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Introduction 

 
Statewide longitudinal data systems (SLDS) collect an ever-increasing amount of data on their 

staff and students. A critical function of SLDS is to protect the privacy of individuals, which is 

not only a guiding principle in many scientific disciplines but is also enshrined in laws such as 

Family Educational Rights and Privacy Act (FERPA) or Protection of Pupil Rights Amendment 

(PPRA). To ensure privacy, access to student-level data is often restricted. However, it is 

understood that such data can be leveraged by researchers to inform improvement and innovation 

in schools and school systems (Honig & Coburn, 2008; Conaway, et. al., 2015). This presents 

something of a tradeoff for state education agencies between students’ right to privacy and a 

data-driven approach to enhancing their education. Releasing data to researchers can increase the 

risks to student privacy, but it is often a crucial step in developing and evaluating educational 

policies and interventions.  

In an attempt to balance these two considerations, states have frequently turned to a 

measure to mask data called microsuppression (often referred to as “small cell suppression”), 

wherein certain records are removed from the data prior to its release to external researchers 

(Seastrom, 2010; Levesque, et. al., 2015). The logic of this approach can be understood in the 

context of work by Duncan and Lambert (1986, 1989), which frames the risk of disclosing data 

in terms of an intruder attempting to match released data to target records (for further discussion, 

see Reiter, 2005). For instance, if an intruder knows that a student was a black female who 

attended a specific school in fourth grade, then they could query the released data to find black, 

female fourth-graders in that school. If there is only one such student, then the intruder will be 

able to know the rest of that student’s record, including any sensitive information (e.g., test 
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scores or special education designations). If there are several such students, then the intruder will 

be less certain about which is the target record. 

Thus, when releasing data, states often divide students into risk strata based on 

demographic variables that tend to include their school, grade, race, and gender. Strata with few 

students are dropped from the data prior to its release. Typically, “few” will mean fewer than 10 

(Levesque, et. al., 2015). This means that if an intruder matches a student’s school, grade, race, 

and gender in the released data, then there will be at least 10 records that match, and so the 

intruder will be less certain about which one pertains to the target record they are seeking. 

This masking method is applied to both raw data and summary statistics. For example, 

tables published in journals or on websites of state departments of education may not report 

values in cells with small counts or extreme values (e.g., Delaware, 2020; North Carolina, 2009). 

To protect public-use datasets available through state departments of education, which can 

contain student-level data, states suppress records for students in small cells (e.g., Massachusetts, 

2014). We have even engaged in projects where suppression rules have been applied to student-

level data shared under secure data use agreements (DUA). In other words, state data 

administrations can and do apply microsuppression procedures to many of the data types 

available to researchers. 

While microsuppression has seemingly satisfied state concerns over disclosure risks, less 

is known about how this affects the utility of the data it produces. It is entirely possible that by 

deleting certain records, the released data no longer resembles the original data in important 

ways. This could potentially lead to analyses or inferences based on microsuppressed data that 

differ from those conducted on the complete (non-suppressed) data. However, there is little 
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empirical evidence about how much these may differ in US state education data, and what may 

be driving those differences.  

This paper addresses how microsuppression can affect the quality of data in education. 

The following section provides an overview of microsuppression and how states have employed 

it. We then discuss how microsuppression can create “biased” data and argue that biases depend 

on how much and which data gets suppressed. Using cross sectional data from states we examine 

potential biases in various statistics computed from microsuppressed data. We find that some 

marginal summary statistics, such as mean test scores for the entire state, exhibit minimal bias, 

but that conditional estimates, such as mean test scores for minorities, can exhibit substantial 

bias. Moreover, we demonstrate potential corrections, such as post-stratification, may actually do 

more harm than good that in some instances. Finally, we discuss the implications of these 

findings and alternative measures that SLDS may take. 

 

Microsuppression for Data Masking 

Data privacy is a central focus of many efforts that collect data on individuals, especially 

scientific studies and government entities like the US Census Bureau. Ensuring an individual’s 

right to privacy is often treated as both a moral and legal obligation. It is also understood that 

doing so can help ensure data collected are of high quality because respondents trust that their 

identity and responses are protected (see Hundepool et al., 2012). SLDS and other educational 

agencies view privacy in similar terms, and students’ privacy is legally protected by FERPA and 

PPRA. In addition, Institutional Review Boards (IRBs) also evaluate and govern how potential 

research efforts must protect individual privacy. 
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 The right to privacy is particularly important given the vast amounts of sensitive 

information collected by state agencies on students. In addition to students’ progress and 

achievement throughout their primary and secondary education, states and schools often track 

how students access academic or counselling services. These records alone present “big data” 

problems when it comes to storage and security (Trainor, 2015). An increasing number of states, 

such as Illinois, Minnesota, or Maryland, capture (and can link education data to) earnings and 

employment status later in life (see, e.g., Illinois Longitudinal Data System). Moreover, with the 

widespread proliferation of technology-based tools in education, the amount of data collected on 

any one student has grown by orders of magnitude. In short, SLDS and other education 

stakeholders are storing and maintaining vast amounts of data on students, and they have a 

serious obligation to maintain the privacy of that data. 

 In order to live up to this obligation, SLDS have taken important steps. They store data 

on secure servers and restrict access to that data. However, states are seldom immune from ever 

granting access to students’ data. Public reporting, including for accountability purposes, is a 

common use of SLDS data. Researchers and state agencies often use SLDS data in order to 

evaluate various educational policy changes. Thus, SLDS enact sophisticated measures to ensure 

that when data are accessed and reported, unintended disclosures are unlikely. These measures 

include security protocols for transferring data to researchers, or even requiring that researchers 

conduct analyses in specific physical locations that are deemed secure, which is the approach 

favored by Arizona (see Arizona, 2020). When data is shared with external researchers, states 

typically remove personally identifiable information, such as names and addresses, and evaluate 

the risk that the remaining variables may be combined to identify individual students (Johnson, 
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2007). This process has even been built directly into software that queries raw data, such as 

Delaware’s systematic redaction system (see Peoples, 2018). 

 As part of this effort, SLDS have turned to a data masking tool called microsuppression 

to protect against disclosures. Microsuppression, which was introduced by Duncan and Lambert 

(1986), is a procedure that removes records at high risk of disclosure from a dataset prior to its 

release (e.g., to external researchers). One way to understand the disclosure risks is to consider 

an “intruder” seeking sensitive information on a specific student or set of students (Duncan & 

Lambert, 1986, 1989). The intruder may know some information about that student, such as their 

grade, gender, etc., which can be denoted by a vector t (see Reiter, 2005). The vector t may not 

contain sensitive information about the target student, but it can be used to uncover sensitive 

information by matching t to records in the released data. If only one or two records match the 

information, the intruder has a high probability of uncovering the rest of the student’s record, 

which can include sensitive information. However, if t matches 20 records, then the intruder has 

a considerably lower probability of uncovering the rest of the student’s record; it could be any of 

the 20 records matched. So long as the values of any sensitive variables in those 20 records are 

not identical, this presents a reasonable approach to protecting privacy, and the risk of an 

intruder uncovering sensitive information will be greater when they can identify very few, or 

even a single record that match their information t.  

 To protect against this, microsuppression works by deleting records for which a potential 

intruder’s vector of information t has only a few matches. This is related to an idea called k-

anonymity in the statistical disclosure control literature (see Samarati, 2001; Samarati & 

Sweeney, 1998). How this occurs, and how it can affect the utility of the resulting data will 

depend on what variables are used to divide students into risk strata (i.e., cells), and what size of 
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strata is considered small enough to delete. Because of the diversity of state education systems 

and the data requests they receive, SLDS vary in how and when they use microsuppression. 

However, there appear to be at least two different settings in which SLDS apply it. 

First, microsuppression is applied is to student-level data, and occasionally to data shared 

with external researchers under secure DUAs. Based on a review of data governance manuals, 

correspondence with SLDS administrators, and experience in our own research, it appears that 

microsuppression of restricted access student-level data either has occurred or may occur in at 

least five states (and potentially even more than five) that comprise nearly 20% of all students 

enrolled in public schools in 2020. 

Second, and more common, microsuppression is applied to summary tables. SLDS 

produce a wide range of publicly available tabular data that summarize everything from student 

achievement and demographics to school staffing. Many of these tables include school, district, 

or county averages (including for subgroups) and many of these are publicly available. For 

instance, North Carolina produces “School Performance Grades Reports” (see North Carolina, 

2020) that contain average student scores on state assessments by demographic subgroups within 

schools. These tables show, for instance, how the average English language learner in each 

school performed on the state science exam. When these tables are publicly available, they are 

almost always subjected to some type of suppression. Every SLDS administrator we contacted 

and every data governance manual we reviewed, totaling over 25 states, contains some form of 

suppression rules for publicly reported tables. 

The exact procedure used for this are different from state to state. For instance, Delaware 

uses a set of rules that apply both to cell counts in tables as well as cell counts in the population. 

Under these rules, cells in tables of fewer than five students will be redacted. However, even if a 
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cell contains more than five students, if that cell is representative of a population subgroup with 

fewer than 15 students, it will automatically be redacted (Delaware, 2020). A more common rule 

appears to be that cells with fewer than 10 individuals are suppressed, which is in data 

governance manuals for several states (e.g., Massachusetts, 2014; Montana, 2018; Nebraska, 

2013; North Carolina, 2009). As an example, if there are only one or two ELL students in a 

school, North Carolina will not report the average test scores of ELL students in that school in 

their “School Performance Grades Reports.” 

 

Microsuppression and Data Quality 

Various researchers in different fields have pointed out that microsuppression can degrade the 

quality of the released data (Kelly, 1992; Ohno-Machado, 2002; Matthews, et. al., 2017). One 

way to conceive of the quality of microsuppressed data is to examine the ways in which they 

differ from the complete, unsuppressed data. If there are large differences between the complete 

and microsuppressed data, this can lead to inaccuracies in the results of analyses conducted on 

the microsuppressed data, which could affect scientific or policy conclusions supported by those 

analyses. Thus, it is important to know if and when the released data can be considered a 

reasonable proxy for the complete data. 

To help understand issues surrounding data utility, it can be helpful to think about 

microsuppression involving three different subsets of the data. There is the complete dataset that 

contains, for instance, entries for every student in the state. Then there is the dataset of dropped 

observations, which correspond to students whose records fall into small strata and thus are 

suppressed prior to release. Then there is the data that ultimately gets released. Throughout this 

paper, we will refer to these as the complete/full, dropped, and released/retained data. The 
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dropped and released data are mutually exclusive (i.e., no record is both released and dropped), 

and their union is just the complete dataset. 

  In this article, we compare the released and complete data by examining population-level 

statistics for each state. If key statewide statistics are not preserved in the released data, then we 

might think of the released data as “biased” in some way. The following sections detail some 

potential quantities of interest, how microsuppression might affect those parameters, and the 

statistical factors that could induce biases. 

 

Bias 

We want statistics computed from state datasets to be unbiased. One can conceive of bias in 

analyses of released data in terms of three parameters: µr in the released dataset, µd in the 

dropped dataset, and the population parameter µ in the complete dataset. To get a sense of this, 

suppose we are interested in the average math achievement test score for minorities in fourth 

grade in a given state. Let Y be the math scores in the state, and let X indicate whether a student 

is a minority (X = 1 corresponds to minority status). Then the estimand we are interested in is 

µ = E[Y | X = 1]         (1) 

If we had the full dataset, we might compute this with the conditional mean of test scores 

for minorities. This would give us the value of µ. However, if suppression has occurred, we do 

not have access to the complete dataset. Let S be an indicator for whether or not an individual is 

in a small stratum. Then the released data would comprise only observations for which S = 0. 

Thus, if we were to take the average test score for minorities in the released data, we would have 

 µr = E[Y | X = 1, S = 0]        (2) 
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Additionally, we can denote the mean test score for minorities in the dropped data (i.e., among 

the records that are suppressed prior to release) as: 

 µd = E[Y | X = 1, S = 1]        (3) 

The mean in the complete data can be different from that in the masked data, and thus it 

may be difficult to use the masked data to make inferences about µ. Indeed, we can express µ as 

a function of µr and µd using the law of total expectation: 

 µ = µr P[S = 0 | X = 1] + µd P[S = 1 | X = 1]      (4) 

The difference between µ and µr can be referred to as bias. Moreover, we can rewrite 

equation (4) to obtain a formula for the bias: 

Bias = (µr – µd) P[S = 1 | X = 1]       (5) 

This expression contains two components. The first is the difference between the released 

(S = 0) and dropped (S = 1) test scores µr – µd. If the retained and suppressed records have the 

same mean test score, then the bias will be zero. If, however, they have different means, then 

there may be systematic differences between the released and dropped observations. This can 

result in bias, but it also means that correcting for this bias may be difficult. This is because the 

observations that are dropped from the dataset prior to its release may differ systematically, and 

in ways unknown to the researcher, relative to the observations that are released. 

The second component P[S = 1 | X = 1] is the probability that an observation is dropped, 

what might be called a suppression rate or the proportion of data suppressed (PDS). The 

suppression rate is an important quantity here. If it is 0%, then the bias is zero since no 

observations are dropped. If it is larger, then there may be substantial bias.1 

 
1 Note that if the suppression rate is 100%, which occurs for some racial subgroups in the data, then an analysis 
involving those subgroups will be impossible. 
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Variance 

Another type of parameter that may be of interest to researchers is the variation in the data, and 

how this variation is partitioned at different organizational levels. Typically in education, we 

focus on the total variation and the intra-class correlation (ICC), which refers to the correlation 

between observations in the same school or classroom.  

These parameters are important for a few reasons. Both the total variation and the ICC 

are used to justify the design of experiments in education. If such values are computed on 

released data, then they may not correspond to the “true” values from the complete data. 

Inaccuracies in these parameters could lead to experiments that are either under- or overpowered. 

Alternatively, analyses involving a stochastic element (e.g., with sub-samples of the data or a 

probability model) must account for some level of uncertainty, which is usually communicated 

as a standard error. The standard error of an estimate will often depend on the total variation, the 

ICC, or both. Thus, if such analyses are conducted on the released data, the standard errors may 

be incorrect, since there is no guarantee that either parameters will be unaffected by 

microsuppression. This will in turn affect the properties of hypothesis tests; if the ICC in the 

released data is much smaller than the ICC in the complete data, tests may have larger than 

nominal type I error rates. 

In this study, we consider school-level ICCs. Denote the variation of average test scores 

between schools as τ2 and the variation among students within schools as σ2. Then the total 

variation can be written as τ2 + σ2 and the ICC can be expressed as  

𝜌𝜌 = 𝜏𝜏2

𝜏𝜏2+𝜎𝜎2
         (6) 
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In the released data, the corresponding parameters are τ2
r and σ2

r, and the ICC in the 

masked data can be written as  

𝜌𝜌𝑟𝑟 = 𝜏𝜏𝑟𝑟2

𝜏𝜏𝑟𝑟2+𝜎𝜎𝑟𝑟2
         (7) 

Suppression can affect the value of both τ2 and σ2, and thus ρ. For example, value of σ2 

may decrease if students whose records are dropped are in the tails of the achievement 

distribution, but it can increase if they are closer to the center of that distribution. The between-

school variation can be affected by the deletion of individual students within schools if those 

deletions render school means more similar. Moreover, it may be the case with smaller schools 

that all of the students in the school (and hence the school itself) are dropped from the data due 

to suppression. If the dropped schools are particularly high (or low) achieving, then this may 

decrease τ2 (and hence ρ).  

 

Data & Methods 

This article empirically assesses the potential impact of microsuppression using state education 

data. Our approach is to mimic the behavior of microsuppression procedures using that data. We 

begin with complete data. The for each dataset, we divide records into risk strata and suppress 

the small strata according to rules used by states when releasing data. We then run analyses on 

the masked data and the complete data and compare their results. This section details the data 

used, the procedures for suppressing data, and some limitations of the data and our approach to 

studying microsuppression. 

We obtained data from eight states. For each of these states, we took cross sections of 

fourth graders and eighth graders. Since the data from each state covered slightly different time 

frames, the years of the cross sections vary for each state; the resulting cross sections span the 
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years from 2009 to 2012 and include elementary and middle school students. These cross 

sections contain basic demographic information, including a student’s school, race, gender, if 

they receive free or reduced-priced lunch (FRL), and whether they have limited English 

proficiency (LEP). They also include state achievement test scores in various subjects, though all 

datasets (across states and grades) have scores for math and reading. Table 1 provides a summary 

of cross sections used.  

Microsuppression was conducted by stratifying students based on their school, race, and 

gender. We then deleted records in strata smaller than 10. Deleting strata with fewer than 10 

students follows the guidance of the privacy and data management plans of the states that shared 

data for this effort and is consistent with the policies of many other states as described in the 

previous section.  

Two limitations are worth noting about this approach. First, the results presented here are 

based on only eight states. While they range from the very small (State 5) to large (State 4), and 

from racially diverse (State 1 and State 6) to homogenous (State 5 and State 8), it is somewhat 

unclear how the results presented in this article generalize to other states. Second, while our 

approach to microsuppression is consistent with practices in the states we studied, it is not the 

only way to apply suppression rules. It is possible to, for instance, include additional 

demographic variables, such as ELL status when defining risk strata, or to include suppression 

rules that involve extreme values. Thus, the results presented in the subsequent sections show 

possible impacts of microsuppression on data utility, and these impacts might vary had we used 

data from different states or applied different suppression procedures.  

 

Empirical Results 
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The sections that follow provide insight into the effects of microsuppression. We compare 

marginal and conditional means, as well as variance components of the released data to those of 

the complete data. To get a better sense of why differences emerge between released and 

complete datasets, we examine suppression rates, as well as systematic differences between the 

dropped and released data. Note that because each cross section is a census of students in a state 

(for a given grade) quantities in the following sections are reported without standard errors. 

However, an alternative conception of these data would treat it as a random sample. Had we 

done so, standard errors would largely be less than about 0.01 for marginal statistics and 0.05 for 

subgroup statistics. 

 

Mean Test Scores 

A basic question about microsuppression is how well population-level statistics are preserved. In 

the data, there are both continuous variables (test scores) and categorical variables. For test 

scores, we compute the difference between average test scores from the masked and complete 

data on the scale of standard deviation units: 

𝛿𝛿 = 𝜇𝜇𝑟𝑟−µ
𝜎𝜎

        (8) 

where µr and µ are the mean scores for the released and complete data, respectively, and σ is the 

standard deviation of the test scores computed on the complete data. For categorical data, we 

present the raw proportions for each subgroup in the population, such as the proportion of 

students receiving FRL. 

 Figure 1 shows the differences in test score means for each cross section of data in a 

series of plots. For both the fourth and eighth grade cross sections, Figure 1 shows the 

suppression rate, the difference between the released and dropped test scores for math and 
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reading, and the difference between the released and full data test scores. Differences are 

reported in standard deviation units. In the plots that show the difference between the released 

and full data (last two plots in each row), we see that while the average test scores in the masked 

data are all greater than those of the complete data (i.e., all of the differences are positive), the 

differences appear quite small in magnitude. The largest differences are just under than 0.05 

standard deviations (State 7, fourth grade), and most are below 0.02 standard deviations.  

 These (apparently minor) differences will depend on both the suppression rate and the 

differences between the records that are released versus those that are dropped. Figure 1 provides 

insight into how these relate to state education data. The plot of suppression rates (first plot in 

each row) show that they vary greatly across states. Some states are required to delete as much as 

a quarter of their data under the suppression rules, while others suppress only 5% of it. There is 

no single driving factor for these differences. For instance, State 5, which has high rates of 

suppression, is a small state with less racial diversity (see Figure 1) and fewer than 25 students 

per school (in a single grade) on average. When fewer students are in a school, dividing those 

students into strata will often create small strata that will need to be deleted. Conversely, States 1 

and 6, both of which also had high rates of suppression, are larger, more diverse states, and 

schools in those states had more than 60 students (per grade) on average. 

 To further unpack what type of student records get suppressed, we ran multilevel probit 

models to predict whether a student’s record was suppressed based on their characteristics and 

the characteristics of their school. These models, which included random intercepts for schools, 

revealed that, as argued above, school-level characteristics, including mean achievement scores 

for schools, are often more predictive of suppression than individual characteristics. In general, 

these models suggested two patterns. In some states, lower achieving students in higher 
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achieving schools were more likely to be suppressed. In other states, lower achieving students in 

lower achieving schools were more likely to be suppressed. In other words, while students with 

lower test scores (for their school) were more often suppressed, in some states these students 

more frequently attended higher achieving schools, and in other states these students more often 

came from lower achieving schools. Because race and socioeconomic status are correlated with 

achievement, we tended to find greater discrepancies between the complete and released data for 

students in certain subgroups, which we discuss in subsequent sections. 

An important related issue is that the differences between the released and dropped 

records (“Released – Dropped” plots) show that the records retained can exhibit substantially 

higher test scores than those that are dropped. For several cross sections, these differences are as 

large as 0.3 standard deviations in magnitude. For reference, 0.3 would be considered a small-to-

medium sized effect in the social sciences (Cohen, 1988), and comprises approximately a year’s 

worth of learning in math in grade 4 (Hill, et. al., 2007).  

 While both the suppression rates and the Released-Dropped differences are each related 

to the Released-Full differences, they are not related to each other in the data. Viewing the 

suppression rate and “Released – Dropped” plots together, we see that there is only a weak 

correlation between them (r = -0.06 for math and 0.03 for reading). Indeed, some states suppress 

modest amounts of data that differ in large ways from the data that gets retained (e.g., State 7, 

eighth grade), while for other states who delete about the same proportion of data their deleted 

records are quite similar to the ones they retain (e.g., State 3). 

 

Variance Components 
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Both the planning of experiments and the precision of certain analyses will depend on the 

variation in the data. In this paper, we examine the effect of microsuppression on the total 

variation, as well as on the ICC. Figure 2 compares the differences of these two quantities for 

test scores in the cross sections of data used in this article. The left plot in Figure 2 contains a dot 

that corresponds to the percent difference in the total variation between the released and full data 

for each grade, state, and test. Negative values indicate that the released data exhibit less total 

variation than the complete data. The figure shows that the released data frequently have less 

variation than the complete data. While for some of the datasets this reduction is modest (less 

than 2%), this is not universally true, as microsuppression reduced the total variation of test 

scores for eighth graders in State 2 by as much as 11.5%.  

 The right plot in Figure 2 shows results for ICCs. This plot contains dots that reflect the 

percent difference in ICC between the released and complete data for each state, test, and grade. 

For fourth grade test scores, there are substantial differences in ICCs, as large as 31% in 

magnitude. However, while for some states and tests this difference in positive, meaning that the 

released data have larger ICCs, for others it is negative, meaning that the ICCs are smaller in the 

released data. This contrasts with the results for eighth graders, where the released data almost 

universally have smaller ICCs, and in some instances substantially so.  

 Bias in the variance components can affect many of the statistical procedures commonly 

used in education research. For instance, Hedges (2007) and Korendijk et al. (2010) show that 

when assessing treatment effects in cluster randomized trials, an inaccurate ICC can substantially 

inflate the type I error rate of the resulting hypothesis test. Similarly, if the total variation is 

systematically underestimated, it can induce overestimates in the precision of effect estimates or 

elevate type I error rates of hypothesis tests.  
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To put the findings in Figure 2 in context, consider tests of treatment effects in cluster 

randomized trials. Based on the results of Hedges (2007), underestimates of variance 

components on the scale of State 2 (30% decrease in the ICC and 11% decrease in the total 

variation) can raise the type I error rate (i.e., false positive rate) of such tests from the nominal 

5% to between 10% and 15%, depending on the number of schools and students in an 

experiment. Conversely, when the variance components are overestimated as much as they are 

among State 4 fourth graders (21% increase in ICC, 1% increase in total variation), the test for 

treatment effects will be more conservative (type I error rate as low as 4%) but will also be 

considerably less powerful (see Guittet, et al., 2005). 

 

Demographics 

Released data contains fewer FRL and LEP students, as well as a smaller percentage of 

minorities when compared to the complete data. Figure 3 shows the differences between datasets 

for the proportion of LEP, FRL, or female students for a given state and grade. The left plot 

shows the difference between the released and complete data. Each dot in that plot corresponds 

to a given cross section of data and demographic variable, and differences are computed as raw 

differences in percentages. The differences between the composition of the full and released data 

for these variables tends modest (i.e., less than 2%). However, the right plot in Figure 3 reveals 

systematic differences between the released and dropped records. Each dot in the bottom plot 

shows the difference between the released and dropped records computed on each cross section 

of data and reported as a difference in percentages. The distribution of those differences shows 

that students whose records get suppressed tend to be much more likely to receive FRL or be 

designated LEP than students whose records are released. 
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 More sizable differences occur for race. Figure 4 shows the proportion of each race 

present in each cross section of complete (“Full”) and released data (“Released”). The figure 

shows that released data tends to contain more white students and fewer minority students. The 

difference between the racial composition of the full and released data can be substantial. In 

State 6, the released data on fourth graders would contains nearly 66% white students, while the 

full data has only about 50% white students. In State 1, the released data on fourth graders would 

contain nearly 2% black students and less than 1% Asian students compared to roughly 8% and 

5%, respectively, in the full data. The percentage of Native American students in the released 

data is typically less than half of that in the full data. Some racial categories are completely 

suppressed (i.e., no such records are released), such as with Hispanic students State 5 or Native 

American students in State 8.  

 Finally, it is worth noting that subgroups defined by multiple demographic variables 

appear in released data at frequencies not too different from the complete data. For instance, the 

proportion of minority students receiving FRL in the released data is typically 2-3% lower than 

that of the complete data. The same can be said of LEP status. 

  

Conditional Means 

Microsuppression can also impact conditional distributions, including the distribution of test 

scores for subgroups in the data, such as race, gender, or FRL status. Suppose an analysis 

involves the mean test score for students receiving FRL. If the conditional mean test score for 

students receiving FRL in the full data E[Y | FRL] differs greatly from that in the released data  

E[Y | FRL, S = 0], this can greatly affect the accuracy of such analyses. 
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 Figures 5 and 6 show how mean test scores for each racial subgroup differ across 

datasets. The top panel of each figure plots the standardized mean difference between the 

released versus complete data computed within each racial subgroup for each state, grade, and 

test. Each bar corresponds to a given state, grade, and race. Bars above zero indicate that the 

conditional mean for the released data exceeds the conditional mean in the complete data, and 

bars below zero indicate that the released data has a smaller mean than the complete data. Both 

figures show that the test scores of white and Asian students are often overestimated by the 

released data, but the test scores of black, Hispanic, and Native American students are 

underestimated. These differences can be large in magnitude. The difference in mean test scores 

between the complete and released data is on the order of about 0.1 to 0.2 standard deviation 

units for black and Hispanic students and can be as large as 0.35 for Native American subgroups.  

 These differences are driven both by the suppression rates for these subgroups and 

differences in the released versus dropped records. Recall from the previous section that a greater 

fraction of black, Hispanic, and Native American student records are dropped during 

microsuppression, so suppression rates will be high for these subgroups. Moreover, the lower 

panels of Figures 5 and 6 show the difference in average achievement between individuals whose 

records are released versus those who are dropped for each race. What can be seen in these 

panels is that for most states and grades, the minority students whose records are released score 

on average about 0.2 standard deviations lower than those who are suppressed. Meanwhile, the 

white and Asian students whose data are released tend to score 0.2–0.5 standard deviations 

higher than those whose data are dropped. In fact, for one state, test scores released on white 

students are on average almost a full standard deviation higher than the test scores for students 
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whose data are suppressed. This would seem to be consistent with the relationship between 

suppression and school context and individual characteristics discussed in previous sections. 

 Taken together, the released data tend to be missing many lower achieving white students 

and higher achieving black and Hispanic students. This widens the apparent racial achievement 

gaps in the released data relative to the complete data. Figure 7 show the differences for each 

state and grade for the white-black (left plot) and white-Hispanic (middle plot) gaps. Each plot is 

comprised of dots that reflect the standardized difference achievement gaps between the released 

and complete data for a given cross section. Differences are reported on the scale of standard 

deviation units. Positive values in these plots correspond to released datasets that overstate the 

racial achievement gap. We see that for most states, this overstatement is modest (less than 0.05), 

but it can be as large as 0.2. 

 For the other demographic variables, differences in achievement gaps between complete 

and released data range from small or large. For instance, the difference in mean test score for 

students who do not receive FRL versus those who do will be overstated in the released data, but 

only by about 0.01 standard deviations. However, the achievement gap between non-LEP and 

LEP students may be substantially different. The right plot of Figure 7 shows the differences in 

the non LEP-LEP achievement gaps in the released and complete data; values are computed on 

the scale of standardized mean differences as in equation (8). Note that for math scores, the 

released data will often overstate the achievement gap (i.e., the difference between the complete 

and released values is negative) by as much as 0.1 to 0.2 standard deviations. For reading, these 

differences are considerably more modest. This is due in part to the fact that many LEP students 

are missing reading scores in the data (possibly due to not taking the reading achievement tests), 
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including among deleted observations. For both math and reading, these differences are larger in 

magnitude in contexts where a greater proportion of LEP students data get suppressed. 

 

Post-Stratification Weighting 

The previous sections detail the ways in which data subjected to microsuppression can be biased. 

This is due to the fact that records that are released after microsuppression are not representative 

of the complete dataset. This is analogous to issues with survey sampling, where the composition 

of a sample may differ from that of a population. A common correction for this problem involves 

post-stratification weighting so that the sample (i.e., the released data) more closely resemble the 

population (i.e., the complete data). This involves dividing the data into post-hoc strata and 

weighting observations within strata proportional to the stratum size (see Lohr, 2006; Gelman & 

Carlin, 2000). A similar approach could be taken with microsuppressed data; for instance, if after 

suppression, there are fewer Hispanic female students in the data, then we can upweight 

observations that correspond to Hispanic females. Note here that the strata used to weight the 

data are not necessarily the same as those used to mask or suppress data. 

Forming post-stratification weights would be difficult for at least two reasons. First, 

determining the weights requires some knowledge about population-level counts. As an example, 

figuring out how much to upweight records from Hispanic female students involves knowing 

how many Hispanic females are in the complete data. This type of information inherently 

missing from data subject to microsuppression, and so requires information beyond merely the 

data released. Some of it can be obtained in administrative reports, for instance from the National 

Center for Education Statistics’ Common Core of Data (CCD). 
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The second difficulty concerns how strata are formed for the post-stratification weights. 

They should be granular enough to minimize differences between the released and complete 

data. However, if they are too granular, then there will be strata in the population for which there 

are no corresponding observations in the released data. For instance, if we felt that race and 

gender were sufficient to determine post-stratification weights, but all of the Hispanic females 

are deleted from the released data due to microsuppression, then there will be no observations to 

upweight for that stratum.  

A first-order approach to applying these weights could be to use student-level 

demographics, such as their race, gender, and school they attend. Weights can be computed from 

information in CCD reports on demographics within states. In this section, we demonstrate how 

this approach might proceed, and what improvements it might offer. Let Z be the set of variables 

in the data that are used to divide it into strata for post-stratification weights. In this article, Z 

will comprise either a student’s race and gender (Z1), their school (Z2), or all three (Z3). Then, 

from the full data, we can determine the proportion of students with the same set of covariates z 

as P[Z = z], and reweight observations in the masked data by 1/P[Z = z]. We follow this 

procedure to obtain corrected mean test scores for each state and grade. 

 Differences between weighted mean test scores in the masked data and the mean test 

score in the complete data are shown in Figure 8. For each test, the figure shows the bias of 

various weighted corrections denoted by dots, which are shaded by the variables used to compute 

post-stratification weights. Corrections include an unweighted mean (the “None” dots), which is 

how Figure 2 is computed, and a mean that weights observations by race and gender; by school; 

and by race, gender, and school (“All”). Values are reported in terms of standardized mean 
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differences as computed by equation (8); positive values indicate that the masked-data mean is 

larger than the complete-data mean.  

What can be seen in the figure is that incorporating race and gender into the weights can 

actually exacerbate bias. The differences in those columns are larger than those in the 

unweighted column, meaning that less bias is obtained by not weighting by race or gender. For 

some states and grades, means weighted by race or gender are as much as 0.3 standard deviations 

larger than the complete data mean. This bias can be reduced by weighting only by school size. 

However, even there, the unweighted mean tends to be slightly less biased. Weighting by all 

three increases the bias relative to weighting just by school size. 

The increase in bias arises from the fact that the dropped and released records 

systematically differ. A weighting correction works by giving more weight to certain 

observations under the assumption that those observations are representative of several records 

that are not observed. But much of this article has shown that this assumption does not always 

hold with microsuppression. In Figures 5 and 6, we saw that there were substantial differences 

(on average) for racial subgroups between the released and dropped observations, and these 

differences were particularly large for black and Hispanic students. At the same time Figure 1 

shows that a greater proportion of black and Hispanic students are removed from the data under 

the suppression rules. Thus, the black and Hispanic students whose records are released will 

receive greater weight under the correction, but they will have higher test scores than black and 

Hispanic students whose records are dropped. In that sense, the correction gives more weight to 

observations that are arguably less representative. 

 

Discussion 
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Protecting individuals’ privacy is an important principle in any effort that systematically collects 

and uses data. This is part of the reason that laws such as FERPA and PPRA, as well as bodies 

like IRBs require that researchers and state agencies take measures to protect students’ privacy. 

Many of these measures are built into the SLDS infrastructure and are key steps in how they 

provide data to the public and to researchers. One such measure, which appears to be common 

practice, is microsuppression. It has long been known that microsuppression can limit the utility 

of data, however the extent to which it can has not been fully studied in the context of SLDS.  

This paper has sought to quantify the effect of masking state education data via 

microsuppression. While the data and suppression rules used in this study do not cover all 

possible scenarios, they do offer some idea of the implications of microsuppression on data 

quality for SLDS. We found that the data that results from microsuppression are often biased, 

and we would urge caution when interpreting analyses conducted on such data. In particular, we 

found that while microsuppression had almost no impact on marginal mean test scores, it did 

substantially reduce measures of variance. Underestimates in both the total variation and the ICC 

found in this article would be enough to distort the results of analyses such as null hypothesis 

tests in cluster randomized trials. Microsuppresion also induced greater biases within subgroups. 

The achievement of white and Asian students, for instance, tends to be higher in the released 

data, while the achievement of black and Hispanic students tends to be lower. This can lead to 

sizeable overestimates of achievement gaps as large as 0.2 standard deviations.  

The key factor driving these biases is that the released and dropped records are 

systematically different in ways that are unknown to the analyst. Because of this, potential 

corrections based on post-stratification tended to exacerbate biases rather than mitigate them. 
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This implies that not only might analyses based on microsuppressed data be biased, but there will 

be no obvious way to adjust for that bias. 

While microsuppression has found favor among SLDS, it is only one tool in a broader 

literature on statistical disclosure control. There are numerous alternative measures that SLDS 

could take to mask data (for a larger discussion, see Hundepool et al., 2012). For instance, 

agencies could release averages of randomly grouped individuals (referred to as 

“microaggregation”), which can preserve data utility better than microsuppression (see Card et 

al., 2010; Matthews & Harrell, 2011), including for analyzing educational experiments 

(Schochet, 2020). Synthetic data methods have also emerged as a potentially useful alternative. 

These methods generate sets of synthetic data by randomly imputing values for, say, a student’s 

test scores or demographics (see Little, Liu, and Raghunathan, 2004; Raghunanthan, Reiter, & 

Rubin, 2003; Reiter, 2004, 2005b, 2009; Reiter & Raghunathan, 2007; Rubin, 1983; Singh, Yu, 

& Dunteman, 2003). A recent empirical evaluation of synthetic data disclosure conducted on 

student records in Maryland highlights the promise of this approach and discusses steps required 

to ensure successful implementation (Bonnéry et al., 2019). 

State agencies may also address issues of data utility using a system of verification. 

Because the biases induced by microsuppression are seldom reported by states themselves, it will 

be difficult to say just how accurate a given analysis conducted on microsuppressed data actually 

is. However, states could potentially run the same analysis on the complete data and quantify 

those biases post-hoc. Related work by Reiter et al. (2009) and Reiter (2018) discuss verification 

systems wherein synthetic data are released, researchers use those data to train models, and then 

submit their code to data administrators who can verify analytic results on the real data.  
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Adopting any of these alternatives is not necessarily a trivial process. In some states, like 

Delaware, the machinery for conducting suppression is built directly into the tools that interface 

with raw data. Moreover, methods such as synthetic data or verification systems may require 

additional personnel, expertise, and/or computational power. Thus, while SLDS may have other 

options in theory, it may take substantial effort to make them common, reproducible practice. In 

the meantime, the results of this article suggest that transparency about data collection and 

masking is necessary in order to properly contextualize the results of analyses involving state 

education data. 
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State 
# Students # Schools # Districts 

Grade 4 Grade 8 Grade 4 Grade 8 Grade 4 Grade 8 
ST 1 (2012) 79,382 76,976 1,142 779 424 404 
ST 2 (2010) 50,946 49,177 774 442 --- --- 
ST 3 (2012) 71,263 74,081 1048 649 307 292 
ST 4 (2010) 120,003 112,903 1,418 716 200 202 
ST 5 (2010) 6,679 6,849 268 195 176 168 
ST 6 (2014) 75,305 76,778 1,248 693 294 280 
ST 7 (2009) 60,083 61,999 1,133 668 427 428 
ST 8 (2012) 20,727 20,717 423 205 57 57 

Table 1. This table summarizes the datasets used in this investigation. These datasets are cross 
sections of eight statewide data systems for fourth and eighth grade.  
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4th Grade 

 
 
8th Grade 

 

Figure 1. These plots show the suppression rate (left most plot), the difference between released 
and dropped test scores for math and reading, and the difference between released and full test 
scores for math and reading. Each bar represents one state, plots on the top row correspond to 
4th grade students, plots on the bottom row are for 8th grade students. Differences are reported in 
standard deviation units (SD).  
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Figure 2. These plots show the differences between the full and released data variance (left plot) 
and intra-class correlation (ICC) (right plot). Differences are reported at percent differences, 
and the dots correspond to a difference computed on a single cross section of data for a single 
test (math or reading). Dots are shaded by the grade of students in that cross section. 
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Figure 3. These plots show the differences between the demographics in the released versus the 
full data (left plot) and the released versus dropped data (right plot). Dots correspond to the 
difference in the percentage of students in a demographic subgroup in the released data versus 
the full or dropped data computed on a single cross section of data. Differences are reported as 
a raw difference. Dots are shaded by subgroup: % female, % of students receiving free or 
reduced priced lunch (FRL), and % of students who are deemed to have limited English 
proficiency (LEP). 
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Figure 4. This figure plots the differences in the racial composition of data released after 
microsuppression and the full data. Bars are shaded by racial subgroup: W = white, B = black, 
H = Hispanic, A = Asian, N = Native American, O = other. 
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Figure 5. This figure plots the difference in mean math test scores within racial subgroups for 
data released after microsuppression versus the full data and data dropped as a result of 
microsuppression. Each plot shows the difference in means on the scale of standard deviation 
units, and bars are shaded according to racial subgroup: W = white, B = black, H = Hispanic, A 
= Asian, N = Native American, O = other. 
 

 



Cell Suppression and Statistical Validity in State Data Systems 
 

 
 

39 

 

Figure 6. This figure plots the difference in mean reading test scores within racial subgroups for 
data released after microsuppression versus the full data and data dropped as a result of 
microsuppression. Each plot shows the difference in means on the scale of standard deviation 
units, and bars are shaded according to racial subgroup: W = white, B = black, H = Hispanic, A 
= Asian, N = Native American, O = other. 
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Figure 7. These plots show the difference in achievement gaps in the data released after 
microsuppression versus the full data. Differences are reported on the scale of standard 
deviation units; positive values indicate the released data overstate the achievement gap. Dots 
correspond to differences computed on a single cross section, and they are shaded according to 
the state assessment subject on which they were computed: mathematics or reading. Vertical 
lines indicate a difference of zero; note that each plot as different x-axis scales. 
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Figure 8. This figure shows the standardized difference between the corrected average test score 
in the released data versus the actual average in the complete data. Differences are shown in 
standard deviation units. The plots are broken out by subject (math and reading), and dots 
correspond to a given cross section. Dots are shaded according to the variables used to compute 
post-stratification weights. “None” indicates no correction; “Race/Gender” weights by the joint 
proportions for race-gender combinations; “School” weights by school size; and “All” uses 
weights according to race, gender, and school.  
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