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ABSTRACT
This article focuses on a family of restricted latent structure models with wide applications in psychological
and educational assessment, where the model parameters are restricted via a latent structure matrix to
reflect prespecified assumptions on the latent attributes. Such a latent matrix is often provided by experts
and assumed to be correct upon construction, yet it may be subjective and misspecified. Recognizing
this problem, researchers have been developing methods to estimate the matrix from data. However, the
fundamental issue of the identifiability of the latent structure matrix has not been addressed until now.
The first goal of this article is to establish identifiability conditions that ensure the estimability of the struc-
ture matrix. With the theoretical development, the second part of the article proposes a likelihood-based
method to estimate the latent structure from the data. Simulation studies show that the proposedmethod
outperforms the existing approaches. We further illustrate the method through a dataset in educational
assessment. Supplementary materials for this article are available online.

1. Introduction

1.1. Restricted Latent ClassModels with Diagnostic
Feature

Latent class models are popularly used in social sciences to
model latent attributes that are not directly measurable, which
assume that observed responses can be explained by a set of
discrete latent attributes (Goodman 1974; Agresti 2013). This
article focuses on a family of restricted latent class models
that have diagnostic feature. This class of models has wide
applications in psychological and educational measurement,
where a classification-based decision is made about an indi-
vidual’s latent attributes from his or her observed responses. In
particular, a subject, such as an examinee or a patient, provides
binary responses R = (R1, . . . ,RJ )

⊤ to J diagnostic items,
where ⊤ denotes the transpose. These responses are assumed
to be explained by K unobserved binary latent attributes
α = (α1, . . . ,αK )⊤. The binary value αk ∈ {0, 1} indicates the
absence or presence of the kth attribute, respectively. The vector
α specifies a latent class that is usually called an attribute profile
or knowledge state. Such construction of α, which is different
from the conventional latent class model setting, is assumed
for the diagnosis purpose. For instance, teachers may want to
know whether students have mastered certain skills; and psy-
chiatrists want to know whether patients have certain mental
disorders.

For these diagnostic models, another major difference
from the conventional latent class models is that the model
parameters are restricted by a binary latent structure matrix,
called the Q-matrix. The Q-matrix reflects the prespecified
diagnostic relationships between the J items and the K latent
attributes (see Section 2). The Q-restricted latent class mod-
els have the desirable diagnostic feature of providing informative
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cognitive profiles for every respondent, which allows for the
design of more effective intervention strategies. These models
have recently gained great popularity in educational proficiency
assessment (e.g., Junker and Sijtsma 2001; Hartz and Roussos
2008; von Davier 2008; Henson, Templin, and Willse 2009; de
la Torre 2011), psychiatric diagnosis (e.g., Templin and Hen-
son 2006; Chen et al. 2015), and many other disciplines (e.g.,
Tatsuoka 2009; Rupp, Templin, and Henson 2010). The models
also provide the basis for computerized-adaptive diagnosis in
online testing and learning (e.g., Wang et al. 2016; Xu, Wang,
and Shang 2016; Zhang and Chang 2016).

1.2. Identifiability Issues and Related Literature

While the latent Q-matrix plays a key role for diagnosis assess-
ment, identifiability of these restricted latent structure models
has long been an issue, as noted in the literature (de la Torre
and Douglas 2004; Maris and Bechger 2009; Tatsuoka 2009;
DeCarlo 2011; von Davier 2014; Xu and Zhang 2016). For
unrestricted latent class models with binary responses, Gyl-
lenberg et al. (1994) showed that they are not identifiable in a
strict sense. On the other hand, researchers have considered
the generic identifiability of such models, which is defined
following algebraic geometry terminology and implies that the
set of parameters for which the identifiability does not hold
has Lebesgue measure zero. Elmore, Hall, and Neeman (2005)
and Allman, Matias, and Rhodes (2009) established generic
identifiability results for a large set of latent structure models.
Related identifiability results on finite mixture models have also
been developed in Hall and Zhou (2003), Hall et al. (2005), All-
man, Matias, and Rhodes (2011), Henry, Kitamura, and Salanié
(2014), and many others. However, the existing identifiability
results for the unrestricted latent class models cannot be applied
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to theQ-restricted models due to the additional constraints that
reduce the parameter space to a measure zero set. To address
this issue, Xu (2017) recently proposed a marginal probability
technique and established a set of sufficient conditions for the
identifiability of these restricted models under the condition
that the Q-matrix is correctly specified beforehand and known.

However, the latent Q-matrix, which is often provided by
experts upon construction, is subjective and can be misspeci-
fied. The misspecification of the Q-matrix could lead to serious
lack of fit and consequently inaccurate inferences on the latent
attribute profiles. Moreover, in exploratory analysis of newly
designed items, a large part or the whole Q-matrix may not be
available. Recognizing these issues, researchers have been devel-
oping methods to estimate theQ-matrix from the response data
(e.g., de la Torre 2008; Barnes 2010; DeCarlo 2012; Liu, Xu, and
Ying 2012, 2013; Chiu 2013; Chen et al. 2015; de la Torre and
Chiu 2016). However, identifiability and related statistical prop-
erties of the Q-matrix have largely been an underexplored area
in the literature and it is still not clear when the Q-matrix can
be consistently estimated. Some special cases have been recently
studied in Liu, Xu, and Ying (2013) and Chen et al. (2015); nev-
ertheless, their theoretical techniques depend on some strong
model assumptions and cannot be applied for the general cog-
nitive diagnosis models in psychometrics assessment.

1.3. Main Contributions

The first aim of this article is to address the fundamental iden-
tifiability issue of the Q-matrix. Compared with the problem
of identifying model parameters under a prespecified structure
matrix that was studied in Xu (2017), it is more challenging
to establish the identifiability of the latent Q-matrix for sev-
eral reasons. First, the current work focuses on a more com-
plicated problem than that in Xu (2017). For the Q-restricted
models, differentQ-matrix corresponds to different set ofmodel
parameters and diagnostic constraints. The estimation of the
Q-matrix therefore depends on the identification of unknown
model parameters under each candidate Q-matrix, where the
model parameters themselves may not always be identifiable
under these candidates. Second, the Q-matrix of interest is a
binary matrix; and the discreteness nature of the identifiabil-
ity problem makes it different from Xu (2017) and the existing
tools may not be directly applicable. We therefore develop new
theoretical technique to establish the identifiability results. This
article focuses on a general setting that covers most of the popu-
larly used diagnostic models and develops identifiability results
for the Q-matrix, which provide not only theoretical justifica-
tion formany of the existing estimationmethods, but also useful
information for related experimental designs, whereas in cur-
rent applications the designs are usually experience-based and
identifiability may not be ensured. Moreover, the proof tech-
niques can be used to establish large sample theory of likelihood-
based estimators.

The second aim of the article is to develop a unified approach
to estimate the latent Q-matrix under a general model setting.
In particular, we consider two important cases in practice: when
the whole Q-matrix is largely unknown and when a provisional
Q-matrix is provided. Most existing estimation methods focus
on specific diagnostic models with strong model assumptions

and cannot be directly applied to the general diagnosis assess-
ment, especially in the first case. Due to the discreteness nature
of the Q-matrix, direct search of the maximum likelihood
estimator is not practically feasible. We propose a computa-
tionally efficient likelihood-based method to estimate the latent
structure. Asymptotic properties of the proposed estimator are
established with the help of the developed identifiability theory.
Simulation results show the proposed method outperforms the
existing methods.

The remainder of this article is organized as follows. Section 2
introduces the class of restricted models of interest with
some examples. Section 3 introduces the identifiability result.
Section 4 proposes a likelihood-based estimation method and
studies its theoretical properties. Sections 5 and 6 present sim-
ulation studies and real data analysis. A discussion is given in
Section 7. The proofs and additional numerical results are pre-
sented in the supplementary appendix.

2. Q-Restricted Latent Class Models

In this section, we first give an introduction of the considered
restricted latent class models, followed by examples of several
popularly used models. Assume that N subjects are randomly
sampled from a target population and their attribute profiles
αi, i = 1, . . . ,N independently follow a categorical distribution
with probabilities pα := P(αi = α) for any α ∈ {0, 1}K , where
pα ∈ (0, 1) and

∑
α pα = 1. Given the ith subject’s attribute pro-

file αi, the response Ri j to item j follows a Bernoulli distribution
with positive response probability θ j,αi := P(Ri j = 1 | αi). In
addition, the ith subject’s responses Ri = {Ri j, j = 1, . . . , J} are
assumed conditionally independent given αi. Such conditional
independence assumption is commonly used in finite mixture
literature, such as Hall and Zhou (2003) and Allman, Matias,
and Rhodes (2009).Wewrite# = (θ j,α) as a J × 2K matrix con-
taining the θ parameters and p = (pα : α ∈ {0, 1}K )⊤ as a 2K
dimensional vector. The unknown parameters of the latent class
model include # and p.

The cognitive diagnosis models (CDMs) are a class of
restricted latent class models where the model parameters # =
(θ j,α) are constrained by preassumed relationships between the
J items and the K latent attributes. Such relationships are spec-
ified through a J × K binary matrix, which is called Q-matrix
in the literature. The entry q jk ∈ {0, 1} of the Q-matrix indi-
cates the absence or presence, respectively, of a link between the
jth item and the kth latent attribute. For instance, the following
self-explained Q-matrix corresponds to four items, three latent
attributes, and 23 = 8 latent classes.

Q =

attribute
α1 α2 α3

item 1 1 0 0
item 2 0 1 0
item 3 1 0 1
item 4 0 1 1

(1)

Denote the jth row vector of Q by Qj,⋆, which gives the full
attribute requirements of the jth item. For an attribute pro-
file α, we write α ≽ Qj,⋆ if αk ≥ q jk for any k ∈ {1, . . . ,K},
and α ̸≽ Qj,⋆ if there exists k such that αk < q jk. We write
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0k = (0, . . . , 0)⊤k×1 and 1k = (1, . . . , 1)⊤k×1, and omit the index
of length when there is no ambiguity. Furthermore, let ei be a
standard basis vector, whose ith element is one and the rest are
zeros.

The constraints on θ ’s are motivated as follows. For α ≽ Qj,⋆,
a subject with α has all the attributes for item j specified by
the Q-matrix and would be “most capable” to provide a posi-
tive response; on the other hand, for α′ ̸≽ Qj,⋆, a subject with
α′ misses some related attribute and is expected to have a lower
positive response probability than α ≽ Qj,⋆. In addition, a sub-
ject without mastery of any latent traits is expected to have the
lowest positive response probability. These constraints on # are
summarized as follows:

max
α:α≽Qj,⋆

θ j,α = min
α:α≽Qj,⋆

θ j,α > θ j,α′ ≥ θ j,0, for any α′ ̸≽ Qj,⋆. (2)

Take item 1 in Equation (1) for an example. Under (2), subjects
with α1 = 1 have a higher positive response probability than
those withα1 = 0; on the other hand,α = (1, 0, 0)⊤, (1, 1, 0)⊤,
(1, 0, 1)⊤, and (1, 1, 1)⊤ all have the same correct response
probabilities.

The introduced models are important statistical tools devel-
oped in cognitive diagnosis to detect the presence or absence of
multiple fine-grained skills or attributes. Many restricted latent
class models have been proposed in the past decades for vari-
ous application purposes (e.g., DiBello, Stout, andRoussos 1995;
Junker and Sijtsma 2001; de la Torre and Douglas 2004; Templin
and Henson 2006; Hartz and Roussos 2008; von Davier 2008;
Henson, Templin, and Willse 2009; de la Torre 2011). Below we
introduce some of them as examples.

Example 1 (DINA model). The deterministic input noisy
output “and” gate model (DINA; Junker and Sijtsma 2001)
assumes a conjunctive relationship among attributes, that is,
it is necessary to possess all the attributes indicated by the
Q-matrix to be capable of providing a positive response.
For an item j and a subject with α, the ideal response
ξ j,α(Q) = I(α ≽ Qj,⋆) indicates the capability of the sub-
ject answering the item positively. The uncertainty is further
incorporated using two item-level parameters: the slipping
parameter s j = P{Rj = 0 | ξ j,α(Q) = 1} denotes the probability
of making a negative response despite mastering all needed
skills, and the guessing parameter g j = P{Rj = 1 | ξ j,α(Q) = 0}
denotes the probability of a positive response despite an incor-
rect ideal response. The response probability θ j,α then takes the
form θ j,α = (1 − s j)ξ j,α(Q)g1−ξ j,α(Q)

j . For the DINA model, (2) is
satisfied if 1 − s j > g j, which is usually assumed in practice.

Example 2 (Reduced RUM). Under the reduced version
of the reparameterized unified model (DiBello, Stout,
and Roussos 1995; Henson, Templin, and Willse 2009),
θ j,α = π j

∏K
k=1γ jk

q jk(1−αk ), where π j is the positive response
probability for subjects who possess all required attributes and
γ jk, 0 < γ jk < 1, is the penalty parameter for not possessing the
kth attribute. For the reduced RUM, assumptions (2) is satisfied.

Example 3 (LCDM). The Loglinear-CDM (LCDM, Henson,
Templin, and Willse 2009) is a restricted latent class model
that models the relationships between categorical variables and

attribute profiles as logit(θ j,α) = β⊤
j h(α,Qj,⋆), where the vec-

tor β j represents a 2K-dimensional vector of weights for the jth
item and h(α,Qj,⋆) represents a set of linear combinations of the
α and Qj,⋆. In particular, the saturated model corresponds to

β⊤
j h(α, q j) = β j0 +

K∑

k=1

β jkq jkαk +
K∑

k=1

∑

k′>k

β jkk′q jkq jk′αkαk′

+ · · · + β j12...K

K∏

k=1

q jk

K∏

k=1

αk.

Note that for any 1 ≤ h ≤ K and any 1 ≤ k1 < · · · < kh ≤ K, if∏h
l=1 q j,kl = 0, then β j,k1...kh is not needed in the model and can

be set as 0. The main effect model becomes the linear logistic
model (LLM, see Hagenaars 1993; Maris 1999; de la Torre and
Douglas 2004) that logit(θ j,α) = β j0 +

∑K
k=1 β jkq jkαk.

3. Identifiability Results

We present the main identifiability results in this section, before
which we first introduce some notations and formulate the def-
inition of the identifiability of the Q-matrix.

The distribution of R, conditional on the latent class
α, is given by a J-way 2 × · · · × 2 table Pα(Q,#) =⊗J

j=1(1 − θ j,α, θ j,α)⊤, where the r = (r1, . . . , rJ )⊤th entry
of the table is the probability of observing response vector
r given Q-matrix, #, and latent class α, that is, P(R = r |
Q,#,α) =

∏J
j=1(θ j,α)r j (1 − θ j,α)1−r j . The marginal distribu-

tion ofR is then given by P(Q,#, p) =
∑

α∈{0,1}KPα(Q,#)pα,

where the rth entry is P(R = r | Q,#, p) =
∑

α∈{0,1}KP(R =
r | Q,#,α)pα.

The question of interest is when the Q-matrix is estimable
from the response data R. It is worthy to mention that the Q-
matrix is expected to be identifiable only up to rearranging the
orders of the columns. This is because when estimating the Q-
matrix, the data do not contain information about the specific
meaning of each attribute. For this reason, if Q and Q̄ have an
identical set of column vectors, we consider them as equivalent
and write Q ∼ Q̄; otherwise, we write Q ! Q̄. For example,

Q =

α1 α2
item 1 1 0
item 2 1 1
item 3 1 1
item 4 1 1

∼ Q̄ =

α2 α1
item 1 0 1
item 2 1 1
item 3 1 1
item 4 1 1

Definition 1. For the restricted models satisfying (2), we say that
theQ-matrix is identifiable if for any Q̄ ! Q, there does not exist
(#̄, p̄) such that P(Q,#, p) = P(Q̄, #̄, p̄).

We next illustrate which type of Q-matrix structure is
required for the identifiability results. An important and basic
structure that have been studied in the literature is the com-
pleteness of the Q-matrix, where we say a Q-matrix is complete
if {e⊤

j : j = 1, . . . ,K} ⊂ {Qj,⋆ : j = 1, . . . , J}; see, for example,
Chiu, Douglas, and Li (2009). In other words, a Q-matrix is
complete if there exist K rows of Q that can be ordered to form
the K-dimensional identity matrix IK . A simple example of a
complete Q-matrix is the K × K identity matrix IK .
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We start with a simple and ideal case. We consider the
model introduced in Example 1 and the ideal case where the
jth response Rj = ξ j,α(Q), where ξ j,α(Q) = I(α ≽ Qj,⋆), that
is, the capable subjects always provide positive responses and
incapable subjects always give negative responses. In this ideal
case, θ j,α = ξ j,α(Q) and p is unspecified. The completeness of
a Q-matrix is sufficient and necessary for the identifiability of p
in the considered ideal case when Q is known (Chiu, Douglas,
and Li 2009; Xu and Zhang 2016). Liu, Xu, and Ying (2013) fur-
ther showed that for this ideal case, a sufficient condition for the
identifiability of the Q-matrix is that the Q-matrix is complete
and each attribute is required by at least two items.

Example 4. Consider Q in Equation (3) as an example. It is not
complete and we show it is not identifiable. In particular, for Q̄
in (3), where all elements of Q̄ are same as Q except q̄31 = 0,
we show Q and Q̄ are not distinguishable based on responses
generated under Q.

Q =

α1 α2
item 1 1 0
item 2 1 1
item 3 1 1
item 4 1 1

; Q̄ =

α1 α2
item 1 1 0
item 2 1 1
item 3 0 1
item 4 1 1

(3)

Consider the ideal case with θ j,α = ξ j,α(Q) and θ̄ j,α = ξ j,α(Q̄).
Let the true model parameter associated with Q be p. We
now construct a different p̄ by setting p̄(0,1) = 0 and p̄(0,0) =
p(0,0) + p(0,1) while the other elements same as p. For such
p̄ and the Q̄ in (3), P(R = r | Q̄, #̄,α) p̄α = P(R = r |
Q,#,α)pα for any r and α ∈ {(1, 0)⊤, (1, 1)⊤}. In addi-
tion, P{R = r | Q̄, #̄,α = (0, 0)⊤} · p̄(0,0) + P{R = r | Q̄, #̄,

α = (0, 1)⊤} · p̄(0,1) = P{R = r | Q,#,α = (0, 0)⊤} · p(0,0) +
P{R = r | Q,#,α = (0, 1)⊤} · p(0,1). Therefore, P(R = r |
Q̄, #̄, p̄) = P(R = r | Q,#, p) for any r. From Definition 1, Q
in (3) is not identifiable.

Formore general restricted latent classmodels satisfying con-
straints (2), we provide in the following a unified sufficient con-
dition that ensures the identifiability of the Q-matrix. Although
the above ideal model is a very special case of the considered
models, it shows the necessity to require that the true Q-matrix
is complete. Moreover, for application purpose, we also need to
ensure the identifiability of themodel parameters under the true
Q-matrix; such identifiability conditions have been studied in
Xu (2017). We assume the following identifiability conditions.
C1. The true Q-matrix takes the form of Q⊤ =

{IK; IK; (Q′)⊤}⊤ after row swapping, where Q′ is a
(J − 2K) × K binary matrix.

C2. GivenQ arranged as in C1, for any attribute profilesα ̸= α′

and α ≽ α′, (θ j,α; j > 2K)⊤ ̸= (θ j,α′; j > 2K)⊤.

Remark 1. Condition C1 implies that Q is complete and each
attribute is required by at least two items. The completeness of
theQ-matrix is a necessary condition for the identifiability of the
population proportion parameters pα under the simple DINA
model. For instance, for the Q-matrix in Example 4, it is not

complete andwe can see subjects withα = (0, 0) andα = (0, 1)
are not distinguishable from their responses.Without complete-
ness, we can easily construct nonidentifiable Q-matrix as illus-
trated in Example 4. Condition C1 requires two complete matri-
ces. This follows from the previous study of the DINAmodel in
Example 1 (Liu, Xu, andYing 2013;Chen et al. 2015). Beyond the
literature on cognitive diagnosis, the completeness type struc-
ture has been used in confirmatory analysis ofmultidimensional
item response theory, where the attributes are modeled as con-
tinuous latent variables (e.g., Reckase 2009). The developed the-
oretical results in this article could also be extended to other
latent structuremodels in social science such as themixedmem-
bership model, where it has been shown that the mixed mem-
bership model can be equivalently represented as a restricted
latent class models with similar completeness requirement (e.g.,
Erosheva, Fienberg, and Joutard 2007). Condition C2 implies
that for attribute profiles α ̸= α′ and α ≽ α′, there exists at least
one item in Q′ such that subjects with α have different positive
response probabilities from subjects with α′. Both C1 and C2
hold if there are three identity submatrices in the Q-matrix.
From Theorem 1 in Xu (2017), C1 and C2 ensure the identifi-
ability of the model parameters (#, p) under the true Q-matrix
while C1 itself cannot ensure that.
Theorem 1. Consider the restrictedmodels satisfying (2). Under
conditions C1 and C2, the Q-matrix is identifiable.

Theorem 1 specifies conditions under which the Q-matrix is
identifiable from the response data. The result is under a gen-
eral setting satisfying assumption (2) and it coversmany existing
models as special cases. More importantly, the result allows dif-
ferent items to follow different underlying diagnostic assump-
tions. In addition, together with Theorem 1 in Xu (2017), we
have both Q and the model parameters (#, p) are identifiable
under C1 and C2.
Corollary 1. Consider the restricted models satisfying (2). The
Q-matrix and model parameters (#, p) are identifiable under
conditions C1 and C2.
Remark 2. The identifiability result would provide a guideline
of how to design the diagnostic items and how to calibrate the
new designed items from response data. It is recommended to
have at least two complete matrices in the test; moreover, each
attribute is recommended to be required by at least three items.
The identifiability result would also help to improve existing
diagnostic tests. For instance, when researchers find that the
estimation results are problematic and the Q-matrix does not
satisfy the identifiability conditions, it is recommended to design
new items such that the identifiability is ensured.Moreover, with
a subset of items carefully designed by experts to satisfy the
identifiability conditions, we can use the responses to estimate
the Q-matrix of new items and to detect possible misspecifica-
tions of existing items. We propose a likelihood-based estima-
tion method in Section 4.
Remark 3. The identifiability results generalize the existing
results in two ways. First, the current work provides a unified
identifiability result that is applicable to many diagnostic mod-
els. For the identifiability of the Q-matrix, there are few stud-
ies in the literature, which only focus on some special cases.
For instance, Chen et al. (2015) focused on the DINA model
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and showed that identifying Q under the DINA model requires
two copies of IK and a third item measuring each attribute. The
first requirement is the Condition C1 and the second one is
related to C2 of this article. Second, the identifiability results do
not require test items to follow the same diagnostic model. For
instance, some items can follow the DINA while others can fol-
low the Reduced-RUM or LCDM.More flexible diagnostic tests
therefore can be designed following the identifiability results.

Remark 4. The generic identifiability results in Allman et al.
(2009) cannot be directly applied in the current model setting.
This is because under the same Q-matrix, there may be several
cognitive diagnosis models of interest. For instance, the DINA
model can be taken as a submodel of the LCDM under the same
Q-matrix. In this case, the parameters under the DINA model
lie in a subspace of the parameter space under the LCDM, and
generic identifiability results for the more general LCDM may
not ensure the identifiability of the DINA model. When the
identifiability conditions are not satisfied, such as the Q-matrix
is not complete, then we may expect to obtain partial identifica-
tion results as recently studied in Henry, Kitamura, and Salanié
(2014) and identify the Q-matrix up to certain equivalent class.
For instance, the incompleteQ-matrix in Example 4 would be in
the same identification class as Q̄ in the example. In analysis with
a provisional Q-matrix, such partial identifiability result may
lead to “locally identifiability” near the provisionalQ-matrix due
to the discreteness of theQ-matrix. On the other hand, the prob-
lem in this work takes a different setting from existing studies
such asHenry, Kitamura, and Salanié (2014), which assumes the
existence of an additional variable that provides a source of vari-
ation in the mixture weights while leaves component distribu-
tions unchanged, and their results cannot be directly applied.

4. Estimation of theQ-Matrix

4.1. Likelihood-Based Estimation of the Q-Matrix

In Sections 4.1, we consider the estimation of the Q-matrix in
a full exploratory analysis setting, where no information on the
Q-matrix is provided. In Section 4.2, we study the case where a
provisional Q-matrix is available. When there is no confusion,
in the following, we use (Q,#, p) to denote a general candidate
set of theQ-matrix andmodel parameters, and use (Q0,#0, p0)
to denote the true values.

We consider an information-based approach to estimate the
Q-matrix. Note that under the general CDM setting, a Q-
matrix may correspond to a set of different submodels of the
Q-restricted latent class model. For instance, the DINA model
can be considered as a submodel of the LCDM under the same
Q-matrix. To account for themodel complexity, a natural choice
is to use the information criterion, and we choose the Q-matrix
estimator (up to column permutation) such that it minimizes
the following objective function:

Q̂ ∼ argminQ,#,p − lN (Q,#, p;R) + λ × #{#Q}, (4)

where lN (Q,#, p;R) is the marginal log-likelihood of
(Q,#, p), R = {Ri, i = 1, . . . ,N} is the observed response
data, #{#Q} denotes the number of free item parameters in

matrix # under the Q-introduced constraints, and λ > 0 is a
regularization parameter that indicates the penalty level on the
model complexity. For instance, when λ = 1 this is equivalent to
its Akaike’s information criterion (AIC) and when λ = logN/2,
this is similar to the Bayesian information criterion (BIC).

Due to the discreteness nature of the latent structure matrix,
direct estimation of maximum likelihood estimator is compu-
tational demanding. The key idea of the proposed method is to
reformulate the problem of estimating the Q-matrix as a prob-
lem of variable selection. For computational convenience, we
consider the general LCDM framework in Example 3 where the
monotonicity assumption can be easily incorporated. The pro-
posed approaches can be easily applied to other link functions.
For any j ∈ {1, . . . , J}, define a 2K-dimensional parameter vec-
tor β j =

(
β j,0,β j,k1...kh , for any 1 ≤ h ≤ K and any 1 ≤ k1 <

· · · < kh ≤ K
)⊤. We reparameterize the θ j,α parameters under

a matrix Q by

logit(θ j,α) = β j0 +
K∑

k=1

β jkαk +
K−1∑

k=1

K∑

k′=k+1

β jkk′αkαk′

+ · · · + β j12···K

K∏

k=1

αk, (5)

where for any 1 ≤ h ≤ K and any 1 ≤ k1 < · · · < kh ≤ K,
β j,k1...kh = 0 if

∏h
l=1 q j,kl = 0. Note that when

∏h
l=1 q j,kl ̸= 0,

β j,k1...kh may be or not be 0, which depends on the cognitive
diagnosis model assumption on the jth item. For instance, for
Qj,⋆ = 1⊤

K ,
∏h

l=1 q j,kl ̸= 0 always holds, but under the DINA
model, we have β j = (β j,0, 0, . . . , 0,β j,1...K )⊤ while under the
saturated LCDM, β j = (β j,0,β j,1, . . . ,β j,1...K )⊤.

From the above construction, for any item j, the item vec-
tor Qj,⋆ is uniquely determined by the sparsity structure of the
vector β j. On the other hand, the sparsity structure of β j is not
uniquely determined byQj,⋆, as illustrated by the example in the
last paragraph. As a consequence, the estimation of theQ-matrix
in Equation (4) is equivalent to the estimation of the sparsity
structure of B, that is,

B̂ ∼ argminB,p − lN (B, p;R) + λ

J∑

j=1

∑

1≤h≤K
1≤k1<···<kh≤K

I(β j,k1...kh ̸= 0),

(6)
where B = {β1, . . . ,βJ} is a set of candidate model parameters,
l(B, p;R) is the log-likelihood evaluated at (B, p) under the
model (5) with Q = 1J×K . Let Ŝ be the index set of the nonzero
β ’s in B̂. Then based on Ŝ, we can uniquely obtain an estimate Q̂
(up to column permutation).

Directly solving (6) is still computationally challenging due
to the L0 penalty terms, that is, I(β j,k1...kh ̸= 0). Motivated by the
work of Shen, Pan, and Zhu (2012), which studied constrained
L0 likelihood and its computational surrogate, we replace the
L0 function I(β j,k1...kh ̸= 0), by its surrogate Jτ (β j,k1...kh ) :=
min(|β j,k1...kh |/τ, 1) to construct an approximation. The Jτ (·)
is a truncated L1 penalty (TLP) function and the parameter τ

decides the size of coefficients to be shrunk toward zero.We then
estimate Q by
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B̂ ∼ argminB,p − lN (B, p;R)

+ λ

J∑

j=1

∑

1≤h≤K
1≤k1<···<kh≤K

Jτ (β j,k1...kh ). (7)

The constrained counterpart problem of (7) can be written as

B̂ ∼ argminB,p − lN (B, p;R)

subject to
J∑

j=1

∑

1≤h≤K
1≤k1<···<kh≤K

Jτ (β j,k1...kh ) ≤ M, (8)

for some positive constantM.
Let B0 be the J × 2K vector of true model parameters cor-

responding to #0 under Q0. Note that when τ < min{|β| ̸=
0,β ∈ B0}, the surrogate Jτ (·) becomes exactly the L0 penalty,
and therefore via tuning τ , we expect the selection method in
(7) performs similarly to the information-based selection in (6).
Theoretically, thanks to the identifiability result in Section 3,
we have the following results on its consistency and asymptotic
behaviors.

We need some notations to state the theoretical properties.
Let S0 be the index set of nonzero β ’s in B0 and B0,S0 be the vec-
tor of these nonzero β ’s. Denote the cardinality of S0 by M0.
Let B̂0 be the oracle maximum likelihood estimator provided
that the true Q0 and the specific diagnostic model assumption
were known a priori, that is, the index set S0 was known, and
B̂0,S0 be the estimated β̂ ’s indexed by S0. Similarly, for any candi-
date B and index set S, we let BS be the vector of β ’s indexed by
S. We further write η = (B, p), η0 = (B0, p0), η0,S = (B0,S, p0),
η̂ = (B̂, p̂), η̂0 = (B̂0, p̂), and η̂0,S = (B̂0,S, p̂). In addition, we
assume the following condition:
C3. The true parameters B0,S0 are bounded and the Fisher

information matrix evaluated at η0,S0 , denoted by IS0 , is
nonsingular.

Proposition 1. Under the conditions in Theorem 1 and con-
dition C3, if M = M0 and τ < δ for some small constant δ,
then for the optimization problem in (8), there exist posi-
tive constants c1 and c2 such that for any N, P(B̂ ! B̂0) ≤
exp{−c1N + c2} and P(Q̂ ! Q0) ≤ exp{−c1N + c2}. Further-
more,

√
N(η̂S0 − η0,S0 ) and

√
N(η̂0,S0 − η0,S0 ) have the same

limiting Gaussian distribution with mean zero and covariance
I−1
S0 .

Proposition 1 shows the consistency of the estimated Q
matrix and the convergence rate is of exponential order
exp{−c1N + c2}. It also implies that P(Ŝ ! S0) → 0 and the
estimated model parameters η̂ achieve the oracle limiting dis-
tribution. We also obtain the consistency result for the primary
optimization problem in (7).

Proposition 2. Assume the conditions in Theorem1 andC3. Fur-
ther suppose that λ and τ depend on N such that N−1/2λ → 0,
N1/2τ → ∞, and N−1/2λτ−1 → ∞. Then for the optimization
problem in (7), P(Ŝ ! S0) → 0 and P(Q̂ ! Q0) → 0. Further-
more,

√
N(η̂S0 − η0,S0 )weakly converges to the Gaussian distri-

bution with mean zero and covariance I−1
S0 .

Remark 5. Propositions 1 and 2 theoretically justify the pro-
posed estimation procedure and also provide the asymptotic dis-
tributions for statistical inference on the model parameters. To
compute standard errors of the estimated model parameters, we
need a consistent estimator of IS0 , which can be obtained from
the restricted latent class model under the estimated Q-matrix.
Thanks to Propositions 1 and 2, such ÎS0 is consistent under
conditions C1-C3.

The selection of λ and τ is crucial to the successful detec-
tion of latent structure. Proposition 2 gives an asymptotic guide-
line to choose λ and τ . Note that the conditions imply that λ →
∞, τ → 0,N−1/2λ → 0,N1/2τ → ∞, andN−1/2λτ−1 → ∞. A
sufficient condition is that λ = N1/2−ϵ1 and τ = N−ϵ2 for small
positive constants ϵ2 > ϵ1 > 0.

For data analysis, we propose to use information criteria
such as the BIC to select the tuning parameters. In particular,
for each candidate pair of tuning parameters (λ, τ ), we obtain
the estimated vector B̂(λ,τ ), the index set of its nonzero ele-
ments Ŝ(λ,τ ), and the impliedQ-matrix Q̂(λ,τ ). Then we estimate
the constrained maximum likelihood estimator of η with the
β ’s indexed by Ŝc(λ,τ ), the complement set of Ŝ(λ,τ ), being con-
strained to be 0. The maximum likelihood estimator depends
on (λ, τ ) only via the estimated Ŝ(λ,τ ) and we denote it by
η̂∗
Ŝ(λ,τ )

. We further define IC(Ŝ(λ,τ ), cN ) = −2lN (η̂∗
Ŝ(λ,τ )

;R) +
cN × #{η̂∗

Ŝ(λ,τ )
}, where cN is some constant depending on N.

When cN = logN, the IC becomes the BIC. Among a candidate
set of (λ, τ )’s, we choose the one that minimizes the IC value
and take the corresponding Q̂ to be the final estimator of theQ-
matrix. The following proposition gives conditions that ensure
the selection consistency of this procedure.

Proposition 3. Assume the conditions in Theorem1 andC3. Fur-
ther assume that cN → ∞, cN = o(N), and there exists (λN, τN )

in the candidate set of tuning parameters such that the limiting
conditions in Proposition 2 are satisfied. Then the probability of
the above IC procedure selecting the trueQ-matrix converges to
1 as N → ∞.

Proposition 3 ensures the consistency of the BIC, which is
further supported by the simulation studies in Section 5. Alter-
natively, we can use other information criteria satisfying condi-
tions in Proposition 3 to select the final Q-matrix, such as those
proposed inChen andChen (2008), Zhang and Shen (2010), Fan
and Tang (2013) and many others.

Remark 6. Directly solving the optimization problem in (7)
could be computationally inefficient due to the latent structure
setting. Instead, it is solved via an EM algorithm. We also pro-
pose a fast prescreeningmethod to get reasonable starting points
by solving a regularized likelihood of the main effect LCDM
model. Please refer to the appendix for more details.

4.2. Stepwise Estimationwith a Provisional Q-Matrix

In this section, we adapt the estimation method in the previous
section to the case when there is an initial yet maybe misspec-
ified Q-matrix given by practitioners. The provisional Q(0) is
often believed by practitioners to be close to the true Q0 with
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only a few possible misspecifications. Although the method in
Section 4.1 can be directly applied by using theQ(0) as a starting
matrix of the estimation algorithm, in data analysis with limited
sample size, this method often tends to find a “global optimal”
Q-matrix that has a low information criterion value such as
BIC but may differ Q(0) with many items. Such an estimated
Q-matrix, though statistically fits the data better, may be dif-
ficult to interpret for the purpose of cognitive diagnosis. To
incorporate such practical need into the estimation procedure,
we adapt the method in Section 4.1 to be a stepwise estimation
procedure with each step focusing on updating one item.

The stepwise procedure starts the EM algorithm in
Section 4.1 using the provisional Q(0) and the estimated
model parameters under Q(0) as initial values. We denote
the BIC under the Q(0)-restricted general CDM as BIC(0). In
the M-step, we estimate β̂

(0)
j , j = 1, . . . , J. Instead of update

all β’s as in the exploratory estimation in Section 4.1, for
each item j, we introduce a matrix Q(0, j) that updates Q(0)

with only the jth row, denoted by Q(0, j)
j,⋆ , according to the

estimated β̂
(0)
j . Note that Q(0, j)

j,⋆ is uniquely determined by

β̂
(0)
j and Q(0, j) may be the same as Q(0). Let BIC(0, j) be the

BIC under the matrix Q(0, j). If there is an item j(1) such that
j(1) = argmin j:Q(0, j) ̸=Q(0),BIC(0, j)<BIC(0)BIC(0, j), then we update
the Q-matrix as Q(1) = Q(0, j(1) ). Note that there may exists an
item h with BIC(0,h) < BIC(0, j(1) ) but Q(0,h) = Q(0), that is, for
the hth item, there is a submodel having a lower BIC than the
general CDM under the same Q-matrix. To account for such
submodel effects during estimation, for any item h such that
BIC(0,h) ≤ BIC(0, j(1) ), we update the item response model θh,α

according to the nonzero structure of β̂
(0)
h , while for other items

we still use the general CDM. This ends the first step of the
stepwise estimationmethod.We repeat the preceding procedure
until the BIC starts to increase. Theoretically, Proposition 3
ensures the estimation procedure to find at least a local optimal
Q-matrix.

Remark 7. When the sample size is not large enough, the step-
wise detection procedure may overestimate the number of the
misspecified items. To control the number of false positive
detections, we propose to use a bagging method to reduce the
estimation variance. Specifically, we resample N individuals’
response with replacement from the original dataset and per-
form the stepwise estimation procedure.We repeat thisM times
with M a relatively large number and denote the estimated Q-
matrices by Q∗

m,m = 1, . . . ,M. Then we calculate the average
estimator Q̄∗ = (q̄∗

jk)J×K := 1
M

∑M
m=1 Q∗

m and the final detected
entries are those with q̄∗

jk > s if the initial q(0)
jk = 0 and q̄∗

jk < s if
q(0)
jk = 1. Here s is a threshold value to classify q̄∗

jk as 0 or 1, and
a natural choice is 0.5.

5. Simulation Results

We illustrate the performance of the proposed estimation
procedures via two simulation studies. For the first study in
Section 5.1, we assume no prior information on the Q-matrix.

For the second study in Section 5.2, a Q-matrix is given yet
misspecified with a few items.

We introduce the simulation setting that will be used in both
studies. We consider latent attributes with dimension K = 3, 4,
and 5, and the test length J = 20. The true Q-matrices, shown
as following, are chosen such that our identifiability conditions
are satisfied.

Q3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
1 1 1
1 1 1
1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In both studies, we use simulated data from two types of
latent classmodels: theDINA and the saturated LCDM.Both are
designed such that the correct response probabilities for all items
are between 0.2 and 0.8. For the DINA, the slipping and guess-
ing parameters of all items are set to be 0.2. For the LCDM and
any item j requiring Kj attributes, we set the correct response
probabilities of attribute profiles with K ′

j out of the Kj required
attributes to be 0.2 + (0.8 − 0.2) × K ′

j/Kj . Note that the DINA
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Table . Exploratory estimation results for K = 3.

DINA LCDM

ρ N Matrix Item TPR FPR Matrix Item TPR FPR

  TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

.  TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

.  TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

Notes: The column “Matrix” is the proportion of the entireQ-matrix correctly recov-
ered. “Item” is the proportion of the item vectors correctly estimated. TPR is the
proportion of the ’s in the trueQ-matrix correctly detected. FPR is the proportion
of the ’s in the trueQ-matrix falsely estimated as ’s.

model has 2J item parameters and the LCDMhas
∑J

j=1 2Kj item
parameters under the true Q-matrix.

It is natural that one subject’s latent attributes are corre-
lated. To consider the dependence, we use the following two
steps to simulate the true latent profiles (Chen et al. 2015).
First generate xi = (xi1, . . . , xiK )

iid∼ N (0,/), for i = 1, . . . ,N
where / = (1 − ρ)IK + ρ1K1TK; then the attribute profile αik is
set to be 1 if xik ≥ 0 and 0 otherwise. In both studies, three differ-
ent situations of dependency is considered by choosing ρ = 0,
0.15, and 0.25.

After generating latent profiles and item parameters, we
simulate the observed responses for 500 independent replica-
tions. Even though the data are generated under the DINA and
LCDM, the true models are assumed to be unknown during the
estimation.

5.1. Exploratory Estimation of theWhole Q-Matrix

In this study, we estimate the Q-matrix completely from the
data. In the case of K = 3, the following crossover design is
applied for the considered two models, three sample sizes,
and three attribute-dependent levels: {DINA, LCDM} ⊗ {N =
500, 1000, 2000} ⊗ {ρ = 0, 0.15, 0.25}.

Table 1 presents the simulation results. The column “Matrix”
shows matrix-level estimation results and gives the proportion
of the entire Q-matrix correctly recovered by the estimation
method among 500 replications. The column “Item” is the item-
level estimation results and it shows the averaged proportion of
the itemQ-vectors being correctly estimated. For the entry-level
results, the column “TPR” is the proportion of true connections
between attribute and item being correctly detected, that is,
the 1’s in the true Q-matrix correctly estimated; and “FPR” is
the proportion of irrelevant item-attribute pairs specified as
relevant, that is, the 0’s in the trueQ-matrix estimated as 1’s. For
comparison, we have also performed the estimation method

Table . Exploratory estimation results for K = 4 and .

DINA LCDM

K N Matrix Item TPR FPR Matrix Item TPR FPR

K = 4  TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

K = 5  TLP . . . . . . . .
L . . . . . . . .

 TLP . . . . . . . .
L . . . . . . . .

using the Lasso penalty.Multiple starting values are used. Table 1
shows that the proposed truncated L1 method outperforms the
L1 regularized estimation in most cases. Both methods perform
better when sample size increases and attributes are less corre-
lated. The correct recovery rate of theQ-matrix is higher for the
DINA model than that for the LCDM. This is because in the
DINA model each item has only one nonzero and nonintercept
coefficient, which is relatively large and easier to detect.

We also consider the cases with the number of latent
attributesK = 4 andK = 5.We use the noncorrelated attributes
and two sample size N = 1000 and 2000. Table 2 shows the
simulation results for 500 replications. Because the size of
parameters in the saturated model increases with K exponen-
tially, the estimation becomes more difficult, particularly for
the LCDM. However, the item-level (“Item”) and entry-level
(“TPR” and “FPR”) estimation results are quite accurate with
more than 98% of the itemQ-vectors and almost all entries cor-
rectly estimated when N = 2000. Overall, the TLP outperforms
the Lasso method. As in the case of K = 3, the DINAmodel has
better estimation results than the LCDM due to the sparser and
stronger signals. We also note that under the DINA model, the
TLP estimation results for K = 5 are slightly better than K = 4;
this might be due to the Monte Carlo error and the selection of
tuning parameters during the estimation.

Estimation results of the parameters # = (θ j,α)J×2K are pre-
sented in Table 3 with K ∈ {3, 4, 5} and ρ = 0. The correlated
cases with ρ ̸= 0 are similar and therefore not reported here.
Recall that θ j,α denotes the correct response probability to the
jth item for latent class α. Two methods are compared. For the
proposed method, the θ̂ ’s are calculated from the refitted β̂ val-
ues under the estimated model structure (column “TLP”). For

Table . Estimation results for#.

DINA LCDM

N TLP True TLP True

aBias RMSE aBias RMSE aBias RMSE aBias RMSE

K = 3  . . . . . . . .
 . . . . . . . .
 . . . . . . . .

K = 4  . . . . . . . .
 . . . . . . . .

K = 5  . . . . . . . .
 . . . . . . . .

NOTE: “aBias” is averaged absolute values of estimated biases of θ ’s and “RMSE” is
averaged squared-root mean squared error. “TLP” is the refitted estimate under
the estimatedmodel structure; “True”is the estimate under the truemodel struc-
ture.
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the true model, the θ ’s are estimated under the true Q-matrix
and the true diagnostic model assumption (column “True”).
We report the averaged absolute values of the estimated biases
of θ̂ ’s (column “aBias”) and the averaged squared-root mean
squared error (column “RMSE”). Table 3 shows that the pro-
posed method gives similar estimation results to those under
the true model, which is consistent with the theoretical results
in Propositions 1 and 2. Please also refer to Figure A.2 in the
appendix for the box plots of the MSEs.

5.2. Stepwise Estimation with a Provisional Q-Matrix

In this simulation study, we aim to estimate the Q-matrix when
a provisional Q-matrix is available. The provisional Q-matrix is
designed to be misspecified at two levels: 10% and 20% on the
item level. Themisspecified J0 items are selected randomly from
the J = 20 items and the Q-vector of a misspecified item is uni-
formly selected from the 2K possible vectors expect the true one
and the zero vector.

We first consider K = 3 and use a crossover design
of two models, two degrees of misspecification levels,
three sample sizes, and three attribute dependent levels:
{DINA, LCDM} ⊗ {Misspecification10%, 20%} ⊗ {N = 500,
1000, 2000} ⊗ {ρ = 0, 0.15, 0.25}. For each case, we compare
the performance of proposed method with the GMDI method
(de la Torre and Chiu 2016). The simulation results are sum-
marized in Table 4 for low (10%) and Table A.1 (presented
in the appendix) for high (20%) misspecification levels. The
column “Total” shows the proportion of correctly estimated
item vectors for each method; note that by the design of our

simulation, the baseline “Total” value of the initial Q(0)-matrix
is 0.9 for low-misspecified case and 0.8 for high-misspecified
case. The column “TPR” (true positive rate) shows the pro-
portion of those misspecified entries/vectors in the initial Q(0)

that are correctly detected, and “FPR” (false positive rate) is the
proportion of those correctly specified entries/vectors in the
provisionalQ(0) that are being falsely detected. The results show
that the proposed method outperforms the GMDI method for
all simulation conditions. The TPR of proposedmethod tends to
1 as sample size increases while such trend is not significant for
the GMDI. Moreover, the performance of our method declines
only slightly as the misspecification level increases from 10% to
20%, while the GMDI approach is affected more significantly.
With the same sample size, the stepwise procedure works better
for the simpler DINA model while the performance is similar
for different dependence levels.

We use the proposed stopping rule based on the BIC. We
also report the results using a fixed step number J0, which is the
number of misspecified items in the initialQ(0), in the brackets.
It shows that the proposed sequential method performs simi-
larly to that with fixed J0 steps, which indicates that our method
detects most of the misspecified items within the first J0 steps.
We also consider the caseswithK = 4 andK = 5, and the results
are presented in the appendix.

6. Data Analysis

We consider a dataset that has been used for educational assess-
ment. This dataset contains responses from 536 middle school
students to a set of fraction subtraction items. Various subsets

Table . Lowmisspecification with K = 3.

DINA LCDM

Entry Vector Entry Vector

ρ N Total TPR FPR TPR FPR Total TPR FPR TPR FPR

  Proposed . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

GMDI . . . . . . . . . .
 Proposed . . . . . . . . . .

(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)
GMDI . . . . . . . . . .

 Proposed . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

GMDI . . . . . . . . . .
.  Proposed . . . . . . . . . .

(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)
GMDI . . . . . . . . . .

 Proposed . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

GMDI . . . . . . . . . .
 Proposed . . . . . . . . . .

(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)
GMDI . . . . . . . . . .

.  Proposed . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

GMDI . . . . . . . . . .
 Proposed . . . . . . . . . .

(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)
GMDI . . . . . . . . . .

 Proposed . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

GMDI . . . . . . . . . .

NOTE: “Total” is the proportion of correctly estimated items with the initial baseline .. “TPR” is true positive rate and “FPR” is the false positive rate. For the proposed
method, results after the first two steps are presented in brackets.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1293

Table . The left is theQ-matrix in de la Torre and Douglas ().

Prespecified Bootstrap aggregation

Item Content A A A A A A A A A A A A A A A

 5
3 − 3

4         . . . . . . .

 3
4 − 3

8         . . . . . . .

 5
6 − 1

9         . . . . . . .

 3 1
2 − 2 2

3         . . . . . . .

 1 18 − 1
8         . . . . . . .

 3 4
5 − 3 2

5         . . . . . . .

 4 5
7 − 1 47         . . . . . . .

 4 3
5 − 3 4

10         . . . . . . .

 3 − 2 1
5         . . . . . . .

 2 − 1
3  0 0      . 0.03 0.03 . . . .

 4 4
12 − 2 7

12  1  0     . 0.92 . 0.13 . . .

 4 1
3 − 2 4

3         . . . . . . .

 7 35 − 4
5         . . . . . . .

 4 1
10 − 2 8

10         . . . . . . .

 4 − 1 43         . . . . . . .

 4 1
3 − 1 53         . . . . . . .

 3 3
8 − 2 5

6         . . . . . . .

NOTE: The highlighted entries are detected from the stepwise method. The right is the bootstrap aggregating result.

of the items with different numbers of attributes have been ana-
lyzed in the literature, such as Tatsuoka (2002), de la Torre and
Douglas (2004), de la Torre (2011), Chen et al. (2015), and de
la Torre and Chiu (2016). We follow the setting in Chen et al.
(2015) and study 17 items. The item contents and the Q-matrix
with eight attributes given by de la Torre and Douglas (2004) are
presented in the left of Table 5. The attributes are defined as fol-
lows: (A1)Convert awhole number to a fraction; (A2) Separate a
whole number from a fraction; (A3) Simplify before subtracting;
(A4) Find a common denominator; (A5) Borrow from whole
number part; (A6) Column borrow to subtract the 2nd numer-
ator from the 1st; (A7) Subtract numerators; and (A8) Reduce
answer to simplest form.

We first apply the proposed stepwise estimation method in
Section 4.2. Note that attribute A7 is required by all the items
and for the reason of identifiability, we focus on the other seven
attributes. The estimation result suggests to update the high-
lighted entries in Table 5. In particular, it suggests that the
attributes A2 and A3 should be required by item 10 and A4
required by item 11 while A2 not needed for item 11. Such
changes appear difficult to interpret under the definitions of
the latent attributes. This may be due to the false discoveries
of the sequential estimation method with only 536 observations
for eight attributes and the nonidentifiability issue with the Q-
matrix. To better control the false detection, we conduct the pro-
posed bootstrap bagging method. The aggregated estimation,
shown in Table 5, suggests none of the four detected entries
should be changed. The result confirms the validity of the orig-
inal Q-matrix in de la Torre and Douglas (2004).

We further consider a simpler Q-matrix proposed in Chen
et al. (2015) with K = 3. The Q-matrix is demonstrated on the
left of Table 6 with the three attributes interpreted as: Attribute
1 finding common denominator; Attribute 2 writing integer

as fraction; and Attribute 3 subtraction of fraction numbers
with integers involved. We perform the proposed sequen-
tial approach and it suggests to update item 9 and 10. Both

Table . Fraction subtraction data with K = 3.

Prespecified
Bootstrap
aggregation

Exploratory
estimate

Item Content Attr Attr Attr Attr Attr Attr Attr Attr Attr

 5
3 − 3

4    . . .   

 3
4 − 3

8    . . .   

 5
6 − 1

9    . . .   

 3 1
2 − 2 2

3    . . .   

 1 18 − 1
8    . . .   

 3 4
5 − 3 2

5    . . .   

 4 5
7 − 1 47    . . .   

 4 3
5 − 3 4

10    . . .   

 3 − 2 1
5  0∗  . 0.51∗ .   

 2 − 1
3  0∗  . 0.55∗ .   

 4 4
12 − 2 7

12    . . .   

 4 1
3 − 2 4

3    . . .   

 7 35 − 4
5    . . .   

 4 1
10 − 2 8

10    . . .   

 4 − 1 43    . . .   

 4 1
3 − 1 53    . . .   

 3 3
8 − 2 5

6    . . .   

NOTE: The left is the Q-matrix from Chen et al. (). Entries in bold are detec-
tions from the stepwise estimation. Themiddle is the bagging result. Entries with
bootstrap significance are labeledwith “∗.”The right is the exploratory estimation
result.
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Table . Exploratory analysis results of fraction subtraction data with K = 5.

Item Content Attr Attr Attr Attt Attr

 5
3 − 3

4     

 3
4 − 3

8     

 5
6 − 1

9     

 3 1
2 − 2 2

3     

 1 18 − 1
8     

 3 4
5 − 3 2

5     

 4 5
7 − 1 47     

 4 3
5 − 3 4

10     

 3 − 2 1
5     

 2 − 1
3     

 4 4
12 − 2 7

12     

 4 1
3 − 2 4

3     

 7 35 − 4
5     

 4 1
10 − 2 8

10     

 4 − 1 43     

 4 1
3 − 1 53     

 3 3
8 − 2 5

6     

corrections are further confirmed by the bootstrap bagging
results in the middle of Table 6. If we check the item content,
solving 3 − 21

5 and 2 − 1
3 does involve the process of writing

integers as fractions, hence should require Attribute 2. There-
fore, our results are more consistent with the definition of the
attributes and the two detected entries are recommended to be
updated.

Exploratory estimation of the latent structure is also con-
ducted using the proposed approach for K = 3. The result is
shown on the right of Table 6 and it agrees with Chen et al.
(2015) on the first eight items. Note that Chen et al. (2015)
assumed the specific DINAmodel when conduct the estimation
but our approach does not make such model assumption. Con-
sequentially the interpretation of the three attributes should be
different from theirs. To further compare the three Q-matrices
in Table 6, we calculate their BIC values: the BIC of theQ-matrix
in Chen et al. (2015) is 7846, the BIC of the sequential updated
one is 7837, and the exploratory one is 7793, which shows that
both proposed methods give better goodness of fit than the
initial Q-matrix. We also perform the exploratory analysis with
otherK values. In particular, the estimatedQ-matrix withK = 5
is given in Table 7. Compared with the Q-matrix in Table 5, the
estimated first attribute can be interpreted as “(A1) Convert a
whole number to a fraction,” the second as “(A4) Find com-
mon denominator,” the third one as “(A5) Borrow from whole
number part,” while the last two attributes shall be interpreted
differently from theirs due to the dimension reduction. The BIC
of the estimated model is 7485, which gives a better fit than the
Q-matrices in Tables 5 and 6. Nevertheless, it shall be noted that
the estimation only serves as a data-driven guide of construct-
ing the finial Q-matrix, and researchers need to further validate
the estimates based on their understanding of the diagnostic
items.

7. Discussion

This article aims to identify and estimate theQ-matrix in a fam-
ily of restricted latent class models. Based on the identifiability
results, we develop a likelihood-based estimation method that
can be applied to two different cases in practice: estimation of
the wholeQ-matrix in exploratory analysis andmisspecification
detection for a provisional Q-matrix. The simulation studies
show that our method is able to recover the true latent structure
with high accuracy. The real data study demonstrates that our
method can construct interpretable latent structure and provide
reasonable updates to the existing Q-matrix.

The capability of adapting with or without the prior informa-
tion of theQ-matrix is one advantage of the proposed approach.
The exploratory analysis in Section 4.1 provides researcher
with useful information on the tests and helps them to explore
the features of new items. The stepwise estimation method in
Section 4.2 would serve as a reliable tool to detect the possible
misspecifications of a provisional Q-matrix. It should be noted
that theQ-matrix that statistically fit the data best may not agree
with the one having best practical interpretation. It is always rec-
ommended that researchers and test designers further validate
the estimation results.

One future research direction is to estimate the number of
latent attributes in exploratory analysis. In this study, the latent
dimension K is assumed to be known. It is of interest to select
the latent dimension according to the model fit and model
complexity. Another future work is to establish the partial
identification of the Q-matrix when the identifiability condi-
tions are not satisfied. This would be of practical importance,
especially when single attribute items are difficult to design
and therefore the completeness condition may not be satisfied.
Moreover, we assume binary responses in this study while in
practice there could be various types of responses data; for
instance, identifiability of multinomial response was recently
studied in Fang, Liu, and Ying (2017) using the result in Kruskal
(1977). Lastly, the Q-matrix based cognitive diagnosis models
provide the basis for cognitive diagnosis computerized adaptive
testing (CD-CAT); the proposedmethod can be extended to the
CD-CAT setting to calibrate new designed items and estimate
their Q-vectors and item parameters.

Supplementary Materials

The supplementary appendix contains the proofs of the main
results, including Theorem 1 and Propositions 1–3, in Section
A.1, computational details in Section A.2, and additional simu-
lation results in Section A.3.
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