

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

89

Games as a Mode of Instruction in Object-Oriented Concepts

Krish Pillai

Lycoming College, United States, https://orcid.org/0000-0003-0452-4787

Marcia Lovas

Quinnipiac University, United States, https://orcid.org/0009-0003-6749-2257

Abstract: A typical first computer science course (CS1) introduces the student to coding conventions,

variables, methods, control structures, conditionals, and the semantics of classes and objects. Advanced

concepts of inheritance, polymorphism, abstract classes, interfaces, and their use in the design process, are

covered in a second-level course (CS2). CS2 concepts are abstract, requiring reinforcement through

considerable practice. It has been observed that traditional CS2 projects fail to capture the imagination and

enthusiasm of students and are seldom useful past the end of the semester, yet interesting projects drawn from

the natural sciences may be either too complex or too algorithmic to facilitate the required design experience.

Game programming, in contrast, is purpose-driven and has great appeal. Unfortunately, popular game engines

-in functionality, relegating the user to writing glue

logic in a scripting language. What is needed instead is a challenge that will provide transferable skills for

solving generic problems using a statically typed language. The authors of this paper describe a Java game

engine and lesson plan they developed for one semester of object-oriented instruction for students who have

completed CS2. Early anecdotal results demonstrate that students find the approach challenging, informative,

and incentivizing.

Keywords: Graphics, 2D Gaming, Object-oriented Programming, Inheritance, Polymorphism, Event-driven

programming, Sprites, Animation, Java.

Citation: Pillai, K. & Lovas, M. (2023). Games as a Mode of Instruction in Object-Oriented Concepts. In M.

Shelley, V. Akerson, & M. Unal (Eds.), Proceedings of IConSES 2023-- International Conference on Social and

Education Sciences (pp. 89-108), Las Vegas, NV, USA. ISTES Organization

Introduction

Object-oriented decomposition is as much an art as it is a science. A decomposition paradigm is an effective

strategy for organizing a program in terms of its structure and its functionality. A problem dissected the wrong

way can result in an implementation that is needlessly complex and closed-ended. The abstract nature of the

design process, and the lack of compiler assistance in matters of design, make it an engineering problem that is

hard to learn and arguably complex to teach. The fact that there are multiple structural and behavioral solutions

to the same problem makes it imperative that the student is trained on a wide range of projects with clearly

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

90

defined requirements specifications. To become an effective software engineer, not only is it important to

understand and apply algorithmic decomposition of the problem, but one should also be able to carry out object-

oriented decomposition to produce reusable code. Conventional curricula in software engineering have focused

on structured analysis. While this is important, exposure to a wider range of challenges involving object-

oriented decomposition is valuable as well.

Software Engineering has evolved in a way to encapsulate algorithmic decomposition effectively. As an

example, the collections classes provided by Java effectively use overloading to present the most effective

algorithm for the task at hand. The sort() method provided by the Arrays implementation uses quicksort when

the argument is an array with a base type that is primitive but switches to mergesort when the array elements are

of a reference type. The onus of choosing the correct algorithm is delegated to the compiler, and it binds the call

to one that guarantees a linearithmic response versus one that does not. The algorithmic choice is automated

through overloading based on the data type. On the contrary, virtually no support is provided by the compiler or

the linker-loader when it comes to object-oriented decomposition. Solutions are mostly problem-specific and

optimization issues are left to the programmer.

Application Domains

Software engineering course offerings have conventionally relied on projects drawn from applied mathematics

and the natural sciences to provide design and developmental experience to students. In addition to reinforcing

theoretical concepts, projects drawn from the natural sciences serve well to prepare students for careers in

computational sciences and engineering. However, the implementations for such problems tend to be procedural

and algorithmic in nature and seldom present challenges in object-oriented design. For example, the protein

folding problem (FAHC, 2023) deals with how a p -dimensional structure is dictated by its amino

acid sequence. This engaging problem is essentially a modeling of different small interactions and does not

require a hierarchical representation. Another classic problem in astronomy that is interesting to students as a

software engineering project is the modeling of in the vicinity of the

gravitational field of two bodies. Again, as before this project presents an issue of algorithmic decomposition

rather than object-oriented decomposition through inheritance and polymorphism. Engaging projects such as the

ones mentioned above, generally do not lend themselves to challenging issues in the topics that the student

ought to be focused on. While object-oriented projects certainly exist in the natural sciences, many require a

higher level of preparation in the sciences than what a sophomore student would be expected to know. While

conventional problems challenge the student on an accurate implementation of the model of computation, they

inadequately expose the student to the concept of decomposition, which is an entirely independent paradigm.

Gaming Domain

The gaming domain has several advantages. Applications today are primarily meant for interactive use and

involve use cases that are considerably more complex than what was traditionally the case. Game programming

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

91

likewise demands interaction, clearly defined use cases, and complex state changes to manage. In addition,

developing a clear knowledge of the game engine framework and its activity lifecycle for the purpose of coding

a practical solution should prepare the student to develop software using more advanced frameworks such as

those used in mobile platforms. Guiding students in developing their own game engine has suggested positive

utilizing a game engine framework is a natural extension of this effort and may provide even more opportunities

for reuse. Additionally, developing games versus developing a game engine provides more creative

opportunities and is less restrictive.

Using a game framework to teach software engineering translates the classroom into a game-based learning

environment. Game-based learning is a growth area according to a recent study by Metaari (2019), formerly

Ambient Insight, a market research firm that uses predictive analytics to gauge trends. Their studies predict that

-year compound annual growth rate (CAGR) for Game-based Learning products and

 (p.

20). It is also worth noting that many programmers cite writing games as their gateway into the field of software

engineering. A game programming experience could similarly propel new students deeper into the field.

A game framework when used as a teaching tool has the potential to make learning Java fun and engaging as

well as highly effective. Students may retain information longer if the code they write is captivating and useable

beyond the semester. By creating games, the student is required to apply their understanding of concepts in a

practical way. Games are also shareable and visual, which may be helpful for students of this generation and

those who prefer a visual learning style. Sharing generates constructive feedback, helps sustain enthusiasm for

the topic, and helps concretize concepts that can be abstract. It can translate classroom learning into a social

experience.

Existing Game Engines

Commercial off-the-shelf (COTS) game engines such enable the

development of sophisticated games. Unfortunately, such platforms require minimal scientific or mathematical

skills, or conceptual expertise from the developer. Designed primarily for artists and the entertainment industry,

C#, JavaScript, or Python. The focus of such engines is on rapid prototyping and development of the game

narrative and management of assets. As a result, such off-the-shelf game engines that are highly specialized for

game development are unsuitable for imparting software engineering principles. A strong foundation in software

engineering, which goes beyond scripting, is essential to be skilled as a software engineer. There is a need for a

minimal framework that supports 2D animation and is built on freely available software. A lightweight

framework that can run efficiently on inexpensive hardware is what is required for classroom-wide deployment.

Robocode (2023), which was developed by IBM is one such lightweight platform and an excellent framework

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

92

for teaching code development. But the use cases it provides are restrictive and might not appeal to students

with a variety of interests. In Robocode, the student overrides methods in a framework-provided robot base class

to modify the functionality of battle tanks that compete against each other on a battlefield. The final product is

not a stand-alone game, but a byte-code module that can operate only within the context of the battlefield. The

Robocode framework, though a good demonstration of the use of Java, is limited in its scope as a software

engineering teaching tool. It does provide a flexible platform to study Artificial Intelligence and other adaptive

behavioral mechanisms, but in terms of inheritance and polymorphism, the scope of the platform is limited.

Robocode is ideal for the study of behavioral design patterns when it comes to modeling the behavior of the

robot. However, the problem domain is still the battlefield and its appeal to the student group can be limiting.

Java Engine for Teaching Design of Object-oriented Games (JETDOG)

The Jetdog 2D game framework presented in this paper produces stand-alone games and can be used to generate

2D games of a wide variety of genres. The language chosen for game development is Java, the College Board®

recommended language of instruction for the Advanced Placement (AP®) Computer Science (2023) course and

exam. The game engine was implemented using Java 19 and Swing/AWT, all provided as part of the Java SE

distribution. It runs on all platforms, Windows, Mac, and Linux, without the requirement for any native

libraries. The framework uses a combination of event detection, sound effects, and gameplay mechanics to

reinforce the Java concepts being taught. The game framework is scaled so that games can be developed within

a realistic timeframe of one semester. The framework does not replace the skills of the developer but serves to

augment them. It is not too complex to learn or master, but at the same time does not require the developer to

write extensive code that is not related to the narrative of the game itself. It does not require any expensive

hardware such as advanced graphics processing units (GPUs) or specialized libraries such as OpenGL.

A series of lessons are provided that focus on creating content that teaches Java, rather than worrying about the

technical details of building a game from scratch. One example of the game framework in action is a lesson

where students learn about animations and collisions by creating a game where an alien seeks out a cookie and

consumes it. By using principles of trigonometry, students can make the alien move toward the cookie, visually

making the concept of directed movements and vectors tangible and easier to understand. Another example is a

lesson on object-oriented programming where students create a game where they control a spaceship and shoot

down advancing space aliens. By using object-oriented principles like inheritance and polymorphism, students

can create a complex and dynamic army of aliens while also learning important programming concepts.

Game Engine Methodology

The game engine handles the rendering of entities on screen, manages their positional updates, and keeps track

of various events that occur during a game. A timer clock is the heartbeat of the game engine. Each time the

clock ticks, a frame is generated and displayed on the screen. This cycle decides the frame rate of the game

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

93

engine. The game engine repositions and renders entities once every frame, and all processing for a specific

frame must be completed before the next frame can be processed. As a result of positional changes on the

screen, entities may collide with each other, drift out of the visible area of the screen, or run into impenetrable

barriers. When they occur, such events are collected and communicated to the game implementation during each

cycle of the game loop. Additionally, the keyboard must be polled periodically to check for user input as well.

All these actions and event processing are carried out for every clock tick of the game.

The Game Loop

In the simplest sense, all games modeled by this framework consist of a cyclic invocation of a sequence of

methods until some conditions are met. The game controller instance moves the game through its various states.

A game is essentially composed of a sequence of frames that are generated at a stipulated frame rate (60 frames

per second), like a flip book. To enable this strict periodicity, the framework maintains a game clock that fires

repeatedly at the stipulated time interval. The clock invokes various methods in the proper sequence to move the

game forward. Each frame displays various entities on the screen, to which the user responds through mouse

and keyboard actions. The user inputs affect the attributes of each entity on the screen.

The entities may move unobstructed within the viewable screen bounds or may go out of bounds, get blocked by

barriers, or the entities may interact with each other through collisions. The way these events are resolved is

implemented by the design of each specific game and is not part of the framework. The narrative of the game

may even involve the inclusion or removal of entities from the next frame to be computed. As a result of their

behavior and interaction with the user and other entities, entities may change their trajectories, exit the game,

wrap around, or disappear beyond screen bounds. Before every frame can be computed and displayed, the game

must go through all entities known to it, relocate them on the screen based on the elapsed time, and check for

collisions, blockages, or out-of-bound situations as shown in Figure 1.

The invocation of various methods is the responsibility of the game clock which fires periodically at 16.667

milliseconds. The game clock invokes methods on the game controller and the entity model. Each event is

collected as an array and supplied as an argument to the respective concrete method. For example, all entities

are checked for out-of-bounds events during each cycle of the game loop. An out-of-bound event object

containing the entity that stepped out of bounds and the edge that was crossed is created for each out-of-bound

event. An array of the events is built and supplied as an argument to the onOutOfBounds(OutOfBounds[])

method, which the implementor of the game overrides for the specific game being built. The game is designed

by overriding all the event-related abstract methods that the game engine invokes during every cycle. What

makes one 2D game different from another is the way events are handled. The game engine, therefore, serves to

abstract out the commonality across all 2D games.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

94

Figure 1. The game engine cycle (or game loop)

Model-View-Controller

The implementation of the framework is based on the Model-View-Controller design pattern. Each entity is

represented by a base class called the EntityModel which contains the fundamental attributes that are common

across various entities. The controller functionality is provided by the game engine represented by the

GameController abstract class. Entities can be of different types, and each of the supported types is represented

by the following abstract classes shown in Figure 2:

 Scrolling scenery or background represented by the SceneryModel class

 Animated sprite-based entities represented by the SpriteModel class

 Textual data represented by the TextModel abstract class

 Obstacles or impervious barriers represented by the BarrierModel

Figure 2. Model hierarchy

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

95

Each of these model types contains a reference to its view, which is rendered on screen when the controller

invokes the draw() method on the entity. The draw() method is invoked on all entities during each cycle and the

call is dynamically bound to the method implemented by the entity instance, which could be a sprite, text, or

scenery. The view hierarchy shown in Figure 3 is supported by the base class EntityView, which is further

extended into the TextView, SpriteView, and SceneryView classes. Each view type is associated with the

corresponding model.

Figure 3. View hierarchy

The game controller, the entity model, and the associated view contribute to building the M-V-C pattern as

shown in Figure 4. The controller interacts with the user and updates the model so that the current state of each

model is rendered by the view. It serves as a listener for all user interactions. The controller then updates the

parameters of each entity based on the elapsed time and user input. This function is carried out for each iteration

of the loop.

Figure 4. Implementation of the model-view-controller (M-V-C) pattern

A substantial amount of generic functionality is provided by the game controller, freeing up the developer to

concentrate on the narrative of the game, which is implemented by providing the concrete implementation for

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

96

various abstract methods which are invoked every cycle of the game loop.

Event-Handling

Various events can occur during a game cycle. Entities may go off-screen, they may collide with one another, or

be obstructed by a barrier placed on the screen. Entities may even signal to the controller about something that is

relevant to the narrative of the game. Classes that represent and manage these events are provided in the event

handling framework, which is part of the game engine. Each game handles these events in a specific way that is

pertinent to the narrative of the game. The game controller checks all entities for any of these events, aggregates

them into arrays of events, and passes them as arguments to the corresponding overridden method. The

developer can implement each of these callbacks in the concrete game controller by providing the appropriate

handler for each event.

All of the event classes extend the base class GameEvent as shown in Figure 5. The events supported by the

framework and the handler for each of those events are as follows:

 CollisionEvent

o representing two colliding entities passed as an argument to the onCollisionEvent() method

 OutOfBoundEvent

o representing an entity and a screen edge passed as an argument to the onOutOfBoundsEvent()

method

 MessageEvent

o representing an entity (sender) and a string message (description) passed as an argument to the

onMessageEvent() method

 BlockedEvent

o representing an entity and a barrier passed as an argument to the onBlockedEvent() method

Figure 5. Event classes

Implementing a Game

Writing a game using the framework involves extending the game controller, and the required entity model

types, setting the view for those entities, and writing appropriate event handlers for collisions, out-of-bounds,

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

97

blockages, and messages. Sounds can be generated by invoking the play() method on a predefined set of

enumerations provided by the SoundEffects enum. Textual information, such as a scoreboard can be created by

providing a concrete class extension for the TextModel. When a concrete game controller is instantiated, the

game clock is started up and the game starts to run. The game clock in turn sets off a sequence of message calls

for every cycle. These triggers cause the rendering on screen and various event handlers to be invoked on the

game controller instance. The relationship between the various classes is shown in the consolidated class

diagram in Figure 6.

Figure 6. Class relationship diagram

Implementing a game using this framework involves writing derived classes that extend the GameController and

the required subclasses of the EntityModel, which could be text, sprite, barrier, or scenery. The GameController

provided by the framework is an abstract extension of the Swing JFrame. This gives unlimited access to the

developer to all the functionality provided by the JFrame class. Keyboard and Mouse listeners, or any other

features supported by the Swing toolkit, are available to the concrete game controller.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

98

Example

Consider a simple 2D simulation of a pair of entities that appear on the screen. Let this class be called

TwoBodySimulator as shown in Figure 7.

Figure 7. Two-body simulator implementation

The objective is to simulate an inelastic collision between the two bodies when they run into each other. Let us

also assume that these entities shall bounce off the edge of the screen. The first step is to extend the

GameController class. The enlistEntities() method is overridden to add the two entities. Since collisions and out-

of-bounds are the two events that need to be defined for this simulator, the onCollisionsPolled() and the

public class TwoBodySimulator extends GameController{

 @Override
 protected void enlistEntities() {
 // place red dot at (100,100) and blue dot at (200,200)
 SpriteModel a = createSpriteModel(Color.RED, 100, 100);
 SpriteModel b = createSpriteModel(Color.BLUE, 200, 200);
 // send them off in different directions
 a.setXVelocity(7);
 a.setYVelocity(8);
 b.setXVelocity(-5);
 b.setYVelocity(-7);
 a.setActive(true);
 b.setActive(true);
 // present them on the screen
 addEntity(a, b);
 }

 private SpriteModel createSpriteModel(Color color, int x, int y) {
 return new SpriteModel(x, y) {
 @Override
 protected void updateParameters(long elapsedTime) {
 // TODO Auto-generated method stub
 }

 @Override
 protected void setAppearance() {
 setView(color);
 }
 };
 }

 @Override
 protected void onCollisionsPolled(CollisionEvent[] events) {
 for (CollisionEvent event : events) {
 EntityModel a = event.getA();
 EntityModel b = event.getB();
 Physics.rebound(a, b);

}
 }

 @Override
 protected void onOutOfBounds(OutOfBoundsEvent[] events) {
 for (OutOfBoundsEvent event : events) {
 EntityModel em = event.getEntity();
 ScreenBoundary sb = event.getBoundary();
 Physics.rebound(em, sb);

}
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(()->new TwoBodySimulator());
 }
}

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

99

onOutOfBounds() methods are implemented. All other events are stubbed out, and not shown in the listing

below for the sake of brevity. A simple class with three or four methods creates the basic simulation.

More elaborate games are feasible by extending classes from the framework and implementing abstract methods

on the controller and models. The periodic game clock invokes a series of abstract methods, the concrete

versions of which are to be supplied by the user-implemented classes. The rules of the game can be coordinated

by the updateGameState() method, which is invoked by the game clock at the end of each clock tick. The

sequence in which the game clock invokes various methods on the game controller each time it is fired is shown

in the detailed life-line diagram beginning with Figure 8.

Figure 8. The game-loop sequence: initialization, drawing, and keyboard polling.

The first cycle executed by the timer activity is unique. It starts off by invoking enlistEntities(), where entities

that are to be seen on the screen can be added. When each entity is added, the corresponding setView() method

is invoked by the controller. This initialization does not happen subsequently. Once the game loop starts off, the

timer activity repeats the sequence of calls.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

100

The game loop executes 60 times every second. It starts off by drawing all entities participating in the game on

the screen. While the user is visually processing the screen, the game engine proceeds to poll the keyboard for

multiple key presses. The polled keyboard functionality is used specifically for in-game interaction. Being a

software polled mechanism, a single keystroke that may last more than the cycle time of the game loop will be

detected multiple times. If a single keystroke is to be detected, such as in the case of user-initiated game state

changes, the recommended approach is to implement the standard KeyListener provided by Swing.

Figure 9. The game-loop sequence: parameter updates, pre-checks on collisions, blocks, and out-of-bounds events.

The next stage of the game loop involves updating the locations of all the entities participating in the frame.

This is done by applying the current acceleration and velocity settings to each entity, given their initial locations

on the screen. Repositioning the entities on the screen opens the possibility of entities colliding with each other,

being blocked by barriers, or straying off the viewport (visual area on the screen). The next steps executed by

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

101

the game loop involve detecting these events, collecting the necessary details of each event, and invoking the

appropriate overridden methods as shown in Figure 10.

Figure 10. The game-loop sequence: the invocation of overridden methods.

Lesson Methodology

The accompanying lesson plan consisting of seven lessons as shown in Table 1 was designed to introduce the

student progressively to the game engine functionality through increasingly complex exercises while requiring

them to apply object-oriented concepts as they develop a full-fledged video game.

Table 1. Lesson Plan

Lesson Game topic(s) Object-oriented topic(s)

1 Game loop Game engine design

Model View Controller (MVC)

 Inheritance, abstract

classes, MVC pattern

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

102

Game loop activities

2 Vector dynamics Using trigonometry and vector

operations to navigate on screen

 Event-handling,

using an interface

3 Gravity and collisions Using acceleration and inelastic

collisions

 Inheritance,

abstract classes

4 Guided projectiles Event-driven creation of entities

that follow a defined trajectory

 Anonymous inner types

5 Composite movements More complex interactions Aggregation

6 State machines Using a state machine to model

a multi-level game

State pattern

7 Executable app Full Space Aliens game Polymorphism

The lessons start with simple animations, then delve into simple vector dynamics, game physics, more complex

movement and behavior, and state machines. The final lesson is a game that is fully functional and can be run as

a stand-alone application.

Results

In an experimental offering of this course using a prototype game engine and lesson plan in the spring of 2022 at

Lycoming College, the students built a Space Aliens game, shown in Figure 11,

that could run on any desktop.

Figure 11. Student game implementation

Upon completion of the experimental course, the class of six students was provided with a questionnaire, and

the results are shown in Figures 12 and 13.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

103

Figure 12. Student responses to 2D Game Design as a medium of learning

Figure 13:Student responses to concepts learned

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

104

Discussion

A majority of participating students found this game-based learning experience challenging and incentivizing. It

was also apparent that the game engine-based programming class covered a wide range of topics in software

engineering. A majority of participating students found the course informative on event-driven programming,

coding to a framework, and the object-oriented concepts of inheritance, polymorphism, interfaces, abstract

classes, and anonymous inner types.

These reviews were positive, but the sample size was not large enough for experiments beyond the small

observational study. In addition, it is worth noting that the six students in the course had all taken a second-level

course in computer programming (CS2). Four of the six participating students were intermediate to advanced-

level programmers and as such, the feedback received from the group may not correlate to how a lesser-

prepared class might fare.

Conclusion

Game programming with the JetDog engine demonstrates an accessible way to teach object-oriented design

topics, perhaps more easily so than other practical problem domains. The game framework was anecdotally

shown to be a motivating and effective way of teaching Java. Students were observed to be more engaged and

enthusiastic than in traditional Java courses, and students found the course challenging and informative on a

variety of software topics. JetDog provides a richer environment than off-the-shelf gaming solutions for

practicing coding to a framework, an experience sure to benefit students as they enter the field of software

engineering.

Recommendations

Going forward, there is room for augmentation and refinement of the game engine and lesson plan, as well as

collaboration with instructors and their students to further evaluate the effectiveness of the JetDog framework as

a teaching tool.

The lessons may be expanded to cover more than one final game project. It is observed that students become

more creative when the game they are building is something with which they identify. Additional exercises for

provide projects for different semester offerings of the course. Adding grid placement functionality to the game

The game engine and lessons may also be improved based on feedback from students and

collaborating instructors.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

105

-oriented concepts in Java before and after this

course would be the next step in the research. Collaboration is sought with instructors having access to larger

classrooms (25+ students), who, in exchange for using the game engine and lessons, would administer the

necessary assessment instruments required to collect data for further study on the approach's effectiveness.

 instructional videos,

schematics, and references for in-depth exploration of the topics. In addition, the game engine framework is

supported by detailed hypertext documentation using Javadoc.

Delivery

Delivery of the lessons is an important part of engaging students in an active way. A visual, engaging website

will be used for lesson delivery. Each lesson introduces the student to a specific topic through a video,

interactive HTML, or simulation content and offers self-test exercises and laboratory challenges to develop their

understanding of the concepts. The general format of a lesson is shown in Figure 14.

Figure 14. Lesson structure: interactive elements, exercises, challenges, and resource links

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

106

Lesson 1, as an example, covers sprite creation and animation. The first exercise in this lesson involves putting a

simple sprite on the screen. The next exercises introduce the student to the use of callback methods to make the

sprite entity move and bounce off the edges of the screen. Once the student has learned to control the behavior

of the entity, the lesson provides more advanced exercises and a challenge, requiring the modeling of two

colliding sprites with sound effects.

Early exercises in each lesson are scaffolded with coding hints as shown in Figure 15. The student is provided

with a cross-reference to the sequence diagram as shown in Figure 16 so that their code is introduced at the

proper state of the game engine. In addition, links to pertinent areas of the Javadoc API are also supplied with

each exercise as shown in Figure 17.

Figure 15. Coding hints

The website may be used in a traditional or flipped classroom mode, in which students have the opportunity to

become familiar with the material outside of class and control their learning. In flipped mode, class time can be

utilized for live problem-solving, targeted discussion, and int -work.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

107

Figure 16. Reference to the applicable sequence diagram

Figure 17. API links

Acknowledgments

Thank you to the students in the spring 2022 CPTR 250 course for their excellent work on the lessons, and their

positive feedback. Thanks to the Mathematics Sciences Department for the opportunity to execute a trial run of

this course. Thank you to Mavin James for their hard work and dedication in completing their final project and

providing valuable feedback.

References

AP Computer Science A Course AP Central | College Board. (2023). College Board Website. Retrieved July

23, 2023, from https://apcentral.collegeboard.org/courses/ap-computer-science-a

Gestwicki, Paul, & Sun, Fu-Shing. (2008). Teaching Design Patterns Through Computer Game Development.

ACM Journal on Educational Resources in Computing, (Vol. 8, No. 1, Article 2).

Lagrange point. Celestial mechanics and the three-body problem (2023, July 20). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Lagrange_point&oldid=1166264282

Metaari. (2019). The 2019-2024 Global Game-based Learning Market: Serious Games Industry in Boom Phase.

International Conference on
Social and Education Sciences

www.iconses.net October 19-22, 2023 Las Vegas, NV, USA www.istes.org

108

Serious Play Conference (August 1, 2019).

Purewal, T. S., & Bennett, C. (2006). A framework for teaching polymorphism using game programming.

Consortium for Computing Sciences in Colleges: Southeastern Conference, (JCSC 2022, 2 December

2006).

Robocode. (2023, February 26). Robocode Homepage. Retrieved July 23, 2023, from

http://robocode.sourceforge.io

The Folding@home Consortium (FAHC). (2023, July 25). Start Folding Folding@home. Retrieved July 25,

2023, from https://foldingathome.org/

The most powerful real-time 3D creation tool- Unreal Engine. (2023). Unreal Engine Homepage. Retrieved July

23, 2023, from https://www.unrealengine.com/

Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine. (2023). Unity Homepage. Retrieved July

23, 2023, from https://unity.com/

