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Understanding how young learners come to construct viable mathematical arguments about 
general claims is a critical objective in early algebra research. The study reported here 
characterizes empirically developed progressions in Grades K–1 students’ thinking about 
arguments concerning sums of evens and odds. Data are drawn from classroom lessons of an 
early algebra instructional sequence and interviews conducted at four timepoints during the 
implementation of the sequence. Overall, students transitioned from unfamiliarity with the 
concepts of even or odd prior to instruction in Kindergarten to making valid parity arguments at 
the conclusion of instruction in Grade 1. Results of this study align with other research that 
shows young learners can develop viable arguments to justify mathematical generalizations. 
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Purpose of the Study 
Research increasingly supports that engaging in proving in developmentally appropriate 

ways in the elementary grades can deepen students’ conceptual understanding of mathematics as 
a sense-making activity (Carpenter et al., 2003; Stylianides & Ball, 2008; Van Ness & Maher, 
2019). Moreover, when elementary students are supported through instruction, they can learn to 
use deductive—rather than empirical—reasoning to build mathematical arguments (Stylianides 
& Stylianides, 2008). However, intervention studies are needed to develop a “fine-grained 
conceptualization” (Stylianides, 2007b, p. 18) of appropriate forms of proving in early grades 
and to understand how curriculum can support students’ construction of viable arguments.  

The study reported here responds to this call by identifying learning progressions (Clements 
& Sarama, 2004) in how children construct mathematical arguments as they are taught an early 
algebra instructional sequence in Kindergarten (hereafter, Grade K) and Grade 1. The study 
focuses on the following question: What levels of thinking do Grades K–1 students exhibit in 
their understanding of arguments about sums of evens and odds as they advance through an 
early algebra instructional sequence?  

Perspective 
The study reported here is part of a suite of projects in which we use a learning progressions 

approach (Clements & Sarama, 2004) to build an effective early algebra intervention across 
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Grades K–5 and to identify progressions in students’ thinking as they advance through the 
instructional sequence that forms the intervention. We organize early algebra around the 
practices of generalizing, representing, justifying, and reasoning with mathematical structure and 
relationships (Blanton et al., 2018). The focus on children’s mathematical arguments here is a 
natural part of our early algebra research. In particular, in this study we are interested in 
justifying as a practice of building arguments for claims about general relationships, which can 
elevate the role of argumentation in the elementary grades. 

Methods 
Our research design involved the use of classroom teaching experiments (CTEs) with 

individual interviews (Cobb & Steffe, 1983) to identify progressions in children’s thinking. 
Because CTEs incorporate instructional design with the ongoing analysis of classroom data, they 
serve as an important mechanism for developing empirically based conjectures about 
progressions in thinking as students advance through an instructional sequence (Clements et al., 
2007; Lesh & Lehrer, 2000).  

The K–1 early algebra instructional sequence in the study reported here consisted of eighteen 
30-minute lessons for each grade. A subset of lessons within the instructional sequence (3 in 
Grade K, 2 in Grade 1) addressed the development of parity arguments. Lessons initially focused 
on preliminary concepts such as “pair,” “even number,” and “odd number,” then transitioned to 
the development of representation-based arguments (Schifter, 2009) about the parity of the sum 
of two even numbers, two odd numbers, and then an even and an odd number. Additional lessons 
(8 in Grade K, 3 in Grade 1) reviewed parity concepts in lesson warm-ups. 
Participants 

Two Grade K classrooms (Year 1) and two Grade 1 classrooms (Year 2) in one school in the 
Northeastern US participated in the study. Effort was made to keep the initial Grade K cohort 
intact in Grade 1. Table 1 shows the number of participants by grade level. The school district’s 
demographics consisted of 10% students of color and 16% students categorized as low SES.   

Table 1. Participants by Grade Level  

Grade Total No. of 
Participants 

Participated in 
Grade K only 

Participated in 
Grade 1 only 

Participated in 
Grades K–1 

K 48 22  26 
1 48  22 26 

 
Data Collection 

Grade-level early algebra lessons were taught approximately once per week during each 
school year by a member of the research team. All lessons were videotaped, and lessons or 
portions of lessons (e.g., lesson warm-ups) related to even and odd concepts were identified for 
analysis. A subset of students was selected at each grade for semi-structured, 30-minute, 
individual pre/post interviews. Classroom teachers helped identify students who fit a diverse 
academic range. An early math diagnostic assessment (EMDATM) was administered to students at 
the beginning of Grade K to further ensure academic diversity. In all, 17 students in Grades K–1 
participated in video-taped interviews about parity concepts. Twenty-four full or partial 
classroom lessons and 40 interviews were analyzed.  
Data Analysis 

We used a grounded theory approach (Strauss & Corbin, 1990) that focused on the 
identification of progressions in students’ thinking around the concepts of pair, parity of 



numbers, and arguments about parity of sums. Interview data were analyzed independently by 
three team members to identify preliminary codes (levels of thinking) for our core concepts. 
Theoretical memos (Glaser, 1998) were constructed to provide supporting evidence for the 
codes, or levels. Agreement among coders was determined by comparing coding decisions and 
negotiating any discrepancies around early codes/levels. New codes were identified as warranted 
and data were re-analyzed until subsequent coding did not change our emerging models. Video 
of classroom data were then analyzed for confirming or disconfirming evidence of emerging 
codes (levels). The levels-as-coding schemes were then organized based on our empirical 
findings vis-à-vis canonical understandings of the mathematics attempted (Battista, 2004). 

Results 
In Table 2, we report our findings on levels in students’ thinking about the most complex 

interview task—parity arguments about the sum of arbitrary even and/or odd numbers. We then 
share some observations from our study. 
 

Table 2. Parity Arguments for the Sum of Two Arbitrary Even/Odd Numbers 
Non-Structural Reasoning 

Level 1 
Empirical 

Students suggest a strategy 
that uses or implies the use 
of testing cases to determine 
parity for an arbitrary sum. 

Student provides an argument based on empirical 
experience (counting): “If you add even and odd it’s 
usually even because every time I count that, it’s 
usually even. One time it wasn’t.” 

Structural Reasoning 
Level 2 
Generic 
Number 

Students use a pairs strategy 
applied to generic numbers 
to reason about parity of the 
sum. A pairs strategy 
involved finding if a number 
represented through cubes 
(for example) could be 
separated into pairs without 
a cube left over.  

When asked if the sum of “a really big odd number” 
and a “really big even number” is even or odd, a 
student gave the following response: 
 
“Odd, because let’s say you did it with [12 and 15]. 
Fifteen has a leftover and 12 doesn’t have a leftover, 
so it can’t combine.” He indicates that by “can’t 
combine” he means there would still be a leftover. 

Level 3 
Arbitrary 
Number 
 

Without referencing any 
numbers, students use a 
pairs strategy to reason 
about parity of the sum. 

When asked to explain why any even plus any odd is 
odd, a student argues, “Because an odd number has a 
leftover and an even number doesn’t have a leftover 
and if you combine an odd number with an even 
number, it equals an odd number,” confirming that 
there would still be a leftover. 

 
There are important similarities between the levels of thinking students exhibited and 

taxonomies reported elsewhere. Empirical reasoning (Level 1), by which students examined 
randomly chosen cases to establish a conjecture’s truth, reflects naïve empiricism (Balacheff, 
1988) or an empirical (inductive) proof scheme (Harel & Sowder, 2007). In the example 
provided, the student reflects on prior experiences in “counting” (adding) particular even and odd 
numbers as the basis of her argument. Schifter (2009) similarly characterizes this type of 
argument as inference from instances in her analysis of Grade 3 students’ parity arguments. We 
see Level 2 as consistent with the notion of generic example (Balacheff, 1988) or deductive 



(transformational) proof scheme (Harel & Sowder, 1998) because of the use of a specific 
number as a generic placeholder for a general number in students’ arguments. Schifter (2009) 
refers to this form of argument as reasoning from representation or story context. Finally, Level 
3 reflects the construct of thought experiment (Balacheff, 1988), where actions are dissociated 
from specific examples. With young children, these actions are based on “the language of the 
everyday (Balacheff, 1988, p. 228)” and not the transformation of formal symbolic expressions. 
Level 3 thinking seems to also reflect the emergence of structure in thought (Harel & Soto, 
2017) in that students were able to present a sequence of arguments without the need to 
manipulate physical, visual, or symbolic representations. Our work extends that reported 
elsewhere in that our focus is on the genesis of these ideas at the start of formal schooling 
(Grades K–1). Identifying similarities in students’ thinking across K–16 grade domains can help 
us better understand how to structure curriculum that connects and builds ideas over time. 

We found students’ ability to develop representation-based parity arguments (rather than 
empirical arguments) to be surprisingly robust. For example, at pre-interview Grade K students 
were unfamiliar with the concepts of pair and even and odd numbers, but by Grade K post-
interview all students were able to define even and odd using a pairs strategy and many students 
routinely used a pairs strategy to reason about the parity of numbers represented in concrete, 
visual, and abstract forms. Moreover, although Grade K students were not asked to build 
representation-based parity arguments at pre-interview (given that they were unfamiliar with the 
concepts “even” and “odd”), by Grade 1 pre-interview no students used an empirical argument to 
justify why the sum of an even and an odd would be odd. Six out of 10 students were able to 
correctly use a structural argument involving a pairs strategy (three students could not build 
either type of argument; one student was not asked this question).  

Although these students were capable of producing structural arguments (Levels 2–3), we do 
not claim that they yet appreciated the power of the generality of their arguments, nor did they 
yet understand the logical proof structure underlying their arguments. In truth, older students 
struggle with this as well (Stylianou et al., 2015). At this early, pre-symbolic point in their 
understanding, students’ thinking was more intuitive than anticipatory or intentional. However, a 
goal of early algebra is to help students build on these intuitive ways of thinking so that their 
understanding can deepen over time. For young children to engage in Level 3 thinking, even in 
informal, non-symbolic ways, is a critical starting point.   

Conclusion 
The Common Core State Standards (NGA Center & CCSSO, 2010) maintains that 

elementary students should be able to “construct viable arguments and critique the reasoning of 
others.” There is a vital need, however, for research-based, curricular pathways by which this 
goal can be met (Bieda et al., 2014), as well as studies that detail how young learners’ 
argumentation progresses as they advance through such pathways (Stylianides, 2007a). The 
study reported here is intended to help address this by characterizing the emergence of students’ 
understanding of viable parity arguments from an early algebra instructional sequence 
Understanding how young leaners develop robust ways of thinking and arguing mathematically 
can not only help avoid situations where students develop “a conception of proof in the 
elementary school that has to be undone or unlearned in high school (p. 4, Stylianides, 2007b),” 
but can also help realize the ambitious learning standards advocated in current reforms. 
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