Carrie, Option 3 & 4)

Enmeshed with each other. (Katherine, Option 4)

They're one in the same...varying degrees of difficulty and fluidity.
(Eric, Option 4)

Teaching Mathematical Modeling in Mathematics Classrooms

In response to the question: “How do you think your conceptualization of the relationship
between modeling and problem solving influences your decisions regarding teaching
mathematical modeling in mathematics classrooms,” the eight teachers focused on two
dimensions of instruction: instructional sequence and problem/activity types (see Figure 2).
Among all the teachers, Alexis was the mo