§ °
N, International Conference on Education in @ I S t e S
ICE}VIST Mathematics, Science and Technology @YO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Project Development for Blood Bank Application and Convertor for

Software Testing

Rosziati Ibrahim

Universiti Tun Hussein Onn Malaysia, Malaysia, “* https://orcid.org/0000-0002-9176-0309

Mizani Mohamad Madon
Universiti Tun Hussein Onn Malaysia, Malaysia, “* https://orcid.org/0000-0001-9892-1112

Zhiang Yue Lee
Universiti Tun Hussein Onn Malaysia, Malaysia, ' https://orcid.org/0000-0003-0412-7204

Piraviendran A/L Rajendran

Universiti Tun Hussein Onn Malaysia, Malaysia, “ https://orcid.org/0000-0002-5678-2668

Jahari Abdul Wahab
Sena Traffic System Sdn. Bhd., Malaysia, “* https://orcid.org/0000-0003-4859-7267

Faaizah Shahbodin
Universiti Teknikal Malaysia Melaka, Malaysia, " https://orcid.org/0000-0002-8015-4506

Abstract: This paper discusses the steps involve in project development for developing the mobile
application, namely Blood Bank Application and developing the convertor for software testing. The project
development is important for Computer Science students for them to learn the important steps in developing the
application and testing the reliability of the application. The first step involved is the development of the mobile

13

application. Then the convertor is developed to convert the mobile application in “.apk™ format into Java
program in “java” format. The java program is then tested under Eclipse environment using JUnit. Finally, the
Java program is tested for its capability of generating test cases using SenaTLSParser. The comparison of the
results of the time taken to produce test cases is presented using Junit and SenaTLSParser. Based on the results,
SenaTLSParser is more reliable compared with JUnit since its response time is less than JUnit. The whole steps

involved in this project development are discussed in this paper.
Keywords: Project Development, Education Technology, Software Testing, Test Cases, Java Programming

Citation: Ibrahim, R., Mohamad Madon, M., Lee, Z. Y., Rajendran, P. A., Abdul Wahab, A., & Shahbodin, F.
(2023). Project Development for Blood Bank Application and Convertor for Software Testing. In M. Shelley, O.

41

§ L]
. International Conference on Education in @ I S t e S
ICE}V'ST Mathematics, Science and Technology QYO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

T. Ozturk, & M. L. Ciddi, Proceedings of ICEMST 2023-- International Conference on Education in
Mathematics, Science and Technology (pp. 41-52), Cappadocia, Nevsehir. Turkiye. ISTES Organization.

Introduction

Project development is important for students to learn in developing and completing a project within the given
time. In this case study, the students are given a project to complete within eight weeks. The project consists of
two stages. The first stage is developing the mobile application, namely Blood Bank Application and the second
stage is developing the convertor to convert the mobile application in “.apk™ format to “.java™ format. The
purpose of the development of the convertor is to test the practicallity of converting the mobile appplication into
Java program. The Java program is then tested under Eclipse environment using Junit. Finally the Java program

is tested for its capability of generating test cases using SENATLSParser.

The first step in project development is to gather all the necessary requirements for the project. The second step
is to transform the gathered requirements into UML specification. The third step is the development stage.
Based on the UML specification, the application is developed. The final step is to test the developed application
in order to see the relaibility of the application. Based on the project given, students have to complete these four

steps within eight weeks.

Related Work

Nowadays, a software tester has many choices of techniques in order to conduct a software testing. A tester can
generate the test cases and testing each module manually but it is time consuming (Afrin and Mohsin, 2017).
The implementation of automation tool is necessary in order to reduce cost for testing manually. Example of
some of the automation tool for automating the generation of test cases can be found in (Shin and Im, 2017; Du

et al., 2019; Elqortobi et al., 2020; Meiliana et al., 2017; Mishra et. Al., 2017; and Ibrahim et al., 2020).

JUnit can be used for repeatable automated software testing within Eclipse (Junit, 2022). It provides a lot of
assert functions for testing the share common test data features, expected results, test suites for test organizing
and running, and test runner for graphical and textual. An entire or part of object, or interaction between several
objects can be implemented also. SENATLSParser can generate test case automatically by examining the source

codes line by line. It enables the tester to find the high quality solutions easily (Ibrahim et al., 2022).
In this study, JUnit and SENATLSParser will be used to test a convertor application which can convert the
blood bank application with “.apk™ format into “.java” source file. The results of the time taken between Junit

and SENATLSParser will be compared in order to indicate the performance of Junit and SENATLSParser.

The research of Li et al. (2017) presents DroidBot to support the model-based test input generation with less

42

§ L]
. International Conference on Education in @ I S t e S
ICE}V'ST Mathematics, Science and Technology QYO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

extra requirements. The main criteria of Droidbot is lightweight Ul-guided test input generator for Android apps
because it does not need an advanced knowledge on the unexplored code. It gives Ul-guided input generation
and will generate on-the-fly at runtime. Then, based on the transition model, it will generate the Ul-guided test

inputs. In order to reach the effectiveness in most cases, we need to generate the input using depth-first strategy.

Next, based on Wang and Liu (2018), software testing is one of the most important criteria in domestic and
abroad software researchers to achieve software quality assurance. However, it spends so much time during the
software development process. The Particle Swarm Optimization (PSO) can help in optimizing a problem by
trying the process iteratively. The approach used based on specific measure of quality. Therefore, the PSO
algorithm was introduced to generate the software case and to design novel software test case automatic

generation algorithm.

The study by Mao et al. (2016) introduced an Android testing approach called Sapienz. Sapienz performed
better compare to the Android Monkey. It is also a practical testing tool. Other than that, even only app’s APK
file can be accessed, Sapienz still supports in multi-level instrumentation. Besides, Ibrahim et al. (2022) have
discussed on generating the test cases with SENATLSParser using Eclipse environment. Based on the research,
they found out that SENATLSParser has high reliability and responsed faster than using manual testing. Based
on the respective result, it shows that test case optimization is available. The software tester can also discard the
source code that redundant. Code smell functionality give results that it is efficient to generate the test cases

automatically based on source code (Ibrahim et al., March 2020). Table 1 summarizes the related work for this

study.
Table 1. Summary of Related Work
Authors Technique Summary
Lietal. (2017) DroitBot Support model-based test input

generation with less extra requirements

Results show that it is better than the

Wang and Liu PSO S
(2018) conventional PSO

Mao et al. . . Perform better compared with Android
(2016) Android Testing Monkey

SENATLSParser has response time
SENATLSParser faster than manual testing based on the
source codes

Ibrahim et al.
(2022)

Project Development

In project development, four main steps are necessary to complete a project within the given time. Figure 1
shows these 4 steps. The project is given to students to be completed within eight weeks. Students must follow

the steps given in Figure 1.

43

L]
- International Conference on Education in O I S te S
ICE}VIS‘T Mathematics, Science and Technology @YO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Requirements Gathering R UML Specification

Software Testing Software Development

G——

Figure 1. Project Development

Requirements Gathering

Based on Figure 1, the first step is the requirements gathering. Requirements regarding the blood bank mobile
application and the convertor must be collected by students. These requirements are then being converted to
UML specification. Requirements for blood bank mobile application include the application should be able to
have login, register, profile view and make appointment. Meanwhile, requirements for convertor include the

capability for the application to read, convert and save.

UML Specification

UML specification consists of few diagrams. Two important diagrams that are needed to develop the application
are use case diagram and class diagram. Figure 2 shows an example of the use case diagram for JUnit and

Convertor and Figure 3 shows an example of the class diagram for the project.
JUnit

uc Use Case Model

Convertor

. impart apkfile

Convert apkfile
User

Export Java source

0/‘ 0

Figure 2. Use Case Diagram for JUnit and Convertor

Based on Figure 2, use case diagram for Convertor, for example, consists of 3 use-cases. They are import,

convert and export. Figure 4 shows the example of class diagram for blood bank mobile application.

44

L]
International Conference on Education in Q I S te S

ICE»S‘T Mathematics, Science and Technology ‘Y‘

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

JUnit Test
“OoupaCos clasUse Case Model /
+Run()
User Convertor
+ importFile{): void ‘— + convertTolava(): void
Assert + euportlavaFile(): void 1 1
~assertirue()
~assertFaise()
~taill)
~assertEquals()
~assertSame
~assertNotSame()
~assertNull)
Test Case ~assertNotNul)
~setUp()
+tearDowny()
+testSearch()
+festSearchNoltem()

Figure 3. Class Diagram for JUnit and Convertor

User
#a
~ name
+ identfication_card
+ email
+ adaress

+ contact_number
~ user_type

-set_ja

- get_xd

- set_name

- get_name

- set_icentification_card
- get_dentfication_card
- set_address

- get_sodress

- set_email

- get_smau

- sal_contact_number

- get_contact_number

- sel_user_lype

- get_user_type

AN

- search_Nearby_Campaign

1

1

Donor Carg

Donor Administrator Staw
~ status
~ blood_type
+ donor_card - logn ~RogaT
- manage_User_Account - wiaw_Donor_Information

Iogin - generale_Report - view_Biood_Donaton_Detais
- register - manage_Appointment

view_Biood_Donation_Details - manage_Biood_Donation_Details
- view_Donor_information - manage_Campaign_Locason
- make_Appointiment

donor_card_id
- owner_name

Appomnmtment

- gonaton_date
+ donaton_time
- biood_type

appointment_ic
1 4 | ~ donor_card_id
« place_of_donation

1

Figure 4. Class Diagram for Blood Bank Mobile Application

45

L]
International Conference on Education in O I S te S
ICE}VIS‘T Mathematics, Science and Technology OYO
/}”

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Software Development

UML specification have been widely used for software development. Examples of study that used the diagrams
in UML specification include (Khuran et al., 2016; Ribeiro et al., 2018; Aman et al., 2014; and Ibrahim et al.,
2011). The software can be developed based on the use case diagram in Figure 2 and class diagram in Figure 3.

The blood bank mobile application can be developed based on class diagram in Figure 4.

o BLOOD BANK'APPS BLOOD BANK APPS
) =3 &
‘ ; |
Donor ProfFile Malke Appoinment
BLOOD BANK APPS w - . R Sl - l
h Donor IC : moz‘solsaos :
\. . Blood Group : s 4 Donor : 971026016409
aomimstRaToR /') '“'q:'f"" Sl (i o PP —
| . — o.os.: e a | ‘ Date : liclcfa endage dotc
STAFF LOGIN | condor: Male ' Time : e \\ pr—

|

USER LOGIN

AT

~BLOOD BANK 2022~

LA 8

el

Figure 5. User Interface for Software Development

The blood bank mobile application, for example, have been developed based on the requirements gathering in
step 1 of project development. The user interfaces for login, profile view and make appointment are shown in
Figure 5. For the convertor, Figure 6 shows the segmentation codes for the development of the convertor. The
convertor is developed using Java programming. For the conversion of blood bank mobile application from

“.apk” format to “.java” format. Figure 7 shows the user interface for the conversion process.

Software Testing

Software testing is an important stage to test the reliability of the software being developed. Software testing can
be done for any software developed (Jamil et al., 2016; Lawana, 2014). For the project, students have been
asked to test the software that they developed using the embedded JUnit function inside the Eclipse environment
and the SENATLSParser tool that the students need to import and install in Eclipse environment. Figure 8

shows the process for importing the project in Eclipse environment.

46

|C\EMS‘T
e

O
e

International Conference on Education in
Mathematics, Science and Technology

www.icemst.com

May 18-21, 2023 Cappadocia, Nevsehir, Turkiye

oo
I

L0

(s
[R T

S e

Y
1 o

int returnval;

if (event.getSource() chooseRPEButton) {
returnval = fc.showOpenDialog(null);
if (returnval = JE‘ileChooser.ﬂPPROlE_OPI‘ION) {
selectedSourceFile foc.getSelectedFile()

apkPath = selectedSourceFile.toString();
apkName = selectedSourceFile.getName();
sourceText.setText (apkName) ;
}
¥
if (event.getSource() == chooseJavaDecompilerButton) |I|
returnvVal = fc.showSaveDialog(null);
if (returnval == JE‘ileChooser.APPROVE_OPI‘ION} {
jdGuiPath = fc.getSelectedFile().toString();
sourceText2.setText ("Jd-Gui Selected");
System.out.println("jdGuiPath " +jdGuiPath);
}
}

Figure 6. Segmentation of Source Code for Convertor

Istes

www.istes.org

| 4 converor =] *
Salect your APK Oestapk Browse APK Convart APK to Jar
Salect your Java Decompiler |Jd-Gui Sstected Browse Jd-Gui Upan Java Decompder
Figure 7. Convertor Interface
E eclipse-workspace - Eclipse IDE & import o x
File Edit MNavigate Search Project Run Window F Import Projects e
Mew Alt+Shift+M > Select 2 directory to search for existing Eclipse projects, i ‘
Open File...
= rectony v
B Gpen Brojects fom FileSystem.- [OERE= ST K Choon\Documents\Masterapplication] Browse.
Recent Files > (O Select archive file: e
Projects:
Close Crl«W
ST Bl application (CAUsers\KarChoon Documents\Master,application) Select All
Close All Editors Ctrl+Shift+W
Deselect All
Ctil+5 Refrech
Save All Chrl+Shift+S
Revert
Options
Move... [Search for nested projects
Rename... F2 [Copy projects into workspace
& [Close newly imported projects upon completion
& Hefresh H [Hide projects that already exist in the workspace
Convert Line Delimiters To > Working sets
Print.. Ctrl+P] Add project to working sets New..
e St elect..
(= Import... .
5 Export...
Properties Alt+Enter
Switch Workspace > @> <fack B> Sancel
Restart
Exit

Figure 8. Import Project and Application

47

International Conference on Education in @ I S te S
ICE}/VI,S‘T Mathematics, Science and Technology OYO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Based on Figure 8, by using the convertor and import file, the blood bank mobile application in “.apk™ format is
able to be converted into Java programming “.java™ source codes. Then, SENATLSParser is used for testing the
Java source codes. Students are able to learn the whole steps in project development to complete the project

within the given period.

Results and Discussion

JUnit has been used to test the blood bank mobile application. The assert function is used for the software
testing. Figure 9 shows the assert function is used for the blood bank mobile application. The result for the assert
function using JUnit is also shown in Figure 9. The time taken to execute the assert function using JUnit is
0.142s. Meanwhile, SENATLSParser tool is also used for the software testing. The time taken to execute and
generate the test cases is 76ms as shown in Figure 10. Based on the execution time using assert function from
JUnit and SENATLSParser tool, it has been shown that SENATLSParser is able to execute faster than JUnit.

Figure 11 shows the test cases that have been generated aoutomatically from SENATLSParser tool.

I Package Explorer gu JUnit x = O

e B AR m [v 8
Finished after 0.142 seconds

Runs: 1/1 B Errors: 0 B Failures: 0

5 &l Test [Runner: JUnit 51 (0.001 5)

Figure 9. JUnit Testing

& SenaTLSParser_-_Basic X

o Success Analyze Code
'\) Time Elapsed: 76ms

QK

Figure 10. SenaTLSParser

The convertor is also tested for software testing using assert function from JUnit and SENATLSParser tool.
Three different tests are performed for the convertor. Table 2 shows the results for the test cases generated and

the time taken to generate the test cases. Figure 12 shows the graph for the three software testing cases.

48

L]
International Conference on Education in @ I S te S
ICE}VIST Mathematics, Science and Technology @Y@

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Console SenaTLSParser
Start Time: 2022/12/08 14:49:14
Working in project linux-core-service-5 #it#

Package
Package CVS
Package com
Package com.CVS

Package com.senatraffic

Source file Constants.java
Has number of lines: 154

Source file ItrafficService.java
Has number of lines: 63

Method name :main

Signature :([QString;)V

Return Type :V

Input variable :

args

Generate Test Cases:

Test Case 1 : valid [args]are input with :1
Test Case 2 : invalid [args]are input with :-1
Test Case 3 : null [args]are input with :null

Package com.senatraffic.Cvs

Package com.senatraffic.alarm

Figure 11. Console for SenaTLSParser

Table 2. Results of Test Cases

Function No. of Time Taken (ms)
Name Tests JUnit (ms) SENATLSParser (ms)
Convertor.java 1 31 1
2 25 1
3 27 2
Average Time Taken (ms) 27.67 1.33

Based on Table 2, SENATLSParser tool gives good results as compared with JUnit for the three different tests.
The average of 1.33ms has been used to generate the test cases using SENATLSParser tool as compared with
27.67ms using assert function from JUnit. This shows that SENATLSParser tool is capable to generate faster

test cases automatically compared with JUnit.

49

International Conference on Education in @ I S te S
ICE}/VI,S‘T Mathematics, Science and Technology OYO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Software Testing using JUnit and SENATLSParser

35
30
25
20
15

10

0 — — 1
1 2 3

mlunit m SENATLSParser

Figure 12. Results for Generating Test Cases using JUnit and SenaTLSParser

Based on Figure 12, SENATLSParser tool is more reliable to be used as a tool for software testing in term of
generating the test cases automatically. The three cases have shown that SENATLSParser outperformed the

JUnit.

Conclusion

In conclusion, the students have been successfully implemented the project within eight weeks that has been
given to them. Project development is important to enable the successful of implementation of a project. The

133

convertor is used to convert the blood bank mobile application from “.apk™ format into Java programming
“java” source codes by using the method of executing window batch command (.bat) file and Java Decompiler.
After converting, the java source code is testing using JUnit and SENATLSParser. The comparison results of
time taken between JUnit and SENATLSParser shows that SENATLSParser uses the least time for software
testing. Based on the result, SENATLSParser is more reliable as compared with JUnit since its execution time is

less than JUnit.

Acknowledgements

The authors would like to thank Universiti Tun Hussein Onn Malaysia (UTHM) for supporting this research.
The authors received funding for this study from Industry Grant from SENA Traffic System Sdn. Bhd. under
Grant Vote No MOS81.

50

G °
N, International Conference on Education in @ I S te S
ICE}VIST Mathematics, Science and Technology @Y@

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

References

Afrin, A., and Mohsin, K. (2017). “Testing approach: Manual testing vs automation testing.” Global Sci-Tech,
9(1), 55-60, 2017.

Aman, H., and Ibrahim, R. (2014). “Formalization of Transformation Rules from XML Schema to UML Class
Diagram.” International Journal of Software Engineering and its Applications, 8 (12), pp. 75-90, 2014.

Du, Y., Pan, Y., Ao, H., Alexander, N.O., and Fan, Y., (2019). “Automatic Test Case Generation and
Optimization Based on Mutation Testing,” 2019 IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (QRS-C). doi:10.1109/qrs-¢.2019.00105, 2019.

Elgortobi, M., Rahj, A., Bentahar, J. and Dssouli, R., (2020). “Test Generation Tool for Modified
Condition/Decision Coverage: Model Based Testing,” In Proceedings of the 13" International
Conference on Intelligent Systems: Theories and Applications (SITA’20). Association for Computing
Machinery, New York, NY, USA, Article 38, 1-6, 2020.

Ibrahim, N., Ibrahim, R., Saringat, M.Z., Mansor, D and Herawan, T. (2011). “Consistency rules between UML
use case and activity diagrams using logical approach.” International Journal of Software Engineering
and its Applications, 5 (3), pp. 119-134, 2011.

Ibrahim, R., Ahmed, M., Nayak, R. and Jamel, S., (March 2020). “Reducing Redundancy of Test Cases
Generation using Code Smell Detection and Refactoring”. Journal of King Saud University - Computer
and Information Science, Volume 32, Issue 3, March 2020.

Ibrahim, R., Amin, A. A. B, Jamel, S. and Abdul Wahab, J., (2020). “EPiT: A Software Testing Tool for
Generation of Test Cases Automatically,” International Journal of Engineering Trends and Technology,
68(7),8-12,2020.

Ibrahim, R., AbuSalim, S. W. G., Jamel, S. and Abdul Wahab, J., (2022). “Sena TLS-Parser: A Software
Testing Tool for Generating Test Cases” International Journal of Advanced Computer Science and
Applications (1IJACSA), 13(6), 2022.

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016). “Software testing techniques: A literature
review.” In 2016 6th International Conference on Information and Communication Technology for The
Muslim World (ICT4M) (pp. 177-182). IEEE.

JUnit 2022. JUnit4. [Online]. Available: https://junit.org/junit4/

Khurana, N., Chhillar, R.S., and Chhillar, U.A., (2016). “A novel technique for generation and optimization of
test cases using use case, sequence, activity diagram and genetic algorithm,” Journal of Software, vol.
11, no. 3, pp. 242-250, 2016.

Lawanna, A. (2014). “The theory of software testing.” AU Journal of Technology, 16(1), 35-40. 2014.

Li. Y, Yang. Z, Guo. Y and Chen. X, (2017). "DroidBot: a lightweight UI-Guided test input generator for
android," 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-
C), pp. 23- 26.

Mao, K, Harman, M, and Jia, Y. (2016). “Sapienz: multi- objective automated testing for Android applications.”

In Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).

51

{ L]
N International Conference on Education in O I S te S
ICE}VIST Mathematics, Science and Technology QVO

www.icemst.com May 18-21, 2023 Cappadocia, Nevsehir, Turkiye www.istes.org

Association for Computing Machinery, New York, NY, USA, 94-105.
https://doi.org/10.1145/2931037.2931054
Meiliana, I. Septian, R. Daniel A., and Gaol, F., (2017). “Automated Test Case Generation from UML
Activity Diagram and Sequence Diagram using Depth First Search Algorithm,” ICCSCI, 2017.

Mishra, D., Mishra, R. Das, K., and Acharya, A., (2017). “Test Case Generation and Optimization for Critical
Path Testing Using Genetic Algorithm,” SocProS, 2017.

Ribeiro, F.G.C., Pereira, C.E. Rettberg, A., and Soares, M.S., (2018). “Model-based requirements specification
of real-time systems with UML, SysML, and MARTE.” Software & Systems Modeling, vol. 17, no. 1,
pp- 343-361, 2018.

Shin K.W., and Lim, D.J., (2017). “Model-based automatic test case generation for automotive embedded
software testing,” International Journal of Automotive Technology, 19(1), 107-119. doi:10.1007/s12239-
018-0011-6, 2017.

Wang, Z. and Liu, Q., (2018). "A Software Test Case Automatic Generation Technology Based on the Modified
Particle Swarm Optimization Algorithm," 2018 International Conference on Virtual Reality and

Intelligent Systems (ICVRIS), pp. 156-159, 2018.

52

